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Abstract: This paper presents an algorithm for continuous-time identification of linear
dynamical systems using kernel methods. When the system is asymptotically stable, also the
identified model is guaranteed to share such a property. The approach embeds the selection of
the model complexity through optimization of the marginal likelihood of the data thanks to its
Bayesian interpretation. The output of the algorithm is the continuous-time transfer function
of the estimated model. In this work, we show the algorithmic and computational details of the
approach, and test it on real experimental data from an Electro Hydro-Static Actuator (EHSA).
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1. INTRODUCTION

The identification of dynamical systems, due to the intrin-
sic digital nature of the data, has focused mostly on devel-
oping methods for estimating discrete-time models. How-
ever, discrete-time models present different shortcomings
as pointed out in Garnier (2015), since they: (i) depend on
the sampling frequency of the data; (ii) are not able to deal
with non-uniformly sampled measurements; (iii) cannot
easily describe stiff systems; (iv) cannot be easily used for
physical insight. Continuous-time models can be used to
solve such issues since they do not depend on the sampling
frequency. Thus, specific approaches were developed for
the identification of continuous-time dynamical models,
able to deal with uniformly and non-uniformly sampled
data, as in Garnier and Wang (2008); Chen et al. (2015).

The above-mentioned identification schemes are mostly
parametric: they require the prior knowledge of the sys-
tem structure and order. When this information is not
available, complexity measures like the Young Information
Criteria (YIC) can be employed, see Young (2011). The
YIC works in a similar manner with respect to complexity
measures for discrete-time models, such as the Akaike
Information Criterion (AIC) or the Bayesian Complexity
Criterion (BIC). With this strategy, the model order is
selected between a finite set of possible orders (i.e. in a
discrete way). Instead, non-parametric kernel-based meth-
ods tune the model complexity in a continuous way. These
approaches were introduced in Pillonetto and De Nicolao
(2010) for continuous-time LTT systems. The development
of the stable-spline kernel guarantees the Bounded-Input
Bounded-Output (BIBO) stability of the identified model.
Kernel methods had a great impact on the community with
several contributions also on different regularization, For-

mentin et al. (2019), and computational aspects, Scandella
et al. (2020b).

In order to employ the approach of Pillonetto and De
Nicolao (2010), one need to (analytically or computation-
ally) compute the integrals of the input signal u(t) and
the kernel function k(-,-). A closed-form formulation of
these quantities is possible only for certain simple input
signals, see Dinuzzo (2015). For this reason, the following
multi-step scheme is usually employed in practice when
a continuous-time transfer function is needed: (i) identify
a discrete-time regularized high-order Finite Impulse Re-
sponse (FIR) model; (i) perform an order reduction of
the identified FIR model; (iii) convert the discrete-time
reduced model to a continuous-time one.

The proposed algorithm for direct (i.e. that avoids mul-
tiple steps) nonparametric continuous-time identification
of the transfer function of asymptotically stable Single-
Input Single-Outout (SISO) Linear Time Invariant (LTT)
systems. The method: (i) embeds the automatic selec-
tion of the kernel hyperparameters via marginal likelihood
optimization; (ii) assures the asymptotic stability of the
identified model transfer function (provided that the exci-
tation input presents specific properties). In the reported
multi-step scheme for continuous-time transfer function
computation, the stability property is not guaranteed to
be preserved during transformations. So, one benefit of the
proposed approach is to have, in one step, a stable model
represented as a continuous-time transfer function. This
can bee useful, e.g., for control tuning or fault diagnosis.

The proposed scheme has been presented in Mazzoleni
et al. (2020), where an impulse input is used, and in Scan-
della et al. (2020a) where also step inputs are considered,
with a comparison with the CONTSID toolbox, developed
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by Garnier and Gilson (2018) for continuous-time iden-
tification. The contributions of this work are: (i) outline
the practical implementation details of our approach; (ii)
apply it on a real system using experimental data.

