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Abstract: Piecewise regression represents a powerful tool to derive accurate yet modular
models describing complex phenomena or physical systems. This paper presents an approach
for learning PieceWise NonLinear (PWNL) functions in both a supervised and semi-supervised
setting. We further equip the proposed technique with a method for the automatic generation
of additional unsupervised data, which are leveraged to improve the overall accuracy of the
estimate. The performance of the proposed approach is preliminarily assessed on two simple
simulation examples, where we show the benefits of using nonlinear local models and artificially
generated unsupervised data.
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1. INTRODUCTION

Piecewise models can be used to describe highly and possi-
bly discontinuous nonlinear physical systems and phenom-
ena, while being fairly interpretable. Indeed, they allow
to approximate complex relationships between a target
output y ∈ R and a feature vector x ∈ X ⊆ Rnx with a
finite collection of local models, defined over a partition of
the feature space X . Within the control community, most
of research efforts have been devoted to devise procedures
to learn PieceWise Affine (PWA) models from data (see
Garulli et al. (2012) for an overview), since these models
can be analyzed with off-the-shelf tools and straightfor-
wardly used for control design, e.g., see Bemporad and
Morari (1999). This learning problem is known to be NP-
hard, Lauer (2015), despite the simple structure of the
local models. Several approaches have been proposed in
the last decades to handle PWA regression, e.g., Roll et al.
(2004); Juloski et al. (2005); Ohlsson and Ljung (2013);
Breschi et al. (2016).

Despite their appealing features, namely the linear struc-
ture of the sub-models and the existence of effective learn-
ing tools, PWA models might become overly complex if
the system/phenomenon to be described is highly nonlin-
ear within the same operating region. In this case, one
might need more than one sub-model to describe the
behavior of the underlying system/phenomena at a given
working condition, with a price paid in terms of model
interpretability. To avoid this problem, we embed kernel
regression Pillonetto et al. (2014) into the approach pro-
posed in Bemporad et al. (2018), so as to learn PieceWise
NonLinear (PWNL) models in a nonparametric fashion.

Few attempts have already been made in this direction.
In Lauer and Bloch (2008), PWNL regression is solved

through the combination of kernel regression and sup-
port vector machines (SVMs). Since all data points are
exploited to construct each local kernel, the number of
optimization variables critically increases with the dimen-
sion of the dataset, thus limiting the applicability of the
approach. This computational issue is overcome in Lauer
et al. (2010), where heuristics are introduced to reduce
the number of parameters to be learned before starting the
optimization. In Lauer and Bloch (2014), piecewise smooth
systems are identified by solving an optimization problem
that trades-off between data fitting and model complexity.
The outcome is then exploited to find the partition of
the feature space through a separate classification task.
Instead, our approach embeds the three learning tasks
(regression, clustering and classification) within the same
optimization routine.

Existing works on PWNL regression are all tailored for
fully supervised settings only. Nonetheless, in practical
scenarios, a set of features might be available without
the corresponding output. Instead of discarding additional
data, we equip the proposed PWNL regression technique
with a method to exploit unsupervised regressors, that are
used to improve the reconstructed polyhedral partition of
the feature space. The obtained semi-supervised piecewise
nonlinear regression method, called GREEDY-SS PWNL,
is also equipped with the automatic generation of unsuper-
vised data points, by tailoring the works of Formentin et al.
(2019); Mazzoleni et al. (2018); Mazzoleni et al. (2018), so
as to benefit from additional features when not provided.

The contributions of the paper can be summarized as fol-
lows. We (i) present a novel method for PWNL regression
inspired by Bemporad et al. (2018); (ii) we extend this
approach to a semi-supervised setting; (iii) we propose a
data augmentation strategy to exploit the benefits of the
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semi-supervised framework even when unsupervised data
are not originally provided.

2. SETTING AND GOAL

Assume that the relationship between a feature vector
x ∈ X ⊆ Rnx and the corresponding output y ∈ R is
described by an unknown nonlinear and possibly discon-
tinuous function fo : X → R, namely y = fo(x). We aim at
approximating the target mapping fo with a finite collec-
tion of nonlinear maps, defined over a complete polyhedral
partition 1 of the feature space X . We learn a piecewise
nonlinear (PWNL) map f : X → R, defined as

f(x) =




g1(x), if x ∈ X1,
...
gM (x), if x ∈ XM ,

(1)

where M is number of the of unknown and possibly nonlin-
ear functions gm : Xm → R shaping each local approxima-
tor, and Xm ∈ X is the m-th polyhedron 2 characterizing
the partition of space X , with m = 1, . . . ,M . Throughout
the rest of the paper, we assume that each unknown
local model gm belongs to a Reproducing Kernel Hilbert
Space (RKHS) Hm associated with a kernel km : Xm ×
Xm → R, see Aronszajn (1950), implying that the local
models might not share the same structure. To accomplish
our learning task, we consider two different scenarios.
Initially, we assume that a dataset DNs

