
 

UNIVERSITÀ DEGLI STUDI DI BERGAMO 

SCHOOL OF ENGINEERING 

DEPARTMENT OF ENGINEERING AND APPLIED SCIENCES 

DOCTORAL PROGRAMME IN ENGINEERING AND APPLIED SCIENCES 

 
 

 

MATHEMATICAL MODELS AND SOLUTION ALGORITHMS FOR 

GENERATION AND TRANSMISSION EXPANSION PLANNING 

WITH HIGH SHARES OF RENEWABLES 
 

 

 

Doctoral Dissertation of 

Giovanni Micheli 
 

 

 

Supervisor 

Prof.ssa Maria Teresa Vespucci 

 

The Chair of the Doctoral Programme 

Prof. Valerio Re 

 

 

 

 

 

A.A. 2019/2020 – XXXIII Cycle 



 
 

 
 

  



iii 
 

Contents 

  

List of Figures ....................................................................................................... vii 

List of Tables .......................................................................................................... ix 

1  Introduction ......................................................................................................... 1 

1.1 Thesis motivation .......................................................................................... 1 

1.2 Literature review .......................................................................................... 3 

1.2.1 Sectors coverage ..................................................................................... 3 

1.2.2 Formulation structure............................................................................ 5 

1.2.3 Transmission network ........................................................................... 8 

1.3 Thesis objectives ............................................................................................ 9 

2  Evaluating power systems short-term operations .............................................. 13 

2.1 Research motivation .................................................................................... 13 

2.2 The thermal unit commitment problem ..................................................... 14 

2.2.1 Problem description ............................................................................. 15 

2.2.2 Notation ................................................................................................ 16 

2.2.3 Mathematical formulation ................................................................... 17 

2.2.4 Alternative formulations ...................................................................... 19 

2.2.5 Tests on different formulations ........................................................... 20 

2.3 The selection of representative days ........................................................... 22 

2.3.1 Literature review ................................................................................. 22 

2.3.2 The proposed method to select representative days ............................ 24 

2.4 Capturing seasonality of the hydroelectric dispatch with representative .....  

 days .............................................................................................................. 27 

2.4.1 A preliminary model for the hydroelectric dispatch ............................ 28 

2.4.1.1 Price estimation ................................................................................ 29 

2.4.1.2 Notation ............................................................................................ 32 

2.4.1.3 Mathematical formulation................................................................ 33 

2.4.1.4 Post-processing ................................................................................. 35 

2.4.2 Connecting representative days to model long-term storage .............. 38 



 

Contents iv 

 

 
 

2.5 Determining the initial ON/OFF status of thermal power plants in .............  

 representative days ..................................................................................... 41 

2.5.1 Logistic Regression .............................................................................. 43 

2.5.2 Artificial Neural Networks .................................................................. 45 

2.5.3 Decision Trees ...................................................................................... 47 

2.5.4 Support Vector Machines ..................................................................... 48 

2.5.5 Comparison of classification techniques .............................................. 50 

2.5.6 Evaluating the robustness of the classifier ......................................... 51 

2.6 Evaluating short-term operations through representative days ............... 53 

2.6.1 Notation ................................................................................................ 53 

2.6.2 Mathematical formulation ................................................................... 55 

2.7 Case studies and results ............................................................................. 58 

2.7.1 Tests on a reduced Italian scenario ..................................................... 58 

2.7.2 Tests on the European scenario ........................................................... 60 

2.8 Chapter conclusions .................................................................................... 62 

3  Planning investments in the power sector to reach decarbonisation targets...... 65 

3.1 Research motivation .................................................................................... 65 

3.2 Modeling framework ................................................................................... 65 

3.2.1 Modeling assumptions ......................................................................... 66 

3.2.2 Notation ................................................................................................ 69 

3.2.3 Mathematical formulation ................................................................... 74 

3.3 Evaluating the achievement by 2030 of the 55% renewable penetration ......  

 target for the Italian power system ............................................................ 83 

3.3.1 Data for the Italian power system ....................................................... 84 

3.3.2 Results and discussion ......................................................................... 88 

3.4 Chapter conclusions .................................................................................... 94 

4  Including long-term uncertainties in the expansion planning framework ......... 95 

4.1 Research motivation .................................................................................... 95 

4.2 Literature review ........................................................................................ 96 

4.3 Modeling framework ................................................................................. 100 

4.3.1 Uncertainty modeling ........................................................................ 100 

4.3.2 Notation .............................................................................................. 101 



 

v  Contents 

  

 
 

4.3.3 Mathematical formulation ................................................................. 107 

4.4 Solution algorithm .................................................................................... 113 

4.4.1 Master problem .................................................................................. 114 

4.4.2 Subproblems ....................................................................................... 117 

4.4.3 Steps of the solution algorithm .......................................................... 119 

4.4.4 Numerical tests .................................................................................. 120 

4.5 Case study ................................................................................................. 122 

4.5.1 Scenario construction ......................................................................... 122 

4.5.2 Results and discussion ....................................................................... 125 

4.6 Chapter conclusions .................................................................................. 133 

5  Integrated electricity and gas systems with bi-directional energy conversion . 135 

5.1 Research motivation .................................................................................. 135 

5.2 Literature review ...................................................................................... 136 

5.3 The performed analysis ............................................................................. 138 

5.3.1 Selection of representative days ........................................................ 139 

5.3.2 Clustering of thermal power plants ................................................... 140 

5.3.3 Modeling framework .......................................................................... 141 

5.3.3.1 Modeling assumptions .................................................................... 142 

5.3.3.2 Notation ....................................................................................... 143 

5.3.3.3 Mathematical formulation.............................................................. 150 

5.3.4 Solution algorithm ............................................................................. 160 

5.3.4.1 Master problem ............................................................................... 160 

5.3.4.2 Subproblems ................................................................................ 162 

5.3.4.3 Steps of the solution algorithm ................................................... 163 

5.4 Case study ................................................................................................. 164 

5.4.1 The Italian natural gas system .......................................................... 164 

5.4.1.1 Supply side assumptions ................................................................ 166 

5.4.1.2 New investments ............................................................................ 167 

5.4.1.3 Demand side assumptions .............................................................. 168 

5.4.2 Clusters of Italian thermal power plants .......................................... 169 

5.4.3 Results and discussion ....................................................................... 170 

5.5 Chapter conclusions .................................................................................. 177 



 

Contents vi 

 

 
 

6  Modeling demand reactions to electricity price signals .................................... 179 

6.1 Research motivation .................................................................................. 179 

6.2 Literature review ...................................................................................... 180 

6.3 Modeling framework ................................................................................. 183 

6.3.1 Notation .............................................................................................. 183 

6.3.2 Load shifting ...................................................................................... 185 

6.3.3 Peak shaving ...................................................................................... 188 

6.3.4 Planning investments in demand response devices .......................... 189 

6.4 Numerical tests ......................................................................................... 192 

6.4.1 Load shifting ...................................................................................... 193 

6.4.2 Peak shaving ...................................................................................... 195 

6.4.3 Investments in demand response devices.......................................... 197 

6.5 Chapter conclusions .................................................................................. 200 

7  Conclusions ...................................................................................................... 203 

Dissemination Activities ...................................................................................... 209 

Bibliography  ........................................................................................................ 211 



vii 
 

List of Figures 

Fig. 2.1   Illustration of the representative days selection procedure ...................... 26 

Fig. 2.2   Simple linear regression model estimated on the Italian power system .. 30 

Fig. 2.3   Linear regression model with monthly interaction effect estimated on….... 

………….the Italian power system ........................................................................... 31 

Fig. 2.4   Water resources dispatching for equivalent hydropower plant CH2a ...... 35 

Fig. 2.5   Daily hydroelectric energy for hydropower plant CH2a in Cluster 1 ....... 37 

Fig. 2.6   Daily hydroelectric energies for hydropower plant CH2a in Cluster 1 .... 37 

Fig. 2.7   Cluster index Map𝑑,𝑐 for the considered example ...................................... 39 

Fig. 2.8   Mathematical model of an artificial neuron .............................................. 45 

Fig. 2.9  .Artificial neural network estimated on training data ............................... 46 

Fig. 2.10 Decision tree induced on training set ........................................................ 48 

Fig. 2.11 Average marginal production cost for technology in different scenarios .. 52 

Fig. 2.12 System average mean absolute percentage error in load duration curves…. 

……….…approximation for different numbers of representative days ................... 59 

Fig. 2.13 Daily load, solar and wind profiles in the Central-South in the seven….…. 

……….…representative days .................................................................................... 59 

Fig. 3.1   Existing and candidate interconnections in the Italian power system ..... 84 

Fig. 3.2   Daily load, solar and wind profiles for the North zone in the five………….. 

……...…..representative days in year 2020 .............................................................. 85 

Fig. 3.3   Zonal load [TWh/year] ............................................................................... 86 

Fig. 3.4   Evolution of the Italian capacity mix over the planning horizon ............. 91 

Fig. 3.5   Installed capacity by source for each market zone at the beginning and ..... 

………… the end of the horizon ................................................................................ 92 

Fig. 3.6   Evolution of the Italian generation mix over the planning horizon ......... 93 

Fig. 3.7    Generation by source for each market zone at the beginning and the end….. 

………….of the horizon .............................................................................................. 93 

Fig. 4.1  Upper and lower bounds values over iterations in the 10 scenarios…...… 

…...…. …numerical test .......................................................................................... 122 

Fig. 4.2   Zonal load [TWh/year] in the stochastic analysis ................................... 123 



 

List of Figures viii 

 

 
 

Fig. 4.3    Batteries investment cost trend.............................................................. 124 

Fig. 4.4   Upper and lower bounds values over iterations in multi-cut Benders…… 

…………. algorithm ................................................................................................. 125 

Fig. 4.5  Expected energy generation by source and domestic demand for each… 

…………..Italian market zone in year 2040 ............................................................ 132 

Fig. 4.6    Installed capacity by source for each market zone in year 2040 ............ 132 

Fig. 5.1    Representation of the Italian gas system ............................................... 165 

Fig. 5.2   Upper and lower bounds values over iterations in multi-cut Benders …… 

……….….algorithm ................................................................................................. 170 

Fig. 5.3  Upper and lower bounds values at the last iterations of multi-cut……. 

…………..Benders algorithm ................................................................................... 171 

Fig. 5.4    Expected domestic gas demand divided by sector and year ................... 175 

Fig. 5.5    Italian expected gas supply by source in year 2040 ............................... 175 

Fig. 5.6    Expected energy generation by source for each Italian market zone in…… 

……   …...year 2040 ................................................................................................. 176 

Fig. 5.7    Installed capacity by source for each market zone in year 2040 ........... 177 

Fig. 6.1    Zonal electricity prices computed from the solution of the model …………. 

…………. without demand response ....................................................................... 193 

Fig. 6.2    Average relative demand shifting in each system zone ......................... 194 

Fig. 6.3    Demand shifting in Sicily........................................................................ 194 

Fig. 6.4    Demand shifting in each Italian market zone ........................................ 195 

Fig. 6.5    Average relative peak shaving in each system zone .............................. 196 

Fig. 6.6    Peak shaving in Sicily ............................................................................. 196 

Fig. 6.7    Peak shaving in each Italian market zone ............................................. 197 

Fig. 6.8    Installed capacity [GW] for electrical devices performing load shifting 198 

Fig. 6.9  Average relative demand variations in the North in each year of the….. 

…………. planning horizon ..................................................................................... 198 

Fig. 6.10  Demand variations in the North ............................................................. 199 

Fig. 6.11 Average relative demand variations in Sicily in each year of the……… 

…………. planning horizon ..................................................................................... 199 

Fig. 6.12  Demand variations in Sicily .................................................................... 200 

 



ix 
 

List of Tables 

Table 2.1 Solution time [min] required by the four formulations for different….. 

……………lengths of the planning horizon ............................................................... 21 

Table 2.2 Estimates of model (2.28) regression coefficients for the Italian……… 

………… ..power system ........................................................................................... 30 

Table 2.3  Estimates of model (2.29) regression coefficients for the Italian power…. 

……………system ...................................................................................................... 31 

Table 2.4   Regression coefficients estimated on the training set ............................ 44 

Table 2.5   Accuracy of the different classifiers ........................................................ 50 

Table 2.6   Classification accuracy of the decision tree in different scenarios ......... 53 

Table 2.7   Comparison between the hourly and the clustered unit commitment…..... 

……… ..….model for the Italian scenario ................................................................. 60 

Table 2.8  Comparison between the hourly and the clustered unit commitment…. 

……… ..…model for the European scenario ............................................................ 62 

Table 3.1   Number of representative days for different threshold values .............. 85 

Table 3.2   Installed, outgoing and incoming capacity [GW] ................................... 86 

Table 3.3   Technical data of storage systems .......................................................... 87 

Table 3.4   Economic factors for traditional power plants ........................................ 88 

Table 3.5   Expected fuel and CO2 prices ................................................................. 88 

Table 3.6    Size and solution time of the optimization model .................................. 89 

Table 3.7    System costs breakdown for expansion plan period .............................. 89 

Table 3.8  Renewable generation capacity expansion [GW] divided by source……. 

…………….and implementation year ....................................................................... 90 

Table 3.9   Candidate interconnections selected by the model ................................ 90 

Table 3.10  Installed capacity of energy storage systems [MW] ............................... 91 

Table 4.1   Comparison between relevant works in the literature and the…………… 

………….  proposed model. RO = Robust Optimization; AP = Adaptation…………… 

……… … Programming; SP = Stochastic Programming; LDC = Load…………… 

………    … Duration Curve ....................................................................................... 99 

file:///C:/Users/giovanni/Desktop/Materiale%20PhD/6)%20Relazioni/PhD%20Thesis%20-%20Con%20appendice.docx%23_Toc64824990
file:///C:/Users/giovanni/Desktop/Materiale%20PhD/6)%20Relazioni/PhD%20Thesis%20-%20Con%20appendice.docx%23_Toc64824990
file:///C:/Users/giovanni/Desktop/Materiale%20PhD/6)%20Relazioni/PhD%20Thesis%20-%20Con%20appendice.docx%23_Toc64824990
file:///C:/Users/giovanni/Desktop/Materiale%20PhD/6)%20Relazioni/PhD%20Thesis%20-%20Con%20appendice.docx%23_Toc64824990


 

List of Tables x 

 

 
 

Table 4.2   Performances of the proposed algorithm for an increasing number ……. 

…………….of scenarios ............................................................................................ 121 

Table 4.3  Installed, outgoing and incoming capacity [GW] in the stochastic ..….. 

…………….analysis ................................................................................................. 123 

Table 4.4   CO2 prices [€/ton] in different scenarios ............................................... 124 

Table 4.5   Fuel prices [€/Gcal] in different scenarios ............................................ 125 

Table 4.6    Size and solution time of master problem and subproblems at the last….. 

…………….iteration of Benders algorithm ............................................................. 126 

Table 4.7   Solution time for different number of scenarios .................................. 126 

Table 4.8   Breakdown of system costs in the stochastic analysis ......................... 127 

Table 4.9   Breakdown of system operation costs for different scenarios [M€] ..... 128 

Table 4.10  Renewable generation capacity expansion [GW] divided by source and…. 

…………….implementation year in the stochastic analysis .................................. 129 

Table 4.11 Candidate interconnections selected by the model in the stochastic……. 

…………….analysis ................................................................................................. 130 

Table 4.12 Installed capacity of energy storage systems [MW] in the stochastic….. 

…………….analysis ................................................................................................. 131 

Table 5.1   Fuel prices: low and high prices scenario [€/Gcal] ............................... 166 

Table 5.2   Minimum and maximum natural gas supply per pipe entry point in…. 

…………… .Snam-Terna scenarios [Billion m3/year] .............................................. 167 

Table 5.3    Natural gas supply via LNG and national production in Snam-Terna.…. 

………….  scenarios [Billion m3/year]. .................................................................. 167 

Table 5.4    Investment costs of gas supply new projects ....................................... 168 

Table 5.5   Natural gas demand for final uses in centralised (CEN) and………….... 

……………  decentralised (DEC) Snam-Terna scenarios [Billion m3/year] ........... 169 

Table 5.6   Number of clusters of thermal power plants for different threshold….. 

……………..values ................................................................................................... 169 

Table 5.7   Size and solution time of master problem and subproblems at the……  

…………… last iteration of Benders algorithm ..................................................... 171 

Table 5.8     Breakdown of integrated system costs ................................................ 172 

Table 5.9   Integrated system operation costs breakdown for differen scenarios….. 

……………..[M€] ...................................................................................................... 173 



 

xi  List of Tables 

  

 
 

Table 5.10  Cumulative renewable generation capacity expansion [GW]……………. 

……………. for the Italian integrated system divided by source and ………..…. 

……………. implementation year ............................................................................ 174 

Table 5.11 Candidate interconnections selected by the model for the…………….. 

……………..Italian integrated system .................................................................... 174 

Table 5.12  Installed capacity of batteries [MW] in the Italian integrated…………... 

……………..system .................................................................................................. 176 

 

  



 

List of Tables xii 

 

 
 

 



 

1 
 

Chapter 1                                                 

Introduction 

This chapter provides an introduction to the thesis work reported in this dissertation. 

First, we present an overview of the generation and transmission expansion planning 

problem and we motivate our research work in this field. Second, a literature review of 

the topic pertaining to this thesis is provided. Finally, the objectives of the dissertation 

as well as the thesis structure are illustrated. 

1.1 Thesis motivation 

The generation and transmission expansion planning (GTEP) problem aims at 

determining the evolution of power systems over a long-term planning horizon, by 

defining technology, capacity and location of new generating units, as well as new 

interconnections to be built. The definition of joint expansion plans is one of the most 

relevant problems in the field of power systems. Indeed, this kind of analysis provides a 

lot of useful information, allowing for instance to study the impact of some policy 

decisions and the possibility to achieve targets such as decarbonisation, integration of 

large shares of renewables or reduction of CO2 emissions.  

Many different agents are interested in the joint generation and transmission 

expansion planning. Indeed, in all countries where the unbundling of the energy sector 

is still ongoing, this problem is addressed by vertically integrated monopoly utilities to 

establish a strategic master plan, to secure long-term supply, promoting affordable and 

reliable electricity and reducing power outages. Instead, in an unbundled energy 

environment, expansion planning analysis is performed by transmission planners (e.g., 

ISO) for what is called anticipative planning, in which those planners determine the 

expansion plan that is optimal for the energy system as a whole to identify the best 

network reinforcement and to set incentives that could induce generation companies to 

invest in a socially efficient manner [1, 2, 3]. 

The GTEP problem also has great relevance in operations research, being generally 

addressed through the formulation of large-scale MILP decision models, which require 

the development of dedicated solving algorithms. 
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This dissertation is mainly concerned with the GTEP for the transition to low 

emission power systems. Specifically, the achievement of such challenging sustainability 

goals requires installing large shares of renewable power capacity in power systems. In 

the presence of high levels of renewable penetration, power systems face great challenges 

to meet the demand, because of the unpredictable daily and seasonal nature of renewable 

generation. Such a variability has to be managed in the short-term to ensure that power 

systems are operated in an efficient and reliable way. 

The need to install large shares of renewables in power systems motivates the 

development of a mathematical tool that could find the optimal capacity expansion 

strategy for a power system, while evaluating the achievement of the challenging 

decarbonisation targets. Such a tool must be capable of capturing the short-term 

variability and addressing all the issues related to integrating large shares of intermittent 

renewable power sources. 

Moreover, addressing the GTEP problem for modern power systems requires facing 

several challenges. First, investments in power facilities are capital-intensive decisions, 

which are usually characterized by expected lifetimes greater than 30-50 years. Thus, 

when planning the expansion of a power system, planning horizons of several decades 

are typically applied. Second, in the presence of high levels of renewable penetration, the 

GTEP analysis requires considering a high level of temporal detail, evaluating power 

system operation with an hourly resolution, in order to catch the fluctuation of wind and 

solar power production. Third, the GTEP problem is characterized by a high level of 

uncertainty: indeed, since expansion plans are usually provided for a long-term planning 

horizon, the future system conditions are generally uncertain at the time the expansion 

plans are decided. Fourth, in addressing the expansion planning, many interconnections 

between power systems and other sectors, such as the fossil fuel sectors, should be 

considered in order to define more efficient solutions for the whole energy system.  

Because of the long-term horizon, the hourly resolution, the high uncertainty and the 

need to model interactions with other sectors, GTEP models are large-scale problems, 

whose solution is computationally challenging. The high dimensionality of GTEP models 

motivates the research in the field of advanced algorithms that could solve these large-

scale models to the desired accuracy. 
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1.2 Literature review 

GTEP problems have received considerable attention in the last three decades and many 

mathematical programming models have been proposed to address different research 

questions. Works concerning the investment planning in the power sector can be 

classified in several ways. This section reviews the existing literature for GTEP analysis, 

by introducing the basic choices associated with the design of a GTEP model, which 

include three main features: (i) sectors to be included in the analysis; (ii) formulation 

structure; and (iii) representation of the transmission network. 

1.2.1 Sectors coverage 

When designing a model for GTEP, the first decision to be taken concerns the choice of 

which sectors should be included in the analysis and which other sectors should be 

exogenously modeled. Indeed, there exist many interconnections between power 

systems and several sectors, such as the transportation sector, the heating sector or the 

fossil fuels sectors. In terms of sectors coverage, two different approaches are possible: 

1. Perform a single sectoral analysis, focusing only on power sector and considering 

the interactions with other sectors as boundary conditions. 

2. Consider multiple sectors to study the high-level interactions within the whole 

energy system. 

Considering multiple sectors allows evaluating the interdependencies between 

sectors, usually finding more efficient solutions for the whole energy system. However, 

the drawback of this approach is an increasing computational cost. To maintain the 

problem computationally tractable, multi-sector models usually introduce strong 

approximations in the way single sectors are modeled. For instance, reference [4] 

proposes an equilibrium model to plan infrastructure investments in the whole energy 

system to satisfy the future energy requirements of three different demand sectors, 

namely the industry sector, the residential sector and the transportation sector, while 

considering climate policies and governmental regulation. A very wide geographical 

scope is considered in this analysis, modeling the whole world through 30 nodes, of 

which 15 are European countries and the remaining 15 model the rest of the world, while 

the planning horizon of 40 years, from 2010 up to 2050, is discretized in 10-year steps. 

The energy requirements of demand sectors are satisfied by using various energy carriers 

(fuels) depending on relative costs, efficiencies, as well as regulatory and technical 
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constraints. The fuels included in the analysis are: crude oil, oil products, natural gas, 

coal, lignite, electricity, biofuels, renewables, and (as an input for power generation only) 

nuclear and hydro. In this work, a very simplified representation of the power sector is 

considered: indeed, the power sector is modeled as a transformation process, converting 

input fuels into electricity, considering only capacity constraints stated in terms of output 

quantities.   

When a high level of technical detail is required, the multi-sector models can be 

applied only by limiting the geographical scope. For instance, authors in [5] perform a 

long-term investment planning analysis on the Danish heat and electricity sector, 

considering the uncertainty related to the wind power production, which is modeled as a 

stochastic parameter. In this paper, a more detailed representation of the power sector 

is considered, including some technical constraints, such as peaking reserve constraints, 

and considering different scenarios for the wind power availability. However, the 

application of this analysis is limited to a single country, i.e., Denmark. 

From the works above, it can be noticed the existence of a trade-off between sectors 

coverage, geographical scope and technical detail: a multi-sector analysis can be 

performed only by limiting the geographical scope or by considering a low level of 

technical detail. Instead, by exogenously modeling all sectors but the power sector it is 

possible to consider technical and geographical characteristics in greater detail. The 

choice of the approach to adopt depends on the objective of the analysis: the multi-sector 

approach is to be applied when the research focus is to evaluate long-term trends, such 

as decarbonisation pathways, taking into account the interactions between different 

economic sectors and the energy system; the single sectoral analysis is suited to plan 

investments in the power sector, since it allows a more detailed representation of the 

power system, as well as of the short-term operational dispatch, and therefore provides 

more reliable decisions to the actors involved in the GTEP problem.  

In this chapter, we will focus on single sectoral analysis, by introducing several 

approaches designed to perform a GTEP analysis exogenously modeling all sectors but 

the power sector. In such models, the feedback effects between sectors are ignored and 

parameters like fuel prices and fuels availability are exogenous parameters rather than 

decision variables. However, this choice allows providing a more detailed representation 

of power systems, which is required when modeling both long-term investment decisions 

and short-term operational dispatch. 
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1.2.2 Formulation structure 

Works that address the GTEP problem focusing only on power sector modeling can be 

further divided in two categories according to the problem formulation structure, which 

determines the decision variables to be introduced in the analysis. The first class includes 

decoupled models, i.e., researches that only address either generation expansion or 

transmission expansion. Specifically, many studies deal with only transmission 

expansion planning (TEP), a problem that is typically addressed by Transmission System 

Operators to identify the optimal transmission reinforcements to be carried out with the 

aim of facilitating energy exchange among producers and consumers. In such models, 

generation expansion decisions are exogenous parameters rather than model variables. 

Pioneering work in this area is due to Garver [6], who in 1970 proposed a linear 

programming problem determining the transmission expansion plans based on the 

location of overloads. Since then, many relevant contributions based on mathematical 

programming have been produced. For instance, in [7] authors deal with the TEP 

problem considering the integration of large-scale wind power production, while in [8] a 

bi-level TEP model using conic AC power flow formulation is presented. 

Many other studies only address generation expansion planning (GEP), evaluating 

the adequacy of generating facilities used to supply load and analysing whether it is 

necessary to build new power plants. The GEP problem is typically motivated by the 

growth of the demand for electricity and by the aging of existing generating facilities. For 

a very detailed review of GEP models we refer the reader to [9], which provides a 

comprehensive description of the state-of-the-art of recently developed approaches 

dealing with the GEP problem, organizing them into seven key categories including the 

interaction of generation expansion planning with: (i) the transmission expansion 

planning; (ii) natural gas system; (iii) short-term operation of power markets; (iv) 

electric vehicles; (v) demand-side management and storage; (vi) risk-based decision-

making; and (vii) applied energy policy including security of supply. As regards to the 

transmission network, in some GEP models transmission constraints are totally 

neglected. For instance, reference [10] proposes a mixed integer non-linear 

programming model to perform a generation expansion planning analysis minimizing 

the planning cost and environmental pollution at the same time, while considering 

energy storage systems. In such a paper, the test system consists of an isolated system, 

which does not consider any representation of the transmission network. Instead, other 

works that address GEP include also the transmission network in the analysis by 

considering the network configuration as an exogenous parameter. Examples of these 
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works are represented by references [11, 12]. Specifically, in [11] a multi-objective 

generation expansion problem is considered taking into account costs, environmental 

impacts and portfolio investment risk. The proposed model decides the location of the 

planned generation units in a multi-period planning horizon by minimizing 

simultaneously costs, environmental impact, imported fuel and fuel price risks. In [12] 

the generation expansion problem is instead addressed considering a market framework. 

In this work, the strategic behaviour of the producer is represented through a bi-level 

model: the upper-level considers both investment decisions and strategic production 

actions and the lower-level corresponds to market clearing. 

Studies in the second class optimize both the generation and the transmission 

expansion plan. Indeed, if the demand for electricity in a zone can be supplied with both 

local generation and transportation of power from other zones, generation and 

transmission decisions are substitutes and have to be simultaneously considered in the 

optimization process [3]. By endogenously modeling the interactions between 

generation and transmission expansion decisions, the joint GTEP analysis provides 

solutions that are less expensive than expansion plans provided by the decoupled 

models. 

Two main approaches have been proposed to address the joint GTEP: centralized and 

decentralized models. Specifically, decentralized models consider that power systems 

consist of multiple decision makers with different objectives. Decentralized models are 

usually formulated as equilibrium problems, with several participants maximizing their 

own objective. For instance, in [13] the GTEP problem is formulated as a tri-level 

problem, consisting of the pool-based market, the generation system and the 

transmission system. In [14], authors propose mathematical models for sequential 

coordination of transmission expansion planning with strategic generation investments. 

The interaction between transmission company and strategic generation companies is 

modeled using the sequential-move game, while the interaction between the strategic 

generation companies is modeled as a simultaneous-move game.  

Centralized models instead approach the GTEP problem as just one problem, with a 

unique decision maker, such as the authority or the ministry of energy, taking all the 

relevant decisions. Although this approach does not reflect the real structure of modern 

power systems, consisting of several actors involved, centralized models are widely used 

to perform the so-called anticipative planning, whose objective is to identify policies and 

incentives that could induce generation companies to invest in a socially efficient 

manner. Several contributions have been developed in this area. For example, reference 

[15] proposes a mixed integer linear programming formulation for generation and 
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transmission planning considering the value of lost load. A centralized approach is also 

adopted in [16] to study the effect of wind speed’s spatial distribution on the 

simultaneous generation and transmission expansion planning of power systems 

including wind farms. Specifically, in such a work investment decisions are defined by 

means of a mixed integer linear programming model that minimizes the sum of total 

investment cost of thermal generation units, transmission lines and wind farms, 

operation cost of thermal generators, and loss cost of transmission lines. The wind 

generation is also accurately considered in [17], where a mixed integer linear 

programming model is proposed to study the GTEP problem with a high wind power 

penetration rate in large-scale power grids. Also in [18, 19, 20], the co-optimization 

problem is formulated as a mixed integer programming model, with the addition of 

reliability constraints enforced iteratively. Finally, authors in [21] propose a multi-

objective, multi-area and multi-stage model to long-term expansion planning of 

integrated generation and transmission facilities. The proposed model considers three 

objectives: (i) minimization of investments and operation costs of power generation and 

transmission facilities; (ii) minimization of Life-Cycle Greenhouse Gas Emissions; and 

(iii) maximization of the diversification of electricity generation mix. 

Both the centralized and the decentralized approaches are useful to analyse optimal 

policies in the power sector. The two approaches are complementary to each other and 

are taken into account in separate phases of the decision process, using different models. 

Specifically, the centralized modeling is the approach adopted by regulators to search for 

optimal policies, modeling the power system and the short-term operations in great 

details, but considering a very simplified representation of market aspects. By contrast, 

decentralized models allow to validate policies, by reducing the technical detail of the 

analysis to focus on the interactions between different agents involved in the liberalized 

power sector. Because of computational restrictions, models with a detailed 

representation of both power system technical operations and market aspects cannot be 

applied to plan investment decisions in real-scale power systems. Due to our interest in 

finding optimal policies for the evolution of power systems, rather than in validating the 

outcomes of already specified policies, our research is focused on centralized models. For 

a detailed description of market aspects, we refer the reader to [22] and the references 

contained in it. 

Beside the choice between centralized and decentralized models, when addressing 

the joint GTEP problem decision variables representing infrastructure investments in 

generation and transmission capacity for the power system have to be introduced. 

Different types of variables can be used according to the technical detail of the analysis. 
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Specifically, some models introduce binary variables to represent the selection of discrete 

facilities within a set of candidate generating plants and candidate transmission lines. 

This approach is typically adopted in studies that require a very high level of technical 

detail, modeling the operations of every power plant. Instead, most of the works in the 

literature employ linear decision variables, representing the total aggregated capacity per 

technology at each node, meaning that traditional unit commitment constraints are 

neglected. According to the objective of the analysis, ignoring unit commitment 

constraints could be a very restrictive approximation for expansion planning models. 

Specifically, when studying power systems with large shares of renewables it is necessary 

to plan also the investments in new flexible resources that could respond to the variability 

and uncertainty of stochastic generation. Ignoring unit commitment constraints leads to 

the impossibility of properly evaluating such a flexibility and, consequently, to 

underestimate the required new generation capacity as well as the system costs, as shown 

in [23]. 

1.2.3 Transmission network 

In a GTEP analysis transmission network can be modeled in different ways. In the order 

of increasing realism, the available approaches include the transportation model, the 

Direct Current (DC) power flow model and the Alternating Current (AC) power flow 

model. As discussed in [3], in the transportation model transmission lines are 

characterized by an efficiency parameter describing transportation losses. Energy flows 

on transmission lines are subject to capacity limits and nodal power balances are 

imposed at every node, while Kirchhoff’s voltage law is ignored. A more realistic 

modeling approach is the DC power flow model, which, in addition to transmission flow 

limits and nodal power balances, consists of a linear relation between power flows and 

voltage angle differences. Although the equations that describe the DC power flow model 

are linear, when integrating this formulation in the GTEP problem the resulting model 

is a non-linear and non-convex problem. Indeed, in such a formulation binary variables 

are introduced to model investment decisions in candidate transmission lines and the 

voltage angles are divided by line reactances, which are both decision variables. Thus, 

the DC power flow model provides a greater fidelity but at the cost of an increasing 

computational complexity. Finally, the most realistic representation of the transmission 

network is the AC power flow model, which is strongly non-linear since it models both 

active and reactive power flows in the transmission grid through non-linear constraints 

that involve nodal voltages and angles and line impedances. Although the AC model 

provides the best representation of power flows, the complexity in this approach is 
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further increased: the trade-off between modeling detail and computational complexity 

holds also for the choice of the transmission network modeling approach. Usually, when 

a detailed geographical scope is considered, modeling every bus of the transmission 

network, AC and DC models are more appropriate choices, while the transportation 

approach is generally preferred with higher geographical scopes, such as when nodes of 

the transmission network represent zones or countries. 

In the literature there exist also some hybrid approaches. For instance, reference [24] 

uses an iterative approach where investment decisions are optimized using a 

transportation model, followed by a separate load flow model for grid expansion to check 

the feasibility and the robustness of the solution provided. 

1.3 Thesis objectives 

Due to computational restrictions, most of the existing planning tools for the GTEP 

employ a low level of temporal and technical detail, evaluating system operations on a 

daily or weekly basis and ignoring unit commitment constraints. However, by providing 

an approximate representation of power system operations, such tools cannot capture 

the short-term volatility, overestimating the renewable capacity and underestimating the 

need for flexible resources and the expected costs. 

The main objective of this thesis is to develop a novel computational tool to perform 

the GTEP analysis in scenarios with large shares of renewables. Such a tool is specifically 

designed to plan the joint capacity expansion of energy systems evaluating the 

achievement of decarbonisation targets set by the European Commission. Indeed, the 

distinct feature of the proposed analysis is the very detailed representation of the short-

term operations, which is needed to accurately address all the challenges related to 

integrating high shares of intermittent renewable energy sources. 

This dissertation summarizes the research activities performed to develop the novel 

computational tool. Specifically, this document is organized as follows. 

Chapter 2 introduces the first activity performed in this research project, aimed at 

providing a detailed representation of power system operations, while considering the 

computational burden of the problem. As described in the chapter, accurate estimates of 

the short-term operations for computationally tractable problems are obtained by 

including a tight formulation for the thermal unit commitment problem and by selecting 

a small set of representative days, rather than considering every day of the planning 

horizon.  
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Chapter 3 integrates the short-term model formulated in Chapter 2 into the 

expansion planning framework, by proposing a deterministic MILP model designed to 

support government authorities in generation and transmission expansion planning. 

Such a model optimizes strategic decisions including retirement of existing capacity and 

investments in new generation, transmission and storage facilities, as well as operational 

decisions. 

Chapter 4 deals with the inclusion of the long-term uncertainties in the decision-

making framework, formulating the expansion planning problem as a two-stage 

stochastic MILP model, being investment decisions first-stage variables and operational 

decisions second-stage variables. Due to the high dimensionality, the inclusion of the 

stochasticity makes the GTEP models computationally intractable, requiring the 

application of advanced algorithms to solve these large-scale problems. Thus, our 

solution algorithm based on the multi-cut Benders decomposition approach is 

introduced in the chapter. 

Chapter 5 addresses the expansion planning of integrated electricity and gas 

systems. The stochastic model and the solution algorithm introduced in the previous 

chapter are here modified to include equations describing the natural gas system 

operations, modeling a bi-directional energy conversion between electricity and gas. 

Since the inclusion of the gas system in the decision making framework further increases 

the computational burden of the expansion planning model, in this chapter also a 

clustered unit commitment formulation is presented, by grouping similar thermal power 

plants into clusters. 

Chapter 6 deals with the modeling of demand elasticity, by including demand 

response programs in the expansion planning analysis. Two different reactions of 

customers to electricity prices are modeled, namely the load shifting and the peak 

shaving. Then, an optimization model to plan investments also in demand response 

devices is introduced. 

Chapter 7 concludes this dissertation providing a summary, several relevant 

conclusions and suggestions for future research. 

Appendix provides the list of dissemination activities connected to the thesis work, 

which include publications in international journals and conference proceedings, as well 

as presentations at international conferences. 

The research activities described in this thesis were carried out in the context of a 

three-year collaboration with CESI S.p.A. (Centro Elettrotecnico Sperimentale Italiano, 

Italian Electrical and Technical Experimental Centre), a major industrial research centre 

on power systems in Italy. Specifically, the development of a computational model for 
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the expansion planning analysis has a high strategic importance for CESI S.p.A. and 

more in general for all the companies providing worldwide consultancy services in the 

power sector, in order to support governments and regulatory authorities in defining 

strategic investment decisions. For instance, the solution of the GTEP model has a crucial 

importance in: 

 Establishing a strategy and a master plan for developing countries, in order to 

secure long-term supply, to promote affordable and reliable electricity and 

reducing power outages; 

 Determining the best choice between the trade-offs of selling electricity or natural 

gas;  

 Supporting investors developing regional trade of electrical energy and gas.  

The research activities described in this dissertation are also the result of the 

collaboration with Professor Andrés Ramos, from the IIT Department at the Comillas 

University, mainly regarding the inclusion of the stochasticity in the decision making 

framework. 
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Chapter 2                                                     

Evaluating power systems short-term operations 

2.1 Research motivation 

Generation and transmission expansion planning to achieve decarbonisation targets in 

the power sector requires installing relevant shares of production from renewable energy 

sources. In the presence of high shares of non-dispatchable renewable sources, power 

system operations must be evaluated with an hourly resolution to take into account the 

different operating conditions due to the intermittency of renewable power generation. 

However, investment decisions in the power sector are long-term decisions: when 

addressing the generation and transmission expansion problem, planning horizon of 

several decades are typically applied.  

Due to the long-term horizon, providing an hourly resolution to the expansion 

planning problem is computationally infeasible. In order to limit computational costs, 

most of the existing planning tools employ a low level of temporal detail, evaluating 

system operations on a daily or weekly basis. However, as shown in [25], the low level of 

temporal detail can significantly affect the results, especially in a context of large 

penetration of renewables. Indeed, planning tools that employ a low level of temporal 

detail cannot capture the short-term volatility, overestimating the renewable capacity 

and, thus, resulting not suited to accurately study all the challenges related to integrating 

high shares of intermittent energy sources. 

Moreover, most of the existing models for power generation and transmission 

expansion planning consider also a low level of technical detail, generally modeling 

thermal capacity expansion through continuous variables and, thus, without considering 

unit commitment constraints on a plant-by-plant level. However, as discussed in [23], 

this approach, although very common in the literature, is no more an appropriate 

approximation for expansion planning models. Indeed, due to the increasing penetration 

of intermittent renewable energy sources in power systems, the need is growing for 

flexible resources that could respond to the variability and uncertainty of stochastic 

generation. Ignoring unit commitment constraints leads to the impossibility of properly 
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evaluating such a flexibility and, consequently, to underestimate the required new 

generation capacity as well as the system costs. 

To provide reliable expansion plans for large-scale energy systems with high shares 

of renewables, a high level of both technical and temporal detail has to be considered at 

operational level. This chapter describes the analysis performed to obtain accurate 

estimates of the operational decisions in the expansion planning framework while 

keeping the problem computationally tractable. Specifically, a high level of technical 

detail is included in the analysis by considering unit commitment constraints, while a 

high level of temporal detail is obtained by working with representative days, discretized 

in hours. However, the use of representative days raises the crucial issues regarding: (i) 

how to consider the seasonality of hydroelectric dispatch; and (ii) how to set the initial 

ON/OFF status of thermal power plants in representative days. Both these crucial issues 

are addressed in this chapter. 

Specifically, the structure of the chapter is as follows. Section 2.2 introduces the 

thermal unit commitment problem. The selection of representative days is addressed in 

Section 2.3. Section 2.4 proposes two different approaches to capture the seasonality of 

the hydroelectric dispatch when working with representative days. Section 2.5 describes 

the proposed method to determine the initial ON/OFF status of thermal power plants in 

representative days. Section 2.6 summarizes contributions provided in this chapter by 

formulating a Mixed-Integer Linear Programming model to evaluate short-term 

operations through representative days. The results of different case studies are 

presented in Section 2.7. Finally, Section 2.8 concludes the chapter.  

2.2 The thermal unit commitment problem 

This section summarizes the comparison of different approaches to model the thermal 

unit commitment problem within the expansion planning framework. Indeed, for this 

problem several formulations have been proposed in the literature, that mainly differ in 

the number of binary variables used and in the way the minimum up/down time 

constraints are expressed. Since different model formulations may present different 

solution times, an analysis has been conducted to identify the computationally most 

efficient formulation for our specific application. In particular, we have considered three 

formulations compatible with our approach to the thermal unit commitment problem 

and analysed their solution times on a case study of suitable dimension. 
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The structure of this section is as follows. Section 2.2.1 describes the thermal unit 

commitment problem and the assumptions introduced in our analysis. The notation 

needed to formulate the thermal unit commitment problem is introduced in Section 

2.2.2. Section 2.2.3 introduces the formulation that proved to be the most efficient one 

in our specific application. Alternative formulations are introduced in Section 2.2.4. 

Finally, results from testing the different formulations are presented in Section 0. 

2.2.1 Problem description 

The thermal unit commitment problem consists in scheduling the activation of a set of 

thermal power plants to supply at minimum cost the demand for electricity while 

respecting some technical constraints. In its general form, the thermal unit commitment 

problem is formulated as a Mixed-Integer Non-Linear Programming (MINLP) problem, 

since it includes binary variables to describe the ON/OFF status of thermal power plants 

and non-linear constraints, mainly introduced to model cost functions or flows in the 

transmission network. For the thermal unit commitment problem there exists a huge 

literature, whose review is outside the scope of this dissertation. We refer the reader to 

[26] and [27] for detailed reviews of the problem. 

The thermal unit commitment problem we consider in this work is formulated as a 

large-scale Mixed-Integer Linear Programming (MILP) problem, based on the following 

assumptions: 

 A zonal representation of the power system is adopted, i.e., power system is 

partitioned into different price zones that exchange energy through a capacitated 

power network. 

 Time is represented with hourly resolution. 

 Thermal power plants flexibilities are considered in the analysis by including 

minimum up/down time constraints, which force thermal power plants to stay 

ON/OFF for a given amount of hours after each switching manoeuvre, and start-

up costs, which are additional costs incurred to ignite and heat up thermal power 

plants. Instead, ramping constraints, which bound the change of power 

production in consecutive hours, are neglected in this work.  Indeed, CESI S.p.A. 

considers minimum up/down time constraints and start-up costs to be sufficient 

to model the flexibility of thermal power plants. However, given the linear 

formulation of ramping constraints, these restrictions could be easily integrated 

in the current formulation of the unit commitment problem. 
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 Thermal production costs are supposed to be linear functions of the power 

output, being 𝐶𝑀𝑘 the slopes of these linear relationships. Indeed, piece-wise 

linear or quadratic formulations for the cost-functions would significantly 

increase the complexity of the problem while only marginally improving the 

accuracy.  

2.2.2 Notation 

To formulate the thermal unit commitment problem, the following notation is 

introduced. 

 

Sets 

𝒵 Set of zones, indexed by 𝑧 

𝒦 Set of thermal power plants, indexed by 𝑘 

𝛺𝑧
𝑘 ⊂ 𝒦 Set of thermal power plants located in zone 𝑧 

𝒯 Set of hours, indexed by 𝑡 and 𝜏 

ℒ Set of transmission lines, indexed by 𝑙 

𝑟𝑧(𝑙) Receiving-end zone of transmission line 𝑙 

𝑠𝑧(𝑙) Sending-end zone of transmission line 𝑙 

 

Parameters 

𝑐𝐸𝑁𝑃 [€/MWh] Penalty for energy not provided 

𝑐𝑂𝐺 [€/MWh] Penalty for over-generation 

𝐶𝑀𝑘  [€/MWh] Marginal production cost of thermal power plant 𝑘 

𝑃𝑘 [MW] Minimum power output of thermal power plant 𝑘 

𝑃𝑘  [MW] Maximum power produced by thermal plant 𝑘 

𝑆𝑈𝐶𝑘  [€] Start-up cost of thermal power plant 𝑘 

𝛾𝑘0
 [−] Initial ON/OFF status of thermal power plant 𝑘 

𝑀𝑈𝑇𝑘  [h] Minimum up time of thermal power plant 𝑘 

𝑀𝐷𝑇𝑘  [h] Minimum down time of thermal power plant 𝑘 

𝐹𝑙 [MW] Minimum capacity of transmission line 𝑙 

𝐹𝑙  [MW] Maximum capacity of transmission line 𝑙 

𝑁𝐿𝑧,𝑡 [MW] Net load in zone 𝑧 in hour 𝑡  

𝑅𝑧,𝑡 [MW] Reserve requirement for zone 𝑧 in hour 𝑡 
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Variables 

𝛾𝑘,𝑡  [−] Commitment status of unit 𝑘 at time 𝑡: 𝛾𝑘,𝑡 = 1, if unit 𝑘 is 

online at time 𝑡 and 𝛾𝑘,𝑡 = 0, otherwise 

𝛼𝑘,𝑡  [−] Start-up status of unit 𝑘 at time 𝑡: 𝛼𝑘,𝑡 = 1, if unit 𝑘 is started 

up at time 𝑡 and 𝛼𝑘,𝑡 = 0, otherwise 

𝛽𝑘,𝑡  [−] Shut-down status unit 𝑘 at time 𝑡: 𝛽𝑘,𝑡 = 1, if unit 𝑘 is shut 

down at time 𝑡 and 𝛽𝑘,𝑡 = 0, otherwise 

𝑝𝑘,𝑡 [MW] Power production of thermal power plant 𝑘 at time 𝑡 above its 

minimum output 𝑃𝑘  

𝑥𝑙,𝑡 [MW] Power flow on transmission line 𝑙 in hour 𝑡 

𝐸𝑁𝑃𝑧,𝑡 [MWh] Energy not provided in zone 𝑧 in hour 𝑡 

𝑂𝐺𝑧,𝑡 [MWh] Over-generation in zone 𝑧 in hour 𝑡 

 

2.2.3 Mathematical formulation 

The thermal unit commitment problem is formulated as the following MILP model 

min 𝑧 = ∑ 𝐶𝑀𝑘 ∑(𝛾𝑘,𝑡 𝑃𝑘 + 𝑝𝑘,𝑡)

𝑡∈𝑇𝑘∈𝐾

+ ∑ 𝑆𝑈𝐶𝑘 ∑ 𝛼𝑘,𝑡

𝑡∈𝑇𝑘∈𝐾

  

 
+ 𝑐𝐸𝑁𝑃 ∑ ∑ 𝐸𝑁𝑃𝑧,𝑡

𝑡∈𝑇𝑧∈𝑍

+ 𝑐𝑂𝐺 ∑ ∑ 𝑂𝐺𝑧,𝑡

𝑡∈𝑇𝑧∈𝑍

 (2.1) 

subject to 

𝑝𝑘,𝑡 ≤ 𝛾𝑘,𝑡 (𝑃𝑘 − 𝑃𝑘) 𝑘 ∈ 𝒦, 𝑡 ∈ 𝒯 (2.2) 

𝛾𝑘,𝑡 − 𝛾𝑘0
= 𝛼𝑘,𝑡 − 𝛽𝑘,𝑡  𝑘 ∈ 𝒦, 𝑡 = 1 (2.3) 

𝛾𝑘,𝑡 − 𝛾𝑘,𝑡−1 = 𝛼𝑘,𝑡 − 𝛽𝑘,𝑡  𝑘 ∈ 𝒦, 𝑡 > 1 (2.4) 

∑ 𝛼𝑘,𝜏 ≤

𝑡

 𝜏=𝑡−𝑀𝑈𝑇𝑘 +1

𝛾𝑘,𝑡  𝑘 ∈ 𝒦, 𝑡 > 𝑀𝑈𝑇𝑘  (2.5) 

∑ 𝛽𝑘,𝜏 ≤ 1 −

𝑡

 𝜏=𝑡−𝑀𝐷𝑇𝑘 +1

𝛾𝑘,𝑡  𝑘 ∈ 𝒦, 𝑡 > 𝑀𝐷𝑇𝑘  (2.6) 

𝐹𝑙 ≤ 𝑥𝑙,𝑡 ≤ 𝐹𝑙  𝑙 ∈ ℒ, 𝑡 ∈ 𝒯 (2.7) 
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∑ (𝑃𝑘  𝛾𝑘,𝑡 + 𝑝𝑘,𝑡)

𝑘𝜖𝛺𝑧
𝑘

+ ∑ 𝑥𝑙,𝑡 + 𝐸𝑁𝑃𝑧,𝑡

𝑙|𝑟𝑧(𝑙)=𝑧

= 𝑁𝐿𝑧,𝑡 + ∑ 𝑥𝑙,𝑡

𝑙|𝑠𝑧(𝑙)=𝑧

+𝑂𝐺𝑧,𝑡,𝑤  

 
𝑧 ∈ 𝒵, 𝑡 ∈ 𝒯 (2.8) 

∑ [(𝑃𝑘 − 𝑃𝑘) 𝛾𝑘,𝑡 − 𝑝𝑘,𝑡] ≥ 𝑅𝑧,𝑡

𝑘𝜖𝛺𝑧

          𝑧 ∈ 𝒵, 𝑡 ∈ 𝒯 (2.9) 

𝛾𝑘,𝑡 , 𝛼𝑘,𝑡 , 𝛽𝑘,𝑡 ∈  {0,1} 𝑘 ∈ 𝒦, 𝑡 ∈ 𝒯 (2.10) 

𝑝𝑘,𝑡 ≥ 0 𝑘 ∈ 𝒦, 𝑡 ∈ 𝒯 (2.11) 

𝑥𝑙,𝑡  free variable 𝑙 ∈ ℒ, 𝑡 ∈ 𝒯 (2.12) 

𝐸𝑁𝑃𝑧,𝑡 , 𝑂𝐺𝑧,𝑡 ≥ 0 𝑧 ∈ 𝒵, 𝑡 ∈ 𝒯. (2.13) 

In particular, the objective function (2.1) is the sum of four terms: (i) production 

costs, considered as linear functions of the power produced by thermal plants; (ii) start-

up costs; (iii) penalties for energy not provided; and (iv) penalties for over-generation. 

Constraints (2.2) state that the maximum power above the minimum is either 

bounded above by 𝑃𝑘 − 𝑃𝑘, if unit 𝑘 is online (𝛾𝑘,𝑡 = 1), or zero if unit 𝑘 is offline (𝛾𝑘,𝑡 =

0). Constraints (2.3) and (2.4) enforce consistency between binary variables that 

represent start-up, shut down and statuses in adjacent hours. Specifically, while 

equations (2.3) hold only for the first hour of the planning horizon, constraints (2.4) are 

imposed in all the hours of the planning horizon, except the first one. Inequalities (2.5) 

are the minimum up time constraints and they impose that in an interval of 𝑀𝑈𝑇𝑘 

consecutive time periods a unit can be started-up at most once. Inequalities (2.6) work 

similarly for the shut-down case and they are referred to as minimum down time 

constraints. Inequalities (2.7) impose upper and lower bounds for the power flows on 

transmission lines. Equations (2.8) ensure the generation-demand balance at each zone 

of the system: the left-hand side represents the hourly energy sources of zone 𝑧 (given by 

thermal generation and incoming energy flows) and the right-hand side describes the 

energy uses (represented by the net load and outgoing energy flows). The variables 𝐸𝑁𝑃𝑧,𝑡 

and 𝑂𝐺𝑧,𝑡 allow detecting and evaluating problems in the simulated system that can cause 

a mismatch between supply and demand. The spinning reserve is the amount of unused 

capacity in online power plants which can compensate for power shortages or frequency 

drops within a given period of time. Inequalities (2.9) guarantee the fulfilment of zonal 
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upward reserve requirements provided by thermal power plants. Finally, constraints 

(2.10)−(2.13) define the optimization variables. 

2.2.4 Alternative formulations 

Different formulations for the thermal unit commitment problem have been proposed in 

the literature. We refer the reader to [28] and [29] for a detailed comparison between 

them. Specifically, other formulations in the literature differ from the model proposed in 

Section 2.2.3 for two aspects: (i) the way the minimum up/down time constraints are 

imposed; and (ii) the number of binary variables introduced.  

Indeed, minimum up time constraints (2.5) can be equivalently expressed with the 

following inequalities: 

∑ 𝛾𝑘,𝜏 ≥

𝑡+𝑀𝑈𝑇𝑘 −1

 𝜏=𝑡

𝑀𝑈𝑇𝑘 𝛼𝑘,𝑡  𝑘 ∈ 𝒦, 𝑡 ≤ |𝒯| − 𝑀𝑈𝑇𝑘 + 1 (2.14) 

∑ 𝛾𝑘,𝜏 ≥

|𝒯|

 𝜏=𝑡

(|𝒯| − 𝑡 + 1)𝛼𝑘,𝑡  𝑘 ∈ 𝒦, |𝒯| − 𝑀𝑈𝑇𝑘 ≤ 𝑡 ≤ |𝒯|. (2.15) 

Specifically, constraints (2.14) state that if unit 𝑘 is started-up at time 𝑡, it has to stay 

ON for at least 𝑀𝑈𝑇𝑘 consecutive hours in the planning horizon. Constraints (2.15) model 

the final periods of the planning horizon in which if unit 𝑘 is started-up, it remains ON 

until the end of the planning horizon. 

Minimum down time constraints (2.6) can be formulated as: 

∑ (1 − 𝛾𝑘,𝜏 ) ≥

t+𝑀𝐷𝑇𝑘 −1

 𝜏=𝑡

𝑀𝐷𝑇𝑘 𝛽𝑘,𝑡  𝑘 ∈ 𝒦, 𝑡 ≤ |𝒯| − 𝑀𝐷𝑇𝑘 + 1 (2.16) 

∑(1 − 𝛾𝑘,𝜏 ) ≥

|𝒯|

 𝜏=𝑡

(|𝒯| − 𝑡 + 1)𝛽𝑘,𝑡  𝑘 ∈ 𝒦, |𝒯| − 𝑀𝐷𝑇𝑘 ≤ 𝑡 ≤ |𝒯|. (2.17) 

Similarly to constraints (2.14) and (2.15), while inequalities (2.16) hold in the central 

hours of the planning horizon, constraints (2.17) model the final periods in which if unit 

𝑘 is shut-down, it remains OFF until the end of the planning horizon. 

Since binary variables describing start-up, shut-down and commitment statuses are 

related by equations (2.3) and (2.4), the thermal unit commitment problem can be 

formulated also by introducing a single set of binary variables (per unit and per period) 

to represent the commitment status and expressing start-up and shut-down decisions as 

a function of the commitment decision variables. In such a formulation, additional 
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continuous variables 𝐶𝑘,𝑡
𝑆𝑈 are introduced to model start-up costs by imposing the 

following constraints: 

𝐶𝑘,𝑡
𝑆𝑈 ≥ 𝑆𝑈𝐶𝑘 (𝛾𝑘,𝑡 − 𝛾𝑘,𝑡−1) 𝑘 ∈ 𝒦, 𝑡 ∈ 𝒯 (2.18) 

𝐶𝑘,𝑡
𝑆𝑈 ≥ 0 𝑘 ∈ 𝒦, 𝑡 ∈ 𝒯. (2.19) 

The objective function (2.1) is modified by including the new formulation of the start-

up costs, therefore obtaining 

min 𝑧 = ∑ 𝐶𝑀𝑘 ∑(𝛾𝑘,𝑡 𝑃𝑘 + 𝑝𝑘,𝑡)

𝑡∈𝑇𝑘∈𝐾

+ ∑ ∑ 𝐶𝑘,𝑡
𝑆𝑈

𝑡∈𝑇𝑘∈𝐾

  

 
+ 𝑐𝐸𝑁𝑃 ∑ ∑ 𝐸𝑁𝑃𝑧,𝑡

𝑡∈𝑇𝑧∈𝑍

+ 𝑐𝑂𝐺 ∑ ∑ 𝑂𝐺𝑧,𝑡

𝑡∈𝑇𝑧∈𝑍

 (2.20) 

Finally, the minimum up/down time constraints are formulated by replacing 𝛼𝑘,𝑡 

with (𝛾𝑘,𝑡 − 𝛾𝑘,𝑡−1) in equations (2.14) and (2.15) and 𝛽𝑘,𝑡  with (𝛾𝑘,𝑡−1 − 𝛾𝑘,𝑡) in 

constraints (2.16) and (2.17), therefore obtaining the new set of constraints 

∑ 𝛾𝑘,𝜏 ≥

𝑡+𝑀𝑈𝑇𝑘 −1

 𝜏=𝑡

𝑀𝑈𝑇𝑘 (𝛾𝑘,𝑡 − 𝛾𝑘,𝑡−1) 𝑘 ∈ 𝒦, 𝑡 ≤ |𝒯| − 𝑀𝑈𝑇𝑘 + 1 (2.21) 

∑ 𝛾𝑘,𝜏 ≥

|𝒯|

 𝜏=𝑡

(|𝒯| − 𝑡 + 1)(𝛾𝑘,𝑡 − 𝛾𝑘,𝑡−1) 𝑘 ∈ 𝒦, |𝒯| − 𝑀𝑈𝑇𝑘 ≤ 𝑡 ≤ |𝒯| (2.22) 

∑ (1 − 𝛾𝑘,𝜏 ) ≥

𝑡+𝑀𝐷𝑇𝑘 −1

 𝜏=𝑡

𝑀𝐷𝑇𝑘 (𝛾𝑘,𝑡−1 − 𝛾𝑘,𝑡) 𝑘 ∈ 𝒦, 𝑡 ≤ |𝒯| − 𝑀𝐷𝑇𝑘 + 1 (2.23) 

∑(1 − 𝛾𝑘,𝜏 ) ≥

|𝒯|

 𝜏=𝑡

(|𝒯| − 𝑡 + 1)(𝛾𝑘,𝑡−1 − 𝛾𝑘,𝑡) 𝑘 ∈ 𝒦, |𝒯| − 𝑀𝐷𝑇𝑘 ≤ 𝑡 ≤ |𝒯|. (2.24) 

 

2.2.5 Tests on different formulations 

The different formulations of the thermal unit commitment problem are equivalent in 

the sense that they impose the same set of constraints on thermal power plants, but 

different formulations may present different solution times. Several researches have 

been conducted in the literature to identify the fastest formulation [29, 30, 31]. However, 

the obtained results strongly depend on the empirical data and the assumptions 

introduced in the formulation of the thermal unit commitment problem.  
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To identify the fastest formulation for our specific application, several tests have been 

performed. Specifically, the following four formulations have been implemented. 

 1bin: This formulation introduces a single set of binary variables to represent 

commitment decisions, expressing the start-up and the shut-down manoeuvres 

as a function of the commitment decision variables. Therefore, 1bin is formulated 

by considering equations (2.2)−(2.4), (2.7)−(2.13), (2.18)−(2.24). 

 3binB: This formulation includes constraints (2.1)−(2.4), (2.7)−(2.17). Thus, 

formulation 3binB differs from the model presented in Section 2.2.3 in the way 

minimum up/down time constraints are formulated.  

 3binA: This is the formulation presented in Section 2.2.3, including equations 

(2.1)−(2.13). 

 3binR: This is the continuous relaxation of model 3binA, obtained by relaxing 

integrality constraints (2.10). Formulation 3binR is implemented as a benchmark 

for the computational times. 

The four formulations have been tested on a scenario elaborated by CESI S.p.A. 

consisting in three zones connected in a tree network and 48 thermal power plants under 

a planning horizon of 8760 hours. All the numerical tests have been performed on an 

ASUS laptop with a 3 GHz Intel Core i7-5500U Processor and 4 GB of RAM using solver 

Gurobi under GAMS 24.7.4. Since none of the considered formulations could provide a 

solution to the yearly problem, the planning horizon of one year has been divided into 

different time blocks: semesters (two instances with 4380 hours each), four-month 

periods (three instances with 2920 hours), quarters (four instances with 2190 hours 

each), two-month periods (six instances with 1460 hours each), and single months 

(twelve instances with 730 hours each). For MILP models an optimality gap of 0.1% has 

been fixed. 

Table 2.1 Solution time [min] required by the four formulations for different lengths of the planning horizon 

 1 month 2 months 3 months 4 months 6 months 

1bin 36.60 126.21 − − − 

3binB 36.95 42.39 56.54 74.56 − 

3binA 36.23 39.20 44.57 45.75 55.57 

3binR 34.42 37.01 42.50 44.13 52.72 
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Table 2.1 reports the solution time required by the different formulations to solve the 

thermal unit commitment problem for different lengths of the planning horizon. As can 

be noticed, formulation 3binA is the most efficient formulation for three reasons. First, 

this is the only formulation providing a solution to the thermal unit commitment 

problem when the year is divided into two semesters. Indeed, formulation 3binB 

computes a solution to the problem only for optimization horizons shorter than or equal 

to 4 months, while formulation 1bin provides a solution only for monthly or two-month 

time blocks: larger instances cause out-of-memory errors.  

Second, for every length of the optimization horizon, formulation 3binA is the fastest 

MILP model. Third, solution times of formulation 3binA are very close to the 

computational time of the relaxed model 3binR. As can be noticed, most of the 

computational time for formulation 3binA is needed to solve the relaxation of the 

problem, while the optimal integer solution is determined in a small amount of time. For 

instance, the total time needed to solve the year broken down into four-month blocks in 

formulation 3binA is only 3.7% greater than the solution time of model 3binR. Instead, 

when semesters are considered, formulation 3binA requires roughly 5.4% more time 

than model 3binR. Indeed, as discussed in [29], the equations introduced to model the 

thermal unit commitment problem in 3binA tighten the feasible region by reducing the 

distance between relaxed and integer solutions. As a consequence of the reduction of the 

search space explored by MILP solvers, computational times in formulation 3binA are 

dramatically reduced.   