The remainder of this paper is as follows. Section 2 re-
views the kernel-based approach for continuous LTI system
identification. Section 3 illustrates the estimation method
proposed in this paper, based on a step input. Section
4 presents the experimental setup and the identification
results. The paper ends with some concluding remarks.

2. IMPULSE RESPONSE IDENTIFICATION

Consider a dataset containing n € N\ {0} noisy measure-
ments, obtained with an experiment on the plant

distributed according to the probabilistic model

yi = [g*u] (&) + e, 1=1,...,n (2)
where g : R — R is the impulse response of a SISO LTI
system g”, ei ~ N (0,772) are independent and identically
distributed output-error Gaussian noises, u : Ry — R,
Y, ti, are, respectively, the a-priori known input signal,
measured output data, and measured time instants, with
% denoting the convolution operator !

Our purpose is to estimate the (continuous-time) impulse

response § of g using D and the knowledge of the analytic
expression of u(t). We can then estimate ¢ using kernel
methods as

n

§ = arg min 2 (vi
where H is a Reproducing Kernel Hilbert Space (RKHS)
with kernel k(p) : Ry x Ry — R, 7 > 0 controls the
regularization strength, ||-||,, is the induced norm of the
space Hy, and p € R"*! are the hyperparameters of the
kernel. According to Dinuzzo and Scholkopf (2012), this

estimator can be written as

lg*u] ()" +7-lgls, (3

=3 it ), (4a)
6 (1) = / uts — )k (1,€) d. (4b)
0

where the dependency of §* on the u(t) is highlighted. The

. T
coefficients vector ¢ = [c1,...,¢,] € R™! can be found

by solving the linear system
O0O0+7I,)c=0y", (5)

where y = [y1,...,9n] € R and O € R™ " is a sym-
metric positive-semidefinite matrix whose (4, j) element is
0, ¢+ given by

+00 +00

= [ [ut-vue -0k da. ©

0 0

1 We assume that the time instants ¢; are in chronological order,
ie. t; > t;—1,4=2,...,n and the excitation signal u (t) is applied
to the plant at the time instant d € R, i.e. u(t) = 0, Vt < d, with
t; > d Vi.

The estimate & of the hyperparameters of ¢ = [pT, T] Te
R™*1 can be performed by using the Bayesian interpreta-

tion of the method, see Pillonetto and De Nicolao (2010):

¢ =arg Cmin< y(O+7I,) 'y +logdet (O +7I,,) (7)
€eRrR™

The choice of the kernel function k is critical for the
performance of the estimator (4). In our approach, we
employ the stable-spline kernel, since it is used in a
wide variety of applications. In particular, a generic order

stable-spline kernel can be represented as follows, see
Scandella et al. (2020b):

Proposition 1. (Spline kernels). The spline kernel s,
[0,1] x [0,1] — R and the stable-spline kernel k, : Ry X
R, — R of order ¢ can be written, respectively, as:

a?i=h=1ph it g < b
Z%h p2a—h=lgh ifq >0’ ®)
[(2g—h—1)a+hd] if 4 >b
(a,b) = \- Z’Ym { Bl(2q—h—=1)b+ha]l  jf ¢ < p’ ©)
where +h—1
= DT (10)
TR (2 — h—1)!

Proposition 1 allows to treat the spline order ¢ as an

additional hyperparameter, so that ¢ = [\, 8, q,T}T

3. TRANSFER FUNCTION IDENTIFICATION

This section reports the main results of the proposed
method for continuous-time system identification with
kernel methods. For more details, the reader can refer to
Scandella et al. (2020a); Mazzoleni et al. (2020).

3.1 Continuous-time asymptotically stable transfer function
estimation: general approach

The rationale of the proposed approach is depicted Figure
1. The main idea is to compute the Laplace transform £ of
(4), to obtain an estimate of the continuous-time transfer
function of the system.

