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Abstract: This paper adopts a Bayesian nonparametric mixture model
where the mixing distribution belongs to the wide class of normalized ho-
mogeneous completely random measures. We propose a truncation method
for the mixing distribution by discarding the weights of the unnormalized
measure smaller than a threshold. We prove convergence in law of our
approximation, provide some theoretical properties, and characterize its
posterior distribution so that a blocked Gibbs sampler is devised.

The versatility of the approximation is illustrated by two different ap-
plications. In the first the normalized Bessel random measure, encompass-
ing the Dirichlet process, is introduced; goodness of fit indexes show its
good performances as mixing measure for density estimation. The second
describes how to incorporate covariates in the support of the normalized
measure, leading to a linear dependent model for regression and clustering.
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1. Introduction

One of the livelier topic in Bayesian Nonparametrics concerns mixtures of para-
metric densities where the mixing measure is an almost surely discrete random
probability measure. The basic model is what is known as the Dirichlet pro-
cess mixture model, appeared first in [33], where the mixing measure is indeed
the Dirichlet process. Dating back to [25] and [32], many alternative mixing
measures have been proposed; the former paper replaced the Dirichlet process
with stick-breaking random probability measures, while the latter focused on
normalized completely random measures. These hierarchical mixtures play a
pivotal role in modern Bayesian Nonparametrics, and their popularity is mainly
due to the high flexibility in density estimation problems as well as in clustering,
which is naturally embedded in the model.

In some statistical applications, the clustering induced by the Dirichlet pro-
cess as mixing measure may be restrictive. In fact, it is well-know that the latter
allocates observations to clusters with probabilities depending only on the clus-
ter sizes, leading to the “the rich gets richer” behavior. Within some classes
of more general processes, as, for instance, stick-breaking and normalized pro-
cesses, the probability of allocating an observation to a specific cluster depends
also on extra parameters, as well as on the number of groups and on the clus-
ter size. We refer to [4] for a recent review of the state of the art on Bayesian
nonparametric mixture models and clustering.

Since posterior inference for Bayesian nonparametric mixtures involves an
infinite-dimensional parameter, this may lead to computational issues. How-
ever, there is a recent and lively literature focusing mainly on two different
classes of MCMC algorithms, namely marginal and conditional Gibbs samplers.
The former integrates out the infinite dimensional parameter (i.e. the random
probability), resorting to generalized Polya urn schemes; see [17] or [34]. The
latter includes the nonparametric mixing measure in the state space of the Gibbs
sampler, updating it as a component of the algorithm; this class includes the
slice sampler [see 23]. Among conditional algorithms there are truncation meth-
ods, where the infinite parameter (i.e. the mixing measure) is approximated by
truncating the infinite sums defining the process, either a posteriori [5, 9] or a
priori [3, 24].

In this work we introduce an almost surely finite dimensional class of random
probability measures that approximates the wide family of homogeneous nor-
malized completely random measures [41, 29]; we use this class as the building



3518 R. Argiento et al.

block in mixture models and provide a simple but general truncation algorithm
to perform posterior inference. Our approximation is based on the constructive
definition of the weights of the completely random measure as the points of
a Poisson process on R

+. In particular, we consider only points larger than a
threshold ε, controlling the degree of approximation. Conditionally on ε, our
process is finite dimensional both a priori and a posteriori.

Here we illustrate two applications. In the first one, a new choice for the
Lévy intensity ρ, characterizing the normalized completely random measure, is
proposed: the Bessel intensity function that, up to our knowledge, has never been
applied in a statistical framework, but known in finance [see 7, for instance].
We call this new process normalized Bessel random measure. In the second
application, we set ρ to be the well-known generalized gamma intensity and
consider a centering measure P0x depending on a set of covariates x, yielding a
linear dependent normalized completely random measure. For a recent survey
on dependent nonparametric processes in the Statistics and Machine Learning
literature see [20].

In this paper, since the main objective is the approximation of the nonpara-
metric process arising from the normalization of completely random measures,
we fix ε to a small value. However, it is worth mentioning that it is possible to
choose a prior for ε, but the computational cost might greatly increase for some
intensity ρ.

The new achievements of this paper can be summarized as follows: (i) a
generalization of the ε-approximation given in [3] for the NGG process to the
whole family of normalized homogeneous completely random measures, (ii) a
different technique providing the posterior distribution (and the exchangeable
partition probability function) of this new random probability measure, making
use of Palm’s formula, and (iii) the introduction of the normalized Bessel random
measure as mixing measure in Bayesian nonparametric mixtures.

In particular, after the introduction of the finite dimensional ε-approximation
of a normalized completely random measure, we derive its posterior and show
that the ε-approximation converges to its infinite dimensional counterpart (Sec-
tion 3). Then we provide a Gibbs sampler for the ε-approximation hierarchical
mixture model (Section 4). Section 5 illustrates some criteria to choose the
approximation parameter ε. Section 6.1 is devoted to the introduction of the
normalized Bessel random measure, and some of its properties; on the other
hand, Section 6.2 discusses an application of the ε-Bessel mixture models to
both simulated and real data. Section 7 defines the linear dependent ε−NGG’s,
and considers linear dependent ε − NGG mixtures to fit the AIS data set. To
complete the set-up of the paper, Section 2 is devoted to a summary of ba-
sic notions about homogeneous normalized completely random measures, and
Section 8 contains a conclusive discussion.

2. Preliminaries on normalized completely random measures

Let us briefly recall the definition of a homogeneous normalized completely
random measure. Let Θ ⊂ R

m for some positive integer m. A random measure
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μ on Θ is completely random if for any finite sequence B1, B2, . . . , Bk of disjoint
sets in B(Θ), μ(B1), μ(B2), . . . , μ(Bk) are independent. A purely atomic (with
no fixed points) completely random measure (c.r.m.) is defined [see 30, Section
8.2] by

μ(·) =
∫
R+×·

sN(ds, dτ), (2.1)

where N is a Poisson process on R
+ × Θ with mean intensity ν(ds, dτ). A

completely random measure is homogeneous if ν(ds, dτ) = ρ(s)dsκP0(dτ), where
ρ(s) is the density of a non-negative measure on R

+, and κP0 is a finite measure
on Θ with total mass κ > 0. If∫ +∞

0

min{1, s}ρ(s)ds < +∞, (2.2)

then μ is characterized by the so-called Lévy-Khintchine representation: for any
non-negative function f , the Laplace functional Ψμ of μ is given by

Ψμ[f ] := E

{
e−
∫
Θ
f(τ)μ(dτ)

}
= exp

{
−
∫
R+×Θ

(1− e−sf(τ))ν(ds, dτ)

}
; (2.3)

in this case ν(ds, dτ) is called Lévy intensity measure. Furthermore, we assume
that ρ satisfies the following regularity condition:

∫ +∞

0

ρ(s)ds = +∞, (2.4)

so that the total number of points of the process, N(R+ × Θ), is Poisson dis-
tributed with mean

∫
R+×Θ

ν(ds, dτ) = κ
∫
R+ ρ(s)ds = +∞. This implies that

any homogeneous completely random measure under (2.2) and (2.4) can be
represented as μ(·) =

∑
j≥1 Jjδτj (·). Since μ is homogeneous, the support

points {τj} and the jumps {Jj} of μ are independent, and the τj ’s are in-
dependent identically distributed (iid) random variables from P0, while {Jj}
are the points of a Poisson process on R

+ with mean intensity ρ. Moreover, if
T := μ(Θ) =

∑
j≥1 Ji, by (2.2) and (2.4), we have P(0 < T < +∞) = 1.

Therefore, a random probability measure (r.p.m.) P can be defined through
normalization of μ:

P :=
μ

μ(Θ)
=

+∞∑
j=1

Jj
T

δτj =
+∞∑
j=1

Pjδτj . (2.5)

We refer to P in (2.5) as a (homogeneous) normalized completely random mea-
sure with parameter (ρ, κP0). As an alternative notation, following [27], P is
referred to as a homogeneous normalized measure with independent increments.
The definition of normalized completely random measures appeared in [41] first.
An alternative construction of normalized completely random measures can be
given in terms of Poisson-Kingman models as in [39].
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3. ε-approximation of normalized completely random measures

The goal of this section is the definition of a finite dimensional random prob-
ability measure that is an approximation of a general normalized completely
random measure with Lévy intensity given by ν(ds, dτ) = ρ(ds)κP0(dτ), intro-
duced above.

First of all, by the Restriction Theorem for Poisson processes, for any ε > 0,
all the jumps {Jj} of μ larger than a threshold ε are still a Poisson process,
with mean intensity γε(s) := κρ(s)I(ε,+∞)(s). Moreover, the total number of

these points is Poisson distributed, i.e. Nε ∼ P0(Λε) where Λε := κ
∫ +∞
ε

ρ(s)ds.
Since Λε < +∞ for any ε > 0 by (2.2), Nε is almost surely finite. In addition,
conditionally to Nε, the points {J1, . . . , JNε} are iid from the density

ρε(s) =
γε(s)

Λε
=

κρ(s)

Λε
I(ε,+∞)(s), (3.1)

thanks to the relationship between Poisson and Bernoulli processes; see, for
instance, [30], Section 2.4.