= {xn, yn}Ns
n=1

is available to learn f in (1), with the measured outcomes
{yn}Nn=1 corrupted by a zero-mean, additive random noise
independent from xn, for all n = 1, . . . , Ns. Then, we
assume that an additional set of unsupervised features is
available to estimate the PWNL approximating function f .
Independently of the considered setting, learning a PWNL
approximating function f from experimental data amounts
to: (i) select the number of local models M ; (ii) estimate
the M nonlinear sub-models and (iii) find the polyhedral
partition {Xm}Mm=1 of the feature domain X . In this work,
M is assumed to be fixed by the user.

3. SUPERVISED PWNL REGRESSION

To identify a PWNL map from data we exploit an instance
of the approach presented in Bemporad et al. (2018),
tailored to handle nonlinear sub-models and to provide
an explicit polyhedral partition of the feature space.

Let Xs = {xn}Ns
n=1 and Y = {yn}Ns

n=1 be the available
collections of features and outputs, respectively. Denote
with sn ∈ {1, . . . ,M} the latent variable indicating the
active sub-model for the n-th data point, and let S be
the sequence of active modes, i.e., S = {sn}Ns

n=1. Even
though this sequence is not explicitly mentioned among
the unknowns of our model in Section 2, the estimation
of S enables us to cluster the available data points and
to find both the local models and the polyhedral partition
of X within a single optimization routine. According to
the chosen framework, the problem of learning a PWNL

1 A complete polyhedral partition {Xm}Mm=1 verifies:
⋃M

m=1
Xm=X

and
◦
X i∩

◦
X j=∅ ∀i �=j, i, j=1, . . . ,M , where

◦
X i is the interior of Xi.

2 A polyhedron Xm is described by a set of real-valued linear
inequalities.

approximating function from DNs can be formalized as the
following optimization problem:

min
GM ,Θx,S

�f (Y,Xs,GM ,S) + �p(Xs,Θx,S), (2)

where GM = {gm ∈ Hm}Mm=1 is the collection of local
unknown sub-models and Θx are the parameters charac-
terizing the polyhedral partition of X . The first term in the
cost �f (Y,Xs,GM ,S) penalizes local models fitting errors
and it is defined as follows:

�f (Y,Xs,GM ,S)=
Ns∑
n=1

(
yn−gsn (xn)

)2
+λT

M∑
m=1

‖gm‖2Hm
,

(3)
where ‖gm‖2Hm

is a Tikhonov regularization term and the
parameter λT ∈ R+ controls the regularization strength.
Instead, the second term �p(Xs,Θx,S) quantifies the
accuracy of the polyhedral partition characterized by the
parameters Θx= (θx,1, . . . ,θx,M ). To obtain a closed-form
expression for such a cost, we search for a PWA separator
of the clusters dictated by S. Namely, we seek
φ(x)= max

m=1...M
{φm(x)} , with φm(x) = θ�

x,m [ x1 ] , (4)

such that the following holds:{
φ(x) = θ�

x,m [ x1 ] , ∀x ∈ Xm,m=1, . . . ,M

φ(x) ≥ θ�
x,j [

x
1 ] + 1, ∀x ∈ Xm,m �= j.

(5)

We stress that, by definition, each affine function φm now
dictates the boundaries of a polyhedron in Xm, namely

Xm={x ∈ Rnx :φ(x) = φm(x)} , m = 1, . . . ,M. (6)
To this end, we exploit the same rationale of Breschi et al.
(2016) and we select the partition cost �p(Xs,Θx,S) as:

�p(Xs,Θx,S)=
Ns∑
n=1

�x (xn,Θx, sn)+λTp‖Θx‖22, (7a)

�x(xn,Θx, sn)=

M∑
j=1
j �=sn

max
{
0, (θx,j−θx,sn)

�
[ xn

1 ]+1
}2

,

(7b)
so to weight the average violation of the conditions in
(5), with λTp

∈ R+ dictating the strength of the L2-
regularization.