True impulse Estimated impulse

response respomnse
g(t) gut) =300 e [T ult — €)k(t,€) de
L L

Estimated transfer
function function

G(s) = L[g)(s) G (s) = L[g"](s)

Fig. 1. Rationale of the proposed method.

True transfer

Proposition 2. (TF expression). Given the continuous-time
nonparametric estimator ¢* in (4) of the impulse response
g of a continuous-time LTI system (j, the corresponding
continuous-time transfer function estimate is, see Scan-
della et al. (2020a); Mazzoleni et al. (2020),
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)=> -G (11)
i=1
where
G (s) = /u(T) K (s;t; —7) dr (12a)
d
K (s;z) = [ k(t,z)e " dt. (12b)
/

A more informative formulation arises when considering a
stable-spline kernel of order ¢, see Scandella et al. (2020a)
and Proposition 1.

Proposition 3. (Stable spline TF expression). Let the ker-
nel be a stable-spline k, of order ¢ and w; (t) = u (¢; —¢).
The identified transfer function can be written as

[2:62 +—H“()1 (13)
where
3A@=5fgh(§:a F(B (20 h—UQ (142)
(=1)* g2t
HY(s) = ——-—~t———
! ( ) H?igl (s—}—ﬁz) i=1

(14b
(140

(icz AY (s+P(2g—1 ))
)
)

A (2) = Lu] ().

where L is the Laplace transform operator.

The following theorem relates the choice of the input signal
u(t) with the asymptotic stability of the identified model,
see Scandella et al. (2020a).

Theorem 1. (Excitation for stability). If the experiment
excitation u(t), used to collect the dataset D, is such that

At (s+8(2¢-1)), i=1,...,n  (15)
are functions whose poles have a negative real part, then
the transfer function G* (s) is asymptotically stable.

3.2 Identification using step response data

Consider the case where a step input is applied at the time
instant d € R, i.e.

1 ift>d

w=sep={y 4125 (0
and let
1 t<t;—d
step; (1) = step (t; — 1) = {0 ‘2 t% iy (17)

Since t; > d, we have for (14c¢) that

1 e =(ti—d) 1 — e—z(ti—d)

= Llstep,] () = - - -

AT (1)
X

(18)
so that the condition of Proposition 1 is respected.
Applying Theorem 1 and (18), we can to compute the

identified transfer function Gsmp, see Scandella et al.
(2020a)

GoP (s) = A - [Z QP () + H3'*P (s )1 (19a)
" ey (1 — e BRa—h—1)(ti—d)
QSth (S) _ Ya,h Zz:l c ( € ) (19b)
@ B(2¢—h—1)(s+ph)
H;,tzp (s) = H;tzp s) - (Z i — qutep (5)> (19¢)
i=1
. -1 q 02q—1
Hs,tzp (s) = —— 2q—1 (19d)
(s+6-2¢—1) [ (Bi+s)
TS (5) = 3 ciePRa-D(E=0)  =s(ts=a) (19)
i=1
%% Compute eq. (18b)
g=@(h) ((=1)~(kp.g+h+1)/factorial(h)/factorial(2*kp.g—h—1)); % eq.(10)

%% Define sum(Q(s)), 1st addend of (18a)
Q = tf(0,1); % init transfer function sum(Q(s))
sl = sum(cc); % 1lst addedn of (18b) numerator (sum of coefficients c)
for hh =0 : 1 : kp.qg—1% from h=1 to h=g—1
s2 = sum(cc.xexp(—kp.beta.*(2xkp.g—hh—1).*tt));
the numerator of (18b)
num = g(hh)*(sl — s2)/kp.beta/(2xkp.g—hh—1); % numerator of (18b)
den = [ 1 hhxkp.beta ]; % denominator of (18b)
Q =Q + tf(num, den); % build 1st term of (18a)
end
%% define (18e)
T = cc.xexp(—kp.beta.*(2xkp.q — 1).xtt); % term (18e)
T = pade_approximant( tt, T, z ); % see Section 3.3
%% define H(s), 2nd term of (18a)
zH = []; % zeros of (18c)
pH = —kp.betax(0:(2xkp.q—1)); pH = [ pH pH(end) ]; % poles of (18c)
kH = (—=1)"kp.q * kp.beta”(2xkp.gq—1); % gain of (18c)
H = zpk(zH, pH, kH) * (sl — T); %build (18c)