We denote by μ̃ε the c.r.m. with Lévy intensity

νε(ds, dτ) := ρ(ds)I(ε,+∞)(s)dsκP0(dτ). (3.2)

This implies that μ̃ε =
∑Nε

j=1 Jjδτj . However, it is not worth trying to normalize
μ̃ε, since μ̃ε(B) = 0 for any B if Nε = 0. We consider, instead, the c.r.m. με so
defined:

με(·) d
= J0δτ0(·) + μ̃ε(·) (3.3)

where (J0, τ0) is independent from {(Jj , τj), j ≥ 1}, J0 and τ0 are independent
with density ρε and P0, respectively. Thus

με(·) = J0δτ0(·) +
Nε∑
j=1

Jjδτj (·) =
Nε∑
j=0

Jjδτj (·).

Summing up, we define:

Pε(·) =
Nε∑
j=0

Pjδτj (·) =
Nε∑
j=0

Jj
Tε

δτj (·), (3.4)

where Tε =
∑Nε

j=0 Jj , τj
iid∼ P0, {τj} and {Jj} independent. We denote Pε in

(3.4) by ε−NormCRM and write Pε ∼ ε−NormCRM(ρ, κP0). When ρε(s) =
1/(ωσΓ(−σ, ωε))s−σ−1e−ωs, s > ε, Pε is the ε−NGG process introduced in [3],
with parameter (σ, κ, P0), 0 ≤ σ ≤ 1, κ ≥ 0.

Increasing Lévy processes are completely random measures for Θ = R (or
R

+). Therefore, it is worth mentioning some literature on ε-approximation of
such processes in the financial context. In particular, the book by Asmussen and
Glynn [6, Chapter XII] provides a justification for the approximation of infinite
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activity Lévy processes by compound Poisson processes: any Lévy jump process
J on R can be represented as the sum of two independent Lévy processes

J(s) = J1(s) + J2(s), s ∈ R,

where the Lévy measures of J1 and J2 are restrictions of the “whole” Lévy
measure on (−ε, ε) and (−∞,−ε]∪ [ε,+∞), respectively. When considering the
homogeneous completely random measure μ under (2.2) and (2.4) as here, this
theory yields that μ is the sum of two independent homogeneous completely
random measures μ(0,ε] and μ̃ε, corresponding to mean intensities ρ(s)I(0,ε](s)
and ρε as in (3.1), respectively. Note that μ̃ε is the c.r.m. in the right hand-side
of (3.3). The basic idea of the ε-approximation is that, if ε is small enough,
μ(0,ε] can be neglected and μ can be approximated by μ̃ε; see [6, Chapter XII]
and [43].

The approach to ε-approximation taken here is similar, though not identical,
since we first add the random mass J0 in the random point τ0 to μ̃ε to define
the c.r.m. με as in (3.3). The r.p.m. Pε in (3.4) is then defined by normalization
of με. We will show in Proposition 3.3 that Pε converges in distribution to P as
ε goes to 0, but the basic idea of the approximation is that the point mass we
add to μ̃ε is negligible; see Section 5.

Several other methods have been proposed in order to approximate a normal-
ized measure; first of all, we mention the inverse Lévy measure method, referred
to as Ferguson-Klass representation [19] in this context, representing the Pois-
son process of the jumps of a subordinator as a series of trasformed (via the
survival function of the Lévy intensity) points of a unit rate Poisson process. Of
course, to get implementable simulation algorithms, the series expansion has to
be truncated at a fixed and large integer N , or whenever the new jump to be
added to the series is smaller that a threshold ε. In the latter case, the truncation
rule would yield only jumps of size greater than ε, obtaining an algorithm that
is similar to that proposed here; see [6, Chapter XII]. On the other hand, [2]
proposes a truncation rule of the series representation at a fixed integer N quan-
tifying the error through a moment-matching criterion, i.e. evaluating a measure
of discrepancy between actual moments of the whole series and moments of the
truncated sum based on the simulation output. More series representations of
the jump process can be considered, with corresponding truncation rules; see
[11] and [42]. Alternatively, [43] proposed a novel class of r.p.m.’s, that is dense
in the class of homogeneous normalized completely random measures. These
authors first approximate any c.r.m. μ with μ̃ε which, as we have already men-
tioned, has finite Lévy measure. Then, resorting to the “denseness” of the novel
class, they approximate μ̃ε with an element of this class, with Lévy intensity
given by the weighted sum of a finite number of intensities of finite activity
processes, plus the intensity of the gamma process.

Let θ = (θ1, . . . , θn) be a sample from Pε, a ε − NormCRM(ρ, κP0) as de-
fined in (3.4), and let θ∗ = (θ∗1 , . . . , θ

∗
k) be the (observed) distinct values in θ.

We denote by allocated jumps of the process the values Pl∗1
, Pl∗2

, . . . , Pl∗k
in (3.4)

such that there exists a corresponding location for which τl∗i = θ∗i , i = 1, . . . , k.
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The remaining values are non-allocated jumps. We use the superscript (na) for
random variables related to non-allocated jumps. The first result is a charac-
terization of the posterior law of the random measure με, not yet normalized;
however, we need introducing two more ingredients first. We consider an auxil-
iary random variable U such that U |με ∼ Gamma(n, Tε), so that the marginal
density of U is

fU (u;n) =
un−1

Γ(n)
E(Tn

ε e
−Tεu) =

un−1

Γ(n)
(−1)n

d

dun
E(e−uTε)

=
un−1

Γ(n)
(−1)n

d

dun

Λε,ue
Λε,u

ΛεeΛε
,

(3.5)

and the last equality follows easily from the definition of Tε and (2.3), using
notation defined in (3.8). We also formulate the following lemma, whose proof
is straightforward.

Lemma 3.1. Let μ̃ε be a finite c.r.m. with Lévy intensity νε as in (3.2), and
let με be defined as in (3.3). Consider a c.r.m. μ� such that

μ�(·) d
= Xμε(·) + (1−X)μ̃ε(·), (3.6)

where X ∼ Bernoulli(p), p = a/(a + b), a, b > 0, and X is independent on μ̃ε

and (J0, τ0). The Laplace functional of μ� is:

Ψ[f ] =
aA[f ] + b

a+ b
exp

{
−
∫
R+×Θ

(
1− e−f(τ)s

)
νε(ds, dτ)

}
, (3.7)

for any positive f , where

A[f ] := E

(
e−f(τ0)J0

)
=

∫
R+×Θ

e−f(τ)sρε(s)dsP0(dτ)

=
1

Λε

∫
R+×Θ

e−sf(τ)νε(ds, dτ)

is the Laplace functional of the random measure J0δτ0 .

The posterior distribution of με has the following characterization.

Theorem 3.1. If Pε is an ε−NormCRM(ρ, κP0), then the conditional distri-
bution of Pε, given θ∗ and U = u, is obtained by normalization of the following
random measure

μ∗
ε(·)

d
= μ(na)

ε,u (·) + μ(a)
ε,u(·) = μ(na)

ε,u (·) +
k∑

j=1

J
(a)
j δθ∗

k
(·)

where
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1. the law of the process of non-allocated jumps μ
(na)
ε,u (·) is distributed as the

c.r.m. μ� defined in (3.6), corresponding to Lévy intensity in (3.7) given
by e−usνε(ds, dτ) and probability p of success p = Λε,u/(Λε,u + k), where

Λε,u := κ

∫ +∞

ε

e−usρ(s)ds, u ≥ 0; (3.8)

2. the process of allocated jumps μ
(a)
ε,u(·) has fixed points of discontinuity θ∗ =

(θ∗1 , . . . , θ
∗
k) with weights J

(a)
j

ind∼ snie−usρ(s)I(ε,+∞)(s)ds, j = 1, . . . , k;

3. μ
(na)
ε,u (·) and μ

(a)
ε,u(·) are independent, conditionally to l∗ = (l∗1, . . . , l

∗
k), the

vector of locations of the allocated jumps;
4. the posterior law of U given θ∗ has density on the positive real numbers

given by

fU |θ∗(u|θ∗) ∝ un−1eΛε,u−Λε
Λε,u + k

Λε

k∏
i=1

∫ +∞

ε

κsnie−usρ(s)ds, u > 0.

The proof of the above proposition, as well as of all the others in this sec-
tion, is in Appendix B. An immediate consequence of Theorem 3.1 is the next
proposition.