As summarized in Algorithm 1, Problem (2) is solved by al-
ternatively learning {gm}Mm=1 and Θx = (θx,1, . . . ,θx,M ),
for a fixed sequence S, and updating S with the sub-
models and the partition fixed. In the proposed learn-
ing procedure, we exploit an additional feature of the
considered problem, namely the separability of (2) with
respect to {gm}Mm=1 and Θx for a given S. This allows
us to employ the computationally efficient multi-category
discrimination technique proposed in Breschi et al. (2016)
to estimate the PWA separator (see step 1.2).
3.1 Nonparametric local model estimation

Consider the problem of estimating the local models from
data, at the i-th iteration, for a fixed sequence Si−1 at
step 1.1 of Algorithm 1, namely

min
GM

Ns∑
n=1

(
yn−gsi−1

n
(xn)

)2
+λT ·

M∑
m=1

‖gm‖2Hm
. (8a)

Let X i
m be the set of points associated to the m-th mode

at the i-th iteration, and N i
m = {n ∈ [1, Ns] : s

i−1
n =
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collections of features and outputs, respectively. Denote
with sn ∈ {1, . . . ,M} the latent variable indicating the
active sub-model for the n-th data point, and let S be
the sequence of active modes, i.e., S = {sn}Ns

n=1. Even
though this sequence is not explicitly mentioned among
the unknowns of our model in Section 2, the estimation
of S enables us to cluster the available data points and
to find both the local models and the polyhedral partition
of X within a single optimization routine. According to
the chosen framework, the problem of learning a PWNL

1 A complete polyhedral partition {Xm}Mm=1 verifies:
⋃M

m=1
Xm=X

and
◦
X i∩

◦
X j=∅ ∀i �=j, i, j=1, . . . ,M , where

◦
X i is the interior of Xi.

2 A polyhedron Xm is described by a set of real-valued linear
inequalities.

approximating function from DNs can be formalized as the
following optimization problem:

min
GM ,Θx,S

�f (Y,Xs,GM ,S) + �p(Xs,Θx,S), (2)

where GM = {gm ∈ Hm}Mm=1 is the collection of local
unknown sub-models and Θx are the parameters charac-
terizing the polyhedral partition of X . The first term in the
cost �f (Y,Xs,GM ,S) penalizes local models fitting errors
and it is defined as follows:

�f (Y,Xs,GM ,S)=
Ns∑
n=1

(
yn−gsn (xn)

)2
+λT

M∑
m=1

‖gm‖2Hm
,

(3)
where ‖gm‖2Hm

is a Tikhonov regularization term and the
parameter λT ∈ R+ controls the regularization strength.
Instead, the second term �p(Xs,Θx,S) quantifies the
accuracy of the polyhedral partition characterized by the
parameters Θx= (θx,1, . . . ,θx,M ). To obtain a closed-form
expression for such a cost, we search for a PWA separator
of the clusters dictated by S. Namely, we seek
φ(x)= max

m=1...M
{φm(x)} , with φm(x) = θ�

x,m [ x1 ] , (4)

such that the following holds:{
φ(x) = θ�

x,m [ x1 ] , ∀x ∈ Xm,m=1, . . . ,M

φ(x) ≥ θ�
x,j [

x
1 ] + 1, ∀x ∈ Xm,m �= j.

(5)

We stress that, by definition, each affine function φm now
dictates the boundaries of a polyhedron in Xm, namely

Xm={x ∈ Rnx :φ(x) = φm(x)} , m = 1, . . . ,M. (6)
To this end, we exploit the same rationale of Breschi et al.
(2016) and we select the partition cost �p(Xs,Θx,S) as:

�p(Xs,Θx,S)=
Ns∑
n=1

�x (xn,Θx, sn)+λTp‖Θx‖22, (7a)

�x(xn,Θx, sn)=

M∑
j=1
j �=sn

max
{
0, (θx,j−θx,sn)

�
[ xn

1 ]+1
}2

,

(7b)
so to weight the average violation of the conditions in
(5), with λTp

∈ R+ dictating the strength of the L2-
regularization.

As summarized in Algorithm 1, Problem (2) is solved by al-
ternatively learning {gm}Mm=1 and Θx = (θx,1, . . . ,θx,M ),
for a fixed sequence S, and updating S with the sub-
models and the partition fixed. In the proposed learn-
ing procedure, we exploit an additional feature of the
considered problem, namely the separability of (2) with
respect to {gm}Mm=1 and Θx for a given S. This allows
us to employ the computationally efficient multi-category
discrimination technique proposed in Breschi et al. (2016)
to estimate the PWA separator (see step 1.2).
3.1 Nonparametric local model estimation

Consider the problem of estimating the local models from
data, at the i-th iteration, for a fixed sequence Si−1 at
step 1.1 of Algorithm 1, namely

min
GM

Ns∑
n=1

(
yn−gsi−1

n
(xn)

)2
+λT ·

M∑
m=1

‖gm‖2Hm
. (8a)

Let X i
m be the set of points associated to the m-th mode

at the i-th iteration, and N i
m = {n ∈ [1, Ns] : s

i−1
n =

Algorithm 1 [Supervised PWNL regression]
Input: Data {Y,Xs}; initial sequence S0; λT , λTp

∈ R+.
1. for i = 1, . . . do

1.1. Gi
M ← arg min

GM

�f (Y,Xs,GM ,Si−1)

1.2. Θi
x←arg min

Θx

�p(Xs,Θx,Si−1)

1.3. Si←arg min
S

∑Ns

n=1 �
(
yn,xn,Gi

M ,Θi
x, sn

)

2. until Si = Si−1

Output: Local models G�
M =Gi

M ; separator Θ�
x=Θi

x.

m} the set of their indexes with |N i
m| its cardinality.

