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Abstract

Clustering is often considered as the first step in the analysis when dealing with
an enormous amount of Single Nucleotide Polymorphism (SNP) genotype data.
The lack of biological information could affect the outcome of such procedure.
Even if a clustering procedure has been selected and performed, the impact of
its uncertainty on the subsequent association analysis is rarely assessed. In this
research we propose first a model to cluster SNPs data, then we assess the as-
sociation between the cluster and a disease. In particular, we adopt a Dirichlet
process mixture model with the advantages, with respect to the usual clustering
methods, that the number of clusters needs not to be known and fixed in advance
and the variation in the assignment of SNPs to clusters can be accounted. In ad-
dition, once a clustering of SNPs is obtained, we design an individualized genetic
score quantifying the SNP composition in each cluster for every subject, so that
we can set up a generalized linear model for association analysis able to incorpo-
rate the information from a large-scale SNP dataset, and yet with a much smaller
number of explanatory variables. The inference on cluster allocation, the strength
of association of each cluster (the collective effect on SNPs in the same cluster),
and the susceptibility of each SNP are based on posterior samples from Markov
chain Monte Carlo methods and the Binder loss information. We exemplify this
Bayesian nonparametric strategy in a genome-wide association study of Crohn’s
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disease in a case-control setting.

Keywords: Bayesian, clustering, Dirichlet process mixture model, exchangeable
partition probability function, genetic score, GWAS, logistic regression,
nonparametric, random partitions

1. Introduction

Researchers nowadays prefer to test the association between multiple markers
and a disease of interest in genetic association studies because the tests with multi-
ple markers are more powerful, efficient, and biologically meaningful than single
marker tests. Many statistical methods have been proposed based on those con-
siderations, such as regularized regression models like lasso or ridge regression
[1, 2, 3, 4, 5], gene-set enrichment analysis [4, 6, 7, 8], pathway [9], and network
analysis [10]. Those methods are helpful to analyze large-scale markers and their
corresponding interactions in the same pathway or network, when the analytic ge-
nomic region is pre-defined. Such tools, however, may be limited when utilized
on regions containing a great amount of genetic markers or at the genome-wide
scale. When analyzing data with such size, there may be no complete information
about the role of each gene and the interaction among them, so that figuring out
the association between these markers and disease phenotypes can be challeng-
ing. Therefore, an important issue for scientists is how to cluster or categorize the
genomic markers in advance, so that the dimension of the data can be reduced and
the genetic markers are represented with several relatively small and manageable
sets.

Most current clustering algorithms evaluate first the distance between objects
and then group them according to certain criteria. The definition of distance can
vary from Euclidean measure for continuous observations to counting measure for
discrete data. The choice depends on the problem and also on the data character-
istics. For discrete observations like SNP genotypes, similarity or dissimilarity
measures can be employed. A common measure with a natural biological in-
terpretation is the linkage disequilibrium, where allele frequencies per locus and
haplotype phase need to be derived a priori, based on genotype data. This deriva-
tion involves the uncertainty in haplotype configuration, introducing even more
parameters in either case-control or pedigree studies [11, 12]. Other algorithms
use mathematical formulations of similarity between SNP genotypes, including
principle component analysis [13], k-means, and Hamming distance metric [14].
These tools are flexible in the sense that no biological information is required in
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advance. In most clustering algorithms, however, the decision on the number of
clusters is a difficult task. Its choice as a stochastic parameter usually complicates
modeling and increases the computational burden [15, 16, 17].

Clustering or partitioning can be easily dealt within a Bayesian nonparamet-
rics framework through the Dirichlet process mixture models, which allocate data
to clusters and determine their number [18, 19]. Previous Bayesian applications
in association studies either assumed two fixed clusters, i.e., associated vs. non-
associated genes, and used Bayes factors for hypothesis testing, or applied a mix-
ture model for every single marker [20, 21, 22]. No clustering procedure or
multiple-marker effects were considered, and markers were examined individu-
ally, assuming exchangeability of their parameters.

From the modeling point of view, Dirichlet process mixture (DPM) models do
not require the specification of the number of mixture components and the clus-
tering procedure can be viewed as a Chinese restaurant process (see [23, 24] for
more details). Inference on the number of clusters and mixture model parameters
estimation are unified and performed by a suitable Markov chain Monte Carlo
(MCMC) algorithm, also integrating out the nonparametric component by a so
called Polya urns Gibbs scheme (see, for instance the research by Neal [25]). For
more details on model based cluster analysis in Bayesian nonparametric setting
we refer to [26, 27].

Bayesian models for cluster analysis are becoming more and more popular
even in the genetic epidemiological and biomedical literature. Among the other
papers, DPM models with Gaussian kernels are used to cluster microarray gene
expression data [28, 29, 30]. Our approach differs from the previous papers since
SNP genotypes take only three possible values and thus we consider a multinomial
mixture model [31, 32]. It is worth mentioning that our goal is very similar to
the one in [31], although with a different approach. They clustered individuals
in groups (e.g., high risk, average risk and low risk for a certain disease) and
then identified the covariates which were influent in clustering with DPM. In our
approach the procedure is reversed, since we first cluster the SNPs according to
a DPM model with multinomial kernels, and then we investigate which groups of
SNPs affect the disease risk of an individual. In [33] we presented a model similar
to the one discussed in this paper, by considering a wide class of processes, namely
the normalized generalized gamma processes (NGG), as mixing distribution in the
hierarchical mixture model. We stress here that in the current paper the focus is on
the application, i.e., the association study between groups of SNPs and a disease,
while in the previous work we were more interested in proving the feasibility of
normalized generalized mixture model in addressing real problems, in modelling
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and, furthermore, in providing a review of the model and its current applications.
More in detail, in the current work SNP genotypes are categorical and thus the

codings do not affect the inference. Following the allocation of SNPs in clusters,
we compute the genetic score of each cluster to investigate the cluster effects under
the generalized linear mixed effect model (GLMM). The risk of each cluster can
be evaluated based on its corresponding posterior probability and, in addition, the
effect of each single marker inside the cluster can be evaluated as the mean of a
suitable posterior functional.