Corollary 3.1. The conditional distribution of Pε, given θ∗ and U = u, verifies
the distributional equation

P ∗
ε (·)

d
= wP (na)

ε,u (·) + (1− w)

k∑
j=1

P
(a)
j δθ∗

k
(·)

where P
(na)
ε,u (·) is the null measure if μ

(na)
ε,u (Θ) = 0, w = μ

(na)
ε,u (Θ)/(μ

(na)
ε,u (Θ) +∑k

j=1 J
(a)
j ), and the jumps {P (a)

1 , . . . , P
(a)
k } associated to the fixed points of

discontinuity θ∗1 , . . . , θ
∗
k are defined as P

(a)
j = J

(a)
j /

∑k
j=1 J

(a)
j , j = 1 . . . , k.

Theorem 3.1 and Corollary 3.1 conceive the “finite dimensional” counterpart
of Proposition 1 in [27].

Both the infinite and finite dimensional processes defined in (2.5) and (3.4),
respectively, belong to the wide class of species sampling models, deeply in-
vestigated in [38], and we use some of the results there to derive ours. Let
(θ1, . . . , θn) be a sample from (2.5) or (3.4) (or, more generally, from a species
sampling model); since it is a sample from a discrete probability, it induces
a random partition pn := {C1, . . . , Ck} on the set Nn := {1, . . . , n} where
Cj = {i : θi = θ∗j } for j = 1, . . . , k. If #Ci = ni for 1 ≤ i ≤ k, the marginal law
of (θ1, . . . , θn) has unique characterization:

L(pn, θ
∗
1 , . . . , θ

∗
k) = p(n1, . . . , nk)

k∏
j=1

L(θ∗j ),
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where p is the exchangeable partition probability function (eppf) associated
to the random probability. The eppf p is a probability law on the set of the
partitions of Nn. The following proposition provides an expression for the eppf
of a general ε−NormCRM .

Proposition 3.1. Let (n1, . . . , nk) be a vector of positive integers such that∑k
i=1 ni = n. Then, the eppf associated with a Pε ∼ ε-NormCRM(ρ, κP0) is

pε(n1, . . . , nk) =

∫ +∞

0

[
un−1

Γ(n)

(k + Λε,u)

Λε
e(Λε,u−Λε)

k∏
i=1

∫ +∞

ε

κsnie−usρ(s)ds

]
du

(3.9)

where Λε,u has been defined in (3.8).

A result concerning the eppf of a generic normalized (homogeneous) com-
pletely random measure can be obtained from [39], formulas (36)-(37):

p(n1, . . . , nk) =

∫ +∞

0

un−1

Γ(n)
eκ
∫ +∞
0

(e−us−1)ρ(s)ds

(
k∏

i=1

∫ +∞

0

κsnie−usρ(s)ds

)
du.

(3.10)
It follows that the eppf of (3.4) converges pointwise to that of the corresponding
(homogeneous) normalized completely random measure (2.5) when ε tends to 0.

Proposition 3.2. Let pε(·) be the eppf of a ε−NormCRM(ρ, κP0). Then for

any sequence n1, . . . , nk of positive integers with k > 0 and
∑k

i=1 ni = n,

lim
ε→0

pε(n1, . . . , nk) = p0(n1, . . . , nk), (3.11)

where p0(·) is the eppf of the NormCRM(ρ, κP0) as in (3.10).

Convergence of the sequence of eppfs yields convergence of the sequences of
ε−NormCRMs, generalizing a result obtained for ε−NGG processes.

Proposition 3.3. Let Pε be a ε−NormCRM(ρ, κP0), for any ε > 0. Then

Pε
d→ P as ε → 0,

where P is a NormCRM(ρ, κP0). Moreover, as ε tends to +∞, Pε
d→ δτ0 , where

τ0 ∼ P0.

The proof of the above proposition is along the same lines as the proof of
Proposition 1 in [3], and therefore it is omitted here.

Furthermore, the m-th moment of Pε, m = 1, 2, . . . , is equal to:

E [(Pε(B))
m
] = E

[
(P0(B))

Km

]
(3.12)

where B ∈ B(Θ) and Km is the number of distinct values in a sample of size
m from Pε. In particular, when m = 2, Km assumes values in {1, 2}, and the
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probability that K2 = 1 is the probability that, in a sample of size 2 from
Pε, the sample values coincide, i.e. pε(2). Therefore E(Pε(B)2) = P0(B)pε(2) +
(P0(B))2(1− pε(2)), and consequently

Var(Pε(B)) = pε(2)P0(B) (1− P0(B)) . (3.13)

Analogously, the covariance structure of Pε is as follows:

Cov(Pε(B1), Pε(B2)) = pε(2) (P0(B1 ∩B2)− P0(B1)P0(B2)) (3.14)

for any B1, B2 ∈ B(Θ). Proofs of (3.12) and (3.14) are given in Appendix B.

4. ε − NormCRM process mixtures

We consider mixtures of parametric kernels as the distribution of data, where
the mixing measure is the ε−NormCRM(ρ, κP0). The model we assume is the
following:

Yi|θi ind∼ f(·; θi), i = 1, . . . , n

θi|Pε
iid∼ Pε, i = 1, . . . , n

Pε ∼ ε−NormCRM(ρ, κP0),

ε ∼ π(ε),

(4.1)

where f(·; θi) is a parametric family of densities on Y ⊂ R
p, for all θ ∈ Θ ⊂

R
m. Remember that P0 is a non-atomic probability measure on Θ, such that

E(Pε(A)) = P0(A) for all A ∈ B(Θ) and ε ≥ 0. Model (4.1) will be addressed
here as ε−NormCRM hierarchical mixture model.

The design of a Gibbs scheme to sample from the posterior distribution of
model (4.1) is straightforward, once we have augmented the state space with
the variable u, by using the posterior characterization in Theorem 3.1. The
Gibbs sampler generalizes that one provided in [3] for ε −NGG mixtures, but
it is designed for any Lévy intensity ρ under (2.2) and (2.4). Description of the
full-conditionals is below, and further details can be found in Appendix A.

1. Sampling from L(u|Y ,θ, Pε, ε): it is clear that, conditionally to Pε, u is
independent from the other variables and distributed according to gamma
with parameters (n, Tε).

2. Sampling from L(θ|u,Y , Pε, ε): each θi, for i = 1, . . . , n, has discrete law
with support {τ0, τ1, . . . , τNε}, and probabilities P(θi = τj) ∝ Jjf(Yi; τj).

3. Sampling from L(Pε, ε|u,θ,Y ): this step is not straightforward and can
be split into two consecutive substeps:

3.a Sampling from L(ε|u,θ,Y ): see Appendix A.

3.b Sampling from L(Pε|ε, u,θ,Y ): via characterization of the poste-
rior in Theorem 3.1, since this distribution is equal to L(Pε|ε, u,θ).
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To put into practice, we have to sample (i) the number Nna of non-
allocated jumps, (ii) the vector of the unnormalized non-allocated
jumps J (na), (iii) the vector of the unnormalized allocated jumps
J (a), the support of the allocated (iv) and non-allocated (v) jumps.
See Appendix A for a wider description.

We highlight that, when sampling from non-standard distributions, Accept-
Reject or Metropolis-Hastings algorithms have been exploited.

5. Some ideas on the choice of ε

We believe that a brief discussion on the choice of the approximation parameter
ε is worth doing. We could also consider it random, as we did in [3], where the
ε-NGG mixture model was proposed. In our general view, this parameter can be
considered either as a true parameter, and then it should be fixed on the ground
of the prior information we have, or as a tuning parameter to approximate the
“exact” model (normalized completely random measure mixtures). If we prefer
the latter alternative as we did here, ε has to be small. However, since the result
on ε-approximation (Theorem 3.3) concerns the prior distribution in (4.1), the
only suggestions we can give refer to a priori criteria. Here we suggest to set ε
such that the sum of the masses μ((0, ε]) and J0 we perturb μ with, obtaining
με, is small. In particular, since the interest is in normalized random measures,
“small” is fixed with respect to the expectation E(T ) of the total mass of μ, i.e.
we choose ε such that

r(ε) :=
E(μ(0, ε]) + E(J0)

E(T )
≤ ν, (5.1)

where ν is typically a small value. Rather, alternative criteria are available; for
instance, as in [3], we could choose ε to achieve a prefixed value for E(Nε) or
Var(Nε). As far as (5.1) is concerned, observe that

E(μ(0, ε]) = κ

∫ ε

0

sρ(s)ds, Var(μ(0, ε]) = κ

∫ ε

0

s2ρ(s)ds;

from (2.2), it follows that

E(μ(0, ε]) → 0 Var(μ(0, ε]) → 0 as ε → 0,

i.e. the r.v. μ(0, ε] converges to 0 in L2 and this implies convergence in proba-
bility. Besides, we have that

ε ≤ E(J0) =
κ
∫ +∞
ε

sρ(s)ds

Λε
≤ E(T )

E(Nε)
.