By straightforward manipulations it can be shown that
minimizing the cost in (8a) corresponds to solving M
distinct optimization problems

min
gm

∑
n∈N i

m

(
yn−gm (xn)

)2
+λT ·‖gm‖2Hm

, (8b)

with m = 1, . . . ,M . Therefore, step 1.1 involves the
solution of M separate nonlinear regression sub-problems,
each one leading to an updated estimate of a sub-model.

According to the representer theorem, see Dinuzzo and
Schölkopf (2012), problem (8b) admits the solution

gm(x) = [θi
y,m]� · h, (9)

where θi
y,m is a vector of coefficients, and the vector

h ∈ R|N i
m| stacks the values km (x,xr), where r ∈ N i

m.
Thus, problem (8b) can be restated using (9) as

min
θi
y,m

‖yi
m −Ki

mθi
y,m‖22 + λT · (θi

y,m)�Ki
mθi

y,m, (10)

where yi
m ∈ R|N i

m| is the vector stacking the outputs
associated with the m-th mode, and Ki

m ∈ R|N i
m|×|N i

m|

is a semidefinite positive, symmetric matrix with elements
km(xr,xc), with xr,xc ∈ X i

m. As such, these updates boil
down to M kernel ridge regression problems Saunders et al.
(1998).

Problem (10) admits the closed form solution

θi
y,m =

[
Ki

m + λT · I|N i
m|
]−1

yi
m. (11a)

with I|N i
m| the identity matrix. Since N i

m is constructed
according to the fixed sequence Si−1, we stress that the
parameters vector θi

y,m ∈ R|N i
m| changes its dimension

iteratively along with the kernel matrix Ki
m.

Remark 1. (Computational hints). At each iteration we
use only a subset of data to build the matrices {Ki

m}Mm=1,
due to their dependency on the updated mode sequence.
An efficient way to construct Ki

m is to first compute the
full matrix (considering all Ns points), and then index it
with only the ones in the set N i

m. �

3.2 Mode sequence update

By looking at the objective function in (2), it can be
noticed that the latter is separable with respect to {sn}Ns

n=1
for given local models and a fixed partition. Moreover,
there is clearly no dependence between consecutive values
of the latent variable within S. This allows us to refine
the mode sequence iteratively in a rather straightforward
way, while accounting for both local model fitting and the

quality of the partition estimated based on the previous
estimate of the mode sequence.

Based on the chosen cost function, let the cost of assigning
a pair {xn, yn} to the m-th mode at the i-th iteration be

L(m,n) = �(xn, yn,Gi
m,Θi

x,m), (12a)
with

�
(
xn, yn,Gi

M ,Θi
x,m

)
=

(
yn − gim (xn)

)2
+

+
M∑
j=1
j �=m

max
{
0,
(
θi
x,j − θi

x,m

)�
[ xn

1 ] + 1
}2

, (12b)

which can be computed exploiting the updated estimates
{gim}Mm=1 and the parameters Θi

x. This allocation cost in
(12b) is independent from the regularization terms, since
they do not depend on the mode sequence.

By relying on the characteristics of the considered problem
and the allocation cost defined in (12), the mode associated
to each data point is reconstructed as

sin = argmin
m=1,...,M

L(m,n), n = 1, . . . , Ns. (13)

Remark 2. (Jump models). Algorithm 1 can be extended
to nonlinear jump models by reconstructing the mode se-
quence via dynamic programming (DP) Bertsekas (2000).
This generalization is the subject of ongoing research. �

Remark 3. (Validation hints). To predict the output as-
sociated with a fresh set of features (x∗

1, . . . ,x
∗
Nval

), one
has to (i) assign the new sample to one of the modes
according to the estimated polyhedral partition, and then
(ii) reconstruct the output through the estimated model
associated to the chosen mode. �

4. GREEDY SEMI-SUPERVISED PWNL (GREEDY-SS
PWNL) REGRESSION

Suppose that, in addition to the supervised dataset DNs
,

an unsupervised set DNu
is also accessible, which includes

Nu feature vectors xn,u for which the target output is not
available. Since the approximating map f in (1) is defined
over a polyhedral partition of the feature space X , these
additional data can be exploited quite straightforwardly
within our framework to estimate the polyhedral partition.