2.3 The selection of representative days 

2.3.1 Literature review 

To provide a better representation of the short-term operation while maintaining the 

problem computationally tractable, some energy planning models use a small number of 

representative periods (i.e., days or weeks) instead of modelling every hour of the 

planning horizon. Different approaches have been proposed to identify representative 

periods. Some authors select representative days by using simple heuristics. For 

instance, to capture the fluctuations in demand during the year, in [32] three time 

periods are selected as the day that contains the minimum demand level of the year, the 

day that contains the maximum demand level and the day that contains the largest 

demand spread in 24 hours. Each of these representative days is then weighted in such 
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way that the weighted sum of the hourly demand of the three selected days equals the 

overall original demand of the entire year. Instead, reference [33] proposes to represent 

the operation of a power system by means of four representative weeks, one for every 

season. The load profile of each of these representative weeks is the average of the load 

profiles of all the weeks of a season. In the objective function, the operational cost of each 

representative week is weighted by the number of weeks in the season. To ensure that 

the power system has enough flexibility to manage extreme conditions, authors propose 

also to add to the previous four average weeks a fifth week representing extreme 

conditions. However, no explanations about the way the extreme week is selected are 

provided in the paper. 

Other works combine heuristic approaches with the random selection of some 

additional days. For instance, in [34] unit commitment decisions within each investment 

period are optimized by considering a set of 12 days: two for each even-numbered month, 

with one day corresponding to the peak-load day and the second day randomly selected 

from days belonging to the same month. In [35], in order to significantly reduce the size 

of the planning problem, authors propose to consider 28 representative days in the whole 

planning horizon that are obtained by selecting 20 random days to characterize typical 

system behaviour and 8 specific days that contain hours with extreme meteorological 

and load events. 

More advanced methods are based on clustering algorithms in order to group days 

with similar load, wind power production or solar power production into clusters: the 

cluster centroid or a specific historical day for each group is then taken as the 

representative day. Different clustering algorithms have been proposed in the literature. 

For example, reference [36] employs 𝑘-means algorithm, in [37] the Ward’s hierarchical 

clustering algorithm is used, while reference [38] suggests to apply 𝑘-means algorithm 

using median representatives. 

Finally, some works select representative days by considering the historical load 

duration curve and the one obtained from the load in the representative days (see e.g. 

[39] and [40]). Specifically, authors in [40] design a mixed integer linear programming 

model to select representative days and determine their weights so as to minimize the 

distance between the historical load duration curve and the one obtained by using the 

selected days.   

From this brief review about the selection of representative days, four main 

observations can be drawn: 
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 Clustering algorithms provide better approximations than heuristic approaches 

[38, 40]. 

 Using as representative days historical days rather than clusters means provide 

better results, especially if power systems have large shares of renewables [37, 

38]. 

 Representative days selected using clustering algorithms characterize typical 

system behaviour. However, the occurrence of extreme events should also be 

taken into account to properly design the expansion of a power system [33, 34, 

35]. 

 The distance between the historical load duration curve and the one 

approximated by representative days can provide usefull information about the 

goodness of the representation [39, 40]. 

On the basis of the above observations, in this thesis a novel hybrid approach is 

introduced to identify representative days. Our method is based on the iterative 

application of the 𝑘-medoids algorithm, on the addition of some extreme days to the set 

of representative days identified by the clustering algorithm and on the selection of the 

most suited number of representative days to be used by considering load duration 

curves. 

2.3.2 The proposed method to select representative days 

In this section, we describe our procedure to select representative days from a set 

𝐷𝑧,𝑡
𝑑 ,  𝜇𝑧,𝑡

𝑑 ,  𝜌𝑧,𝑡
𝑑          𝑧 ∈ 𝒵, 1 ≤ 𝑑 ≤ 365, 1 ≤ 𝑡 ≤ 24 (2.25) 

 

where the load data 𝐷𝑧,𝑡
𝑑  are either historical values (typically related to the last year 

before the planning horizon) or forecast values for the first year of the planning horizon, 

while 𝜇𝑧,𝑡
𝑑  and 𝜌𝑧,𝑡

𝑑  are technical production/capacity ratios for solar power production 

and wind power production, respectively. By performing the clustering analysis on this 

data set, correlations among production and load, as well as spatial correlations among 

zones, can be taken into account. 

In the proposed procedure, before determining representative days, for every zone 𝑧 

the original hourly load data 𝐷𝑧,𝑡
𝑑 , 1 ≤ 𝑑 ≤ 365 and 1 ≤ 𝑡 ≤ 24, are sorted in order of 

decreasing magnitude so as to determine the zonal load duration curves 𝐿𝐷𝐶𝑧,𝜏, 1 ≤ 𝜏 ≤

8760. These curves will be compared in the termination test with the zonal load duration 
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curves corresponding to the representative days and their associated weights to 

determine the number of representative days. 

In order to take into account extreme conditions that cannot be captured by 

clustering analysis, representative days 𝑐1 and 𝑐2 are chosen as the days with minimum 

and maximum total load in the power system, i.e.,    

𝐷𝑧,𝑡
𝑐1 ,  𝜇𝑧,𝑡

𝑐1 ,  𝜌𝑧,𝑡
𝑐1 ,    𝑐1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑑 (∑ ∑ 𝐷𝑧,𝑡

𝑑

24

𝑡=1𝑧∈𝒵

)      𝑧 ∈ 𝒵, 1 ≤ 𝑡 ≤ 24 (2.26) 

 

𝐷𝑧,𝑡
𝑐2 ,  𝜇𝑧,𝑡

𝑐2 ,  𝜌𝑧,𝑡
𝑐2 ,    𝑐2 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑑 (∑ ∑ 𝐷𝑧,𝑡

𝑑

24

𝑡=1𝑧∈𝒵

)      𝑧 ∈ 𝒵, 1 ≤ 𝑡 ≤ 24 (2.27) 

Once the two extreme days 𝑐1 and 𝑐2 are identified, the original data set is modified 

by deleting days 𝑐1 and 𝑐2 and by normalizing the load values 𝐷𝑧,𝑡
𝑑  in the range of [0; 1]. 

Further representative days are selected by the following iterative procedure performed 

on the modified data set and based on the application of the 𝑘-medoids algorithm [41]. 

Like 𝑘-means, the objective of the 𝑘-medoids algorithm is to compute 𝑘 clusters in 

order to minimize the deviation between observations and their representative (i.e., the 

centroids). However, the main difference between the two algorithms is that for 𝑘-means 

each cluster representative is computed as the mean of all the points within the cluster, 

while for 𝑘-medoids each cluster centroid is a vector belonging to that group. As 

discussed in the previous section, the use of specific historical days, rather than cluster 

means, as representative days usually provides better results. For this reason, in our 

approach we suggest to apply 𝑘-medoids rather than 𝑘-means. The steps of the iterative 

procedure are as follows:  

1. Set 𝑘 = 2; 

2. The days of the modified data set are partitioned in 𝑘 clusters by the 𝑘-medoids 

algorithm; 

3. The representative day 𝑐2+𝜉, for 𝜉, 1 ≤ 𝜉 ≤ 𝑘, is selected from the original data set 

as the day corresponding to the centroid of cluster 𝜉; the weight associated to 

representative day 𝑐2+𝜉 is the number of days in cluster 𝜉; 

4. For each zone, determine the zonal load duration curve corresponding to the 𝑘 +

2 representative days and their associated weights (a unit weight is associated to 

𝑐1 and 𝑐2) and compute the mean absolute percentage error between the original 
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zonal load duration curve and the one corresponding to the current set of 

representative days; 

5. Compute the system average mean absolute percentage error by averaging the 

mean absolute percentage errors of zonal load duration curves; 

6. If the system average mean absolute percentage error is below the given 

threshold, stop, otherwise increase 𝑘 by 1 and go to step 2. 

 

Fig. 2.1 Illustration of the representative days selection procedure 
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If the planning horizon includes several years, once the representative days for the 

first year of the planning horizon are determined, the representative days of the following 

years are derived by applying annual growth factors to load profiles. The drawback of 

this approach is to neglect the evolution of technical and socio-economic parameters, 

such as the impact of electric vehicles and heat pumps or an increase of capacity factors 

for wind and solar power technologies, which could lead to significant variations for the 

shape of both demand and RES profiles in the future. Since no reliable information about 

changes in the future shape of demand and RES profiles was available, in our application 

we decided to simply use annual growth factors. However, the proposed approach can be 

easily modified to include long-term variations. For instance, different shapes of load (or 

of RES production) profiles in the years of the planning horizon can be obtained by 

defining multiplicative coefficients varying on the set of hours of the representative days 

of every year: the hourly load (or RES production) forecast of every year in the planning 

horizon is then obtained by multiplying the hourly forecast of the first year by the 

corresponding multiplicative coefficient.  

Fig. 2.1 summarizes the proposed strategy to select representative days from 

historical days.  

2.4 Capturing seasonality of the hydroelectric dispatch with 

representative days 

The use of representative days introduces a strong limitation in storage operation 

modeling. Indeed, representative days allow providing a good representation of storage 

operation within a day, but, since the chronology among representative days is not 

preserved, any energy storage system with a cycle longer than 24 hours cannot be 

modeled with great accuracy. Thus, the evaluation of operational conditions through 

representative days raises the crucial issue regarding how to consider the seasonality of 

hydropower plants, which are usually characterized by yearly cycles. To model the 

operation of hydropower facilities, two different approaches can be applied: 

1. According to historical data or the results of a preliminary model, hydroelectric 

productions are assigned to each representative day. 

2. Representative days are connected in order to catch the seasonality of 

hydropower plants operation. While some works consider representative days as 

temporal consecutive [42], some recent studies model the long-term storage by 
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considering the Cluster Index, which is a numeric column vector where each row 

indicates the cluster assignment of the corresponding day of the year [43]. 

The disadvantage of the first approach is the need to apply a statistical analysis or an 

optimization model to determine the medium-term or long-term energy content of 

storage facilities. Instead, by imposing constraints that connect representative days, the 

drawback of the second approach is an increasing computational complexity and the 

impossibility to decompose the problem by representative day, which is a strategy 

commonly applied to pursue scalability in large-scale models [23]. Therefore, the choice 

of the best approach to adopt depends on the specific application. When the 

disconnection between representative days allows obtaining a huge computational 

saving, the first approach should be implemented, while the second approach is 

preferred when working with already connected representative days or when historical 

data for the power system under study are not available. 

In this section, both approaches are discussed in details. Specifically, while Section 

2.4.1 illustrates the proposed analysis to determine the hydroelectric dispatch in each 

representative day by means of a preliminary optimization model, Section 2.4.2 

introduces the constraints that connect representative days to model long-term storage 

operations. 

2.4.1 A preliminary model for the hydroelectric dispatch 

In this first approach, the hydroelectric dispatch is determined by applying a preliminary 

model based on the following assumptions: 

 As for the thermal unit commitment problem, a zonal representation of the power 

system is adopted, i.e., the power system is partitioned into different price zones 

that exchange energy through a capacitated power network. 

 Each hydraulic valley is represented as a single equivalent hydroelectric plant 

with reservoir. 

 Time is represented with daily resolution. Each zone is characterized by a given 

daily net load 𝑁�̂�𝑧,𝑑, which is the difference between the daily load and the daily 

generation from non-programmable renewable power sources, while each 

reservoir presents given daily natural inflows �̂�ℎ,𝑑 . 

 The objective of the model is to maximize the revenues related to the 

hydroelectric production, which can be computed as the product between the 
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zonal energy prices and the hydroelectric energy produced to supply the net load 

in a given market zone. 

 Zonal prices are computed as a linear function of the zonal residual net load, i.e., 

the difference between the zonal net load 𝑁�̂�𝑧,𝑑 and the hydroelectric energy 

produced to supply the net load in a given market zone. Thus, zonal prices are 

endogenous parameters depending on the water resources dispatching decisions. 

The solution of the hydroelectric model provides the daily energy production for each 

hydropower plant in each day of the planning horizon. Knowing the representative day 

assigned to each day of the year (an information provided by the clustering analysis), a 

post-processing activity is applied to determine for each representative day the 

hydroelectric energy production, which is used to limit the sum of the hourly 

hydroelectric generation in that representative day. 

As previously mentioned, in the proposed analysis zonal prices are considered as a 

function of the net load. Thus, a preliminary analysis is needed to estimate the relation 

between energy prices and net load.  

2.4.1.1 Price estimation 

The relation between prices and net load can be estimated by applying a linear regression 

model to historical data. In this paragraph, the results related to the Italian power system 

are presented. 

Specifically, we performed the regression analysis on a dataset provided by CESI 

S.p.A. including hourly energy prices and net load values for several European countries 

in years 2015 and 2016. This dataset has been modified by computing for each day of the 

planning horizon and for each system zone the average daily price and the total daily net 

load. On the modified dataset two linear regression models have been estimated. First, a 

simple linear regression model have been applied, being the daily zonal net load 𝑁�̂�𝑧,𝑑 

the only covariate to explain the average zonal daily price 𝜋𝑧,𝑑. Such a model can be 

formulated as: 

𝜋𝑧,𝑑 = 𝛼𝑧 + 𝛽𝑧𝑁�̂�𝑧,𝑑 (2.28) 

For instance, Table 2.2 reports the intercept and the slope of the linear relationship 

between prices and net load estimated on the Italian power system, graphically 

represented by the solid red line in Fig. 2.2. As can be noticed, the linear model provides 

a good approximation of data, being the coefficient of determination equal to 0.65. 
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Table 2.2 Estimates of model (2.28) regression coefficients for the Italian power system 

Parameter Value Standard Deviation p-value 

𝛼𝑧 8.71 0.35 < 10−15 

𝛽𝑧 6.26 ∙ 10−5 4.83 ∙ 10−7 < 10−15 

Although the linear model seems to provide an accurate estimation of zonal prices, 

the results have been further improved by introducing in the regression model a monthly 

interaction effect 

𝜋𝑧,𝑑 = 𝛼𝑧 + ∑ 𝛽𝑧,𝑚

12

𝑚=1

(𝑁�̂�𝑧,𝑑𝑥𝑚,𝑑) (2.29) 

being 𝑚 the index for months and 𝑥𝑚,𝑑 a dummy variable that is equal to 1 if day 𝑑 

belongs to month 𝑚. Specifically, in this model the effect of the daily net load on the 

average price changes in different months of the planning horizon. Table 2.3 reports the 

values of the regression coefficients estimated on the Italian power system. As can be 

noticed by analysing p-values, all the parameters contribute in a meaningful way to the 

explanation of the prices. The new value of the coefficient of determination is 0.75, which 

is consistently greater than the coefficient of determination of the model without the 

monthly interaction (i.e., 0.65). Fig. 2.3 illustrates the monthly linear relations between 

prices and net load estimated on the Italian power system. 

 

Fig. 2.2 Simple linear regression model estimated on the Italian power system 
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Table 2.3 Estimates of model (2.29) regression coefficients for the Italian power system 

Parameter Value Standard Deviation p-value 

𝛼𝑧 10.79 0.34 < 10−15 

𝛽𝑧 

Jan 5.66 ∙ 10−5 5.77 ∙ 10−7 < 10−15 

Feb 5.90 ∙ 10−5 5.69 ∙ 10−7 < 10−15 

Mar 5.80 ∙ 10−5 6.08 ∙ 10−7 < 10−15 

Apr 6.02 ∙ 10−5 6.77 ∙ 10−7 < 10−15 

May 5.91 ∙ 10−5 6.64 ∙ 10−7 < 10−15 

Jun 5.44 ∙ 10−5 6.06 ∙ 10−7 < 10−15 

Jul 6.77 ∙ 10−5 4.91 ∙ 10−7 < 10−15 

Aug 6.44 ∙ 10−5 6.42 ∙ 10−7 < 10−15 

Sep 5.51 ∙ 10−5 5.96 ∙ 10−7 < 10−15 

Oct 5.39 ∙ 10−5 5.39 ∙ 10−7 < 10−15 

Nov 6.30 ∙ 10−5 5.68 ∙ 10−7 < 10−15 

Dec 6.20 ∙ 10−5 5.59 ∙ 10−7 < 10−15 

Described the procedure designed to estimate the prices for electricity, the following 

sections provide a detailed description of the preliminary hydroelectric model. 

 

Fig. 2.3 Linear regression model with monthly interaction effect estimated on the Italian power system 
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2.4.1.2 Notation 

To formulate the preliminary hydroelectric model, the following notation is introduced. 

 

Sets 

𝒵 Set of zones, indexed by 𝑧 

ℋ Set of hydropower plants, indexed by ℎ 

𝛺𝑧
ℎ ⊂ ℋ Set of hydropower plants located in zone 𝑧 

ℳ Set of months, indexed by 𝑚 

𝒟 Set of days, indexed by 𝑑 

𝒟𝑚 Set of days belonging to month 𝑚 

ℒ Set of transmission lines, indexed by 𝑙 

𝑟𝑧(𝑙) Receiving-end zone of transmission line 𝑙 

𝑠𝑧(𝑙) Sending-end zone of transmission line 𝑙 

 

Parameters 

𝛼𝑧  [€/MWh] Intercept of the zonal relationship between price and net 

load in zone 𝑧  

𝛽𝑧,𝑚 [€/MWh2] Slope of the zonal relationship between price and net load 

in zone 𝑧 at month 𝑚 

𝑁�̂�𝑧,𝑑 [MWh] Daily net demand for electricity in zone z at day 𝑑 

�̅�ℎ [MWh] Maximum daily energy produced by hydropower plant ℎ 

𝑝𝑝̅̅̅̅ ℎ [MWh] Maximum daily pumping energy absorbed by hydropower 

plant ℎ 

𝑠�̅�ℎ [MWh] Maximum daily energy spillage from reservoir ℎ 

�̅�ℎ [MWh] Maximum energy content of reservoir ℎ 

𝐸ℎ0
 [MWh] Energy content of hydropower plant ℎ at the beginning of 

the time horizon 

𝜆ℎ [−] Loss coefficient for energy stored by hydropower plant ℎ 

(0 ≤ 𝜆ℎ ≤ 1) 

𝜆ℎ
IN [−] Loss coefficient for hydro plant ℎ pumping (0 ≤ 𝜆ℎ

IN ≤ 1) 

𝜆ℎ
OUT [−] Loss coefficient for hydro plant ℎ power generation 

(𝜆ℎ
OUT ≥ 1) 

�̂�ℎ,𝑑 [MWh] Daily energy inflow for hydropower plant ℎ at day 𝑑 
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𝐹𝑑𝑙 [MWh] Lower bound on daily energy flows on transmission line 𝑙 

𝐹𝑑𝑙  [MWh] Upper bound on daily energy flows on transmission line 𝑙 

 

Variables 

𝜑ℎ,𝑑  [−] Binary status of hydropower plant ℎ at day 𝑑, which is equal 

to 1 if plant ℎ produces energy and 0 otherwise 

𝑞ℎ,𝑑  [MWh] Daily energy produced by hydropower plant ℎ at day 𝑑 

𝑝𝑝ℎ,𝑑  [MWh] Daily pumping energy absorbed by hydropower plant ℎ at 

day 𝑑 

𝑠𝑙ℎ,𝑑  [MWh] Daily energy spillage from reservoir ℎ at day 𝑑 

𝐸ℎ,𝑑  [MWh] Energy content of reservoir ℎ at the end of day 𝑑 

𝑥𝑙,𝑑 [MWh] Daily energy flow on transmission line 𝑙 at day 𝑑 

𝜋𝑧,𝑑 [MW] Daily market price in zone 𝑧 at day 𝑑 

 

2.4.1.3 Mathematical formulation 

The hydroelectric preliminary model can be formulated as the following Quadratic 

Mixed-Integer Programming (QMIP) problem 

max  𝑧 = ∑ ∑ 𝜋𝑧,𝑑 ( ∑ (𝑞ℎ,𝑑 − 𝑝𝑝ℎ,𝑑) + ∑ 𝑥𝑙,𝑑

𝑙|𝑟𝑧(𝑙)=𝑧ℎ𝜖𝛺𝑧
ℎ

− ∑ 𝑥𝑙,𝑑

𝑙|𝑠𝑧(𝑙)=𝑧

)

𝑑∈𝒟𝑧∈𝒵

 (2.30) 

 

subject to 

𝜋𝑧,𝑑 = 𝛼𝑧 + 𝛽𝑧,𝑚 [𝑁�̂�𝑧,𝑑 − ( ∑ (𝑞ℎ,𝑑 − 𝑝𝑝ℎ,𝑑)

ℎ𝜖𝛺𝑧
ℎ

+ ∑ 𝑥𝑙,𝑑

𝑙|𝑟𝑧(𝑙)=𝑧

− ∑ 𝑥𝑙,𝑑

𝑙|𝑠𝑧(𝑙)=𝑧

)] 

 𝑧 ∈ 𝒵, 𝑚 ∈ ℳ, 𝑑 ∈ 𝒟𝑚 (2.31) 

𝑞ℎ,𝑑 ≤ 𝜑ℎ,𝑑 �̅�ℎ ℎ ∈ ℋ, 𝑑 ∈ 𝒟 (2.32) 

𝑝𝑝ℎ,𝑑 ≤ (1 − 𝜑ℎ,𝑑 )𝑝𝑝̅̅̅̅ ℎ ℎ ∈ ℋ, 𝑑 ∈ 𝒟 (2.33) 

𝑠𝑙ℎ,𝑑 ≤ 𝑠�̅�ℎ ℎ ∈ ℋ, 𝑑 ∈ 𝒟 (2.34) 

𝐸ℎ,𝑑 ≤ �̅�ℎ ℎ ∈ ℋ, 𝑑 ∈ 𝒟 (2.35) 
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𝐸ℎ,𝑑 = (1 − 𝜆ℎ) 𝐸ℎ0
+ �̂�ℎ,𝑑 + 𝜆ℎ

IN 𝑝𝑝ℎ,𝑑 − 𝜆ℎ
OUT𝑞ℎ,𝑑 − 𝑠𝑙ℎ,𝑑  

 ℎ ∈ ℋ, 𝑑 = 1 (2.36) 

𝐸ℎ,𝑑 = (1 − 𝜆ℎ) 𝐸ℎ,𝑑−1 + �̂�ℎ,𝑑 + 𝜆ℎ
IN 𝑝𝑝ℎ,𝑑 − 𝜆ℎ

OUT𝑞ℎ,𝑑 − 𝑠𝑙ℎ,𝑑  

 ℎ ∈ ℋ, 𝑑 > 1 (2.37) 

𝐸ℎ,|𝒟| = 𝐸ℎ0
 ℎ ∈ ℋ (2.38) 

𝐹𝑑𝑙 ≤ 𝑥𝑙,𝑑 ≤ 𝐹𝑑𝑙  𝑙 ∈ ℒ, 𝑑 ∈ 𝒟 (2.39) 

𝜑ℎ,𝑑 ∈ {0,1} ℎ ∈ ℋ, 𝑑 ∈ 𝒟 (2.40) 

𝑞ℎ,𝑑 , 𝑝𝑝ℎ,𝑑 , 𝑠𝑙ℎ,𝑑 , 𝐸ℎ,𝑑 ≥ 0 ℎ ∈ ℋ, 𝑑 ∈ 𝒟 (2.41) 

𝑥𝑙,𝑑 free variable 𝑙 ∈ ℒ, 𝑑 ∈ 𝒟 (2.42) 

𝜋𝑧,𝑑 ≥ 0 𝑧 ∈ 𝒵, 𝑑 ∈ 𝒟. (2.43) 

 

The objective (2.30) of the proposed model is to maximize the total system revenues 

related to the hydroelectric production, which are computed by multiplying in each zone 

the market price by the energy produced to supply the zonal net load, i.e., the difference 

between produced and pumped energy plus the difference between incoming and 

outgoing energy flows. In particular, zonal prices are endogenous variables defined by 

constraints (2.31) as a linear function of the residual net load (i.e., the net load after 

dispatching the water resources). Indeed, prices are estimated considering that the 

hydropower used in a specific zone to supply the net load will reduce the net load itself, 

causing consequently a price reduction. Inequalities (2.32) both impose upper bounds to 

the energy produced by hydropower plants and enforce consistency between positive and 

binary variables related to the hydropower generation. Constraints (2.33) work similarly 

for the pumping case. Moreover, the joint application of constraints (2.32) and (2.33) 

ensures the exclusive mutuality of generation and pumping. Inequalities (2.34) and 

(2.35) impose upper bounds to the spillage and the energy level of reservoirs, 

respectively. Constraints (2.36) and (2.37) are flow conservation equations and they 

ensure that the energy stored by hydro plant ℎ at the end of day 𝑑 equals the energy 
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stored at the end of the previous day (reduced by the loss coefficient 𝜆ℎ ≤ 1), plus the 

natural inflows, plus the energy injected in ℎ (reduced by the coefficient 𝜆ℎ
IN ≤ 1), minus 

the energy released from the reservoir (reduced by the coefficient 𝜆ℎ
OUT ≥ 1), minus the 

spillage. While equations (2.36) impose the energy balance for the first day of the 

planning horizon, constraints (2.37) apply to all days but the first one. Equations (2.38) 

ensure the equality between final and initial energy stored in each reservoir. Constraints 

(2.39) impose upper and lower bounds to the energy flows on transmission lines. Finally, 

constraints (2.40)−(2.43) define decision variables. 

2.4.1.4 Post-processing 

The model described in Section 2.4.1.3 determines the daily energy production and 

storage volumes of reservoirs for each hydropower plant in each day of the planning 

horizon. For instance, Fig. 2.4 shows inputs and outputs provided by the model for the 

equivalent hydropower plant CH2a located in Switzerland in the simulation of the 

European power system at year 2017. Further details about this analysis are provided in 

Section 2.7. Specifically, the two top graphs in Fig. 2.4 represent, respectively, the daily 

net load in Switzerland (blue line) and the daily natural inflows (red line) for the 

considered hydropower plant in the planning horizon. As can be observed, the net load 

in Switzerland shows a very particular behaviour, with high values in both the first and 

the last months of the year and a clear valley from day 120 to day 280 (i.e., in spring and 

summer months). The two bottom graphs in Fig. 2.4 depicts the model outputs, i.e., the 

daily energy production (yellow line) and the daily storage of the reservoir (green line). 

 

Fig. 2.4 Water resources dispatching for equivalent hydropower plant CH2a 
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As can be noticed, the energy production presents a profile very similar to the daily 

net load, with high productions during the first and the last months and low hydroelectric 

generation in the middle part of the year. Indeed, since the market price is computed as 

a linear function of the net load with positive coefficients, high values of net load imply 

high expected prices. Thus, in order to maximise revenues, the decision of the model is 

to increase the hydroelectric generation when the net load is higher. Given the low 

natural inflows during the first months of the year, to supply the high load the 

hydropower plant uses the water stored in the reservoir, causing a progressive reduction 

of the basin’s level until the day 120, when the storage reaches its minimum value. From 

day 120 to day 280, both the lower generation and the high natural inflows determine an 

increase of energy content in the reservoir. In the last days of the year, the considerable 

increase in power generation causes a reduction of water volumes stored, until reaching 

the initial level at the end of the year, as imposed by constraints (2.38). 

After determining the optimal daily dispatch of water resources for every plant, the 

model output is post-processed in order to coordinate the information obtained with the 

representative days provided by the clustering analysis. The first step for this 

coordination is the computation of the daily hydroelectric energy balance 𝑄ℎ,𝑑 for 

hydropower plant ℎ at day 𝑑, which is defined as 

𝑄ℎ,𝑑 = 𝜆ℎ
OUT𝑞ℎ,𝑑 − 𝜆ℎ

IN𝑝𝑝ℎ,𝑑 ℎ ∈ ℋ, 𝑑 ∈ 𝒟 (2.44) 

Let 𝒞 denote the set of representative days and let Map𝑑,𝑐 denote the injective map of 

each day 𝑑 ∈ 𝒟 to a representative day 𝑐 ∈ 𝒞. In a first approach, the daily hydroelectric 

energy assigned to each representative day 𝑐 can be computed as the average of daily 

hydroelectric energy balances for days associated to representative day 𝑐, i.e., 

𝑄ℎ,𝑐 =
1

𝑤𝑔𝑐
∑ 𝑄ℎ,𝑑

𝑑∈Map𝑑,𝑐

 
ℎ ∈ ℋ, 𝑐 ∈ 𝒞 (2.45) 

where 𝑤𝑔𝑐 denotes the weight of representative day 𝑐, i.e., the number of days assigned 

to cluster 𝑐. 

For instance, let us consider again the European scenario. In this case, the clustering 

analysis identifies 10 representative days with different weights. Let us consider in 

particular the first representative day (i.e., Cluster 1), whose weight is equal to 38, and 

the hydropower plant CH2a located in Switzerland.  
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Fig. 2.5 Daily hydroelectric energy for hydropower plant CH2a in Cluster 1 

Fig. 2.5 shows the results of the post-processing for Cluster 1 and hydropower plant 

CH2a: each bar represents a specific day allocated to Cluster 1 and it is characterized by 

a height equal to parameter 𝑄ℎ,𝑑 (i.e., the energy balance between hydroelectric 

generation and pumping in that day). The horizontal dotted line in the figure is the 

average of these productions and it represents the hydroelectric production assigned to 

representative day 1 by post-processing. 

Alternatively, it is possible to associate to each representative day more than one 

value, as shown in Fig. 2.6.  

 

Fig. 2.6 Daily hydroelectric energies for hydropower plant CH2a in Cluster 1 



 

2.4 Capturing seasonality of the hydroelectric dispatch 38 

 

 
 

In this second approach, the 𝑘-means algorithm is applied in order to divide data into 

two groups, identifying two different values of hydroelectric energy. In the considered 

example, these two values are 29 555 MWh (dotted green line) and 19 141 MWh (dotted 

blue line): while the higher value can be associated with 20 days of Cluster 1, the other 

18 days show a hydroelectric production close to the lower value. Thus, in this second 

approach the original representative day Cluster 1 is replaced by two representative days 

Cluster 1A and Cluster 1B, which present the same load, wind and solar profiles, but 

different hydroelectric balances. 

Of course, this approach can be extended to consider a higher number of scenarios 

for hydroelectric generation at the cost of an increasing number of representative days. 

The post-processing activity allows determining for each representative day 𝑐 the 

total daily hydroelectric production, which is used to control the sum of hourly 

hydroelectric generation in representative day 𝑐. Specifically, to control the operations 

of hydropower plants in representative days, variables 𝐸ℎ,𝑡
𝑐,IN and 𝐸ℎ,𝑡

𝑐,OUT are introduced to 

represent the hourly energy charge and discharge for hydropower plant ℎ in hour 𝑡 (1 ≤

𝑡 ≤ 24) of representative day 𝑐. 

The seasonality of the water resources dispatching is then considered in the short-

term dispatch by imposing constraints 

∑(𝜆ℎ
OUT𝐸ℎ,𝑡

𝑐,OUT − 𝜆ℎ
IN𝐸ℎ,𝑡

𝑐,IN)

24

𝑡=1

= 𝑄ℎ,𝑐 ℎ ∈ ℋ, 𝑐 ∈ 𝒞 (2.46) 

which ensure that the difference between the daily hydroelectric generation and the daily 

energy pumped equals the value assigned to the representative day after the preliminary 

dispatch. 

 

2.4.2 Connecting representative days to model long-term storage 

A first drawback of the approach described in the previous section is the need to increase 

the number of representative days introduced in the analysis to provide a better 

representation of the long-term hydroelectric dispatch, since days with similar load, 

wind and solar profiles could be characterized by very different values for hydroelectric 

production. Another disadvantage of the previous approach is the need to employ 

historical data to estimate parameters 𝛼𝑧 and 𝛽𝑧,𝑚 of the linear relations between prices 

and net load that drive long-term water resources dispatching decisions. However, in 

some applications this analysis could not be applied either because historical data are 
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not available for the power system under study or because past information is considered 

to be not reliable to predict the future behaviour of the power system. 

In these cases, the long-term storage can be modeled by connecting representative 

days through some constraints that consider the assignment of every day to a 

representative day to create the continuity in storage across the entire time horizon [44]. 

Specifically, this approach is based on the concept of cluster index, which is the 

injective map Map𝑑,𝑐 containing the relationship between days and representative days. 

For instance, let us consider a set of seven days 𝒟 = {𝑑1, 𝑑2, … , 𝑑7} and a set of two 

representative days 𝒞 = {𝑐1, 𝑐2}. The set 𝒟 could represent for example the days in a 

week, with the two representative days being working days and weekend days. In this 

case, the cluster index Map𝑑,𝑐 would present the structure illustrated in Fig. 2.7. 

 

Fig. 2.7 Cluster index 𝐌𝐚𝐩𝒅,𝒄 for the considered example 

Integral constraints imposed to model the hydroelectric operation are divided into 

two types: intra-day and inter-day balance equations. Specifically, intra-day equations 

control the hydropower plants operation within each representative day. Denoting with 

𝐸ℎ,𝑡
𝑐,IN, 𝐸ℎ,𝑡

𝑐,OUT, 𝐸ℎ,𝑡
𝑐  and 𝑠𝑙ℎ,𝑡

𝑐  the decision variables representing the charge, the discharge, 

the energy level and the spillage for hydropower plant ℎ in hour 𝑡 of representative day 

𝑐, intra-day balance equations can be expressed as 

𝐸ℎ,𝑡
𝑐 = (1 − 𝜆ℎ)𝐸ℎ

𝑐
0

+ 𝐹ℎ,𝑡
𝑐 + 𝜆ℎ

IN 𝐸ℎ,𝑡
𝑐,IN − 𝜆ℎ

OUT 𝐸ℎ,𝑡
𝑐,OUT − 𝑠𝑙ℎ,𝑡

𝑐   

 ℎ ∈ ℋ, 𝑐 ∈ 𝒞, 𝑡 = 1 (2.47) 

𝐸ℎ,𝑡
𝑐 = (1 − 𝜆ℎ)𝐸ℎ,𝑡−1

𝑐 + 𝐹ℎ,𝑡
𝑐 + 𝜆ℎ

IN 𝐸ℎ,𝑡
𝑐,IN − 𝜆ℎ

OUT 𝐸ℎ,𝑡
𝑐,OUT − 𝑠𝑙ℎ,𝑡

𝑐   

 ℎ ∈ ℋ, 𝑐 ∈ 𝒞, 2 ≤ 𝑡 ≤ 24 (2.48) 

𝐸ℎ,𝑡
𝑐 ≥ 𝐸ℎ

𝑐
24

 ℎ ∈ ℋ, 𝑐 ∈ 𝒞, 𝑡 = 24, (2.49) 

where 𝐸ℎ
𝑐

0
 and 𝐸ℎ

𝑐
24

 are the energy levels of reservoir ℎ at the beginning and the end of 

representative day 𝑐, 𝐹ℎ,𝑡
𝑐  denotes the hourly natural inflows, and parameters 𝜆ℎ, 𝜆ℎ

IN  and 

𝜆ℎ
OUT are the loss coefficients for storage, charge and discharge activities, respectively. By 
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assigning specific values to parameters 𝐸ℎ
𝑐

0
 and 𝐸ℎ

𝑐
24

 the long-term storage can be 

controlled. However, the choice of the values to be assigned to these parameters is not 

trivial. Thus, when working with representative days, intra-day balance constraints are 

usually replaced by inter-day balance constraints.  

In particular, inter-day balance equations check at regular intervals (every 𝑀 days) 

the storage level. For instance, let us consider weekly checks (i.e., 𝑀 = 7). In the example 

represented in Fig. 2.7, the storage level at the end of the week is the storage level at the 

beginning of the week, plus 5 times the energy balance in representative day 𝑐1, plus 2 

times the energy balance in representative day 𝑐2. Specifically, the energy balance in 

representative day 𝑐1 is multiplied by 5 because in the considered week 5 days (i.e., days 

𝑑1 to 𝑑5) are associated with the representative day 𝑐1, as shown by the cluster index. 

Similarly, the energy balance in day 𝑐2 is multiplied by 2 since days 𝑑6 and 𝑑7 are 

represented by 𝑐2. 

More generally, denoting with 𝒟𝑀 the subset of days in the planning horizon in which 

the long-term storage level is checked, with 𝐸ℎ0
 the energy content of reservoir ℎ at the 

beginning of the planning horizon and with �̂�ℎ
LT,𝑑 the decision variable representing the 

energy level of reservoir ℎ at the end of day 𝑑, inter-day constraints can be expressed as 

�̂�ℎ
LT,𝑑 = 𝐸ℎ0

+ ∑ ∑ ∑(𝐹ℎ,𝑡
𝑐 + 𝜆ℎ

IN 𝐸ℎ,𝑡
𝑐,IN − 𝜆ℎ

OUT 𝐸ℎ,𝑡
𝑐,OUT − 𝑠𝑙ℎ,𝑡

𝑐 )

24

𝑡=1 𝑐∈Map𝑑′,𝑐

𝑑

𝑑′=𝑑−𝑀+1

 

 ℎ ∈ ℋ, 𝑑 = 𝑀 (2.50) 

�̂�ℎ
LT,𝑑 = �̂�ℎ

LT,𝑑−𝑀 + ∑ ∑ ∑(𝐹ℎ,𝑡
𝑐 + 𝜆ℎ

IN 𝐸ℎ,𝑡
𝑐,IN − 𝜆ℎ

OUT 𝐸ℎ,𝑡
𝑐,OUT − 𝑠𝑙ℎ,𝑡

𝑐 )

24

𝑡=1 𝑐∈Map𝑑′,𝑐

𝑑

𝑑′=𝑑−𝑀+1

 

 ℎ ∈ ℋ, 𝑑 ∈ 𝒟𝑀, 𝑑 > 𝑀 (2.51) 

0 ≤ �̂�ℎ
LT,𝑑 ≤ 𝐸𝑃𝑅ℎ�̅�ℎ

IN ℎ ∈ ℋ, 𝑑 ∈ 𝒟𝑀 (2.52) 

In particular, equations (2.50) ensure that the storage level at the first checkpoint 

(i.e., at day 𝑀) is equal to the initial energy content of reservoir ℎ, plus/minus the daily 

energy inflows/outflows in the first 𝑀 days of the planning horizon. Constraints (2.51) 

hold for every subsequent checkpoint and they express the energy level at the checkpoint 

as the sum of the total energy at the previous checkpoint, plus/minus the energy 

inflows/outflows since the previous checkpoint. Finally, inequalities (2.52) ensure that 

the storage level at every checkpoint is non-negative and does not exceed the maximum 
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storage capacity 𝐸𝑃𝑅ℎ�̅�ℎ
IN, being the parameter 𝐸𝑃𝑅ℎ the energy to power ratio for 

hydropower plant ℎ. 

Since constraints (2.50)−(2.52) control the storage level only at checkpoints, in such 

an approach there is no guarantee that the energy level in any hour different from the 

checkpoints is within bounds. To ensure the respect of storage bounds in every hour of 

the planning horizon, while avoiding the application of hourly constraints on the storage 

level that would dramatically increase the computational burden, we propose the 

following iterative procedure: 

 Solve the optimization model by only controlling the storage level at checkpoints; 

 According to the model outputs, reconstruct the hourly energy levels of storage 

facilities across the whole planning horizon;   

 If the hourly energy levels are within their respective bounds, stop, otherwise go 

to step 4; 

 Update equations (2.52) by reducing of a given factor (e.g., 5%) the upper bounds 

of constraints corresponding to all the couples of checkpoints that include a 

violation of the hourly storage level and go back to step 1. 

Moreover, the application of constraints (2.50)−(2.52)  allows creating the continuity 

in long-term storage modeling while using representative days, without performing any 

preliminary analysis. However, the drawback of this approach is an increasing 

computational complexity given by the interconnection between representative days. As 

previously explained, the choice of the approach to be used to capture the seasonality of 

hydroelectric generation should be made considering the specific objectives of the 

analysis performed.  

2.5 Determining the initial ON/OFF status of thermal power 

plants in representative days 

The use of representative days raises also the crucial issue regarding how these days 

should be linked in the expansion planning model to properly apply thermal unit 

commitment constraints without overestimating start-up costs. Most of the existing 

methods, such as [42], consider the representative days as temporally consecutive, 

linking these days according to an arbitrary order, from which, however, the model 

results may be affected.  Other works, such as [33], assume that each representative day 
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is followed by similar days and, thus, state that the initial status of each representative 

day should be equal to its final status. Specifically, in this approach new decision 

variables are introduced to represent the initial status of each generating plants and 

constraints are imposed to enforce the equality between initial and final status of each 

representative period. However, this approach is not appropriate for extreme days, 

which represent unique conditions. Extreme days are usually preceded by average days, 

thus considering the initial status of an extreme day equal to its final status could bias 

the calculation of the optimal amount of flexibility.  More sophisticated approaches, such 

as [43], connect representative days by computing the transition matrix, which gives the 

number of transitions between each pair of representative days. However, this approach 

implies the introduction of many constraints and the interconnection among days, which 

can consistently increase computational costs. 

The simplest approach to deal with temporally disconnected representative days is to 

assume that all thermal plants are offline at the beginning of each representative day. In 

this approach many start-up manoeuvres need to take place in the first hour of each 

cluster in order to supply load, with the following consequences: (i) an over-estimation 

of start-up costs and (ii) a distortion of the system operation, since units with low start-

up costs may result preferable with respect to plants supplying base-load, which usually 

have lower production costs but higher start-up costs. Thus, in order to provide an 

accurate solution to the unit commitment problem while maintaining representative 

days separate, it is necessary to apply a method that could accurately predict the online 

or offline status of every thermal power plant at the beginning of each representative day. 

In this section, different classification techniques to initialize representative days are 

introduced.  

Specifically, the objective of a classifier is to assign the ON/OFF status at the 

beginning of a representative day of every thermal plant according to its technical 

characteristics, which affect the commitment decisions. Certainly, the commitment 

decisions depend on marginal costs: the lower the production cost, the higher the 

commitment. However, the marginal cost is not the only relevant attribute, since also 

unit flexibilities play an important role in determining commitment decisions, especially 

if power systems have large shares of renewables. Thus, to determine the initial ON/OFF 

status of each power plant, the following features are considered: (i) marginal cost ratio, 

i.e., the ratio between unit marginal cost and average marginal cost of available thermal 

plants; (ii) start-up cost; (iii) minimum up time; and (iv) minimum down time. 

To classify the ON/OFF status of thermal plants according to the previous features, 

the classifier needs to learn a classification rule from a set of observed data. The greater 
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the number of instances in the training set, the better the ability of the classifier to 

identify patterns. In our approach, a large dataset is constructed by considering the 

commitment decisions of Italian thermal power plants in years 2015 and 2016. 

Specifically, for every thermal power plant 𝑘 the considered features are marginal cost 

ratio, start-up cost, minimum up time and minimum down time; from data we also 

derive the vector of daily initial statuses 𝛾𝑘
𝑑

0
, which describes the ON/OFF status of 

thermal power plant 𝑘 in the last hour of day 𝑑 − 1, 2 ≤ 𝑑 ≤ 730. The obtained data set 

is partitioned in two subsets: a training set containing 70% of total observations 

randomly selected and a test set including the remaining 30% observations. The training 

set is used to estimate a classification rule, which is then applied to the test set in order 

to assign to each thermal power plant a probability 𝜋𝑘
ON to be ON at the beginning of the 

day according to features values. By comparing for each thermal power plant the 

probability 𝜋𝑘
ON with the ON frequency on the test set (i.e., the ratio between the number 

of days in the test set in which the unit is ON and the total number of instances in the 

test set), the accuracy of a classification technique can be evaluated. Specifically, in the 

current application four methods are compared: logistic regression, artificial neural 

networks, decision trees and support vector machines. 

2.5.1 Logistic Regression 

Logistic regression is a regression model frequently used to determine the dependence 

of a dichotomous response variable, describing the presence or absence of an attribute 

of interest, from a vector of observed covariates [45]. Specifically, let 𝑦𝑖 be a binary 

response variable: 𝑦𝑖  can be seen as a realization of a random variable 𝑌𝑖  that may take 

the values 1 and 0 with probabilities 𝜋𝑖 and 1 − 𝜋𝑖, respectively. The aim of a logistic 

model is to express probabilities 𝜋𝑖 as a function of a vector of observed covariates 𝑥𝑖. 

The simplest approach would be to consider probabilities 𝜋𝑖 being a linear function of 

the covariates 

𝜋𝑖 = 𝑥𝑖
′𝛽 (2.53) 

where 𝛽 is a vector of regression coefficients. However, probabilities 𝜋𝑖 have to be 

between 0 and 1, while the linear combination of covariates can take any real value, not 

guaranteeing that predicted probabilities are in the correct range. 

The range restrictions are solved by the following transformation. First, we move 

from probabilities to the odds, i.e., the ratio of the probability to its complement 
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odds𝑖 =
𝜋𝑖

1 − 𝜋𝑖
 (2.54) 

Then, range restrictions are removed by computing the logit function 

logit(𝜋𝑖) = 𝑙𝑛
𝜋𝑖

1 − 𝜋𝑖
 (2.55) 

Indeed, as 𝜋𝑖 goes to 0, the odds approaches 0 as well, while the logit approaches −∞. 

Instead, as the probability goes to 1, both the odds and the logit approach +∞. 

Finally, logistic regression models assume that the logit of probability 𝜋𝑖 is a linear 

function of the covariates 

logit(𝜋𝑖) = 𝑥𝑖
′𝛽 (2.56) 

Solving equation (2.56) for the probability 𝜋𝑖 gives the following equation 

𝜋𝑖 =
𝑒𝑥𝑖

′𝛽

1 + 𝑒𝑥𝑖
′𝛽

 (2.57) 

In the current application, observations in the training set are used to estimate 

regression coefficients 𝛽 in equation (2.56). The estimations for regression coefficients 

are reported in Table 2.4 along with the correspondent standard deviations and the p-

values. Specifically, for each term the p-value tests the null hypothesis that the regression 

coefficient is equal to zero, i.e., that predictor is not statistically significant. In this case, 

as can be noticed, all covariates present a very low p-value, indicating that all the 

predictors are meaningful in the model.  

Table 2.4 Regression coefficients estimated on the training set 

Covariate Coefficient Standard Deviation p-value 

Intercept 35.98 1.04 < 10−15 

MDT 0.37 0.07 < 10−7 

MUT −0.18 0.01 < 10−15 

MC Ratio −36.65 1.06 < 10−15 

SUC −1.18 ∙ 10−5 3.98 ∙ 10−7 < 10−15 
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Moreover, as expected, regression coefficient for the marginal cost ratio is negative: 

efficient thermal plants with low production costs have greater probabilities to be ON at 

the beginning of the day rather than power plants with high marginal costs. Also the 

coefficient for the start-up cost is negative, indicating that the probability to be ON at the 

beginning of the day increases as the start-up costs decrease. 

Regression coefficients estimated on the training set are then used to compute 

probabilities of thermal plants in the test set having an initial ON status according to 

equation (2.57). 

2.5.2 Artificial Neural Networks 

An artificial neural network is a system based on biological neural system consisting of a 

pool of simple processing units that communicate by sending signals to each other over 

a large number of weighted connections [46].  

Each unit in an artificial neural network is called an artificial neuron and it receives 

inputs from other units or external sources and elaborate this information to compute 

an output signal, which is propagated to other neurons. Fig. 2.8 illustrates the 

mathematical structure of an artificial neuron.  The basic idea in this model is that each 

unit provides an additive contribution to the input of the neurons with which it is 

connected. As can be noticed, the net input to each neuron is a linear combination of 

inputs provided by other units and by an external source.  

The weights in this linear combination give the strength of the connections: while 

negative weights represent inhibitory connections, positive coefficients reflect excitatory 

connections. Finally, the activation function performs a non-linear operation on the net 

input to produce an activation signal, which is then propagated to other neurons. 

 

Fig. 2.8 Mathematical model of an artificial neuron 
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Artificial neural networks usually present a layered structure. Each layer consists of 

neurons that receive signals from units in a layer directly below and send their output to 

neurons in a layer directly above. No connections exist between neurons within a layer. 

Specifically, layers in an artificial neural network can be divided into three groups: (i) 

input layer, containing neurons that receive data only from external sources; (ii) output 

layer, consisting of units which send signals out of the neural network; and (iii) hidden 

layer, consisting of neurons that receive information from other units and send output 

signals to other neurons. 

In the current application, a neural network with only three layers (i.e., one input 

layer, one output layer and only one hidden layer) is considered in order to avoid the 

overfitting phenomenon that could be induced by introducing many neurons. 

Specifically, the input layer consists of four neurons, one for each feature, while the 

output layer includes only one unit.  

The signal provided by the output neuron is a number in the range of [0; 1] describing 

the probability of thermal plants having an initial ON status. The number of neurons in 

the hidden layer, a priori unknown, can be determined by testing different 

configurations. A network with three neurons in the hidden layer proved to be the best 

configuration in terms of classification error on the test set.  

Using observations in the training set, the weights of the neurons connections are 

determined so as to obtain the desired outputs from the given set of inputs. The 

description of the method to set the weights is outside the scope of this work. We refer 

the reader to [46] for a detailed description of networks training. Fig. 2.9 illustrates the 

artificial neural network estimated on training data, which is then used to determine 

probabilities of thermal plants in the test set to have an initial ON status. 

 

Fig. 2.9 Artificial neural network estimated on training data 
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2.5.3 Decision Trees 

A decision tree is a classifier expressed as a recursive partition of the instance space. The 

decision tree consists of nodes that form a rooted tree with a node called a root that has 

no incoming edges [47]. All other nodes have exactly one incoming edge. A node with 

outgoing edges is called a test node and splits the instance space into two or more sub-

spaces according to attributes values. Each node with no outgoing edges is called a leaf 

and it represents a group of data with specific attributes values. In a decision tree, each 

leaf is assigned to one class. Alternatively, the leaf may hold a probability vector 

indicating the probability of the target attribute having a certain value.  

The construction of a decision tree from a given dataset, the so called induction, is 

usually performed by algorithms that apply a top-down recursive approach. First, the 

feature is found which best splits data into two (or more) groups. Data are then 

partitioned in subsets according to the splitting rule and the same approach is applied to 

each subset, until a stopping criterion is satisfied. Typical stopping criteria are: (i) the 

impossibility to further improve the classification; (ii) a minimum number of instances 

in a node; or (iii) the maximum depth of the tree. 

At each iteration, algorithms for decision tree induction identify the splitting criterion 

by considering an impurity measure, which in many applications is the Gini index. 

Specifically, let us consider a classification problem with 𝑘 groups. Let 𝑝𝑖 , 1 ≤ 𝑖 ≤ 𝑘, be 

the relative frequency of class 𝑖 in a node of the decision tree. Then, the Gini index in that 

node is defined as follows 

𝐺𝑖𝑛𝑖 = 1 − ∑(𝑝𝑖)2

𝑘

𝑖=1

 (2.58) 

As can be easily understood, a pure node has a Gini index of 0, while the Gini index 

approaches 1 as the variability inside the node increases. Algorithms that use Gini index 

determine the splitting criterion in each node as the partition that most reduces the node 

impurity measured by equation (2.58). We refer the reader to [48] for a detailed 

description of impurity measures and decision trees training. 

In our application we set at four the maximum depth of the tree, in order to avoid 

overfitting, and used the Gini index as impurity measure. The decision tree induced on 

the training set is shown in Fig. 2.10.   
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Fig. 2.10 Decision tree induced on training set 

As can be noticed, the marginal cost ratio is the most relevant attribute in the 

considered classification, as it realizes a clear partition: while units with marginal cost 

ratios greater than 0.933 are usually offline, the initial status for thermal plants with 

marginal cost ratios lower than or equal to 0.849 is ON. Instead, for marginal cost ratios 

in the range (0.849 ; 0.933] the initial status is more uncertain and it depends also on 

the other attributes values. Specifically, while thermal units with high start-up costs are 

usually offline, thermal plants with lower start-up costs are more often committed at the 

beginning of the day, especially if they have enough flexibility. 

Given the tree induced on training data, instances in the test set are classified simply 

by navigating them from the root of the tree down to a leaf, according to the outcome of 

the tests along the path. 

2.5.4 Support Vector Machines 

Support Vector Machines (SVMs) are a set of machine learning methods introduced in 

the late 1960s by Vapnik [49] to address classification and regression problems. 

Specifically, let us consider a classification problem. Let (𝑥𝑖, 𝑦𝑖), 1 ≤ 𝑖 ≤ 𝑁, be a training 

set with input data 𝑥𝑖 ∈ ℝ𝑛 and corresponding binary labels 𝑦𝑖 ∈ {−1; 1} and let 𝜑(⋅) ∶

ℝ𝑛 → ℝ𝑚, 𝑚 > 𝑛 be a nonlinear function that maps empirical data into a higher 

dimensional space, the so-called feature space. The aim of the SVM classifier formulation 

is to determine a hyperplane in the feature space 𝑤𝑇𝜑(𝑥𝑖) + 𝑏 = 0 dividing the training 

set so that 
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𝑦𝑖[𝑤𝑇𝜑(𝑥𝑖) + 𝑏] ≥ 1       𝑖 = 1, … , 𝑁 (2.59) 

To construct an optimal hyperplane, the following quadratic problem is solved 

min
𝜔,𝑏,𝜉

 1

2
‖𝑤‖2 + 𝐶 ∑ 𝜉𝑖

𝑁

𝑖=1

  

subject to 𝑦𝑖[𝑤𝑇𝜑(𝑥𝑖) + 𝑏] ≥ 1 − 𝜉𝑖        𝑖 = 1, … , 𝑁 (2.60) 

where 𝜉𝑖 are nonnegative variables that allow misclassifications in the training set. 

Specifically, the minimization of ‖𝑤‖2 in the objective function of problem (2.60) 

corresponds to the maximization of the margin of separation between classes. The 

positive constant 𝐶 creates a trade-off between the classification error in the training set 

and the separation of the rest samples with maximum margin. 

A way to solve (2.60) is via its dual formulation, which is the following quadratic 

programming problem: 

max
       𝛼

 ∑ 𝛼𝑖

𝑁

𝑖=1

 −
1

2
∑ ∑ 𝑦𝑖𝑦𝑗

𝑁

𝑗=1

𝑁

𝑖=1

𝐾(𝑥𝑖, 𝑥𝑗)𝛼𝑖𝛼𝑗  

subject to ∑ 𝛼𝑖𝑦𝑖

𝑁

𝑖=1

= 0  

 0 ≤ 𝛼𝑖 ≤ 𝐶        𝑖 = 1, … , 𝑁 (2.61) 

where 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝜑(𝑥𝑖)𝑇𝜑(𝑥𝑗) is a Kernel and Lagrange multipliers 𝛼𝑖 are nonnegative 

real variables. 

Finally, the non-linear SVM classifier becomes 

𝑦(𝑥) = sign [∑ 𝛼𝑖𝑦𝑖

𝑁

𝑖=1

𝐾(𝑥, 𝑥𝑖) + 𝑏] (2.62) 

with 𝑏 being a real constant that follows from the KKT conditions. The nonzero Lagrange 

multipliers 𝛼𝑖 are called support values. The corresponding data points are called support 

vectors and are located close to the decision boundary.  

Several choices for the kernel 𝐾(⋅,⋅) are possible [50]. In our application, we use a 

radial basis function (RBF) kernel, also known as Gaussian kernel: 
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𝐾(𝑥𝑖, 𝑥𝑗) = 𝑒−𝛾‖𝑥𝑖−𝑥𝑗‖
2

 (2.63) 

Parameter 𝛾 in equation (2.63) as well as constant 𝐶 in problem (2.60) are considered 

in the current analysis as tuning parameters: their values are determined by testing 

different options. After the tuning activity, parameter 𝛾 is set to 0.1, while constant 𝐶 is 

set to 100 and the corresponding model trained on training data is used to predict the 

initial status of thermal plants in the test set according to equation (2.62). 

2.5.5 Comparison of classification techniques 

As previously explained, all the models trained on input data are then used to classify 

new instances in the test set. Specifically, in order to obtain more reliable information, 

we repeat 30 times the dataset division into the training and the test set. In this way, 

confidence intervals for the models performances can be computed. Table 2.5 reports for 

every technique the confidence interval for the classification accuracy, i.e., the 

percentage of instances in the test set correctly classified.  

As can be noticed, decision trees are the most accurate method, with an average 

accuracy of 94.4%. Even the SVM classifier provide excellent results, having an average 

accuracy greater than 90% but with more variability than decision trees. The confidence 

interval width is maximum for artificial neural networks, which correctly classify on 

average less than 90% of observations in the test set. Finally, logistic regression model 

presents the lowest accuracy. 

In addition to the highest accuracy, another advantage of decision trees, especially if 

compared to SVMs and neural networks, is the interpretability, since with this technique 

it is easy to visualize and understand classification rules.  

Table 2.5 Accuracy of the different classifiers 

Technique Classification Accuracy (%)  

Logistic Regression 82.9 ± 2.1 

Artificial Neural Network 88.7 ± 3.9 

Decision Tree 94.4 ± 1.2 

SVM 91.2 ± 3.5 
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Thus, in the current application we select the decision tree as classifier to determine 

the ON/OFF status 𝛾𝑘
𝑐

0
 of thermal power plant 𝑘 at the beginning of representative day 

𝑐 according to a procedure that can be summarized as follows: 

 A dataset containing historical commitment decisions is considered. 

 For each thermal power plant in the dataset, four features are considered: 

marginal cost ratio, start-up cost, minimum up time and minimum down time. 

 A decision tree with maximum depth equal to 4 is induced on the given dataset 

to estimate a classification rule to be used to determine the initial ON status 

according to features values. 

 The decision tree is used to determine the probability 𝜋𝑘
ON of each thermal power 

plant 𝑘 having an initial ON status. 

 Parameters 𝜋𝑘
ON are used to set the probability of extracting 1 in the random 

selection between 1 (i.e., ON) and 0 (i.e., OFF). For each thermal power plant, 

this random selection is repeated for all representative days, in order to assign to 

each representative day 𝑐 ∈ 𝒞 a specific initial status 𝛾𝑘
𝑐

0
. 

2.5.6 Evaluating the robustness of the classifier 

The results described in the previous section show the accuracy of decision trees in 

correctly identifying the initial statuses of the thermal power plants in the test set. 

However, in the previous tests, instances in the training and in the test set were the same. 

The availability of historical data for the induction of the decision trees could be a very 

heavy drawback of this approach. For instance, when assessing future scenarios, new 

thermal power plants for which no observations are available are typically included in 

the analysis. Thus, more tests are needed to evaluate the robustness of decision trees, by 

analysing the ability of these classifiers to correctly identify the initial statuses of thermal 

power plants in scenarios that differ from the one used for the decision tree induction.  

To this end, the decision tree estimated on the Italian historical data (Base scenario) 

has been applied to classify instances in two future scenarios for the Italian power system 

elaborated by CESI S.p.A.: 

 Gas-before-Coal (GbC): in this scenario the coal price is expected to increase 

more than the gas price, leading to a switch in the merit order of thermal power 

plants. 
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 Coal-before-Gas (CbG): in this scenario the gas price is expected to slightly 

increase, while the coal price decreases. 

Fig. 2.11 shows the average marginal production costs for three thermal technologies, 

namely coal, Combined Cycle Gas Turbine (CCGT) and Gas Turbine (GT), in scenarios 

Base, GbC and CbG. As can be noticed, the average marginal production cost for coal 

power plants changes from 59 €/MWh in the Base scenario, to 98 €/MWh in the GbC 

scenario, to 56 €/MWh in the CbG scenario. CCGT plants are characterized by a marginal 

cost equal to 65 €/MWh in the Base scenario, to 92 €/MWh in the GbC scenario and to 

71 €/MWh in the CbG scenario. Finally, the average production cost for GT plants 

changes from 100 €/MWh in the Base scenario, to 136 €/MWh in the GbC scenario, to 

105 €/MWh in the CbG scenario.   

The initial statuses provided for the GbC and CbG scenarios by the decision tree 

estimated on the Base scenario have been compared with the initial statuses of thermal 

power plants obtained by solving the thermal unit commitment model on the two new 

scenarios. The results of this comparison are reported in Table 2.6. As can be observed, 

the proposed classifier shows a great robustness, as it estimates with high accuracy the 

initial statuses in scenarios which are significantly different from the dataset used for the 

decision tree induction. Indeed, classification accuracies (i.e., the percentage of instances 

correctly identified) in the new scenarios are roughly equal to the classification accuracy 

in the Base scenario, although production costs and merit order between thermal power 

plants are different. 

 

Fig. 2.11 Average marginal production cost for technology in different scenarios 

  

0

20

40

60

80

100

120

140

Base GbC CbG

M
ar

gi
n

al
 C

o
st

 [
€

/M
W

h
]

COAL CCGT GT



 

53  Chapter 2 – Evaluating short-term operations 

 

 
 

Table 2.6 Classification accuracy of the decision tree in different scenarios  

Scenario Classification Accuracy (%)  

Base 94.4 

Gas-before-Coal 93.9 

Coal-before-Gas 92.3 

The robustness of the classifier is a very crucial result for generation and transmission 

expansion planning problem. Indeed, this problem is characterized by planning horizon 

of several decades, therefore operational costs for thermal power plants at the end of the 

planning horizon may dramatically differ from the costs at the beginning. However, as 

discussed in this paragraph, the application of the proposed procedure allows obtaining 

reliable results even when changes in the thermal merit order occur. 

2.6 Evaluating short-term operations through representative days 

In this section, we present the short-term operational model based on the procedure 

introduced in the previous sections. In particular, such a model evaluates power system 

operations through representative days while capturing the seasonality of the 

hydroelectric dispatch and providing an accurate estimate of the start-up decisions that 

occur in the first hours of representative days. 

2.6.1 Notation 

For the sake of clarity, in this paragraph we provide the full notation needed to formulate 

the short-term operational problem. 