The rest of the paper is organized as follows. In Section 2 we present a
Bayesian nonparametric approach which clusters SNPs based on the observed
numbers of counts of minor alleles via a Dirichlet process mixture model. We
also give some detail on the Gibbs sampler to perform posterior inference and to
compute the posterior clustering based on the so called Binder loss information.
In Section 3 we propose a genetic score to investigate the cluster effect through a
link function in GLMM. Each cluster can be identified to be positively or nega-
tively associated with the disease phenotype based on its corresponding posterior
probabilities and single SNP effects. In Section 4 we apply the analyses to a study
of Crohn’s disease from Wellcome Trust Case Control Consortium [34]. Results
from the proposed method are compared with other analyses to evaluate the per-
formance. Concluding remarks are given in Section 5.

2. Bayesian Nonparametric Model-based Clustering Algorithm

The SNP data we are going to consider belong to M different chromosome
regions, and in this work we are going to suppose that clustering of SNPs are
independent across different regions; it is well recognized that different, non ad-
jacent, chromosome region may not be passed together from parents to offspring
due to the so called random crossover, so that independence among different re-
gions may be assumed. From a modeling point of view, we are then going to fit
M independent Dirichlet mixture models, one for each region.

However, we simplify the notation just describing the Bayesian nonparamet-
ric mixture, the clustering results and the generalized linear model within a single
chromosome region, so that we can suppress the index denoting the chromosome
region. We underline, however, that the analysis in the application section is per-
formed by considering all the M chromosome regions at hand.

Suppose the genotypes of m SNPs have been collected from n subjects to
form the data matrix X, which contains the column vectors Xi for i = 1, . . . ,m,
where Xi = (X1i, . . . , Xni) denotes the genotype coding of the i−th SNP for all
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n subjects. Here Xpi ∈ {0, 1, 2}, for i = 1, . . . ,m and p = 1, . . . , n, indicates
the number of minor alleles that the p−th subject carries at the i−th SNP. That is,
Xpi = 0 for genotype AA, 1 for Aa, and 2 for aa if a is the minor allele of this
SNP.

2.1. Dirichlet Process Mixture Model
Let Sij =

∑n
p=1 I(Xpi = j) be the total number of subjects whose geno-

types on SNP i are coded with j, where j ∈ {0, 1, 2}. For i = 1, . . . ,m, we
model Si = (Si0, Si1, Si2) with conditionally independent multinomial distribu-
tions, given θi = (θi0, θi1, θi2), i.e.

Si = (Si0, Si1, Si2) ∼Mult(n, θi = (θi0, θi1, θi2)).

Instead of considering parametric prior distributions on θi’s, we suppose they are
generated by a Dirichlet process (DP), and a hierarchical model is obtained:

S1,S2, . . . ,Sm|θ1, θ2, . . . , θm ∼
m∏
i=1

Mult(n, θi) (1)

θ1, θ2, . . . , θm|P iid P
P∼DP (αP0)

where α ∈ R+ and P0(·) is a Dirichlet distributionDir(a0, a1, a2) with a0, a1, a2 ∈
R+.

Note that the relation among SNPs is modeled through the parameters θi’s.
In other words, it is assumed that, if the distributions of SNP genotypes are very
likely to be similar, then their θi’s are similar. Therefore, SNPs with similar geno-
type distributions may be clustered together based on the above Dirichlet process
mixture model. If all cases carry the AA genotype and all controls carry the aa,
the genotype probability θ of this SNP becomes (0.5, 0, 0.5). This SNP can distin-
guish precisely patients from healthy subjects. When studying complex diseases,
however, the components of genotype probability for most SNPs are often non-
zero.

We provide a brief description of the Dirichlet process to explain more accu-
rately the law of the random partition of the data implicitly defined by a DPM. For
this purpose, we use the stick breaking representation of a DP [35]. A realization
P of the Dirichlet process of parameter αP0, is almost surely a discrete probability
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measure obtained from

P (·) =
∞∑
j=1

wjδτj(·)

where the (support) points τ1, τ2, . . . are an iid sequence from P0, while the ran-
dom jumps w1, w2, . . . are obtained by a stick of unit length broken into pieces
in a sequential manner: wj = vj

∏j−1
l=1 (1 − vj), and vj for j = 1, 2, . . . is an iid

drawn from a Beta(1, α) distribution. Since P is almost surely a discrete proba-
bility measure, then we observe ties with positive probability in a sample of iid
θ1, . . . , θm from P . We denote by ψ

1
, . . . , ψ

K
the unique values among the θ′s

while mk, k = 1, . . . , K, is the number of times the value ψ
k

appears among
θ1, . . . , θm. Therefore, the discreteness of the Dirichlet process induces a par-
tition ρ = {C1, . . . , CK} among the data, with the i−th SNP belonging to the
cluster Ck if and only if θi = ψ

k
, where i = {1, . . . ,m} and k ∈ {1, . . . , K}.

Clearly here the partition ρ is random, and it will be the quantity of main interest
in our analysis. In particular, the distribution of the random partition ρ (our prior
on the main parameter) can be expressed by the so called exchangeable partition
probability function (eppf) given by

π(ρ) = Pr(]C1, ]C2, . . . , ]CK)

= eppf(m1,m2, . . . ,mK , α) (2)

=
Γ(α + 1)

Γ(α + n)
αK−1

∏
k=1

K(mk − 1),

where ]Ck = mk, k = 1, . . . , K, denotes the number of elements in the cluster
Ck.

As a trivial consequence, in our modeling, the number of clusters is random,
and it can be shown that (2) leads to the following probability mass function for
K:

Pr(K = k) = Sm(k)αk
Γ(α)

Γ(α + n)
, k = 1, . . . , n

where Sm(k) is the absolute value of the Stirling number of the first kind, see [36].
From the modeling point of view, it is very important to observe that the joint
marginal law of θ1, . . . , θm is uniquely characterized in terms of the joint law of
the random partition ρ and the unique values ψ

1
, . . . , ψ

K
[24]. In other words, it
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is possible to write the DPM model (1) in an equivalent way as

S1,S2, . . . ,Sm|ρ, ψ1
, . . . , ψ

K
∼

K∏
k=1

∏
i∈Ck

Mult(Si, ψk) (3)

ψ
1
, . . . , ψ

K
|K ∼ P0(·)

ρ ∼ eppf(m1, . . . ,mK , α)

where P0(·) is Dir(a1, a2, a3), and the mathematical expression of the eppf has
been given in (2). Hierarchical mixture models as (1) are frequently adopted in the
Bayesian nonparametric framework for their mathematical tractability. However,
in this paper we find more convenient to express our model as in (3) (i.e., by
integrating out the infinite dimensional parameter P ). In fact, from one hand
this representation is quite expressive since the random parameter contains the
partition ρ, which is the object of our statistical analysis; on the other, we will
exploit (3) in order to set up an efficient Gibbs sampler.