Consequently, when ε → 0, E(Nε) → +∞ and thus E(J0) converges to 0.
As an interesting example, we evaluate the ratio r(ε) when ρ(s) = 1/Γ(1 −

σ)s−1−σe−ωε for 0 ≤ σ < 1, κ > 0 and ω = 1, that means when μ is the
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Fig 1. Values of r(ε) when ρ is the Lévy intensity of the generalized gamma c.r.m., with
κ = 1 and different values of σ, as a function of log10(ε).

generalized gamma process, i.e. the unnormalized c.r.m. defining NGG processes
by normalization. By 8.354.2 in [22], we have that

E (μ(0, ε]) =
κ

Γ(1− σ)
(Γ(1− σ)− Γ(1− σ; ε))

=
κ

Γ(1− σ)

(
+∞∑
n=0

(−1)nε1−σ+n

n!(1− σ + n)

)
ε→0∼ κε1−σ

Γ(2− σ)
,

and E(J0) = Γ(1−σ, ε)/Γ(−σ, ε). We also mention that Var(μ(0, ε]) ∼ (κε2−σ)/
Γ(2− σ) as ε tends to 0. Figure 1 shows r(ε) when μ is the generalized gamma
process with κ = 1 and different values of σ, as a function of ε. Note that a
smaller threshold ε is needed in order to obtain the same value of ν when the
parameter σ decreases to 0.

Similar calculations can be derived when μ is the Bessel random measure
introduced in the next section.

6. Normalized Bessel random measure mixtures: density estimation

In this section we introduce a new normalized process, called normalized Bessel
random measure. Section 6.1 describes theoretical results: in particular, we show
that this family encompasses the well-known Dirichlet process. Then we fit the
mixture model to synthetic and real datasets in Section 6.2. Results are illus-
trated through a density estimation problem.

6.1. Definition

Let us consider a normalized completely random measure corresponding to mean
intensity

ρ(s;ω) =
1

s
e−ωsI0(s), s > 0,
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where ω ≥ 1 and

Iν(s) =

+∞∑
m=0

(s/2)2m+ν

m!Γ(ν +m+ 1)

is the modified Bessel function of order ν > 0 [see 15, Sect 7.2.2]. It is straight-
forward to see that, for s > 0,

ρ(s;ω) =
1

s
e−ωs +

+∞∑
m=1

1

22m(m!)2
s2m−1e−ωs, (6.1)

so that ρ is the sum of the Lévy intensity of the gamma process with rate
parameter ω and of the Lévy intensities

ρm(s;ω) =
1

22m(m!)2
s2m−1e−ωs, s > 0, m = 1, 2, . . . (6.2)

corresponding to finite activity Poisson processes. It is simple to check that (2.2)
and (2.4) hold. Hence, following (2.5) in Section 2, we introduce the normalized
Bessel random measure P , with parameters (ω, κ), where ω ≥ 1 and κ > 0.
Thanks to (6.1) and the Superposition Property of Poisson processes the total
mass T in (2.5) can be written as

T
d
= TG +

+∞∑
m=1

Tm, (6.3)

where TG, T1, T2, . . . are independent random variables, TG being the total
mass of the gamma process and Tm the total mass of a completely random
measure corresponding to the intensity νm(ds, dτ) = ρm(s)dsκP0(dτ). In par-

ticular, TG ∼ gamma(κ, ω), while Tm =
∑Nm

j=1 J
(m)
j , where Nm ∼ Poi(κΓ(2m)/

((2ω)2m(m!)2)), and {J (m)
j } are the points of a Poisson process on R

+ with
intensity κρm. By this notation we mean that Tm is equal to 0 when Nm = 0,

while, conditionally to Nm > 0, J
(m)
j

iid∼ gamma(2m,ω). We can write down the
density function of T , via (2.3):

ψ(λ) := − log
(
E(e−λT )

)
= κ

∫ +∞

0

(1− e−λs)ρ(s;ω)ds

= κ

(
log

(
ω + λ

ω

)
+

+∞∑
m=1

Γ(2m)

22m(m!)2ωm
−

+∞∑
m=1

Γ(2m)

22m(m!)2(ω + λ)m

)

= κ log

(
ω + λ+

√
(ω + λ)2 − 1

ω +
√
ω2 − 1

)
.

The same expression is obtained when T ∼ fT (t) = κ(ω+
√
ω2 − 1)κ

e−ωt

t
Iκ(t),

t > 0 [see 22, formula (17.13.112)]. Observe that, when ω = 1, fT is called
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Bessel function density [18]. By (3.10), the eppf of the normalized Bessel random
measure is:

pB(n1, . . . , nk;ω, κ) = κk

∫ +∞

0

un−1

Γ(n)

(
ω +

√
ω2 − 1

ω + u+
√

(ω + u)2 − 1

)κ
1

(u+ ω)n

×
k∏

j=1

Γ(nj) 2F1

(
nj

2
,
nj + 1

2
; 1;

1

(u+ ω)2

)
du, (6.4)

where

2F1(α1, α2; γ; z) :=

∞∑
m=0

(α1)m (α2)m
(γ)m

1

m!
(z)

m
, with (α)m :=

Γ(α+m)

Γ(α)

is the hypergeometric series [see 22, formula (9.100)].
The following proposition shows that the eppf of the normalized Bessel ran-

dom measure converges to the eppf of the Dirichlet process as the parameter ω
increases. The proof is given in Appendix B.

Proposition 6.1. Let (n1, . . . , nk) be a vector of positive integers such that∑k
i=1 ni = n, where k = 1, . . . , n. Then, the eppf (6.4), associated with the

normalized Bessel random measure P with parameter (ω, κ), ω ≥ 1, κ > 0, and
mean measure P0, is such that

lim
ω→+∞

pB(n1, . . . , nk;ω, κ) = pD(n1, . . . , nk;κ),

where pD(n1, . . . , nk;κ) is the eppf of the Dirichlet process with measure param-
eter κP0.

The prior distribution of Kn, the number of distinct values in a sample of
size n from the normalized Bessel random measure, could be derived from its
eppf in (6.4). However, this is not an easy task from a computational point of
view, so that we prefer to use a Monte Carlo strategy to simulate from the prior
of the Kn. The simulation strategy is also useful to understanding the meaning
of the parameters of the normalized Bessel random measure: κ has the usual
interpretation of the mass parameter, since, when fixing ω, E(Kn) increases
with κ. On the other hand, the effect of ω is quite peculiar: decreasing ω (thus
drifting apart from the Dirichlet process), with κ fixed, the prior distribution
of Kn shifts towards smaller values. However, when E(Kn) is kept fixed, the
distribution has heavier tails if ω is small (see Figures 2 and 4 (a)).

The Lévy intensity (6.1) of the normalized Bessel completely random mea-
sure has a similar expression as the intensity corresponding to an element of
the class C in [43]. Both intensities are linear combinations of intensities of the
gamma process and of the type si−1e−ωs

I(0,+∞)(s), corresponding to finite ac-
tivity Poisson processes. Here, the intensity of the Bessel r.p.m. corresponds to
an infinite mixture with fixed weights, where the indexes i are even integers (see
(6.2)), while [43] assume a linear combination of a finite number of components,
through a vector of parameters.
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Fig 2. Prior distribution of Kn under a sample from ε-NB process with ε = 10−6, ω = 1.05
and several values for κ, as reported in the legend.

6.2. Application

In this section let us consider the hierarchical mixture model (4.1), where the
mixing measure is Pε, the ε-approximation of the normalized Bessel random
measure, as introduced above (here ε-NB(ω, κP0) mixture model). Of course,
when ε is small, this model approximates the corresponding mixture when the
mixing measure is P ; to the best of our knowledge, this normalized Bessel com-
pletely random measure has never been considered in the Bayesian nonparamet-
ric literature. By decomposition (6.3), we argue that this model is suitable when
the unknown density shows many different components, where a few of them
are very spiky (they should correspond to Lévy intensities (6.2)), while there is
a folk of flatter components which are explained by the intensity (1/s)e−ωs of
the Gamma process. For this reason, we consider a simulated dataset which is
a sample from a mixture of 5 Gaussian distributions with means and standard
deviations equal to {(15, 1.1), (50, 1), (20, 4), (30, 5), (40, 5)}, and weights pro-
portional to {10, 9, 4, 5, 5}. The histogram of the simulated data, for n = 1000,
is reported in Figure 3.