 

Sets 

𝒵 Set of zones, indexed by 𝑧 

𝒦 Set of thermal power plants, indexed by 𝑘 

𝛺𝑧
𝑘 ⊂ 𝒦 Set of thermal power plants located in zone 𝑧 

ℋ Set of hydropower plants, indexed by ℎ 

𝛺𝑧
ℎ Set of hydropower plants located in zone 𝑧 

𝒟 Set of days in the planning horizon, indexed by 𝑑 and 𝑑′ 

𝒟𝑀 ⊂ 𝒟 Set of days in the planning horizon in which the level of the long-term 

storage is checked 
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𝒞 Set of representative days, indexed by 𝑐 

Map𝑑,𝑐 Cluster index, i.e., injective map of each day 𝑑 to a representative day 𝑐 

𝒯 Set of hours of representative days, from 1 to 24, indexed by 𝑡 and 𝜏 

ℒ Set of transmission lines, indexed by 𝑙 

𝑟𝑧(𝑙) Receiving-end zone of transmission line 𝑙 

𝑠𝑧(𝑙) Sending-end zone of transmission line 𝑙 

 

Parameters 

𝑤𝑔𝑐 [−] Weight of representative day 𝑐 

𝑐𝐸𝑁𝑃 [€/MWh] Penalty for energy not provided 

𝑐𝑂𝐺 [€/MWh] Penalty for over-generation 

𝐶𝑀𝑘  [€/MWh] Marginal production cost of thermal power plant 𝑘 

𝑃𝑘 [MW] Minimum power output of thermal power plant 𝑘 

𝑃𝑘  [MW] Maximum power produced by thermal plant 𝑘 

𝑆𝑈𝐶𝑘  [€] Start-up cost of thermal power plant 𝑘 

𝛾𝑘
𝑐

0
 [−] Initial ON/OFF status of thermal power plant 𝑘 in 

representative day 𝑐 

𝑀𝑈𝑇𝑘  [h] Minimum up time of thermal power plant 𝑘 

𝑀𝐷𝑇𝑘  [h] Minimum down time of thermal power plant 𝑘 

𝐶𝑣𝑎𝑟ℎ [€/MWh] Operating cost of hydropower plant ℎ 

�̅�ℎ
IN [MW] Upper bound on hydropower plant ℎ pumping power 

�̅�ℎ
OUT [MW] Upper bound on hydropower plant ℎ power output 

𝑠�̅�ℎ [MWh] Upper bound on energy spillage from hydropower plant ℎ  

𝑄ℎ,𝑐 [MWh] Daily energy balance for hydropower plant ℎ in 

representative day 𝑐 

𝐸𝑃𝑅ℎ [h] Maximum energy to power ratio (in hours) for hydropower 

plant ℎ 

𝐹ℎ,𝑡
𝑐  [MWh] Hourly energy inflows for hydropower plant ℎ at time 𝑡 of 

representative day 𝑐 

𝜆ℎ
IN [−] Loss coefficient for hydro plant ℎ pumping (0 ≤ 𝜆ℎ

IN ≤ 1) 

𝜆ℎ
OUT [−] Loss coefficient for hydro plant ℎ power generation 

(𝜆ℎ
OUT ≥ 1) 

𝐸ℎ0
 [MWh] Energy content of hydropower plant ℎ at the beginning of 

planning horizon 
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𝑀 [−] Size of the temporal window in long-term storage 

constraints, set to 7 days 

𝐹𝑙 [MW] Minimum capacity of transmission line 𝑙 

𝐹𝑙  [MW] Maximum capacity of transmission line 𝑙 

𝑁𝐿𝑧,𝑡
𝑐  [MW] Net load in zone 𝑧 in hour 𝑡 of representative day 𝑐  

𝑅𝑧,𝑡
𝑐  [MW] Reserve requirement for zone 𝑧 in hour 𝑡 of representative 

day 𝑐 

 

Variables 

𝛾𝑘,𝑡
𝑐  [−] Commitment status of unit 𝑘 at time 𝑡 of representative day 𝑐, 

which is equal to 1 if the unit is online and 0 otherwise 

𝛼𝑘,𝑡
𝑐  [−] Start-up status of unit 𝑘 at time 𝑡 of representative day 𝑐, which 

is equal to 1 if the unit is started-up and 0 otherwise 

𝛽𝑘,𝑡
𝑐  [−] Shut-down status of unit 𝑘 at time 𝑡 of representative day 𝑐, 

which is equal to 1 if the unit is shut-down and 0 otherwise 

𝑝𝑘,𝑡
𝑐  [MW] Power production of thermal power plant 𝑘 at time 𝑡 of 

representative day 𝑐 above its minimum output 𝑃𝑘  

𝐸ℎ,𝑡
IN,𝑐 [MW] Pumping power of hydro reservoir ℎ in hour 𝑡 of representative 

day 𝑐 

𝐸ℎ,𝑡
OUT,𝑐 [MW] Power output of hydro reservoir ℎ in hour 𝑡 of representative 

day 𝑐 

𝑠𝑙ℎ,𝑡
𝑐  [MWh] Energy spillage from hydro reservoir ℎ in hour 𝑡 of 

representative day 𝑐 in scenario 𝑤 

�̂�ℎ
LT,𝑑 [MWh] Energy level of hydro reservoir ℎ at the end of day 𝑑 

𝑥𝑙,𝑡
𝑐  [MW] Power flow on transmission line 𝑙 in hour 𝑡 of representative 

day 𝑐 

𝐸𝑁𝑃𝑧,𝑡
𝑐  [MWh] Energy not provided in zone 𝑧 in hour 𝑡 of representative day 𝑐 

𝑂𝐺𝑧,𝑡
𝑐  [MWh] Over-generation in zone 𝑧 in hour 𝑡 of representative day 𝑐 

 

2.6.2 Mathematical formulation 

In this section we introduce two formulations of the hydrothermal unit commitment 

problem with representative days, which differ for the approach used to capture 

seasonality of long-term storage. The first formulation, based on the preliminary 

hydroelectric analysis, is given by the following MILP model 
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min   𝑧 = ∑ 𝑤𝑔𝑐 ∑  

24

𝑡=1𝑐∈𝒞

 ( ∑ 𝐶𝑀𝑘

𝑘∈𝒦

(𝑃𝑘  𝛾𝑘,𝑡
𝑐 + 𝑝𝑘,𝑡

𝑐 ) + ∑ 𝑆𝑈𝐶𝑘𝛼𝑘,𝑡
𝑐

𝑘∈𝒦

  

   + ∑ 𝐶𝑣𝑎𝑟ℎ 𝐸ℎ,𝑡
OUT,𝑐

ℎ∈ℋ

  

   + 𝑐𝐸𝑁𝑃 ∑ 𝐸𝑁𝑃𝑧,𝑡
𝑐

𝑧∈𝑍

+ 𝑐𝑂𝐺 ∑ 𝑂𝐺𝑧,𝑡
𝑐

𝑧∈𝑍

) (2.64) 

subject to 

𝑝𝑘,𝑡
𝑐 ≤ 𝛾𝑘,𝑡

𝑐 (𝑃𝑘 − 𝑃𝑘) 𝑘 ∈ 𝒦, 𝑐 ∈ 𝒞, 1 ≤ 𝑡 ≤ 24 (2.65) 

𝛾𝑘,𝑡
𝑐 − 𝛾𝑘

𝑐
0

= 𝛼𝑘,𝑡
𝑐 − 𝛽𝑘,𝑡

𝑐  𝑘 ∈ 𝒦, 𝑐 ∈ 𝒞, 𝑡 = 1 (2.66) 

𝛾𝑘,𝑡
𝑐 − 𝛾𝑘,𝑡−1

𝑐 = 𝛼𝑘,𝑡
𝑐 − 𝛽𝑘,𝑡

𝑐  𝑘 ∈ 𝒦, 𝑐 ∈ 𝒞, 2 ≤ 𝑡 ≤ 24 (2.67) 

∑ 𝛼𝑘,𝜏
𝑐 ≤

𝑡

 𝜏=𝑡−𝑀𝑈𝑇𝑘 +1

𝛾𝑘,𝑡
𝑐  𝑘 ∈ 𝒦, 𝑐 ∈ 𝒞, 𝑀𝑈𝑇𝑘 ≤ 𝑡 ≤ 24 (2.68) 

∑ 𝛽𝑘,𝜏
𝑐 ≤ 1 −

𝑡

 𝜏=𝑡−𝑀𝐷𝑇𝑘 +1

𝛾𝑘,𝑡
𝑐  𝑘 ∈ 𝒦, 𝑐 ∈ 𝒞, 𝑀𝐷𝑇𝑘 ≤ 𝑡 ≤ 24 (2.69) 

𝐸ℎ,𝑡
IN,𝑐 ≤ �̅�ℎ

IN ℎ ∈ ℋ, 𝑐 ∈ 𝒞, 1 ≤ 𝑡 ≤ 24 (2.70) 

𝐸ℎ,𝑡
OUT,𝑐 ≤ �̅�ℎ

OUT ℎ ∈ ℋ, 𝑐 ∈ 𝒞, 1 ≤ 𝑡 ≤ 24 (2.71) 

∑(𝜆ℎ
OUT𝐸ℎ,𝑡

OUT,𝑐 − 𝜆ℎ
IN𝐸ℎ,𝑡

IN,𝑐)

24

 𝑡=1

= 𝑄ℎ,𝑐 ℎ ∈ ℋ, 𝑐 ∈ 𝒞 (2.72) 

𝐹𝑙 ≤ 𝑥𝑙,𝑡
𝑐 ≤ 𝐹𝑙  𝑙 ∈ ℒ, 𝑐 ∈ 𝒞, 1 ≤ 𝑡 ≤ 24 (2.73) 

∑ (𝑃𝑘  𝛾𝑘,𝑡
𝑐 + 𝑝𝑘,𝑡

𝑐 )

𝑘𝜖𝛺𝑧
𝑘

+ ∑ 𝑥𝑙,𝑡
𝑐 + ∑ 𝐸ℎ,𝑡

OUT,𝑐

ℎ𝜖𝛺𝑧
ℎ

+ 𝐸𝑁𝑃𝑧,𝑡
𝑐

𝑙|𝑟𝑧(𝑙)=𝑧

=  

= 𝑁𝐿𝑧,𝑡
𝑐 + ∑ 𝑥𝑙,𝑡

𝑐

𝑙|𝑠𝑧(𝑙)=𝑧

+ ∑ 𝐸ℎ,𝑡
IN,𝑐

ℎ𝜖𝛺𝑧
ℎ

+ 𝑂𝐺𝑧,𝑡
𝑐   

 
𝑧 ∈ 𝒵, 𝑐 ∈ 𝒞, 1 ≤ 𝑡 ≤ 24 (2.74) 

∑ [(𝑃𝑘 − 𝑃𝑘) 𝛾𝑘,𝑡
𝑐 − 𝑝𝑘,𝑡

𝑐 ] ≥ 𝑅𝑧,𝑡
𝑐

𝑘𝜖𝛺𝑧

          𝑧 ∈ 𝒵, 𝑐 ∈ 𝒞, 1 ≤ 𝑡 ≤ 24 (2.75) 
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𝛾𝑘,𝑡
𝑐 , 𝛼𝑘,𝑡

𝑐 , 𝛽𝑘,𝑡
𝑐 ∈  {0,1} 𝑘 ∈ 𝒦, 𝑐 ∈ 𝒞, 1 ≤ 𝑡 ≤ 24 (2.76) 

𝑝𝑘,𝑡
𝑐 ≥ 0 𝑘 ∈ 𝒦, 𝑐 ∈ 𝒞, 1 ≤ 𝑡 ≤ 24 (2.77) 

𝐸ℎ,𝑡
IN,𝑐 , 𝐸ℎ,𝑡

OUT,𝑐 ≥ 0 ℎ ∈ ℋ, 𝑐 ∈ 𝒞, 1 ≤ 𝑡 ≤ 24 (2.78) 

𝑥𝑙,𝑡
𝑐   free variable 𝑙 ∈ ℒ, 𝑐 ∈ 𝒞, 1 ≤ 𝑡 ≤ 24 (2.79) 

𝐸𝑁𝑃𝑧,𝑡
𝑐 , 𝑂𝐺𝑧,𝑡

𝑐 ≥ 0 𝑧 ∈ 𝒵, 𝑐 ∈ 𝒞, 1 ≤ 𝑡 ≤ 24. (2.80) 

The objective function (2.64) computes the total costs by multiplying the daily 

operational costs in representative days by their weights. For each representative day 

operational costs include thermal power production costs, start-up costs, hydropower 

operational costs, penalties for energy not provided and penalties for over-generation. 

Constraints (2.65)−(2.69) control the operations of thermal power plants as 

explained in Section 2.2.3. Specifically, parameters 𝛾𝑘
𝑐

0
 in equations (2.66) are initial 

statuses determined with the procedure summarized in Section 2.5.5. It is worth 

mentioning that representative days are kept separate in the optimization model: indeed, 

while equations (2.67) apply to all hours of representative days except the first one, 

minimum up/down time constraints (2.68)/(2.69) are enforced on the hours in the range 

from 𝑀𝑈𝑇𝑘/𝑀𝐷𝑇𝑘to the final (the 24th) of the day. 

Equations (2.70)−(2.72) control the operations of the hydropower plants by 

imposing upper bounds to the pumping power and the hydroelectric production and by 

setting the daily hydroelectric energy balance to the value determined by the preliminary 

hydroelectric model, as explained in Section 2.4.1. The values of the daily energy balances 

𝑄ℎ,𝑐 associated to representative days 𝑐 ∈ 𝒞, which appear in (2.72), are determined by 

solving the preliminary hydroelectric model. 

Constraints (2.73) control power flows on transmission lines. Equations (2.74) 

ensure net load supply. Constraints (2.75) are the spinning reserve constraints. Finally, 

equations (2.76)−(2.80) define the optimization variables. 

When modeling long-term storage by the alternative approach based on inter-day 

balance equations, constraints (2.72) are replaced by the following (see Section 2.4.2 

above): 
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�̂�ℎ
LT,𝑑 = 𝐸ℎ0

+ ∑ ∑ ∑(𝐹ℎ,𝑡
𝑐 + 𝜆ℎ

IN 𝐸ℎ,𝑡
𝑐,IN − 𝜆ℎ

OUT 𝐸ℎ,𝑡
𝑐,OUT − 𝑠𝑙ℎ,𝑡

𝑐 )

24

𝑡=1 𝑐∈Map𝑑′,𝑐

𝑑

𝑑′=𝑑−𝑀+1

 

 ℎ ∈ ℋ, 𝑑 = 𝑀 (2.81) 

�̂�ℎ
LT,𝑑 = �̂�ℎ

LT,𝑑−𝑀 + ∑ ∑ ∑(𝐹ℎ,𝑡
𝑐 + 𝜆ℎ

IN 𝐸ℎ,𝑡
𝑐,IN − 𝜆ℎ

OUT 𝐸ℎ,𝑡
𝑐,OUT − 𝑠𝑙ℎ,𝑡

𝑐 )

24

𝑡=1 𝑐∈Map𝑑′,𝑐

𝑑

𝑑′=𝑑−𝑀+1

 

 ℎ ∈ ℋ, 𝑑 ∈ 𝒟𝑀, 𝑑 > 𝑀 (2.82) 

0 ≤ �̂�ℎ
LT,𝑑 ≤ 𝐸𝑃𝑅ℎ�̅�ℎ

IN ℎ ∈ ℋ, 𝑑 ∈ 𝒟𝑀 (2.83) 

0 ≤ 𝑠𝑙ℎ,𝑡
𝑐 ≤ 𝑠�̅�ℎ ℎ ∈ ℋ, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞 (2.84) 

Thus, with inter-day balance equations approach the power system operation model 

is given by (2.64)−(2.71) and (2.73)−(2.84). 

2.7 Case studies and results 

To assess the proposed procedure performance in evaluating short-term operations, two 

tests have been conducted on scenarios elaborated by CESI S.p.A. 

2.7.1 Tests on a reduced Italian scenario 

The first scenario is a simplified representation of the power system in Southern Italy in 

year 2017, which consists of three market zones (Central-South, South and Sicily) 

connected in a tree network. As the test focus was on the system thermal component, a 

power system consisting of 48 thermal power plants and no hydropower plants has been 

considered in the test. 

An hourly unit commitment problem has been applied to this scenario, so as to obtain 

a benchmark to evaluate the accuracy of the method proposed in this chapter. To identify 

representative days, we applied the procedure described in Section 2.3.2 fixing a 

threshold of 1%. Fig. 2.12 shows the system average mean absolute percentage error in 

load duration curves approximation for different numbers of representative days. As can 

be noticed, the higher the number of representative days, the better the approximation 

of the original curve. Moreover, by using seven representative days the input threshold 

is satisfied, with the average mean absolute percentage error being 0.97%. 



 

59  Chapter 2 – Evaluating short-term operations 

 

 
 

 

Fig. 2.12 System average mean absolute percentage error in load duration curves approximation for 

different numbers of representative days 

Fig. 2.13 illustrates the seven representative days in the Central-South zone. The 

dashed and dotted lines represent extreme days with the highest and the lowest demand 

values, respectively; the solid lines show the daily profiles identified by the k-medoids 

algorithm.  

Since no hydropower plants are included in the scenario for Southern Italy, we did 

not have to address the problem of capturing the seasonality of long-term storage. In 

order to determine the initial statuses of thermal plants in each representative day, we 

considered the thermal power plants commitment in years 2015 and 2016. We then 

estimated on this data the decision tree already introduced in Fig. 2.10, which assigns to 

each thermal power plant a specific probability to be online in the initial hour of the 

representative days according to the attributes values.  

 

 

Fig. 2.13 Daily load, solar and wind profiles in the Central-South in the seven representative days 
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Table 2.7 Comparison between the hourly and the clustered unit commitment model for the Italian scenario 

Model Days 
Total Costs 

[𝟏𝟎𝟗€] 

Production 
Costs  

[𝟏𝟎𝟗€] 

Start-up 
Costs 

[𝟏𝟎𝟗€] 

Total Error 
[%] 

Solution time 
[seconds] 

Hourly 365 4.751 4.735 0.016 − 3334 

Clustered 7 4.752 4.733 0.019 0.01% 9 

As described in Section 2.5.3, by performing for each thermal power plant a random 

extraction between ON and OFF with probabilities set by the decision tree, binary 

parameters 𝛾𝑘
𝑐

0
 describing the initial ON or OFF status of thermal power plant 𝑘 in 

representative day 𝑐 have been determined. 

Table 2.7 compares costs and computational times for the hourly model and the 

clustered model. In the tests, the penalty for energy not provided was set to 10000 

€/MWh, while the penalty for over-generation was set to 200 €/MWh. Results for the 

Italian scenario have been obtained with an ASUS laptop with a 3 GHz Intel Core i7-

5500U Processor and 4 GB of RAM using solver Gurobi under GAMS 24.7.4. As can be 

noticed, the use of representative days provides a huge computational saving, since the 

operational problem can be solved in only 9 seconds, while the solution time for the 

complete hourly formulation is 3334 seconds. Moreover, the analysis of the costs values 

shows how the clustered model closely replicate the output provided by the complete 

hourly model, being the total percentage error equal to only 0.01%. 

The huge reduction of computational times, which are reduced of a factor 370, and 

the very small deviation from the optimal results observed on the case study demonstrate 

the goodness of the proposed procedure, which allows obtaining very accurate estimates 

of power systems operational decisions while keeping the problem computationally 

tractable. However, in the considered scenario only the thermal component has been 

tested: an additional analysis is therefore needed to test the accuracy of the proposed 

method for hydrothermal power systems. Such a test is described in the following 

paragraph. 

2.7.2 Tests on the European scenario 

As a case study to test the accuracy of the proposed method for power systems including 

also the hydroelectric component, we considered a representation of the European power 

system in year 2017. Specifically, such a scenario consists in 55 market zones connected 

by a capacitated transmission network, 1962 thermal power plants and 105 equivalent 

hydropower plants, divided into 37 run-of-the-river (ROR) hydroelectric plants and 68 
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hydroelectric plants with reservoir. Being the ROR hydroelectric plants non dispatchable 

power sources, the corresponding production was subtracted from the net load to obtain 

the zonal demands for electricity that have to be satisfied with either dispatchable power 

sources (i.e., thermal power plants and hydroelectric plants with reservoir) or energy 

import from neighbouring zones. 

Given the high dimensionality of the scenario, solving the yearly hydrothermal unit 

commitment problem with an hourly time resolution is computationally infeasible. Thus, 

we obtained an approximation of the optimal hourly solution by applying the following 

procedure. We considered the planning horizon divided into twelve months. For each 

reservoir we considered the energy content at the end of each month in the previous year 

(i.e., 2016). Finally, we solved for each month of the planning horizon the hydrothermal 

unit commitment problem with hourly resolution by fixing the initial and final energy 

contents of reservoirs in each month to the values observed in the previous year.  

Such a model has been compared with the clustered model (2.64)−(2.80) obtained 

as follows. First, we identified representative days by applying the procedure described 

in Section 2.3.2 fixing a threshold of 5% given the higher number of market zones in the 

scenario, obtaining 10 representative days. 

As regards to the hydrothermal component, to include the long-term dispatching 

decisions we applied the approach described in Section 2.4.1. To estimate the linear 

relationship between market prices and net load we considered a dataset including 

historical data for years 2015 and 2016. Specifically, we chose to run a preliminary model 

for the hydroelectric dispatch rather than connecting representative days for the 

following reasons: 

 In such an application, no other constraints link representative days. Thus, 

keeping representative days temporally disconnected allows obtaining a huge 

computational saving, since the yearly operational problem can be solved by 

solving in an independent and parallel fashion the operational problems defined 

for each representative day. 

 The scenario analysed is very similar to scenarios used in the regression analysis, 

thus information provided by analysing years 2015 and 2016 can be considered 

reliable to predict the behaviour of the power system in year 2017. 

To better consider the availability of hydroelectric energy in representative days, we 

applied on the hydroelectric preliminary model results the post-processing activity 

described in Section 2.4.1.4 assigning to each hydropower plant in each representative 
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day two different values for the daily hydroelectric energy balance. Thus, the final 

number of representative day considered in the analysis equals 20.  

In order to determine the initial statuses of thermal plants in each representative day, 

we applied the decision tree shown in Fig. 2.10 to assign to each thermal power plant a 

specific probability to be ON in the initial hour of the representative days. Indeed, the 

analysis described in Section 2.5.6 showed the robustness of such a decision tree, which 

provides accurate estimates of initial statuses also for scenarios consistently different 

from the training set on which the decision tree has been estimated.  

Table 2.8 compares costs and computational times for the hourly model and the 

clustered model. In the tests, penalties for energy not provided and over-generation were 

set to 10000 €/MWh and 200 €/MWh, respectively, while the hydropower production 

was supposed to be costless.  

Table 2.8 Comparison between the hourly and the clustered unit commitment model for the European 

scenario 

Model Days 
Total Costs 

[𝟏𝟎𝟗€] 

Production 
Costs  

[𝟏𝟎𝟗€] 

Start-up 
Costs 

[𝟏𝟎𝟗€] 

Total Error 
[%] 

Solution time 
[minutes] 

Hourly 365 47.318 47.280 0.038 − 2883.12 

Clustered 20 47.443 47.399 0.044 0.27% 5.40 

We solved the two models on a computer with two 2.10 GHz Intel® Xeon® Platinum 

8160 CPU Processors and 128 GB of RAM, using solver Gurobi under GAMS 24.7.4. As 

can be noticed, also for the European scenario the use of representative days provides a 

huge computational saving, while only marginally distorting the optimal results. Indeed, 

the operational problem with representative days is solved in 5.40 minutes (i.e., 5 

minutes and 24 seconds), while the solution time for the complete hourly formulation 

takes more than 48 hours. Moreover, the clustered model provides accurate estimates of 

the system costs, being the total percentage error equal to only 0.27%.  

2.8 Chapter conclusions 

In this chapter, the problem of evaluating power system short-term operations has been 

discussed. First, different formulations for the thermal unit commitment problem have 

been introduced and compared in terms of computational times. Our numerical 

experiments showed that the formulation introduced in [29] is the most efficient in this 
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application due to its tightness, i.e., the small distance between optimal integer and 

relaxed solutions. 

Then, a novel method to select representative days has been presented. Specifically, 

the proposed method is designed to capture correlations among production and load, as 

well as spatial correlations among different system zones.  

The use of representative days to evaluate power system operational conditions on 

medium-term or long-term planning horizons raises the crucial issue regarding how to 

properly model the seasonality of hydroelectric dispatch. Two different approaches have 

been proposed to address this issue. First, we presented a QMIP model that determines 

the optimal daily dispatching of water resources over a medium-term or long-term 

planning horizon according to the zonal net load values and the linear relationship 

between energy price and net load. Then, we introduced some constraints that link 

representative days to create continuity in storage across the entire time horizon by 

means of the cluster index, i.e., the association of each day in the planning horizon to a 

representative day. 

The use of representative days raises also the crucial issue regarding how to properly 

apply thermal unit commitment constraints without overestimating start-up costs. This 

problem has been addressed by introducing different techniques to assign to each 

thermal power plant an initial ON/OFF status in representative days. Experimental 

results showed that decision trees are the best classifier in the considered application, 

providing accurate estimates of initial statuses also in scenarios very different from the 

dataset used for the tree induction. 

Finally, tests performed on both the Italian and the European scenarios 

demonstrated the goodness of the proposed method, which allows obtaining very 

accurate estimates of the operational costs, while dramatically reducing computational 

times. 

Provided a comprehensive description of the proposed model to evaluate power 

systems short-term operations, the following step is represented by the integration of 

this analysis in the expansion planning framework. This research activity is described in 

the following chapter, which designs an optimization model to plan long-term 

investment decisions in the power sector. The distinct feature of such a model is the very 

detailed representation of the short-term operations, which is needed to accurately 

address all the challenges related to integrating high shares of intermittent renewable 

energy sources. 
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Chapter 3                                                          

Planning investments in the power sector to reach 

decarbonisation targets 

3.1 Research motivation 

The previous chapter introduced the optimization model developed to provide an 

accurate representation of power systems short-term operations, while keeping the 

problem computationally tractable. This chapter deals with the following research 

activity, consisting in the integration of such an analysis in the expansion planning 

framework, by formulating an optimization model to plan long-term investment 

decisions in the power sector to reach decarbonisation targets, which include an 

increasing penetration of renewable power sources and a reduction of CO2 emissions. 

Such a model optimizes strategic decisions including retirement of existing capacity and 

investments in new generation, transmission and storage facilities, as well as operational 

decisions. 

The structure of the chapter is as follows. Section 3.2 describes the assumptions we 

introduced in our analysis and formulates the GTEP problem as a MILP model. Results 

concerning the expansion planning of the Italian power system to reach by 2030 

decarbonisation targets are presented in Section 3.3. Finally, Section 3.4 concludes the 

chapter.  

3.2 Modeling framework 

In this section, we present our approach to GTEP analysis by introducing a MILP model 

specifically designed to reach in the power sector decarbonisation targets set by the 

European Commission. The distinct feature of this model is a high level of both technical 

and temporal detail, which is required to properly evaluate all the challenges related to 

integrating high shares of renewables to reach decarbonisation targets. This section 
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presents the modeling assumptions as well as the notation and the mathematical 

formulation of the optimization model. 

3.2.1 Modeling assumptions 

In this chapter, we introduce an optimization model developed in collaboration with 

CESI S.p.A. to support government authorities in generation and transmission 

expansion planning. Such a model is based on a centralized approach: by assuming the 

perspective of a single central entity, we plan the joint expansion of generation and 

transmission facilities so as to minimize the total system costs. To support regulators in 

searching for optimal policies, our approach to GTEP analysis is focused on the inclusion 

of as many engineering details as possible, while neglecting interactions between the 

different agents involved in the liberalized power sector, as already mentioned in Section 

1.2.2. 

As regards to the electricity system modeling, in our analysis we consider the power 

system consisting of a set 𝒵 of zones, grouped into macro-areas, with the set of macro-

areas denoted by ℳ. The structure of the power system at the beginning of the planning 

horizon is described by set ℒ𝐸 of transmission lines connecting zones, set 𝒦𝐸 of thermal 

power plants, set ℋ𝐸 of hydropower plants, and parameters 𝑠𝑜𝑙𝑧0 and 𝑤𝑖𝑛𝑑𝑧0 

representing the solar power capacity and the wind power capacity, respectively, 

installed in each system zone 𝑧 ∈ 𝒵. The decisions to be taken concern decommissioning 

of existing thermal power plants as well as building of new thermal units, new 

transmission lines, new hydropower plants, new wind and solar power capacity, and new 

batteries capacity, which are supposed to have a negligible installed capacity at the 

beginning of the planning horizon. Capacity decisions are defined for every year of the 

planning horizon, with the set of years denoted by 𝒴.  

Decommissioning of existing thermal power plants are modeled trough a set of binary 

variables representing the decision to decommission a given power plant in a given year 

of the planning horizon. Set of existing thermal power plants is partitioned in two 

different subsets: while set 𝒦𝐸1 includes power plants to be mandatorily 

decommissioned (e.g., coal plants), set 𝒦𝐸2 groups existing thermal power plants that 

may be optionally decommissioned.  

Investments in new thermal power plants are modeled by introducing set 𝒦𝐶 of 

candidate facilities and binary variables representing the decision to build candidate 

power plants in a given year of the planning horizon. Candidate thermal power plants 

may present different investment priorities. Thus, set 𝒦𝐶 is partitioned into subsets 𝒦𝐶1 
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and 𝒦𝐶2 to distinguish between candidate projects to be mandatorily or optionally 

constructed. Moreover, candidate projects include both the construction of new power 

plants and the upgrade of existing units to model, for instance, the possibility to convert 

some existing coal power plants into combined cycle gas turbine units.  

Similarly to thermal generation capacity expansion, also investments in new 

transmission lines and new hydropower plants are modeled by introducing set of discrete 

facilities ℒ𝐶 and ℋ𝐶 and binary variables. Set ℒ𝐶 is partitioned in two subsets according 

to the mandatory or optional investment decisions on candidate transmission lines. 

Instead, all investments in new hydropower plants are modeled as optional decisions. 

This modeling choice is strictly related to the characteristics of the power systems 

analysed in our applications. However, the proposed model could be easily modified to 

include in the analysis also hydropower plants to be mandatorily constructed.    

Moreover, earliest and latest dates are considered for the decommissioning of 

existing thermal power plants and the building of new thermal units, new transmission 

lines and new hydropower plants. 

As opposed to thermal units, hydropower plants and transmission facilities, since 

individual components of renewable generation parks present small sizes, the 

investments in new wind and solar power generation are modeled by introducing 

continuous variables. Moreover, in the analysis we consider that the total solar and wind 

power capacities installed in each zone have to respect bounds set by the Energy Plan for 

every year of the planning horizon. Similarly to RES capacity expansion, also investments 

in batteries capacity are represented by continuous variables. According to the 

characteristics of the power systems analysed in our applications, no installed capacity 

for batteries is considered at the beginning of the planning horizon. However, the model 

proposed could be easily modified to include also for batteries an installed capacity at the 

beginning of the planning horizon, as it is for solar and wind power technology. 

As regards to short-term operation modeling, we consider in every year 𝑦 of the 

planning horizon a small set 𝒞𝑦 of days that could be representative of the operational 

conditions in all days 𝒟𝑦 of year 𝑦. Representative days for the first year of the planning 

horizon are determined by applying the procedure described in Section 2.3.2. 

Representative days for the following years are derived by applying annual growth 

factors to load profiles in the representative days of the first year.  

As explained in the previous chapter, when working with representative days, two 

crucial issues have to be addressed: (i) capturing the seasonality of hydroelectric 

dispatch; and (ii) determining the initial ON/OFF status of thermal power plants in 

representative days. As regards to the long-term hydroelectric dispatch, we decided to 
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integrate into the expansion planning framework the approach described in Section 

2.4.2, which is based on the application of inter-day balance constraints rather than 

executing a preliminary hydroelectric model. Such a choice is due to the following 

reasons: 

 Representative days in the proposed formulation are already interconnected by 

some constraints (e.g., the yearly upper bounds on CO2 emissions), thus keeping 

representative days temporally disconnected in modeling the long-term hydro 

operation does not provide a huge computational saving. 

 In our applications, planning horizon of several decades are applied, thus future 

system conditions, especially at the end of the planning horizon, could be very 

different from those observed in the past. 

Inter-day balance constraints are imposed by controlling every 7 days the energy level 

of the reservoirs and by considering the association of each day 𝑑 to a representative day 

𝑐, which is included in the cluster index Map𝑑,𝑐. Moreover, since all hydropower plants 

considered in the analysis are supposed to have monthly or yearly cycles, to reduce the 

computational burden the operation of hydropower plants is modeled by only 

considering inter-day constraints, while intra-day equations are not imposed. To ensure 

the respect of storage bounds in every hour of the planning horizon, the iterative 

procedure introduced in Section 2.4.2 is applied. Instead, batteries are supposed to have 

cycles lower than 24 hours, which implies the application of only intra-day balance 

constraints, but no inter-day constraints. 

As regards to the determination of initial statuses, we applied the procedure 

summarized in Section 2.5.5, by assigning to each thermal power plant an initial status 

in representative days 𝛾𝑘
𝑐

0
 according to the probability provided by a decision tree 

estimated on historical data. It is worth mentioning that for each thermal power plant, a 

different probability to be ON is computed for every year of the planning horizon. Indeed, 

since fuel costs and emission costs may change throughout the years of the planning 

horizon, the same thermal power plant could present different values for the marginal 

cost ratio in different years and thus different probabilities to be ON at the beginning of 

the day. 

Given the long-term horizon, a transportation approach is introduced to model the 

operation of the transmission network, imposing only transmission limits on power 

flows, without including in the model voltage variables. Although transportation models 

do not provide a perfect representation of load flows, this choice is justified by the 
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computational burden of the expansion planning problem, related to the long-term 

scope, and by the zonal representation adopted to represent power systems.  

Finally, in this first formulation of the investment planning problem, no long-term 

uncertainties are included in the analysis, while the demand for electricity is supposed 

to be inelastic. These two restrictions will be removed in the following chapters. 

3.2.2 Notation 

To formulate the GTEP problem, the following notation is introduced. 

 

Sets 

𝒴 Set of years, indexed by 𝑦 and 𝑖 

𝒵 Set of zones, indexed by 𝑧 

ℳ Set of macro-areas, indexed by 𝑚 

𝒦𝐸 Set of existing thermal power plants 

𝒦𝐶 Set of candidate thermal power plants 

𝒦 Set of thermal power plants (𝒦 = 𝒦𝐸 ∪ 𝒦𝐶), indexed by 𝑘 and 𝑘′ 

𝛺𝑧
𝑘 ⊂ 𝒦 Set of thermal power plants located in zone 𝑧 

𝒦𝐸1 ⊂ 𝒦𝐸 Set of existing thermal power plants to be mandatorily decommissioned 

𝒦𝐸2 ⊂ 𝒦𝐸 Set of existing thermal power plants that may be optionally 

decommissioned 

𝒦𝐶1 ⊂ 𝒦𝐶 Set of candidate thermal power plants to be mandatorily constructed 

𝒦𝐶2 ⊂ 𝒦𝐶 Set of candidate thermal power plants that may be optionally 

constructed 

𝒜𝒦𝑗 ⊂ 𝒦𝐶 𝑗-th group of associate candidate thermal power plants  

𝐽𝒜𝒦 Set of groups of associate candidate thermal power plants 

ℳℰ𝒦𝑗 ⊂ 𝒦𝐶 𝑗-th group of mutually exclusive candidate thermal power plants 

𝐽ℳℰ𝒦 Set of groups of mutually exclusive candidate thermal power plants 

ℒ𝐸 Set of existing transmission lines 

ℒ𝐶 Set of candidate transmission lines 

ℒ Set of transmission lines (ℒ = ℒ𝐸 ∪ ℒ𝐶), indexed by 𝑙 and 𝑙′ 

ℒ𝐶1 ⊂ ℒ𝐶  Set of candidate transmission lines to be mandatorily constructed 

ℒ𝐶2 ⊂ ℒ𝐶  Set of candidate transmission lines that may be optionally constructed 

𝒜ℒ𝑗 ⊂ ℒ𝐶 𝑗-th group of associate candidate transmission lines  

𝐽𝒜ℒ Set of groups of associate candidate transmission lines 
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ℳℰℒ𝑗 ⊂ ℒ𝐶 𝑗-th group of mutually exclusive candidate transmission lines 

𝐽ℳℰℒ Set of groups of mutually exclusive candidate transmission lines 

ℋ𝐸 Set of existing hydropower plants  

ℋ𝐶 Set of candidate hydropower plants 

ℋ Set of hydropower plants (ℋ = ℋ𝐸 ∪ ℋ𝐶), indexed by ℎ 

𝛺𝑧
ℎ ⊂ ℋ Set of hydropower plants located in zone 𝑧 

ℬ Set of batteries, indexed by 𝑏 

𝛺𝑧
𝑏 ⊂ ℬ Set of batteries located in zone 𝑧 

ℱ Set of fuels, indexed by 𝑓 

𝛷𝑧,𝑓 ⊂ 𝛺𝑧
𝑘 Set of thermal power plants located in zone 𝑧 using fuel 𝑓 

𝒞𝑦 Set of representative days of year 𝑦, indexed by 𝑐 

𝒟𝑦 Set of all days of year 𝑦, indexed by 𝑑 and 𝑑′ 

𝒟𝑀
𝑦

⊂ 𝒟𝑦 Set of days of year 𝑦 in which the level of the long-term storage is 

checked 

𝒯 Set of hours, from 1 to 24, indexed by 𝑡 and 𝜏 

𝑚𝑎(𝑧) macro-area that contains zone 𝑧 

𝑈𝑃(𝑘) upgrade project of existing thermal power plant 𝑘 

𝑟𝑧(𝑙) Receiving-end zone of transmission line 𝑙 

𝑠𝑧(𝑙) Sending-end zone of transmission line 𝑙 

𝑓𝑢𝑒𝑙(𝑘) Fuel used in thermal power plant 𝑘 

Map𝑑,𝑐 Cluster index, i.e., injective map of each day 𝑑 to a representative day 𝑐 

 

Parameters 

𝑦0 [−] Reference year to which all investment costs are discounted 

𝑟 [−] Annual discount rate 

𝑐𝐸𝑁𝑃 [€/MWh] Penalty for energy not provided 

𝑐𝑂𝐺 [€/MWh] Penalty for over-generation 

𝑤𝑔𝑐 [−] Weight of representative day 𝑐 

𝐷𝐶𝑘 [€] Decommissioning cost of existing thermal power plant 𝑘 ∈ 𝒦𝐸 

𝐼𝐶𝑘
The [€] Investment cost of candidate thermal power plant 𝑘 ∈ 𝒦𝐶 

𝐹𝐶𝑘 [€] Annual fixed costs of thermal power plant 𝑘 ∈ 𝒦 

𝐶𝑀𝑘,𝑦  [€/MWh] Marginal production cost of thermal power plant 𝑘 in year 𝑦 
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𝜏𝑘 [−] Earliest date for construction/decommission of thermal power 

plant 𝑘 

𝜏𝑘 [−] Latest date for construction/decommission of thermal power 

plant 𝑘 

𝑃𝑘 [MW] Minimum power output of thermal power plant 𝑘 

𝑃𝑘  [MW] Maximum power produced by thermal plant 𝑘 

𝑆𝑈𝐶𝑘  [€] Start-up cost of thermal power plant 𝑘 

𝑀𝑈𝑇𝑘  [h] Minimum up time of thermal power plant 𝑘 

𝑀𝐷𝑇𝑘  [h] Minimum down time of thermal power plant 𝑘 

𝛾𝑘
𝑐

0
 [−] Initial ON/OFF status of thermal power plant 𝑘 in 

representative day 𝑐 

𝐻𝑅𝑘 [Gcal/MWh] Heat rate of thermal power plants of cluster 𝑘 

𝑂𝑀𝑘 [€/MWh] Operative and maintenance cost of thermal power plants of 

cluster 𝑘 

𝐼𝐶𝑧,𝑦
Sol [€/MW] Investment cost of new solar power capacity in zone 𝑧 in year 𝑦 

𝑠𝑜𝑙𝑧,0 [MW] Solar power capacity installed in zone 𝑧 at the beginning of the 

planning horizon 

𝑃𝑉𝑧,𝑦 [MW] Lower bound for solar power capacity in zone 𝑧 in year 𝑦 

𝑃𝑉𝑧,𝑦 [MW] Upper bound for solar power capacity in zone 𝑧 in year 𝑦 

𝐼𝐶𝑧,𝑦
Wind [€/MW] Investment cost of new wind power capacity in zone 𝑧 in year 𝑦 

𝑤𝑖𝑛𝑑𝑧,0 [MW] Wind power capacity installed in zone 𝑧 at the beginning of the 

planning horizon 

𝑊𝑧,𝑦 [MW] Lower bound for wind power capacity in zone 𝑧 in year 𝑦 

𝑊𝑧,𝑦 [MW] Upper bound for wind power capacity in zone 𝑧 in year 𝑦 

𝐷𝑧,𝑡
𝑐  [MW] Load in zone 𝑧 in hour 𝑡 of representative day 𝑐  

𝑅𝑧,𝑡
𝑐  [MW] Reserve requirement for zone 𝑧 in hour 𝑡 of representative day 

𝑐 

𝜇𝑧,𝑡
𝑐  [MWh/MW] Solar power capacity factor for zone 𝑧 in hour 𝑡 of 

representative day 𝑐 

𝜌𝑧,𝑡
𝑐  [MWh/MW] Wind power capacity factor for zone 𝑧 in hour 𝑡 of 

representative day 𝑐 

𝐼𝐶ℎ,𝑦
Hyd

 [€] Investment cost of candidate hydropower plant ℎ ∈ ℋ𝐶 in year 

𝑦 
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𝜏ℎ [−] Earliest date for construction of hydropower plant ℎ 

𝜏ℎ [−] Latest date for construction of hydropower plant ℎ 

𝐶𝑣𝑎𝑟ℎ [€/MWh] Operating cost of hydropower plant ℎ 

�̅�ℎ
IN [MW] Upper bound on hydropower plant ℎ pumping power 

�̅�ℎ
OUT [MW] Upper bound on hydropower plant ℎ power output 

𝑠�̅�ℎ [MWh] Upper bound on energy spillage from hydropower plant ℎ  

𝐹ℎ,𝑡
𝑐  [MWh] Hourly energy inflows for hydropower plant ℎ at time 𝑡 of 

representative day 𝑐 

𝜆ℎ
IN [−] Loss coefficient for hydro plant ℎ pumping (0 ≤ 𝜆ℎ

IN ≤ 1) 

𝜆ℎ
OUT [−] Loss coefficient for hydro plant ℎ power generation (𝜆ℎ

OUT ≥ 1) 

𝐸ℎ0
 [MWh] Energy content of hydropower plant ℎ at the beginning of 

planning horizon 

𝐸𝑃𝑅ℎ [h] Maximum energy to power ratio (in hours) for hydropower 

plant ℎ 

𝑀 [−] Size of the temporal window in long-term storage constraints, 

set to 7 days 

𝐼𝐶𝑏,𝑦
Batt [€/MW] Investment cost for battery 𝑏 in year 𝑦 

𝐶𝑣𝑎𝑟𝑏 [€/MWh] Operating cost of battery 𝑏 

𝐶𝐴𝑃𝑏

Batt
 [MW] Upper bound on battery 𝑏 installed power 

𝐸𝑏
𝑐

0
 [MWh] Initial energy content of battery 𝑏 in representative day 𝑐 

𝜆𝑏 [−] Loss coefficient for energy stored by battery 𝑏 (0 ≤ 𝜆𝑏 ≤ 1) 

𝜆𝑏
IN [−] Loss coefficient for battery 𝑏 charge (0 ≤ 𝜆𝑏

IN ≤ 1) 

𝜆𝑏
OUT [−] Loss coefficient for battery 𝑏 discharge (𝜆𝑏

OUT ≥ 1) 

�̅�𝑏
IN [MW] Upper bound on battery 𝑏 charge 

�̅�𝑏
OUT [MW] Upper bound on battery 𝑏 discharge 

𝐸𝑃𝑅𝑏 [h] Maximum energy to power ratio (in hours) for battery 𝑏 

𝐼𝐶𝑙
Line [€] Investment cost of candidate transmission line 𝑙 ⊂ ℒ𝐶 

𝜏𝑙 [−] Earliest date for construction of candidate transmission line 𝑙 

𝜏𝑙 [−] Latest date for construction of candidate transmission line 𝑙 

𝐹𝑙 [MW] Minimum capacity of transmission line 𝑙 

𝐹𝑙  [MW] Maximum capacity of transmission line 𝑙 
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𝐸𝐶𝑛𝑡𝑓 [Gcal/M. U1] Energy content of fuel 𝑓 

𝑐𝑜2𝑓 [ton/Gcal] CO2 emission factor of fuel 𝑓 

𝐹𝐴̅̅ ̅̅
𝑓,𝑚,𝑦 [M. U] Upper bound on availability of fuel 𝑓 in macro-area 𝑚 in year 

𝑦 

𝑃𝑟𝑦
𝑓

 [€/Gcal] Price of fuel 𝑓 in year 𝑦 

𝐶𝑂2
̅̅ ̅̅ ̅

𝑚,𝑦 [ton] CO2 emission limit for macro-area 𝑚 in year 𝑦 

𝜑𝑚,𝑦  [−] Lower bound for renewables penetration in macro-area 𝑚 in 

year 𝑦 

𝑃𝑟𝑦
CO2 [€/ton] Emission price in year 𝑦 

 

Variables 

𝛿𝑘,𝑦
−  [−] 1: thermal power plant 𝑘 ∈ 𝒦𝐸 is decommissioned in year 𝑦; 0: 

otherwise  

𝛿𝑘,𝑦
+  [−] 1: thermal power plant 𝑘 ∈ 𝒦𝐶 is built in year 𝑦; 0: otherwise 

𝛿ℎ,𝑦 [−] 1: hydro power plant ℎ ∈ ℋ𝐶 is built in year 𝑦; 0: otherwise  

𝛿𝑙,𝑦 [−] 1: transmission line 𝑙 ∈ ℒ𝐶 is built in year 𝑦; 0: otherwise  

휃𝑘,𝑦
−  [−] 1: thermal power plant 𝑘 ∈ 𝒦𝐸 is decommissioned within year 𝑦; 0: 

otherwise  

휃𝑘,𝑦
+  [−] 1: thermal power plant 𝑘 ∈ 𝒦𝐶 is built within year 𝑦; 0: otherwise 

휃ℎ,𝑦 [−] 1: hydro power plant ℎ ∈ ℋ𝐶 is built within year 𝑦; 0: otherwise  

휃𝑙,𝑦 [−] 1: transmission line 𝑙 ∈ ℒ𝐶 is built within year 𝑦; 0: otherwise  

𝑠𝑜𝑙𝑧,𝑦 [MW] New solar capacity installed in zone 𝑧 in year 𝑦 

𝑤𝑖𝑛𝑑𝑧,𝑦 [MW] New wind capacity installed in zone 𝑧 in year 𝑦 

𝑐𝑎𝑝𝑏,𝑦
Batt [MW] Storage capacity of battery 𝑏 installed in year 𝑦 

𝛾𝑘,𝑡
𝑐  [−] 1: thermal power plant 𝑘 is ON in hour 𝑡 of representative day 𝑐; 0: 

otherwise 

𝛼𝑘,𝑡
𝑐  [−] 1: thermal power plant 𝑘 is started-up in hour 𝑡 of representative 

day 𝑐; 0: otherwise 

𝛽𝑘,𝑡
𝑐  [−] 1: thermal power plant 𝑘 is shut-down in hour 𝑡 of representative 

day 𝑐; 0: otherwise 

𝑝𝑘,𝑡
𝑐  [MW] Power production of thermal power plant 𝑘 at time 𝑡 of 

representative day 𝑐 above its minimum output 𝑃𝑘  

                                                        
1 By M.U we mean the specific measure unit of fuel 𝑓, i.e., 106 m3 for natural gas and ktons for coal and oil 
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𝐸ℎ,𝑡
IN,𝑐 [MW] Pumping power of hydro reservoir ℎ in hour 𝑡 of representative day 

𝑐 

𝐸ℎ,𝑡
OUT,𝑐 [MW] Power output of hydro reservoir ℎ in hour 𝑡 of representative day 𝑐 

𝑠𝑙ℎ,𝑡
𝑐  [MWh] Energy spillage from hydro reservoir ℎ in hour 𝑡 of representative 

day 𝑐 

�̂�ℎ
LT,𝑑 [MWh] Energy level of hydro reservoir ℎ at the end of day 𝑑 

𝐸𝑏,𝑡
IN,𝑐 [MW] Charge of battery 𝑏 in hour 𝑡 of representative day 𝑐 

𝐸𝑏,𝑡
OUT,𝑐 [MW] Discharge of battery 𝑏 in hour 𝑡 of representative day 𝑐 

𝐸𝑏,𝑡
𝑐  [MWh] Energy level of battery 𝑏 in hour 𝑡 of representative day 𝑐 

𝑥𝑙,𝑡
𝑐  [MW] Power flow on line 𝑙 in hour 𝑡 of representative day 𝑐 

𝐸𝑁𝑃𝑧,𝑡
𝑐  [MWh] Energy not provided in zone 𝑧 in hour 𝑡 of representative day 𝑐 

𝑂𝐺𝑧,𝑡
𝑐  [MWh] Over-generation in zone 𝑧 in hour 𝑡 of representative day 𝑐 

𝑅𝐸𝑆𝑧,𝑡
𝑐  [MWh] Renewable generation in zone 𝑧 in hour 𝑡 of representative day 𝑐 

 

3.2.3 Mathematical formulation 

The GTEP model can be formulated as the following MILP model 

min   𝑧 = ∑ ( ∑
𝐷𝐶𝑘  𝛿𝑘,𝑦

−

(1 + 𝑟)𝑦−𝑦0

𝑘∈𝒦𝐸

+ ∑
𝐼𝐶𝑘

The 𝛿𝑘,𝑦
+

(1 + 𝑟)𝑦−𝑦0

𝑘∈𝒦𝐶

) +

𝑦∈𝒴

  

 + ∑ (∑
𝐼𝐶𝑧,𝑦

Sol 𝑠𝑜𝑙𝑧,𝑦

(1 + 𝑟)𝑦−𝑦0

𝑧∈𝒵

+ ∑
𝐼𝐶𝑧,𝑦

Wind 𝑤𝑖𝑛𝑑𝑧,𝑦

(1 + 𝑟)𝑦−𝑦0

𝑧∈𝒵

)

𝑦∈𝒴

+  

 + ∑ ∑
𝐼𝐶ℎ,𝑦

Hyd
 𝛿ℎ,𝑦

(1 + 𝑟)𝑦−𝑦0

ℎ∈ℋ𝐶𝑦∈𝒴

+  

 + ∑ ∑
𝐼𝐶𝑏,𝑦

Batt 𝑐𝑎𝑝𝑏,𝑦
Batt

(1 + 𝑟)𝑦−𝑦0

𝑏∈ℬ𝑦∈𝒴

+  

 + ∑ ∑
𝐼𝐶𝑙

Line 𝛿𝑙,𝑦

(1 + 𝑟)𝑦−𝑦0

𝑙∈ℒ𝐶𝑦∈𝒴

+  

 + ∑ [ ∑ 𝐹𝐶𝑘  (1 − 휃𝑘,𝑦
− )

𝑘∈𝒦𝐸

+ ∑ 𝐹𝐶𝑘  휃𝑘,𝑦
+

𝑘∈𝒦𝐶

]

𝑦∈𝒴

+  

 
+ ∑ ∑ 𝑤𝑔𝑐

𝑐∈𝒞𝑦𝑦∈𝒴

∑

24

𝑡=1

 [ ∑ (𝐶𝑀𝑘,𝑦(𝑃𝑘 𝛾𝑘,𝑡
𝑐 + 𝑝𝑘,𝑡

𝑐 ) + 𝑆𝑈𝐶𝑘𝛼𝑘,𝑡
𝑐 )

𝑘∈𝒦
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+ ∑ 𝐶𝑣𝑎𝑟ℎ 𝐸ℎ,𝑡

OUT,𝑐

ℎ∈ℋ

+ ∑ 𝐶𝑣𝑎𝑟𝑏 𝐸𝑏,𝑡
OUT,𝑐

𝑏∈ℬ

  

 

 

 

+ 𝑐𝐸𝑁𝑃 ∑ 𝐸𝑁𝑃𝑧,𝑡
𝑐

𝑧∈𝑍

+ 𝑐𝑂𝐺 ∑ 𝑂𝐺𝑧,𝑡
𝑐

𝑧∈𝑍

] (3.1) 

subject to 

𝛿𝑘,𝑦
− = 0 𝑘 ∈ 𝒦𝐸 , 𝑦 ∉ [𝜏𝑘 , 𝜏𝑘] (3.2) 

∑ 𝛿𝑘,𝑦
−

𝑦∈𝒴

= 1 𝑘 ∈ 𝒦𝐸1 (3.3) 

∑ 𝛿𝑘,𝑦
−

𝑦∈𝒴

≤ 1 𝑘 ∈ 𝒦𝐸2 (3.4) 

𝛿𝑘,𝑦
+ = 0 𝑘 ∈ 𝒦𝐶 , 𝑦 ∉ [𝜏𝑘, 𝜏𝑘] (3.5) 

∑ 𝛿𝑘,𝑦
+

𝑦∈𝒴

= 1 𝑘 ∈ 𝒦𝐶1 (3.6) 

∑ 𝛿𝑘,𝑦
+

𝑦∈𝒴

≤ 1 𝑘 ∈ 𝒦𝐶2 (3.7) 

∑ 𝛿𝑘,𝑦
+

𝑦∈𝒴

= ∑ 𝛿𝑘′,𝑦
+

𝑦∈𝒴

 𝑘 ∈ 𝒜𝒦𝑗, 𝑘′ ∈ 𝒜𝒦𝑗, 𝑗 ∈ 𝐽𝒜𝒦 (3.8) 

∑ ∑ 𝛿𝑘,𝑦
+

𝑦∈𝒴𝑘∈ℳℰ𝒦𝑗

≤ 1 𝑗 ∈ 𝐽ℳℰ𝒦 (3.9) 

𝑃𝑉 𝑧,𝑦 ≤ 𝑠𝑜𝑙𝑧,0 + ∑ 𝑠𝑜𝑙𝑧,𝑖

𝑦

𝑖=1

≤ 𝑃𝑉𝑧,𝑦 𝑧 ∈ 𝒵, 𝑦 ∈ 𝒴 (3.10) 

𝑊𝑧,𝑦 ≤ 𝑤𝑖𝑛𝑑𝑧,0 + ∑ 𝑤𝑖𝑛𝑑𝑧,𝑖

𝑦

𝑖=1

≤ 𝑊𝑧,𝑦 𝑧 ∈ 𝒵, 𝑦 ∈ 𝒴 (3.11) 

𝛿ℎ,𝑦 = 0 ℎ ∈ ℋ𝐶 , 𝑦 ∉ [𝜏ℎ, 𝜏ℎ] (3.12) 

∑ 𝛿ℎ,𝑦

𝑦∈𝒴

≤ 1 ℎ ∈ ℋ𝐶  (3.13) 

∑ 𝑐𝑎𝑝𝑏,𝑦
Batt

𝑦∈𝒴

≤ 𝐶𝐴𝑃𝑏

Batt
 𝑏 ∈ ℬ (3.14) 

𝛿𝑙,𝑦 = 0 𝑙 ∈ ℒ𝐶 , 𝑦 ∉ [𝜏𝑙 , 𝜏𝑙] (3.15) 

∑ 𝛿𝑙,𝑦 

𝑦∈𝒴

= 1 𝑙 ∈ ℒ𝐶1 (3.16) 

∑ 𝛿𝑙,𝑦 

𝑦∈𝒴

≤ 1 𝑙 ∈ ℒ𝐶2 (3.17) 
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∑ 𝛿𝑙,𝑦 

𝑦∈𝒴

= ∑ 𝛿𝑙′,𝑦 

𝑦∈𝒴

 𝑙 ∈ 𝒜ℒ𝑗, 𝑙′ ∈ 𝒜ℒ𝑗, 𝑗 ∈ 𝐽𝒜ℒ (3.18) 

∑ ∑ 𝛿𝑙,𝑦 

𝑦∈𝒴𝑙∈ℳℰℒ𝑗

≤ 1 𝑗 ∈ 𝐽ℳℰℒ (3.19) 

휃𝑘,𝑦
− = ∑ 𝛿𝑘,𝑖

−

𝑦

𝑖=1

 𝑘 ∈ 𝒦𝐸 , 𝑦 ∈ 𝒴 (3.20) 

휃𝑘,𝑦
+ = ∑ 𝛿𝑘,𝑖

+

𝑦

𝑖=1

 𝑘 ∈ 𝒦𝐶 , 𝑦 ∈ 𝒴 (3.21) 

휃ℎ,𝑦 = ∑ 𝛿ℎ,𝑖

𝑦

𝑖=1

 ℎ ∈ ℋ𝐶 , 𝑦 ∈ 𝒴 (3.22) 

휃𝑙,𝑦 = ∑ 𝛿𝑙,𝑖 

𝑦

𝑖=1

 𝑙 ∈ ℒ𝐶 , 𝑦 ∈ 𝒴 (3.23) 

𝛾𝑘,𝑡
𝑐 ≤ 1 − 휃𝑘,𝑦

−   𝑘 ∈ 𝒦𝐸 , 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴 (3.24) 

𝛾𝑘,𝑡
𝑐 ≤ 휃𝑘,𝑦

+  𝑘 ∈ 𝒦𝐶 , 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴 (3.25) 

𝛾𝑘,𝑡 ≤ 1 − 휃𝑘′,𝑦
+  𝑘 ∈ 𝒦𝐸 , 𝑘′ = 𝑈𝑃(𝑘), 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴 (3.26) 

𝑝𝑘,𝑡
𝑐 ≤ 𝛾𝑘,𝑡

𝑐 (𝑃𝑘 − 𝑃𝑘) 𝑘 ∈ 𝒦, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴 (3.27) 

𝛾𝑘,𝑡
𝑐 − 𝛾𝑘

𝑐
0

= 𝛼𝑘,𝑡
𝑐 − 𝛽𝑘,𝑡

𝑐  𝑘 ∈ 𝒦, 𝑡 = 1, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴 (3.28) 

𝛾𝑘,𝑡
𝑐 − 𝛾𝑘,𝑡−1

𝑐 = 𝛼𝑘,𝑡
𝑐 − 𝛽𝑘,𝑡

𝑐  𝑘 ∈ 𝒦, 2 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴 (3.29) 

∑ 𝛼𝑘,𝜏
𝑐 ≤

𝑡

 𝜏=𝑡−𝑀𝑈𝑇𝑘 +1

𝛾𝑘,𝑡
𝑐  𝑘 ∈ 𝒦, 𝑀𝑈𝑇𝑘 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴 (3.30) 

∑ 𝛽𝑘,𝜏
𝑐 ≤ 1 −

𝑡

 𝜏=𝑡−𝑀𝐷𝑇𝑘 +1

𝛾𝑘,𝑡
𝑐  𝑘 ∈ 𝒦, 𝑀𝐷𝑇𝑘 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴 (3.31) 

𝐸ℎ,𝑡
IN,𝑐 ≤ �̅�ℎ

IN ℎ ∈ ℋ𝐸 , 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴 (3.32) 

𝐸ℎ,𝑡
OUT,𝑐 ≤ �̅�ℎ

OUT ℎ ∈ ℋ𝐸 , 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴 (3.33) 

𝐸ℎ,𝑡
IN,𝑐 ≤ �̅�ℎ

IN휃ℎ,𝑦 ℎ ∈ ℋ𝐶 , 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴 (3.34) 

𝐸ℎ,𝑡
OUT,𝑐 ≤ �̅�ℎ

OUT휃ℎ,𝑦 ℎ ∈ ℋ𝐶 , 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴 (3.35) 

𝐸ℎ,𝑡
IN,𝑐

�̅�ℎ
IN

+
𝐸ℎ,𝑡

OUT,𝑐

�̅�ℎ
OUT

≤ 1 ℎ ∈ ℋ, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴 (3.36) 
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𝑠𝑙ℎ,𝑡
𝑐 ≤ 𝑠�̅�ℎ ℎ ∈ ℋ, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴 (3.37) 

   

�̂�ℎ
LT,𝑑 = 𝐸ℎ0

+ ∑ ∑ ∑(𝐹ℎ,𝑡
𝑐 + 𝜆ℎ

IN 𝐸ℎ,𝑡
𝑐,IN − 𝜆ℎ

OUT 𝐸ℎ,𝑡
𝑐,OUT − 𝑠𝑙ℎ,𝑡

𝑐 )

24

𝑡=1 𝑐∈Map𝑑′,𝑐

𝑑

𝑑′=𝑑−𝑀+1

  

 
ℎ ∈ ℋ, 𝑑 = 𝑀 (3.38) 

�̂�ℎ
LT,𝑑 = �̂�ℎ

LT,𝑑−𝑀 + ∑ ∑ ∑(𝐹ℎ,𝑡
𝑐 + 𝜆ℎ

IN 𝐸ℎ,𝑡
𝑐,IN − 𝜆ℎ

OUT 𝐸ℎ,𝑡
𝑐,OUT − 𝑠𝑙ℎ,𝑡

𝑐 )

24

𝑡=1 𝑐∈Map𝑑′,𝑐

𝑑

𝑑′=𝑑−𝑀+1

 

 ℎ ∈ ℋ, 𝑑 ∈ 𝒟𝑀
𝑦

, 𝑦 ∈ 𝒴, 𝑑 > 𝑀 (3.39) 

�̂�ℎ
LT,𝑑 ≤ 𝐸𝑃𝑅ℎ�̅�ℎ

IN ℎ ∈ ℋ, 𝑑 ∈ 𝒟𝑀
𝑦

, 𝑦 ∈ 𝒴 (3.40) 

�̂�ℎ
LT,𝑑 = 𝐸ℎ0

 ℎ ∈ ℋ, 𝑑 = |𝒟𝑦|, 𝑦 ∈ 𝒴 (3.41) 