From the Bayesian nonparametric literature it is well known that the posterior
cluster estimation under DPM model is strongly affected by the choice of the
mass parameter α of the Dirichlet process. To make the inference more robust
with respect to this hyperparameter we added a level of hierarchy in our model by
taking α random; we choose a gamma(0.1, 0.1) non-informative prior on it. It is
worth noting that the gamma prior has been chosen since it leads to a closed form
of the full conditional distribution in the MCMC algorithm.

A key aspect of the DPM model, particularly relevant to understand the cluster
structure we are inducing among the SNP through the DPM model, is the so called
Chinese restaurant process. We can look at this process as a procedure to sample
the random partition ρ from the eppf in (2). The process is essentially similar
to a sequential restaurant “seating arrangement”, as described next. Suppose cus-
tomers arrive sequentially at a Chinese restaurant and they are randomly assigned
to a table chosen from an unlimited number of circular ones C1, C2, . . . , each with
an unlimited capacity to seat customers. We label the selected tables with the val-
ues ψ

1
, ψ

2
, . . . , with the index denoting the order of arrival of the customers. By

default, the first customer is always seated at the first table (C1), which is labeled
with θ1 = ψ

1
. Subsequently, for r ≥ 1, the customer r + 1 is seated according

to the following prediction rule (often called the Blackwell-MacQueen Polya urn
rule), applied to the partition ρr = {C1,r, ..., Ck,r} of 1, . . . , r corresponding to
the seating arrangement of the first r customers. That is, if ρr+1 is the event that
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customer r+ 1 is seated at a previous table Cj,r, then ρr+1 occurs with probability

Pr(ρr+1|ρr) =
π(ρr+1)

π(ρr)
=

#Cr,j
α + r

. (4)

On the other hand, if ρr+1 is the event that customer r+ 1 is seated at a new table,
then the event ρr+1 occurs with probability

Pr(ρr+1|ρr) =
π(ρr+1)

π(ρr)
=

α

α + r
(5)

After m steps this process results in a partition ρ = ρm from the eppf in (2).
As made evident from the Chinese restaurant process, the a priori cluster as-

signment is independent of the values of the non-observable labels θ’s; it is worth
noting that, however, this is not true a posteriori. Two SNPs will be clustered
together when mixing two contributions: Chinese restaurant process and sharing
of similar multinomial distributions.

2.2. Computation and Inference of Partition and Clusters
To perform posterior inference, we set up a “standard” Polya urn Gibbs sam-

pler for DPM mixture model (see [37] and [38] for details). We consider the
formulation of our model given in (3) and we build a Gibbs sampler on the space
of parameters, namely (ρ, ψ

1
, . . . , ψ

K
). To do that, we first observe that

L(ρ, ψ
1
, . . . , ψ

K
|S1, . . . ,Sm) ∝

K∏
k=1

∏
i∈Ck

Mult(Si, ψk)×
K∏
k=1

P0(dψk)π(ρ). (6)

We can integrate out ψ
1
, . . . , ψ

K
from the last expression obtaining

L(ρ|S1, . . . ,Sm) ∝
K∏
k=1

m(SCk
)π(ρ),

where SCk
= {Si; i ∈ Ck} is the set of observations in cluster Ck, and m(SCk

)
is the joint marginal of this set under the Bayesian multinomial-Dirichlet model,
that is:

m(SCk
) =

∫ ∏
i∈Ck

Mult(Si, ψ)P0(dψ) =
Γ(a)

Γ(a+ nmk)

2∏
j=0

Γ(aj +mj,Ck
)

Γ(aj)
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where mj,Ck
=
∑

i∈Ck
Sij .

For each i = 1, . . . ,m, let ρ−i be the partition with i removed. We can update
ρ using Gibbs sampling, so that the cluster assignment of one SNP frequency Si
is updated at each step. To formalize the Gibbs sampler, we denote the cluster
assignment of Si with a variable zi such that zi = C denotes the event that Si is
assigned to cluster C ∈ ρ−i, and zi = ∅ denotes the event that it is assigned a new
cluster. By using (4) and (5) we have that for each i = 1, . . . , n,

Pr
(
zi = C|ρ−i,S1, . . . ,Sm

)
∝

{
#C

α+m−1
m({Si}∪SC)

m(SC)
for C ∈ ρ−i

α
α+m−1m({Si}) for C = ∅

(7)

Therefore, the clustering parameter ρ is updated at each step of the Gibbs sampler
using (7). To complete the design of the algorithm, we have to specify how to
update the parameters ψ

1
, . . . , ψK . It is easy to realize from (6) that, conditionally

on ρ, those parameters are independent and

L(ψ
k
|ρ,S1, . . . ,Sm) ∝

∏
i∈Ck

Multi(Si, ψk)P0(dψk), k = 1, . . . , K.

Since the Dirichlet distribution P0 is conjugate with respect to the multinomial
model, L(ψ

k
|ρ,S1, . . . ,Sm), for each k, is the law of Dirichlet distributions with

parameter (a0,Ck
, a1,Ck

, a2,Ck
), where aj,Ck

= aj + mj,Ck
, j = 1, . . . , 3, for each

k = 1, . . . , K.
Model (3) highlights that both the estimation of the number of clusters and

the allocation of SNPs to clusters are possible once the partition ρ is determined.
Here we consider posterior means, i.e., the Bayesian estimators of parameters,
since they minimize the posterior expected loss under a squared loss function. To
estimate the partition ρ, we adopt the Binder loss minimization method [39].

In practice, we look for a loss function L(ρ, ρ̂) giving the cost of estimating
the “true” ρ by ρ̂. Then the proposed estimate is given by any ρ̂ which minimizes
the posterior expectation of the loss function, i.e.

ρ̂ ∈ arg min
y

E[L(ρ, y)|data].