We report posterior estimates for different sets of hyperparameters of the
ε-NB mixture model when f(·; θ) is the Gaussian density on R and θ = (μ, σ2)
stands for its mean and variance. Moreover, P0(dμ, dσ

2) = N (dμ; ȳn, σ
2/κ0) ×

inv − gamma(dσ2; a, b); here N (ȳn, σ
2/κ0) is the Gaussian distribution with

mean ȳn(the empirical mean) and variance σ2/κ0, and inv − gamma(dσ2; a, b)
is the inverse-gamma distribution with mean b/(a− 1) (if a > 1). We set κ0 =
0.01, a = 2 and b = 1 as proposed first in [16]. We shed light on three sets
of hyperparameters in order to understand sensitivity of the estimates under
different conditions of variability; indeed, each set has a different value of pε(2),
which tunes the a-priori variance of Pε, as reported in (3.13). We tested three
different values for pε(2): pε(2) = 0.9 in set (A), pε(2) = 0.5 in set (B) and
pε(2) = 0.1 in set (C). Moreover, in each scenario we let the parameter 1/ω
range in {0.01, 0.25, 0.5, 0.75, 0.95}; note that the extreme case of ω = 100 (or
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Fig 3. Density estimate for case A5: posterior mean (line), 90% pointwise credibility intervals
(shadowed area), true density (dashed) and the histogram of simulated data.

equivalently 1/ω = 0.01) corresponds to an approximation of the DPM model.
The mass parameter κ is then fixed to achieve the desired level of pε(2). As far
as the choice of ε concerns, we set it equal to 10−6: this provides pretty good
approximation a priori (see Section 5); moreover, posterior inference proved to
be fairly robust with respect to ε. At the end, we got 15 tests, listed in Table 1.
As mentioned before, it is possible to choose a prior for ε, even if, for the ρ in
(6.1), the computational cost would greatly increase due to the evaluation of
functions 2F1 in (6.4).

We have implemented our Gibbs sampler in C++. All the tests in Sections 6
and 7 were made on a laptop with Intel Core i7 2670QM processor, with 6GB of
RAM. Every run produced a final sample size of 5000 iterations, after a thinning
of 10 and an initial burn-in of 5000 iterations. Every time the convergence was
checked by standard R package CODA tools.

Here, we focus on density estimation: all the tests provide similar estimates,
quite faithful to the true density. Figure 3 shows density estimate and pointwise
90% credibility intervals for case A5; the true density is superimposed as dashed
line. Figure 4 (a) and (b) display prior and posterior distributions, respectively,
of the number Kn of groups, i.e. the number of unique values among (θ1, . . . , θn)
in (4.1) under two sets of hyperparameters, A1, representing an approximation
of the DPM model, and A5, where the parameter ω is nearly 1. From Figure 4
it is clear that A5 is more flexible than A1: for case A5, a priori the variance of
Kn is larger, and, on the other hand, the posterior probability mass in 5 (the
true value) is larger.

In order to compare different priors, we consider five different predictive good-
ness-of-fit indexes: (i) the sum of squared errors (SSE) , i.e. the sum of the
squared differences between the yi and the predictive mean E(Yi|data) (yes, we
are using data twice!); (ii) the sum of standardized absolute errors (SSAE),
given by the sum of the standardized error |yi − E(Yi|data)|/

√
Var(Yi|data);
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Fig 4. Prior (a) and posterior (b) distributions of the number Kn of groups for test A1 (gray)
and A5 (blue).

(iii) log-pseudo marginal likelihood (LPML), quite standard in the Bayesian
literature, defined as the sum of log(CPOi), where CPOi is the conditional
predictive ordinate of yi, the value of the predictive distribution evaluated at
yi, conditioning on the training sample given by all data except yi. The last two
indexes, (iv) WAIC1 and (v) WAIC2, as denoted here, were proposed in [44]
and deeply analyzed in [21]: they are generalizations of the AIC, adding two
types of penalization, both accounting for the “effective number of parameters”.
The bias correction in WAIC1 is similar to the bias correction in the definition
of the DIC, whileWAIC2 is the sum of the posterior variances of the conditional
density of the data. See [21] for their precise definition. Table 1 shows the values
of the five indexes for each test: the optimal (according to each index) tests are

Table 1

Predictive goodness-of-fit indexes for the simulated dataset.

Test ω κ SSE SSAE WAIC1 WAIC2 LPML
A1 100 0.06 6346.59 811.16 -3312.44 -3312.55 -3312.55
A2 4 0.09 5812.86 810.43 -3312.33 -3312.42 -3312.43
A3 2 0.1 6089.19 810.99 -3312.38 -3312.47 -3312.48
A4 1.33 0.11 6498.23 811.29 -3312.54 -3312.62 -3312.63
A5 1.05 0.11 5725.18 810.39 -3312.27 -3312.36 -3312.36
B1 100 0.43 5184.25 809.61 -3311.95 -3312 -3312.01
B2 4 0.67 5125.41 809.7 -3312.19 -3312.25 -3312.26
B3 2 0.81 4610.39 809.42 -3311.92 -3311.98 -3312
B4 1.33 0.93 4246.43 809.07 -3311.75 -3311.83 -3311.84
B5 1.05 1 4571.09 809.08 -3311.96 -3312.05 -3312.06
C1 100 1.56 3707.5 809.36 -3311.73 -3311.86 -3311.88
C2 4 2.67 2194.1 808.8 -3312.02 -3312.23 -3312.26
C3 2 3.64 1223.86 809.28 -3312.62 -3312.96 -3312.99
C4 1.33 5.29 748.85 808.7 -3313.05 -3313.51 -3313.54
C5 1.05 8.95 685 807.96 -3312.9 -3313.36 -3313.38
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Fig 5. Posterior inference for the Hidalgo stamp data for Test 4: histogram of the data,
density estimate and 90% pointwise credibility intervals (a); posterior distribution of Kn (b).

highlighted in bold for the experiments (A), (B) and (C). It is apparent that the
different tests provide similar values of the indexes, but SSE, indicating that,
from a predictive viewpoint, there are no significant differences among the priors.
However, especially when the value of κ is small, i.e. in all tests A and B, a model
with a smaller ω tends to outperform the Dirichlet process case (approximately,
when ω = 100). On the other hand, the SSE index shows quite different values
among the tests: it is well-known that this is a index favoring complex models
and leading to better results when data are over-fitted. Therefore, tests with an
higher value of κ are always preferable according to this criterion.

We fitted our model also to a real dataset, the Hidalgo stamps data of [45]
consisting of n = 485 measurements of stamp thickness in millimeters (here mul-
tiplied by 103). The stamps have been printed between 1872 and 1874 on differ-
ent paper types, see data histogram in Figure 5. This dataset has been analyzed
by different authors in the context of mixture models: see, for instance, [37].

We report posterior inference for the set of hyperparameters which is most
in agreement with our prior belief: the mean distribution is P0(dμ, dσ

2) =
N (dμ; ȳn, σ

2/κ0) × inv − gamma(dσ2; a, b) as before, and κ0 = 0.005, a = 2
and b = 0.1. The approximation parameter ε of the ε-NB(ω, κP0) random mea-
sure is fixed to 10−6; on the other hand, in order to set parameters ω and κ,
we argue as follows: ω ranges in {1.05, 5, 10, 1000} and we choose the mass pa-
rameter κ such that the prior mean of the number of clusters, i.e. E(Kn), is
the desired one. As noted in Section 6.1, a closed form of the prior distribution
of Kn is not available, so we resort to Monte Carlo simulation to estimate it.
Table 2 shows the four couples of (ω, κ) yielding E(Kn) = 7: indeed, according
to [26] and [36] and references therein, there are at least 7 different groups (but
the true number is unknown), corresponding to the number of types of paper
used. For an in-depth discussion about the appropriate number of groups in
Hidalgo stamps data, we refer the reader to [10]. Table 2 also reports prior stan-
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Table 2

Predictive goodness-of-fit indexes for the Hidalgo stamps data.

Test ω κ E(Kn) sd(Kn) SSE SSAE WAIC1 WAIC2 LPML
1 1000 0.98 7 2.04 15.17 384.1 -713.12 -713.96 -714.12
2 10 0.91 7 2.13 12.85 383.51 -713.22 -714.04 -714.25
3 5 0.92 7 2.18 13.52 383.68 -713.52 -714.3 -714.4
4 1.05 1.02 7 2.32 11.12 383.38 -712.84 -713.66 -714.05

dard deviations of Kn: even if the a-priori differences are small, the posteriors
appear to be quite different among the 4 tests. All the posterior distributions
on Kn support the conjecture of at least seven distinct modes in the data; in
particular, Figure 5 (b) displays the posterior distribution of Kn for Test 4. A
modest amount of mass is given to less than 7 groups, and the mode is in 11.
Even Test 1, corresponding to the Dirichlet process case, does not give mass to
less than 7 groups, where 9 is the mode. Density estimates seem pretty good;
an example is given in Figure 5 (a), with 90% credibility band for Test 4.

As in the simulated data example, some predictive goodness-of-fit indexes are
reported in Table 2: the optimal value for each index is indicated in bold. The
SSE is significantly lower when ω is small, thus suggesting a greater flexibility of
the model with small values of ω. The other indexes assume the optimal value
in Test 4 as well, even if those values are similar along the tests.