Let X be the collection of available N = Ns +Nu feature
vectors, namely X = {x̃n}Nn with

x̃n =

{
xn if 1 ≤ n ≤ Ns,

xn−Ns,u if Ns + 1 < n ≤ N.
(14)

To exploit the unsupervised features in the computation
of the polyhedral partition, the cost in (2) can be slightly
modified as follows:

min
GM ,Θx,S̃

�f (Y,Xs,GM , S̃) + �p(X,Θx, S̃), (15)

with the partition cost �p(X,Θx, S̃) still defined as in (7),
but now depending on both supervised and unsupervised
features. This implies that the new optimization variable
S̃ collects the modes associated to both supervised and
unsupervised samples, i.e., S̃ = {s̃n}Nn=1.

Since the cost in (15) is still separable with respect to
GM and Θx, the local models and the partition can
still be learned separately. Moreover, as the fitting cost
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�f (Y,Xs,GM , S̃) is independent from unsupervised data,
the local models are still estimated exactly as in step 1.1
of Algorithm 1. The partition is found by computing
a PWA separator through the Newton-like method pro-
posed in Breschi et al. (2016), now relying on the ad-
ditional features available. As the polyhedral partition
is shaped by unsupervised data, they directly affect the
reconstructed mode sequence and indirectly influence the
learned local models. The mode sequence is still found
as discussed in Section 3.2, by considering a different
allocation cost with respect to the one in (12b). In par-
ticular, the new cost associated to the m-th mode is given
by �

(
x̃n, yn,Gi

M ,Θi
x,m

)
in (12b) for supervised points,

thus accounting for both local fitting and misclassification,
while it is equal to �x(x̃n,Θ

i
x,m) in (7b) for unsupervised

features, thus depending on their position within X only.

5. AN APPROACH TO DATA AUGMENTATION

When a set of unsupervised features DNu
is not available,

one can augment the data by creating this set artificially.
Following the same rationale in Formentin et al. (2019),
we propose a simple, yet effective, approach for the auto-
matic generation of additional features, by exploiting the
hallmarks of the considered model.

5.1 Automatic unsupervised data generation

Let the modes of the supervised data be fixed and denote
as Nm,s = {n ∈ [1, Ns] : sn = m} the set of indexes
of supervised data points associated with the m-th mode.
For each sample xn such that n ∈ Nm,s, we generate η
unsupervised data points as

xj
n,u = xn + vj

n, j = 1, . . . , η, (16)

where vj
n is a random vector and η > 0 is a parameter

to be tuned so as to balance the improvement attained
by augmenting the dataset and overfitting the available
data. The value of vj

n determines the distance of the
unsupervised data point xj

n to the supervised one xn.
On the one hand, this has to be sufficiently large so to
exhaustively explore the feature space X . On the other
hand, vj

n should be small enough to guarantee that the
newly generated points lie in the same region of the
supervised features. To satisfy these constraints, one can
impose vj

n to be uniformly distributed 3 , namely
vj
n ∼ U[−hn,hn], j = 1, . . . , η, (17)

where hn > 0 are parameters that determine the area
where unsupervised points are created. These parameters
can be selected automatically accounting for both our con-
flicting objectives. Indeed, to create high density clusters
within each polyhedral region, we can impose that

‖xj
n,u − xn‖ ≤ dme

2
, j = 1, . . . , η, (18)

with dme denoting the Euclidean distance between the two
closest supervised feature vectors within the m-th cluster.
At the same time, for the unsupervised points to be far
from the boundaries of the polyhedral regions, we enforce

‖xj
n,u − xn‖ ≤ db,n − ε

2
, j = 1, . . . , η, (19)

3 Alternative distributions with limited support can also be chosen.

where db,n is the minimum distance between the n-th
supervised sample and the separating hyperplanes char-
acterizing the partition of X , i.e.

db,n = min
i=1,...,M

∣∣θ�
x,i [

xn
1 ]

∣∣
‖θ�

x,i

[
1nx
0

]
‖2

. (20)

The additional parameter ε ∈ [0, maxn [db,n]), is intro-
duced as a safety guard to guarantee that the distance
between the border of the polyhedral regions and the
generated point is at least ε. Let d�n = min{db,n − ε, dme }.
According to Formentin et al. (2019), we can set the
boundaries of the uniform distribution on vj

n as

hn =
d�n

2
√
nx

;
d�n
2

= min

{
dmb,n − ε

2
,
dme
2α

}
, (21)

where α > 0 is introduced to control the width of the area
where the unsupervised points are created. Fig. 1 depicts
two possible scenarios of unsupervised data creation. On
the left, all supervised points are far from the boundaries
of the polyhedral regions, so that the unsupervised points
are created according to intra-cluster distances only. In
the right plot, one of the available samples is close to
the boundaries of the region and, thus, the associated
unsupervised points are created according to the distance
from the separating hyperplane.