𝐸𝑏,𝑡
IN,𝑐 ≤ ∑ 𝑐𝑎𝑝𝑏,𝑖

Batt

𝑦

𝑖=1

 ℎ ∈ ℬ, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴 (3.42) 

𝐸𝑏,𝑡
OUT,𝑐 ≤ ∑ 𝑐𝑎𝑝𝑏,𝑖

Batt

𝑦

𝑖=1

 ℎ ∈ ℬ, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴 (3.43) 

𝐸𝑏,𝑡
𝑐 ≤ 𝐸𝑃𝑅𝑏 ∑ 𝑐𝑎𝑝𝑏,𝑖

Batt

𝑦

𝑖=1

 𝑏 ∈ ℬ, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴 (3.44) 

𝐸𝑏,𝑡
𝑐 = (1 − 𝜆𝑏) 𝐸𝑏,𝑡−1

𝑐 + 𝜆𝑏
IN 𝐸𝑏,𝑡

IN,𝑐 − 𝜆𝑏
OUT𝐸𝑏,𝑡

OUT,𝑐  

 

𝑏 ∈ ℬ, 2 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴 (3.45) 

𝐸𝑏,𝑡
𝑐 = (1 − 𝜆𝑏) 𝐸𝑏

𝑐
0

+ 𝜆𝑏
IN 𝐸𝑏,𝑡

IN,𝑐 − 𝜆𝑏
OUT𝐸𝑏,𝑡

OUT,𝑐  

 

𝑏 ∈ ℬ, 𝑡 = 1, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴 (3.46) 

𝐸𝑏,𝑡
𝑐 = 𝐸𝑏

𝑐
0
 𝑏 ∈ ℬ, 𝑡 = 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴 (3.47) 
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𝐹𝑙 ≤ 𝑥𝑙,𝑡
𝑐 ≤ 𝐹𝑙  𝑙 ∈ ℒ𝐸 , 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴 (3.48) 

휃𝑙,𝑦 𝐹𝑙 ≤ 𝑥𝑙,𝑡
𝑐 ≤ 휃𝑙,𝑦 𝐹𝑙 𝑙 ∈ ℒ𝐶 , 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴 (3.49) 

∑ (𝑃𝑘  𝛾𝑘,𝑡
𝑐 + 𝑝𝑘,𝑡

𝑐 )

𝑘𝜖𝛺𝑧
𝑘

+ 𝜇𝑧,𝑡
𝑐 (𝑠𝑜𝑙𝑧,0 + ∑ 𝑠𝑜𝑙𝑧,𝑖

𝑦

𝑖=1

) + 𝜌𝑧,𝑡
𝑐 (𝑤𝑖𝑛𝑑𝑧,0 + ∑ 𝑤𝑖𝑛𝑑𝑧,𝑖

𝑦

𝑖=1

) 

+ ∑ 𝑥𝑙,𝑡
𝑐 + ∑ 𝐸ℎ,𝑡

OUT,𝑐

ℎ𝜖𝛺𝑧
ℎ

+ ∑ 𝐸𝑏,𝑡
OUT,𝑐

𝑏𝜖𝛺𝑧
𝑏

+ 𝐸𝑁𝑃𝑧,𝑡
𝑐

𝑙|𝑟𝑧(𝑙)=𝑧

=  

= 𝐷𝑧,𝑡
𝑐 + ∑ 𝑥𝑙,𝑡

𝑐

𝑙|𝑠𝑧(𝑙)=𝑧

+ ∑ 𝐸ℎ,𝑡
IN,𝑐

ℎ𝜖𝛺𝑧
ℎ

+ ∑ 𝐸𝑏,𝑡
IN,𝑐

𝑏𝜖𝛺𝑧
𝑏

+ 𝑂𝐺𝑧,𝑡
𝑐   

 𝑧 ∈ 𝒵, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴 (3.50) 

∑ [(𝑃𝑘 − 𝑃𝑘) 𝛾𝑘,𝑡
𝑐 − 𝑝𝑘,𝑡

𝑐 ] ≥ 𝑅𝑧,𝑡
𝑐

𝑘𝜖𝛺𝑧

          𝑧 ∈ 𝒵, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴 (3.51) 

∑  ∑ ∑ 𝑤𝑔𝑐

𝑐∈𝒞𝑦𝑘∈𝛷𝑧,𝑓 𝑧|𝑚𝑎(𝑧)=𝑚

∑
𝐻𝑅𝑘(𝑃𝑘 𝛾𝑘,𝑡

𝑐 + 𝑝𝑘,𝑡
𝑐 )

𝐸𝐶𝑛𝑡𝑓

24

𝑡=1

≤ 𝐹𝐴̅̅ ̅̅
𝑓,𝑚,𝑦  

 
𝑓 ∈ ℱ, 𝑚 ∈ ℳ, 𝑦 ∈ 𝒴 (3.52) 

∑  ∑ ∑ ∑ 𝑤𝑔𝑐

𝑐∈𝒞𝑦

∑ 𝐻𝑅𝑘(𝑃𝑘 𝛾𝑘,𝑡
𝑐 + 𝑝𝑘,𝑡

𝑐 )

24

𝑡=1𝑘∈𝛷𝑧,𝑓𝑓∈ℱ𝑧|𝑚𝑎(𝑧)=𝑚

𝑐𝑜2𝑓 ≤ 𝐶𝑂̅̅ ̅̅
2𝑚,𝑦 

 

 
𝑚 ∈ ℳ, 𝑦 ∈ 𝒴 (3.53) 

𝑅𝐸𝑆𝑧,𝑡
𝑐 = 𝜇𝑧,𝑡

𝑐 (𝑠𝑜𝑙𝑧,0 + ∑ 𝑠𝑜𝑙𝑧,𝑖

𝑦

𝑖=1

) + 𝜌𝑧,𝑡
𝑐 (𝑤𝑖𝑛𝑑𝑧,0 + ∑ 𝑤𝑖𝑛𝑑𝑧,𝑖

𝑦

𝑖=1

) + ∑ 𝐸ℎ,𝑡
OUT,𝑐

ℎ𝜖𝛺𝑧
ℎ

 

 𝑧 ∈ 𝒵, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴 (3.54) 

∑ ∑ 𝑤𝑔𝑐

𝑐∈𝒞𝑦𝑧|𝑚𝑎(𝑧)=𝑚

∑ 𝑅𝐸𝑆𝑧,𝑡
𝑐

24

𝑡=1

≥ 𝜑𝑚,𝑦 ( ∑ ∑ 𝑤𝑔𝑐 ∑ 𝐷𝑧,𝑡
𝑐

24

𝑡=1𝑐∈𝒞𝑦𝑧|𝑚𝑎(𝑧)=𝑚

) 

 

 𝑚 ∈ ℳ, 𝑦 ∈ 𝒴 (3.55) 

𝛿𝑘,𝑦
− , 휃𝑘,𝑦

− ∈ {0,1} 𝑘 ∈ 𝒦𝐸 , 𝑦 ∈ 𝒴 (3.56) 

𝛿𝑘,𝑦
+ , 휃𝑘,𝑦

+ ∈ {0,1} 𝑘 ∈ 𝒦𝐶 , 𝑦 ∈ 𝒴 (3.57) 
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𝛿ℎ,𝑦 , 휃ℎ,𝑦 ∈ {0,1} ℎ ∈ ℋ𝐶 , 𝑦 ∈ 𝒴 (3.58) 

𝛿𝑙,𝑦 , 휃𝑙,𝑦 ∈ {0,1} 𝑙 ∈ ℒ𝐶 , 𝑦 ∈ 𝒴 (3.59) 

𝑠𝑜𝑙𝑧,𝑦, 𝑤𝑖𝑛𝑑𝑧,𝑦 ≥ 0 𝑧 ∈ 𝒵, 𝑦 ∈ 𝒴 (3.60) 

𝑐𝑎𝑝𝑏,𝑦
Batt ≥ 0 𝑏 ∈ ℬ, 𝑦 ∈ 𝒴 (3.61) 

𝛾𝑘,𝑡
𝑐 , 𝛼𝑘,𝑡

𝑐 , 𝛽𝑘,𝑡
𝑐 ∈  {0,1} 𝑘 ∈ 𝒦, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴 (3.62) 

𝑝𝑘,𝑡
𝑐 ≥ 0 𝑘 ∈ 𝒦, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴 (3.63) 

𝐸ℎ,𝑡
IN,𝑐 , 𝐸ℎ,𝑡

OUT,𝑐, 𝑠𝑙ℎ,𝑡
𝑐 ≥ 0 ℎ ∈ ℋ, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴 (3.64) 

�̂�ℎ
LT,𝑑 ≥ 0 ℎ ∈ ℋ, 𝑑 ∈ 𝒟𝑀

𝑦
, 𝑦 ∈ 𝒴 (3.65) 

𝐸𝑏,𝑡
IN,𝑐 , 𝐸𝑏,𝑡

OUT,𝑐, 𝐸𝑏,𝑡
𝑐 ≥ 0 𝑏 ∈ ℬ, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴 (3.66) 

𝑥𝑙,𝑡
𝑐   free variable 𝑙 ∈ ℒ, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴 (3.67) 

𝐸𝑁𝑃𝑧,𝑡
𝑐 , 𝑂𝐺𝑧,𝑡

𝑐 , 𝑅𝐸𝑆𝑧,𝑡
𝑐 ≥ 0 𝑧 ∈ 𝒵, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴. (3.68) 

 

The objective function (3.1) comprises the seven terms below: 

1. ∑ (∑
𝐷𝐶𝑘 𝛿𝑘,𝑦

−

(1+𝑟)𝑦−𝑦0𝑘∈𝒦𝐸
+ ∑

𝐼𝐶𝑘
The 𝛿𝑘,𝑦

+

(1+𝑟)𝑦−𝑦0𝑘∈𝒦𝐶
)𝑦∈𝒴  are the annualized decommissioning costs 

of existing thermal power plants and investment costs in new thermal power 

generation; 

2. ∑ (∑
𝐼𝐶𝑧,𝑦

Sol 𝑠𝑜𝑙𝑧,𝑦

(1+𝑟)𝑦−𝑦0𝑧∈𝒵 + ∑
𝐼𝐶𝑧,𝑦

Wind 𝑤𝑖𝑛𝑑𝑧,𝑦

(1+𝑟)𝑦−𝑦0𝑧∈𝒵 )𝑦∈𝒴  are the annualized investment costs in new 

solar and wind capacity; 

3. ∑ ∑
𝐼𝐶ℎ,𝑦

Hyd
 𝛿ℎ,𝑦

(1+𝑟)𝑦−𝑦0ℎ∈ℋ𝐶𝑦∈𝒴  are the annualized investment costs in new hydropower plants; 

4. ∑ ∑
𝐼𝐶𝑏,𝑦

Batt 𝑐𝑎𝑝𝑏,𝑦
𝐵𝑎𝑡𝑡

(1+𝑟)𝑦−𝑦0𝑏∈ℬ𝑦∈𝒴  are the annualized investment costs in new batteries capacity; 

5. ∑ ∑
𝐼𝐶𝑙

Line 𝛿𝑙,𝑦

(1+𝑟)𝑦−𝑦0𝑙∈ℒ𝐶𝑦∈𝒴  are the annualized investment costs in new transmission lines; 
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6. ∑ [∑ 𝐹𝐶𝑘  (1 − 휃𝑘,𝑦
− )𝑘∈𝒦𝐸

+ ∑ 𝐹𝐶𝑘 휃𝑘,𝑦
+

𝑘∈𝒦𝐶
]𝑦∈𝒴  are the fixed costs for the available 

thermal power plants, i.e., not decommissioned existing plants and already 

constructed candidate plants; 

7. ∑ ∑ 𝑤𝑔𝑐𝑐∈𝒞𝑦𝑦∈𝒴 ∑ [∑ (𝐶𝑀𝑘,𝑦(𝑃𝑘 𝛾𝑘,𝑡
𝑐 + 𝑝𝑘,𝑡

𝑐 ) + 𝑆𝑈𝐶𝑘𝛼𝑘,𝑡
𝑐 )𝑘∈𝒦 + ∑ 𝐶𝑣𝑎𝑟ℎℎ∈ℋ

24
𝑡=1 𝐸ℎ,𝑡

OUT,𝑐 +  

∑ 𝐶𝑣𝑎𝑟𝑏 𝐸𝑏,𝑡
OUT,𝑐

𝑏∈ℬ + 𝑐𝐸𝑁𝑃 ∑ 𝐸𝑁𝑃𝑧,𝑡
𝑐

𝑧∈𝑍 + 𝑐𝑂𝐺 ∑ 𝑂𝐺𝑧,𝑡
𝑐

𝑧∈𝑍 ] are the operational costs. 

Specifically, item 7 above considers for each representative day the sum of production 

costs, start-up costs, hydro and batteries operational costs and penalties for energy not 

provided and over-generation. Production costs are supposed to be linear functions of 

the power output, being 𝐶𝑀𝑘,𝑦 the slopes of these linear relationships. The marginal cost 

of thermal plant 𝑘 in year 𝑦 is computed as: 

𝐶𝑀𝑘,𝑦 = 𝑂&𝑀𝑘 + 𝐻𝑅𝑘(𝑃𝑟𝑦
𝑓

+ 𝑐𝑜2𝑓𝑃𝑟𝑦
CO2) 

 

𝑘 ∈ 𝒦, 𝑦 ∈ 𝒴, 𝑓 = 𝑓𝑢𝑒𝑙(𝑘) (3.69) 

with 𝑂&𝑀𝑘 [€/MWh] being the operative and maintenance costs of plant 𝑘, 𝐻𝑅𝑘 

[Gcal/MWh] the heat rate of thermal power plant 𝑘, 𝑃𝑟𝑦
𝑓

 [€/Gcal] the price in year 𝑦 of 

fuel 𝑓 used by unit 𝑘, 𝑐𝑜2𝑓 [ton/Gcal] the CO2 emission factor of fuel 𝑓 used by unit 𝑘 and 

𝑃𝑟𝑦
CO2 [€/ton] the emission cost in year 𝑦. 

In the proposed model there are three groups of constraints, namely investment 

constraints (3.2)−(3.23), operational constraints (3.24)−(3.51) and target constraints 

(3.52)−(3.55). Investment constraints model investment decisions, considering the 

project priorities and the existence of logical relations between some investment 

decisions. In particular, assignment constraints (3.2) impose earliest and latest dates for 

decommissioning of existing thermal power plants, equalities (3.3) enforce the 

decommissioning of mandatory thermal units and constraints (3.4) model decisions 

regarding optional decommissioning.  

The group of constraints (3.5)−(3.7) work similarly with investment decisions on 

candidate thermal power plants. Indeed, while equations (3.5) impose earliest and latest 

dates for construction of new thermal power plants, constraints (3.6) and (3.7) model 

investment decisions on mandatory and optional projects, respectively. The associate 

project constraints (3.8) indicate that a group of projects is subject to a single investment 

decision, that is, either all projects in the group 𝒜𝒦𝑗 are built, or none. Inequalities (3.9) 

are the mutually exclusive project's constraints and they ensure that only one unit (or 

none) of the projects in each group (ℳℰ𝒦𝑗) is built. Inequalities (3.10) and (3.11) impose 
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lower and upper bounds on solar and wind installed capacity, respectively. Equations 

(3.12) impose a temporal window for construction of new hydropower plants, while 

constraints (3.13) model investments in new hydropower plants as optional decisions. 

Inequalities (3.14) impose an upper bound on batteries installed capacity at the end of 

the planning horizon. The group of inequalities (3.15)−(3.19) model investment 

decisions on new transmission lines. Specifically, equations (3.15) impose a temporal 

window for the introduction of a new transmission line, while constraints (3.16) and 

(3.17) model, respectively, mandatory and optional decisions. Equations (3.18) are the 

associate lines constraints, indicating that a group of lines is subject to a single 

investment decision, while the mutually exclusive lines constraints (3.19) ensure that 

only one interconnection (or none) of the transmission lines in a given group (ℳℰℒ𝑗) is 

built. Finally, equations (3.20)−(3.23) determine the values of the binary variables 휃𝑘,𝑦
− , 

휃𝑘,𝑦
+ , 휃ℎ,𝑦 and 휃𝑙,𝑦 that express if decommissioning decisions for existing thermal power 

plants and investment decisions for new thermal power plants, new hydropower plants, 

and new transmission lines, respectively, have been made within every year 𝑦 of the 

planning horizon. 

Operational constraints model the technical conditions for operating thermal and 

hydropower plants, power transmission and storages and consider the flexibility 

provided to the energy system by the hydro-thermal dispatch and the storage units. In 

particular, the block of equations (3.24)−(3.31) models the thermal component of the 

energy system. Constraints (3.24) ensure consistency between the binary variables 

representing the commitment status and those representing the decommissioning 

decisions, forcing the existing thermal power plants decommissioned within year 𝑦 

(휃𝑘,𝑦
− = 1) to be offline in all hours after decommission. Constraints (3.25) and (3.26) 

enforce the consistency between the binary variables representing the commitment 

status and those representing investment decisions. Indeed, inequalities (3.25) impose 

that projects built within year 𝑦 (휃𝑘,𝑦
+ = 1) can be used to supply load, while thermal units 

not yet constructed (휃𝑘,𝑦
+ = 0) are forced to be offline (𝛾𝑘,𝑡

𝑐 = 0) in all hours of year 𝑦. 

Inequalities (3.26) model the reinforcements of existing thermal power plants. 

Specifically, let 𝑘′ = 𝑈𝑃(𝑘) denote the new project that replaces the existing unit 𝑘 when 

it starts operating: building project 𝑘′ within year 𝑦 (휃𝑘1,𝑦
+ = 1) implies the permanent 

offline status of unit 𝑘 (𝛾𝑘,𝑡
𝑐 = 0). As already explained in Section 2.6.2, inequalities (3.27) 

state that the power output 𝑝𝑘,𝑡
𝑐  above the minimum power output 𝑃𝑘 is either bounded 

above by 𝑃𝑘 − 𝑃𝑘, if unit 𝑘 is online (𝛾𝑘,𝑡
𝑐 = 1), or zero if unit 𝑘 is offline (𝛾𝑘,𝑡

𝑐 = 0). 
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Constraints (3.28) and (3.29) enforce consistency between the binary variables that 

represent start-up, shut down and status in adjacent hours. Specifically, the parameter 

𝛾𝑘
𝑐

0
 in constraints (3.28) represents the status of unit 𝑘 at the beginning of representative 

day 𝑐, whose value is determined by applying a classification tree trained on historical 

data. Inequalities (3.30) and (3.31) are the minimum up time and down time constraints, 

respectively.   

Constraints (3.32)−(3.42) model the operation of hydropower plants. Specifically, 

constraints (3.32) and (3.33) bound the pumping power and the power output of the 

existing hydroelectric reservoirs below their respective upper limits. If candidate 

hydropower plant ℎ ∈ ℋ𝐶 is built within year 𝑦, inequalities (3.34) and (3.35) define the 

upper bounds to pumping power and power output of new hydroelectric reservoirs, 

otherwise set the corresponding variables to zero. Constraints (3.36) limit for each 

reservoir the power production and the pumping power in the same hour, while 

inequalities (3.37) impose an upper bound to the energy spillage from reservoirs. 

Equations (3.38)−(3.40) create the continuity in storage across the entire time horizon 

by checking at regular intervals (i.e., every 𝑀 hours) that all the energy charged and 

discharged since the previous check point plus the total energy at the previous check 

point are within bounds. Equations (3.41) enforce the equality between energy levels of 

each reservoir ℎ at the beginning and the end of the planning horizon.  

Constraints (3.42)−(3.47) model the operation of batteries. Specifically, inequalities 

(3.42)−(3.44) impose upper bounds to charge, discharge and stored energy and enforce 

consistency between the values of investment and operational variables. Energy balances 

(3.45) apply to all hours but the first of the representative days and they ensure that the 

energy stored by battery 𝑏 at the end of hour 𝑡 equals the energy stored at the end of hour 

𝑡 − 1 (reduced by the loss coefficient 𝜆𝑏 ≤ 1), plus the energy injected in 𝑏 (reduced by 

the coefficient 𝜆𝑏
IN ≤ 1), minus the energy released from the battery (reduced by the 

coefficient 𝜆𝑏
OUT ≥ 1). Equations (3.46) impose the energy balance for the first hour of 

each representative day, while constraints (3.47) state the equality for each battery 𝑏 

between energy levels at the beginning and the end of each representative day. 

Inequalities (3.48) restrict the power flows on the existing transmission lines. 

Constraints (3.49) impose lower and upper bounds to the power exchanges among zones 

and enforce consistency between the power flows on candidate transmission lines and 

the binary variables related to investment decisions, not allowing power flows on 

candidate lines which have not been built (휃𝑙,𝑦 = 0). The zonal balance equations (3.50) 

impose equality between energy sources and uses in every zone and every hour of each 
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representative day. Indeed, the left-hand side of these equations represents the hourly 

energy sources of zone 𝑧 (given by thermal, solar and wind generation, incoming energy 

flows, hydro generation and energy released by batteries) and the right-hand side 

describes the energy uses (represented by the load, outgoing energy flows, pumping 

power and energy absorbed by batteries). The variables 𝐸𝑁𝑃𝑧,𝑡
𝑐  and 𝑂𝐺𝑧,𝑡

𝑐  allow detecting 

and evaluating problems in the simulated system that can cause a mismatch between 

supply and demand. Inequalities (3.51) ensure the fulfilment of zonal reserve 

requirements provided by thermal power plants. 

Target constraints (3.52)−(3.55) model conditions required to promote sustainable 

development of energy systems. Specifically, inequalities (3.52) impose limits on thermal 

power generation employing fossil fuels whose availability could be limited in time. 

These constraints are imposed for each macro-area 𝑚, each year 𝑦 and each fuel 𝑓. In 

particular, they are computed by multiplying the daily consumption of fuel 𝑓 in all the 

zones belonging to macro-area 𝑚 by the weight of each cluster, to take into account the 

different occurrences of representative days. Inequalities (3.53) impose limits for 

thermal energy production due to CO2 emissions and they present a structure very 

similar to constraints (3.52), as also, in this case, the total daily emission in each 

representative day is multiplied by the cluster’s weight. Equations (3.54) compute the 

zonal hourly renewable production, by considering solar, wind and hydro generation. 

Constraints (3.55) control the renewables penetration, forcing the total renewable 

generation in macro-area 𝑚 in year 𝑦 to cover at least ratio 𝜑𝑚,𝑦  of the total yearly 

demand for electricity. Finally, constraints (3.56)−(3.68) define the optimization 

variables. 

3.3 Evaluating the achievement by 2030 of the 55% renewable 

penetration target for the Italian power system 

The proposed model has been applied to plan the expansion of the Italian power system 

to achieve by 2030 a 55% renewable penetration target and a sustainable reduction of 

CO2 emissions, according to the goals set by the European Commission. This section 

describes the simulation assumptions and the results obtained by addressing this 

research question. 
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3.3.1 Data for the Italian power system 

The simulation assumptions summarized in this paragraph are based on public 

information provided by ENTSO-E, ENTSOG, Terna and GME [50, 51, 52, 53, 54]. In our 

tests, we considered a scenario elaborated by CESI S.p.A. to represent the Italian power 

system. Such a scenario includes 174 existing thermal power plants, 26 candidate 

thermal units, 18 existing equivalent hydropower plants, 5 candidate pumping power 

plants, 9 existing transmission lines, 15 candidate lines, and 14 candidate batteries. 

The market analysis considers the Italian electric power system divided into seven 

interconnected market zones: North (ITn), Central-North (ITcn), Central-South (ITcs), 

South (ITs), Calabria (ITcal), Sicily (ITsic), and Sardinia (ITsar). The neighbouring 

countries are modelled as four equivalent areas: Montenegro (ME), Greece (GR), Tunisia 

(TN) and one single zone named Europe (EU) that summarizes the power flow at the 

northern Italian border. Each of these equivalent areas is characterized by a set of 

equivalent power units whose bidding can model a dynamic Import/Export with the 

Italian power system. Fig. 3.1 shows the existing interconnections as well as a set of 

candidate new interconnections among which the least cost generation and transmission 

expansion tool can choose. 

 

Fig. 3.1 Existing and candidate interconnections in the Italian power system 
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Table 3.1 Number of representative days for different threshold values 

Input threshold 10% 5% 2.5% 1% 

Number of representative days 3 5 9 18 

On such a system, we performed a GTEP analysis under a 11-year planning horizon, 

from 2020 up to 2030. For modeling short-term operation, we have applied to the Italian 

System the procedure described in Section 2.3.2 by fixing at 5% the threshold for the 

system average mean absolute percentage error in load duration curve approximation, 

obtaining five representative days for each year of the planning horizon. The value of 5% 

for the threshold has been chosen after several tests performed on the Italian scenario, 

which showed that this choice was a good balance between computational costs and 

approximation accuracy. By modifying the threshold, the number of representative days 

to be used changes as well, as shown in Table 3.1. 

Fig. 3.2 illustrates the five representative days in year 2020 for the North zone, which 

has the highest electricity demand. As can be noticed, each of the representative days is 

characterized by 24 values for load, solar capacity factors, and wind capacity factors and 

by a specific weight. 

 

Fig. 3.2 Daily load, solar and wind profiles for the North zone in the five representative days in year 2020 
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Fig. 3.3 Zonal load [TWh/year] 

Representative days for each of the following 10 years of the planning horizon have 

been obtained by applying an annual average demand growth of 1%. For the sake of 

brevity, Fig. 3.3 shows the yearly zonal load only in years 2020, 2025 and 2030, i.e., at 

the beginning, the middle and the end of the planning horizon. 

As far as the renewable installed capacity growth is concerned, a lower bound of 55% 

of RES penetration (calculated as the ratio between the renewable production and the 

expected demand) has been imposed for year 2030. It is worth mentioning that this value 

includes the production from hydro sources. Based on this lower bound set by the Italian 

Energy Plan, the tool can decide how much to install and what is the best generation mix; 

however, it has to respect the minimum and maximum targets of photovoltaic and wind 

capacity set for every expansion plan year, according to the Italian Energy Plan. 

Regarding the thermal fleet, based on data provided by the Italian TSO, the existing 

set of power plants has been implemented together with all related technical information 

and decommissioning details.  

Table 3.2 Installed, outgoing and incoming capacity [GW] 

 CCGT COAL OIL GT TOT 

Installed in 2020 37.75 8.15 1.42  2.57 49.89 

Outgoing capacity 2020/2030  3.57 8.15 1.42  1.45 14.59 

Incoming capacity 2025/2030 6.35 - - 1.99 8.34 
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The achievement of the challenging RES penetration targets requires the availability 

of an appropriate reserve margin that can be provided by thermal generation, therefore 

a set of candidate Combined Cycle Power Plants and Open Cycle Power Plants (both 

fuelled by natural gas) has been considered to analyse how the system needs in terms of 

generation capacity and flexibility can be satisfied. Table 3.2 resumes the above-

mentioned assumptions. 

As regards to fuel consumption, we have considered a CO2 emission cap of 70 Mtons 

for each year of the planning horizon, according to levels set by the European 

Commission, aimed at reducing the impact of the electricity sector on greenhouse gas 

emissions. In terms of the storage system, we have considered the possibility of adding 

new pumping units in the southern regions of Italy to the existing hydro pumping fleet 

and/or the possibility of including in the system Lithium-ion batteries (cheaper but with 

less storage capacity) or Sodium-ion batteries (a little more expensive but with higher 

storage capacity). Table 3.3 resumes the technical data related to candidate storage 

projects. The investment cost is assumed to decrease during the period 2020-2030, with 

9% rate until 2025 and with 5% until 2030.  

For the economic factors, the values relating to Investment Costs (IC), Fixed Costs 

and Decommissioning Costs are shown below, both for traditional plants and 

photovoltaic and wind plants (see Table 3.4).  

Table 3.3 Technical data of storage systems 

 Candidate Pumping Units Sodium-

ion 

Batteries 

Lithium-

ion 

Batteries  
Central 

South 
South Calabria Sardinia Sicily 

Maximum energy 

to power ratio [h] 
14 14 14 14 14 6 4 

𝐸
OUT

 [MW] 1000 450 1250 800 480 600 600 

𝐸
IN

 [MW] 1000 450 1250 800 480 600 600 

IC@2020 [€/kWh] 82 82 82 82 82 400 350 

Variable Cost 

[€/MWh] 
2 2 2 2 2 30 20 
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Table 3.4 Economic factors for traditional power plants 

 CCGT COAL OIL GT PV Wind 

IC [€/kW] 800 - - 400 1000 1300 

Fixed Costs [€/MW/year] 10 32 32 5 0 0 

Decommissioning [€/kW] 6 20 20 3 - - 

Both PV and wind investment costs are supposed to decrease along the planning 

horizon due to technology development. Specifically, while PV investment cost in the 

current analysis goes from 1000 €/kW in 2020 to 600 €/kW in 2030, the wind 

investment cost is supposed to decrease from 1300 €/kW in 2020 to 900 €/kW in 2030. 

Table 3.5 summarizes the assumptions on prices introduced in our analysis. It is 

worth mentioning that codes Gas, Gasoil, and Coal in Table 3.5 represent the fuels used 

by Italian thermal plants, while code EUmix refers to the expected fuel cost in the foreign 

countries interconnected with the Italian market zones. Specifically, this cost reflects the 

expected variation of the generation mix in foreign countries, considering several factors 

such as increasing renewable penetrations and gas consumption, decreasing coal 

consumption and nuclear phase-out. 

Table 3.5 Expected fuel and CO2 prices 

  2020 2025 2030 

Gas [€/Gcal] 23.43 28.15 32.86 

Gasoil [€/Gcal] 90.00 89.27 88.53 

Coal [€/Gcal] 9.50 10.72 11.93 

EUmix [€/Gcal] 19.68 26.78 33.88 

CO2 [€/ton] 19.00 28.67 38.33 

 

3.3.2 Results and discussion 

We solved the proposed model on an ASUS laptop with a 3 GHz Intel Core i7-5500U 

Processor and 4 GB of RAM using solver Gurobi under GAMS 24.7.4. The total time 

needed to solve the problem is 2,884 seconds, corresponding to 48 minutes and 4 

seconds. Table 3.6 provides more information about computational costs, specifying size 

and solution time of the problem. 
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Table 3.6 Size and solution time of the optimization model 

# Constraints 
# Decision 

Variables 

# Discrete 

Variables 

# Non Zero 

Elements 

CPU Time 

[seconds] 

1,581,805 1,314,831 274,830 6,507,341 2,884 

The system costs for the whole expansion planning period are shown in Table 3.7. As 

can be observed, there is a remarkable difference between investment and operational 

costs: while the sum of investment, decommissioning and fixed costs represents 24.8% 

of total costs, operating costs account for 75.2% of total costs. Specifically, the most 

relevant cost for the system is related to the production costs of thermoelectric power 

plants, which include O&M and fuel consumption, representing 99.7% of operational 

costs and 75.0% of total costs. Also the installation of new renewable capacity has a 

significant impact on total system costs, with the solar and wind power capacity 

expansion costs representing 15.5% and 5.3% respectively of total costs.  

Table 3.7 System costs breakdown for expansion plan period 

Costs M€ % 

Thermal Capacity Expansion 3,234 1.57% 

Wind Capacity Expansion 10,998 5.32% 

Solar Capacity Expansion 32,015 15.50% 

Transmission Capacity Expansion 522 0.25% 

Pumping Units Capacity Expansion 3,159 1.53% 

Batteries Capacity Expansion 1,091 0.53% 

Decommissioning Costs 207 0.10% 

Thermal Fixed Costs 4 0.002% 

Thermal Production Cost 154,875 74.98% 

Start-Up Costs 286 0.14% 

Hydro Operation Costs 103 0.05% 

Batteries Operation Costs 61 0.03% 

Penalties for Overgeneration 0 0% 

Penalties for Energy Not Provided 0 0% 

Total System Costs 206,555 100% 
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Table 3.8 Renewable generation capacity expansion [GW] divided by source and implementation year 

Expansion capacity [GW] PV Wind 

2020 6.280 2.760 

2021 11.765 1.766 

2022 3.537 0.772 

2023 3.512 0.776 

2024 2.706 0.776 

2025 2.706 0.776 

2026 2.706 0.776 

2027 2.706 0.776 

2028 2.706 0.776 

2029 2.706 0.645 

2030 2.706 0.538 

Total 44.041 11.136 

Table 3.8 shows the additional capacity of wind and PV installed in order to reach the 

RES penetration target in year 2030. The RES installed capacity consists of 44.041 GW 

of PV and 11.136 GW of wind power: this unbalance may be explained by the lower costs 

of the PV technology with respect to the wind technology. 

As far as interconnection projects are concerned, new national and international 

cross border lines must be implemented in year 2025 to better exploit the stochastic 

renewable energy sources and compensate for the decommissioning of some Italian 

thermoelectric power plants. The selected interconnections are listed in Table 3.9. 

Table 3.9 Candidate interconnections selected by the model 

From To Transmission Limits Year of intervention 

Tunisia Sicily [–600 MW ; 600 MW] 2025 

Central-South Central-North [–150 MW ; 150 MW] 2025 
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Table 3.10 Installed capacity of energy storage systems [MW] 

Zone Technology Installed Capacity [MW] 

North Lithium-Ion Batteries 600 

Central-South Pumping Unit 1000 

South Pumping Unit 450 

Calabria Lithium-Ion Batteries 600 

Calabria Pumping Unit 1250 

Sicily Pumping Unit 480 

Sardinia Pumping Unit 800 

Moreover, the tool couples the installed RES capacity with energy storage systems, 

installing throughout the planning period 1.2 GW of batteries and 3.98 GW of pumping 

units. A list that summarizes the installed capacity according to technology and zone is 

reported inTable 3.10. As can be noticed, as regards to batteries capacity, the model 

suggests installing Lithium-Ion batteries due to the lower investment costs with respect 

to Sodium-Ion batteries.  

In the list of thermoelectric candidate projects, ten CCGT power plants have been 

selected as thermoelectric expansion capacity, starting operation in 2025 to ensure the 

availability of energy reserve margins. The new thermal power plants introduced in the 

system are mainly located in the North, Central-South, South, and Sardinia zones. On 

the contrary, the decommissioning of coal power plants has been planned for years 2020 

and 2025 according to decarbonisation targets.  

 

Fig. 3.4 Evolution of the Italian capacity mix over the planning horizon 
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Fig. 3.5 Installed capacity by source for each market zone at the beginning and the end of the horizon 

Fig. 3.4 shows the evolution over the planning horizon of the total installed capacity 

in the Italian power system divided by source. As can be noticed, to reach the 55% target 

for renewable penetration, the proposed model suggests to install large shares of solar 

and wind power capacities, while thermal and hydro power capacities only marginally 

change during the planning horizon.  

Fig. 3.5 shows the distribution of the installed capacity between the Italian market 

zones, highlighting the differences between the beginning and the end of the planning 

period. As can be observed, half of the total solar expansion capacity, as well as most of 

the thermoelectric expansion capacity, is installed in the North, due to its high electricity 

demand, which is almost 60% of the Italian load. Instead, the wind expansion is mainly 

located in southern regions, which are characterized by the highest wind capacity factors. 

Fig. 3.6 shows the evolution over the planning horizon of the total energy divided by 

source produced in the Italian power system. As can be observed, the thermal component 

represents the main generation source in every year of the planning horizon. Specifically, 

the total power generation from thermal units does not significantly change over the 

years, being equal to 183 TWh in 2020 and to 179 TWh in 2030. Due to the installation 

of new pumping units, the production from hydro resources increases from 60 TWh in 

2020 to 69 TWh at the end of the planning horizon. The installation of large shares of 

RES capacity increases the generation from both wind power plants (from 28 TWh in 

2020 to 44 TWh in 2030) and solar power plants (from 36 TWh in 2020 to 85 TWh in 

2030).  
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Fig. 3.6 Evolution of the Italian generation mix over the planning horizon 

Moreover, the total yearly load for the Italian power system in 2030 corresponds to 

360 TWh, while the total generation from renewable sources in 2030 equals 198 TWh, 

hence the target of reaching 55% of renewable penetration by 2030 is fully achieved. 

Finally, Fig. 3.7 illustrates for each Italian zone the power generation divided by energy 

source at the beginning and the end of the planning horizon. As can be noticed, most of 

the hydroelectric and solar power generation is located in the North zone, while the 

energy production from wind power plants is mainly located in the southern regions of 

the country. 

 

Fig. 3.7 Generation by source for each market zone at the beginning and the end of the horizon 
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3.4 Chapter conclusions 

In this chapter, an optimization model to plan investment decisions to reach the 

decarbonisation targets in the power sector has been introduced. First, we have 

presented our approach to the GTEP problem, which is based on a centralized approach: 

by assuming the perspective of a single central entity, we plan the joint expansion of 

generation and transmission facilities so as to minimize the total system costs. Such an 

approach is justified by the objective of our research, which is to develop a computational 

tool that could support regulators in searching for optimal policies, focusing on the 

inclusion of as many engineering details as possible, while neglecting market aspects. 

Then, a deterministic model for the GTEP analysis has been presented. Such a model 

co-optimizes strategic and operational decisions for transmission, generation and 

storage facilities, providing a very detailed representation of the power system and 

including constraints to limit the CO2 emissions and to increase the generation from 

renewable power sources.  

The proposed model has been applied to plan the expansion of the Italian power 

system to achieve by 2030 a 55% renewable penetration target and a sustainable 

reduction of CO2 emissions, according to the goals set by the European Commission. The 

simulation assumptions and the results obtained by addressing this research question 

have also been discussed in the chapter.  

The main limitation of the proposed analysis is the deterministic assumption on fossil 

fuel prices and emission costs, which strongly influences the results of the simulation. 

However, given the long-term horizon, this hypothesis could be very restrictive. Indeed, 

since expansion plans are usually provided for long-term horizons, system conditions at 

the end of the planning horizons are generally uncertain. The long-term uncertainty 

should be accurately included in the decision making process to provide more reliable 

decisions to the actors involved in the GTEP analysis. The inclusion of the long-term 

uncertainty in the expansion planning framework is addressed in the following chapter. 
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Chapter 4                                                                        

Including long-term uncertainties in the expansion 

planning framework 

4.1 Research motivation 

Investment decisions in the power sector are characterized by a high level of uncertainty. 

Indeed, since expansion plans are usually provided for a long-term planning horizon, the 

future system conditions are generally uncertain at the time the expansion plans are 

decided. Different sources of uncertainty may affect planning decisions and must be 

considered in the decision-making process. They can be divided into two groups, namely 

short-term and long-term uncertainties. Specifically, short-term uncertainties include 

the stochastic production from intermittent renewable energy sources and the demand 

variability throughout the hours of the day and the days of the week. These uncertainties 

are also known as random uncertainties, since they have an underlying probability 

distribution, which can be approximated from historical data. Instead, long-term 

uncertainty refers to long-term dynamics, including future values of investment costs, 

fossil fuel prices and availability, long-term increase/decrease in demand, change in 

geographical demand distribution, and policy constraints, such as carbon prices. These 

uncertainties are also known as non-random uncertainties, since they are not usually 

probability-based: their probabilities are generally obtained based on expert judgement. 

To obtain more robust results when planning the joint generation and transmission 

expansion, the different sources of uncertainty have to be considered in the analysis. 

While short-term uncertainty can be captured by accurately selecting the representative 

days, long-term uncertainty can be included in the decision making framework by 

developing a two-stage stochastic programming MILP model to plan the investment 

decisions in the power sector. In a stochastic programming approach, the future 

realization of every uncertain parameter is described by a set of scenarios. Thus, the 

inclusion of the long-term uncertainty in the analysis further increases the complexity of 

the problem, making the real-scale GTEP problems computationally intractable. To solve 

such problems, efficient solution algorithms that exploit the decomposable structure of 
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two-stage stochastic programming models have to be applied. Therefore, in this chapter 

also a comprehensive description of the multi-cut Benders decomposition algorithm 

applied to the proposed stochastic model is provided. 

The structure of the chapter is as follows. Section 4.2 reviews the existing literature 

for expansion planning under uncertainty. Section 4.3 describes the assumptions 

introduced in the analysis and formulates the expansion planning problem as a two-stage 

stochastic MILP model. The solution algorithm is presented in Section 4.4. A case study 

concerning the Italian power system is introduced in Section 4.5. Finally, Section 4.6 

concludes the chapter. 

4.2 Literature review 

Several approaches have been developed in the literature to accurately represent the 

uncertainty framework in the planning decisions, including fuzzy decision approach, 

chance-constrained models, Monte Carlo simulation, robust optimization, adaption 

programming and stochastic programming. In particular, given the relevant penetration 

of intermittent renewable power sources, many recent studies focus on the influence of 

these uncertainties on generation and transmission planning. For instance, in [56] an 

algorithm is developed for multi-objective optimization transmission expansion 

planning considering wind farm generation and combining Monte Carlo simulation and 

Point Estimation Method to investigate the effects of network uncertainties. Reference 

[57] proposes a chance constrained formulation to tackle the uncertainties of load and 

wind turbine generators in transmission network expansion planning. Load and wind 

power generation are considered the main sources of uncertainty also in [58], where 

authors propose an efficient approach for probabilistic transmission expansion 

planning, dealt with by a Benders decomposition algorithm combined with a Monte 

Carlo method.  

Other studies deal with long-term uncertainties. For instance, authors in [59] address 

the problem of transmission expansion planning under uncertainty in an electric energy 

system, considering future demand growth and the availability of generation facilities as 

main uncertainty sources. A robust optimization model is used to derive the investment 

decisions that minimize the system’s total costs by anticipating the worst case realization 

of the uncertain parameters within an uncertainty set. Instead, reference [60] proposes 

a robust generation and transmission expansion planning model, including flexible AC 

transmission systems (FACTS) devices and considering the uncertainty related to the 
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annual net load duration curve. A robust optimization approach is also adopted in [61] 

and [62] to address generation expansion and transmission expansion, respectively. 

Specifically, reference [61] introduces a multi-year robust methodology for expansion 

planning, modelling the uncertainties associated with forecasted electricity load 

demand, as well as estimated investment and operation costs, through distribution-free 

bounded intervals producing polyhedral uncertainty sets. In [62] two optimization 

criteria for the transmission expansion planning problem under the robust optimization 

paradigm are studied, where maximum cost and maximum regret of the expansion plan 

over all uncertainties are minimized, respectively.  

Adaptation programming represents another method to cope with uncertainty. As 

described in [63], adaptation programming designs a flexible system by minimizing the 

sum of investment and operational cost and of system future adaptation cost to the 

conditions of other identified scenarios. Reference [64] further explores the adaptation 

programming method by applying this kind of model to a small system over a 40 year 

planning horizon, considering wind and solar build cost, carbon taxes, demand and peak 

demand growth, fuel prices and transmission costs as uncertainty sources.   

Among all the techniques developed to include uncertainty in the expansion planning 

framework, the most widely used is stochastic programming, a methodology introduced 

in the 1950s that uses a set of scenarios to model the future realization of the uncertain 

parameters in the considered planning horizon [65]. In recent years, several studies in 

the field of stochastic programming have been carried out, leading to the development of 

two classes of methods: two-stage and multi-stage models. In a typical two-stage 

stochastic model, the investment decisions represent first stage decisions, which are 

made before any uncertainty is revealed. Operational decisions are instead second stage 

decisions, made after realization of parameter values. For instance, in [66] a two-stage 

stochastic programming model for joint generation and transmission expansion is 

presented, considering as random events the demand, the equivalent availability of the 

generating plants and the transmission capacity factor of the transmission lines. 

Reference [67] presents a stochastic two-stage optimisation model to evaluate 

interregional grid reinforcements in Great Britain. The same approach is also used in 

[68] to determine the type and quantity of power plants to be constructed in each year of 

an extended planning horizon, considering uncertainty regarding future demand and 

fuel prices. Authors in [69] propose a two-stage stochastic generation expansion model, 

where the long-term wind power uncertainty is represented by a set of scenarios.  

The two-stage approach can be extended to a multi-stage method, constructing 

models that are both more flexible and complex. As explained in [70], in multi-stage 
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approaches expansion decisions are made at different stages, i.e., different points in time 

of the planning horizon. The expansion decisions at each stage depend on the scenario 

realization of the previous periods, but they do not depend on the future scenario 

realizations. Examples of multi-stage models are represented by [71], [72] and [24]. For 

instance, in [71] a multi-stage multi-scale linear stochastic model to optimize electricity 

generation, storage and transmission investments over a long planning horizon is 

presented. Both long-term uncertainties, such as investment and fuel-cost changes and 

long-run demand-growth rates, and short-term uncertainties, such as hour-to-hour 

demand and renewable-availability uncertainty, are considered in this analysis and the 

progressive hedging algorithm is applied to decompose the original model by scenario. 

Reference [72] deals with wind power investments considering three major issues: the 

production variability and uncertainty of wind power facilities, the eventual future 

decline in wind power investment costs and the significant financial risk involved in such 

investment decisions. Recognizing the previous important issues, this paper proposes a 

risk-constrained multi-stage stochastic programming model to make optimal investment 

decisions on wind power facilities along a multi-stage horizon. Finally, in [24] authors 

study how uncertain future renewable penetration levels impact the electricity system 

and try to quantify effects for the Central European power market, by applying a multi-

stage stochastic investment and dispatch model to analyse the effects on investment 

choices, electricity generation and system costs. Although multi-stage approach better 

represents long-term dynamics than two-stage method, the complexity of the problem in 

multi-stage models is further increased. Finding a right balance between modeling 

accuracy and computation tractability remains an open research topic.  

Table 4.1 reports a list of important features for expansion planning models, such as 

the modeling approach, the inclusion of investment decisions in new generation, storage 

and transmission facilities, the temporal detail in power system’s operation evaluation, 

the inclusion of unit commitment constraints, the long-term policies considered in the 

expansion planning framework and the number of periods in which investment decisions 

can be made along the planning horizon. According to these characteristics, some 

relevant works in the literature and the model proposed in this chapter are compared. 
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4.3 Modeling framework 

In this section, we present our approach to include long-term uncertainties in the GTEP 

analysis by introducing a two-stage stochastic MILP model. The distinct feature of the 

proposed model is a detailed representation of the short-term operation, which is 

required to properly evaluate all the challenges related to integrating high shares of 

renewables to reach decarbonisation targets. The motivations leading to the choice of a 

two-stage stochastic programming approach as well as the modeling assumptions, the 

notation and the mathematical formulation of the optimization model are presented in 

the following subsections. 

4.3.1 Uncertainty modeling 

In our approach, we focus on the uncertainty of fuel prices and CO2 price, because of the 

important role they play in the generation and transmission expansion planning by 

affecting the merit order of thermal power plants and the economic viability of renewable 

generation. To deal with these long-term uncertainties, different scenarios for prices are 

introduced, with the set of scenarios denoted by 𝒲. The joint GTEP problem is then 

formulated as a two-stage stochastic MILP model, being decommissioning of thermal 

power plants and investments in new generation, transmission and storage facilities 

first-stage variables and operating decisions second-stage variables. The choice of a two-

stage model rather than a multi-stage approach is first motivated by the objective of our 

analysis, which consists in supporting government authorities in defining a single 

optimal investment trajectory rather than multiple investment plans. The choice of a 

two-stage approach is also motivated by computational restrictions. Indeed, as can be 

noticed in Table 4.1, existing multi-stage models represent power systems short-term 

operation with a lower level of accuracy to the proposed model. For instance, no long-

term storage facilities or unit commitment constraints are included in references [24] 

and [71], while the proposed model provides an accurate modeling of short-term 

dynamics by considering the unit commitment constraints on a plant-by-plant level to 

properly evaluate all the challenges related to integrating high shares of renewables. 

Moreover, to reduce the computational burden, existing multi-stage models consider 

only a limited number of periods in which investment decisions can be made along the 

planning horizon. Our proposed model differs from multi-stage models by allowing 

investment decisions in each year of the planning horizon.  
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4.3.2 Notation 

For the sake of clarity, in this paragraph we provide the full notation needed to formulate 

the GTEP problem as a two-stage stochastic MILP model. 

 

Sets 

𝒴 Set of years, indexed by 𝑦 and 𝑖 

𝒵 Set of zones, indexed by 𝑧 

ℳ Set of macro-areas, indexed by 𝑚 

𝒦𝐸 Set of existing thermal power plants 

𝒦𝐶 Set of candidate thermal power plants 

𝒦 Set of thermal power plants (𝒦 = 𝒦𝐸 ∪ 𝒦𝐶), indexed by 𝑘 and 𝑘′ 

𝛺𝑧
𝑘 ⊂ 𝒦 Set of thermal power plants located in zone 𝑧 

𝒦𝐸1 ⊂ 𝒦𝐸 Set of existing thermal power plants to be mandatorily decommissioned 

𝒦𝐸2 ⊂ 𝒦𝐸 Set of existing thermal power plants that may be optionally 

decommissioned 

𝒦𝐶1 ⊂ 𝒦𝐶 Set of candidate thermal power plants to be mandatorily constructed 

𝒦𝐶2 ⊂ 𝒦𝐶 Set of candidate thermal power plants that may be optionally 

constructed 

𝒜𝒦𝑗 ⊂ 𝒦𝐶 𝑗-th group of associate candidate thermal power plants  

𝐽𝒜𝒦 Set of groups of associate candidate thermal power plants 

ℳℰ𝒦𝑗 ⊂ 𝒦𝐶 𝑗-th group of mutually exclusive candidate thermal power plants 

𝐽ℳℰ𝒦 Set of groups of mutually exclusive candidate thermal power plants 

ℒ𝐸 Set of existing transmission lines 

ℒ𝐶 Set of candidate transmission lines 

ℒ Set of transmission lines (ℒ = ℒ𝐸 ∪ ℒ𝐶), indexed by 𝑙 and 𝑙′ 

ℒ𝐶1 ⊂ ℒ𝐶  Set of candidate transmission lines to be mandatorily constructed 

ℒ𝐶2 ⊂ ℒ𝐶  Set of candidate transmission lines that may be optionally constructed 

𝒜ℒ𝑗 ⊂ ℒ𝐶 𝑗-th group of associate candidate transmission lines  

𝐽𝒜ℒ Set of groups of associate candidate transmission lines 

ℳℰℒ𝑗 ⊂ ℒ𝐶 𝑗-th group of mutually exclusive candidate transmission lines 

𝐽ℳℰℒ Set of groups of mutually exclusive candidate transmission lines 

ℋ𝐸 Set of existing hydropower plants  

ℋ𝐶 Set of candidate hydropower plants 



 

4.3 Modeling framework 102 

 

 
 

ℋ Set of hydropower plants (ℋ = ℋ𝐸 ∪ ℋ𝐶), indexed by ℎ 

𝛺𝑧
ℎ ⊂ ℋ Set of hydropower plants located in zone 𝑧 

ℬ Set of batteries, indexed by 𝑏 

𝛺𝑧
𝑏 ⊂ ℬ Set of batteries located in zone 𝑧 

ℱ Set of fuels, indexed by 𝑓 

𝛷𝑧,𝑓 ⊂ 𝛺𝑧
𝑘 Set of thermal power plants located in zone 𝑧 using fuel 𝑓 

𝒞𝑦 Set of representative days of year 𝑦, indexed by 𝑐 

𝒟𝑦 Set of all days of year 𝑦, indexed by 𝑑 and 𝑑′ 

𝒟𝑀
𝑦

⊂ 𝒟𝑦 Set of days of year 𝑦 in which the level of the long-term storage is 

checked 

𝒯 Set of hours, from 1 to 24, indexed by 𝑡 and 𝜏 

𝒲 Set of scenarios, indexed by 𝑤 

𝑚𝑎(𝑧) macro-area that contains zone 𝑧 

𝑈𝑃(𝑘) upgrade project of existing thermal power plant 𝑘 

𝑟𝑧(𝑙) Receiving-end zone of transmission line 𝑙 

𝑠𝑧(𝑙) Sending-end zone of transmission line 𝑙 

𝑓𝑢𝑒𝑙(𝑘) Fuel used in thermal power plant 𝑘 

Map𝑑,𝑐 Cluster index, i.e., injective map of each day 𝑑 to a representative day 𝑐 

 

Parameters 

𝑦0 [−] Reference year to which all investment costs are 

discounted 

𝑟 [−] Annual discount rate 

𝑝𝑟𝑜𝑏𝑤 [−] Probability of scenario 𝑤 

𝑐𝐸𝑁𝑃 [€/MWh] Penalty for energy not provided 

𝑐𝑂𝐺 [€/MWh] Penalty for over-generation 

𝑤𝑔𝑐 [−] Weight of representative day 𝑐 

𝐷𝐶𝑘 [€] Decommissioning cost of existing thermal power plant 𝑘 ∈

𝒦𝐸 

𝐼𝐶𝑘
The [€] Investment cost of candidate thermal power plant 𝑘 ∈ 𝒦𝐶 

𝐹𝐶𝑘 [€] Annual fixed costs of thermal power plant 𝑘 ∈ 𝒦 

𝐶𝑀𝑘,𝑦,𝑤  [€/MWh] Marginal production cost of thermal power plant 𝑘 in year 

𝑦 in scenario 𝑤 
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𝜏𝑘 [−] Earliest date for construction/decommission of thermal 

power plant 𝑘 

𝜏𝑘 [−] Latest date for construction/decommission of thermal 

power plant 𝑘 

𝑃𝑘 [MW] Minimum power output of thermal power plant 𝑘 

𝑃𝑘  [MW] Maximum power produced by thermal plant 𝑘 

𝑆𝑈𝐶𝑘  [€] Start-up cost of thermal power plant 𝑘 

𝑀𝑈𝑇𝑘  [h] Minimum up time of thermal power plant 𝑘 

𝑀𝐷𝑇𝑘  [h] Minimum down time of thermal power plant 𝑘 

𝛾𝑘,𝑤
𝑐

0
 [−] Initial ON/OFF status of thermal power plant 𝑘 in 

representative day 𝑐 in scenario 𝑤 

𝐻𝑅𝑘 [Gcal/MWh] Heat rate of thermal power plants of cluster 𝑘 

𝑂𝑀𝑘 [€/MWh] Operative and maintenance cost of thermal power plants 

of cluster 𝑘 

𝐼𝐶𝑧,𝑦
Sol [€/MW] Investment cost of new solar power capacity in zone 𝑧 in 

year 𝑦 

𝑠𝑜𝑙𝑧,0 [MW] Solar power capacity installed in zone 𝑧 at the beginning 

of the planning horizon 

𝑃𝑉𝑧,𝑦 [MW] Lower bound for solar power capacity in zone 𝑧 in year 𝑦 

𝑃𝑉𝑧,𝑦 [MW] Upper bound for solar power capacity in zone 𝑧 in year 𝑦 

𝐼𝐶𝑧,𝑦
Wind [€/MW] Investment cost of new wind power capacity in zone 𝑧 in 

year 𝑦 

𝑤𝑖𝑛𝑑𝑧,0 [MW] Wind power capacity installed in zone 𝑧 at the beginning 

of the planning horizon 

𝑊𝑧,𝑦 [MW] Lower bound for wind power capacity in zone 𝑧 in year 𝑦 

𝑊𝑧,𝑦 [MW] Upper bound for wind power capacity in zone 𝑧 in year 𝑦 

𝐷𝑧,𝑡
𝑐  [MW] Load in zone 𝑧 in hour 𝑡 of representative day 𝑐  

𝑅𝑧,𝑡
𝑐  [MW] Reserve requirement for zone 𝑧 in hour 𝑡 of representative 

day 𝑐 

𝜇𝑧,𝑡
𝑐  [MWh/MW] Solar power capacity factor for zone 𝑧 in hour 𝑡 of 

representative day 𝑐 

𝜌𝑧,𝑡
𝑐  [MWh/MW] Wind power capacity factor for zone 𝑧 in hour 𝑡 of 

representative day 𝑐 
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𝐼𝐶ℎ,𝑦
Hyd

 [€] Investment cost of candidate hydropower plant ℎ ∈ ℋ𝐶 in 

year 𝑦 

𝜏ℎ [−] Earliest date for construction of hydropower plant ℎ 

𝜏ℎ [−] Latest date for construction of hydropower plant ℎ 

𝐶𝑣𝑎𝑟ℎ [€/MWh] Operating cost of hydropower plant ℎ 

�̅�ℎ
IN [MW] Upper bound on hydropower plant ℎ pumping power 

�̅�ℎ
OUT [MW] Upper bound on hydropower plant ℎ power output 

𝑠�̅�ℎ [MWh] Upper bound on energy spillage from hydropower plant ℎ  

𝐹ℎ,𝑡
𝑐  [MWh] Hourly energy inflows for hydropower plant ℎ at time 𝑡 of 

representative day 𝑐 

𝜆ℎ
IN [−] Loss coefficient for hydro plant ℎ pumping (0 ≤ 𝜆ℎ

IN ≤ 1) 

𝜆ℎ
OUT [−] Loss coefficient for hydro plant ℎ power generation 

(𝜆ℎ
OUT ≥ 1) 

𝐸ℎ0
 [MWh] Energy content of hydropower plant ℎ at the beginning of 

planning horizon 

𝐸𝑃𝑅ℎ [h] Maximum energy to power ratio (in hours) for 

hydropower plant ℎ 

𝑀 [−] Size of the temporal window in long-term storage 

constraints, set to 7 days 

𝐼𝐶𝑏,𝑦
Batt [€/MW] Investment cost for battery 𝑏 in year 𝑦 

𝐶𝑣𝑎𝑟𝑏 [€/MWh] Operating cost of battery 𝑏 

𝐶𝐴𝑃𝑏

Batt
 [MW] Upper bound on battery 𝑏 installed capacity 

𝐸𝑏
𝑐

0
 [MWh] Initial energy content of battery 𝑏 in representative day 𝑐 

𝜆𝑏 [−] Loss coefficient for energy stored by battery 𝑏 (0 ≤ 𝜆𝑏 ≤ 1) 

𝜆𝑏
IN [−] Loss coefficient for battery 𝑏 charge (0 ≤ 𝜆𝑏

𝑖𝑛 ≤ 1) 

𝜆𝑏
OUT [−] Loss coefficient for battery 𝑏 discharge (𝜆𝑏

𝑜𝑢𝑡 ≥ 1) 

�̅�𝑏
IN [MW] Upper bound on battery 𝑏 charge 

�̅�𝑏
OUT [MW] Upper bound on battery 𝑏 discharge 

𝐸𝑃𝑅𝑏 [h] Maximum energy to power ratio (in hours) for battery 𝑏 

𝐼𝐶𝑙
Line [€] Investment cost of candidate transmission line 𝑙 ⊂ ℒ𝐶 

𝜏𝑙 [−] Earliest date for construction of candidate transmission 

line 𝑙 
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𝜏𝑙 [−] Latest date for construction of candidate transmission line 

𝑙 

𝐹𝑙 [MW] Minimum capacity of transmission line 𝑙 

𝐹𝑙  [MW] Maximum capacity of transmission line 𝑙 

𝐸𝐶𝑛𝑡𝑓 [Gcal/M. U] Energy content of fuel 𝑓 

𝑐𝑜2𝑓 [ton/Gcal] CO2 emission factor of fuel 𝑓 

𝐹𝐴̅̅ ̅̅
𝑓,𝑚,𝑦 [M. U] Upper bound on availability of fuel 𝑓 in macro-area 𝑚 in 

year 𝑦 

𝑃𝑟𝑦,𝑤
𝑓

 [€/Gcal] Price of fuel 𝑓 in year 𝑦 in scenario 𝑤 

𝐶𝑂2
̅̅ ̅̅ ̅

𝑚,𝑦 [ton] CO2 emission limit for macro-area 𝑚 in year 𝑦 

𝜑𝑚,𝑦  [−] Lower bound for renewables penetration in macro-area 𝑚 

in year 𝑦 

𝑃𝑟𝑦,𝑤
CO2 [€/ton] Emission price in year 𝑦 in scenario 𝑤 

 

Variables 

 

1) First-stage variables 

𝛿𝑘,𝑦
−  [−] 1: thermal power plant 𝑘 ∈ 𝒦𝐸 is decommissioned in year 𝑦; 0: 

otherwise  

𝛿𝑘,𝑦
+  [−] 1: thermal power plant 𝑘 ∈ 𝒦𝐶 is built in year 𝑦; 0: otherwise 

𝛿ℎ,𝑦 [−] 1: hydro power plant ℎ ∈ ℋ𝐶 is built in year 𝑦; 0: otherwise  

𝛿𝑙,𝑦 [−] 1: transmission line 𝑙 ∈ ℒ𝐶 is built in year 𝑦; 0: otherwise  

휃𝑘,𝑦
−  [−] 1: thermal power plant 𝑘 ∈ 𝒦𝐸 is decommissioned within year 

𝑦; 0: otherwise  

휃𝑘,𝑦
+  [−] 1: thermal power plant 𝑘 ∈ 𝒦𝐶 is built within year 𝑦; 0: 

otherwise 

휃ℎ,𝑦 [−] 1: hydro power plant ℎ ∈ ℋ𝐶 is built within year 𝑦; 0: otherwise  

휃𝑙,𝑦 [−] 1: transmission line 𝑙 ∈ ℒ𝐶 is built within year 𝑦; 0: otherwise  

𝑠𝑜𝑙𝑧,𝑦 [MW] New solar capacity installed in zone 𝑧 in year 𝑦 

𝑤𝑖𝑛𝑑𝑧,𝑦 [MW] New wind capacity installed in zone 𝑧 in year 𝑦 

𝑐𝑎𝑝𝑏,𝑦
Batt [MW] Storage capacity of battery 𝑏 installed in year 𝑦 
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2) Second-stage variables 

𝛾𝑘,𝑡,𝑤
𝑐  [−] 1: thermal power plant 𝑘 is ON in hour 𝑡 of representative day 𝑐 

in scenario 𝑤; 0: otherwise 

𝛼𝑘,𝑡,𝑤
𝑐  [−] 1: thermal power plant 𝑘 is started-up in hour 𝑡 of representative 

day 𝑐 in scenario 𝑤; 0: otherwise 

𝛽𝑘,𝑡,𝑤
𝑐  [−] 1: thermal power plant 𝑘 is shut-down in hour 𝑡 of 

representative day 𝑐 in scenario 𝑤; 0: otherwise 

𝑝𝑘,𝑡,𝑤
𝑐  [MW] Power production of thermal power plant 𝑘 at time 𝑡 of 

representative day 𝑐 above its minimum output 𝑃𝑘 in scenario 𝑤  

𝐸ℎ,𝑡,𝑤
IN,𝑐  [MW] Pumping power of hydro reservoir ℎ in hour 𝑡 of representative 

day 𝑐 in scenario 𝑤 

𝐸ℎ,𝑡,𝑤
OUT,𝑐 [MW] Power output of hydro reservoir ℎ in hour 𝑡 of representative day 