We consider the so called Binder loss function [39], which assigns the cost bwhen
two elements are erroneously clustered together and the cost a when two elements
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are wrongly assigned to different clusters, i.e.

L(ρρρ, ρ̂ρρ) =
∑
i<j≤n

(
a1{Si

ρρρ↔ Sj,Si
ρ̂̂ρ̂ρ= Sj}+ b1{Si

ρρρ= Sj,Si
ρ̂̂ρ̂ρ↔ Sj}

)
, (8)

where
ρ↔ and

ρ̂̂ρ̂ρ↔ stand for the equivalence relations induced by the partitions ρ
and ρ̂̂ρ̂ρ, respectively.

To minimize L(ρ, ρ̂), Lau and Green [26] proposed a sophisticated optimiza-
tion method considering a binary integer programming problem; their method is
computationally infeasible unless the sample size is really small. Here we con-
sider a simpler method: we run the MCMC chain once in order to estimate the
posterior incidence probabilities P(Si

ρρρ↔ Sj|data), then we plug the estimates in
the posterior mean of (8) and run the MCMC algorithm a second time, obtaining
posterior sample configurations. Finally, we choose ρ̂ρρ as the configuration that
minimizes the expected loss among the previously sampled ones. Of course, the
result is affected by the value selected for b/(a + b), which can be seen as the
proportion of the cost to pay by putting together two elements, when they should
be actually separated. In this work, 0.5 is fixed so that the two costs are equally
weighted.

The resulting estimate of ρ completes, at the same time, the inference on the
number of clusters, the assignment of SNPs to each cluster, as well as the genotype
probability ψ

k
for each cluster. These marker-sets can now be used to perform the

multiple-marker association studies.

3. Association Studies for Clusters and SNPs

Once we have fitted and implemented a DPM model for each chromosome
region in our data, we have a point estimate of the K clusters in each region,
ρ̂ = (C1, . . . , CK), and the parameter identifying the multinomial kernel density
of the data within each cluster ψ = (ψ

1
, . . . , ψ

K
). For each SNP-set cluster Ck,

we construct a genetic score Gp,k for the p−th subject,

Gp,k =
lnPr(Xp,Ck

|ψ
k
)

]Ck
(9)

where Pr(Xp,Ck
|ψ

k
) =

∏
Xip∈Ck

ψ
I(Xip=0)
k0 ψ

I(Xip=1)
k1 ψ

I(Xip=2)
k2 is the product of all

genotype probabilities of the SNPs belonging to the clusterCk for the p−th subject
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and ]Ck is the cluster size, i.e the number of SNPs in the cluster. The denominator
]Ck is designed so that the various cluster sizes can be standardized.

The key point of our analysis is the following: we want to use the result of
the clustering procedure as an input for an association study where the regressors
are obtained by the genetic score (9) [33]. A scheme of our modelling idea is
given in Figure 1. After the SNPs covariates are clustered as shown at the bot-
tom of the figure, the genetic scores are calculated for each cluster and then used
in the GLMM. Conditionally on the partition, for each patient, we can compute

    
X p,C2

= X p21
, X p22

,…X p2#C2
{ }

    
X p,C1

= X p11
, X p12

,…X p1#C1
{ }     

X p,CK
= X pK1

, X pK2
,…X pK#CK

{ }
  C1   C2  CK

  
Gp,1   

Gp,2   
Gp,K

    
g E Yp( )( ) = β0 + β1Gp,1 + β2Gp,2 +!+ βKGp,K + γ E

GLMM for p-th subject

 !

 !

Genetic score

Figure 1: Scheme of our model. The bottom part indicates the clustering of the SNP covariates
derived under the DPM model. In the upper panel, the genetic scores are obtained via formula (9).

the (standardized) log-probability of observing the SNP configuration within each
cluster, that is our genetic score. In this way we can build the covariate matrix
(the G’s values on the right hand side of Figure 1) and set up a GLMM to study
the association. To be more formal, let Yp be the disease status indicator variable
for patient p = 1, . . . , n. We consider the following GLMM

g(E(Yp)) = β0 + β1Gp,1 + . . .+ βKGp,K + γE, (10)

with link function g, genetic scores Gp,k, and possibly other environmental co-
variates E. For instance, in presence of binary disease status (Yp ∈ {0, 1}), as in
the application here, a logit link can be assumed for the link function g while an
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identity link function can be considered for quantitative traits.
A vague prior is assumed on the regression parameters (β1, . . . , βk) (i.e, inde-

pendent Gaussian with mean 0 and variance 100), and the posterior distribution
is computed via a MCMC algorithm. We resort to a variable selection procedure
[hard shrinkage, 40] to study the association between the disease and the clusters
of SNPs: a group Ck is not significative if the posterior 90% credible interval
of the corresponding parameter β contains zero; if the posterior credible interval
is entirely contained in R+ (R−), then it denotes positive (negative) association
between the clusters and the disease phenotype Yi.

The likelihood in (10) is conditioned not only on the parameters βp’s, but also
on the partition ρ and the corresponding ψ’s. Therefore, under this model, we
may alternatively consider two strategies to perform the association study. On
one hand we can plug in the Bayesian point estimates ρ̂ and ψ̂ to compute first the
genetic score (9) and later infer through the regression model. In this way we take
into account the collective association effect of multiple markers (SNPs) to the
disease. On the other hand, we can incorporate the uncertainty on the clustering in
our association study, i.e. we use the information contained in the whole posterior
distribution of ρ. In this case observe that, given ρ and ψ, once we have chosen
a rule to classify a cluster (whether associated or not to the disease), for each
j = 1, . . . ,m, we can define single marker effect indexes as

Aj := Aj(ρ, ψ) =


1 if SNPj belongs to a positively associated cluster
0 if SNPj belongs to a non associated cluster
−1 if SNPj belongs to a negatively associated cluster.

If (ρ(1), ψ(1)), . . . , (ρ(G), ψ(G)) is a sample from L(ρ,ψ|X), we can evaluate the
posterior frequencies thatAj = awith a = −1, 0, 1. If the mode of these posterior
frequencies, for each SNP j, occurs at -1, 1, and 0, then the SNP is classified as
carrying negative, positive, or no association with the disease, respectively. Notice
that here we evaluate the strength of association for each cluster by estimating the
β’s regressors, but only infer the effect direction for each single SNP marker.