Our ε-approximation method turned out to be accurate and fast when com-
pared with competitors (the slice sampler and an a-posteriori truncation method)
when the mixing r.p.m is the NGG process and the kernel is Gaussian; see [3],
Section 5.

7. Linear dependent NGG mixtures: application to sports data

Let us consider a regression problem, where the response Y is univariate and
continuous, for ease of notation. We model the relationship (in distributional
terms) between the vector of covariates x = (x1, . . . , xp) and the response Y
through a mixture density, where the mixing measure is a collection {Px,x ∈ X}
of ε−NormCRMs, being X the space of all possible covariates. We follow the
same approach as in [35] and [14] for the dependent Dirichlet process. We define
the dependent ε−NormCRM process {Px,x ∈ X}, conditionally to x, as:

Px
d
=

Nε∑
j=0

Pjδγj(x). (7.1)

The weights Pj are the normalized jumps as in (3.4), while the locations γj(x),
j = 1, 2, . . ., are independent stochastic processes with index set X and P0x

marginal distributions. Model (7.1) is such that, marginally, Px follows a ε −
NormCRM process, with parameter (ρ, κP0x), where ρ is the intensity of a
Poisson process on R

+, κ > 0, and P0x is a probability on R. Observe that, since
Nε and Pj do not depend on x, (7.1) is a generalization of the single weights
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dependent Dirichlet process [see 8, for this terminology]. We also assume the
functions x 
→ γj(x) to be continuous.

The dependent ε −NormCRM process in (7.1) takes into account the vec-
tor of covariates x only through γj(x). In particular, when the kernel of the
mixture (4.1) belongs to the exponential family, for each j, γj(x) = γ(x; τj)
can be assumed as the link function of a generalized linear model, so that (4.1)
specializes to

Yi|θi,xi
ind∼ f(y;γ(xi,θi)) i = 1, . . . , n

θi|Pε
iid∼ Pε i = 1, . . . , n where Pε ∼ ε−NormCRM(ρ, κP0).

(7.2)

This last formulation is convenient because it facilitates parameters interpreta-
tion as well as numerical posterior computation.

We analyze the Australian Institute of Sport (AIS) data set [12], which con-
sists of 11 physical measurements on 202 athletes (100 females and 102 males).
Here the response is the lean body mass (lbm), while three covariates are consid-
ered, the red cell count (rcc), the height in cm (Ht) and the weight in Kg (Wt).
The data set is contained in the R package DPpackage [28]. The actual model
(7.2) we consider here is when f(·;μ, η2) is the Gaussian distribution with μ
mean and η2 variance; moreover, μ = γ(x,θ) = xtθ, and the mixing measure Pε

is the ε-NGG(κ, σ, P0), as introduced in [3]. We have considered two cases, when
mixing the variance η2 with respect to the NGG process or when the variance
η2 is given a parametric density; in both cases, by linearity of the mean xtθ, the
model (here called linear dependentNGGmixture) can be interpreted as aNGG
process mixture model, and inference can be achieved via an algorithm similar to
that in Section 4. We set ε = 10−6, which provides a moderate value for the ratio
r(ε) in (5.1), and σ ∈ {0.001, 0.125, 0.25}, κ such that E(Kn) � 5 or 10. When
the variance η2 is included in the location points of the ε−NGG process, then
P0 is N4(b0,Σ0) × inv − gamma(ν0/2, ν0η

2
0/2); on the other hand, when η2 is

given a parametric density, then η2 ∼ inv−gamma(ν0/2, ν0η
2
0/2). We fixed hy-

perparameters in agreement with the least squares estimate: b0 = (−50, 5, 0, 0),
Σ0 = diag(100, 10, 10, 10), ν0 = 4, η20 = 1. For all the experiments, we computed
the posterior of the number of groups, the predictive densities at different values
of the covariate vectors and the cluster estimate via posterior maximization of
Binder’s loss function [see 31]. Moreover, we compared the different prior set-
tings computing predictive goodness-of-fit tools, specifically log pseudo-marginal
likelihood (LPML) and the sum of squared errors (SSE), as introduced in Sec-
tion 6.2. The minimum value of SSE, among our experiments, was achieved when
η2 is included in the location of the ε − NGG process, σ = 0.001 and κ = 0.8
so that E(Kn) � 5. On the other hand, the optimal LPML was achieved when
σ = 0.125, κ = 0.4, and E(Kn) � 5. Posterior of Kn and cluster estimate under
this last hyperparameter setting are in Figure 6 ((a) and (b), respectively); in
particular the cluster estimate is displayed in the scatterplot of the Wt vs lbm.
In spite of the vague prior, the posterior of Kn is almost degenerate on 2, giving
evidence to the existence of two linear relationships between lbm and Wt.
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Fig 6. Posterior distribution of the number Kn of groups (a) and cluster estimate (b) under
the linear dependent ε−NGG mixture.

Fig 7. Predictive distributions of lbm for three different athletes: Wt=60, rcc=3.9, Ht=176
(a), Wt=67.1, rcc=5.34, Ht=178.6 (b), Wt=113.7, rcc=5.17, Ht=209.4 (c). The shaded area
is the predictive 95% pointwise credible interval, while the dashed vertical line denotes the
observed value of the response.

Finally, Figure 7 displays predictive densities and 95% credibility bands for
3 athletes, a female (Wt=60, rcc=3.9, Ht=176 and lbm=53.71), and two males
(Wt=67.1,113.7, rcc=5.34,5.17, Ht=178.6, 209.4 and lbm=62,97) respectively,
under the same hyperparameter setting of Figure 6; the dashed lines are observed
values of the response. Depending on the covariate values, the distribution shows
one or two peaks: this reflects the dependence of the grouping of the data on
the value of x. This figure highlights the versatility of nonparametric priors
in a linear regression setting with respect to the customary parametric priors:
indeed, the model is able to capture in detail the behavior of the data, even
when several clusters are present.
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8. Discussion

We have proposed a new model for density and cluster estimation in the Bayesian
nonparametric framework. In particular, a finite dimensional process, the ε −
NormCRM , has been defined, which converges in distribution to the corre-
sponding normalized completely random measure, when ε tends to 0. Here, the
ε−NormCRM is the mixing measure in a mixture model. In this paper we have
fixed ε very small, but we could choose a prior for ε and include this param-
eter into the Gibbs sampler scheme. Among the achievements of the work, we
have generalized all the theoretical results obtained in the special case of NGG
in [3], including the expression of the eppf for an ε − NormCRM process, its
convergence to the corresponding eppf of the nonparametric underlying process
and the posterior characterization of Pε. Moreover, we have provided a general
Gibbs Sampler scheme to sample from the posterior of the mixture model. To
show the performance of our algorithm and the flexibility of the model, we have
illustrated two examples via normalized completely random measure mixtures:
in the first application, we have introduced a new normalized completely ran-
dom measure, named normalized Bessel random measure; we have studied its
theoretical properties and used it as the mixing measure in a model to fit sim-
ulated and real datasets. The second example we have dealt with is a linear
dependent ε−NGG mixture, where the dependence lies on the support points
of the mixing random probability, to fit a well known dataset. Current and
future research is devoted on the use of our approximation on more complex
dependence structures.

Appendix A: Details on full-conditionals for the Gibbs sampler

Here, we provide some details about Step 3 of the Gibbs Sampler in Section 4.
As far as Step 3a is concerned, the full-conditional L(ε|u,θ,Y ) is obtained
integrating out Nε (or equivalently Nna) from the law L(Nε, u,θ,Y ), as follows:

L(ε|u,θ,Y ) ∝
+∞∑

Nna=0

L(Nna, ε, u,θ,Y )

=

+∞∑
Nna=0

π(ε)e−Λε
ΛNna
ε,u

Λε

(Nna + k)

Nna!

k∏
i=1

∫ +∞

ε

κsnie−usρ(s)ds

=

(
k∏

i=1

∫ +∞

ε

κsnie−usρ(s)ds

)
eΛε,u−Λε

Λε,u + k

Λε
π(ε) = fε(u;n1, . . . , nk)π(ε),

where we used the identity
∑+∞

Nna=0 Λ
Nna
ε,u (Nna + k)/(Nna!) = eΛε,u(Λε,u + k).