𝑐 in scenario 𝑤 

𝑠𝑙ℎ,𝑡,𝑤
𝑐  [MWh] Energy spillage from hydro reservoir ℎ in hour 𝑡 of 

representative day 𝑐 in scenario 𝑤 

�̂�ℎ,𝑤
LT,𝑑 [MWh] Energy level of hydro reservoir ℎ at the end of day 𝑑 in scenario 

𝑤 

𝐸𝑏,𝑡,𝑤
IN,𝑐  [MW] Charge of battery 𝑏 in hour 𝑡 of representative day 𝑐 in scenario 

𝑤 

𝐸𝑏,𝑡,𝑤
OUT,𝑐 [MW] Discharge of battery 𝑏 in hour 𝑡 of representative day 𝑐 in 

scenario 𝑤 

𝐸𝑏,𝑡,𝑤
𝑐  [MWh] Energy level of battery 𝑏 in hour 𝑡 of representative day 𝑐 in 

scenario 𝑤 

𝑥𝑙,𝑡,𝑤
𝑐  [MW] Power flow on transmission line 𝑙 in hour 𝑡 of representative day 

𝑐 in scenario 𝑤 

𝐸𝑁𝑃𝑧,𝑡,𝑤
𝑐  [MWh] Energy not provided in zone 𝑧 in hour 𝑡 of representative day 𝑐 

in scenario 𝑤 

𝑂𝐺𝑧,𝑡,𝑤
𝑐  [MWh] Over-generation in zone 𝑧 in hour 𝑡 of representative day 𝑐 in 

scenario 𝑤 

𝑅𝑁𝑃𝑧,𝑡,𝑤
𝑐  [MWh] Reserve not provided in zone 𝑧 in hour 𝑡 of representative day 𝑐 

in scenario 𝑤 

𝑅𝐸𝑆𝑧,𝑡,𝑤
𝑐  [MWh] Renewable generation in zone 𝑧 in hour 𝑡 of representative day 

𝑐 in scenario 𝑤 
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4.3.3 Mathematical formulation 

The GTEP model introduced in Section 3.2.3 can be modified as follows to include long-

term uncertainty on prices: 

min   𝑧 = ∑ ( ∑
𝐷𝐶𝑘  𝛿𝑘,𝑦

−

(1 + 𝑟)𝑦−𝑦0

𝑘∈𝒦𝐸

+ ∑
𝐼𝐶𝑘

The 𝛿𝑘,𝑦
+

(1 + 𝑟)𝑦−𝑦0

𝑘∈𝒦𝐶

) +

𝑦∈𝒴

  

 + ∑ (∑
𝐼𝐶𝑧,𝑦

Sol 𝑠𝑜𝑙𝑧,𝑦

(1 + 𝑟)𝑦−𝑦0

𝑧∈𝒵

+ ∑
𝐼𝐶𝑧,𝑦

Wind 𝑤𝑖𝑛𝑑𝑧,𝑦

(1 + 𝑟)𝑦−𝑦0

𝑧∈𝒵

)

𝑦∈𝒴

+  

 + ∑ ∑
𝐼𝐶ℎ,𝑦

Hyd
 𝛿ℎ,𝑦

(1 + 𝑟)𝑦−𝑦0

ℎ∈ℋ𝐶𝑦∈𝒴

+  

 + ∑ ∑
𝐼𝐶𝑏,𝑦

Batt 𝑐𝑎𝑝𝑏,𝑦
Batt

(1 + 𝑟)𝑦−𝑦0

𝑏∈ℬ𝑦∈𝒴

+  

 + ∑ ∑
𝐼𝐶𝑙

Line 𝛿𝑙,𝑦

(1 + 𝑟)𝑦−𝑦0

𝑙∈ℒ𝐶𝑦∈𝒴

+  

 + ∑ [ ∑ 𝐹𝐶𝑘  (1 − 휃𝑘,𝑦
− )

𝑘∈𝒦𝐸

+ ∑ 𝐹𝐶𝑘  휃𝑘,𝑦
+

𝑘∈𝒦𝐶

]

𝑦∈𝒴

+  

 
+ ∑ 𝑝𝑟𝑜𝑏𝑤

𝑤∈𝒲

[∑ ∑ 𝑤𝑔𝑐

𝑐∈𝒞𝑦𝑦∈𝒴

∑

24

𝑡=1

 ( ∑ 𝐶𝑀𝑘,𝑦,𝑤(𝑃𝑘  𝛾𝑘,𝑡,𝑤
𝑐 + 𝑝𝑘,𝑡,𝑤

𝑐 )

𝑘∈𝒦

  

 

 + ∑ 𝑆𝑈𝐶𝑘𝛼𝑘,𝑡,𝑤
𝑐

𝑘∈𝒦

+ ∑ 𝐶𝑣𝑎𝑟ℎ 𝐸ℎ,𝑡,𝑤
OUT,𝑐

ℎ∈ℋ

+ ∑ 𝐶𝑣𝑎𝑟𝑏 𝐸𝑏,𝑡,𝑤
OUT,𝑐

𝑏∈ℬ

  

 

 + 𝑐𝐸𝑁𝑃 ∑ 𝐸𝑁𝑃𝑧,𝑡,𝑤
𝑐

𝑧∈𝑍

+ 𝑐𝑂𝐺 ∑ 𝑂𝐺𝑧,𝑡,𝑤
𝑐

𝑧∈𝑍

)] (4.1) 

subject to 

𝛿𝑘,𝑦
− = 0 𝑘 ∈ 𝒦𝐸 , 𝑦 ∉ [𝜏𝑘 , 𝜏𝑘] (4.2) 

∑ 𝛿𝑘,𝑦
−

𝑦∈𝒴

= 1 𝑘 ∈ 𝒦𝐸1 (4.3) 

∑ 𝛿𝑘,𝑦
−

𝑦∈𝒴

≤ 1 𝑘 ∈ 𝒦𝐸2 (4.4) 

𝛿𝑘,𝑦
+ = 0 𝑘 ∈ 𝒦𝐶 , 𝑦 ∉ [𝜏𝑘, 𝜏𝑘] (4.5) 
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∑ 𝛿𝑘,𝑦
+

𝑦∈𝒴

= 1 𝑘 ∈ 𝒦𝐶1 (4.6) 

∑ 𝛿𝑘,𝑦
+

𝑦∈𝒴

≤ 1 𝑘 ∈ 𝒦𝐶2 (4.7) 

∑ 𝛿𝑘,𝑦
+

𝑦∈𝒴

= ∑ 𝛿𝑘′,𝑦
+

𝑦∈𝒴

 𝑘 ∈ 𝒜𝒦𝑗, 𝑘′ ∈ 𝒜𝒦𝑗, 𝑗 ∈ 𝐽𝒜𝒦 (4.8) 

∑ ∑ 𝛿𝑘,𝑦
+

𝑦∈𝒴𝑘∈ℳℰ𝒦𝑗

≤ 1 𝑗 ∈ 𝐽ℳℰ𝒦 (4.9) 

𝑃𝑉 𝑧,𝑦 ≤ 𝑠𝑜𝑙𝑧,0 + ∑ 𝑠𝑜𝑙𝑧,𝑖

𝑦

𝑖=1

≤ 𝑃𝑉𝑧,𝑦 𝑧 ∈ 𝒵, 𝑦 ∈ 𝒴 (4.10) 

𝑊𝑧,𝑦 ≤ 𝑤𝑖𝑛𝑑𝑧,0 + ∑ 𝑤𝑖𝑛𝑑𝑧,𝑖

𝑦

𝑖=1

≤ 𝑊𝑧,𝑦 𝑧 ∈ 𝒵, 𝑦 ∈ 𝒴 (4.11) 

𝛿ℎ,𝑦 = 0 ℎ ∈ ℋ𝐶 , 𝑦 ∉ [𝜏ℎ, 𝜏ℎ] (4.12) 

∑ 𝛿ℎ,𝑦

𝑦∈𝒴

≤ 1 ℎ ∈ ℋ𝐶  (4.13) 

∑ 𝑐𝑎𝑝𝑏,𝑦
Batt

𝑦∈𝒴

≤ 𝐶𝐴𝑃𝑏

Batt
 𝑏 ∈ ℬ (4.14) 

𝛿𝑙,𝑦 = 0 𝑙 ∈ ℒ𝐶 , 𝑦 ∉ [𝜏𝑙 , 𝜏𝑙] (4.15) 

∑ 𝛿𝑙,𝑦 

𝑦∈𝒴

= 1 𝑙 ∈ ℒ𝐶1 (4.16) 

∑ 𝛿𝑙,𝑦 

𝑦∈𝒴

≤ 1 𝑙 ∈ ℒ𝐶2 (4.17) 

∑ 𝛿𝑙,𝑦 

𝑦∈𝒴

= ∑ 𝛿𝑙′,𝑦 

𝑦∈𝒴

 𝑙 ∈ 𝒜ℒ𝑗, 𝑙′ ∈ 𝒜ℒ𝑗, 𝑗 ∈ 𝐽𝒜ℒ (4.18) 

∑ ∑ 𝛿𝑙,𝑦 

𝑦∈𝒴𝑙∈ℳℰℒ𝑗

≤ 1 𝑗 ∈ 𝐽ℳℰℒ (4.19) 

휃𝑘,𝑦
− = ∑ 𝛿𝑘,𝑖

−

𝑦

𝑖=1

 𝑘 ∈ 𝒦𝐸 , 𝑦 ∈ 𝒴 (4.20) 

휃𝑘,𝑦
+ = ∑ 𝛿𝑘,𝑖

+

𝑦

𝑖=1

 𝑘 ∈ 𝒦𝐶 , 𝑦 ∈ 𝒴 (4.21) 

휃ℎ,𝑦 = ∑ 𝛿ℎ,𝑖

𝑦

𝑖=1

 ℎ ∈ ℋ𝐶 , 𝑦 ∈ 𝒴 (4.22) 

휃𝑙,𝑦 = ∑ 𝛿𝑙,𝑖 

𝑦

𝑖=1

 𝑙 ∈ ℒ𝐶 , 𝑦 ∈ 𝒴 (4.23) 

𝛾𝑘,𝑡,𝑤
𝑐 ≤ 1 − 휃𝑘,𝑦

−   𝑘 ∈ 𝒦𝐸 , 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (4.24) 
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𝛾𝑘,𝑡,𝑤
𝑐 ≤ 휃𝑘,𝑦

+  𝑘 ∈ 𝒦𝐶 , 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (4.25) 

𝛾𝑘,𝑡,𝑤 ≤ 1 − 휃𝑘′,𝑦
+  𝑘 ∈ 𝒦𝐸 , 𝑘′ = 𝑈𝑃(𝑘), 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (4.26) 

𝑝𝑘,𝑡,𝑤
𝑐 ≤ 𝛾𝑘,𝑡,𝑤

𝑐 (𝑃𝑘 − 𝑃𝑘) 𝑘 ∈ 𝒦, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (4.27) 

𝛾𝑘,𝑡,𝑤
𝑐 − 𝛾𝑘,𝑤

𝑐
0

= 𝛼𝑘,𝑡,𝑤
𝑐 − 𝛽𝑘,𝑡,𝑤

𝑐  𝑘 ∈ 𝒦, 𝑡 = 1, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (4.28) 

𝛾𝑘,𝑡,𝑤
𝑐 − 𝛾𝑘,𝑡−1,𝑤

𝑐 = 𝛼𝑘,𝑡,𝑤
𝑐 − 𝛽𝑘,𝑡,𝑤

𝑐    

 
𝑘 ∈ 𝒦, 2 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (4.29) 

∑ 𝛼𝑘,𝜏,𝑤
𝑐 ≤

𝑡

 𝜏=𝑡−𝑀𝑈𝑇𝑘 +1

𝛾𝑘,𝑡,𝑤
𝑐  𝑘 ∈ 𝒦, 𝑀𝑈𝑇𝑘 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (4.30) 

∑ 𝛽𝑘,𝜏,𝑤
𝑐 ≤ 1 −

𝑡

 𝜏=𝑡−𝑀𝐷𝑇𝑘 +1

𝛾𝑘,𝑡,𝑤
𝑐  

  

 
𝑘 ∈ 𝒦, 𝑀𝐷𝑇𝑘 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (4.31) 

𝐸ℎ,𝑡,𝑤
IN,𝑐 ≤ �̅�ℎ

IN ℎ ∈ ℋ𝐸 , 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (4.32) 

𝐸ℎ,𝑡,𝑤
OUT,𝑐 ≤ �̅�ℎ

OUT ℎ ∈ ℋ𝐸 , 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (4.33) 

𝐸ℎ,𝑡,𝑤
IN,𝑐 ≤ �̅�ℎ

IN휃ℎ,𝑦 ℎ ∈ ℋ𝐶 , 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (4.34) 

𝐸ℎ,𝑡,𝑤
OUT,𝑐 ≤ �̅�ℎ

OUT휃ℎ,𝑦 ℎ ∈ ℋ𝐶 , 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (4.35) 

𝐸ℎ,𝑡,𝑤
IN,𝑐

�̅�ℎ
IN

+
𝐸ℎ,𝑡,𝑤

OUT,𝑐

�̅�ℎ
OUT

≤ 1 ℎ ∈ ℋ, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (4.36) 

𝑠𝑙ℎ,𝑡,𝑤
𝑐 ≤ 𝑠�̅�ℎ ℎ ∈ ℋ, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (4.37) 

�̂�ℎ,𝑤
LT,𝑑 = 𝐸ℎ0

+ ∑ ∑ ∑(𝐹ℎ,𝑡
𝑐 + 𝜆ℎ

IN 𝐸ℎ,𝑡,𝑤
𝑐,IN − 𝜆ℎ

OUT 𝐸ℎ,𝑡,𝑤
𝑐,OUT − 𝑠𝑙ℎ,𝑡,𝑤

𝑐 )

24

𝑡=1 𝑐∈Map𝑑′,𝑐

𝑑

𝑑′=𝑑−𝑀+1

 

 
ℎ ∈ ℋ, 𝑑 = 𝑀, 𝑤 ∈ 𝒲 (4.38) 

�̂�ℎ,𝑤
LT,𝑑 = �̂�ℎ,𝑤

LT,𝑑−𝑀 + ∑ ∑ ∑(𝐹ℎ,𝑡
𝑐 + 𝜆ℎ

IN 𝐸ℎ,𝑡,𝑤
𝑐,IN − 𝜆ℎ

OUT 𝐸ℎ,𝑡,𝑤
𝑐,OUT − 𝑠𝑙ℎ,𝑡,𝑤

𝑐 )

24

𝑡=1 𝑐∈Map𝑑′,𝑐

𝑑

𝑑′=𝑑−𝑀+1

 

 

ℎ ∈ ℋ, 𝑑 ∈ 𝒟𝑀
𝑦

, 𝑦 ∈ 𝒴, 𝑑 > 𝑀, 𝑤 ∈ 𝒲 (4.39) 
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�̂�ℎ,𝑤
LT,𝑑 ≤ 𝐸𝑃𝑅ℎ�̅�ℎ

IN ℎ ∈ ℋ, 𝑑 ∈ 𝒟𝑀
𝑦

, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (4.40) 

�̂�ℎ,𝑤
LT,𝑑 = 𝐸ℎ0

 ℎ ∈ ℋ, 𝑑 = |𝒟𝑦|, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (4.41) 

𝐸𝑏,𝑡,𝑤
IN,𝑐 ≤ ∑ 𝑐𝑎𝑝𝑏,𝑖

Batt

𝑦

𝑖=1

 ℎ ∈ ℬ, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (4.42) 

𝐸𝑏,𝑡,𝑤
OUT,𝑐 ≤ ∑ 𝑐𝑎𝑝𝑏,𝑖

Batt

𝑦

𝑖=1

 ℎ ∈ ℬ, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (4.43) 

𝐸𝑏,𝑡,𝑤
𝑐 ≤ 𝐸𝑃𝑅𝑏 ∑ 𝑐𝑎𝑝𝑏,𝑖

Batt

𝑦

𝑖=1

 𝑏 ∈ ℬ, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (4.44) 

𝐸𝑏,𝑡,𝑤
𝑐 = (1 − 𝜆𝑏) 𝐸𝑏,𝑡−1,𝑤

𝑐 + 𝜆𝑏
IN 𝐸𝑏,𝑡,𝑤

IN,𝑐 − 𝜆𝑏
OUT𝐸𝑏,𝑡,𝑤

OUT,𝑐  

 
𝑏 ∈ ℬ, 2 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (4.45) 

𝐸𝑏,𝑡,𝑤
𝑐 = (1 − 𝜆𝑏) 𝐸𝑏

𝑐
0

+ 𝜆𝑏
IN 𝐸𝑏,𝑡,𝑤

IN,𝑐 − 𝜆𝑏
OUT𝐸𝑏,𝑡,𝑤

OUT,𝑐  

 
𝑏 ∈ ℬ, 𝑡 = 1, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (4.46) 

𝐸𝑏,𝑡,𝑤
𝑐 = 𝐸𝑏

𝑐
0
 𝑏 ∈ ℬ, 𝑡 = 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (4.47) 

𝐹𝑙 ≤ 𝑥𝑙,𝑡,𝑤
𝑐 ≤ 𝐹𝑙  𝑙 ∈ ℒ𝐸 , 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (4.48) 

휃𝑙,𝑦 𝐹𝑙 ≤ 𝑥𝑙,𝑡,𝑤
𝑐 ≤ 휃𝑙,𝑦 𝐹𝑙 𝑙 ∈ ℒ𝐶 , 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (4.49) 

∑ (𝑃𝑘  𝛾𝑘,𝑡,𝑤
𝑐 + 𝑝𝑘,𝑡,𝑤

𝑐 )

𝑘𝜖𝛺𝑧
𝑘

+ 𝜇𝑧,𝑡
𝑐 (𝑠𝑜𝑙𝑧,0 + ∑ 𝑠𝑜𝑙𝑧,𝑖

𝑦

𝑖=1

) + 𝜌𝑧,𝑡
𝑐 (𝑤𝑖𝑛𝑑𝑧,0 + ∑ 𝑤𝑖𝑛𝑑𝑧,𝑖

𝑦

𝑖=1

) 

+ ∑ 𝑥𝑙,𝑡,𝑤
𝑐 + ∑ 𝐸ℎ,𝑡,𝑤

OUT,𝑐

ℎ𝜖𝛺𝑧
ℎ

+ ∑ 𝐸𝑏,𝑡,𝑤
OUT,𝑐

𝑏𝜖𝛺𝑧
𝑏

+ 𝐸𝑁𝑃𝑧,𝑡,𝑤
𝑐

𝑙|𝑟𝑧(𝑙)=𝑧

=  

= 𝐷𝑧,𝑡,𝑤
𝑐 + ∑ 𝑥𝑙,𝑡,𝑤

𝑐

𝑙|𝑠𝑧(𝑙)=𝑧

+ ∑ 𝐸ℎ,𝑡,𝑤
IN,𝑐

ℎ𝜖𝛺𝑧
ℎ

+ ∑ 𝐸𝑏,𝑡,𝑤
IN,𝑐

𝑏𝜖𝛺𝑧
𝑏

+ 𝑂𝐺𝑧,𝑡,𝑤
𝑐   

 𝑧 ∈ 𝒵, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (4.50) 
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∑ [(𝑃𝑘 − 𝑃𝑘) 𝛾𝑘,𝑡,𝑤
𝑐 − 𝑝𝑘,𝑡,𝑤

𝑐 ] ≥ 𝑅𝑧,𝑡
𝑐

𝑘𝜖𝛺𝑧

           

 
𝑧 ∈ 𝒵, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (4.51) 

∑  ∑ ∑ 𝑤𝑔𝑐

𝑐∈𝒞𝑦𝑘∈𝛷𝑧,𝑓 𝑧|𝑚𝑎(𝑧)=𝑚

∑
𝐻𝑅𝑘(𝑃𝑘 𝛾𝑘,𝑡,𝑤

𝑐 + 𝑝𝑘,𝑡,𝑤
𝑐 )

𝐸𝐶𝑛𝑡𝑓

24

𝑡=1

≤ 𝐹𝐴̅̅ ̅̅
𝑓,𝑚,𝑦  

 
𝑓 ∈ ℱ, 𝑚 ∈ ℳ, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (4.52) 

∑  ∑ ∑ ∑ 𝑤𝑔𝑐

𝑐∈𝒞𝑦

∑ 𝐻𝑅𝑘(𝑃𝑘 𝛾𝑘,𝑡,𝑤
𝑐 + 𝑝𝑘,𝑡,𝑤

𝑐 )

24

𝑡=1𝑘∈𝛷𝑧,𝑓𝑓∈ℱ𝑧|𝑚𝑎(𝑧)=𝑚

𝑐𝑜2𝑓 ≤ 𝐶𝑂̅̅ ̅̅
2𝑚,𝑦 

 

 
𝑚 ∈ ℳ, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (4.53) 

𝑅𝐸𝑆𝑧,𝑡,𝑤
𝑐 = 𝜇𝑧,𝑡

𝑐 (𝑠𝑜𝑙𝑧,0 + ∑ 𝑠𝑜𝑙𝑧,𝑖

𝑦

𝑖=1

) + 𝜌𝑧,𝑡
𝑐 (𝑤𝑖𝑛𝑑𝑧,0 + ∑ 𝑤𝑖𝑛𝑑𝑧,𝑖

𝑦

𝑖=1

) + ∑ 𝐸ℎ,𝑡,𝑤
OUT,𝑐

ℎ𝜖𝛺𝑧
ℎ

 

 𝑧 ∈ 𝒵, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (4.54) 

∑ ∑ 𝑤𝑔𝑐

𝑐∈𝒞𝑦𝑧|𝑚𝑎(𝑧)=𝑚

∑ 𝑅𝐸𝑆𝑧,𝑡,𝑤
𝑐

24

𝑡=1

≥ 𝜑𝑚,𝑦 ( ∑ ∑ 𝑤𝑔𝑐 ∑ 𝐷𝑧,𝑡
𝑐

24

𝑡=1𝑐∈𝒞𝑦𝑧|𝑚𝑎(𝑧)=𝑚

) 

 

 𝑚 ∈ ℳ, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (4.55) 

𝛿𝑘,𝑦
− , 휃𝑘,𝑦

− ∈ {0,1} 𝑘 ∈ 𝒦𝐸 , 𝑦 ∈ 𝒴 (4.56) 

𝛿𝑘,𝑦
+ , 휃𝑘,𝑦

+ ∈ {0,1} 𝑘 ∈ 𝒦𝐶 , 𝑦 ∈ 𝒴 (4.57) 

𝛿ℎ,𝑦 , 휃ℎ,𝑦 ∈ {0,1} ℎ ∈ ℋ𝐶 , 𝑦 ∈ 𝒴 (4.58) 

𝛿𝑙,𝑦 , 휃𝑙,𝑦 ∈ {0,1} 𝑙 ∈ ℒ𝐶 , 𝑦 ∈ 𝒴 (4.59) 

𝑠𝑜𝑙𝑧,𝑦, 𝑤𝑖𝑛𝑑𝑧,𝑦 ≥ 0 𝑧 ∈ 𝒵, 𝑦 ∈ 𝒴 (4.60) 

𝑐𝑎𝑝𝑏,𝑦
Batt ≥ 0 𝑏 ∈ ℬ, 𝑦 ∈ 𝒴 (4.61) 

𝛾𝑘,𝑡,𝑤
𝑐 , 𝛼𝑘,𝑡,𝑤

𝑐 , 𝛽𝑘,𝑡,𝑤
𝑐 ∈  {0,1} 𝑘 ∈ 𝒦, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (4.62) 

𝑝𝑘,𝑡,𝑤
𝑐 ≥ 0 𝑘 ∈ 𝒦, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (4.63) 
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𝐸ℎ,𝑡,𝑤
IN,𝑐 , 𝐸ℎ,𝑡,𝑤

OUT,𝑐 , 𝑠𝑙ℎ,𝑡,𝑤
𝑐 ≥ 0 ℎ ∈ ℋ, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (4.64) 

�̂�ℎ,𝑤
LT,𝑑 ≥ 0 ℎ ∈ ℋ, 𝑑 ∈ 𝒟𝑀

𝑦
, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (4.65) 

𝐸𝑏,𝑡,𝑤
IN,𝑐 , 𝐸𝑏,𝑡,𝑤

OUT,𝑐, 𝐸𝑏,𝑡,𝑤
𝑐 ≥ 0 𝑏 ∈ ℬ, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (4.66) 

𝑥𝑙,𝑡,𝑤
𝑐   free variable 𝑙 ∈ ℒ, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (4.67) 

𝐸𝑁𝑃𝑧,𝑡,𝑤
𝑐 , 𝑂𝐺𝑧,𝑡,𝑤

𝑐 , 𝑅𝐸𝑆𝑧,𝑡,𝑤
𝑐 ≥ 0 𝑧 ∈ 𝒵, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲. (4.68) 

 

The objective function (4.1) minimizes total system costs, computed as the sum of 

first-stage costs and the expected value of second-stage costs. Specifically, first-stage 

costs include decommissioning costs of existing thermal power plants, investment costs 

in new generation, transmission and storage facilities, and fixed costs for the available 

thermal power plants. Instead, second-stage costs are the operational costs, including 

thermal production costs, start-up costs, hydro and batteries operational costs and 

penalties for energy not provided and over-generation.  

Production costs are supposed to be linear functions of the power output, being 

𝐶𝑀𝑘,𝑦,𝑤 the slopes of these linear relationships. The marginal cost of thermal plant 𝑘 in 

year 𝑦 under scenario 𝑤 is computed as: 

𝐶𝑀𝑘,𝑦,𝑤 = 𝑂&𝑀𝑘 + 𝐻𝑅𝑘(𝑃𝑟𝑦,𝑤
𝑓𝑢𝑒𝑙(𝑘)

+ 𝑐𝑜2𝑓𝑢𝑒𝑙(𝑘)𝑃𝑟𝑦,𝑤
CO2) 

 

𝑘 ∈ 𝒦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲. (4.69) 

Constraints of the model can be divided into two groups, namely first-stage 

constraints (4.2)−(4.23) and second-stage constraints (4.24)−(4.55). Specifically, first-

stage constraints do not depend on the scenario realization and they control investment 

decisions as in the deterministic model by considering the different project priorities and 

the existence of logical relations between some investment decisions. Instead, second-

stage constraints are imposed for each scenario and they model the technical conditions 

for operating thermal and hydropower plants, power transmission and storages, 

considering the flexibility provided to the energy system by the hydro-thermal dispatch 

and the storage units. We refer the reader to Section 3.2.3 for a detailed description of 

these equations. Finally, constraints (4.56)−(4.61) and (4.62)−(4.68) define first-stage 

and second-stage variables, respectively. 
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4.4 Solution algorithm 

Given the long-term planning horizon and the high level of temporal and technical detail, 

the proposed two-stage stochastic programming model results computationally 

intractable even for a small number of scenarios. To obtain a solution, in this work, we 

apply a multi-cut Benders decomposition algorithm. Specifically, Benders 

decomposition is a method introduced in the 1960s [73] that allows solving a linear 

programming problem with complicating variables in a distributed manner at the cost of 

iterations [74]. In recent years, this algorithm has been widely applied to two-stage 

stochastic programming models [75, 76, 77]. Indeed, given their particular structure, 

two-stage stochastic programming models are suited for Benders decomposition 

application, being the first-stage variables the complicating variables: fixing the first-

stage variables, the stochastic model decomposes into a set of independent and easy to 

solve subproblems. In the literature, there are several examples of power systems 

planning models solved through Benders decomposition. Pioneering work in this area is 

due to Bloom [78], who in 1983 proposed the application of generalized Benders' 

decomposition in a model for planning least-cost investments in electricity generating 

capacity subject to probabilistic reliability constraints. Since then, many relevant 

contributions have been produced. For instance, in [79] an enhanced Benders 

decomposition algorithm for two-stage stochastic linear problems is presented and 

applied to a large-scale dynamic generation and transmission expansion planning model 

for the European power system. In [23], authors implement a Benders decomposition 

algorithm to solve a two-stage stochastic generation expansion model, whose first stage 

determines the long-term expansion and short-term unit commitment decisions, while 

the second stage models the real-time operation. In [80] a Benders decomposition 

algorithm is used to solve a network-constrained AC unit commitment problem under 

uncertainty. Finally, references [81] and [82] apply Benders decomposition algorithm to 

solve large-scale transmission expansion planning problems. 

In our model, the first-stage variables represent investment and decommissioning 

decisions and include 휃𝑘,𝑦
− , 휃𝑘,𝑦

+ , 휃ℎ,𝑦, 휃𝑙,𝑦, 𝑠𝑜𝑙𝑧,𝑦, 𝑤𝑖𝑛𝑑𝑧,𝑦, and 𝑐𝑎𝑝𝑏,𝑦
Batt. If these variables 

are fixed, the original problem decomposes into a set of independent subproblems, one 

per year and scenario, each representing the operation in the second stage. Benders 

decomposition replaces the two-stage stochastic problem with an iterative collection of 

smaller problems. At each iteration, the so-called master problem is solved first to 

determine suitable values for the first-stage variables. Once the investment schedule is 
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determined, the subproblems are solved. The number of these subproblems equals the 

number of years of the planning horizon times the number of scenarios. Finally, the dual 

information of the subproblems is sent to the master problem employing a cut to update 

the master problem solution. The next paragraphs provide the formulation of the master 

problem and the subproblems, as well as a more detailed description of the implemented 

algorithm. 

4.4.1 Master problem 

As previously mentioned, the master problem aims to provide values of the first-stage 

variables by solving at each iteration 𝑗 the following MILP model, whose optimization 

variables are 𝛿𝑘,𝑦
− , 휃𝑘,𝑦

− , 𝛿𝑘,𝑦
+ , 휃𝑘,𝑦

+ , 𝑠𝑜𝑙𝑧,𝑦, 𝑤𝑖𝑛𝑑𝑧,𝑦, 𝛿ℎ,𝑦, 휃ℎ,𝑦, 𝑐𝑎𝑝𝑏,𝑦
Batt, 𝛿𝑙,𝑦, 휃𝑙,𝑦, and 𝜎𝑤. 

min 𝑧𝑑𝑜𝑤𝑛  = ∑ ( ∑
𝐷𝐶𝑘𝛿𝑘,𝑦

−

(1 + 𝑟)𝑦−𝑦0

𝑘∈𝒦𝐸

+ ∑
𝐼𝐶𝑘

The𝛿𝑘,𝑦
+

(1 + 𝑟)𝑦−𝑦0

𝑘∈𝒦𝐶

) +

𝑦∈𝒴

 

 

 + ∑ (∑
𝐼𝐶𝑧,𝑦

Sol 𝑠𝑜𝑙𝑧,𝑦

(1 + 𝑟)𝑦−𝑦0

𝑧∈𝒵

+ ∑
𝐼𝐶𝑧,𝑦

Wind 𝑤𝑖𝑛𝑑𝑧,𝑦

(1 + 𝑟)𝑦−𝑦0

𝑧∈𝒵

)

𝑦∈𝒴

+  

 + ∑ ∑
𝐼𝐶ℎ,𝑦

Hyd
 𝛿ℎ,𝑦

(1 + 𝑟)𝑦−𝑦0

ℎ∈ℋ𝐶𝑦∈𝒴

+  

 + ∑ ∑
𝐼𝐶𝑏,𝑦

Batt 𝑐𝑎𝑝𝑏,𝑦
Batt

(1 + 𝑟)𝑦−𝑦0

𝑏∈ℬ𝑦∈𝒴

+  

 + ∑ ∑
𝐼𝐶𝑙

Line 𝛿𝑙,𝑦

(1 + 𝑟)𝑦−𝑦0

𝑙∈ℒ𝐶𝑦∈𝒴

+  

 + ∑ ( ∑ 𝐹𝐶𝑘 ∙ 휃𝑘,𝑦
+

𝑘∈𝒦𝐶

+ ∑ 𝐹𝐶𝑘(1 − 휃𝑘,𝑦
− )

𝑘∈𝒦𝐸

)

𝑦∈𝒴

+  

 + ∑ 𝑝𝑟𝑜𝑏𝑤 𝜎𝑤

𝑤∈𝒲

 (4.70) 

subject to 

𝜎𝑤  ≥  ∑ 𝑧𝑦,𝑤
(𝜈)

𝑦∈𝒴

  + ∑ ∑ 𝜆𝑘,𝑦,𝑤
𝜃−(𝜈)

(휃𝑘,𝑦
− − 휃𝑘,𝑦

− (𝜈)
)

𝑘∈𝒦𝐸𝑦∈𝒴

  

 + ∑ ∑ 𝜆𝑘,𝑦,𝑤
𝜃+(𝜈)

(휃𝑘,𝑦
+ − 휃𝑘,𝑦

+ (𝜈)
)

𝑘∈𝒦𝐶𝑦∈𝒴
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 + ∑ ∑ 𝜆𝑧,𝑦,𝑤
𝑠𝑜𝑙(𝜈)

(𝑠𝑜𝑙𝑧,𝑦 − 𝑠𝑜𝑙𝑧,𝑦
(𝜈)

)

𝑧∈𝒵𝑦∈𝒴

  

 + ∑ ∑ 𝜆𝑧,𝑦,𝑤
𝑤𝑖𝑛𝑑(𝜈)

(𝑤𝑖𝑛𝑑𝑧,𝑦 − 𝑤𝑖𝑛𝑑𝑧,𝑦
(𝜈)

)

𝑧∈𝒵𝑦∈𝒴

  

 + ∑ ∑ 𝜆ℎ,𝑦,𝑤
𝜃ℎ

(𝜈)

(휃ℎ,𝑦 − 휃ℎ,𝑦
 (𝜈)

)

ℎ∈ℋ𝐶𝑦∈𝒴

  

 + ∑ ∑ 𝜆𝑏,𝑦,𝑤
𝑐𝑎𝑝Batt(𝜈)

(𝑐𝑎𝑝𝑏,𝑦
Batt − 𝑐𝑎𝑝𝑏,𝑦

Batt(𝜈)
)

𝑏∈ℬ𝑦∈𝒴

  

 + ∑ ∑ 𝜆𝑙,𝑦,𝑤
𝜃𝑙

(𝜈)

(휃𝑙,𝑦 − 휃𝑙,𝑦
 (𝜈)

)

𝑙∈ℒ𝐶𝑦∈𝒴

  

  
𝑤 ∈ 𝒲, 𝜈 = 1, … , 𝑗 − 1 (4.71) 

𝜎𝑤 ≥ 𝜎𝑑𝑜𝑤𝑛  𝑤 ∈ 𝒲 (4.72) 

(4.2)–(4.23)   (4.73) 

∑ ∑ 𝑤𝑔𝑐

𝑐∈𝒞𝑦𝑧|𝑚𝑎(𝑧)=𝑚

∑ [𝜇𝑧,𝑡
𝑐 (𝑠𝑜𝑙𝑧,0 + ∑ 𝑠𝑜𝑙𝑧,𝑖

𝑦

𝑖=1

) + 𝜌𝑧,𝑡
𝑐 (𝑤𝑖𝑛𝑑𝑧,0 + ∑ 𝑤𝑖𝑛𝑑𝑧,𝑖

𝑦

𝑖=1

)]

24

𝑡=1

 

≥ 𝜑′𝑚,𝑦 ( ∑ ∑ 𝑤𝑔𝑐 ∑ 𝐷𝑧,𝑡
𝑐

24

𝑡=1𝑐∈𝒞𝑦𝑧|𝑚𝑎(𝑧)=𝑚

)  

 𝑚 ∈ ℳ, 𝑦 ∈ 𝒴 (4.74) 

(4.56)–(4.61)   (4.75) 

The objective function (4.70) includes investment, decommissioning and fixed costs 

and the auxiliary variables 𝜎𝑤 approximating the operation cost under scenario 𝑤. The 

solution of the master problem represents a lower bound for the optimal objective 

function value of the original problem, since the master problem is a relaxation of the 

original problem. Indeed, auxiliary variables 𝜎𝑤 lower approximate the second-stage 

costs as shown in [74], chapter 3.3.  At each iteration 𝑗, once the master problem is solved, 

the optimal values of the objective function and auxiliary variables 𝜎𝑤 are stored in the 

vectors 𝑧𝑑𝑜𝑤𝑛
(𝑗)

 and 𝜎𝑤
(𝑗)

, respectively. Besides, the optimal values of the first-stage 

variables are stored in the parameters 휃𝑘,𝑦
− (𝑗)

, 휃𝑘,𝑦
+ (𝑗)

, 𝑠𝑜𝑙𝑧,𝑦
(𝑗)

, 𝑤𝑖𝑛𝑑𝑧,𝑦
(𝑗)

, 휃ℎ,𝑦
 (𝑗)

, 𝑐𝑎𝑝𝑏,𝑦
Batt(𝑗)

, and 

휃𝑙,𝑦
(𝑗)

. These parameters will be used to build constraints (4.71) in subsequent iterations, 
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along with the optimal value of subproblems objective function 𝑧𝑦,𝑤
(𝑗)

 (4.76) and dual 

variable vectors 𝜆𝑦,𝑤
(𝑗)

, obtained from fixing constraints (4.79)–(4.85) in the subproblems 

at iteration 𝑗, as described in the next paragraph. Specifically, the constraints (4.71), 

referred to as Benders optimality cuts, tighten the feasible region of the master problem 

over iterations. While in the original Benders decomposition algorithm, a single cut is 

generated at each iteration [73], in our approach we implement a multi-cut strategy, 

generating at each iteration one cut per scenario. As observed in [23], [83] and [84], also 

in our application, the multi-cut Benders decomposition showed a faster convergence 

than the mono-cut algorithm.  

Lower bound constraints (4.72) on variables 𝜎𝑤 avoid the master problem being 

unbounded in the first iteration, while constraints (4.73) control investment and 

decommissioning decisions as in the original problem. To both accelerate the 

convergence speed to the optimal solution and ensure the feasibility of subproblems, new 

constraints on the production from wind and solar power plants (4.74) are imposed. 

Indeed, the achievement of the challenging renewable penetration targets mainly 

requires installing large shares of new solar and wind power capacity, while the 

possibility to expand the hydropower production is generally limited. For instance, in the 

Italian power system the hydropower generation is considered as a mature technology 

that has already reached its technological limit: the production from hydropower plants 

could only marginally increase in the future. Thus, we introduce a new parameter 𝜑′𝑚,𝑦, 

representing the lower bound for solar and wind power penetration in macro-area 𝑚 in 

year 𝑦, and we impose constraints (4.74) that can be included in the master problem, 

since wind and solar power production do not depend on the scenario realization for 

prices, as opposed to the hydro generation, which is a second-stage variable. In this way, 

we force the model to install new wind and solar power capacity from the first iterations, 

increasing the convergence speed. Finally, constraints (4.75) define optimization 

variables for the master problem.  

It is worth mentioning that in our analysis the master problem contains only 

optimality cuts, while Benders feasibility cuts are not included. Indeed, due to the 

second-stage variables 𝐸𝑁𝑃𝑧,𝑡,𝑤
𝑐 , 𝑂𝐺𝑧,𝑡,𝑤

𝑐  and 𝑅𝑁𝑃𝑧,𝑡,𝑤
𝑐  that model energy not provided, 

over-generation (i.e., energy in excess) and reserve not provided, respectively, the 

subproblems are always feasible. 
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4.4.2 Subproblems 

At each iteration 𝑗, for given values of the first-stage variables 휃𝑘,𝑦
+ (𝑗)

, 휃𝑘,𝑦
− (𝑗)

, 휃ℎ,𝑦
(𝑗)

, 𝑠𝑜𝑙𝑧,𝑦
(𝑗)

, 

𝑤𝑖𝑛𝑑𝑧,𝑦
(𝑗)

, 𝑐𝑎𝑝𝑏,𝑦
Batt(𝑗)

, and 휃𝑙,𝑦
 (𝑗)

 the subproblem associated with year 𝑦 and scenario 𝑤 is 

formulated as follows.  

min  𝑧𝑦,𝑤 = ∑ 𝑤𝑔𝑐

𝑐∈𝒞𝑦

∑ [ ∑ (𝐶𝑀𝑘,𝑦,𝑤(𝑃𝑘 𝛾𝑘,𝑡,𝑤
𝑐 + 𝑝𝑘,𝑡,𝑤

𝑐 ) + 𝑆𝑈𝐶𝑘𝛼𝑘,𝑡,𝑤
𝑐 )

𝑘∈𝒦

24

𝑡=1

  

 
 + ∑ 𝐶𝑣𝑎𝑟ℎ  𝐸ℎ,𝑡,𝑤

OUT,𝑐

ℎ∈ℋ

+ ∑ 𝐶𝑣𝑎𝑟𝑏 𝐸𝑏,𝑡,𝑤
OUT,𝑐

𝑏∈ℬ

  

 
 

+ ∑(𝑐𝐸𝑁𝑃𝐸𝑁𝑃𝑧,𝑡,𝑤
𝑐 + 𝑐𝑂𝐺𝑂𝐺𝑧,𝑡,𝑤

𝑐 + 𝑐𝑅𝑁𝑃𝑅𝑁𝑃𝑧,𝑡,𝑤
𝑐 )

𝑧∈𝑍

] (4.76) 

subject to 

(4.24)−(4.50), (4.52)−(4.55) 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦 (4.77) 

∑ [(𝑃𝑘 − 𝑃𝑘) 𝛾𝑘,𝑡,𝑤
𝑐 − 𝑝𝑘,𝑡,𝑤

𝑐 ] + 𝑅𝑁𝑃𝑧,𝑡,𝑤
𝑐 ≥ 𝑅𝑧,𝑡

𝑐

𝑘𝜖𝛺𝑧

 𝑧 ∈ 𝒵, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦 (4.78) 

휃𝑘,𝑦
+ = 휃𝑘,𝑦

+ (𝑗)
  : 𝜆𝑘,𝑦,𝑤

𝜃+
 𝑘 ∈ 𝒦𝐶 (4.79) 

휃𝑘,𝑦
− = 휃𝑘,𝑦

− (𝑗)
 : 𝜆𝑘,𝑦,𝑤

𝜃−
 𝑘 ∈ 𝒦𝐸 (4.80) 

휃𝑙,𝑦 = 휃𝑙,𝑦
(𝑗)

 : 𝜆𝑙,𝑦,𝑤
𝜃𝑙   𝑙 ∈ ℒ𝐶 (4.81) 

𝑤𝑖𝑛𝑑𝑧,𝑦 = 𝑤𝑖𝑛𝑑𝑧,𝑦
(𝑗)

 : 𝜆𝑧,𝑦,𝑤
𝑤𝑖𝑛𝑑  𝑧 ∈ 𝒵 (4.82) 

𝑠𝑜𝑙𝑧,𝑦 = 𝑠𝑜𝑙𝑧,𝑦
(𝑗)

 : 𝜆𝑧,𝑦,𝑤
𝑠𝑜𝑙   𝑧 ∈ 𝒵 (4.83) 

𝑐𝑎𝑝𝑏,𝑦 = 𝑐𝑎𝑝𝑏,𝑦
Batt(𝑗)

 : 𝜆𝑏,𝑦,𝑤
𝑐𝑎𝑝Batt

  𝑏 ∈ ℬ (4.84) 

휃ℎ,𝑦 = 휃ℎ,𝑦
(𝑗)

 : 𝜆ℎ,𝑦,𝑤
𝜃ℎ  ℎ ∈ ℋ𝐶 (4.85) 

0 ≤ 𝛾𝑘,𝑡,𝑤
𝑐 , 𝛼𝑘,𝑡,𝑤

𝑐 , 𝛽𝑘,𝑡,𝑤
𝑐 ≤ 1  𝑘 ∈ 𝒦, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦 (4.86) 

(4.63)–(4.68)   (4.87) 

𝑅𝑁𝑃𝑧,𝑡,𝑤
𝑐 ≥ 0  𝑧 ∈ 𝒵, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦 (4.88) 
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Objective function (4.76) minimizes the operating cost of the system in year 𝑦 under 

scenario 𝑤 by considering thermal production costs, start-up costs, hydro and batteries 

operational costs, and penalties for energy not provided, over-generation and reserve not 

provided. Constraints (4.77) include all operating constraints in the original problem but 

the reserve constraint (4.51), which is replaced by equation (4.78) that ensures the 

feasibility of each subproblem by introducing the reserve not provided, which is 

penalized in the objective function similarly to the energy not provided. Constraints 

(4.77) and (4.78) are imposed for every hour 𝑡 of every representative day 𝑐 belonging to 

the considered year 𝑦. Equations (4.79)–(4.85) fix the complicating variables to values 

determined by the master problem, while variables 𝜆𝑘,𝑦,𝑤
𝜃+

, 𝜆𝑘,𝑦,𝑤
𝜃−

, 𝜆𝑙,𝑦,𝑤
𝜃𝑙 , 𝜆𝑧,𝑦,𝑤

𝑤𝑖𝑛𝑑, 𝜆𝑧,𝑦,𝑤
𝑠𝑜𝑙 , 

𝜆𝑏,𝑦,𝑤
𝑐𝑎𝑝Batt

 and 𝜆ℎ,𝑦,𝑤
𝜃ℎ  are the dual variables of fixing constraints. At each iteration 𝑗, the 

values of the objective function and dual variables of fixing constraints in the subproblem 

associated to year 𝑦 and scenario 𝑤 are stored in the parameters 𝑧𝑦,𝑤
(𝑗)

 and 𝜆𝑦,𝑤
(𝑗)

, 

respectively. Both these parameters are needed to add Benders optimality cuts (4.71) to 

the master problem. Finally, constraints (4.86)–(4.88) define the optimization variables.  

It is worth mentioning that constraints (4.86) replace the original definition (4.62) 

imposed on thermal commitment variables, i.e., in the subproblems the second-stage 

binary variables that describe thermal power plants activation patterns (i.e., 𝛾𝑘,𝑡,𝑤
𝑐 , 𝛼𝑘,𝑡,𝑤

𝑐  

and 𝛽𝑘,𝑡,𝑤
𝑐 ) are relaxed to be continuous variables in the interval [0; 1]. Indeed, one 

requirement for Benders algorithm convergence is the convexity of subproblems. Thus, 

to obtain convex subproblems, binary unit commitment variables are relaxed to be 

continuous. In this way, the Benders algorithm will converge to a solution 𝑧𝐿𝑃
∗ , which is 

optimal for the relaxed problem (with continuous and binary investment decisions and 

continuous operation decisions), but that not necessarily feasible for the original 

investment problem. For this reason, once the algorithm reaches convergence, the 

investment decisions are fixed and the subproblems are solved as MILP models (i.e., by 

considering binary unit commitment variables) so as to obtain a “quasi-optimal” solution 

for the original problem 𝑧𝑀𝐼𝐿𝑃. The solution obtained with this procedure is therefore 

feasible, but not necessarily optimal (i.e., 𝑧𝐿𝑃
∗ ≤ 𝑧𝑀𝐼𝐿𝑃

∗ ≤ 𝑧𝑀𝐼𝐿𝑃). However, in this 

application, as common in the literature when solving real-scale power systems, it is 

impossible to solve the expansion planning problem up to optimality [23, 30, 44]. We 

consider a optimality gap tolerance of 0.1% (i.e., 
𝑧𝑀𝐼𝐿𝑃−𝑧𝐿𝑃

∗

𝑧𝐿𝑃
∗ ≤ 0.001) as done in analogous 

studies, see [30, 44]. Empirical results show how the two solutions 𝑧𝐿𝑃
∗  and 𝑧𝑀𝐼𝐿𝑃 are very 
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close, being the relative distance in the tests lower than 0.05% and, thus, much smaller 

than the reasonable optimality gap tolerance. Indeed, in our approach, we are modelling 

thermal unit commitment decisions by using the equations described in [29] and [30], 

which tighten the original problem’s feasible region by reducing the distance between 

relaxed and integer solutions.  

The solution of all subproblems allows computing the following upper bound to the 

optimal objective function value of the relaxed problem (with continuous and binary 

investment decisions and continuous operation decisions) at iteration 𝑗 

𝑧𝑢𝑝
(𝑗)

= 𝑧𝑑𝑜𝑤𝑛
(𝑗)

− ∑ 𝑝𝑟𝑜𝑏𝑤 ∙ 𝜎𝑤
(𝑗)

𝑤∈𝒲

+ ∑ 𝑝𝑟𝑜𝑏𝑤

𝑤∈𝒲

∑ 𝑧𝑦,𝑤
(𝑗)

𝑦∈𝒴

. (4.89) 

Indeed, parameter 𝑧𝑢𝑝
(𝑗)

 in equation (4.89) is equal to the sum of investment, 

decommissioning and fixed costs associated with the master problem’s solution at 

iteration 𝑗 (i.e., 𝑧𝑑𝑜𝑤𝑛
(𝑗)

− ∑ 𝑝𝑟𝑜𝑏𝑤 ∙ 𝜎𝑤
(𝑗)

𝑤∈𝒲 ) and the expected value of operational costs 

associated with the subproblems solution at iteration 𝑗 (i.e., ∑ 𝑝𝑟𝑜𝑏𝑤𝑤∈𝒲 ∑ 𝑧𝑦,𝑤
(𝑗)

𝑦∈𝒴 ). 

Since at each iteration the values of the first-stage and the second-stage variables are 

determined by solving two independent problems, 𝑧𝑢𝑝
(𝑗)

 represents an upper bound to the 

optimal objective function value of the relaxed problem. 

4.4.3 Steps of the solution algorithm 

Given a small tolerance value ε to control convergence, the Benders decomposition works 

as follows: 

0. Initialization. Initialize the iteration counter, set 𝑗 = 1. Set 𝑧𝑢𝑝
(𝑗)

= ∞ and 𝑧𝑑𝑜𝑤𝑛
(𝑗)

=

−∞. 

1. Master problem solution. Solve the master problem (4.70)–(4.75). Update 𝑧𝑑𝑜𝑤𝑛
(𝑗)

 

and the values of first-stage variables. 

2. First year. Consider the first year of the planning horizon, i.e., 𝑦 = 1. 

3. First scenario. Consider the first scenario, i.e., 𝑤 = 1. 

4. Subproblem solution. Solve subproblem (4.76)–(4.88) for year 𝑦 and scenario 𝑤. 

Compute 𝑧𝑦,𝑤
(𝑗)

 and store the dual variables of the fixing constraints (4.79)–(4.85). 

5. Scenario update. Consider the next scenario and repeat step 4. If all scenarios have 

been considered go to step 6. 
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6. Year update. Consider the next year of the planning horizon and repeat steps from 

3 to 5. If all years have been considered go to step 7. 

7. Convergence checking. Compute 𝑧𝑢𝑝
(𝑗)

. If 
|𝑧𝑢𝑝

(𝑗)
−𝑧𝑑𝑜𝑤𝑛

(𝑗)
|

𝑧𝑢𝑝
(𝑗) < 휀, the optimal solution has 

been obtained, go to step 8. Otherwise, update the iteration counter, set 𝑗 = 𝑗 + 1 and 

go back to step 1. 

8. Subproblems final integer solution. For each year 𝑦 and each scenario 𝑤, solve 

subproblems (4.76)–(4.88) replacing constraints (4.86) with (4.62), i.e., considering 

MILP problems. The solution obtained is now feasible for the original problem. 

4.4.4 Numerical tests 

To evaluate the performances of the proposed algorithm, several tests have been 

conducted on a small scenario consisting in three market zones interconnected in a tree 

network by two transmission lines. The scenario includes 66 thermal power plants, 

divided into 48 existing facilities and 18 candidate thermal units, four candidate 

transmission lines, three equivalent hydropower plants (one per zone), and a planning 

horizon of nine years, from 2017 up to 2025. It is worth mentioning that such a scenario 

represents a very simplified version of the Italian power system. Indeed, the objective of 

the tests described in this paragraph was to evaluate the performances of the proposed 

algorithm by comparing computational times between the monolithic stochastic model 

and the decomposed model for different number of scenarios. Due to computational 

restrictions, to keep the monolithic stochastic model computationally tractable only a 

simplified representation of power system can be considered.  

As regards to the long-term uncertainty modeling, we considered different scenarios 

for fuel and CO2 prices by randomly modifying values observed in the last year before the 

beginning of the planning horizon. To assess the performances of the proposed 

algorithm, we solved the monolithic stochastic model and the decomposed model for 

different number of scenarios. Specifically, we applied the algorithm summarized in 

Section 4.4.3 by considering 휀 = 10−4 as tolerance for the convergence, while in each 

iteration we solved the master problem up to optimality. 

 Table 4.2 reports the results of our numerical experiments that we obtained on a 

computer with two 2.10 GHz Intel® Xeon® Platinum 8160 CPU Processors and 128 GB 

of RAM, using language extension GUSS [85] integrated with solver Gurobi under GAMS 

24.7.4.  
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Table 4.2 Performances of the proposed algorithm for an increasing number of scenarios 

As can be observed, the application of the multi-cut Benders decomposition strategy 

dramatically reduces solution times. Specifically, the computational savings increase as 

the number of scenario increases. For instance, while the monolithic and the 

decomposed problem present similar solution times when five scenarios are considered, 

for 20 scenarios the computational times with Benders decomposition are reduced of a 

factor 100. Moreover, the monolithic problem becomes computationally intractable 

when 30 scenarios are generated, while the decomposed model provides the solution to 

the problem in about 15 minutes.  

Table 4.2 also provides the number of iterations needed to reach convergence. As can 

be noticed, as the number of scenarios increases the number of iterations required by the 

algorithm to reach convergence decreases. For instance, as shown in Fig. 4.1, when 10 

scenarios are considered the algorithm reaches convergence in 15 iterations, being the 

upper and the lower bound equal to respectively 83.496 billions and 83.488 billions, 

hence satisfying the predefined tolerance 휀 = 10−4.  

Finally, Table 4.2 reports the objective function values 𝑧𝐿𝑃
∗  for the relaxed problem 

(with continuous and binary investment decisions and continuous operation decisions) 

and the “quasi-optimal” solution for the original problem 𝑧𝑀𝐼𝐿𝑃 obtained once the 

algorithm reaches convergence by fixing the investment decisions and solving the 

subproblems as MILP models. As previously mentioned, empirical results show how the 

two solutions 𝑧𝐿𝑃
∗  and 𝑧𝑀𝐼𝐿𝑃 are very close, being the relative distance in the tests lower 

than 0.05% and, thus, much smaller than the optimality gap tolerance of 0.1% usually 

chosen [29, 43] when working with large-scale optimization models. 

 Number of scenarios 

 2 5 10 15 20 30 

Monolithic problem solution 

time [min] 
2.52 12.31 109.20 376.15 1341.74 

Out of 

memory 

Decomposed problem solution 

time [min] 
6.21 8.51 9.88 10.93 12.53 15.78 

Number of iterations 19 17 15 14 14 13 

𝑧𝐿𝑃
∗  [109 €] 84.103 83.691 83.496 83.294 83.120 82.930 

𝑧𝑀𝐼𝐿𝑃 [109 €] 84.126 83.728 83.533 83.299 83.159 82.969 

Difference between relaxed and 

integer solution [%] 
0.03% 0.04% 0.05% 0.01% 0.05% 0.05% 
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Fig. 4.1 Upper and lower bounds values over iterations in the 10 scenarios numerical test 

4.5 Case study 

As a case study for planning the joint expansion of generation and transmission facilities 

under uncertainty, we chose the Italian power system. Specifically, we modified the 

scenario introduced in Section 3.3 by including the long-term uncertainty on prices and 

by considering a longer planning horizon, from 2020 up to 2040. 

4.5.1 Scenario construction 

In this paragraph, we describe the activities performed to adapt the Italian scenario 

introduced in the previous chapter to the stochastic analysis, by considering different 

scenarios for prices and a longer planning horizon in order to obtain more reliable 

expansion plans. Only the differences with respect to the scenario for deterministic GTEP 

analysis are discussed in this section. We refer the reader to Section 3.3.1 for a complete 

description of the scenario. 

As described in the previous chapter, we selected five representative days to model 

the operations in each year of the planning horizon. Similarly to the other representative 

days, also representative days for the period 2030-2040 have been obtained by applying 

an annual average demand growth of 1%, as shown in Fig. 4.2. 
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Fig. 4.2 Zonal load [TWh/year] in the stochastic analysis 

As far as renewable installed capacity growth is concerned, in the stochastic analysis 

the challenging 55% target for renewable penetration has been imposed in every year of 

the planning horizon from 2030 to 2040. Moreover, a lower bound of 36% has been 

imposed for the penetration of wind and solar power generation in 2030. 

Regarding the thermal fleet, given the longer planning horizon, we included in this 

scenario more candidate Combined Cycle Power Plants and Open Cycle Power Plants 

(both fuelled by natural gas) starting operation from 2025 as shown in Table 4.3. 

Regarding fuel consumption, similarly to the deterministic analysis, we have 

considered a CO2 emission cap of 70 Mtons for each year of the planning horizon, 

according to CESI elaborations of long-term targets set for the Italian power system [86, 

87], aimed at reducing the impact of the electricity sector on greenhouse gas emissions. 

In terms of the storage system, we have considered the same candidate storage projects 

of the previous scenario, whose technical data are summarized in Table 3.3. Investment 

cost for batteries is assumed to decrease in the period 2020-2040, as stated in [54], with 

an exponentially decreasing trend as shown in Fig. 4.3.  

Table 4.3 Installed, outgoing and incoming capacity [GW] in the stochastic analysis 

 CCGT COAL OIL GT TOT 

Installed in 2020 37.75 8.15 1.42  2.57 49.89 

Outgoing capacity 2020/2030  3.57 8.15 1.42  1.45 14.59 

Incoming capacity 2025/2030 11.20 - - 15.45 26.65 

ITcn ITcs ITn ITs ITcal ITsar ITsic

2020 34.4 48.2 185.8 22.8 5.8 8.5 18.6

2030 38.3 54.1 206.1 25.2 6.4 9.4 20.6

2040 42.8 62.0 229.9 28.2 7.1 10.7 23.1
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Fig. 4.3 Batteries investment cost trend 

Also PV and wind investment costs are supposed to decrease along the planning 

horizon due to technology development. Specifically, while PV investment cost in the 

current analysis goes from 1000 €/kW in 2020 to 600 €/kW in 2030 to 450 €/kW in 

2040, the wind investment cost is supposed to decrease from 1300 €/kW in 2020 to 900 

€/kW in 2030 to 690 €/kW in 2040. 

Fuel prices, together with CO2 price, play an important role in the generation 

expansion plan optimization because they affect the merit order of thermal power plants 

and the economic viability of renewable generation. Moreover, fuel and CO2 prices are 

quite volatile, depending on market fluctuations, the government's policy, and the 

political situation. For this reason, the stochastic analysis has been performed on prices, 

focusing on both the CO2 and the fuel price. Indeed, we have used prices scenarios 

described in [51], which provides two scenarios for fuel prices (i.e., A and B scenario for 

fuel prices) and three different scenarios for emission costs (i.e., low, medium and high 

CO2 prices). These scenarios are summarized in Table 4.4 and Table 4.5.  

Table 4.4 CO2 prices [€/ton] in different scenarios 
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Table 4.5 Fuel prices [€/Gcal] in different scenarios 

Fuel Scenario 2020 2030 2040 

Gas [€/Gcal] 
A 23.43 28.881 27.63 

B 23.43 36.84 30.56 

Gasoil [€/Gcal] 
A 90.00 91.25 71.58 

B 90.00 85.81 102.14 

Coal [€/Gcal] 
A 9.50 10.47 10.47 

B 9.50 13.40 10.47 

EUmix [€/Gcal] 
A 19.68 29.72 39.76 

B 19.68 38.04 39.76 

 

4.5.2 Results and discussion 

We solved the proposed model on a computer with two 2.10 GHz Intel® Xeon® 

Platinum 8160 CPU Processors and 128 GB of RAM, using language extension GUSS 

integrated with solver Gurobi under GAMS 24.7.4. We considered 휀 = 10−4 as tolerance 

for Benders decomposition convergence, while in each iteration we solved the master 

problem up to optimality. Fig. 4.4 illustrates the evolution over iterations of the multi-

cut Benders algorithm, which converges in 41 iterations. Indeed, at iteration 41 the 

relative distance between upper and lower bound equals 0.95 ⋅ 10−4, satisfying the 

predefined tolerance. 

 

Fig. 4.4 Upper and lower bounds values over iterations in multi-cut Benders algorithm 
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Table 4.6 Size and solution time of master problem and subproblems at the last iteration of Benders 

algorithm 

The total time needed to solve the problem is 19,032 seconds, corresponding to 5 

hours 17 minutes and 12 seconds. Table 4.6 provides more information about 

computational times, specifying the size and the solution time for the master problem 

and the subproblems at the last iteration of Benders decomposition algorithm. As can be 

noticed, two different types of subproblems are considered, namely the base case and the 

updated subproblem. Indeed, language extension GUSS works as follows. First, the base 

case, i.e., the model instance related to the first subproblem, is considered. After solving 

the base case, the update data for each subproblem is applied to the model. Then, GUSS 

communicates the changes from the previous model instance to the solver. This 

procedure not only reduces the amount of data communicated to the solver, but also, in 

the case of an LP model, allows the solver to restart from an advanced basis and its 

factorization, dramatically reducing computational times. Indeed, as can be observed in 

Table 4.6, while the base case solution requires almost two minutes, each of the updated 

subproblems is solved in only 2.622 seconds on average. Since the number of 

subproblems equals 126, at each iteration, the average time required to solve all the 

subproblems is 440.242 seconds.  