4. Application Study of Crohn’s Disease

We utilized the Crohn’s disease (CD) dataset from the Wellcome Trust Case
Control Consortium study (WTCCC) [34] as an example to demonstrate the per-
formance of our proposed method. This dataset included 1748 patients with CD
and 2938 shared controls. We only analyzed the 3737 SNPs with minor allele
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frequency (MAF)≥ 0.01 in the control group and in Hardy-Weinberg equilibrium
located on chromosome 1p31.3, 2q37.1, 5p13.1, 10q24.2 and 16q12.1. These re-
gions were selected as candidate regions because previous studies have shown a
strong association between these regions and CD [34, 20]. The genotype coding is
assigned based on the minor allele copies; that is, as defined earlier, Sij represents
the number of subjects carrying j (j = {0, 1, 2}) minor alleles on the i−th SNP.

4.1. Clustering Structure
We ran twice the Gibbs sampler of Section 2.2 to fit the DPM model for each

of the five chromosome regions. The first chain is obtained after a burn-in of
1000 iterations, a thinning of 5 iterations and a final sample size of 4000. We use
this chain to estimate the incidence probability Pr(Si

ρρρ↔ Sj|data), then we plug
the estimates in the posterior mean of (8) and run the Gibbs sampler a second
time for an extra 1000 iterations (thinned every 5) obtaining a posterior sample
configurations (see Section 2.2). Convergence was checked by standard statistical
test available by the coda R package.

Our population consists of 3737 SNPs from the five chromosomes. The num-
bers of clusters K for five chromosomes are estimated as 28, 31, 32, 28, and 37,
respectively, through the Binder loss information.

The posterior histogram ofK for each chromosome is displayed in Figure 2 (A)-
(E). Figure 3 (A)-(E) displays the observed genotypes of each SNP, colored ac-
cording to its corresponding cluster assignment. The axes of the plots reported
there are encodings for the frequencies of 1 or 2 minor alleles (i.e., Aa and aa),
so that each point is a representation of a S data belonging to the 2-dimensional
simplex. In fact, our clustering model is based on a “closure” (similarity) rela-
tionship between SNPs in the 2-dimensional simplex, so that by visualising these
scatter plots we gain a spacial intuition of our clustering. As such, neighboring
points share similar observed genotype frequencies θi and have been clustered to-
gether. Some clusters are large, containing as many as 45 SNPs, while some are
small with only two SNPs. Table 1 lists the descriptive statistics for the number
of SNPs assigned to clusters and the number of clusters per chromosome region.

4.2. Association of Clusters
We used a generalized linear mixed model with a logit link (eq. (10)) to an-

alyze the association between SNP clusters and the disease of interest. To fit the
Bayesian logistic regression we used the MCMCpackage R-package. Our results
are based on chains obtained after 1000 iterations of burn-in, a thinning of 5 and
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Table 1: Descriptive statistics for SNPs and clusters per chromosome region.

Region No. of SNPs k̂
Cluster size Association

min median max positive negative
1p31.3 1357 37 12 19 36 6 5
2q37.1 662 31 7 22 45 4 8
5p13.1 554 32 2 15 44 3 5

10q24.2 390 28 2 12.5 36 0 4
16q12.1 742 37 1 17 45 4 7

a final simple size of 5000. As earlier, convergence of the posterior chain was
checked via the coda library.

The strength of association for each cluster is assessed with the posterior dis-
tributions and 90% credible intervals of βk, as seen in Figure 4 (A)-(E). Intervals
lying above the zero horizontal line indicate a deleterious effect from the corre-
sponding cluster; while intervals below represent protective effects. For instance,
the first cluster in 10q24.2 suggests an overall protective effect for SNPs in this
cluster, with an estimated odds ratio exp (−0.21) = 0.81 = 1/1.23, indicating an
approximate 20% reduction in risk with one unit increase in the genetic scoreGp,1

for the p-th subject. The numbers of deleterious and protective clusters are listed
in the last two columns of Table 1. In summary, among the five chromosomes 17
clusters show a strong deleterious effect in association with CD and 29 clusters
present protective association with CD. These 46 important clusters exert effects
to different degrees. Taking 1p31.3 for example, the strength of such association
can be as large as exp (+0.96) = 2.61 for the second cluster in 1p31.3 region and
exp (−0.63) = 0.53 for the 16-th cluster in 1p31.3. For each of the five chromo-
some regions, there are 11, 12, 8, 4, and 11 important clusters, respectively, as
seen in Figure 4 (A)-(E). We refer to these clusters as significant clusters.

To assess the estimates of ψ
k
, the average genotype frequency vector in cluster

k, we display the fitting performance on the left hand side of all the panels in
Figure 5. Axes Y of the plots indicate the deviation of the estimate ψ̂k2 from
the observed percentage of Si2 if the i−th SNP belongs to cluster Ck. Axes X
report the identifier of the Binder clustering (i.e., cluster 1, cluster 2, and so on).
All deviations are very small, indicating a good fit. The colors in the left panels
represent the effect direction of the clusters. Thus all SNPs in the same cluster
share the same color. For instance, the gray color for the first cluster in 1p31.3
indicates no association with the disease. However, the red color for the second
cluster implies that the SNPs in this cluster collectively exert a positive association
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with the disease. That is, the larger the genetic score for this cluster the higher the
risk in developing the Crohn’s disease.

All these significant clusters were later incorporated together in a logistic re-
gression model to evaluate the change in effects if all clusters are fitted together.
Figure 6 contrasts the 90% credible intervals when the clusters were fitted sepa-
rately versus the fit altogether. These probability intervals are similar regardless
of the approach. Thirty-eight intervals remain significant when all genetic regions
were fitted collectively. The 46 significant clusters include 106 genes of which
16 genes have been reported previously in literature as associated with Crohn’s
disease, including ATG16L1, IL23R, NOD2 and PTGER4 [41, 42, 43, 44, 45].
The clusters with larger effect size on CD contain many SNPs in such genes. For
example, Cluster 2 and 5 in 1p31.3 are part of the gene IL23R. In addition, there
are six SNPs in significant clusters, which have been identified as associated with
CD. Located in gene IL23R in 1p31.1, rs11805303, rs2201841 and rs10889675
are in Cluster 16, 16, and 26, respectively. Rs6871834 is in Cluster 11 (5p13.1),
and rs2066843 and rs18617559 are in Cluster 11 and 27 (16q12.1), respectively.