5.2 Embed automatic unsupervised data generation into
GREEDY-SS PWNL

The scheme for artificial data generation can be embed-
ded within the semi-supervised PWNL regression method
introduced in Section 4, as summarized in Algorithm 2.

Let Si−1 be the active mode sequence associated to the
supervised data, computed at the i − 1-th run of Algo-
rithm 2. At the i-th iteration this sequence is used to
update the local models as discussed in Section 3.1, as in
Algorithm 1. This step is still independent on unsupervised
points. Then, new artificial features are created according
to the current PWA separator and the mode sequence
Si−1. Because of the dependence of {hn}Ns

n=1 in (21) on
the polyhedral partition, we stress that unsupervised data
points have necessarily to be discarded at the end of each
run of Algorithm 2 and they must be re-generated at every
new iteration. To exploit the additional features in the
computation of the PWA separator, the associated mode
have also to be initialized. To this end, we rely on Si−1.
Specifically, artificial samples are labeled according to the
mode associated to the supervised points from which they
are generated, namely

sjn,u = si−1
n , j = 1, . . . , η, (22)

with sjn,u being the mode associated to the j-th artificial
features generated from the n-th supervised data point.
This allows us to construct the extended mode sequence
S̃i−1. At the end of each iteration (see step 1.7 of Al-
gorithm 2), only the subsequence of S associated to the
supervised points is retained, while the last Nu estimated
modes are discarded.
Remark 4. (Initialization hints). Since the PWA separa-
tor is not initialized, one can generate the unsupervised
points by looking at intra-cluster distances only, or run Al-
gorithm 1 and use the estimated partition for the creation
of unsupervised points at the first run of Algorithm 2. �
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�f (Y,Xs,GM , S̃) is independent from unsupervised data,
the local models are still estimated exactly as in step 1.1
of Algorithm 1. The partition is found by computing
a PWA separator through the Newton-like method pro-
posed in Breschi et al. (2016), now relying on the ad-
ditional features available. As the polyhedral partition
is shaped by unsupervised data, they directly affect the
reconstructed mode sequence and indirectly influence the
learned local models. The mode sequence is still found
as discussed in Section 3.2, by considering a different
allocation cost with respect to the one in (12b). In par-
ticular, the new cost associated to the m-th mode is given
by �

(
x̃n, yn,Gi

M ,Θi
x,m

)
in (12b) for supervised points,

thus accounting for both local fitting and misclassification,
while it is equal to �x(x̃n,Θ

i
x,m) in (7b) for unsupervised

features, thus depending on their position within X only.

5. AN APPROACH TO DATA AUGMENTATION

When a set of unsupervised features DNu
is not available,

one can augment the data by creating this set artificially.
Following the same rationale in Formentin et al. (2019),
we propose a simple, yet effective, approach for the auto-
matic generation of additional features, by exploiting the
hallmarks of the considered model.

5.1 Automatic unsupervised data generation

Let the modes of the supervised data be fixed and denote
as Nm,s = {n ∈ [1, Ns] : sn = m} the set of indexes
of supervised data points associated with the m-th mode.
For each sample xn such that n ∈ Nm,s, we generate η
unsupervised data points as

xj
n,u = xn + vj

n, j = 1, . . . , η, (16)

where vj
n is a random vector and η > 0 is a parameter

to be tuned so as to balance the improvement attained
by augmenting the dataset and overfitting the available
data. The value of vj

n determines the distance of the
unsupervised data point xj

n to the supervised one xn.
On the one hand, this has to be sufficiently large so to
exhaustively explore the feature space X . On the other
hand, vj

n should be small enough to guarantee that the
newly generated points lie in the same region of the
supervised features. To satisfy these constraints, one can
impose vj

n to be uniformly distributed 3 , namely
vj
n ∼ U[−hn,hn], j = 1, . . . , η, (17)

where hn > 0 are parameters that determine the area
where unsupervised points are created. These parameters
can be selected automatically accounting for both our con-
flicting objectives. Indeed, to create high density clusters
within each polyhedral region, we can impose that

‖xj
n,u − xn‖ ≤ dme

2
, j = 1, . . . , η, (18)

with dme denoting the Euclidean distance between the two
closest supervised feature vectors within the m-th cluster.
At the same time, for the unsupervised points to be far
from the boundaries of the polyhedral regions, we enforce

‖xj
n,u − xn‖ ≤ db,n − ε

2
, j = 1, . . . , η, (19)

3 Alternative distributions with limited support can also be chosen.

where db,n is the minimum distance between the n-th
supervised sample and the separating hyperplanes char-
acterizing the partition of X , i.e.

db,n = min
i=1,...,M

∣∣θ�
x,i [

xn
1 ]

∣∣
‖θ�

x,i

[
1nx
0

]
‖2

. (20)