Moreover, it is worth mentioning that, although in this analysis we considered a small 

number of scenarios, thanks to Benders decomposition and language extension GUSS, 

the proposed model is scalable. Specifically, Table 4.7 provides the solution time 

observed by considering the same tolerance for Benders convergence (i.e., 휀 = 10−4) and 

a different number of scenarios, randomly built. As can be noticed, the stochastic model 

with 30 scenarios is solved in about 20 hours, a result compatible with time requirements 

in investment studies.  

 
Table 4.7 Solution time for different number of scenarios 

 
# 

Constraints 

# Decision 

Variables 

# Discrete 

Variables 

CPU Time 

[seconds] 

Master Problem  9,665 12,859 5,670 27.408 

First Subproblem (Base Case) 182,179 149,408 0 112.492 

Updated Subproblem 182,179 149,408 0 2.622 

Number of scenarios 3 6 10 20 30 

Solution time [h:min] 3:07 5:18 7:48 14:04 20:21 
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As explained in the previous section, since in each iteration subproblems are defined 

as linear problems, second-stage decisions 𝛾𝑘,𝑡,𝑤
𝑐 , 𝛼𝑘,𝑡,𝑤

𝑐  and 𝛽𝑘,𝑡,𝑤
𝑐 , related to the 

commitment of thermal power plants, could be infeasible for the original problem. For 

this reason, once convergence is reached, subproblems are solved as mixed-integer linear 

problems, obtaining the final solution, characterized by total system costs higher than 

the convergence value of the Benders decomposition algorithm. However, thanks to the 

tight formulation of thermal unit commitment constraints, this difference is very small. 

Indeed, in this problem instance, the total system costs in the relaxed solution are 

403,729 M€, while the integer solution is only 0.02% more expensive, with the objective 

function value being 403,810 M€. 

Table 4.8 Breakdown of system costs in the stochastic analysis 

Costs M€ % 

Thermal Capacity Expansion 2,988 0.74% 

Wind Capacity Expansion 14,128 3.50% 

Solar Capacity Expansion 33,832 8.38% 

Transmission Capacity Expansion 1,627 0.40% 

Pump Units Capacity Expansion 3,480 0.86% 

Batteries Capacity Expansion 4,554 1.13% 

Decommissioning Costs 211 0.05% 

Thermal Fixed Costs 8 0.002% 

Expected Thermal Production Cost 341,619 84.60% 

Expected Start-Up Costs 399 0.10% 

Expected Hydro Operation Costs 170 0.04% 

Expected Batteries Operation Costs 766 0.19% 

Expected Penalties for Overgeneration 28 0.01% 

Expected Penalties for Energy Not Provided 0 0% 

Total System Expected Costs 403,810 100% 
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Table 4.9 Breakdown of system operation costs for different scenarios [M€] 

The system expected costs for the whole expansion planning period are shown in 

Table 4.8. As can be observed, there is a remarkable difference between the first-stage 

and second-stage costs: while the sum of investment, decommissioning and fixed costs 

represents 15% of total costs, operating costs account for 85% of total costs. Specifically, 

the most relevant cost for the system is related to the production costs of thermoelectric 

power plants, representing 99.6% of second-stage costs and 84.6% of total costs. On the 

contrary, start-up costs of thermoelectric power plants have a small impact, being 0.1% 

of total costs. 

While investment, decommissioning and fixed costs are independent of the scenario 

realization, operation costs, being second-stage costs, depend on the considered scenario 

for CO2 and fuel prices. Specifically, Table 4.9 describes how system costs vary depending 

on stochastic prices. As can be noticed, for each fuel price scenario A and B, the three 

CO2 prices scenarios present similar values of start-up costs and operation costs of hydro 

plants, while batteries operational costs slightly differ between scenarios. As far as 

thermal production costs are concerned, they significantly differ in the six scenarios. As 

expected, since CO2 and fuel prices affect the thermal plants marginal production costs 

𝐶𝑀𝑘,𝑦,𝑤, the higher these parameters, the greater the production costs, which vary from 

 Fuel Price, Scenario A Fuel Price, Scenario B 

 Scenarios for CO2 prices Scenarios for CO2 prices 

 Low Medium High Low Medium High 

Thermal Production 307,024 318,085 346,978 342,262 353,317 382,048 

Start-Up 551 508 415 313 293 317 

Penalties for 

Overgeneration 
28 28 28 28 28 28 

Penalties for Energy 

Not Provided 
0 0 0 0 0 0 

Batteries Operation 696 726 789 711 741 933 

Hydro Operation 164 168 166 174 173 175 

Total Operation 308,463 319,154 348,376 343,487 354,551 383,501 

Investment 60,828 60,828 60,828 60,828 60,828 60,828 

Total Cost 369,291 380,342 409,204 404,315 415,380 444,329 
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307,024 M€ in the fuel price scenario A with low CO2 prices to 382,048 M€ in the fuel 

price scenario B with high CO2 prices. 

Table 4.10 shows the additional capacity of wind and PV installed to reach the RES 

penetration target in 2040. The RES installed capacity consists of 59.2 GW of PV and 

17.97 GW of wind power: this unbalance may be explained by the lower costs of the PV 

technology with respect to the wind technology.  

Table 4.10 Renewable generation capacity expansion [GW] divided by source and implementation year in 

the stochastic analysis 

Year Wind PV 

2020 3.76 7.67 

2021 0.76 8.31 

2022 0.79 2.46 

2023 0.78 2.46 

2024 0.78 2.46 

2025 0.78 2.46 

2026 0.78 2.46 

2027 0.78 2.46 

2028 0.78 2.46 

2029 0.78 2.46 

2030 0.78 2.46 

2031 0.78 2.46 

2032 0.78 2.46 

2033 0.78 2.46 

2034 0.78 2.46 

2035 0.78 2.46 

2036 0.78 2.46 

2037 0.78 2.46 

2038 0.78 1.93 

2039 0.26 1.93 

Total 17.97 59.20 
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Moreover, as can be noticed, annual capacity increases are coincident in most of the 

years of the planning horizon. Indeed, the total yearly solar and wind power installed 

capacity is constrained by equations (4.10) and (4.11), whose right-hand sides in our 

numerical experiments linearly increase over time with a slope of 2.46 GW/year and 0.78 

GW/year for solar and wind power technology, respectively. As regards to the solar 

technology, in the analysed scenario the optimal solution consists of installing all the 

possible capacity from year 2021 to year 2037. Since the total solar capacity installed in 

the Italian power system reaches its upper bound first in year 2021, yearly capacity 

increases from year 2022 to year 2037 are equal to 2.46 GW/year, as can be noticed from 

Table 4.10. Similar results can be observed also for the wind technology, with the upper 

bound to the total installed capacity first reached in year 2022. 

As far as interconnection projects are concerned, new national and international 

cross border lines must be implemented in years 2025, 2029 and 2040 to better exploit 

the stochastic renewable energy sources and compensate for the decommissioning of 

some Italian thermoelectric power plants. The selected interconnections are listed in 

Table 4.11. 

Moreover, the tool couples the installed RES capacity with energy storage systems, 

installing throughout the planning period 5.9 GW of batteries and 3.98 GW of pumping 

units. A list that summarizes the installed capacity according to technology and zone is 

reported in Table 4.12. As can be noticed, as regards to batteries capacity, the model 

suggests installing both Lithium-Ion batteries and Sodium-Ion batteries in all market 

zones, diversifying capacity.  

Table 4.11 Candidate interconnections selected by the model in the stochastic analysis 

From To Transmission Limits Year of intervention 

Montenegro Central-South [–600 MW ; 600 MW] 2025 

Tunisia Sicily [–600 MW ; 600 MW] 2025 

Central-South Central-North [–150 MW ; 150 MW] 2025 

Central-South Central-North [–1000 MW ; 1000 MW] 2029 

South Central-South [0 MW ; 900 MW] 2040 

South Central-South [0 MW ; 200 MW] 2040 
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Table 4.12 Installed capacity of energy storage systems [MW] in the stochastic analysis 

Zone Technology Installed Capacity [MW] 

North Lithium-Ion Batteries 355 

North Sodium-Ion Batteries 252 

Central-North Lithium-Ion Batteries 530 

Central-North Sodium-Ion Batteries 200 

Central-South Lithium-Ion Batteries 301 

Central-South Sodium-Ion Batteries 370 

Central-South Pumping Unit 1000 

South Lithium-Ion Batteries 600 

South Sodium-Ion Batteries 584 

South Pumping Unit 450 

Calabria Lithium-Ion Batteries 600 

Calabria Sodium-Ion Batteries 600 

Calabria Pumping Unit 1250 

Sicily Lithium-Ion Batteries 600 

Sicily Sodium-Ion Batteries 231 

Sicily Pumping Unit 480 

Sardinia Lithium-Ion Batteries 79 

Sardinia Sodium-Ion Batteries 600 

Sardinia Pumping Unit 800 

In the list of thermoelectric candidate projects, ten CCGT power plants have been 

selected as thermoelectric expansion capacity, starting operation in 2025. On the 

contrary, the decommissioning of one oil and three old CCGT power plants has been 

planned for 2027 in Sardinia, as a result of the forecasted increase of the natural gas price 

and of the high RES penetration in this zone. The new thermal power plants introduced 

in the system are located in the North, Central-South and South zones. These new 

thermal power plants ensure the availability of energy reserve margins.  

Fig. 4.5 reports the expected energy generation in 2040 divided by energy source, for 

each Italian zone.  



 

4.5 Case study 132 

 

 
 

 

Fig. 4.5 Expected energy generation by source and domestic demand for each Italian market zone in year 

2040 

As can be noticed, since the RES production (i.e., from wind, solar and hydro sources) 

is 222 TWh while the load is 404 TWh, the target of reaching 55% of renewable 

penetration by 2040 has been fully achieved. Half of the total solar expansion capacity, 

as well as most of the thermoelectric expansion capacity, has been installed in the North, 

due to its high electricity demand. Even though generation exceeds demand in some 

market zones, in 2040 Italy will import 17 TWh from neighboring countries. 

Fig. 4.6 shows the installed capacity at the end of the planning period, grouped by 

source and zone. As can be noticed, the model suggests installing large shares of PV 

capacity in all Italian market zones and especially in the North, while the wind expansion 

is mainly located in southern regions, which are characterized by the highest wind 

capacity factors. 

 

Fig. 4.6 Installed capacity by source for each market zone in year 2040 
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4.6 Chapter conclusions 

In this chapter, the problem of planning the joint generation and transmission expansion 

under uncertainty has been discussed. First, a comprehensive review of the different 

approaches developed in the literature to deal with long-term uncertainties has been 

provided, comparing the different works according to some relevant features for 

expansion planning models.  

Then, our approach to the stochastic GTEP analysis has been introduced. Specifically, 

in our work, we decided to focus on the uncertainty of thermal power plants production 

costs, because of the important role they play in the generation and transmission 

expansion planning by affecting the merit order of thermal power plants and the 

economic viability of renewable generation. We consider several scenarios for fuel prices 

and CO2 price and we define capacity expansion decisions using a two-stage stochastic 

MILP model that aims at minimizing the sum of investment, decommissioning and fixed 

costs and the expected value of operational costs. 

Given the long-term planning horizon and the high dimensionality of GTEP 

problems, the proposed stochastic model results computationally intractable even for a 

small number of scenarios. Thus, also a solution algorithm based on the multi-cut 

Benders decomposition strategy has been introduced in this chapter. Numerical tests 

performed on several case studies showed the huge computational savings obtained by 

applying the proposed algorithm, especially when a high number of scenarios is 

considered. 

Finally, an example of stochastic GTEP analysis has been presented by planning the 

capacity expansion of the Italian power system in the planning horizon 2020-2040 to 

reach decarbonisation targets set by the European Commission. Empirical results show 

how solar PV technology could play a key role in achieving these policy targets, being the 

main technology installed in the solution provided by the model. The huge solar 

penetration would require installing new storage systems (pumping units, mainly in 

southern Italian regions, and batteries) and reinforcing the transmission network, by 

building new national and international cross border transmission lines, so as to better 

exploit the intermittent renewable energy sources and compensate for the 

decommissioning of some Italian thermoelectric plants. 

In this chapter, the expansion planning problem has been addressed by focusing only 

on the power system. By exogenously modeling all sectors but the power sector, the 

proposed approach does not allow considering the feedback effects and the interactions 
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between power sector and other sectors, such as the natural gas sector. However, power 

systems and natural gas systems are highly interrelated: the deployment of gas-fueled 

thermal power plants and Power-to-Gas units increases the interdependencies between 

these two systems and requires the development of an integrated expansion planning 

tool. The inclusion of the natural gas system in the expansion planning framework and 

the modeling of the bi-directional energy conversion between electricity and gas is 

addressed in the following chapter.
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Chapter 5                                                         

Integrated electricity and gas systems with bi-

directional energy conversion 

5.1 Research motivation 

The achievement of the challenging decarbonisation targets and climate change policies 

requires installing large shares of intermittent renewable energy sources in power 

systems. In the presence of high levels of renewable penetration, power systems face 

great challenges to meet the demand, because of the unpredictable daily and seasonal 

nature of renewable generation. Thus, in modern power systems the need is growing for 

flexible resources that could help balancing the demand and the supply for electricity to 

ensure power network stability and reliability. Beside storage technologies, natural gas 

represents an existing option to cope with the variability of renewable power sources. 

Specifically, the energy conversion between electricity and natural gas is bi-directional. 

First, natural gas can be converted into electricity by gas-fired power plants that can 

be fired up in just a few minutes, therefore being suited to compensate for the variability 

of renewable generation, which makes the dispatch of conventional units quite volatile 

over time along with short but steep ramps [23]. Given the fast-response capability and 

the lower emission coefficients with respect to coal thermal plants, gas-fired power 

plants are expected to proliferate in the next years [88]. Secondly, electricity can be 

transformed into gas by the Power-to-Gas (PtG) technology, which provides an 

opportunity to integrate large shares of renewables by converting surplus renewable 

power generation to gas fuel that can be stored locally to be used later or injected in the 

natural gas network. Researches such as [89] demonstrate how PtG could solve the 

challenge of long-term electricity storage and ease situations of grid congestion in 

scenarios with very high shares of renewables, predicting a large development of this 

technology. The deployment of both gas-fired power plants and PtG increases the 

interconnection between electricity and gas systems and requires an integrated planning 

framework that could accurately consider this coupling. 
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This chapter describes the research activities performed to integrate the gas system 

in the expansion planning framework to design a tool for the analysis of the real-scale 

integrated electricity and gas systems. The structure of the chapter is as follows. Section 

5.2 reviews the existing literature for integrated electricity and gas systems. Section 5.3 

describes the proposed method to plan the expansion of integrated systems. A case study 

concerning the Italian energy system is introduced in Section 5.4. Finally, Section 5.5 

concludes the chapter. 

5.2 Literature review 

Several studies have been conducted in recent years to deal with integrated electricity 

and gas systems. They can be divided into two groups: short-term and long-term. While 

short-term works investigate how to optimally operate integrated power systems, long-

term studies deal with the coordinated expansion of gas networks and power systems 

considering long-term policy goals, such as decarbonisation. Due to computational 

restrictions, long-term models usually present a lower level of spatial aggregation, 

considering power systems consisting of market zones connected by arcs representing 

transmission capacity between regions and therefore ignoring grid networks within each 

zone [3]. In this chapter, we deal with the long-term expansion planning problem. We 

refer the reader to [90, 91] for a detailed description of the short-term operational 

problem. 

In the literature, most of the works concerning the long-term expansion planning of 

integrated systems only consider the gas dependency of the electricity system, ignoring 

the role of the PtG technology. For instance, reference [92] formulates the expansion co-

planning problem as a mixed-integer nonlinear model whose objective is to minimize the 

total cost of the gas and power sectors, including operational costs and investment costs 

in new transmission lines, new pipelines and new gas-fired power plants, without 

considering the installation of new renewable capacity. Instead, authors in [93] propose 

a mixed-integer linear programming model considering the natural gas value chain, i.e., 

from the supply to end-consumers through pipelines, and the electrical systems value 

chain, i.e., power generation and transmission, in an integrated way. The objective of the 

proposed model is to determine the optimal location, technology, and installation time 

of new candidate facilities, as well as the optimal dispatch over a long-term planning 

horizon. Reference [94] determines expansion plans for an integrated electricity and gas 

system by computing for several candidate plans different attributes, such as the 
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operational and investment cost of gas system, the operational and investment cost of 

power system, the minimum of maximum regret and the β-robustness. Expansion plans 

are then determined by ranking the candidate plans according to different weights 

assigned to the attributes. Also in [95] a combined gas and electricity expansion planning 

model is developed by considering gas-fired generation plants as linkages between the 

two systems. The proposed model simultaneously minimizes gas and electricity 

operational cost and network expansion costs.  

While the studies mentioned above deal with deterministic models, some works in 

the literature consider the long-term uncertainty in the expansion planning framework. 

For instance, authors in [96] present a chance constrained programing approach to 

minimize the investment cost of integrating new natural gas-fired generators, natural gas 

pipelines, compressors, and storage required to ensure desired confidence levels of 

meeting future stochastic power and natural gas demands. Also reference [97] considers 

the uncertainty related to electricity and natural gas demands and proposes a two-stage 

stochastic programming model to address the coordinated expansion planning of natural 

gas and power systems by defining new pipelines, new transmission lines, and new 

generation units to build so as to minimize the sum of investment cost and expected 

operational cost. A static stochastic programming model for integrated planning of 

electricity and natural gas system is also presented in [98]. Both short-term uncertainties 

of renewable generation and long-term uncertainties, such as load growth rates and gas 

prices, are included in the proposed model. Finally, authors in [99] consider the 

uncertainties in the net load demand and propose a multi-stage stochastic programming 

model for the coordinated expansion of gas and power networks. Compared with the two-

stage approach, the proposed multi-stage stochastic programming model provides a 

better representation of long-term dynamics, including sequential investment decisions 

with the uncertainties gradually revealed over time. However, the increasing 

computational burden in multi-stage models often requires reducing the complexity of 

the analysis. For instance, compared with references [97] and [98], the multi-stage 

model proposed in [99] does not determine investment in new generating facilities, 

despite its relevance in the long-term planning of an integrated system. 

Both the deterministic and the stochastic models so far introduced are based on a 

centralized approach, determining the expansion plan that is optimal for the integrated 

gas and electricity system as a whole. Other works in the literature propose to 

independently consider the two systems, while having some form of coordination 

between them [100]. For instance, in [101] a leader-follower approach is adopted to 

perform the expansion planning of the joint gas and electricity networks. Specifically, 
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electric system operator is the leader deciding about generation and transmission 

capacity expansion, while gas operator is the follower defining investment in new gas 

pipelines. In [102] expansion planning for gas and power systems are determined by 

applying an iterative process to simulate the physical and economic interactions between 

the two systems. In this work, we adopt the centralized approach by assuming that a 

single central entity determines the joint expansion plans. Different coordination 

mechanisms between electricity and gas systems will be investigated in a future work. 

Furthermore, in all studies mentioned above, gas-fired power plants have been 

considered as the only linkage between electricity and natural gas systems. The bi-

directional energy conversion allowed by the PtG technology has only recently appeared 

in the literature, with several works focused on the short-term, investigating the impacts 

and benefits of employing PtG in the operation of integrated systems [103, 104, 105]. 

Only a few papers include the PtG technology into the expansion planning framework. 

For instance, reference [106] proposes a long-term robust co-optimization planning 

model for integrated systems, including a joint N-1 and probabilistic reliability criterion. 

Instead, authors in [107] formulate the co-expansion planning as a bi-level programming 

problem with the upper-level determining expansion decisions and the lower-level 

optimizing the economical dispatch under the operational constraints given by the 

upper-level decision. Although the proposed model provides an accurate representation 

of gas network operation, no storage facilities are considered in the planning framework, 

which, in our opinion, represents a very strong limitation. Indeed, storage technologies, 

as well as natural gas, could provide power systems with the flexibility needed to 

compensate for the variability of renewable power sources [108]. Thus, both storage 

facilities and natural gas system should be considered in the long-term planning to 

accommodate large shares of renewables. 

5.3 The performed analysis 

The inclusion of the gas system in the decision making framework further increases the 

computational burden of the expansion planning model. This section describes our 

approach to plan the expansion of integrated electricity and gas systems, including a high 

level of temporal and technical detail in the decision making framework, while keeping 

the optimization model computationally tractable. 
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5.3.1 Selection of representative days 

As explained in the previous chapters, when addressing the expansion planning problem, 

a high level of temporal detail is needed to catch the fluctuation of intermittent renewable 

power sources and to model the dynamics of energy storage systems. Representative days 

may be selected to evaluate short-term operations with an hourly resolution, while 

maintaining the problem computationally tractable.  

When considering integrated electricity and gas systems, the iterative procedure 

described in Section 2.3.2 has to be modified to include also the gas demand values. 

Specifically, in our approach, representative days for integrated systems are selected 

from a set 

𝐷𝑧,𝑡
ELEC,𝑑,  𝜇𝑧,𝑡

𝑑 ,  𝜌𝑧,𝑡
𝑑 ,  𝐷𝑛,𝑡

GAS,𝑑          𝑧 ∈ 𝒵, 𝑛 ∈ 𝒩, 1 ≤ 𝑑 ≤ 365, 1 ≤ 𝑡 ≤ 24  

where the index 𝑑 refers to the set of days of the first year of the planning horizon, the 

load data 𝐷𝑧,𝑡
ELEC,𝑑 are forecast values for the first year of the planning horizon, 𝜇𝑧,𝑡

𝑑  and 

𝜌𝑧,𝑡
𝑑  are technical production/capacity ratios for solar power production and wind power 

production, respectively, and  𝐷𝑛,𝑡
GAS,𝑑 are gas demand values. By performing the 

clustering analysis on this data set, correlations among renewable production and 

electricity and gas demands, as well as spatial correlations, can be taken into account. 

Load values 𝐷𝑧,𝑡
ELEC,𝑑 and gas demands  𝐷𝑛,𝑡

GAS,𝑑 are then normalized by subtracting the 

respective minimum demands and dividing by the difference between maximum and 

minimum demands. In this way, all time series assume values in the range [0; 1] and 

variations for the renewable profiles and electricity and gas demands can be properly 

compared. For every zone 𝑧 the load duration curve 𝐿𝐷𝐶𝑧,𝜏, 1 ≤ 𝜏 ≤ 8760 (i.e., the curve 

in which the original hourly load data 𝐷𝑧,𝑡
𝑑 , 1 ≤ 𝑑 ≤ 365 and 1 ≤ 𝑡 ≤ 24, are in order of 

decreasing magnitude) is determined so as to be compared in the termination test with 

the zonal load duration curves corresponding to the representative days and their 

associated weights. The following iterative procedure is then applied: 

1. set 𝑘 = 2; 

2. the days of the data set are partitioned in 𝑘 clusters by the 𝑘-medoids algorithm; 

3. the representative day 𝑐𝜉, for 𝜉, 1 ≤ 𝜉 ≤ 𝑘, is selected from the original data set as the 

day corresponding to the centroid of cluster 𝜉; the weight associated to representative 

day 𝑐𝜉  is the number of days in cluster 𝜉; 
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4. for each system zone, determine the load duration curve corresponding to the 𝑘 

representative days and their associated weights and compute the mean absolute 

percentage error (MAPE) between the original load duration curve and the one 

corresponding to the current set of representative days; 

5. if the system average MAPE (i.e., the average between the MAPEs of zonal load 

duration curves) is below a given threshold (e.g., 5%), stop, otherwise increase 𝑘 by 1 

and go to step 2. 

Once the representative days for the first year of the planning horizon are 

determined, the representative days of the following years are derived by applying annual 

growth factors to load profiles and gas demands in the representative days. 

5.3.2 Clustering of thermal power plants 

When addressing the expansion planning problem for integrated systems, incorporating 

traditional unit commitment constraints for individual power plants would be 

computationally infeasible. To consider unit commitment constraints in the 

optimization model while maintaining the problem computationally tractable, in this 

work the so-called clustered unit commitment (CUC) formulation is implemented. In 

this formulation, similar power plants are grouped into a cluster and a single integer 

variable (rather than multiple binary variables) is introduced to represent the number of 

online units within each cluster in each time step [109]. Thus, compared to the traditional 

unit commitment formulation, in the CUC approach the number of variables describing 

commitment statuses is dramatically reduced. Similarly, in CUC formulation also the 

number of constraints and continuous variables representing dispatching decisions is 

reduced, since they are now defined for only a small number of clusters rather than the 

complete set of thermal power plants. 

Even when working with clusters of identical power plants, the CUC formulation can 

provide results different from those obtained by applying traditional unit commitment 

constraints on a plant-by-plant level. However, as discussed in [110], empirical results 

for the Central Western European electricity system show that the clustering approach 

induces negligible errors, being the difference in the operational costs between the 

traditional unit commitment and the CUC formulation lower than 0.06%, while reducing 

computational times of a factor 80-800. Given the huge computational savings and the 

small deviation from the optimal results provided by the traditional unit commitment 

formulation, in this work the CUC formulation is adopted to model the operation of 

thermal power plants.  



 

141  Chapter 5 – Integrated electricity and gas systems 

 

 
 

Similar thermal units are therefore grouped into clusters determined by applying the 

following procedure, which is repeated for every system zone. Specifically, for each zone 

𝑧, we first consider a data set including all the thermal power plants located in zone 𝑧 

described by the following features: minimum power output, maximum power output, 

minimum up time, minimum down time, operative and maintenance cost, start-up cost, 

heat rate, and fixed cost. In this data set, all features are normalized by subtracting the 

minimum values and dividing by the difference between maximum and minimum values. 

We then apply an iterative procedure to group similar power plants in clusters with the 

following steps:  

1. set 𝑘 = 2; 

2. thermal power plants of the data set are grouped in 𝑘 clusters by the 𝑘-means 

algorithm; 

3. the total sum of squares (TSS), i.e., the measure of global data dispersion, and the 

between cluster sum of squares (BSS), i.e., the measure of the separation between 

clusters, are computed; 

4. compute the ratio between BSS and TSS to measure the clustering suitability; the 

higher the ratio, the higher both the similarity of objects in the same cluster and the 

distance between different groups, indicating a good data partition; 

5. if the ratio is above a given threshold (e.g., 90%), stop, otherwise increase 𝑘 by 1 and 

go to step 2. 

For each cluster 휁, 1 ≤ 휁 ≤ 𝑘, minimum power output, maximum power output, 

operative and maintenance cost, start-up cost, heat rate, and fixed cost are determined 

by averaging the features values of all the power plants grouped in cluster 휁, while 

minimum up time and minimum down time are computed by taking the medians, since 

these two features have to assume integer values. 

5.3.3 Modeling framework 

Investments in new facilities and operating decisions for integrated electricity and gas 

system are determined by solving a two-stage stochastic MILP model. This section 

presents the modeling assumptions as well as the notation and the mathematical 

formulation of the optimization model. 
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5.3.3.1 Modeling assumptions 

In this work, expansion plans are obtained by considering a centralized approach: by 

assuming the perspective of a single central entity, such as the Ministry of Economic 

Development, we plan the joint expansion of electricity and natural gas system so as to 

minimize the total system costs. As regards to the electricity component, we adopt the 

same assumptions introduced in the previous chapters. Thus, we consider the power 

system consisting of a set 𝒵 of zones, grouped into macro-areas, with the set of macro-

areas denoted by ℳ. The structure of the power system at the beginning of the planning 

horizon is described by set ℒ𝐸 of transmission lines connecting zones, set ℋ𝐸 of 

hydropower plants and parameters 𝑠𝑜𝑙𝑧0 and 𝑤𝑖𝑛𝑑𝑧0 representing the solar power 

capacity and the wind power capacity, respectively, installed in each system zone 𝑧 ∈ 𝒵. 

As explained in the previous section, thermal power plants are grouped into clusters, 

with 𝒦 being the set of clusters of thermal plants. For each 𝑘 ∈ 𝒦, parameter 𝑁0𝑘 

indicates the number of existing thermal power plants at the beginning of the planning 

horizon. The decisions to be taken concern decommissioning of existing thermal power 

plants as well as building of new thermal units, new transmission lines, new hydropower 

plants, new wind and solar power capacity, and new batteries capacity, which are 

supposed to have a negligible installed capacity at the beginning of the planning horizon. 

Capacity decisions are defined for every year of the planning horizon, with the set of 

years denoted by 𝒴. Investments and decommissioning of thermal power plants are 

modeled trough two sets of integer variables describing for each cluster of thermal power 

plants the number of new units built and existing facilities decommissioned in every year 

of the planning horizon. Investments in new hydropower plants and new transmission 

lines are modeled by introducing sets of discrete facilities ℋ𝐶 and ℒ𝐶 and binary 

variables. The investments in new RES power generation and new batteries capacity are 

instead represented by continuous variables, since usually any capacity for batteries and 

wind and solar power plants can be installed, as opposed to thermal units, hydropower 

plants and transmission facilities that usually present specified size.  

As regards to the gas component, we consider the natural gas system consisting of a 

set 𝒩 of nodes. The structure of the gas system at the beginning of the planning horizon 

is described by set 𝒫ℒ𝐸 of pipelines connecting nodes and parameters 𝐺𝐴𝑆̅̅ ̅̅ ̅̅
𝑛
IN 

representing the storage capacity for natural gas in each node 𝑛 ∈ 𝒩. Decisions to be 

taken concern building of new pipelines, modeled through binary variables, and PtG 

capacity, modeled through continuous variables. 
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As regards to short-term operation modeling, we consider in every year 𝑦 of the 

planning horizon a small set 𝒞𝑦 of representative days. Similarly to the hydroelectric 

dispatch, inter-day balance constraints described in Section 2.4.2 are introduced also to 

model the long-term operation of gas storages. 

Given the long-term horizon, a transportation approach is introduced to model the 

operation of both the transmission and the gas networks, imposing only transmission 

limits on power and gas flows, without including in the model voltage variables and nodal 

pressures. Although transportation models do not provide a perfect representation of 

load flows and gas flows, this choice is justified by the long-term scope and the 

computational burden of the expansion planning problem.  

Finally, given the important role that fuel and CO2 prices play in the expansion 

planning of integrated systems, different scenarios for these parameters are introduced, 

with the set of scenarios denoted by 𝒲. 

5.3.3.2 Notation 

To describe the two-stage stochastic MILP model for the integrated system expansion 

planning problem, the following notation is introduced. 

 

Sets 

𝒴 Set of years, indexed by 𝑦 and 𝑖 

𝒵 Set of zones, indexed by 𝑧 

ℳ Set of macro-areas, indexed by 𝑚 

𝒦 Set of clusters of thermal power plants, indexed by 𝑘 

𝒦GAS ⊂ 𝒦 Set of clusters of thermal power plants fuelled with natural gas 

𝛺𝑧
𝑘 ⊂ 𝒦 Set of clusters of thermal power plants located in zone 𝑧 

ℒ Set of transmission lines, indexed by 𝑙 

ℒ𝐸 ⊂ ℒ Set of existing transmission lines 

ℒ𝐶 ⊂ ℒ Set of candidate transmission lines 

ℋ Set of hydropower plants, indexed by ℎ 

ℋ𝐸 ⊂ ℋ Set of existing hydropower plants  

ℋ𝐶 ⊂ ℋ Set of candidate hydropower plants 

𝛺𝑧
ℎ ⊂ ℋ Set of hydropower plants located in zone 𝑧 

ℬ Set of batteries, indexed by 𝑏 

𝛺𝑧
𝑏 ⊂ ℬ Set of batteries located in zone z  

𝒩 Set of nodes of the gas network, indexed by 𝑛 
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𝒫ℒ Set of pipelines, indexed by 𝑝𝑙 

𝒫ℒ𝐸 ⊂  𝒫ℒ Set of existing pipelines 

𝒫ℒ𝐶 ⊂  𝒫ℒ Set of candidate pipelines 

𝒫𝑡𝒢 Set of Power-to-Gas plants, indexed by 𝑝𝑡𝑔 

𝛺𝑧
PtG ⊂ 𝒫𝑡𝒢 Set of Power-to-Gas plants located in zone 𝑧 

𝒞𝑦 Set of representative days of year 𝑦, indexed by 𝑐 

𝒟𝑦 Set of all days of year 𝑦, indexed by 𝑑 and 𝑑′ 

𝒟𝑀
𝑦

⊂ 𝒟𝑦 Set of days of year 𝑦 in which the level of the long-term storage is 

checked 

𝒯 Set of hours, from 1 to 24, indexed by 𝑡 and 𝜏 

ℱ Set of fuels, indexed by 𝑓 

𝛷𝑧,𝑓 ⊂ 𝛺𝑧
𝑘 Set of clusters of thermal power plants located in zone 𝑧 using fuel 𝑓 

𝒲 Set of scenarios, indexed by 𝑤 

𝑚𝑎(𝑧) Macro-area that contains zone 𝑧 

𝑟𝑧(𝑙) Receiving-end zone of transmission line 𝑙 

𝑠𝑧(𝑙) Sending-end zone of transmission line 𝑙 

𝑟𝑛(𝑝𝑙) Receiving-end node of pipeline 𝑝𝑙 

𝑠𝑛(𝑝𝑙) Sending-end node of pipeline 𝑝𝑙 

𝑓𝑢𝑒𝑙(𝑘) Fuel used in thermal power plants of cluster 𝑘 

Map𝑧,𝑛
GAS Injective map of each zone 𝑧 to a node of the gas network 𝑛 

Map𝑑,𝑐
TIME Cluster index, i.e., injective map of each day 𝑑 to a representative day 𝑐 

 

 

Parameters 

𝑦0 [−] Reference year to which all investment costs are discounted 

𝑟 [−] Annual discount rate 

𝑐𝐸𝑁𝑃 [€/MWh] Penalty for energy not provided 

𝑐𝑂𝐺 [€/MWh] Penalty for over-generation 

𝑐𝑅𝑁𝑃 [€/MWh] Penalty for reserve not provided 

𝑝𝑟𝑜𝑏𝑤 [−] Probability of scenario 𝑤  

𝑤𝑔𝑐 [−] Weight of cluster 𝑐  

𝐷𝐶𝑘 [€] Decommissioning cost of existing thermal power plants of 

cluster 𝑘 
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𝐼𝐶𝑘
The [€] Investment cost of candidate thermal power plants of cluster 

𝑘 

𝐹𝐶𝑘 [€] Annual fixed costs of thermal power plants of cluster 𝑘 

𝐶𝑀𝑘,𝑦,𝑤  [€/MWh] Marginal production cost of thermal power plants of cluster 

𝑘 in year 𝑦 in scenario 𝑤 

𝑁𝑘,𝑦
Dec [−] Minimum number of thermal power plants of cluster 𝑘 to be 

decommissioned within year 𝑦 

𝑁𝑘,𝑦

Dec
 [−] Maximum number of thermal power plants of cluster 𝑘 to be 

decommissioned within year 𝑦 

𝑁𝑘,𝑦
Inv [−] Minimum number of thermal power plants of cluster 𝑘 to be 

built within year 𝑦 

𝑁𝑘,𝑦

Inv
 [−] Maximum number of thermal power plants of cluster 𝑘 to be 

built within year 𝑦 

𝑁0𝑘 [−] Number of existing thermal power plants of cluster 𝑘 at the 

beginning of the planning horizon 

𝑃𝑘 [MW] Minimum power output of thermal power plants of cluster 𝑘 

𝑃𝑘  [MW] Maximum power produced by thermal plants of cluster 𝑘 

𝑆𝑈𝐶𝑘  [€] Start-up cost of thermal power plants of cluster 𝑘 

𝑀𝑈𝑇𝑘  [h] Minimum up time of thermal power plants of cluster 𝑘 

𝑀𝐷𝑇𝑘  [h] Minimum down time of thermal power plants of cluster 𝑘 

𝛾𝑘,𝑤
𝑐

0
 [−] Number of thermal power plants of cluster 𝑘 ON at the 

beginning of representative day 𝑐 in scenario 𝑤 

𝑔𝑎𝑠𝑘 [MWth/MW] Gas consumption of thermal power plants of cluster 𝑘 

𝐻𝑅𝑘 [Gcal/MWh] Heat rate of thermal power plants of cluster 𝑘 

𝑂𝑀𝑘 [€/MWh] Operative and maintenance cost of thermal power plants of 

cluster 𝑘 

𝐼𝐶𝑧,𝑦
Sol [€/MW] Investment cost of new solar power capacity in zone 𝑧 in year 

𝑦 

𝑠𝑜𝑙𝑧,0 [MW] Solar power capacity installed in zone 𝑧 at the beginning of 

the planning horizon 

𝑃𝑉𝑧,𝑦 [MW] Lower bound for solar power capacity in zone 𝑧 in year 𝑦 

𝑃𝑉𝑧,𝑦 [MW] Upper bound for solar power capacity in zone 𝑧 in year 𝑦 

𝐼𝐶𝑧,𝑦
Wind [€/MW] Investment cost of new wind power capacity in zone 𝑧 in year 

𝑦 
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𝑤𝑖𝑛𝑑𝑧,0 [MW] Wind power capacity installed in zone 𝑧 at the beginning of 

the planning horizon 

𝑊𝑧,𝑦 [MW] Lower bound for wind power capacity in zone 𝑧 in year 𝑦 

𝑊𝑧,𝑦 [MW] Upper bound for wind power capacity in zone 𝑧 in year 𝑦 

𝐷𝑧,𝑡
ELEC,𝑐 [MW] Load in zone 𝑧 in hour 𝑡 of representative day 𝑐 

𝑅𝑧,𝑡
𝑐  [MW] Reserve requirement for zone 𝑧 in hour 𝑡 of representative 

day 𝑐 

𝜇𝑧,𝑡
𝑐  [MWh/MW] Solar power capacity factor for zone 𝑧 in hour 𝑡 of 

representative day 𝑐 

𝜌𝑧,𝑡
𝑐  [MWh/MW] Wind power capacity factor for zone 𝑧 in hour 𝑡 of 

representative day 𝑐 

𝐼𝐶ℎ,𝑦
Hyd

 [€] Investment cost of candidate hydropower plant ℎ ∈ ℋ𝐶 in 

year 𝑦 

𝜏ℎ [−] Earliest date for construction of hydropower plant ℎ 

𝜏ℎ [−] Latest date for construction of hydropower plant ℎ 

𝐶𝑣𝑎𝑟ℎ [€/MWh] Operating cost of hydropower plant ℎ 

�̅�ℎ
IN [MW] Upper bound on hydropower plant ℎ pumping power 

�̅�ℎ
OUT [MW] Upper bound on hydropower plant ℎ power output 

𝑠�̅�ℎ [MWh] Upper bound on energy spillage from hydropower plant ℎ  

𝐹ℎ,𝑡
𝑐  [MWh] Hourly energy inflows for hydropower plant ℎ at time 𝑡 of 

representative day 𝑐 

𝜆ℎ
IN [−] Loss coefficient for hydro plant ℎ pumping (0 ≤ 𝜆ℎ

IN ≤ 1) 

𝜆ℎ
OUT [−] Loss coefficient for hydro plant ℎ power generation 

(𝜆ℎ
OUT ≥ 1) 

𝐸ℎ0
 [MWh] Energy content of hydropower plant ℎ at the beginning of 

planning horizon 

𝐸𝑃𝑅ℎ [h] Maximum energy to power ratio (in hours) for hydropower 

plant ℎ 

𝑀 [h] Size of the temporal window in long-term storage 

constraints, set to 7 days 

𝐼𝐶𝑏,𝑦
Batt [€/MW] Investment cost for battery 𝑏 in year 𝑦 

𝐶𝑣𝑎𝑟𝑏 [€/MWh] Operating cost of battery 𝑏 

𝐶𝐴𝑃𝑏

Batt
 [MW] Upper bound on battery 𝑏 installed capacity 
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𝐸𝑏
𝑐

0
 [MWh] Initial energy content of battery 𝑏 in cluster 𝑐 

𝜆𝑏 [−] Loss coefficient for energy stored by battery 𝑏 (0 ≤ 𝜆𝑏 ≤ 1) 

𝜆𝑏
IN [−] Loss coefficient for battery 𝑏 charge (0 ≤ 𝜆𝑏

𝑖𝑛 ≤ 1) 

𝜆𝑏
OUT [−] Loss coefficient for battery 𝑏 discharge (𝜆𝑏

𝑜𝑢𝑡 ≥ 1) 

�̅�𝑏
IN [MW] Upper bound on battery 𝑏 charge 

�̅�𝑏
OUT [MW] Upper bound on battery 𝑏 discharge 

𝐸𝑃𝑅𝑏 [h] Maximum energy to power ratio (in hours) for battery 𝑏 

𝐼𝐶𝑙
Line [€] Investment cost of candidate transmission line 𝑙 ⊂ ℒ𝐶 

𝜏𝑙 [−] Earliest date for construction of candidate transmission line 

𝑙 

𝜏𝑙 [−] Latest date for construction of candidate transmission line 𝑙 

𝐹𝑙 [MW] Minimum capacity of transmission line 𝑙 

𝐹𝑙  [MW] Maximum capacity of transmission line 𝑙 

𝐼𝐶𝑝𝑙
Pipe

 [€] Investment cost of candidate pipeline 𝑝𝑙 ⊂ 𝒫ℒ𝐶  

𝜏𝑝𝑙 [−] Earliest date for construction of candidate pipeline 𝑝𝑙 

𝜏𝑝𝑙 [−] Latest date for construction of candidate pipeline 𝑝𝑙 

𝐹𝑝𝑙 [MW] Minimum capacity of pipeline 𝑝𝑙 

𝐹𝑝𝑙  [MW] Maximum capacity of pipeline 𝑝𝑙 

𝐼𝐶𝑝𝑡𝑔
PtG [€/MWth] Investment cost of PtG plant 𝑝𝑡𝑔 

𝐶𝑣𝑎𝑟𝑝𝑡𝑔 [€/MWhth] Operating cost of PtG plant 𝑝𝑡𝑔 

𝐶𝐴𝑃𝑝𝑡𝑔,𝑦

PtG
 [MWth] Upper bound on PtG plant 𝑝𝑡𝑔 installed capacity 

휂𝑝𝑡𝑔 [MWth/MW] Efficiency of PtG plant 𝑝𝑡𝑔 

𝑐𝐺𝐶 [€/MWhth] Penalty for gas curtailment 

𝐶𝑛,𝑦,𝑤
PROD [€/MWth] Production cost of gas in node 𝑛 in year 𝑦 in scenario 𝑤 

𝐺𝐴𝑆𝑛
PROD [MWth] Lower bound on gas production in node 𝑛 

𝐺𝐴𝑆𝑛

PROD
 [MWth] Upper bound on gas production in node 𝑛 

𝐺𝐴𝑆̅̅ ̅̅ ̅̅
𝑛
IN [MWth] Upper bound on gas storage charge in node 𝑛 

𝐺𝐴𝑆̅̅ ̅̅ ̅̅
𝑛
OUT [MWth] Upper bound on gas storage discharge in node 𝑛 

𝐺𝐴𝑆̅̅ ̅̅ ̅̅
𝑛
LEV [MWhth] Upper bound on gas stored in node 𝑛 

𝐺𝑛0
 [MWhth] Energy content of gas storage in node 𝑛 at the beginning of 

planning horizon 
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𝐷𝑛,𝑡
GAS,𝑐 [MWth] Gas demand not related to power generation in node 𝑛 in 

hour 𝑡 

𝑐𝑜2𝑓 [ton/Gcal] CO2 emission factor of fuel 𝑓 

𝑃𝑟𝑦,𝑤
𝑓

 [€/Gcal] Price of fuel 𝑓 in year 𝑦 in scenario 𝑤 

𝐶𝑂2
̅̅ ̅̅ ̅

𝑚,𝑦 [ton] CO2 emission limit for macro-area 𝑚 in year 𝑦 

𝜑𝑚,𝑦  [−] Lower bound for renewables penetration in macro-area 𝑚 in 

year 𝑦 

𝑃𝑟𝑦,𝑤
CO2 [€/ton] Emission price in year 𝑦 in scenario 𝑤 

 

 

Variables 

 

1) First-stage variables 

𝑁𝑘,𝑦
−  [∈ ℕ] Number of thermal power plants of cluster 𝑘 decommissioned in 

year 𝑦  

𝑁𝑘,𝑦
+  [∈ ℕ] Number of thermal power plants of cluster 𝑘 built in year 𝑦  

𝛿ℎ,𝑦 [0/1] 1: hydro power plant ℎ ∈ ℋ𝐶 is built in year 𝑦; 0: otherwise  

𝛿𝑙,𝑦 [0/1] 1: transmission line 𝑙 ∈ ℒ𝐶 is built in year 𝑦; 0: otherwise  

𝛿𝑝𝑙,𝑦 [0/1] 1: pipeline 𝑝𝑙 ∈ 𝒫ℒ𝐶 is built in year 𝑦; 0: otherwise  

𝑁𝑘,𝑦
TOT [∈ ℕ] Number of thermal power plants in cluster 𝑘 available in year 𝑦  

휃ℎ,𝑦 [0/1] 1: hydro power plant ℎ ∈ ℋ𝐶 is built within year 𝑦; 0: otherwise  

휃𝑙,𝑦 [0/1] 1: transmission line 𝑙 ∈ ℒ𝐶 is built within year 𝑦; 0: otherwise  

휃𝑝𝑙,𝑦 [0/1] 1: pipeline 𝑝𝑙 ∈ 𝒫ℒ𝐶 is built within year 𝑦; 0: otherwise  

𝑠𝑜𝑙𝑧,𝑦 [MW] New solar capacity installed in zone 𝑧 in year 𝑦 

𝑤𝑖𝑛𝑑𝑧,𝑦 [MW] New wind capacity installed in zone 𝑧 in year 𝑦 

𝑐𝑎𝑝𝑏,𝑦
Batt [MW] Storage capacity of battery 𝑏 installed in year 𝑦 

𝑐𝑎𝑝𝑃𝑡𝐺,𝑦
PtG  [MWth] Capacity of PtG plant 𝑝𝑡𝑔 installed in year 𝑦 

𝑅𝐸𝑆𝑧,𝑡
𝑐  [MWh] Generation from wind and solar power plants in zone 𝑧 in hour 𝑡 

of representative day 𝑐 
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2) Second-stage variables 

𝛾𝑘,𝑡,𝑤
𝑐  [∈ ℕ] Number of thermal power plants of cluster 𝑘 ON in hour 𝑡 of 

representative day 𝑐 in scenario 𝑤 

𝛼𝑘,𝑡,𝑤
𝑐  [∈ ℕ] Number of thermal power plants of cluster 𝑘 started up in hour 

𝑡 of representative day 𝑐 in scenario 𝑤 

𝛽𝑘,𝑡,𝑤
𝑐  [∈ ℕ] Number of thermal power plants of cluster 𝑘 shut down in 

hour 𝑡 of representative day 𝑐 in scenario 𝑤 

𝑝𝑘,𝑡,𝑤
𝑐  [MW] Power production of thermal power plants of cluster 𝑘 in hour 

𝑡 above its minimum output 𝑃𝑘 in scenario 𝑤 

𝐸ℎ,𝑡,𝑤
IN,𝑐  [MW] Pumping power of hydro reservoir ℎ in hour 𝑡 of representative 

day 𝑐 in scenario 𝑤 

𝐸ℎ,𝑡,𝑤
OUT,𝑐 [MW] Power output of hydro reservoir ℎ in hour 𝑡 of representative 

day 𝑐 in scenario 𝑤 

𝑠𝑙ℎ,𝑡,𝑤
𝑐  [MWh] Energy spillage from hydro reservoir ℎ in hour 𝑡 of 

representative day 𝑐 in scenario 𝑤 

�̂�ℎ,𝑤
LT,𝑑 [MWh] Energy level of hydro reservoir ℎ at the end of day 𝑑 in scenario 

𝑤 

𝐸𝑏,𝑡,𝑤
IN,𝑐  [MW] Charge of battery 𝑏 in hour 𝑡 of representative day 𝑐 in scenario 

𝑤 

𝐸𝑏,𝑡,𝑤
OUT,𝑐 [MW] Discharge of battery 𝑏 in hour 𝑡 of representative day 𝑐 in 

scenario 𝑤 

𝐸𝑏,𝑡,𝑤
𝑐  [MWh] Energy level of battery 𝑏 in hour 𝑡 of representative day 𝑐 in 

scenario 𝑤 

𝑥𝑙,𝑡,𝑤
𝑐  [MW] Power flow on transmission line 𝑙 in hour 𝑡 of representative 

day 𝑐 in scenario 𝑤 

𝐸𝑁𝑃𝑧,𝑡,𝑤
𝑐  [MWh] Energy not provided in zone 𝑧 in hour 𝑡 of representative day 

𝑐 in scenario 𝑤 

𝑂𝐺𝑧,𝑡,𝑤
𝑐  [MWh] Over-generation in zone 𝑧 in hour 𝑡 of representative day 𝑐 in 

scenario 𝑤 

𝑅𝑁𝑃𝑧,𝑡,𝑤
𝑐  [MWh] Reserve not provided in zone 𝑧 in hour 𝑡 of representative day 

𝑐 in scenario 𝑤 

𝐺𝐴𝑆𝑛,𝑡,𝑤
PROD,𝑐 [MWth] Gas production in node 𝑛 in hour 𝑡 of representative day 𝑐 in 

scenario 𝑤 
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𝐺𝐴𝑆𝑛,𝑡,𝑤
CURT,𝑐 [MWth] Gas curtailment in node 𝑛 in hour 𝑡 of representative day 𝑐 in 

scenario 𝑤 

𝐺𝐴𝑆𝑛,𝑡,𝑤
IN,𝑐  [MWth] Gas injected in storage facilities in node 𝑛 in hour 𝑡 of 

representative day 𝑐 in scenario 𝑤 

𝐺𝐴𝑆𝑛,𝑡,𝑤
OUT,𝑐 [MWth] Gas released from storage facilities in node 𝑛 in hour 𝑡 of 

representative day 𝑐 in scenario 𝑤 

𝐺𝐴�̂�𝑛,𝑤
LT,𝑑

 [MWhth] Level of the gas stored in node 𝑛 at the end of day 𝑑 in scenario 

𝑤 

𝐺𝐴𝑆𝑝𝑙,𝑡,𝑤
FLOW,𝑐 [MWth] Gas flow on pipeline 𝑝𝑙 in hour 𝑡 of representative day 𝑐 in 

scenario 𝑤 

𝐺𝐴𝑆𝑝𝑡𝑔,𝑡,𝑤
PtG,𝑐  [MWth] Gas produced by PtG plant 𝑝𝑡𝑔 in hour 𝑡 of representative day 

𝑐 in scenario 𝑤 

 

5.3.3.3 Mathematical formulation 

The expansion planning model for integrated systems can be formulated as the following 

two-stage stochastic MILP problem: 

min 𝑧 = ∑ ( ∑
𝐷𝐶𝑘 𝑁𝑘,𝑦

−

(1 + 𝑟)𝑦−𝑦0

𝑘∈𝒦

+ ∑
𝐼𝐶𝑘

The 𝑁𝑘,𝑦
+

(1 + 𝑟)𝑦−𝑦0

𝑘∈𝒦

) +

𝑦∈𝒴

  

 + ∑ (∑
𝐼𝐶𝑧,𝑦

Sol 𝑠𝑜𝑙𝑧,𝑦

(1 + 𝑟)𝑦−𝑦0

𝑧∈𝒵

+ ∑
𝐼𝐶𝑧,𝑦

Wind 𝑤𝑖𝑛𝑑𝑧,𝑦

(1 + 𝑟)𝑦−𝑦0

𝑧∈𝒵

)

𝑦∈𝒴

+  

 + ∑ ∑
𝐼𝐶ℎ,𝑦

Hyd
 𝛿ℎ,𝑦

(1 + 𝑟)𝑦−𝑦0

ℎ∈ℋ𝐶𝑦∈𝒴

+  

 + ∑ ∑
𝐼𝐶𝑏,𝑦

Batt 𝑐𝑎𝑝𝑏,𝑦
Batt

(1 + 𝑟)𝑦−𝑦0

𝑏∈ℬ𝑦∈𝒴

+  

 + ∑ ∑
𝐼𝐶𝑙

Line 𝛿𝑙,𝑦

(1 + 𝑟)𝑦−𝑦0

𝑙∈ℒ𝐶𝑦∈𝒴

+  

 + ∑ ∑ 𝐹𝐶𝑘 𝑁𝑘,𝑦
TOT

𝑘∈𝒦𝑦∈𝒴

+  

 + ∑ ∑
𝐼𝐶𝑝𝑙

Pipe
 𝛿𝑝𝑙,𝑦

(1 + 𝑟)𝑦−𝑦0

𝑝𝑙∈𝒫ℒ𝐶𝑦∈𝒴

+  
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 + ∑ ∑
𝐼𝐶𝑝𝑡𝑔

PtG 𝑐𝑎𝑝𝑝𝑡𝑔,𝑦
PtG

(1 + 𝑟)𝑦−𝑦0

𝑝𝑡𝑔∈𝒫𝑡𝒢𝑦∈𝒴

+  

 + ∑ 𝑝𝑟𝑜𝑏𝑤

𝑤∈𝒲

[∑ ∑ 𝑤𝑔𝑐

𝑐∈𝒞𝑦𝑦∈𝒴

∑ ( ∑ 𝐶𝑀𝑘,𝑦,𝑤

𝑘∈𝒦

24

𝑡=1

(𝑃𝑘  𝛾𝑘,𝑡,𝑤
𝑐 + 𝑝𝑘,𝑡,𝑤

𝑐 ) +  

  + ∑ 𝑆𝑈𝐶𝑘𝛼𝑘,𝑡,𝑤
𝑐

𝑘∈𝒦

+ ∑ 𝐶𝑣𝑎𝑟ℎ 𝐸ℎ,𝑡,𝑤
OUT,𝑐

ℎ∈ℋ

+ ∑ 𝐶𝑣𝑎𝑟𝑏 𝐸𝑏,𝑡,𝑤
OUT,𝑐

𝑏∈ℬ

+  

  + ∑ 𝐶𝑛,𝑦,𝑤
PROD𝐺𝐴𝑆𝑛,𝑡,𝑤

PROD,𝑐

𝑛∈𝒩

+ ∑ 𝐶𝑣𝑎𝑟𝑝𝑡𝑔 𝐺𝐴𝑆𝑝𝑡𝑔,𝑡,𝑤
PtG,𝑐

𝑝𝑡𝑔∈𝒫𝑡𝒢

+  

  + 𝑐𝐸𝑁𝑃 ∑ 𝐸𝑁𝑃𝑧,𝑡,𝑤
𝑐

𝑧∈𝒵

+ 𝑐𝑂𝐺 ∑ 𝑂𝐺𝑧,𝑡,𝑤
𝑐

𝑧∈𝒵

+  

  + 𝑐𝑅𝑁𝑃 ∑ 𝑅𝑁𝑃𝑧,𝑡,𝑤
𝑐

𝑧∈𝒵

+ 𝑐𝐺𝐶 ∑ 𝐺𝐴𝑆𝑛,𝑡,𝑤
CURT,𝑐

𝑛∈𝒩

)] (5.1) 

subject to 

𝑁𝑘,𝑦
Dec ≤ ∑ 𝑁𝑘,𝑖

−

𝑦

𝑖=1

≤ 𝑁𝑘,𝑦

Dec
 𝑘 ∈ 𝒦, 𝑦 ∈ 𝒴 (5.2) 

𝑁𝑘,𝑦
𝐼𝑛𝑣 ≤ ∑ 𝑁𝑘,𝑖

+

𝑦

𝑖=1

≤ 𝑁𝑘,𝑦

𝐼𝑛𝑣
 𝑘 ∈ 𝒦, 𝑦 ∈ 𝒴 (5.3) 

𝛿ℎ,𝑦 = 0 ℎ ∈ ℋ𝐶 , 𝑦 ∉ [𝜏ℎ , 𝜏ℎ] (5.4) 

𝛿𝑙,𝑦 = 0 𝑙 ∈ ℒ𝐶 , 𝑦 ∉ [𝜏𝑙 , 𝜏𝑙] (5.5) 

𝛿𝑝𝑙,𝑦 = 0 𝑝𝑙 ∈ 𝒫ℒ𝐶 , 𝑦 ∉ [𝜏𝑝𝑙 , 𝜏𝑝𝑙] (5.6) 

𝑃𝑉 𝑧,𝑦 ≤ 𝑠𝑜𝑙𝑧,0 + ∑ 𝑠𝑜𝑙𝑧,𝑖

𝑦

𝑖=1

≤ 𝑃𝑉𝑧,𝑦 𝑧 ∈ 𝒵, 𝑦 ∈ 𝒴 (5.7) 

𝑊𝑧,𝑦 ≤ 𝑤𝑖𝑛𝑑𝑧,0 + ∑ 𝑤𝑖𝑛𝑑𝑧,𝑖

𝑦

𝑖=1

≤ 𝑊𝑧,𝑦 𝑧 ∈ 𝒵, 𝑦 ∈ 𝒴 (5.8) 

∑ 𝑐𝑎𝑝𝑏,𝑦
Batt

𝑦∈𝒴

≤ 𝐶𝐴𝑃𝑏

Batt
 𝑏 ∈ ℬ (5.9) 

∑ 𝑐𝑎𝑝𝑝𝑡𝑔,𝑦
PtG

𝑦∈𝒴

≤ 𝐶𝐴𝑃𝑝𝑡𝑔

PtG
 𝑝𝑡𝑔 ∈ 𝒫𝑡𝒢 (5.10) 

𝑁𝑘,𝑦
TOT = 𝑁0𝑘 + ∑(𝑁𝑘,𝑖

+ − 𝑁𝑘,𝑖
− )

𝑦

𝑖=1

 𝑘 ∈ 𝒦, 𝑦 ∈ 𝒴 (5.11) 
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휃ℎ,𝑦 = ∑ 𝛿ℎ,𝑖

𝑦

𝑖=1

 ℎ ∈ ℋ𝐶 , 𝑦 ∈ 𝒴 (5.12) 

휃𝑙,𝑦 = ∑ 𝛿𝑙,𝑖 

𝑦

𝑖=1

 𝑙 ∈ ℒ𝐶 , 𝑦 ∈ 𝒴 (5.13) 

휃𝑝𝑙,𝑦 = ∑ 𝛿𝑝𝑙,𝑖 

𝑦

𝑖=1

 𝑝𝑙 ∈ 𝒫ℒ𝐶 , 𝑦 ∈ 𝒴 (5.14) 

𝛾𝑘,𝑡,𝑤
𝑐 ≤ 𝑁𝑘,𝑦

TOT 𝑘 ∈ 𝒦, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.15) 

𝑃𝑘𝛾𝑘,𝑡,𝑤
𝑐 + 𝑝𝑘,𝑡,𝑤

𝑐 ≤ 𝑃𝑘 𝛾𝑘,𝑡,𝑤
𝑐   𝑘 ∈ 𝒦, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.16) 

𝛾𝑘,𝑡,𝑤
𝑐 = 𝛾𝑘,𝑡−1,𝑤

𝑐 + 𝛼𝑘,𝑡,𝑤
𝑐 − 𝛽𝑘,𝑡,𝑤

𝑐  𝑘 ∈ 𝒦, 𝑡 = 1, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.17) 

𝛾𝑘,𝑡,𝑤
𝑐 = 𝛾𝑘,𝑤

𝑐
0

+ 𝛼𝑘,𝑡,𝑤
𝑐 − 𝛽𝑘,𝑡,𝑤

𝑐  𝑘 ∈ 𝒦, 2 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.18) 

∑ 𝛼𝑘,𝜏,𝑤
𝑐 ≤

𝑡

𝜏=𝑡−𝑀𝑈𝑇𝑘 +1

𝛾𝑘,𝑡,𝑤
𝑐  𝑘 ∈ 𝒦, 𝑀𝑈𝑇𝑘 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.19) 

∑ 𝛽𝑘,𝜏,𝑤
𝑐 ≤ 𝑁𝑘,𝑦

𝑇𝑂𝑇 −

𝑡

𝜏=𝑡−𝑀𝐷𝑇𝑘 +1

𝛾𝑘,𝑡,𝑤
𝑐    

 
𝑘 ∈ 𝒦, 𝑀𝐷𝑇𝑘 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.20) 

𝐸ℎ,𝑡,𝑤
IN,𝑐 ≤ �̅�ℎ

IN ℎ ∈ ℋ𝐸 , 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.21) 

𝐸ℎ,𝑡,𝑤
OUT,𝑐 ≤ �̅�ℎ

OUT ℎ ∈ ℋ𝐸 , 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.22) 

𝐸ℎ,𝑡,𝑤
IN,𝑐 ≤ �̅�ℎ

IN 휃ℎ,𝑦 ℎ ∈ ℋ𝐶 , 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.23) 

𝐸ℎ,𝑡,𝑤
OUT,𝑐 ≤ �̅�ℎ

OUT 휃ℎ,𝑦 ℎ ∈ ℋ𝐶 , 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.24) 

𝐸ℎ,𝑡,𝑤
IN,𝑐

�̅�ℎ
IN

+
𝐸ℎ,𝑡,𝑤

OUT,𝑐

�̅�ℎ
OUT

≤ 1 ℎ ∈ ℋ, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.25) 

𝑠𝑙ℎ,𝑡,𝑤
𝑐 ≤ 𝑠�̅�ℎ ℎ ∈ ℋ, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.26) 

�̂�ℎ,𝑤
LT,𝑑 = 𝐸ℎ0

+ ∑ ∑ ∑(𝐹ℎ,𝑡
𝑐 + 𝜆ℎ

IN 𝐸ℎ,𝑡,𝑤
𝑐,IN − 𝜆ℎ

OUT 𝐸ℎ,𝑡,𝑤
𝑐,OUT − 𝑠𝑙ℎ,𝑡,𝑤

𝑐 )

24

𝑡=1 𝑐∈Map
𝑑′,𝑐
TIME

𝑑

𝑑′=𝑑−𝑀+1

 

 
ℎ ∈ ℋ, 𝑑 = 𝑀, 𝑤 ∈ 𝒲 (5.27) 
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�̂�ℎ,𝑤
LT,𝑑 = �̂�ℎ,𝑤