4.3. Effect Direction of SNPs
Once the influential clusters are identified, the next question would be to se-

lect the important SNPs, e.g., those carrying protective effect or considered risk
variants. This could be useful if the target therapy is of interest. To determine the
effect direction of each single SNP after accounting for the uncertainty in the clus-
ter assignment, we performed the Monte Carlo procedure described at the end of
section (3). The right hand side plots in all the panels of Figure 5 demonstrate the
effect direction of each SNP, with red for deleterious effect, green for protective
and gray for none. It is clear that, for most clusters, their component SNPs show
consistent effect direction. When comparing left and right plots of each panel
in Figure 5, it is clear that the colors remain the same for most SNPs even after
accounting for the uncertainty in the cluster assignment. This is an indication of
robustness for this nonparametric clustering procedure. Specifically 30 clusters
remain important and thus deserve special attention for further examination. The
significant clusters are the ones labeled 15, 16, 17, 26, 35 in 1p31.3; the ones la-
beled 1, 3, 6, 9, 11, 14, 22, 23, 26 in 2q37.1; the ones number 2, 6, 11, 17, 18, 23,
25, 27 in 5p13.1; the ones labeled 1, 9, 13 in 10q24.2 and finally the ones labeled
1, 3, 6, 7, 9 in 16q12.1.

These important clusters reveal interesting findings. For instance, the impor-
tant clusters numbered 2, 5, 15, 16 and 26 are all in 1p31.3, and they are all part
of the gene IL23R. These clusters, however, present effects of different directions:
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cluster 16 is protective while clusters 2, 5, 15 and 26 are deleterious. Such dis-
cordant effect directions may be the reason why inconsistent findings about the
association between IL23R and Crohn’s disease have been reported in literature
[42, 46, 47]. As an illustration, we list in Table 2 for 1p31.3 the estimates of each
cluster effect and the gene symbols containing the SNPs. Table S1 displays the
information for the other four regions.

4.4. Comparison analysis
To evaluate the performance of the proposed DPM method with other analyses

of genetic association studies, we consider the traditional single-marker analysis
with χ2 test, Bayesian mixture model with hybrid procedures (BMIX) [20], se-
quence kernel association test (SKAT) [48] with linkage disequilibrium blocks
(termed as LD.SKAT hereafter), and the normalized generalized gamma mixture
model (NGG) [33].

Table 3 lists the number of clusters and influential SNPs identified by these
methods. The single-marker test is performed on every SNP, not on clusters; while
the BMIX simply classifies all SNPs into two groups, one associated with the dis-
ease and the other not. Therefore, these two methods do not identify clusters.
The SKAT is used on sets of markers and thus the SNPs are grouped first to form
blocks based on linkage disequilibrium statistics and Haploview [49]. Each hap-
lotype block is then tested with SKAT. If the block is statistically significant, then
all SNPs in this block are considered influential. Note that the single-marker test
and LD.SKAT are corrected with Bonferroni’s corrections to prevent the inflation
of type I errors. The NGG mixture model is similar to DPM; however, it considers
a wider class of mixing distributions.

The last column in Table 3 represents the number of common SNPs identified
by at least three out of the five methods. These common 65 SNPs are located
in 8 genes known to be linked to CD, including IL23R, IL12RB2, CYLD, NRU2,
ATG16L1, RPL37, NKX2-3 and NOD2, while some SNPs are in intergenic re-
gions. This finding confirms the ability of DPM to locate the susceptible genes.
Furthermore, the DPM identifies genes that hold potential to be considered in
treatments. For instance, the PTGER4 in 5p13.1 was recently reported to be asso-
ciated with the Crohn’s disease [50] but only DPM and NGG pick up this signal.
Therefore, these influential SNPs may deserve further investigation.

These five methods can indeed be categorized into two groups. The first group
contains the single-marker χ2 test and BMIX. Both tests do not consider cluster-
ing structure. The single-marker χ2 test considers all SNPs independent; while
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in BMIX the SNPs are dependent. The prior distribution assumed in BMIX sim-
ply takes into account that all SNPs can be grouped into two groups, one with
associated SNPs and the other without. These two methods identify 50 SNPs in
common. The high concordance between these two results from the slight differ-
ence in their assumptions. The second group contains the other three methods;
all assume clustering structure. The clusters in LD.SKAT have to contain nearby
SNPs, limiting the inclusion of related SNPs located in non-neighboring areas.
In addition, the important SNPs are defined by LD.SKAT if they are located in
significant clusters. Therefore, LD.SKAT has reported more important SNPs than
the previous χ2 and BMIX test. It shares 54 SNPs in common with χ2 and 45
in common with BMIX. The other two methods, NGG and DPM, put no restric-
tion on the distance between SNPs in the same cluster. These two methods are
more similar to each other except that they assume different prior distributions
for cluster allocation. This similarity in models leads to the high concordance in
their findings; a total of 616 SNPs are in common. However, the large number
of important SNPs should be taken carefully. In both NGG and DPM, the SNPs
are defined important based on the modes (positive, negative, and none) instead
of the posterior probabilities. That is, more SNPs are estimated to be associated
with the disease under our Bayesian nonparametric method, but they might not be
if probability is used. The major purpose of NGG and DPM is to find significant
clusters. NGG has 25, 22, 39 SNPs in common with χ2, BMIX, and LD.SKAT,
respectively; while DPM has 23, 20, 38 SNPs in common with χ2, BMIX, and
LD.SKAT, respectively.

5. Discussion

In summary, we proposed the Bayesian Dirichlet process mixture model to
cluster SNPs via their genotype frequencies, followed by association tests with
the Bayesian logistic regression model with genetic scores for SNP clusters. The
advantages of this approach include no pre-specification of the number of clusters,
statistical inference of this number, incorporation of the uncertainty in SNP allo-
cations to clusters in analysis of associations, and posterior inference of the sus-
ceptibility for each cluster and SNP. The strength of the joint effects of clustered
SNPs can be evaluated; while any single SNP effect direction can be assessed con-
currently as well. These two purposes can both be pursued in the analysis, unlike
most existing approaches that simply focus on one of them.