The additional parameter ε ∈ [0, maxn [db,n]), is intro-
duced as a safety guard to guarantee that the distance
between the border of the polyhedral regions and the
generated point is at least ε. Let d�n = min{db,n − ε, dme }.
According to Formentin et al. (2019), we can set the
boundaries of the uniform distribution on vj

n as

hn =
d�n

2
√
nx

;
d�n
2

= min

{
dmb,n − ε

2
,
dme
2α

}
, (21)

where α > 0 is introduced to control the width of the area
where the unsupervised points are created. Fig. 1 depicts
two possible scenarios of unsupervised data creation. On
the left, all supervised points are far from the boundaries
of the polyhedral regions, so that the unsupervised points
are created according to intra-cluster distances only. In
the right plot, one of the available samples is close to
the boundaries of the region and, thus, the associated
unsupervised points are created according to the distance
from the separating hyperplane.

5.2 Embed automatic unsupervised data generation into
GREEDY-SS PWNL

The scheme for artificial data generation can be embed-
ded within the semi-supervised PWNL regression method
introduced in Section 4, as summarized in Algorithm 2.

Let Si−1 be the active mode sequence associated to the
supervised data, computed at the i − 1-th run of Algo-
rithm 2. At the i-th iteration this sequence is used to
update the local models as discussed in Section 3.1, as in
Algorithm 1. This step is still independent on unsupervised
points. Then, new artificial features are created according
to the current PWA separator and the mode sequence
Si−1. Because of the dependence of {hn}Ns

n=1 in (21) on
the polyhedral partition, we stress that unsupervised data
points have necessarily to be discarded at the end of each
run of Algorithm 2 and they must be re-generated at every
new iteration. To exploit the additional features in the
computation of the PWA separator, the associated mode
have also to be initialized. To this end, we rely on Si−1.
Specifically, artificial samples are labeled according to the
mode associated to the supervised points from which they
are generated, namely

sjn,u = si−1
n , j = 1, . . . , η, (22)

with sjn,u being the mode associated to the j-th artificial
features generated from the n-th supervised data point.
This allows us to construct the extended mode sequence
S̃i−1. At the end of each iteration (see step 1.7 of Al-
gorithm 2), only the subsequence of S associated to the
supervised points is retained, while the last Nu estimated
modes are discarded.
Remark 4. (Initialization hints). Since the PWA separa-
tor is not initialized, one can generate the unsupervised
points by looking at intra-cluster distances only, or run Al-
gorithm 1 and use the estimated partition for the creation
of unsupervised points at the first run of Algorithm 2. �

ε ε

Fig. 1. Examples of selection of unsupervised data (empty
circles) with two possible configurations of supervised
features (full circles), with η = 2.

Algorithm 2 [Greedy semi-supervised PWNL regression
with artificial feature generation]

Input: Data {Xs, Y }Ns
n=1; initial sequence S0; λT , λTp ∈

R+, initial separators parameters Θ0
x

1. for i = 1, . . . do

1.1. Gi
M ← argminGM

�f (Y,Xs,GM ,Si−1)
1.2. Generate the artificial features
1.3. Construct X as in (14)
1.4. Initialize the extended mode sequence S̃i−1

1.5. Θi
x←argminΘx

�p(X,Θx, S̃i−1)

1.6. Find S̃i as

min
S̃

Ns∑
n=1

�
(
x̃n,yn,Gi

M ,Θi
x,s̃n

)
+

N∑
n=Ns+1

�x(x̃n,Θ
i
x,s̃n)

1.7. Si ← {s̃in}
Ns
i=1

2. until Si = Si−1

Output: Local models G�
M =Gi

M ; separator Θ�
x=Θi

x.

6. SIMULATION RESULTS

The effectiveness of the proposed approaches is assessed on
two simple simulation examples. In both cases, the regular-
ization hyper-parameters λ, λTp are fixed in advance and
shared by all methods, along with the hyper-parameter σk

characterizing the Gaussian kernel

km(x1,x2) = e

(
− ‖x1−x2‖2

σk

)

exploited to solve the M nonlinear regression subproblems.
We leave the discussion on possible tuning strategies of
these important parameters to future work. The perfor-
mance of the approaches is assessed on a validation set, by
looking at the Best Fit Rate (BFR):

BFR = max

{
1− ‖yval − ŷval‖

‖yval − ȳval‖
, 0

}
· 100,

where yval stacks the measured validation outputs, ŷval
collects the ones reconstructed with the estimated model
and ȳval is the sample mean of the measured outputs.
Throughout training and validation, the true class asso-
ciated to each data-point is assumed to be unknown and
the actual mode sequence is only used as a ground-truth
for performance assessment.