LT,𝑑−𝑀 + ∑ ∑ ∑(𝐹ℎ,𝑡
𝑐 + 𝜆ℎ

IN 𝐸ℎ,𝑡,𝑤
𝑐,IN − 𝜆ℎ

OUT 𝐸ℎ,𝑡,𝑤
𝑐,OUT − 𝑠𝑙ℎ,𝑡,𝑤

𝑐 )

24

𝑡=1 𝑐∈Map
𝑑′,𝑐
TIME

𝑑

𝑑′=𝑑−𝑀+1

 

 
ℎ ∈ ℋ, 𝑑 ∈ 𝒟𝑀

𝑦
, 𝑦 ∈ 𝒴, 𝑑 > 𝑀, 𝑤 ∈ 𝒲 (5.28) 

�̂�ℎ,𝑤
LT,𝑑 ≤ 𝐸𝑃𝑅ℎ  �̅�ℎ

IN ℎ ∈ ℋ, 𝑑 ∈ 𝐷𝑀
𝑦

, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.29) 

�̂�ℎ,𝑤
LT,𝑑 = 𝐸ℎ0

 ℎ ∈ ℋ, 𝑑 = |𝒟𝑦|, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.30) 

𝐸𝑏,𝑡,𝑤
IN,𝑐 ≤ ∑ 𝑐𝑎𝑝𝑏,𝑖

Batt

𝑦

𝑖=1

 𝑏 ∈ ℬ, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.31) 

𝐸𝑏,𝑡,𝑤
OUT,𝑐 ≤ ∑ 𝑐𝑎𝑝𝑏,𝑖

Batt

𝑦

𝑖=1

 𝑏 ∈ ℬ, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.32) 

𝐸𝑏,𝑡,𝑤
𝑐 ≤ 𝐸𝑃𝑅𝑏 ∑ 𝑐𝑎𝑝𝑏,𝑖

Batt

𝑦

𝑖=1

 𝑏 ∈ ℬ, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.33) 

𝐸𝑏,𝑡,𝑤
𝑐 = (1 − 𝜆𝑏) 𝐸𝑏,𝑡−1,𝑤

𝑐 + 𝜆𝑏
IN 𝐸𝑏,𝑡,𝑤

IN,𝑐 − 𝜆𝑏
OUT𝐸𝑏,𝑡,𝑤

OUT,𝑐  

𝑏 ∈ ℬ, 2 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.34) 

𝐸𝑏,𝑡,𝑤
𝑐 = (1 − 𝜆𝑏) 𝐸𝑏,𝑐0

+ 𝜆𝑏
IN 𝐸𝑏,𝑡,𝑤

IN,𝑐 − 𝜆𝑏
OUT𝐸𝑏,𝑡,𝑤

OUT,𝑐  

 
𝑏 ∈ ℬ, 𝑡 = 1, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.35) 

𝐸𝑏,𝑡,𝑤
𝑐 = 𝐸𝑏

𝑐
0
 𝑏 ∈ ℬ, 𝑡 = 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.36) 

𝐹𝑙 ≤ 𝑥𝑙,𝑡,𝑤
𝑐 ≤ 𝐹𝑙 𝑙 ∈ ℒ𝐸 , 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.37) 

휃𝑙,𝑦 𝐹𝑙 ≤ 𝑥𝑙,𝑡,𝑤
𝑐 ≤ 휃𝑙,𝑦 𝐹𝑙 𝑙 ∈ ℒ𝐶 , 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.38) 

   

∑ (𝑃𝑘  𝛾𝑘,𝑡,𝑤
𝑐 + 𝑝𝑘,𝑡,𝑤

𝑐 ) + 𝜇𝑧,𝑡
𝑐 (𝑠𝑜𝑙𝑧,0 + ∑ 𝑠𝑜𝑙𝑧,𝑖

𝑦

𝑖=1

)

𝑘𝜖𝛺𝑧
𝑘

+ 𝜌𝑧,𝑡
𝑐 (𝑤𝑖𝑛𝑑𝑧,0 + ∑ 𝑤𝑖𝑛𝑑𝑧,𝑖

𝑦

𝑖=1

) + 

+ ∑ 𝑥𝑙,𝑡,𝑤
𝑐

𝑙|𝑟𝑧(𝑙)=𝑧

+ ∑ 𝐸ℎ,𝑡,𝑤
OUT,𝑐

ℎ𝜖𝛺𝑧
ℎ

+ ∑ 𝐸𝑏,𝑡,𝑤
OUT,𝑐

𝑏𝜖𝛺𝑧
𝑏

+ 𝐸𝑁𝑃𝑧,𝑡,𝑤
𝑐 = 𝐷𝑧,𝑡

ELEC,𝑐 +  

+ ∑ 𝑥𝑙,𝑡,𝑤
𝑐

𝑙|𝑠𝑧(𝑙)=𝑧

+ ∑ 𝐸ℎ,𝑡,𝑤
IN,𝑐

ℎ𝜖𝛺𝑧
ℎ

+ ∑ 𝐸𝑏,𝑡,𝑤
IN,𝑐

𝑏𝜖𝛺𝑧
𝑏

+ ∑
𝐺𝐴𝑆𝑝𝑡𝑔,𝑡,𝑤

PtG,𝑐

휂𝑝𝑡𝑔
𝑝𝑡𝑔𝜖𝛺𝑧

PtG

+ 𝑂𝐺𝑧,𝑡,𝑤
𝑐   

 𝑧 ∈ 𝒵, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.39) 
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∑ [(𝑃𝑘 − 𝑃𝑘) 𝛾𝑘,𝑡,𝑤
𝑐 − 𝑝𝑘,𝑡,𝑤

𝑐 ] + 𝑅𝑁𝑃𝑧,𝑡,𝑤
𝑐 ≥ 𝑅𝑧,𝑡

𝑐

𝑘∈𝒦

  

 
𝑧 ∈ 𝒵, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.40) 

𝐹𝑝𝑙 ≤ 𝐺𝐴𝑆𝑝𝑙,𝑡,𝑤
FLOW,𝑐 ≤ 𝐹𝑝𝑙 𝑝𝑙 ∈ 𝒫ℒ𝐸 , 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.41) 

휃𝑝𝑙,𝑦 𝐹𝑝𝑙 ≤ 𝐺𝐴𝑆𝑝𝑙,𝑡,𝑤
FLOW,𝑐 ≤ 휃𝑝𝑙,𝑦 𝐹𝑝𝑙  

 
𝑝𝑙 ∈ 𝒫ℒ𝐶 , 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.42) 

𝐺𝐴𝑆𝑛,𝑡,𝑤
IN,𝑐 ≤ 𝐺𝐴𝑆̅̅ ̅̅ ̅̅

𝑛
IN 𝑛 ∈ 𝒩, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.43) 

𝐺𝐴𝑆𝑛,𝑡,𝑤
OUT,𝑐 ≤ 𝐺𝐴𝑆̅̅ ̅̅ ̅̅

𝑛
OUT 𝑛 ∈ 𝒩, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.44) 

𝐺𝐴�̂�𝑛,𝑤
LT,𝑑

= 𝐺𝑛0
+ ∑ ∑ ∑(𝐺𝐴𝑆𝑛,𝑡,𝑤

IN,𝑐 − 𝐺𝐴𝑆𝑛,𝑡,𝑤
OUT,𝑐)

24

𝑡=1 𝑐∈Map
𝑑′,𝑐

TIME

𝑑

𝑑′=𝑑−𝑀+1

  

 
𝑛 ∈ 𝒩, 𝑑 = 𝑀, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.45) 

𝐺𝐴�̂�𝑛,𝑤
LT,𝑑

= 𝐺𝐴�̂�𝑛,𝑤
LT,𝑑−𝑀

+ ∑ ∑ ∑(𝐺𝐴𝑆𝑛,𝑡,𝑤
IN,𝑐 − 𝐺𝐴𝑆𝑛,𝑡,𝑤

OUT,𝑐)

24

𝑡=1 𝑐∈Map
𝑑′,𝑐

TIME

𝑑

𝑑′=𝑑−𝑀+1

 

 

 
𝑛 ∈ 𝒩, 𝑑 ∈ 𝐷𝑀

𝑦
, 𝑑 > 𝑀, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.46) 

𝐺𝐴�̂�𝑛,𝑤
LT,𝑑

≤ 𝐺𝐴𝑆̅̅ ̅̅ ̅
𝑛
LEV

 𝑛 ∈ 𝒩, 𝑑 ∈ 𝐷𝑀
𝑦

, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.47) 

𝐺𝐴�̂�𝑛,𝑤
LT,𝑑

= 𝐺𝑛0
 𝑛 ∈ 𝒩, 𝑑 = |𝒟𝑦|, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.48) 

𝐺𝐴𝑆𝑛
PROD ≤ 𝐺𝐴𝑆𝑛,𝑡,𝑤

PROD,𝑐 ≤ 𝐺𝐴𝑆𝑛

PROD
   

 
𝑛 ∈ 𝒩, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.49) 

𝐺𝐴𝑆𝑛,𝑡,𝑤
CURT,𝑐 ≤ 𝐷𝑛,𝑡

GAS,𝑐 𝑛 ∈ 𝒩, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.50) 

𝐺𝐴𝑆𝑝𝑡𝑔,𝑡,𝑤
PtG ≤ ∑ 𝑐𝑎𝑝𝑝𝑡𝑔,𝑖

PtG

𝑦

𝑖=1

 𝑝𝑡𝑔 ∈ 𝒫𝑡𝒢, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.51) 

 
 

𝐺𝐴𝑆𝑛,𝑡,𝑤
PROD,𝑐 + ∑ ∑ 𝐺𝐴𝑆𝑝𝑡𝑔,𝑡,𝑤

PtG

𝑝𝑡𝑔𝜖𝛺𝑧
PtG𝑧∈𝑀𝑎𝑝𝑧,𝑛

𝐺𝐴𝑆

+ ∑ 𝐺𝐴𝑆𝑝𝑙,𝑡,𝑤
FLOW,𝑐

𝑝𝑙|𝑟𝑛(𝑝𝑙)=𝑛

+ 
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+ 𝐺𝐴𝑆𝑛,𝑡,𝑤
OUT,𝑐 + 𝐺𝐴𝑆𝑛,𝑡,𝑤

CURT,𝑐 = ∑ ∑ 𝑔𝑎𝑠𝑘(𝑃𝑘 𝛾𝑘,𝑡,𝑤
𝑐 + 𝑝𝑘,𝑡,𝑤

𝑐 )

𝑘𝜖(𝒦𝐺𝐴𝑆∩𝛺𝑧
𝑘)𝑧∈𝑀𝑎𝑝𝑧,𝑛

𝐺𝐴𝑆

+  

+ 𝐷𝑛,𝑡
GAS,𝑐 + ∑ 𝐺𝐴𝑆𝑝𝑙,𝑡,𝑤

FLOW,𝑐

𝑝𝑙|𝑠𝑛(𝑝𝑙)=𝑛

+ 𝐺𝐴𝑆𝑛,𝑡,𝑤
IN,𝑐  

 
𝑛 ∈ 𝒩, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.52) 

∑  𝑤𝑔𝑐

𝑐∈𝒞𝑦

∑ ∑ ∑ 𝐻𝑅𝑘(𝑃𝑘 𝛾𝑘,𝑡,𝑤
𝑐 + 𝑝𝑘,𝑡,𝑤

𝑐 )

𝑘𝜖𝛺𝑧
𝑘𝑧|𝑚𝑎(𝑧)=𝑚

𝑐𝑜2𝑓𝑢𝑒𝑙(𝑘) ≤ 𝐶𝑂̅̅ ̅̅
2𝑚,𝑦

24

𝑡=1

  

 
𝑚 ∈ ℳ, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.53) 

𝑅𝐸𝑆𝑧,𝑡
𝑐 = 𝜇𝑧,𝑡

𝑐 (𝑠𝑜𝑙𝑧,0 + ∑ 𝑠𝑜𝑙𝑧,𝑖

𝑦

𝑖=1

) + 𝜌𝑧,𝑡
𝑐 (𝑤𝑖𝑛𝑑𝑧,0 + ∑ 𝑤𝑖𝑛𝑑𝑧,𝑖

𝑦

𝑖=1

) 

 

 
𝑧 ∈ 𝒵, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴 (5.54) 

∑ ∑ 𝑤𝑔𝑐

𝑐∈𝒞𝑦𝑧|𝑚𝑎(𝑧)=𝑚

∑ 𝑅𝐸𝑆𝑧,𝑡
𝑐

24

𝑡=1

≥ 𝜑𝑚,𝑦 ( ∑ ∑ 𝑤𝑔𝑐 ∑ 𝐷𝑧,𝑡
ELEC,𝑐

24

𝑡=1𝑐∈𝒞𝑦𝑧|𝑚𝑎(𝑧)=𝑚

) 

 

 
𝑚 ∈ ℳ, 𝑦 ∈ 𝒴 (5.55) 

𝑁𝑘,𝑦
− , 𝑁𝑘,𝑦

+ , 𝑁𝑘,𝑦
TOT ∈ ℕ 𝑘 ∈ 𝒦, 𝑦 ∈ 𝒴 (5.56) 

𝛿ℎ,𝑦 , 휃ℎ,𝑦 ∈ {0,1} ℎ ∈ ℋ𝐶 , 𝑦 ∈ 𝒴 (5.57) 

𝛿𝑙,𝑦 , 휃𝑙,𝑦 ∈ {0,1} 𝑙 ∈ ℒ𝐶 , 𝑦 ∈ 𝒴 (5.58) 

𝛿𝑝𝑙,𝑦 , 휃𝑝𝑙,𝑦 ∈ {0,1} 𝑝𝑙 ∈ 𝒫ℒ𝐶 , 𝑦 ∈ 𝒴 (5.59) 

𝑠𝑜𝑙𝑧,𝑦, 𝑤𝑖𝑛𝑑𝑧,𝑦 ≥ 0 𝑧 ∈ 𝒵, 𝑦 ∈ 𝒴 (5.60) 

𝑐𝑎𝑝𝑏,𝑦
Batt ≥ 0 𝑏 ∈ ℬ, 𝑦 ∈ 𝒴 (5.61) 

𝑐𝑎𝑝𝑃𝑡𝐺,𝑦
PtG ≥ 0 𝑝𝑡𝑔 ∈ 𝒫𝑡𝒢, 𝑦 ∈ 𝒴 (5.62) 

𝑅𝐸𝑆𝑧,𝑡
𝑐 ≥ 0 𝑧 ∈ 𝒵, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴 (5.63) 

𝛼𝑘,𝑡,𝑤
𝑐 , 𝛽𝑘,𝑡,𝑤

𝑐 , 𝛾𝑘,𝑡,𝑤
𝑐 ∈ ℕ 𝑘 ∈ 𝒦, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.64) 

𝑝𝑘,𝑡,𝑤
𝑐 ≥ 0 𝑘 ∈ 𝒦, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.65) 
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𝐸ℎ,𝑡,𝑤
IN,𝑐 , 𝐸ℎ,𝑡,𝑤

OUT,𝑐 , 𝑠𝑙ℎ,𝑡,𝑤
𝑐 ≥ 0 ℎ ∈ ℋ, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.66) 

�̂�ℎ,𝑤
LT,𝑑 ≥ 0 ℎ ∈ ℋ, 𝑑 ∈ 𝒟𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.67) 

𝐸𝑏,𝑡,𝑤
𝑐 , 𝐸𝑏,𝑡,𝑤

IN,𝑐 , 𝐸𝑏,𝑡,𝑤
OUT,𝑐 ≥ 0 𝑏 ∈ ℬ, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.68) 

𝐸𝑁𝑃𝑧,𝑡,𝑤
𝑐 , 𝑂𝐺𝑧,𝑡,𝑤

𝑐 , 𝐸𝑁𝑃𝑧,𝑡,𝑤
𝑐 ≥ 0 𝑧 ∈ 𝒵, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.69) 

𝑥𝑙,𝑡,𝑤
𝑐  free variable 𝑙 ∈ ℒ, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.70) 

𝐺𝐴𝑆𝑛,𝑡,𝑤
PROD,𝑐, 𝐺𝐴𝑆𝑛,𝑡,𝑤

CURT,𝑐, 𝐺𝐴𝑆𝑛,𝑡,𝑤
IN,𝑐 , 𝐺𝐴𝑆𝑛,𝑡,𝑤

OUT,𝑐 ≥ 0  

 
𝑛 ∈ 𝒩, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.71) 

𝐺𝐴�̂�𝑛,𝑤
LT,𝑑

≥ 0 𝑛 ∈ 𝒩, 𝑑 ∈ 𝒟𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.72) 

𝐺𝐴𝑆𝑝𝑡𝑔,𝑡,𝑤
PtG,𝑐 ≥ 0 𝑝𝑡𝑔 ∈ 𝒫𝑡𝒢, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (5.73) 

𝐺𝐴𝑆𝑝𝑙,𝑡,𝑤
FLOW,𝑐 free variable 𝑝𝑙 ∈ 𝒫ℒ, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲. (5.74) 

 

The proposed model co-optimizes strategic and operational decisions for integrated 

electricity and natural gas systems. Indeed, the objective function (5.1) comprises the 

nine terms below: 

1. ∑ (∑
𝐷𝐶𝑘 𝑁𝑘,𝑦

−

(1+𝑟)𝑦−𝑦0𝑘∈𝒦 + ∑
𝐼𝐶𝑘

The 𝑁𝑘,𝑦
+

(1+𝑟)𝑦−𝑦0𝑘∈𝒦 )𝑦∈𝒴  are the annualized decommissioning costs of 

existing thermal power plants and investment costs in new thermal power 

generation; 

2. ∑ (∑
𝐼𝐶𝑧,𝑦

Sol 𝑠𝑜𝑙𝑧,𝑦

(1+𝑟)𝑦−𝑦0𝑧∈𝒵 + ∑
𝐼𝐶𝑧,𝑦

Wind 𝑤𝑖𝑛𝑑𝑧,𝑦

(1+𝑟)𝑦−𝑦0𝑧∈𝒵 )𝑦∈𝒴  are the annualized investment costs in new 

solar and wind capacity; 

3. ∑ ∑
𝐼𝐶ℎ,𝑦

Hyd
 𝛿ℎ,𝑦

(1+𝑟)𝑦−𝑦0ℎ∈ℋ𝐶𝑦∈𝒴  are the annualized investment costs in new hydropower plants; 

4. ∑ ∑
𝐼𝐶𝑏,𝑦

Batt 𝑐𝑎𝑝𝑏,𝑦
Batt

(1+𝑟)𝑦−𝑦0𝑏∈ℬ𝑦∈𝒴  are the annualized investment costs in new batteries capacity; 

5. ∑ ∑
𝐼𝐶𝑙

Line 𝛿𝑙,𝑦

(1+𝑟)𝑦−𝑦0𝑙∈ℒ𝐶𝑦∈𝒴  are the annualized investment costs in new transmission lines; 

6. ∑ ∑ 𝐹𝐶𝑘 𝑁𝑘,𝑦
TOT

𝑘∈𝒦𝑦∈𝒴  are the fixed costs for the available thermal power plants; 
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7. ∑ ∑
𝐼𝐶𝑝𝑙

Pipe
 𝛿𝑝𝑙,𝑦

(1+𝑟)𝑦−𝑦0𝑝𝑙∈𝒫ℒ𝐶𝑦∈𝒴  are the annualized investment costs in new pipelines; 

8. ∑ ∑
𝐼𝐶𝑝𝑡𝑔

PtG 𝑐𝑎𝑝𝑝𝑡𝑔,𝑦
PtG

(1+𝑟)𝑦−𝑦0𝑝𝑡𝑔∈𝒫𝑡𝒢𝑦∈𝒴  are the annualized investment costs in new PtG capacity; 

9. ∑ 𝑝𝑟𝑜𝑏𝑤𝑤∈𝒲 [∑ ∑ 𝑤𝑔𝑐𝑐∈𝒞𝑦𝑦∈𝒴  ∑ (∑  𝐶𝑀𝑘,𝑦,𝑤𝑘∈𝒦
24
𝑡=1 (𝑃𝑘  𝛾𝑘,𝑡,𝑤

𝑐 + 𝑝𝑘,𝑡,𝑤
𝑐 ) +  ∑ 𝑆𝑈𝐶𝑘𝑘∈𝒦 ⋅

𝛼𝑘,𝑡,𝑤
𝑐  +   ∑  𝐶𝑣𝑎𝑟ℎ  𝐸ℎ,𝑡,𝑤

OUT,𝑐
ℎ∈ℋ  +  ∑  𝐶𝑣𝑎𝑟𝑏 𝐸𝑏,𝑡,𝑤

OUT,𝑐
𝑏∈ℬ   +   ∑  𝐶𝑛,𝑦,𝑤

PROD  𝐺𝐴𝑆𝑛,𝑡,𝑤
PROD,𝑐

𝑛∈𝒩 +

∑  𝐶𝑣𝑎𝑟𝑝𝑡𝑔  𝐺𝐴𝑆𝑝𝑡𝑔,𝑡,𝑤
PtG,𝑐

𝑝𝑡𝑔 ∈ 𝒫𝑡𝒢   +  𝑐𝐸𝑁𝑃  ∑ 𝐸𝑁𝑃𝑧,𝑡,𝑤
𝑐

𝑧∈𝒵  +  𝑐𝑂𝐺  ∑  𝑂𝐺𝑧,𝑡,𝑤
𝑐

𝑧∈𝒵 +  𝑐𝑅𝑁𝑃 ⋅

∑ 𝑅𝑁𝑃𝑧,𝑡,𝑤
𝑐

𝑧∈𝒵 + 𝑐𝐺𝐶 ∑ 𝐺𝐴𝑆𝑛,𝑡,𝑤
CURT,𝑐

𝑛∈𝒩 )] are the second-stage costs, i.e., the operating 

costs, which are computed by considering for each representative day thermal power 

production costs, start-up costs, hydro and batteries operational costs, gas 

production costs, PtG operational costs, and penalties for energy not provided, over-

generation and gas curtailment.  

The proposed model is constrained by four groups of constraints, namely investment 

constraints (5.2)−(5.14), power system operational constraints (5.15)−(5.40), gas system 

operational constraints (5.41)−(5.52) and target constraints (5.53)−(5.55). Investment 

constraints regulate investment decisions in new facilities for both the power and the gas 

system. In particular, inequalities (5.2) impose for every cluster 𝑘 lower and upper 

bounds to the total number of thermal power plants decommissioned within each year 

of the planning horizon. Constraints (5.3) work similarly by limiting the number of new 

built power plants. Equations (5.4) impose a temporal window for investments in new 

hydropower plants. Constraints (5.5) and (5.6) work similarly for the investment 

decisions in new transmission lines and new pipelines, respectively. Inequalities (5.7) 

and (5.8) bound the solar power capacity and the wind power capacity installed over the 

planning horizon. The total capacity installed at the end of the planning horizon for each 

battery is bounded by constraints (5.9), while inequalities (5.10) limit the installed 

capacity for PtG plants. Equations (5.11) compute for each cluster and for each year the 

number of thermal power plants available to supply load as the sum of the existing power 

plants at the beginning of the planning horizon, plus the newly built units, minus the 

decommissioned power plants. Equations (5.12)−(5.14) compute the values of the binary 

variables 휃ℎ,𝑦, 휃𝑙,𝑦 and 휃𝑝𝑙,𝑦 that express if investment decisions for new hydropower 

plants, new transmission lines, and new pipelines, respectively, have been made within 

every year 𝑦 of the planning horizon. 

Power system operational constraints (5.15)−(5.40) model the technical conditions 

for operating thermal and hydropower plants, power transmission and storages and 

consider the flexibility provided to the energy system by the hydro-thermal dispatch and 
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the storage units. In particular, the block of equations (5.15)−(5.20) models the thermal 

component of the energy system. Constraints (5.15) ensure consistency between 

operational and investment decisions, bounding the number of thermal power plants 

within each cluster that can be used to supply load to the number of available thermal 

power plants. Inequalities (5.16) restrict the power output from thermal units. Indeed, 

the total power output of thermal units of cluster 𝑘 is expressed as 𝑃𝑘𝛾𝑘,𝑡,𝑤
𝑐 + 𝑝𝑘,𝑡,𝑤

𝑐 , which 

is bounded below 𝑃𝑘 𝛾𝑘,𝑡,𝑤
𝑐  by constraints (5.16). These constraints also set to zero the 

power output from clusters with no online units (i.e., 𝛾𝑘,𝑡,𝑤
𝑐 = 0). Equations (5.17) and 

(5.18) compute the number of online thermal power plants in hour 𝑡 within each cluster 

as the sum of online units in the previous hour, plus the number of power plants started-

up in hour 𝑡, minus the number of units shut down in hour 𝑡. Parameters 𝛾𝑘,𝑤
𝑐

0
 in 

equations (5.18) represent the number of units within cluster 𝑘 online at the beginning 

of representative day 𝑐 under scenario 𝑤. They are determined by summing the initial 

statuses assigned to all thermal power plants in cluster 𝑘 according to the procedure 

described in Section 2.5. Inequalities (5.19) and (5.20) are the minimum up time  and 

down time constraints. 

Constraints (5.21)−(5.30) model the operation of hydropower plants. Specifically, the 

pumping power and the power output of the existing hydroelectric reservoirs are 

bounded below their respective upper limits by constraints (5.21) and (5.22). Inequalities 

(5.23) and (5.24) work similarly to candidate hydropower plants. Indeed, if hydro plant 

ℎ ∈ ℋ𝐶 is built within year 𝑦, these constraints define the upper bounds to pumping 

power and power output, otherwise they set the corresponding variables to zero. 

Constraints (5.25) limit for each reservoir the power production and the pumping power 

in the same hour, while equations (5.26) bound the energy spillage from reservoirs. 

Constraints (5.27) and (5.28) model the long-term operations of hydropower plants, 

reconstructing the seasonal profile of reservoirs.  Constraints (5.29) ensure that the long-

term energy levels of reservoirs are within bounds, while equations (5.30) enforce the 

equality between energy levels of each reservoir ℎ at the beginning and the end of each 

year of the planning horizon. 

Constraints (5.31)−(5.36) model the operation of batteries. Specifically, Inequalities 

(5.31)−(5.33) impose upper bounds to charge, discharge and stored energy and enforce 

consistency between the values of investment and operational variables. Energy balances 

(5.34) and (5.35) are intra-day constraints, controlling the energy stored by batteries. 

Constraints (5.36) enforce the equality between energy levels at the beginning and the 

end of each representative day for each battery 𝑏. 
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Inequalities (5.37) and (5.38) restrict the energy flows on the existing and candidate 

transmission lines, respectively. The zonal balance equations (5.39) impose equality 

between energy sources and uses in every zone and every hour. The left-hand side of 

these equations represents the hourly energy sources of zone 𝑧, which are given by 

thermal, solar and wind generation, incoming energy flows, hydro generation, and 

energy released by batteries. Instead, the right-hand side describes the energy uses, 

which are represented by the load, outgoing energy flows, pumping power, energy 

absorbed by batteries, and power absorbed by PtG plant to produce synthetic gas. The 

variables 𝐸𝑁𝑃𝑧,𝑡,𝑤
𝑐  and 𝑂𝐺𝑧,𝑡,𝑤

𝑐  allow detecting and evaluating problems in the simulated 

system that can cause a mismatch between supply and demand. Inequalities (5.40) 

ensure the fulfilment of zonal reserve requirements provided by online thermal power 

plants, with variable 𝑅𝑁𝑃𝑧,𝑡,𝑤
𝑐  representing the reserve not provided.  

Gas operational constraints (5.41)−(5.52) model the technical conditions for 

operating the gas system. Similarly to transmission lines, inequalities (5.41) restrict the 

gas flows on the existing pipelines, while constraints (5.42) impose lower and upper 

bounds to the gas flows on candidate pipelines. Inequalities (5.43) and (5.44) bound the 

gas charged and discharged from storage facilities in each node of the gas network to 

their respective limits. Similarly to constraints (5.27) and (5.28), equations (5.45) and 

(5.46) model the reconstruct the seasonal profile of the gas storage. Inequalities (5.47) 

limit the gas stored, while constraints (5.48) enforce the equality between storage levels 

at the beginning and the end of each year of the planning horizon. Inequalities (5.49) 

impose lower and upper bounds to the nodal gas production, while constraints (5.50) 

bound the gas curtailment to the gas demand. Inequalities (5.51) enforce consistency 

between values of operational and investment variables for PtG plants, limiting the 

hourly production of synthetic gas from PtG plants to the total installed capacity. The 

nodal balance equations (5.52) impose equality between gas sources and uses in every 

node and every hour. Indeed, the left-hand side of these equations represents the hourly 

gas sources of node 𝑛 (given by nodal supply, production of synthetic gas from PtG 

plants, incoming flows, and storage discharge) and the right-hand side describes the gas 

uses (represented by gas demand related to power generation, gas demand not related to 

power generation, outgoing flows, and storage charge). The slack variable 𝐺𝐴𝑆𝑛,𝑡,𝑤
CURT,𝑐 

modeling the gas curtailment assumes positive values when the gas uses exceed the gas 

sources. 

Target constraints (5.53)−(5.55) model conditions required to promote sustainable 

development of energy systems, which include a reduction of CO2 emissions and an 
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increase of generation from renewable power sources. Specifically, inequalities (5.53) 

impose limits for thermal energy production due to CO2 emissions. Equations (5.54) 

compute the zonal hourly renewable production, by considering solar and wind 

generation. Constraints (5.55) control the renewables penetration, forcing the total 

generation from solar and wind power plants in macro-area 𝑚 in year 𝑦 to cover at least 

ratio 𝜑𝑚,𝑦  of the total yearly load. Finally, constraints (5.56)−(5.74) define the 

optimization variables. 

5.3.4 Solution algorithm 

As explained in the previous chapters, when considering real-scale energy systems, 

providing a solution to the two-stage stochastic programming model is computationally 

infeasible. Thus, to obtain a solution, in this work, we apply the multi-cut Benders 

decomposition algorithm introduced in Section 4.4, which is here modified to include 

also the gas component. 

5.3.4.1 Master problem 

The master problem aims to provide values of the first-stage variables by solving at each 

iteration 𝑗 the following MILP model, whose optimization variables are 𝑁𝑘,𝑦
− , 𝑁𝑘,𝑦

+ , 𝑁𝑘,𝑦
TOT, 

𝑠𝑜𝑙𝑧,𝑦, 𝑤𝑖𝑛𝑑𝑧,𝑦, 𝛿ℎ,𝑦, 휃ℎ,𝑦, 𝑐𝑎𝑝𝑏,𝑦
Batt, 𝛿𝑙,𝑦, 휃𝑙,𝑦, 𝛿𝑝𝑙,𝑦, 휃𝑝𝑙,𝑦, 𝑐𝑎𝑝𝑝𝑡𝑔,𝑦

PtG  and 𝜎𝑤. 

min 𝑧𝑑𝑜𝑤𝑛  = ∑ ( ∑
𝐷𝐶𝑘𝑁𝑘,𝑦

−

(1 + 𝑟)𝑦−𝑦0

𝑘∈𝒦

+ ∑
𝐼𝐶𝑘

The𝑁𝑘,𝑦
+

(1 + 𝑟)𝑦−𝑦0

𝑘∈𝒦

) +

𝑦∈𝒴

 

 

 + ∑ (∑
𝐼𝐶𝑧,𝑦

Sol 𝑠𝑜𝑙𝑧,𝑦

(1 + 𝑟)𝑦−𝑦0

𝑧∈𝒵

+ ∑
𝐼𝐶𝑧,𝑦

Wind 𝑤𝑖𝑛𝑑𝑧,𝑦

(1 + 𝑟)𝑦−𝑦0

𝑧∈𝒵

)

𝑦∈𝒴

+  

 + ∑ ∑
𝐼𝐶ℎ,𝑦

Hyd
 𝛿ℎ,𝑦

(1 + 𝑟)𝑦−𝑦0

ℎ∈ℋ𝐶𝑦∈𝒴

+  

 + ∑ ∑
𝐼𝐶𝑏,𝑦

Batt 𝑐𝑎𝑝𝑏,𝑦
Batt

(1 + 𝑟)𝑦−𝑦0

𝑏∈ℬ𝑦∈𝒴

+  

 + ∑ ∑
𝐼𝐶𝑙

Line 𝛿𝑙,𝑦

(1 + 𝑟)𝑦−𝑦0

𝑙∈ℒ𝐶𝑦∈𝒴

+  

 + ∑ ∑ 𝐹𝐶𝑘 𝑁𝑘,𝑦
TOT

𝑘∈𝒦𝑦∈𝒴
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 + ∑ ∑
𝐼𝐶𝑝𝑙

Pipe
 𝛿𝑝𝑙,𝑦

(1 + 𝑟)𝑦−𝑦0

𝑝𝑙∈𝒫ℒ𝐶𝑦∈𝒴

  

 + ∑ ∑
𝐼𝐶𝑝𝑡𝑔

PtG 𝑐𝑎𝑝𝑝𝑡𝑔,𝑦
PtG

(1 + 𝑟)𝑦−𝑦0

𝑝𝑡𝑔∈𝒫𝑡𝒢𝑦∈𝒴

  

 + ∑ 𝑝𝑟𝑜𝑏𝑤 𝜎𝑤

𝑤∈𝒲

 (5.75) 

subject to 

𝜎𝑤  ≥  ∑ 𝑧𝑦,𝑤
(𝜈)

𝑦∈𝒴

  + ∑ ∑ 𝜆𝑘,𝑦,𝑤
𝑁TOT(𝜈)

(𝑁𝑘,𝑦
TOT − 𝑁𝑘,𝑦

TOT (𝜈)
)

𝑘∈𝒦𝑦∈𝒴

  

 + ∑ ∑ 𝜆𝑧,𝑦,𝑤
𝑠𝑜𝑙(𝜈)

(𝑠𝑜𝑙𝑧,𝑦 − 𝑠𝑜𝑙𝑧,𝑦
(𝜈)

)

𝑧∈𝒵𝑦∈𝒴

  

 + ∑ ∑ 𝜆𝑧,𝑦,𝑤
𝑤𝑖𝑛𝑑(𝜈)

(𝑤𝑖𝑛𝑑𝑧,𝑦 − 𝑤𝑖𝑛𝑑𝑧,𝑦
(𝜈)

)

𝑧∈𝒵𝑦∈𝒴

  

 + ∑ ∑ 𝜆ℎ,𝑦,𝑤
𝜃ℎ

(𝜈)

(휃ℎ,𝑦 − 휃ℎ,𝑦
 (𝜈)

)

ℎ∈ℋ𝐶𝑦∈𝒴

  

 + ∑ ∑ 𝜆𝑏,𝑦,𝑤
𝑐𝑎𝑝Batt(𝜈)

(𝑐𝑎𝑝𝑏,𝑦
Batt − 𝑐𝑎𝑝𝑏,𝑦

Batt(𝜈)
)

𝑏∈ℬ𝑦∈𝒴

  

 + ∑ ∑ 𝜆𝑙,𝑦,𝑤
𝜃𝑙

(𝜈)

(휃𝑙,𝑦 − 휃𝑙,𝑦
 (𝜈)

)

𝑙∈ℒ𝐶𝑦∈𝒴

  

 + ∑ ∑ 𝜆𝑝𝑙,𝑦,𝑤

𝜃𝑝𝑙
(𝜈)

(휃𝑝𝑙,𝑦 − 휃𝑝𝑙,𝑦
 (𝜈)

)

𝑙∈𝒫ℒ𝐶𝑦∈𝒴

  

 + ∑ ∑ 𝜆𝑝𝑡𝑔,𝑦,𝑤
𝑐𝑎𝑝PtG(𝜈)

(𝑐𝑎𝑝𝑝𝑡𝑔,𝑦
PtG − 𝑐𝑎𝑝𝑝𝑡𝑔,𝑦

PtG(𝜈)
)

𝑝𝑡𝑔∈𝒫𝑡𝒢𝑦∈𝒴

  

  
𝑤 ∈ 𝒲, 𝜈 = 1, … , 𝑗 − 1 (5.76) 

𝜎𝑤 ≥ 𝜎𝑑𝑜𝑤𝑛  𝑤 ∈ 𝒲 (5.77) 

(5.2)–(5.14)   (5.78) 

(5.54)–(5.55)   (5.79) 

(5.56)–(5.63)    (5.80) 

The objective function (5.75) includes investment, decommissioning and fixed costs 

and the auxiliary variables 𝜎𝑤 that lower-approximate the operation cost under scenario 

𝑤. Constraints (5.76) are Benders optimality cuts, which tighten the feasible region of 
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the master problem over iterations. As previously explained, no feasibility cuts are 

needed, since the subproblems are always feasible due to the second-stage variables 

𝐸𝑁𝑃𝑧,𝑡,𝑤
𝑐 , 𝑂𝐺𝑧,𝑡,𝑤

𝑐  and 𝑅𝑁𝑃𝑧,𝑡,𝑤
𝑐  that model energy not provided, over-generation and 

reserve not provided, respectively. Lower bound constraints (5.77) on variables 𝜎𝑤 avoid 

the master problem being unbounded in the first iteration, while constraints (5.78) 

control investment and decommissioning decisions as in the original problem. Equations 

(5.79) control the renewable penetration, which is now a first-stage variable since it 

depends only on the solar and wind power installed capacity. Finally, constraints (5.80) 

define optimization variables for the master problem.  

5.3.4.2 Subproblems 

At each iteration 𝑗, for given values of the first-stage variables 𝑁𝑘,𝑦
TOT (𝑗)

, 휃ℎ,𝑦
(𝑗)

, 𝑠𝑜𝑙𝑧,𝑦
(𝑗)

, 

𝑤𝑖𝑛𝑑𝑧,𝑦
(𝑗)

, 𝑐𝑎𝑝𝑏,𝑦
Batt(𝑗)

, 휃𝑙,𝑦
 (𝑗)

, 휃𝑝𝑙,𝑦
 (𝑗)

, and 𝑐𝑎𝑝𝑏,𝑦
PtG(𝑗)

 the subproblem associated with year 𝑦 and 

scenario 𝑤 is formulated as follows.  

min  𝑧𝑦,𝑤 = ∑ 𝑤𝑔𝑐

𝑐∈𝒞𝑦

∑ [ ∑ (𝐶𝑀𝑘,𝑦,𝑤(𝑃𝑘 𝛾𝑘,𝑡,𝑤
𝑐 + 𝑝𝑘,𝑡,𝑤

𝑐 ) + 𝑆𝑈𝐶𝑘𝛼𝑘,𝑡,𝑤
𝑐 )

𝑘∈𝒦

24

𝑡=1

  

 
 + ∑ 𝐶𝑣𝑎𝑟ℎ  𝐸ℎ,𝑡,𝑤

OUT,𝑐

ℎ∈ℋ

+ ∑ 𝐶𝑣𝑎𝑟𝑏 𝐸𝑏,𝑡,𝑤
OUT,𝑐

𝑏∈ℬ

  

 
 + ∑  𝐶𝑛,𝑦,𝑤

PROD𝐺𝐴𝑆𝑛,𝑡,𝑤
PROD,𝑐

𝑛∈𝒩

+ ∑ 𝐶𝑣𝑎𝑟𝑝𝑡𝑔 𝐺𝐴𝑆𝑝𝑡𝑔,𝑡,𝑤
PtG,𝑐

𝑝𝑡𝑔∈𝒫𝑡𝒢

  

 
 + 𝑐𝐸𝑁𝑃 ∑ 𝐸𝑁𝑃𝑧,𝑡,𝑤

𝑐

𝑧∈𝒵

+ 𝑐𝑂𝐺 ∑ 𝑂𝐺𝑧,𝑡,𝑤
𝑐

𝑧∈𝒵

  

 
 

+ 𝑐𝑅𝑁𝑃 ∑ 𝑅𝑁𝑃𝑧,𝑡,𝑤
𝑐

𝑧∈𝒵

+ 𝑐𝐺𝐶 ∑ 𝐺𝐴𝑆𝑛,𝑡,𝑤
CURT,𝑐

𝑛∈𝒩

] (5.81) 

subject to 

(5.15)−(5.53) 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦 (5.82) 

𝑁𝑘,𝑦
TOT = 𝑁𝑘,𝑦

TOT (𝑗)
  : 𝜆𝑘,𝑦,𝑤

𝑁TOT
 𝑘 ∈ 𝒦 (5.83) 

휃𝑙,𝑦 = 휃𝑙,𝑦
(𝑗)

 : 𝜆𝑙,𝑦,𝑤
𝜃𝑙   𝑙 ∈ ℒ𝐶 (5.84) 

𝑤𝑖𝑛𝑑𝑧,𝑦 = 𝑤𝑖𝑛𝑑𝑧,𝑦
(𝑗)

 : 𝜆𝑧,𝑦,𝑤
𝑤𝑖𝑛𝑑  𝑧 ∈ 𝒵 (5.85) 
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𝑠𝑜𝑙𝑧,𝑦 = 𝑠𝑜𝑙𝑧,𝑦
(𝑗)

 : 𝜆𝑧,𝑦,𝑤
𝑠𝑜𝑙   𝑧 ∈ 𝒵 (5.86) 

𝑐𝑎𝑝𝑏,𝑦 = 𝑐𝑎𝑝𝑏,𝑦
Batt(𝑗)

 : 𝜆𝑏,𝑦,𝑤
𝑐𝑎𝑝Batt

  𝑏 ∈ ℬ (5.87) 

휃ℎ,𝑦 = 휃ℎ,𝑦
(𝑗)

 : 𝜆ℎ,𝑦,𝑤
𝜃ℎ  ℎ ∈ ℋ𝐶 (5.88) 

휃𝑝𝑙,𝑦 = 휃𝑝𝑙,𝑦
(𝑗)

 : 𝜆𝑝𝑙,𝑦,𝑤

𝜃𝑝𝑙   𝑝𝑙 ∈ 𝒫ℒ𝐶 (5.89) 

𝑐𝑎𝑝𝑃𝑡𝐺,𝑦
PtG = 𝑐𝑎𝑝𝑃𝑡𝐺,𝑦

PtG(𝑗)
 : 𝜆𝑏,𝑦,𝑤

𝑐𝑎𝑝PtG

  𝑝𝑡𝑔 ∈ 𝒫𝑡𝒢 (5.90) 

𝛾𝑘,𝑡,𝑤
𝑐 , 𝛼𝑘,𝑡,𝑤

𝑐 , 𝛽𝑘,𝑡,𝑤
𝑐 ≥ 0  𝑘 ∈ 𝒦, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦 (5.91) 

(5.65)–(5.74)   (5.92) 

Objective function (5.81) minimizes the operating cost of the integrated system in 

year 𝑦 under scenario 𝑤 by considering thermal production costs, start-up costs, hydro 

and batteries operational costs, gas production costs, PtG operational costs, and 

penalties for energy not provided, over-generation, reserve not provided and gas 

curtailment. Constraints (5.82) include all operating constraints in the original problem. 

Equations (5.83)–(5.90) fix the complicating variables to values determined by the 

master problem. At each iteration 𝑗, the values of the objective function and dual 

variables of fixing constraints in the subproblem associated to year 𝑦 and scenario 𝑤 are 

stored in the parameters 𝑧𝑦,𝑤
(𝑗)

 and 𝜆𝑦,𝑤
(𝑗)

, respectively. Both these parameters are needed 

to add Benders optimality cuts (5.76) to the master problem. Finally, constraints (5.91) 

and (5.92) define the optimization variables, with thermal commitment variables relaxed 

to be continuous variables.  

The solution of all subproblems allows computing the following upper bound to the 

optimal objective function value of the relaxed problem (with continuous and binary 

investment decisions and continuous operation decisions) at iteration 𝑗 

𝑧𝑢𝑝
(𝑗)

= 𝑧𝑑𝑜𝑤𝑛
(𝑗)

− ∑ 𝑝𝑟𝑜𝑏𝑤 ∙ 𝜎𝑤
(𝑗)

𝑤∈𝒲

+ ∑ 𝑝𝑟𝑜𝑏𝑤

𝑤∈𝒲

∑ 𝑧𝑦,𝑤
(𝑗)

𝑦∈𝒴

 (5.93) 

5.3.4.3 Steps of the solution algorithm 

Given a small tolerance value ε to control convergence, the Benders decomposition works 

as follows: 
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0. Initialization. Initialize the iteration counter, set 𝑗 = 1. Set 𝑧𝑢𝑝
(𝑗)

= ∞ and 𝑧𝑑𝑜𝑤𝑛
(𝑗)

=

−∞. 

1. Master problem solution. Solve the master problem (5.75)–(5.80). Update 𝑧𝑑𝑜𝑤𝑛
(𝑗)

 

and the values of first-stage variables. 

2. First year. Consider the first year of the planning horizon, i.e., 𝑦 = 1. 

3. First scenario. Consider the first scenario, i.e., 𝑤 = 1. 

4. Subproblem solution. Solve subproblem (5.81)–(5.92) for year 𝑦 and scenario 𝑤. 

Compute 𝑧𝑦,𝑤
(𝑗)

 and store the dual variables of the fixing constraints (5.83)–(5.90). 

5. Scenario update. Consider the next scenario and repeat step 4. If all scenarios have 

been considered go to step 6. 

6. Year update. Consider the next year of the planning horizon and repeat steps from 

3 to 5. If all years have been considered go to step 7. 

7. Convergence checking. Compute 𝑧𝑢𝑝
(𝑗)

. If 
|𝑧𝑢𝑝

(𝑗)
−𝑧𝑑𝑜𝑤𝑛

(𝑗)
|

𝑧𝑢𝑝
(𝑗) < 휀, the optimal solution has 

been obtained, go to step 8. Otherwise, update the iteration counter, set 𝑗 = 𝑗 + 1 and 

go back to step 1. 

8. Subproblems final integer solution. For each year 𝑦 and each scenario 𝑤, solve 

subproblems (5.81)–(5.92) replacing constraints (5.91) with (5.64), i.e., considering 

MILP problems. The solution obtained is now feasible for the original problem. 

5.4 Case study 

As a case study for planning the joint expansion of electricity and gas systems, we chose 

the Italian energy system. Specifically, we modified the scenario introduced in Section 

4.5 by including the gas component, so as to determine the joint capacity expansion plans 

for the Italian integrated power system to reach by 2040 policy goals set by the European 

Commission.  

5.4.1 The Italian natural gas system 

In this paragraph, we describe the assumptions introduced to model the Italian natural 

gas system. We refer the reader to Section 4.5.1 for a detailed description of the 

assumptions introduced to model also the Italian power system. 

Fig. 5.1 illustrates the structure of the Italian gas system considered in the analysis. 
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Fig. 5.1 Representation of the Italian gas system 

Coherently with the electric power system part of the model, the market analysis for 

the natural gas sector considers the Italian system divided into seven interconnected 

market zones: North, Central-North, Central-South, South, Calabria, Sicily, and 

Sardinia. In terms of internal natural gas transit limits in-between the Italian market 

zones, the simplified and neutral assumption of (virtually) unlimited transfer capacity 

has been adopted due to the difficulties in finding detailed and reliable data. Three 

equivalent areas from which natural gas may be imported are included in the system:  

1. The Europe area (EU) represents the natural gas flow at the northern Italian 

borders (natural gas supply from Russia and North Sea via Passo Gries, Tarvisio, 

Gorizia pipelines entry points). 

2. The North Africa area (Nafr) represents the natural gas flow coming from North 

African countries (from Algeria and Tunisia via Mazara Del Vallo and Gela entry 

points in Sicily). 

3. The Greece area (GR) represents the natural gas flow of the Trans Adriatic 

Pipeline – TAP (natural gas from Azerbaijan via Turkey, Greece and Albania to 

Melendugno, Puglia in South Italy). TAP has been assumed to be fully 

commissioned and in operation since 2020. 
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Table 5.1 Fuel prices: low and high prices scenario [€/Gcal] 

 

Low price 

scenario 

[€/Gcal] 

2020 2030 2040 

IT_Gas  23.43 28.88 27.63 

EU_Gas 21.43 26.88 25.63 

Nafr_Gas 19.43 24.88 23.63 

Gasoil 90.0 91.25 71.58 

Coal 9.5 10.47 10.47 

EUmix 42.86 53.77 51.26 

 

High price 

scenario 

[€/Gcal] 

2020 2030 2040 

IT_Gas 23.43 36.84 30.56 

EU_Gas 21.43 34.84 28.56 

Nafr_Gas 19.43 32.84 26.56 

Gasoil 90.0 85.81 102.14 

Coal 9.5 13.40 10.47 

EUmix 42.86 69.67 57.12 

Along with other fuel prices and CO2 price, the stochasticity has been applied also to 

gas fuel production cost, assuming two scenarios, as shown in Table 5.1. Specifically, gas 

fuel price depends on the specific gas hub: the Italian internal production cost (IT_gas) 

is more expensive than the imported gas from Greece and the Northern Europe 

(EU_gas); on the contrary, the gas coming from Algeria is the cheapest (Nafr_gas). 

5.4.1.1 Supply side assumptions 

There are three categories of natural gas supplies for Italy: (i) pipeline imports; (ii) LNG 

imports (with the related regasification plants for injecting the natural gas in the national 

network); and (iii) national production. All the three sources have been considered for 

modelling natural gas supply for Italy. For the pipeline imports, the flows coming from 

the three areas described in the previous section – Europe, North Africa and Greece – 

have been delineated by setting a maximum hourly import, based on the total expected 

annual import, as reported in the Snam-Terna2 scenarios published in September 2019 

[111]. Table 5.2 shows the data of minimum and maximum natural gas supply from the 

different borders resulting from Snam-Terna scenario elaborations. LNG imports and 

national production have been grouped together in terms of total expected supply 

volumes, and “virtually” fully located in the Central-North Italian market zone.  

                                                        
2 Since 2018, the Italian natural gas TSO (Snam) and the electricity TSO (Terna) design joint energy scenarios 

used for the elaborations of their respective development plans, according to the provisions of the Italian 

regulatory authority (ARERA) and in line with the ENTSO-E and ENTSO-G process to develop the TYNDP. 
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Table 5.2 Minimum and maximum natural gas supply per pipe entry point in Snam-Terna scenarios 

[Billion m3/year] 

Entry Point 

2025 2030 2040 

Min Max Min Max Min Max 

Passo Gries (UE) 0.0 1.0 0.0 1.0 0.0 1.0 

Tarvisio (UE) 22.0 31.0 24.0 32.0 12.0 31.0 

Mazara del Vallo (Nafr) 13.0 22.0 8.0 26.0 7.0 31.0 

Gela (Nafr) 5.0 5.0 5.0 5.0 5.0 5.0 

TAP (GR) 7.0 9.0 7.0 9.0 7.0 9.0 

TOT 47.0 68.0 44.0 73.0 31.0 77.0 

 

Similarly to the pipeline imports, Table 5.3 reports the data for natural gas supply 

from LNG imports and national production resulting from Snam-Terna scenario 

elaborations [111]. 

Natural gas storage has also been included in the simulations, with a total capacity of 

17.6 billion m3/year, as reported in the Snam-Terna scenario document. Like LNG 

imports and national production, also storage has been “virtually” fully located in the 

Central-North Italian market zone. 

Table 5.3 Natural gas supply via LNG and national production in Snam-Terna scenarios [Billion m3/year]. 

Supply source 

2025 2030 2040 

Min Max Min Max Min Max 

LNG 10.0 13.0 5.0 9.0 0.0 10.0 

National production 5.4 4.2 1.0 

5.4.1.2 New investments 

The considered scenario include the possibility of new investments on the supply side of 

the natural gas sector:  

 A Power-to-Gas plant with a gas production capacity up to 10 GW and an efficiency 

of 68%. 

 Two new pipelines: 
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− The doubling of TAP (TAP2), i.e., same route and same capacity of the first 

pipeline, landing in South Italy as the first pipe. 

− The so-called “Gasdotto Algeria Sardegna Italia – GALSI”, from Algeria to 

Sardinia (Italy) and to Italy mainland, with a total capacity of 8 billion 

m3/year. 

Table 5.4 resumes the investment costs of the candidate projects. 

Table 5.4 Investment costs of gas supply new projects 

 P2G GALSI Nafr-Sar GALSI Sar-C.North TAP2  

Capacity [MWth]  10000 9750 9750 10873 

IC [M€/MWth] 0.350 0.154 0.1025 0.0934 

 

5.4.1.3 Demand side assumptions 

The natural gas demand is composed of two parts treated and modelled differently. The 

first part is the industrial and tertiary (residential and offices) sectors. The industry plus 

tertiary gas demand has been aggregated and modeled as a proper input to the model, 

and, in line with the power sector load, it has an hourly profile, with the clustering 

analysis described in Section 5.3.1 applied to identify representative days and keep the 

computation tractable.  

The current (2020) level of industrial and tertiary gas demand and the hourly profiles 

are based on the operational data published by Snam on its website, while the demand 

trend from 2020 to 2040 is based on the outcomes of Snam-Terna scenarios for natural 

gas demand for final uses3. Snam-Terna elaborated two long-term (2040) scenarios, 

called “centralised” and “decentralised”: while the centralised scenario shows a slight 

decrease in gas demand for final uses compared to the historical values, the decentralised 

scenario shows a more intense gas demand decline for final uses, as shown in Table 5.5. 

The average percentage decrease from the latest historical data (2017) to 2040 that 

can be calculated from the data reported in Snam-Terna scenarios document has been 

used to calculate the target demand in 2040 (-12.2%). From 2020 to 2040 a linear 

constant percentage decrease (compound annual growth rate) has then been used (-

0.6%/year). 

 

                                                        
3 Final uses represent all uses apart from the thermal power plants consumptions. 
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Table 5.5 Natural gas demand for final uses in centralised (CEN) and decentralised (DEC) Snam-Terna 

scenarios [Billion m3/year] 

 2017 2025 2030 2040 

  CEN DEC AVG CEN DEC AVG CEN DEC AVG 

Gas Demand 

[Billion m3/year] 
46.5 45.4 42.4 43.9 45.3 40.7 43.0 45.2 36.5 40.9 

Change from 2017 

[%] 
 -2.4% -8.8% -5.6% -2.6% -12.5% -7.5% -2.8% -21.5% -12.2% 

The starting point (year 2020) is based on the latest available natural gas demand 

data, as published by the Ministry of Economic Development4. 

The second part of the natural gas demand is related to the thermal power generation, 

representing an output of the simulations. 

5.4.2 Clusters of Italian thermal power plants 

As explained in the previous sections, when addressing the expansion planning for real-

scale integrated systems, incorporating traditional unit commitment constraints would 

be computationally infeasible. To keep the scenario computationally tractable, we 

applied the clustering procedure described in Section 5.3.2 on Italian thermal power 

plants. Specifically, we performed several tests for different values of the threshold to be 

used in the termination test.  

Table 5.6 Number of clusters of thermal power plants for different threshold values 

 Threshold 
Number of  

power plants  0.80 0.85 0.90 0.95 0.99 

North 4 5 7 14 25 74 

Central-North 3 4 5 6 9 13 

Central-South 5 5 7 10 16 34 

South 3 3 4 5 9 12 

Calabria 2 2 2 3 4 7 

Sicily 4 5 6 9 14 19 

Sardinia 4 4 5 6 9 12 

TOT 25 28 36 53 86 171 

                                                        
4 https://www.mise.gov.it/index.php/it/energia/gas-naturale-e-petrolio/gas-naturale 
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As can be observed in Table 5.6, a trade-off between computational costs and 

approximation accuracy has to be considered in the threshold choice. Indeed, the higher 

the threshold value, the greater the similarity of thermal power plants grouped in the 

same cluster. However, very high threshold values require considering a large number of 

clusters, reducing the computational saving induced by the CUC formulation. In our 

numerical experiments, we decided to fix the threshold to 90%, so as to group the 171 

Italian thermal power plants included in the scenario into 36 clusters. Specifically, in our 

analysis seven clusters are introduced both in the North and in the Central-South zones. 

Thermal power plants in Sicily are grouped into six clusters. Five clusters are considered 

both in the Central-North and in Sardinia. The thermal power plants in the South of Italy 

are grouped into four clusters, while only two clusters are introduced to represent the 

thermal units in Calabria. 

5.4.3 Results and discussion 

We solved the proposed model on a computer with two 2.10 GHz Intel® Xeon® 

Platinum 8160 CPU Processors and 128 GB of RAM, using language extension GUSS 

integrated with solver Gurobi under GAMS 24.7.4. We considered 휀 = 10−3 as tolerance 

for Benders decomposition convergence, while in each iteration we solved the master 

problem up to optimality. Fig. 5.2 illustrates the evolution over iterations of the multi-

cut Benders algorithm, which converges in 63 iterations. Indeed, as better shown in Fig. 

5.3 at iteration 63 the relative distance between upper and lower bound equals 

0.97 ⋅ 10−3, satisfying the predefined tolerance.  

 

Fig. 5.2 Upper and lower bounds values over iterations in multi-cut Benders algorithm 
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Fig. 5.3 Upper and lower bounds values at the last iterations of multi-cut Benders algorithm 

The total time needed to solve the problem is 36,127 seconds, corresponding to 10 

hours 2 minutes and 7 seconds. Table 5.7 provides more information about 

computational times, specifying the size and the solution time for the master problem 

and the subproblems at the last iteration of Benders decomposition algorithm. As 

regards to subproblems, while the base case solution requires about two minutes, each 

of the updated subproblems is solved in only 3.342 seconds on average. Since the number 

of subproblems equals 126, at each iteration, the average time required to solve all the 

subproblems is 538.041 seconds. As explained in the previous section, once convergence 

is reached, subproblems are solved as MILP models, obtaining the final solution, 

characterized by total system costs higher than the convergence value of the Benders 

decomposition algorithm. However, thanks to the tight formulation of thermal unit 

commitment constraints, this difference is very small. 

Table 5.7 Size and solution time of master problem and subproblems at the last iteration of Benders 

algorithm 

 
# 

Constraints 

# Decision 

Variables 

# Discrete 

Variables 

CPU Time 

[seconds] 

Master Problem  5,441 4,795 2,016 10.018 

First Subproblem (Base Case) 318,651 306,918 0 120.291 

Updated Subproblem 318,651 306,918 0 3.342 
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Indeed, in this problem instance, the total system costs in the relaxed solution are 

445,515 M€, while the integer solution is only 0.015% more expensive, with the objective 

function value being 445,582 M€. 

The system expected costs for the whole expansion planning period are shown in 

Table 5.8. As can be observed, there is a huge difference between first-stage and second-

stage costs: while the sum of investment, decommissioning and fixed costs represents 

11.7% of total costs, operating costs account for 88.3% of total costs. Specifically, the most 

relevant cost for the system is related to the production costs of thermoelectric power 

plants, representing 96.3% of total operating costs: the variable cost includes O&M, CO2 

emissions costs and fuel consumption, except for gas-fired plants whose fuel 

consumption is included in the gas production cost. 

On the contrary, start-up costs of thermoelectric power plants have a small impact, 

being 0.2% of total costs. 

Table 5.8 Breakdown of integrated system costs 

Costs M€ % 

Thermal Capacity Expansion 2,113 0.47% 

Wind Capacity Expansion 16,775 3.76% 

Solar Capacity Expansion 27,234 6.11% 

Transmission Capacity Expansion 1,075 0.24% 

Batteries Capacity Expansion 2,702 0.61% 

Pipeline Capacity Expansion 2,222 0.50% 

Decommissioning Costs 179 0.04% 

Thermal Fixed Costs 9 0.002% 

Expected Thermal Production Cost 378,875 85.03% 

Expected Start-Up Costs 740 0.17% 

Expected Hydro Operation Costs 131 0.03% 

Expected Batteries Operation Costs 789 0.18% 

Expected Gas Production Costs 413 0.09% 

Expected Penalties for Overgeneration 10,135 2.27% 

Expected Penalties for Reserve Not Provided 2,190 0.49% 

Total System Expected Costs 445,582 100% 
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Table 5.9 Integrated system operation costs breakdown for different scenarios [M€] 

Table 5.9 describes how system costs vary depending on stochastic prices: while 

investment, decommissioning and fixed costs are independent of the scenario 

realization, operation costs, being second-stage costs, depend on the considered 

scenario. As can be noticed, all scenarios present similar values of operational costs for 

both hydropower plants and batteries, while thermal production costs and gas 

production costs significantly differ between scenarios. As expected, since CO2 and fuel 

prices affect the thermal plants marginal cost 𝐶𝑀𝑘,𝑦,𝑤, the higher these parameters, the 

greater the production costs, which vary from 336 M€ in the scenario with low emission 

costs and low fuel price to 430 M€ in the scenario with high CO2 price and high fuel 

prices. Furthermore, gas production cost increases from 378 M€ in low fuel price 

scenarios to 448 in high fuel price scenarios. 

Table 5.10 shows the additional capacity of wind and PV installed to reach the RES 

penetration target in 2040. The RES installed capacity consists of 44.8 GW of PV and 

22.0 GW of wind power: this unbalance may be explained by the lower costs of the PV 

technology with respect to the wind technology.  

 Low Fuel Prices High Fuel Prices 

 Scenarios for CO2 prices Scenarios for CO2 prices 

 Low Medium High Low Medium High 

Thermal Production 335,802 349,754 386,658 378,472 392,673 429,621 

Start-Up 618 646 740 776 799 861 

Penalties for 

Overgeneration 
10,077 10,085 10,060 10,310 10,162 10,114 

Penalties for Reserve 

Not Provided 
4,552 2,308 3,038 305 2,609 329 

Hydro Operation 144 139 131 128 124 122 

Batteries Operation 777 777 789 794 793 803 

Gas Production 

Costs 
378 378 378 448 448 448 

Total Operation 352,348 364,087 401,794 391,233 407,608 442,298 

Investment 52,309 52,309 52,309 52,309 52,309 52,309 

Total Cost 404,657 416,396 454,103 443,542 459,917 494,607 
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Table 5.10 Cumulative renewable generation capacity expansion [GW] for the Italian integrated system 

divided by source and implementation year 

Year Wind PV 

2020 3.8 13.4 

2025 8.7 21.6 

2035 18.6 38.0 

2040 22.0 44.8 

As far as interconnection projects are concerned, one new national and one 

international cross border lines are expected to be implemented in years 2025 to better 

exploit the variable renewable energy sources and tackle the decommissioning of some 

Italian thermoelectric power plants. The selected interconnections are listed in Table 

5.11.  