Moreover, fε(u;n1, . . . , nk) is defined in (B.7). This step depends explicitly on
the expression of ρ(s). Step 3.b consists in sampling from L(Pε|ε, u,θ) as re-
ported in Corollary 3.1. In order to sample a draw from the posterior distribution

of the (unnormalized) measure, we follow Theorem 3.1. The component μ
(a)
ε,u is
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obtained generating independently from L(Jl∗i ) ∝ Jni

l∗i
e
−uJl∗

i ρ(Jl∗i )1(ε,∞)(Jl∗i ),

i = 1, . . . , k. On the other hand, μ
(na)
ε,u satisfies the distributional identity de-

scribed at point 1 of the proposition, and therefore we simulate it as follows:

1. Draw x from the Bernoulli distribution with parameter p=Λε,u/(Λε,u+k).
2. Draw N (na) from Px(Λε), where Px(Λε) denotes the shifted Poisson dis-

tribution, with support on {x, x+ 1, x+ 2, . . .} and mean λ+ x.

3. If N (na) = 0, let μ
(na)
ε,u be the null measure. Otherwise, draw an iid sam-

ple {(Jj , τj), j = 1, . . . , N (na)}, from ρε(s)dsP0(dτ), and set μ
(na)
ε,u =∑N(na)

j=1 Jjδτj .

Appendix B: Proofs of the theorems

B.1. Proof of Theorem 3.1

Conditionally to the unnormalized measure με (see (3.3)), the law of θ is given
by

P(θ1 ∈ dθ1, . . . , θn ∈ dθn|με) =
1

Tn
ε

k∏
j=1

με(dθ
∗
j )

nj .

By considering the variable U in (3.5), we express the joint conditional distri-
bution of θ and U as

P(θ1 ∈ dθ1, . . . , θn ∈ dθn, U ∈ du|με) =
un−1

Γ(n)
e−Tεudu

k∏
j=1

με(dθ
∗
j )

nj . (B.1)

The posterior distribution of με can be characterized by its Laplace func-
tional; we have

E

(
e−
∫
Θ

f(τ)με(dτ)|θ1 ∈ dθ∗1 , . . . , θn ∈ dθn, U ∈ du
)

=
E

{
e−
∫
Θ
f(τ)με(dτ)P(θ1 ∈ dθ∗1 , . . . , θn ∈ dθn, U ∈ du|με)

}
E {P(θ1 ∈ dθ∗1 , . . . , θn ∈ dθn, U ∈ du|με)}

.

(B.2)

Let us focus on the numerator in (B.2); by (B.1) we obtain:

E

(
e−
∫
Θ

f(τ)με(dτ)P(θ1 ∈ dθ∗1 , . . . , θn ∈ dθn, U ∈ du|με)
)

=
un−1du

Γ(n)
E

⎛
⎝e−J0(f(τ0)+u)e−

∫
Θ
(f(τ)+u)μ̃ε(dτ)

k∏
j=1

(μ̃ε(dθ
∗
j ) + J0δτ0(dθ

∗))nj

⎞
⎠ .

(B.3)

Moreover, if P0 is an absolutely continuous probability, then, for each j =
1, . . . , k,

(μ̃ε(dθ
∗
j ) + J0δτ0(dθ

∗))nj = μ̃ε(dθ
∗
j )

nj + J
nj

0 δτ0(dθ
∗
j ),
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so that

k∏
j=1

(μ̃ε(dθ
∗
j )

nj + J
nj

0 δτ0(dθ
∗)) =

k∏
j=1

μ̃ε(dθ
∗)nj +

k∑
l=1

δτ0(dθ
∗
l )J

nl
0

∏
j �=l

μ̃ε(dθ
∗)nj .

Therefore, the expected value on the right hand side of (B.3) is:

E

(
e−J0(f(τ0)+u)

)
E

⎧⎨
⎩e−

∫
Θ
f(τ)+uμ̃ε(dτ)

k∏
j=1

μ̃ε(dθ
∗
j )

nj

⎫⎬
⎭

+
k∑

l=1

E(e−J0(f(τ0)+u)Jnl
0 δτ0(dθ

∗
l ))E

⎛
⎝e−

∫
Θ

f(τ)+uμ̃ε(dτ)
∏
j �=l

μ̃ε(dθ
∗
j )

nj

⎞
⎠ .

Representation (2.1) can be extended to μ̃ε(dθ
∗
j )

nj =
∫
R+×Θ

snjδτ (dθ
∗
j )N(ds, dτ)

where N is a Poisson process with mean intensity νε(ds, dτ). If we apply Palm’s
formula [see 13, Proposition 13.1.IV] to μ̃ε(dθ

∗
k)

nk , we have that

E

⎧⎨
⎩e−

∫
Θ
(f(τ)+u)μ̃ε(dτ)

k∏
j=1

μ̃ε(dθ
∗
j )

nj

⎫⎬
⎭

= E

⎧⎨
⎩e−

∫
Θ
(f(τ)+u)μ̃ε(dτ)

k−1∏
j=1

μ̃ε(dθ
∗
j )

nj

∫
R+×Θ

snk

k δτk(dθ
∗
k)N(dsk, dτk)

⎫⎬
⎭

= E

⎧⎨
⎩e−

∫
Θ
(f(τ)+u)(μ̃ε)(dτ)

k−1∏
j=1

μ̃ε(dθ
∗
j )

nj

⎫⎬
⎭P0(dθ

∗
k)

∫ ∞

ε

e−(f(θ∗
k)+u)sksnk

k κρ(sk)dsk

(by iterating again Palm’s formula k − 1 times)

= E

{
e−
∫
Θ
(f(τ)+u)(μ̃ε)(dτ)

} k∏
j=1

(
P0(dθ

∗
j )

∫ ∞

ε

e−(f(θ∗
j )+u)sjs

nj

j κρ(sj)dsj

)

(by(2.3))

= exp

{
−
∫
R+×Θ

(
1− e−s(f(τ)+u)

)
νε(ds, dτ)

}

×
k∏

j=1

P0(dθ
∗
j )

∫ ∞

ε

e−(f(θ∗
j )+u)sjs

nj

j κρ(sj)dsj .

In other words, the numerator of (B.2) is equal to

un−1

Γ(n)

∫
R+×Θ

e−s(f(τ)+u)νε(ds, dτ) + k

Λε
e

{
−
∫
R+×Θ(1−e−s(f(τ)+u))νε(ds,dτ)

}

×
k∏

j=1

P0(dθ
∗
j )

∫ ∞

ε

e−(f(θ∗
j )+u)ssnjκρ(s)ds.

(B.4)
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Observe that, if we plug the function f ≡ 0 in (B.4), we obtain the denominator
of the ratio (B.2), that is

P(θ1 ∈ dθ1, . . . , θn ∈ dθn, U ∈ du)

=
un−1

Γ(n)

Λε,u + k

Λε
e(Λε,u−Λε)

k∏
j=1

P0(dθ
∗
j )kε(u, nj),

(B.5)

where for n > 0, kε(u, n) =
∫∞
ε

e−ussnκρ(s)ds = (−1)n d
dunψε(u), and ψε(u) :=

− log
(
E(e−uT̃ε)

)
= Λε − Λε,u.

We are ready to compute the posterior Laplace functional of με: by substi-
tuting (B.4) and (B.5) in the numerator and denominator of (B.2), we have

E

(
e−
∫
Θ

f(τ)με(dτ)|θ1 ∈ dθ1, . . . , θn ∈ dθn, U ∈ du
)

=

{∫
R+Θ

e−sf(τ)e−suνε(ds, dτ) + k

Λε,u + k
e(−

∫
R×Θ

(1−e−sf(τ))e−suνε(du,dτ))

}

×

⎛
⎝ k∏

j=1

∫ ∞

0

e−sf(θ∗
j )
e−susnjρ(s)I(ε,∞)(s)

kε(u, nj)
ds

⎞
⎠ .

(B.6)

This expression gives that the posterior Laplace functional of με, conditionally
to U ∈ du, factorizes in two terms. This proves the independence property in

point 3. We denote the unnormalized process of non-allocated jumps by μ
(na)
u,ε .

Its conditional Laplace transform is given by the first factor (between {}) in
the right hand side of (B.6). In order to obtain point 1. of the theorem, char-

acterization (3.7) gives that the law of μ
(na)
u,ε coincides with the law of a process

μ� as given in (3.6), with (exponential tilted) Lévy intensity e−suνε(ds, dτ) and

probability of success of the Bernoulli mixing random variable p =
Λε,u

k+Λε,u
. As

far as point 2. is concerned, the Laplace functional (B.6) gives that the process
of the allocated jumps has fixed atoms at the observed unique values θ∗1 , . . . , θ

∗
k,

i.e. it can be represented as

μ(a)
ε (·) =

k∑
j=1

J
(a)
j δθ∗

j
(·).

In this case, the weigths of the allocated masses J
(a)
j are independent and dis-

tributed according to

P (J
(a)
j ∈ ds|θ1 ∈ dθ1, . . . , θn ∈ dθn, U ∈ du) =

e−susnjρ(s)I(ε,∞)(s)

kε(u, nj)
ds,

for any j = 1, . . . , k. Finally, point 4. follows easily from (B.5).
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B.2. Proof of Proposition 3.1

This proposition follows from (B.5). In fact, we first observe that P(θ1 ∈ dθ1, . . . ,
θn ∈ dθn, U ∈ du) = P(pn, θ

∗
1 ∈ dθ∗1 , . . . , θ

∗
k ∈ dθ∗k, U ∈ du), and then integrate

out θ∗1 , . . . , θ
∗
k and U from (B.5) to obtain (3.9).