Our proposed procedure will cluster SNPs of similar genotype frequencies,
regardless of their effect directions. Take two SNPs for example. If all patients
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carryAA and all healthy controls carry aa genotype, while all patients carry bb and
all controls carryBB genotypes, then both SNPs correspond to the same genotype
frequency vector θ = (0.5, 0, 0.5), and will be clustered together, even though
these two SNPs are of completely opposite effect directions. In other words, a
cluster may contain both positive and deleterious SNPs. This phenomenon has
been observed in Figure 5, especially when MAF is around 50%. However, if the
component probabilities are less balanced, such as (0.6, 0, 0.4) and (0.4, 0, 0.6)
for SNP A and SNP B, then the clustering procedure will pick up the difference
and will not cluster them. Therefore, SNPs of the same effect direction would be
clustered, as seen in other clusters containing the same color of SNPs. In general,
there should be no constraint in clustering SNPs of the same or different effect
directions, when no biological assumption is made. Users of the proposed model
should bear in mind this limitation. An alternative illustration would be to plot the
single SNP effect direction versus the currently proposed approach.

Although the approach is nonparametric, the resulting clustering structure
clearly carries some biological information. For instance, in the Crohn’s disease
study, the SNPs effects are of the same direction in most clusters. They are mostly
all protective, or deleterious, as shown in the lower panel of Figure 5. In addi-
tion, if different SNPs in the same gene exert effects of different directions, then
they will be clustered into different clusters. A good example is the interleukin 23
receptor (IL23R) in 1p31.3, where cluster 16 is protective but four other clusters
(numbered 2, 5, 15, and 26) are not. This gene produces the protein that is in-
volved in cell membrane of several immune system cells, and thus is related to in-
flammation and immune response. Some coding and non-coding variants in IL23R
have been shown to associate with CD [42, 46]. One meta-analysis confirmed the
association between IL23R and inflammatory bowel disease (IBD) [47]. Such as-
sociation may not be observed in Crohn’s disease-specific association [47], but
Crohn’s disease and ulcerative colitis are two common forms of IBD. This obser-
vation may provide an explanation for inconsistent results in previous literature,
and this gene certainly deserves more investigation in its molecular functions in
smaller regions.

The demonstration of this strategy on Crohn’s disease identifies 46 important
clusters from 3737 SNPs. This clustering information can be used in future anal-
ysis of interaction to save computational cost in an exhaustive search for gene-
gene interactions and in future laboratory studies for molecular interactions. Such
clustering structure can also be considered as complementary results to pathway
analysis, if one is more interested in smaller groups of SNPs rather than large sets
of genes.
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In [33] we presented a similar model to the one discussed in this paper, by
considering a wide class of process, namely the normalized generalized gamma
process (NGG), as mixing distribution in the hierarchical model (1). The class of
NGG processes has been recently introduced in the statistical literature [51]. This
class encompasses the Dirichlet process, and has been proved to be very flexible
in its clustering ability. Here we would like to highlight pros and cons of the two
models.

From the application point of view we point out that the DPM model is a
thoroughly explored method, widely used in applications and generally accepted
by the statistical community and users of statistical methods in science, unlike
the NGG whose efficacy in real applications is still under investigation, although
it is quite promising. For instance, the clustering induced by the DPM can be
more easily interpreted in term of the Chinese restaurant process, than the one
obtained with the NGG: while the allocation of a new observation in the former is
determined by weights corresponding to a Polya urn scheme (see formula (4) and
(5)), the weights in the latter are obtained using special functions (i.e. integrals
unavailable in closed form) and are quite hard to interpret from an application
point of view [52]. The different clustering allocation rules, that are dictated by
the predictive characterization of the two processes, have implication also on the
computational aspects, making the DPM model more attractive. For instance, the
Polya urn algorithm to obtain posterior inference in the current work has been
implemented with the statistical software R (the code is available upon request to
the corresponding author), and the computational time is fairly reasonable (around
20 minutes for the nonparametric mixture models for each region); on the other
hand the code for the NGG mixture model in [33] is much more elaborated and
the authors had to resort to C to obtain comparable computational times.

With this consideration in mind, we point out that the focus here is the appli-
cation to the Crohn’s disease association study, while in the paper [33] we were
more interested in proving the feasibility of NGG mixture in real problems, in
modelling and, furthermore, in providing a review of the model and its current
applications. A thorough comparison between the DPM and the NGG, especially
when applied to genetic problems, is planned for the future when we hope to be
able to develop a formal test to select the best model, as a complement to the pre-
vious statements and the obvious observation that the NGG could improve (but at
the costs mentioned above) upon the DPM just because the latter is a particular
case of the former.

As far as the considered genetic application is concerned, some extensions and
issues of the proposed model are worth of being noted. First, the coding system
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demonstrated here was for genotypes. It can be changed to 0/1 coding for carry-
ing specific alleles/genotypes, if the dominance or recessive inheritance model is
assumed or if a certain allele is of major interest. Second, we have applied the
logistic regression model for the case-control study design in this research. For
quantitative phenotypes, this approach can accommodate continuous variables as
response vectors. All Bayesian computations are then carried out in a similar
manner. Third, in this analysis we considered only common variants with minor
allele frequencies larger than 0.01. It is not clear if the proposed approach is ro-
bust to rare variants. The major challenge would be the increase in computational
load. We are currently investigating this issue in small experiments. Finally, as
pointed out in earlier sections, the genetic score is individual and cluster specific.
In other words, the configuration of SNPs in each cluster for every individual
can be denoted with this genetic score, and the combined effects for SNPs in the
same cluster as well as the overall risk across all clusters can be calculated. Such
risk can serve as an indicator for health assessment. The utilization of this index
requires further investigations.

Acknowledgements

The research was performed with the support of the joint CNR (National Re-
search Council of Italy) - MOST (Ministry of Science and Technology of Taiwan)
programme on scientific and technological cooperation. This research was sup-
ported in part by NSC 101-2923-B-002-003 (CW, CKH).

[1] P.-C. Chen, S.-Y. Huang, W. J. Chen, C. K. Hsiao, A new regularized least
squares support vector regression for gene selection, BMC Bioinformatics
10 (1) (2009) 44.