Table 5.11 Candidate interconnections selected by the model for the Italian integrated system 

From To Transmission Limits Year of intervention 

Tunisia Sicily [–600 MW ; 600 MW] 2025 

Central-South Central-North [–1000 MW ; 1000 MW] 2025 

 

As described in the previous sections, the total natural gas demand consists of two 

parts: (i) the industrial and tertiary sectors demand, which is an input to the model; and 

(ii) the thermal power plants demand, which is an output of the model. In the simulations 

performed, the total natural gas demand results equal to 845 TWh(th) in 2020, to 741 

TWh(th) in 2030 and to 660 TWh(th) in 2040, as reported in Fig. 5.4, with very slight 

differences according to the selected fuel and CO2 costs scenario. The natural gas 

demand decrease over the planning horizon is due both to the assumed progressive 

decline of the industrial and tertiary sectors demand, as well as to increasing penetration 

of renewables, which decreases the gas consumption from thermal power plants.  
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Fig. 5.4 Expected domestic gas demand divided by sector and year 

In terms of new pipelines projects, the decommissioning of all coal and oil thermal 

power plants requires the availability of an additional amount of gas and therefore the 

development of the so called “Gasdotto Algeria Sardegna Italia – GALSI” projects 

starting from year 2022. In the current scenario, no capacity of PtG plants is supposed 

to be installed because of the high investment costs. Fig. 5.5 shows the gas suppliers 

distribution for Italy by year 2040. As can be observed, the majority of Italian gas 

demand is satisfied by importing gas from North-Africa, while the domestic production 

provides only a marginal contribution to the gas demand supply. 

 

Fig. 5.5 Italian expected gas supply by source in year 2040 
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Table 5.12 Installed capacity of batteries [MW] in the Italian integrated system 

Zone Technology Installed Capacity [MW] 

North Lithium-Ion Batteries 95.5 

South Lithium-Ion Batteries 600 

South Sodium-Ion Batteries 600 

Sicily Lithium-Ion Batteries 600 

Sicily Sodium-Ion Batteries 600 

Sardinia Lithium-Ion Batteries 600 

Moreover, the tool couples the installed RES capacity with energy storage systems, 

installing throughout the planning period 3.1 GW of batteries. A list that summarizes the 

installed capacity according to technology and zone is reported in Table 5.12. As can be 

noticed, Lithium Ion batteries are preferred to Sodium ones due to their lower 

investment costs. Instead, no additional pumping power plants are built in the solution 

provided by the model.  

The decommissioning of 14.7 GW oil and coal power plants has been planned for year 

2024, according to the forecast scenarios of European TSO’s.  

 

Fig. 5.6 Expected energy generation by source for each Italian market zone in year 2040 
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Fig. 5.7 Installed capacity by source for each market zone in year 2040 

Fig. 5.6 reports the expected energy generation in year 2040 divided by energy 

source, for each Italian zone. As it can be noticed, since the RES production (i.e., from 

wind and solar) is 152.6 TWh/year while the load is 400 TWh/year, the target of reaching 

36% of non-programmable renewable penetration by year 2040 has been fully achieved.  

Finally, Fig. 5.7 shows the installed capacity at the end of the planning period, 

grouped by source and zone. As can be noticed, the model suggests installing large shares 

of PV capacity in all Italian market zones and especially in the North, while the wind 

expansion is mainly located in southern regions, which are characterized by the highest 

wind capacity factors. 

5.5 Chapter conclusions 

In this chapter, the problem of planning the joint expansion for electricity and gas 

systems has been addressed. First, a detailed review of the integrated planning 

frameworks developed in the literature to accurately consider the coupling between 

electricity and gas systems has been provided.  

Then, our approach to the expansion co-planning of integrated systems with bi-

directional energy conversion has been introduced. Specifically, in our work, we consider 

ITcn ITcs ITn ITs ITcal ITsar ITsic

Wind 500 6200 600 13157 3294 4000 5487

PV 8000 10000 32000 7384 1183 3000 4359

Hydro 996 3597 18911 345 807 510 690

Thermal 1339 4570 21260 3542 3394 1030 3147
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different scenarios for future values of fuel prices and CO2 price and we develop a two-

stage stochastic programming model that provides an appropriate balance between 

accuracy and computational tractability, with the first stage representing the investment 

problem and the second stage being the operational problem. Such a model aims at 

minimizing the sum of investment, decommissioning and fixed costs and expected value 

of operational costs, which are computed by considering under each scenario thermal 

power production costs, start-up costs, hydro and batteries operational costs, gas 

production costs, PtG operational costs, and penalties for energy not provided, over-

generation, reserve not provided, and gas curtailment. 

The inclusion of the gas system in the decision making framework further increases 

the computational burden of the expansion planning model. To keep the problem 

computationally tractable we select representative days, we implement the CUC 

formulation, by grouping similar thermal power plants into clusters, and we solve the 

stochastic model by applying a solution algorithm based on the multi-cut Benders 

decomposition strategy.  

Finally, a case study concerning the Italian energy system has been presented. In our 

numerical study, we simulate a planning horizon of 21 years, from 2020 up to 2040, and 

we plan the joint expansion of the Italian electricity and gas system under CO2 and fuel 

prices uncertainty. Empirical results show the need to install large shares of renewables 

to achieve policy goals set by the European Commission, with the solar technology 

preferred to the wind power technology due to the lower investment costs. As regards to 

the natural gas system, the decommissioning of all coal and oil thermal power plants 

requires the availability of an additional amount of gas and therefore the development of 

the so called “GALSI”, from Algeria to Sardinia and to Italy mainland, starting from year 

2022. 

The main assumption of the analysis described in this chapter is the hypothesis of 

demand inelasticity. However, in reality, customers react to electricity prices, by 

changing their electricity consumption according to the price signals. The inclusion of 

the demand elasticity in the expansion planning framework is addressed in the following 

chapter.
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Chapter 6                                                        

Modeling demand reactions to electricity price 

signals 

6.1 Research motivation 

The variability of intermittent renewable power sources has to be managed in the short-

term to ensure that power systems are operated in an efficient and reliable way. Such a 

variability can be controlled by adjusting both the generation and the demand for 

electricity. As regards to the supply side, the volatility of renewable generation can be 

compensated by either committing fast-reacting thermal power plants or transferring 

surplus electricity generation from off-peak hours to peak hours by means of storage 

technologies. Both alternatives have already been included in the expansion planning 

framework in the previous chapters. However, the demand–supply balance can be 

reached also by acting on load profiles, by either reducing the electricity consumption 

during peak hours or shifting the demand from peak hours to off-peak hours if 

consumption is inevitable.  

The change of the demand profile reacting to system conditions is referred to as 

demand response. Demand response is an emerging technology in Europe's Electricity 

markets that will introduce a new degree of flexibility [112]. Specifically, reference [113] 

discusses the benefits associated with demand response, which can be classified into four 

main categories, namely market-wide, reliability, market performance, and participant 

benefits. First, an overall electricity price reduction is expected due to the more efficient 

utilization of the available infrastructure, producing benefits for all electrical consumers. 

Second, by having a well-designed demand response program, participants have the 

opportunity to help in reducing the risk of outages. Third, demand response programs 

can improve market performance by reducing both the ability of main market players to 

exercise power in the market and the price volatility in the spot market. Indeed, a small 

reduction of demand could lead to a significant price reduction, since generation cost 

exponentially increases near maximum generation capacity. Firth, reference [113]  argue 

that customers participating in demand response can expect bill savings by reducing 
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their electricity consumption during peak hours, even if it may be expected that savings 

for small consumers could be estimated around a few tens of euros per year. Finally, in 

reference [114] it is claimed that demand response could also help the optimal transition 

to a European low emission power system by decreasing electricity usage and improving 

energy efficiency, estimating between 0.23% and 3.3% the demand response 

contribution to the CO2 emissions reduction target from the energy sector set by the 

European Commission.  

Although the several benefits provided by demand response programs, most of these 

outcomes may also be obtained by the deployment of other technologies which may 

compete with demand response, such as batteries, hydro pumping units or combined 

cycle gas turbines power plants. Thus, an integrated planning framework to evaluate the 

competition between different resources providing flexibility to power systems is needed.  

This chapter focuses on the inclusion of the demand response in the expansion 

planning problem by modeling consumers reactions to electricity prices. The structure 

of the chapter is as follows. Section 6.2 reviews the existing literature for demand 

response modeling. Section 6.3 describes the proposed method to include customers 

reactions to electricity prices in the GTEP problem. Specifically, such an approach is 

based on the introduction of elasticities and demand functions. Several numerical tests 

to assess the proposed method are introduced in Section 6.4. Finally, Section 6.5 

concludes the chapter. 

6.2 Literature review 

Several studies have been conducted in the literature to investigate the use of demand 

response in power systems with large shares of renewables. Many works focus on power 

systems operations by evaluating the short-term cost-savings potential of changes in the 

load shape. For instance, the operation of an electric system with high wind penetration 

is modeled by means of a unit commitment model in reference [115]. Results obtained 

by analysing the isolated power system of Gran Canaria show how demand response 

could be useful to level out variations in wind power production, leading to a reduction 

of both wind power curtailment and system costs.  

The potential of demand response for energy systems with large shares of wind power 

generation is also discussed in [116] and [117]. Specifically, reference [116] proposes 

different methodologies to model short-term responsiveness, by including cross-price 

elasticities that account for load shifts among hours. Comparison of model results for a 
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single year optimization with and without demand response shows peak reduction and 

valley filling effects, demonstrating that demand response could facilitate the integration 

of renewable energy. Similar results are obtained in [117] by means of a day-ahead unit 

commitment problem combined with a real-time dispatch model. Specifically, results for 

the Texas power system demonstrate the potential increases in wind generation from 

implementing demand response programs. 

The day-ahead scheduling problem for power systems with high shares of renewables 

is also addressed in [118], which aims at providing a systematic approach to evaluate the 

level of flexibility of a power system by considering fast-ramping units, hourly demand 

response and energy storage. The proposed formulation is a MINLP, which is then 

converted into a MILP by introducing auxiliary binary variables. Numerical tests indicate 

that hourly demand response could play a very important role in system flexibility. 

Instead, other works in the literature deal with the integration of demand response 

in long-term investment problems. For instance, reference [119] presents a long-term 

power generation expansion planning model that features a long planning horizon, an 

hourly time resolution, multiperiod investment and retirement decisions, transmission 

constraints, start-up restrictions, and short-term demand response, with demand 

reactions to electricity prices modeled by means of inter-hour demand elasticities. The 

impact of demand responsiveness on decision making in generation expansion planning 

is also investigated in [120]. In such a work, a portion of the demand is assumed to be 

elastic and responsive to the price and a linear functionality is introduced to model the 

relationship between elastic demand and market price. Simulation results show that 

reducing just 3% of the customers’ demand due to price elasticity may result in a benefit 

of about 10% for customers in the long term. 

While references [119] and [120] only consider the generation expansion, other 

studies in the literature address the integration of demand response programs in the 

network investment planning problem. For instance, in [121] a probabilistic approach 

using Monte Carlo simulation is proposed for transmission investment planning along 

with demand response schedule considering high penetration of wind energy resources. 

The paper focuses on direct load curtailment control program, in which system operator 

has a contractual authority to curtail the demand at any particular bus. The objective of 

the model is to find the most probable optimal transmission network expansion along 

with optimum load curtailment schedule so that the proposed network is able to securely 

accommodate a high integration of wind energy. Interactions between demand response 

and grid expansion planning are analysed also in reference [122], which evaluates the 

influence of different demand response penetration levels on network investment 
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decisions. The analysis is based on a stochastic programming approach while using a 

reasonably accurate representation of the physical characteristics of the network via a 

linearized AC network model. Results obtained by analysing the Irish transmission 

system under a twelve-year planning horizon reveal that having a 2.5% reduction in peak 

energy demand could lead to a nearly 30% reduction in the number of lines required to 

be built by the end of the planning horizon. Indeed, the system-wide peak demand is one 

of the major drivers of network expansion needs: the reduction of the peak energy 

demand by a small factor could lead to huge system costs savings. Similar conclusions 

are drawn in [123], which proposes a probabilistic multi-objective transmission 

expansion planning model to find an optimal trade-off between transmission investment 

and demand response expenses. The Monte Carlo simulation method is implemented to 

handle the uncertainty of the loads, demand response programs and distributed 

generation in the expansion planning framework. 

The joint expansion planning of distributed generation and the distribution network 

considering the impact of energy storage systems and demand response programs is 

addressed in [124]. Such a problem is formulated as a stochastic-programming-based 

model driven by the maximization of the net social benefit to determine the location and 

size of new generation and storage units and the distribution assets to be installed, 

reinforced or replaced. Results for the insular power system of La Graciosa, Canary 

Islands, show how demand response can substitute generation and distribution network 

expansion, increasing the volume of renewable power generation optimal allocated in 

the system. 

Reference [125] presents an evaluation of the potential impacts of demand response 

on the GTEP problem. Specifically, a multi-period multi-objective GTEP model is 

proposed and formulated as a mixed integer quadratic programming problem and 

several levels of demand response penetration are considered in order to assess its 

impact on the system performance. Similarly to the previous works, results indicate that 

an increase in penetration of demand response causes a decrease of power generation, 

emissions and system costs whilst increasing renewables utilization in power system. 

While most of the works developed in the literature investigate the impact of different 

levels of demand response penetration on power system costs, there is a lack of articles 

that include investment decisions in demand response in the expansion planning 

framework. For instance, reference [112] integrates investment and operation decisions 

on demand response devices within a two-stage stochastic GTEP model that includes 

uncertainty at the operational level and energy economics dynamics at a strategic level. 

Several classes of shiftable and curtailable loads in residential, commercial and industrial 
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sectors are considered, including flexibility periods, operational costs and endogenous 

demand response investments. Results obtained on the European power system show 

that demand response capacity substitutes partially flexible supply side capacity from 

peak gas plants and battery storage, in addition to enabling more solar PV production. 

Following the approach adopted in [112], in this chapter we propose an integrated 

planning framework that could jointly consider investments in power balancing 

technologies. However, our method differs from the procedure applied in [112] in the 

way demand responsiveness is modeled. Indeed, while in [112] load is remotely 

controlled by the System Operator, in our approach customers reactions to price signals 

are modeled. 

6.3 Modeling framework 

In this section, we propose our approach to include demand response programs into the 

GTEP analysis. Such an approach is based on the introduction of elasticities and demand 

functions to model demand reactions to electricity prices. First, the load shifting 

objective is modeled. Then, the peak shaving strategy is considered. Finally, an 

optimization model to plan investments in electrical demand response devices is 

presented. 

6.3.1 Notation 

In this paragraph, we introduce only the additional notation needed to integrate the 

demand side management programs in the expansion planning framework. We refer the 

reader to Section 5.3.3.2 for the complete problem notation. 

 

Parameters 

𝛿up
LS [−] % of maximum demand variation upward for the load 

shifting strategy 

𝛿dw
LS  [−] % of maximum demand variation downward for the load 

shifting strategy 

𝛿dw
PS  [−] % of maximum demand variation downward for the peak 

shaving strategy 

휀up
LS [−] Demand elasticity for upward variations in the load 

shifting strategy 
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휀dw
LS  [−] Demand elasticity for downward variations in the load 

shifting strategy 

휀dw
PS  [−] Demand elasticity for downward variations in the peak 

shaving strategy 

𝑃𝑟𝑅𝑒𝑓𝑧,𝑡,𝑤
 𝑐  [€/MWh] Reference price in zone 𝑧 in hour 𝑡 of representative day 𝑐 

under scenario 𝑤 

𝑇𝑟𝑎𝑛𝑧
LS [€/MWh] Transaction cost for moving the demand in the load 

shifting strategy in zone 𝑧 

𝑇𝑟𝑎𝑛𝑧
PS [€/MWh] Transaction cost for reducing the demand in the peak 

shaving strategy in zone 𝑧 

𝑃𝑒𝑛𝑃𝑟 [MWh] Penalty for price 

𝑣𝑧,0
LS  [MW] Total installed capacity of electrical devices for load 

shifting in zone 𝑧 at the beginning of the planning horizon 

𝑣𝑧,0
PS [MW] Total installed capacity of electrical devices for peak 

shaving in zone 𝑧 at the beginning of the planning horizon 

𝑋𝑧,𝑦
LS  [MW] Upper bound on the capacity for load shifting devices that 

can be installed in zone 𝑧 in year 𝑦 

𝑉𝑧,𝑦
LS [MW] Upper bound on the total capacity for load shifting devices 

installed in zone 𝑧 in year 𝑦 

𝑋𝑧,𝑦
PS  [MW] Upper bound on the capacity for peak shaving devices that 

can be installed in zone 𝑧 in year 𝑦 

𝑉𝑧,𝑦
PS [MW] Upper bound on the total capacity for peak shaving 

devices installed in zone 𝑧 in year 𝑦 

𝐼𝐶𝑧
LS [€/MW] Investment cost of load shifting devices in zone 𝑧 

𝐼𝐶𝑧
PS [€/MW] Investment cost of peak shaving devices in zone 𝑧 

 

 

Variables 

 

1) First-stage variables 

𝑥𝑧,𝑦
LS  [MW] Capacity of load shifting devices installed in zone 𝑧 in year 𝑦 

𝑣𝑧,𝑦
LS  [MW] Total capacity of load shifting devices available in zone 𝑧 in 

year 𝑦 

𝑥𝑧,𝑦
PS  [MW] Capacity of peak shaving devices installed in zone 𝑧 in year 𝑦 
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𝑣𝑧,𝑦
PS [MW] Total capacity of peak shaving devices available in zone 𝑧 in 

year 𝑦 

 

2) Second-stage variables 

𝑑𝐹𝑙𝑒𝑥𝑧,𝑡,𝑤
𝑐  [MW] Flexible demand for electricity in zone 𝑧 in hour 𝑡 of 

representative day 𝑐 under scenario 𝑤 

𝑑𝑉𝑎𝑟𝑧,𝑡,𝑐,𝑤
LS,up

 [MW] Upward demand variation due to load shifting in zone 𝑧 in hour 

𝑡 of representative day 𝑐 under scenario 𝑤 

𝑑𝑉𝑎𝑟𝑧,𝑡,𝑐,𝑤
LS,dw

 [MW] Downward demand variation due to load shifting in zone 𝑧 in 

hour 𝑡 of representative day 𝑐 under scenario 𝑤 

𝑑𝑉𝑎𝑟𝑧,𝑡,𝑐,𝑤
PS,dw

 [MW] Downward demand variation due to peak shaving in zone 𝑧 in 

hour 𝑡 of representative day 𝑐 under scenario 𝑤 

𝑝𝑟𝑧,𝑡,𝑤
𝑐  [€/MWh] Price with demand side management in zone 𝑧 in hour 𝑡 of 

representative day 𝑐 under scenario 𝑤 

 

6.3.2 Load shifting 

Load shifting aims at transferring the demand for electricity from peak hours to off-peak 

hours in order to flatten the demand curve, obtaining consequently an economic saving 

due to the substitution of more expensive energy with cheaper energy. Two different 

approaches to model load shifting are usually adopted in the literature, namely the 

centralized approach and the method based on elasticities and demand functions. Both 

the approaches are introduced in this section. Specifically, in the first method, the 

decision to shift electricity consumptions is taken by a central entity according only to a 

cost criterion. In such an approach, decision variables 𝑑𝐹𝑙𝑒𝑥𝑧,𝑡,𝑤
𝑐  are introduced to 

represent the hourly zonal flexible demand for electricity, which is now a model variable 

rather than an input parameter. The flexible demand is then computed from the original 

load 𝐷𝑧,𝑡
ELEC,𝑐 by adding the upward demand variation 𝑑𝑉𝑎𝑟𝑧,𝑡,𝑐,𝑤

LS,up
 and subtracting the 

downward demand variation 𝑑𝑉𝑎𝑟𝑧,𝑡,𝑐,𝑤
LS,dw, as stated by contraints (6.1). 

𝑑𝐹𝑙𝑒𝑥𝑧,𝑡,𝑤
𝑐 = 𝐷𝑧,𝑡

ELEC,𝑐 + 𝑑𝑉𝑎𝑟𝑧,𝑡,𝑐,𝑤
LS,up

− 𝑑𝑉𝑎𝑟𝑧,𝑡,𝑐,𝑤
LS,dw   

 𝑧 ∈ 𝒵, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (6.1) 
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New load balance equations (6.2) are then formulated by replacing parameter 𝐷𝑧,𝑡
ELEC,𝑐 

with the flexible demand in constraints (5.39). 

∑ (𝑃𝑘  𝛾𝑘,𝑡,𝑤
𝑐 + 𝑝𝑘,𝑡,𝑤

𝑐 ) + 𝜇𝑧,𝑡
𝑐 (𝑠𝑜𝑙𝑧,0 + ∑ 𝑠𝑜𝑙𝑧,𝑖

𝑦

𝑖=1

)

𝑘𝜖𝛺𝑧
𝑘

+ 𝜌𝑧,𝑡
𝑐 (𝑤𝑖𝑛𝑑𝑧,0 + ∑ 𝑤𝑖𝑛𝑑𝑧,𝑖

𝑦

𝑖=1

) + 

+ ∑ 𝑥𝑙,𝑡,𝑤
𝑐

𝑙|𝑟𝑧(𝑙)=𝑧

+ ∑ 𝐸ℎ,𝑡,𝑤
OUT,𝑐

ℎ𝜖𝛺𝑧
ℎ

+ ∑ 𝐸𝑏,𝑡,𝑤
OUT,𝑐

𝑏𝜖𝛺𝑧
𝑏

+ 𝐸𝑁𝑃𝑧,𝑡,𝑤
𝑐 = 𝑑𝐹𝑙𝑒𝑥𝑧,𝑡,𝑤

𝑐 +  

+ ∑ 𝑥𝑙,𝑡,𝑤
𝑐

𝑙|𝑠𝑧(𝑙)=𝑧

+ ∑ 𝐸ℎ,𝑡,𝑤
IN,𝑐

ℎ𝜖𝛺𝑧
ℎ

+ ∑ 𝐸𝑏,𝑡,𝑤
IN,𝑐

𝑏𝜖𝛺𝑧
𝑏

+ ∑
𝐺𝐴𝑆𝑝𝑡𝑔,𝑡,𝑤

PtG,𝑐

휂𝑝𝑡𝑔
𝑝𝑡𝑔𝜖𝛺𝑧

PtG

+ 𝑂𝐺𝑧,𝑡,𝑤
𝑐   

 𝑧 ∈ 𝒵, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (6.2) 

Let us denote by 𝑧ante the system cost function without demand management 

resulting from equation (5.1). In the presence of load shifting, the system cost to be 

minimized is 𝑧LS, which is expressed as 

min  𝑧LS  = 𝑧ante + ∑ 𝑝𝑟𝑜𝑏𝑤

𝑤∈𝒲

(∑ ∑ 𝑤𝑔𝑐

𝑐∈𝒞𝑦𝑦∈𝒴

∑ ∑ 𝑇𝑟𝑎𝑛𝑧
LS𝑑𝑉𝑎𝑟𝑧,𝑡,𝑐,𝑤

LS,dw

𝑧∈𝒵

24

𝑡=1

) (6.3) 

with 𝑇𝑟𝑎𝑛𝑧
LS being the transaction cost of shifting the demand. Furthermore, due to the 

load shifting, demand in high price hours can be lowered, but must be consumed during 

other hours. The balance between demand variations during the day is imposed by the 

following constraints: 

∑ 𝑑𝑉𝑎𝑟𝑧,𝑡,𝑐,𝑤
LS,up

24

𝑡=1

= ∑ 𝑑𝑉𝑎𝑟𝑧,𝑡,𝑐,𝑤
LS,dw

24

𝑡=1

 𝑧 ∈ 𝒵, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲. (6.4) 

 

Finally, parameters 𝛿up
LS and 𝛿dw

LS  are introduced to represent percentages of maximum 

demand variations upward and downward, respectively. Load variations are limited in 

both directions by imposing constraints (6.5) and (6.6). 

0 ≤ 𝑑𝑉𝑎𝑟𝑧,𝑡,𝑐,𝑤
LS,up

≤ 𝛿up
LS𝐷𝑧,𝑡

ELEC,𝑐 𝑧 ∈ 𝒵, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (6.5) 

0 ≤ 𝑑𝑉𝑎𝑟𝑧,𝑡,𝑐,𝑤
LS,dw ≤ 𝛿dw

LS 𝐷𝑧,𝑡
ELEC,𝑐 𝑧 ∈ 𝒵, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (6.6) 
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A second modeling option for the load shifting scheme is based on the introduction 

of demand functions and elasticities [115]. Specifically, let us denote by 휀up
LS and 휀dw

LS  

demand elasticities, which are negative parameters since price increases always lead to 

demand reductions. In such an approach, demand variations are computed according to 

the linear inverse demand functions expressed by equations (6.7) and (6.8). 

𝑑𝑉𝑎𝑟𝑧,𝑡,𝑐,𝑤
LS,up

≥ 휀up
LS𝐷𝑧,𝑡

ELEC,𝑐 (
𝑝𝑟𝑧,𝑡,𝑤

𝑐

𝑃𝑟𝑅𝑒𝑓𝑧,𝑡,𝑤
𝑐 − 1)   

 
𝑧 ∈ 𝒵, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (6.7) 

𝑑𝑉𝑎𝑟𝑧,𝑡,𝑐,𝑤
LS,dw ≥ 휀dw

LS 𝐷𝑧,𝑡
ELEC,𝑐 (1 −

𝑝𝑟𝑧,𝑡,𝑤
𝑐

𝑃𝑟𝑅𝑒𝑓𝑧,𝑡,𝑤
𝑐 )  

 

 
𝑧 ∈ 𝒵, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (6.8) 

Specifically, demand functions (6.7) and (6.8) have a slope representing consumer 

elasticities and are derived from the reference point (𝐷𝑧,𝑡
ELEC,𝑐, 𝑃𝑟𝑅𝑒𝑓𝑧,𝑡,𝑤

𝑐 ), representing 

the situation without demand response. Indeed, while parameter 𝐷𝑧,𝑡
ELEC,𝑐 is the reference 

demand for electricity, 𝑃𝑟𝑅𝑒𝑓𝑧,𝑡,𝑤
𝑐  represents a reference price, which is computed by 

solving the model without demand response. Thus, the modeling approach based on 

elasticities requires solving twice the model: the first time with a fixed demand, so as to 

obtain estimates for reference prices, and the second time with flexible demand, so as to 

capture consumers reactions to electricity prices in the expansion planning framework. 

Variables 𝑝𝑟𝑧,𝑡,𝑤
𝑐  in constraints (6.7) and (6.8) represent estimates for the zonal hourly 

electricity prices with demand response. When the computed price 𝑝𝑟𝑧,𝑡,𝑤
𝑐  is higher than 

the reference price 𝑃𝑟𝑅𝑒𝑓𝑧,𝑡,𝑤
𝑐 , since elasticities are negative parameters, constraints (6.8) 

are activated and variables 𝑑𝑉𝑎𝑟𝑧,𝑡,𝑐,𝑤
LS,dw become positive to model the demand reduction. 

Instead, when the computed price is lower than the reference price, variables 𝑑𝑉𝑎𝑟𝑧,𝑡,𝑐,𝑤
LS,up

 

become positive as constraints (6.7) are activated. Under the simplified assumption that 

prices for electricity are set only by thermal power plants, estimates for hourly prices 

with elastic demand 𝑝𝑟𝑧,𝑡,𝑤
𝑐  are computed as: 

𝑝𝑟𝑧,𝑡,𝑤
𝑐 ≥ 𝐶𝑀𝑘,𝑦,𝑤 𝛾𝑘,𝑡,𝑤

𝑐 +
𝑆𝑈𝐶𝑘

24�̅�𝑘

𝛼𝑘,𝑡,𝑤
𝑐    

 𝑧 ∈ 𝒵, 𝑘 ∈ 𝛺𝑧
𝑘 , 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲. (6.9) 



 

6.3 Modeling framework 188 

 

 
 

Specifically, constraints (6.9) force the zonal price to be at least as high as the 

operating cost of the most expensive thermal power plant committed in the given market 

zone. Since the merit order of thermal power plants depends also on the start-up costs, 

the operating cost for each thermal power plant is computed by adding to its variable 

cost a term including the start-up costs, under the simplified assumption that start-up 

costs are recovered during one day. 

Since the computed price could assume any value greater than the thermal power 

plants operating costs, a penalty term 𝑃𝑒𝑛𝑃𝑟 is introduced to force the price to equal the 

operating cost of the most expensive thermal power plant committed. Therefore, 

objective function of the centralized approach (6.3) is modified as follows: 

min  𝑧LS  = 𝑧ante + ∑ 𝑝𝑟𝑜𝑏𝑤

𝑤∈𝒲

(∑ ∑ 𝑤𝑔𝑐

𝑐∈𝒞𝑦𝑦∈𝒴

∑ ∑ 𝑇𝑟𝑎𝑛𝑧
LS𝑑𝑉𝑎𝑟𝑧,𝑡,𝑐,𝑤

LS,dw

𝑧∈𝒵

24

𝑡=1

)  

 + 𝑃𝑒𝑛𝑃𝑟 ∑ 𝑝𝑟𝑜𝑏𝑤

𝑤∈𝒲

(∑ ∑ 𝑤𝑔𝑐

𝑐∈𝒞𝑦𝑦∈𝒴

∑ ∑ 𝑝𝑟𝑧,𝑡,𝑤
𝑐

𝑧∈𝒵

24

𝑡=1

) (6.10) 

Thus, the optimization model for the load shaving objective can be formulated as the 

set of constraints (5.2)−(5.38), (5.40)−(5.74), (6.1), (6.2) and (6.4)−(6.10). 

6.3.3 Peak shaving 

Peak shaving aims at reducing electricity consumption in peak load hours, when the most 

expensive generating plants have to be committed, consequently determining the highest 

cost for the energy system. Thus, as opposed to load shifting, only downward variations 

are considered in the peak shaving scheme by introducing decision variables 𝑑𝑉𝑎𝑟𝑧,𝑡,𝑐,𝑤
PS,dw. 

The flexible demand for electricity can be then computed as the difference between the 

reference demand and the downward variation as expressed by constraints (6.11). 

𝑑𝐹𝑙𝑒𝑥𝑧,𝑡,𝑤
𝑐 = 𝐷𝑧,𝑡

ELEC,𝑐 − 𝑑𝑉𝑎𝑟𝑧,𝑡,𝑐,𝑤
PS,dw 𝑧 ∈ 𝒵, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (6.11) 

Similarly to load shifting, also the customers reactions in the peak shaving scheme 

can be modeled using demand functions. However, since only demand reductions are 

allowed in the peak shaving strategy, only the following equation is needed: 

𝑑𝑉𝑎𝑟𝑧,𝑡,𝑐,𝑤
PS,dw ≥ 휀dw

PS 𝐷𝑧,𝑡
ELEC,𝑐 (1 −

𝑝𝑟𝑧,𝑡,𝑤
𝑐

𝑃𝑟𝑅𝑒𝑓𝑧,𝑡,𝑤
𝑐 )  
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𝑧 ∈ 𝒵, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (6.12) 

with 휀dw
PS  being the demand elasticity for the peak shaving strategy.  

Similarly to the load shifting case, load decreases are limited by introducing 

parameter 𝛿dw
PS , representing the percentage of maximum downward demand variations, 

an by imposing the following constraints: 

0 ≤ 𝑑𝑉𝑎𝑟𝑧,𝑡,𝑐,𝑤
PS,dw ≤ 𝛿dw

PS 𝐷𝑧,𝑡
ELEC,𝑐 𝑧 ∈ 𝒵, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲. (6.13) 

Finally, the penalty term 𝑇𝑟𝑎𝑛𝑧
PS is introduced to penalize the downward reduction of 

the demand. The new objective function is expressed by equation (6.14). 

min  𝑧PS  = 𝑧ante + ∑ 𝑝𝑟𝑜𝑏𝑤

𝑤∈𝒲

(∑ ∑ 𝑤𝑔𝑐

𝑐∈𝒞𝑦𝑦∈𝒴

∑ ∑ 𝑇𝑟𝑎𝑛𝑧
PS𝑑𝑉𝑎𝑟𝑧,𝑡,𝑐,𝑤

PS,dw

𝑧∈𝒵

24

𝑡=1

) (6.14) 

Thus, the optimization model for the peak shaving objective can be formulated as the 

set of constraints (5.2)−(5.38), (5.40)−(5.74), (6.2), (6.9) and (6.11)−(6.14). 

6.3.4 Planning investments in demand response devices 

Demand response programs require installing equipment in the point of consumption 

and a communication and control infrastructure [115]. Such an equipment includes 

smart meters used to receive and send price signals and electrical devices reacting to 

those price signals by reducing or shifting their electric consumptions. In this paragraph, 

we propose an optimization model to plan investments in demand response devices 

considering both the load shifting and the peak shaving objectives.  

Let us denote with 𝑣𝑧,0
LS  and 𝑣𝑧,0

PS the total installed capacity of electrical devices for 

load shifting and peak shaving, respectively, in zone 𝑧 at the beginning of the planning 

horizon. Decisions to be taken concern the new installed capacity for electrical devices 

performing load shifting and peak shaving in each system zone and for every year of the 

planning horizon, represented through continuous variables 𝑥𝑧,𝑦
LS  and 𝑥𝑧,𝑦

PS . The total 

available capacity 𝑣𝑧,𝑦
LS  for load shifting in a given year 𝑦 of the planning horizon can be 

computed as: 
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𝑣𝑧,𝑦
LS = 𝑣𝑧,0

LS + ∑ 𝑥𝑧,𝑦
LS

𝑦

𝑖=1

 𝑧 ∈ 𝒵, 𝑦 ∈ 𝒴. (6.15) 

 

Both the yearly installed capacity and the total available capacity are limited by 

maximum values 𝑋𝑧,𝑦
LS  and 𝑉𝑧,𝑦

LS, as expressed by constraints (6.16) and (6.17). 

0 ≤ 𝑥𝑧,𝑦
LS ≤ 𝑋𝑧,𝑦

LS  𝑧 ∈ 𝒵, 𝑦 ∈ 𝒴 (6.16) 

0 ≤ 𝑣𝑧,𝑦
LS ≤ 𝑉𝑧,𝑦

LS 𝑧 ∈ 𝒵, 𝑦 ∈ 𝒴 (6.17) 

Similarly, the available capacity 𝑣𝑧,𝑦
PS for peak shaving in a given year 𝑦 of the planning 

horizon is computed as: 

𝑣𝑧,𝑦
PS = 𝑣𝑧,0

PS + ∑ 𝑥𝑧,𝑦
PS

𝑦

𝑖=1

 𝑧 ∈ 𝒵, 𝑦 ∈ 𝒴. (6.18) 

 

Upper bounds 𝑋𝑧,𝑦
PS  and 𝑉𝑧,𝑦

PS are then imposed to limit both the yearly installed 

capacity and the total available capacity, as expressed by the following constraints. 

0 ≤ 𝑥𝑧,𝑦
PS ≤ 𝑋𝑧,𝑦

PS  𝑧 ∈ 𝒵, 𝑦 ∈ 𝒴 (6.19) 

0 ≤ 𝑣𝑧,𝑦
PS ≤ 𝑉𝑧,𝑦

PS 𝑧 ∈ 𝒵, 𝑦 ∈ 𝒴 (6.20) 

As regards to the load shifting, demand increases and decreases are determined 

according to demand functions (6.7) and (6.8), with computed prices 𝑝𝑟𝑧,𝑡,𝑤
𝑐  defined by 

equations (6.9) and reference prices 𝑃𝑟𝑅𝑒𝑓𝑧,𝑡,𝑤
𝑐  determined by solving the model without 

demand response. However, new constraints are needed to ensure consistency between 

the continuous variables representing the upward and downward load variations and 

those representing the investment decisions. Such a connection is modeled by replacing 

the upper bounds of constraints (6.5) and (6.6) with the total available capacity for load 

shifting, as stated by constraints. 
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0 ≤ 𝑑𝑉𝑎𝑟𝑧,𝑡,𝑐,𝑤
LS,up

≤ 𝑣𝑧,𝑦
LS  𝑧 ∈ 𝒵, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (6.21) 

0 ≤ 𝑑𝑉𝑎𝑟𝑧,𝑡,𝑐,𝑤
LS,dw ≤ 𝑣𝑧,𝑦

LS  𝑧 ∈ 𝒵, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (6.22) 

Finally, as explained in Section 6.3.2, equations (6.4) are imposed to ensure the daily 

balance between upward and downward load variations. 

As regards to the peak shaving strategy, the decreases of the demand are computed 

by considering demand functions, according to equations (6.12). The maximum load 

reduction is then limited by the total available capacity for peak shaving devices, as 

expressed by constraints (6.23). 

0 ≤ 𝑑𝑉𝑎𝑟𝑧,𝑡,𝑐,𝑤
PS,up

≤ 𝑣𝑧,𝑦
PS  𝑧 ∈ 𝒵, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (6.23) 

In the presence of both load shifting and peak shaving strategies, the flexible demand, 

which is a decision variable rather than an input parameter, is computed by adding to 

the electrical load the upward variations due to load shifting and by subtracting the 

downward variations due to load shifting and peak shaving, as stated by equation (6.24). 

 𝑑𝐹𝑙𝑒𝑥𝑧,𝑡,𝑤
𝑐 = 𝐷𝑧,𝑡

ELEC,𝑐 + 𝑑𝑉𝑎𝑟𝑧,𝑡,𝑐,𝑤
LS,up

− 𝑑𝑉𝑎𝑟𝑧,𝑡,𝑐,𝑤
LS,dw − 𝑑𝑉𝑎𝑟𝑧,𝑡,𝑐,𝑤

PS,dw   

 𝑧 ∈ 𝒵, 1 ≤ 𝑡 ≤ 24, 𝑐 ∈ 𝒞𝑦, 𝑦 ∈ 𝒴, 𝑤 ∈ 𝒲 (6.24) 

Finally, the new objective function 𝑧DR to be minimized can be formulated as: 

min 𝑧DR  = 𝑧ante 

 + ∑ ∑ (
𝐼𝐶𝑧

LS𝑥𝑧,𝑦
LS

(1 + 𝑟)𝑦−𝑦0
+

𝐼𝐶𝑧
PS𝑥𝑧,𝑦

PS

(1 + 𝑟)𝑦−𝑦0
)

𝑧∈𝒵𝑦∈𝒴

  

 + ∑ 𝑝𝑟𝑜𝑏𝑤

𝑤∈𝒲

(∑ ∑ 𝑤𝑔𝑐

𝑐∈𝒞𝑦𝑦∈𝒴

∑ ∑ 𝑇𝑟𝑎𝑛𝑧
LS𝑑𝑉𝑎𝑟𝑧,𝑡,𝑐,𝑤

LS,dw + 𝑇𝑟𝑎𝑛𝑧
PS𝑑𝑉𝑎𝑟𝑧,𝑡,𝑐,𝑤

PS,dw

𝑧∈𝒵

24

𝑡=1

) 

 + 𝑃𝑒𝑛𝑃𝑟 ∑ 𝑝𝑟𝑜𝑏𝑤

𝑤∈𝒲

(∑ ∑ 𝑤𝑔𝑐

𝑐∈𝒞𝑦𝑦∈𝒴

∑ ∑ 𝑝𝑟𝑧,𝑡,𝑤
𝑐

𝑧∈𝒵

24

𝑡=1

) (6.25) 
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Specifically, the objective function (6.25) comprises four terms: (i) the system cost 

function without demand management resulting from equation (5.1); (ii) the annualized 

investment costs in new electrical devices to perform load shifting and peak shaving; (iii) 

the operational costs related to the downward variations in both the load shifting and the 

peak shaving; and (iv) the penalties for prices, which are imposed to force the computed 

prices to be equal to the operating cost of the most expensive thermal power plant 

committed, as explained in the previous sections.  

Thus, our model to plan investments in electrical devices performing load shifting 

and peak shaving can be formulated as the set of constraints (5.2)−(5.38), (5.40)−(5.74), 

(6.2), (6.4), (6.7)−(6.9), (6.12) and (6.15)−(6.25).  

6.4 Numerical tests 

The proposed method has been applied to a scenario elaborated by CESI S.p.A. in order 

to evaluate the consistency of the equations describing the demand reactions to 

electricity signals. Numerical tests described in this section have been conducted for 

validation purposes only and do not represent a real analysis of any specific energy 

scenario. Indeed, the application to a real case study of the models introduced in this 

chapter requires performing extensive studies, which are mainly needed to compute 

suitable values for elasticities according to the type of consumer (e.g., domestic, 

commercial or residential) and to the direction of the demand variation. Peak shaving 

and load shifting potential as well as data about elasticities and costs for the Italian power 

system cannot be derived by other works in the literature, as the studies may be very 

specific for a certain region and therefore may not be directly applicable to other regions. 

Studies to compute suitable values for demand response potential and costs for the 

Italian power system will represent a natural evolution of the research activities 

described in this dissertation. 

The scenario analysed in this chapter is based on the Italian power system, consisting 

of six market zones: North, Central-North, Central-South, South, Sicily, and Sardinia. 

180 thermal power plants divided into 150 existing units and 30 candidate projects are 

considered in the analysis, along with 9 existing transmission lines, 15 candidate lines, 

16 equivalent hydropower plants, and 13 candidate storage facilities. A planning horizon 

of 11 years, from 2020 up to 2030, is simulated in the tests, while a single scenario for 

fuel prices and emission costs is considered.  
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Fig. 6.1 Zonal electricity prices computed from the solution of the model without demand response 

To model power system operations with an hourly resolution, the clustering analysis 

described in Section 2.3.2 has been applied by imposing an input threshold of 2.5%, 

obtaining seven representative days for each year, corresponding to a planning horizon 

of 1848 hours.  

As explained in the previous section, when modeling demand variations by 

introducing elasticities and demand functions, the optimization model must be solved 

twice. The first time with a fixed demand to obtain estimates of electricity prices and the 

second time with elastic demand. Fig. 6.1 illustrates the prices for electricity in each 

system zone computed from the first solution of the model without considering demand 

side management programs. As can be observed, the zonal prices show an increasing 

trend over the planning horizon, which depends on the values assigned to fossil fuel 

prices, linearly increasing over the years. These prices have been then used as reference 

prices to drive demand variations by testing several models. 

6.4.1 Load shifting 

In the first numerical test we performed, we focused on the load shifting objective by 

executing the optimization model introduced in Section 6.3.2. Specifically, values of -1% 

and -1.5% have been assigned to elasticities 휀up
LS and 휀dw

LS , respectively. Indeed, elasticities 

used to compute demand reductions are higher, since they refer to peak-load hours, 

which are characterized by much higher prices than those observed in hours with lower 

demand. An hourly limit of 7% for shiftable demand has been then imposed to bound the 

demand variations in both directions.  
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Fig. 6.2 Average relative demand shifting in each system zone 

Fig. 6.2 illustrates for every system zone the average relative demand variations caused 

by the load shifting. As can be observed, in all system zones the load is mainly shifted 

from the two daily demand peaks to the night hours. Moreover, in southern regions more 

demand is shifted between the second load peak and the valley between the two peaks 

during the day, so as to flatten the load profile. For instance, Fig. 6.3 shows the total 

amount of demand shifted over the day in Sicily, by highlighting the original load 𝐷𝑧,𝑡
ELEC,𝑐, 

the flexible demand 𝑑𝐹𝑙𝑒𝑥𝑧,𝑡,𝑤
𝑐  and upward and downward load variations 𝑑𝑉𝑎𝑟𝑧,𝑡,𝑐,𝑤

LS,up
 and 

𝑑𝑉𝑎𝑟𝑧,𝑡,𝑐,𝑤
LS,dw. 

Fig. 6.4 provides the demand shifting strategy for all the Italian market zones. 

 

Fig. 6.3 Demand shifting in Sicily 
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Fig. 6.4 Demand shifting in each Italian market zone 

 

6.4.2 Peak shaving 

In the second numerical test, we focused on the peak shaving objective by executing the 

optimization model introduced in Section 6.3.3. Elasticity 휀dw
PS  for the peak shaving case 

have been set to -0.5%, which is a lower value than those related to the load shifting as 

in the peak shaving strategy the demand cannot be moved to another hour. Similarly to 

the load shifting test, an hourly limit of 7% for curtailable demand has been imposed to 

bound the downward demand variations. 

Fig. 6.5 illustrates for every system zone the average relative demand variations 

caused by the peak shaving. As can be observed, as opposed to the previous case, only 

downward variations are allowed. Specifically, load reductions take place at all hours of 

the day, though to different degrees. In particular, the greatest reductions are mainly 

concentrated in the two peak hours of the day, while load decreases are smaller during 

both the night and the valley between the two peaks. Indeed, high load hours may be 

characterized by extremely high prices for electricity, discouraging the realization of 

some consumptions. On the other hand, during low load hours, prices are generally 

lower, resulting in few consumption reductions. Results with the peak shaving objective 

are similar to those obtained by considering the load shifting: a flattening of demand to 

reduce load ramps and obtain a smoother profile, as shown in Fig. 6.6 and Fig. 6.7. 
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Fig. 6.5 Average relative peak shaving in each system zone 

Specifically, while Fig. 6.6 shows the original load 𝐷𝑧,𝑡
ELEC,𝑐, the flexible demand 

𝑑𝐹𝑙𝑒𝑥𝑧,𝑡,𝑤
𝑐  and the downward load variations 𝑑𝑉𝑎𝑟𝑧,𝑡,𝑐,𝑤

PS,dw in Sicily, Fig. 6.7 provides the 

same information for all the Italian system zones. 

 

Fig. 6.6 Peak shaving in Sicily 
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Fig. 6.7 Peak shaving in each Italian market zone 

 

6.4.3 Investments in demand response devices 

Finally, a numerical test has been performed also to validate the optimization model 

presented in Section 6.3.4. As explained in the previous section, we set the elasticity used 

to compute demand increase to -1%, while a value of -1.5% has been seleceted to compute 

demand reductions in the load shifting. Elasticity for load reduction in the peak shaving 

strategy has been fixed at -0.5%, as in this case the demand cannot be moved to other 

hours. Moreover, we considered an hourly upper bound of 5% for both the shiftable and 

the curtailable demand at the beginning of the planning horizon. However, also the 

possibility to invest in new electrical devices to increase both the shiftable and the 

curtailable demand has been included in such a test. Only for validation purposes, a very 

high potential for demand response technology has been considered in this analysis. 

Specifically, investments in electrical devices to shift up to 30% of the hourly demand 

have been considered in such a scenario, as well as investments to increase at 10% the 

hourly curtailable load. 

Results provided by the application of the model in such a scenario are illustrated in 

Fig. 6.8. Specifically, the model suggests increasing the load shifting capacity to 5 GW in 

the North and to 0.6 GW in Sicily.  
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Fig. 6.8 Installed capacity [GW] for electrical devices performing load shifting 

For each year of the planning horizon, the average relative demand variations 

induced by demand response devices installed in the North zone are represented in Fig. 

6.9. As can be observed, investments in demand response devices increase at 17% the 

hourly limit to load variations in the North, where the demand for electricity is mainly 

shifted from the daytime hours to the night hours 

 

Fig. 6.9 Average relative demand variations in the North in each year of the planning horizon 
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Fig. 6.10 Demand variations in the North 

Fig. 6.10 shows the total amount of demand shifted over an average day in the North, 

by highlighting the original load, the flexible demand and upward and downward load 

variations. As can be noticed, demand response programs in the North aims at flattening 

the demand profile so as to obtain a significant cost saving by substituting more 

expensive energy with cheaper energy and by reducing load ramps, obtaining a smoother 

profile. 

Instead, Fig. 6.11 illustrates for each year of the planning horizon the average relative 

demand variations induced by demand response devices installed in Sicily.  

 

Fig. 6.11 Average relative demand variations in Sicily in each year of the planning horizon 
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Fig. 6.12 Demand variations in Sicily 

As can be noticed, investments in demand response devices increase at 30% the 

hourly limit to load variations, being most of the demand for electricity shifted between 

the second load peak and the valley between the two peaks during the day. The total 

amount of demand shifted over an average day in Sicily, as well as the original load and 

the flexible demand, are shown in Fig. 6.12. As can be observed, demand response 

programs dramatically change the demand curve in Sicily, by creating a profile with a 

central peak. These results may be explained by analysing investment decisions in new 

renewable power generation provided by the model, which consist in installing large 

shares of solar power in Sicily. By shifting the demand from the second daily peak to the 

valley between the two original peaks, demand response devices transform the load 

profile, which becomes similar to the solar power generation, promoting the integration 

of the large share of solar PV technology installed in the zone.  

6.5 Chapter conclusions 

In this chapter, the problem of including in the expansion planning framework demand 

variations to electricity prices has been addressed. First, a definition of demand response 

has been provided and several benefits related to the possibility of change load profiles 

have been pointed out. Such benefits include expected bill savings for all electrical 
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consumers, lower variability in the spot market and a reduction of CO2 emissions, which 

could facilitate the optimal transition to a European low emission power system. 

Then, a comprehensive review of works integrating the demand response into energy 

planning models has been provided. All the studies in the literature show how demand 

response could decrease peak demand, emissions and system costs, while increasing the 

integration of renewables in power system. However, similar outcomes may be provided 

by other technologies which may compete with demand response, such as batteries, 

hydro pumping units or fast ramping power plants. The lack of articles on this topic calls 

for the development of an integrated planning framework that could accurately consider 

the competition between different resources providing flexibility to power systems. 

Thus, our approach to include customers’ reactions to price signals in the GTEP 

analysis by considering elasticities and demand functions has been presented. 

Specifically, three different models have been proposed in the chapter. First, we modeled 

the load shifting objective, which consists in flattening the demand profile by 

transferring load from peak hours to off-peak hours. Second, the peak shaving strategy 

has been considered. Third, we presented an optimization model to plan investments in 

demand response devices. 

Finally, some tests have been conducted to validate the consistency of the equations 

describing the demand reactions to electricity signals. The obtained results show peak 

reduction and valley filling effects, demonstrating that demand response could facilitate 

the integration of renewable energy and reduce system costs. However, numerical tests 

described in this section have been conducted for validation purposes only and do not 

represent a real analysis of any specific energy scenario. Indeed, the application to a real 

case study of the models introduced in this chapter requires performing extensive studies 

to evaluate potential and costs for demand response programs for the Italian power 

system. Such an analysis will represent a natural evolution of the research activities 

described in this dissertation. 
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Chapter 7                                                        

Conclusions 

In this thesis, the GTEP problem to facilitate the transition to low emission power 

systems has been addressed. Meeting the challenging sustainability goals set by the 

European Commission requires increasing the share of power capacity from renewable 

power sources, as well as their penetration in the energy mix. However, in the presence 

of high levels of renewable penetration, power systems face great challenges to meet the 

demand, because of the unpredictable daily and seasonal nature of renewable 

generation. The variability of these intermittent power sources has to be managed in the 

short-term to ensure that power systems are operated in an efficient and reliable way. 

In this dissertation, we have presented several optimization models to plan the joint 

expansion of power systems so as to achieve long-term policy goals, while considering 

the challenges related to integrating large shares of renewables, which require 

considering a very detailed representation of power systems short-term operations. Such 

models optimize strategic decisions including retirement of existing capacity and 

investments in new generation, transmission and storage facilities, as well as operational 

decisions. However, due to the high costs and the long lifetimes, investment decisions in 

the power sector are long-term decisions, which require considering planning horizon of 

several decades. Due to the long-term horizon, providing an hourly solution to the 

expansion planning problem is computationally infeasible.  

To provide reliable expansion plans for large-scale energy systems with high shares 

of renewables, we included in the analysis a high level of technical detail by considering 

a computational efficient formulation for the unit commitment problem, while a high 

level of temporal detail has been obtained by working with representative days, 

discretized in hours, selected through a novel approach. The use of representative days 

raises the crucial issues regarding how to consider the seasonality of hydroelectric 

dispatch and how to set the initial ON/OFF status of thermal power plants in 

representative days. Both these crucial issues have been addressed in this thesis by 

proposing different novel methods.  

Specifically, as regards to the problem of capturing the seasonality of the 

hydroelectric dispatch when working with representative days, two different approaches 
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have been proposed. First, we designed a QMIP model to perform a preliminary 

hydroelectric dispatch. Second, we proposed to include inter-day equations in the 

optimization model to create continuity in storage operation across the entire planning 

horizon. Instead, as regards to the determination of the initial statuses of thermal power 

plants in representative days, we developed a novel approach based on the application of 

classification techniques. Decision trees showed to be the best classifier, providing 

accurate estimates of initial statuses also in scenarios very different from the dataset used 

for the tree induction. 

Another distinct feature of the GTEP problem is the high level of uncertainty. Indeed, 

since expansion plans are usually provided for a long-term planning horizon, the future 

system conditions are generally uncertain at the time the expansion plans are decided. 

Different sources of uncertainty may affect planning decisions and must be considered 

in the decision-making process. Specifically, while short-term uncertainty can be 

captured by accurately selecting the representative days, long-term uncertainty can be 

included in the decision making framework by means of a two-stage stochastic 

programming approach. Thus, in this thesis we proposed a two-stage stochastic MILP 

model to plan the investment decisions in the power sector, while providing more reliable 

decisions considering different scenarios for fuel prices and CO2 price. In such an 

approach, investment and decommissioning decisions represent the first stage, while 

operational decisions are second-stage variables. 

However, the inclusion of the long-term uncertainty in the analysis further increases 

the complexity of the problem, making the real-scale GTEP problems computationally 

intractable. To solve such problems, efficient solution algorithms that exploit the 

decomposable structure of two-stage stochastic programming models have to be applied. 

Thus, in this thesis we also implemented a solution algorithm based on the multi-cut 

Benders decomposition strategy to decompose the stochastic model both by year and by 

scenario. In our model, the first-stage variables represent investment and 

decommissioning decisions. If these variables are fixed, the original problem 

decomposes into a set of independent subproblems, one per year and scenario, each 

representing the operation in the second stage. In our solution algorithm, the two-stage 

stochastic problem is replaced by an iterative collection of smaller problems. At each 

iteration, the so-called master problem is solved first to determine suitable values for the 

first-stage variables. Once the investment schedule is determined, the subproblems are 

solved. Finally, the dual information of the subproblems is sent to the master problem 

employing a cut to update the master problem solution.  
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Beside storage technologies, natural gas represents an existing option to cope with 

the variability of renewable power sources. Specifically, the energy conversion between 

electricity and natural gas is bi-directional. First, natural gas can be converted into 

electricity by gas-fired power plants that can be fired up in just a few minutes, therefore 

being suited to compensate for the variability of renewable generation. Secondly, 

electricity can be transformed into gas by the PtG technology, which provides an 

opportunity to integrate large shares of renewables by converting surplus renewable 

power generation to gas fuel that can be stored locally to be used later or injected in the 

natural gas network. The deployment of both gas-fired power plants and PtG increases 

the interconnection between electricity and gas systems and requires an integrated 

planning framework that could accurately consider this coupling. 

Thus, in this dissertation also the joint expansion planning problem for real-scale 

integrated electricity and gas systems has been addressed, by proposing a novel 

stochastic long-term expansion co-planning framework for integrated systems with bi-

directional energy conversion. Such a model co-optimizes strategic investment decisions 

in new generating capacity, transmission lines, storage facilities, pipelines, and PtG 

capacity, as well as power system and gas system operational decisions. Interconnections 

between electricity and gas systems are taken into account by considering both the gas 

demand not related to the thermal power generation (which is an input parameter) and 

the gas demand related to thermal power generation (which instead is a model variable) 

and by modeling the energy conversion of electricity into gas operated by the PtG plants. 

Moreover, a detailed and realistic case study concerning the Italian energy system 

has been presented in this thesis. In our numerical study, we simulated a planning 

horizon of 21 years, from 2020 up to 2040, and we planned the joint expansion of the 

Italian electricity and gas system under CO2 and fuel prices uncertainty. Empirical results 

show the need to install large shares of renewables to achieve policy goals set by the 

European Commission, with the solar technology preferred to the wind power 

technology due to the lower investment costs. The huge solar penetration would require 

installing new storage systems and reinforcing the transmission network, by building 

new national and international cross border transmission lines, so as to better exploit 

the intermittent renewable energy sources and compensate for the decommissioning of 

some Italian thermoelectric plants. As regards to the natural gas system, the 

decommissioning of all coal and oil thermal power plants would require the availability 

of an additional amount of gas and therefore the development of the so called “GALSI”, 

from Algeria to Sardinia and to Italy mainland, starting from year 2022. 
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Finally, also the possibility to control the variability of intermittent renewable power 

sources by adjusting the demand for electricity has been analysed in this dissertation. 

Specifically, we considered in the GTEP framework customers’ reactions to electricity 

prices, which include the reduction of the electricity consumption during peak hours and 

the demand shifting from peak hours to off-peak hours if consumption is inevitable. We 

then tried to fill the existing gap in the literature by proposing an integrated planning 

framework that could accurately consider the competition between different resources 

providing flexibility to power systems, i.e., storage systems, transmission lines, fast-

ramping power plants and demand response devices. Results of several tests performed 

showed how demand response could facilitate the integration of renewable energy and 

reduce system costs.  

However, numerical tests for demand response have been conducted for validation 

purposes only and do not represent a real analysis of any specific energy scenario. 

Indeed, extensive preliminary studies are needed to apply the proposed method to a real 

energy scenario in order to evaluate potential and costs for demand response programs 

as well as to determine suitable values for elasticities according to the type of consumer 

(e.g., domestic, commercial or residential) and to the direction of the demand variation. 

Studies to assess demand response potential and costs in Italy so as to perform a realistic 

GTEP analysis for the Italian energy system while considering the competition between 

different resources providing flexibility will represent a natural evolution of the research 

activities described in this dissertation. 

Moreover, optimization models presented in this work are based on a centralized 

approach: by assuming the perspective of a single central entity, we plan the joint 

expansion of generation and transmission facilities so as to minimize the total system 

costs. Such an approach is justified by the objective of our research, which is to develop 

a computational tool that could support regulators in searching for optimal policies, 

focusing on the inclusion of as many engineering details as possible, while neglecting 

market aspects. A different approach to the GTEP problem will be examined in a future 

work, by developing decentralized models that could represent the interactions between 

different agents involved in the liberalized power sector.  

Another suggestion for future research is the acceleration of the Benders algorithm. 

Indeed, it is well known that the application of the classical Benders decomposition 

sometimes leads to slow convergence and long computing times. Several techniques have 

been proposed to deal with this phenomenon and to accelerate the standard Benders 

method [126]. These techniques can be divided into two categories. The first approach 

aims at reducing the cost of each iteration, by reducing the time spent solving the master 
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problem or the subproblem for instance by only approximately solving the master 

problem. The second strategy instead aims at reducing the number of iterations by 

generating more efficient cuts. Both approaches will be investigated in a future research. 
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Appendix                                                      

Dissemination Activities 

This section provides the list of dissemination activities connected to the thesis work, 

which include publications in international journals and conference proceedings, as well 

as presentations at international conferences. 

Specifically, paper already published or accepted for publication include: 

 Micheli, G., Soda, E., Vespucci, M., Gobbi, M. and Bertani, A., “Big data analytics: 

an aid to detection of non-technical losses in power utilities”, Computational 

Management Science, June 2018, doi:10.1007/s10287-018-0325-x. 

 

 Micheli, G., Vespucci, M.T., Stabile M., Puglisi C. and Ramos, A., “A two-stage 

stochastic MILP model for generation and transmission expansion planning with 

high shares of renewables”, Energy Systems, October 2020, doi:10.1007/s12667-

020-00404-w. 

 

 Micheli, G., Vespucci, M.T., Stabile, M. and Cortazzi, A., “Selecting and 

initializing representative days for generation and transmission expansion 

planning with high shares of renewables”. In: Gentile, C., Stecca, G., Ventura, P 

(eds.) Graphs and combinatorial optimization: from theory to applications - 

CTW2020 proceedings. Springer, April 2021, ISBN 978-3-030-63071-3. 

 

 Micheli, G. and Vespucci, M.T., “A Survey on Modeling Approaches for 

Generation and Transmission Expansion Planning Analysis”, Accepted for 

publication in NAOV-2020 proceedings, 2021. 

Moreover, the following paper based on the thesis work is in preparation for 

submission to an international journal: 

 Micheli, G., Vespucci, M.T., Puglisi, C. and Cortazzi, A., “Long-Term Expansion 

Planning of Integrated Electricity and Gas Systems with High Shares of 

Renewables and Bi-Directional Energy Flows”. 
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Presentations of the thesis work at international conferences include: 

 “A deterministic model for generation and transmission expansion planning with 

high shares of renewables”. Presented at Energy Finance 4, February 4-5, 2019, 

Milano. 

 

 “Generation and transmission expansion planning with high shares of 

renewables”. Presented at Computational Management Science, March 27-29, 

2019, Chemnitz. 

 

 “A two-stage stochastic programming approach for generation and transmission 

expansion planning with high shares of renewables”. Presented at International 

Conference on Stochastic Programming, July 29 – August 2, 2019, Trondheim. 

 

 “A two-stage stochastic programming approach for generation and transmission 

expansion planning with high shares of renewables”. Presented at International 

Conference on Optimization and Decision Science, September 4-7, 2019, Genova. 

 

 “A two-stage stochastic MILP model for generation and transmission expansion 

planning with high shares of renewables”. Presented at AIROYoung 2020, 

February 5-7, 2020, Bolzano. 

 

 “Selecting and Initializing Representative Days for Generation and Transmission 

Expansion Planning with High Shares of Renewables”. Presented at 18th 

Cologne-Twente Workshop on Graphs and Combinatorial Optimization, 

September 14-16, 2020, Online. 

 

 “Long-Term Expansion Planning of Integrated Electricity and Gas Systems with 

High Shares of Renewables and Bi-Directional Energy Flows”. Presented at 

Energy Finance 6, February 22-23, 2021, Online. 
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