B.3. Proof of Proposition 3.2

By Proposition 3.1, pε(n1, . . . , nk) =
∫ +∞
0

fε(u;n1, . . . , nk)du, where

fε(u;n1, . . . , nk) =
un−1

Γ(n)

(k + Λε,u)

Λε
e(Λε,u−Λε)

k∏
i=1

∫ +∞

ε

κsnie−usρ(s)ds, (B.7)

with u > 0. On the other hand, the eppf of a NormCRM(ρ, κP0) can be written

as p0(n1, . . . , nk) =
∫ +∞
0

f0(u;n1, . . . , nk)du, where

f0(u;n1, . . . , nk) =
un−1

Γ(n)
exp

{
κ

∫ +∞

0

(e−us − 1)ρ(s)ds

} k∏
i=1

∫ +∞

0

κsnie−usρ(s),

with u > 0. We first show that

lim
ε→0

fε(u;n1, . . . , nk) = f(u;n1, . . . , nk) for any u > 0. (B.8)

In particular, we have that

lim
ε→0

∫ +∞

ε

snie−usρ(s)ds =

∫ +∞

0

snie−usρ(s)ds

and

lim
ε→0

eΛε,u−Λε = exp

{
κ

∫ +∞

0

(e−us − 1)ρ(s)ds

}
,

being this limit finite for any u > 0. Using standard integrability criteria, it is
straightforward to check that, for any u > 0, limε→0 Λε,u = limε→0 Λε = +∞
and they are equivalent infinite, i.e.

lim
ε→0

k + Λε,u

Λε
= lim

ε→0

Λε,u

Λε
= 1.

We can therefore conclude that (B.8) holds true. The rest of the proof follows
as in the second part of the proof of Lemma 2 in [3], where we prove that (i)
limε→0

∑
C∈Πn

pε(n1, . . . , nk)= 1; (ii) lim infε→0 pε(n1, . . . , nk)= p0(n1, . . . , nk)
for all C = (C1, . . . , Ck) ∈ Πn, the set of all partitions of {1, 2, . . . , n}; (iii)∑

C∈Πn
p0(n1, . . . , nk) = 1. By Lemma 1 in [3], equation (3.11) follows.
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B.4. Proof of formula 3.12

First of all, observe that

(
x1 + · · ·+ xN∗

ε

)m
=

∑
m1+···+mN∗

ε
=m

m1,...,mN∗
ε
≥0

(
m

m1, . . . ,mN∗
ε

) N∗
ε∏

j=1

x
mj

j

=

m∑
k=1

I{1,...,N∗
ε }(k)

1

k!

∑
n1+···+nk=m

nj=1,2,...

(
m

n1, . . . , nk

)⎛⎝ ∑
j1,...,jk

k∏
i=1

xni
ji

⎞
⎠ (B.9)

where N∗
ε = Nε + 1, x0

j = 1 for all xj ≥ 0, and the last summation is over
all positive integers, being (B.9) the multinomial theorem. The second equality
follows straightforward from different identifications of the set of all partitions
of m [see 40, Section 1.2]. Therefore, for any B ∈ B(Θ), m = 1, 2, . . ., we have
(here, instead of P0 and τ0 as in (3.4), there are PN∗

ε
and τN∗

ε
):

E(Pε(B)m)

= E

⎛
⎝E

⎛
⎝(

N∗
ε∑

j=1

Pjδτj (B))m|Nε

⎞
⎠
⎞
⎠

= E

⎛
⎜⎜⎜⎝E

⎛
⎜⎜⎜⎝

∑
m1+···+mN∗

ε
=m

m1,...,mN∗
ε
≥0

(
m

m1, . . . ,mN∗
ε

) N∗
ε∏

j=1

(Pjδτj (B))mj |Nε

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠

= E

⎛
⎜⎜⎝

m∑
k=1

I{1,...,N∗
ε }(k)

1

k!

∑
n1+···nk=m
nj=1,2,...

(
m

n1, . . . , nk

)

×
∑

j1,...,jk

E(

k∏
i=1

Pni

ji
|Nε)

k∏
i=1

E(δτj (B)|Nε)

⎞
⎟⎟⎠

= E

⎛
⎜⎜⎝

m∑
k=1

I{1,...,N∗
ε }(k)

1

k!

∑
n1+···+nk=m

nj=1,2,...

(
m

n1, . . . , nk

)
pε(n1, . . . , nk)(P0(B))k

⎞
⎟⎟⎠ .

We identify this last expression as E
(∑m

k=1 P0(B)kP(Km = k|Nε)
)
, where Km

is the number of distinct values in a sample of size m from Pε. Hence, we have
proved that

E(Pε(B)m) = E
(
E(P0(B)Km |Nε)

)
= E

(
P0(B)Km

)
.
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B.5. Proof of formula 3.14

Suppose that B1, B2 ∈ B(Θ) are disjoint. Therefore

E(Pε(B1)Pε(B2)) = E

⎛
⎝E

⎛
⎝N∗

ε∑
j=1

Pjδτj (B1)

N∗
ε∑

l=1

Plδτl(B2)|Nε

⎞
⎠
⎞
⎠

= E

⎛
⎜⎜⎝ ∑

l �=j
j,l=1,...,N∗

ε

E(PjPl|Nε)E(δτj (B1))E(δτl(B2)))

⎞
⎟⎟⎠

= E

⎛
⎜⎜⎝P0(B1)P0(B2)

∑
l �=j

j,l=1,...,N∗
ε

E(PjPl|Nε)

⎞
⎟⎟⎠ = P0(B1)P0(B2)pε(1, 1).

The general case when B1 and B2 are not disjoint follows easily:

E(Pε(B1)Pε(B2)) = E
(
(Pε(B1 ∩B2))

2
)
+ E (Pε(B1 \B2)Pε(B1 ∩B2))

+ E (Pε(B2 \B1)Pε(B1 ∩B2)) + E(Pε(B1 \B2)Pε(B2 \B1)),

where now the sets are disjoint. Applying the result above we first find that

E(Pε(B1)Pε(B2)) = pε(2)P0(B1 ∩B2) + (1− pε(2))P0(B1)P0(B2),

and consequently formula 3.14 holds true.

B.6. Proof of Proposition 6.1

The eppf of the Dirichlet process appeared first in [1] [see 38]; anyhow, it is
straightforward to derive it from (3.10):

pD(n1, . . . , nk;κ) =

∫ +∞

0

un−1

Γ(n)
e−κ log u+ω

ω

k∏
j=1

κ
Γ(nj)

(u+ ω)nj
du

= κk

∫ +∞

0

un−1

Γ(n)

(
ω

ω + u

)κ
1

(u+ ω)n

k∏
j=1

Γ(nj)du =
Γ(κ)

Γ(κ+ n)
κk

k∏
j=1

Γ(nj)

where the last equality follows from formula (3.194.3) in [22]. By definition of
the hypergeometric function, we have

1 ≤ 2F1

(
nj

2
,
nj + 1

2
; 1;

1

(u+ ω)2

)
≤ 2F1

(
nj

2
,
nj + 1

2
; 1;

1

ω2

)
.

Moreover

ω +
√
ω2 − 1

(u+ ω) +
√
((u+ ω)2 − 1)

=
ω

u+ ω

1 +
√
1− 1/ω2

1 +
√
1− 1/(u+ ω)2
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and
1 +
√

1− 1/ω2

2
≤ 1 +

√
1− 1/ω2

1 +
√
1− 1/(u+ ω)2

≤ 1,

so that(
1 +
√
1− 1/ω2

2

)κ

pD(n1, . . . , nk;κ) ≤ pB(n1, . . . , nk;ω, κ)

≤
k∏

j=1

2F1

(
nj

2
,
nj + 1

2
; 1;

1

ω2

)
pD(n1, . . . , nk;κ).

The left hand-side of these inequalities obviously converges to pD(n1, . . . , nk;κ)
as ω goes to +∞. On the other hand,

2F1

(
nj

2
,
nj + 1

2
; 1;

1

ω2

)
→ 1 as ω → +∞,

thanks to the uniform convergence of the hypergeometric series 2F1(
nj

2 ,
nj+1

2 ;
1; z) on a disk of radius smaller that 1. We conclude that, for any n1, . . . , nk

such that n1 + · · ·+ nk = n, k = 1, . . . , n, and any κ > 0,

lim
ω→+∞

pB(n1, . . . , nk;ω, κ) = pD(n1, . . . , nk;κ).
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