[2] N. Malo, O. Libiger, N. J. Schork, Accommodating linkage disequilibrium in
genetic-association analyses via ridge regression, Am. J. Hum. Genet. 82 (2)
(2008) 375–385.

[3] H. Zhou, M. E. Sehl, J. S. Sinsheimer, K. Lange, Association screening of
common and rare genetic variants by penalized regression, Bioinformatics
26 (19) (2010) 2375–2382.

[4] L. S. Chen, C. M. Hutter, J. D. Potter, Y. Liu, R. L. Prentice, U. Peters,
L. Hsu, Insights into colon cancer etiology via a regularized approach to
gene set analysis of gwas data, Am. J. Hum. Genet. 86 (6) (2010) 860–871.

20



[5] J. Li, K. Das, G. Fu, R. Li, R. Wu, The Bayesian lasso for genome-wide
association studies, Bioinformatics 27 (4) (2011) 516–523.

[6] A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A.
Gillette, A. Paulovich, S. L. Pomeroy, T. R. Golub, E. S. Lander, et al.,
Gene set enrichment analysis: a knowledge-based approach for interpreting
genome-wide expression profiles, Proc. Natl. Acad. Sci. U. S. A. 102 (43)
(2005) 15545–15550.

[7] B. Efron, R. Tibshirani, On testing the significance of sets of genes, Ann.
Appl. Stat. 1 (1) (2007) 107–129.

[8] J. Hu, J.-Y. Tzeng, Integrative gene set analysis of multi-platform data with
sample heterogeneity, Bioinformatics 30 (11) (2014) 1501–1507.

[9] V. K. Ramanan, L. Shen, J. H. Moore, A. J. Saykin, Pathway analysis of
genomic data: concepts, methods, and prospects for future development,
Trends Genet. 28 (7) (2012) 323–332.

[10] I. Lee, U. M. Blom, P. I. Wang, J. E. Shim, E. M. Marcotte, Prioritizing can-
didate disease genes by network-based boosting of genome-wide association
data, Genome Res. 21 (7) (2011) 1109–1121.

[11] M.-H. Lee, J.-Y. Tzeng, S.-Y. Huang, C. K. Hsiao, Combining an evolution-
guided clustering algorithm and haplotype-based lrt in family association
studies, BMC Genet. 12 (1) (2011) 48.

[12] Y.-H. Huang, M.-H. Lee, W. J. Chen, C. K. Hsiao, Using an uncertainty-
coding matrix in Bayesian regression models for haplotype-specific risk de-
tection in family association studies, PloS One 6 (7) (2011) e21890.

[13] P. Paschou, E. Ziv, E. G. Burchard, S. Choudhry, W. Rodriguez-Cintron,
M. W. Mahoney, P. Drineas, PCA-correlated snps for structure identification
in worldwide human populations, PLoS Genet. 3 (9) (2007) e160.

[14] C. Wang, W.-H. Kao, C. K. Hsiao, Using hamming distance as information
for snp-sets clustering and testing in disease association studies, PLoS ONE
10 (8) (2015) e0135918.

[15] P. Zhang, X. Wang, P. X.-K. Song, Clustering categorical data based on dis-
tance vectors, J. Am. Stat. Assoc. 101 (473) (2006) 355–367.

21



[16] R. Tibshirani, G. Walther, T. Hastie, Estimating the number of clusters in a
data set via the gap statistic, J. R. Stat. Soc. Ser. B-Stat. Methodol. 63 (2)
(2001) 411–423.

[17] J. Wang, Consistent selection of the number of clusters via crossvalidation,
Biometrika 97 (4) (2010) 893–904.

[18] T. Broderick, M. I. Jordan, J. Pitman, et al., Cluster and feature modeling
from combinatorial stochastic processes, Stat. Sci. 28 (3) (2013) 289–312.

[19] A. Y. Lo, On a class of Bayesian nonparametric estimates: I. density esti-
mates, Ann. Stat. 12 (1) (1984) 351–357.

[20] Y.-C. Wei, S.-H. Wen, P.-C. Chen, C.-H. Wang, C. K. Hsiao, A simple
Bayesian mixture model with a hybrid procedure for genome-wide associa-
tion studies, Eur J. Hum. Genet. 18 (8) (2010) 942–947.

[21] J. Wakefield, Bayes factors for genome-wide association studies: compari-
son with p-values, Genet. Epidemiol. 33 (1) (2009) 79–86.

[22] J. Wakefield, A Bayesian measure of the probability of false discovery in
genetic epidemiology studies, Am. J. Hum. Genet. 81 (2) (2007) 208–227.

[23] D. Aldous, Exchangeability and related topics, École d’Été de Probabilités
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Figure 2: posterior histogram of K for each chromosome
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Figure 3: Observed frequencies S1 and S2 for each SNP in the five regions. The points are colored
in red (green) if they belong to a cluster that is positively (negatively) associated to Crohn’s disease,
while gray points represent SNPs in cluster which were not associated to the disease.
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Figure 4: 90% credible intervals of βk, for each of the five chromosomes colored according the
significance: red for deleterious effect, green for protective and gray for none
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Figure 5: Comparison between the SNP effects estimated by the Binder clustering, single SNP
effect estimated as in Section 4.3.
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Figure 6: The comparison of 90% credible intervals for the clusters fitted separately and clusters
fitted collectively. The dashed lines stand for the effects of the clusters when the clusters were fitted
by the regions, and the solid lines stand for the effects of the clusters when all clusters were fitted
together. Red lines stand for the significant cluster on 1p31.3; blue for the significant clusters on
2q37.1; green for the significant clusters on 5p13.1; orange for the significant clusters on 10q24.2;
purple for the significant clusters on 16q12.1. X-axis represents the significant cluster ID’s in the
order.
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Table 3: Number of significant clusters (C) and SNPs (S) under each method
Single-marker BMIX LD.SKAT NGG DPM Common
C S C S C S C S C S SNPs

1p31.3 - 28 - 15 6 35 9 180 11 192 17
2q37.1 - 4 - 5 3 11 10 184 12 197 6
5p13.1 - 23 - 22 6 48 10 121 8 118 26
10q24.2 - 8 - 7 3 18 4 50 4 48 6
16q12.1 - 21 - 12 3 17 13 162 11 111 10
Total - 84 - 61 21 129 46 697 46 666 65
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