The considered case studies have been chosen so as to show
the advantages of using nonlinear sub-models, while high-
lighting the limitations of the PWA rationale. To this end,
we compare the results attained with the proposed PWNL
regression methods with the ones obtained through PWA
regression. For the comparison to be fair, the PWA models

Fig. 2. Example 1. True VS reconstructed functions.

Table 1. Example 1. Validation performance.
PWA PWNL GREEDY-SS PWNL

BFR [0 - 100] 70.84 77.63 78.53
Misclassified [%] 16% 13% 2%

are retrieved via the approach proposed in Bemporad et al.
(2018) by minimizing the loss in (15), properly modified
to account for the simpler nature of the local models.

6.1 Example 1. Single-variable function

We randomly generate Ns=100 supervised data from the
map

fo(x) =




− 2 + 0.1 log (1− x) , if x ≤ 0,

1 + 0.01x+ sin (x) /x, if 0 < x ≤ 10,

2 + 0.2 exp
(
− 1

2
(x−15)2

5

)
, if 10 < x ≤ 20,

with the measured output y corrupted by additive noise,
such that the Signal-Noise-Ratio (SNR) is 10. The SNR
is computed as the ratio of the noiseless output variance
over the noise variance. Algorithm 2 is run with α = 10−2

and η = 1, while the other hyper-parameters are set to
λT = 5·10−8, λTp

= 10−1, σk = 103. Under the assumption
that the number of true modes is known, all methods are
run by fixing M = 3. Fig. 2 shows the results obtained with
the three approaches on an evaluation dataset with Nval =
500 points. For the given number of modes, both PWNL
models are more accurate than the PWA one, as proved by
the attained BFRs reported in Table 1. This was somehow
expected, since the underlying function is nonlinear in each
input sub-domain. At the same time, the GREEDY-SS
PWNL approach, that exploits unsupervised data, better
estimates the space partition, as shown by the percentages
of misclassified points in Table 1. This implies that the
data augmentation rationale leads to better estimates of
the sub-domains boundaries which, in turn, translate into
better function approximation capabilities.

6.2 Example 2. Multi-variable function

We now consider the static map introduced in Breschi et al.
(2016). We thus generate Ns = 100 supervised data from

fo(x) =




h(x), if −0.5 < h(x) < 0.5,

0.5, if h(x) ≥ 0.5,

−0.5, if h(x) ≤ −0.5,

(23)

with h : R3 → R, h(x) = 0.6 sin(x1 + x2
2 − x3) and

the features x = [x1 x2 x3]
� ∈ R3 being generated as a

white noise sequence with uniform distribution in [−1 1]3.
The corresponding output, which is corrupted by noise
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Fig. 3. Example 2. Top: True function VS sampled noisy
data. Bottom: Validation results.
Table 2. Example 2. Validation: Median BFRs.

PWA PWNL GREEDY-SS PWNL
BFR [0 - 100] 59.41 66.29 70.34

Table 3. Example 2. Fitting: Median CPUtime.
PWA PWNL GREEDY-SS PWNL

Time [s] 0.0086 0.0088 0.0406

(SNR = 5), is shown in Fig. 3. The performance of the
different models is assessed through 100 Monte Carlo
simulations varying the realization of the noise on training
data. Algorithm 2 is run with α = 10−2 and η = 3, while
the other hyper-parameters are set to λT = 10−5, λTp =

1, σk = 103. The models are estimated by fixing M = 3.
The results on Nval = 500 unseen points are shown in Fig.
3, while Table 2 reports the median performance of the
three algorithms. The model obtained with GREEDY-SS
PWNL outperforms the other two, leading to a reduced
reconstruction error while being robust to the different
realizations of the training set. Table 3 reports the median
CPU time 4 required by the methods, across all the 100
simulations. The time required to fit the PWNL model
is similar to the one needed to learn the PWA model,
thus proving the computational efficiency of the proposed
approach despite the introduction of kernels. As expected,
the GREEDY-SS PWNL approach is the most demanding
one, because of the generation of artificial samples.

7. CONCLUSIONS

We presented a nonlinear extension of the approach
proposed in Bemporad et al. (2018) for PWNL regres-
sion, which combines kernel methods and multi-category
discrimination. Following Formentin et al. (2019), we
equipped the proposed learning technique with the auto-
matic generation of unsupervised regressors, to enhance
the performance when reconstructing the operating re-
gions of the identified PWNL model. The performance
attained on two examples show the benefits of employing
the PWNL and GREEDY-SS PWNL strategies over com-
parable PWA regression techniques when the underlying
data-generating system is highly complex and the number
of fixed modes is relatively low. Future research will be
devoted to the automatic tuning of the hyper-parameters
and the comparison with other PWNL approaches.
4 CPU times were computed on an Intel Xeon E-2176M processor
with 32 GB of RAM running MatLab .
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