% 2nd addend of

The derived kernel (6) in this specific case (i.e. step input
signal and stable-spline kernel) reads as

:"2‘17 h{wh( —d,t; —d)
i (tj —d.t; —d)
where the term wy, (a,b), when h = 0, is equal to

if t; >t

o (ti 1) if ¢, <t
i 75

1 — eBb2a-1)  o—Ba(20-1) | ,—Bb(2q-1)
wWo (aa b) = 5 5 ;
52 (2q — 1) 8(2¢-1)
instead, for h > 0, wy, (a, b) is equal to:
1 — o—Bb(2q-1)

b)=2-

o) =2 Gy h g 1)
efﬁa(quhfl) (1 efﬁhb) efﬁb(qul) (1 _ eﬁhb)
Bh(2q—h—1) Bh(2q—h—1)

3.8 Padé approximation

The transfer function H;*P (s) is not rational due to (19e).
In particular, the numerator is composed by a sum of
weighted input-output delays. It is thus useful to obtain
a rational approximation using Padé approximant. To do
this, restate (19e) as

TStep (20)

§:a

We then have the following result that follows from Baker
and Graves-Morris (1996):

Theorem 2. Given the function T'(s) in (20), its Padé
approximant centered around 0 with z € N\{0} poles and
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z zeros is given by:

- Zj:o n] : Sj

T(s) = ——=4=09 = 921a
O =TT (21a)
d=[do,...,d.]" = A by, (21D)
n=I[n,...,n.]" =by+ Ld, (21¢)
where
0 0 -0
a; Ay—1 - Qa1 ao 0 - 0
A az.+1 a-Z ':'(1.2’ - |a a -0 ’
Agz—1 A2z—2 *** Ay Ayl Qy2 L. ao
bi=lagar - az]T7 by = —[az41 Gzyo -~ azz]—r7

1 < ;
ajzﬁZozi-(d—ti)j.
Ti=1

The Padé approximation defined in Theorem 2 does not

guarantee that f(s) is stable for every z. For this reason,
we started with a value of z = 25 and iteratively decrease

2z until T(s) is stable.
3.4 Least absolute norm solution

The proposed algorithm requires to solve (5). This linear
system can have infinite equivalent solutions, see Scandella
et al. (2020b). In this case, we suggest (it is not mandatory)
to compute the solution crn; with least absolute norm,
i.e. such that [/¢|l; is minimum, in order to simplify
the computation of the final transfer function estimate.
Consider the linear system (5)

OO0+7I,)c=0y", 22a)

Bc = b, 22b)

where we defined O (O +7I,)c = B and Oy’ = b.
We can employ the Complete Orthogonal Decomposition

(COD), see Golub (2013), to decompose B using the
quadruple (U;T;V;r) such that:

N~

(1) r = ranksB, where ranks B denotes the numerical
é-rank of B, with § a threshold;

(2) U,V € R"™ " are semi-orthogonal matrices, i.e.
U'U=1 and V'V =1,

(3) T € R™*" is a triangular matrix;

(4 B=UTV'.

Using this decomposition, the linear system (22) can be
rewritten as

TV 'c=U"b. (23)
We used the threshold value § suggested in (Golub, 2013,
Section 5.4.1), see also Scandella et al. (2020c). The epn1
solution can be computed by solving the optimization
problem

cLN1 = arg min st. TV ie=U"b, (24)

_min el

where the constraint is the linear system under analysis
written as in (23). We used YALMIP, see Lofberg (2004),
equipped with the Gurobi solver for the computation of
CLN1, a8

[U, T, V, ~] = cod(B, eps(norm(B, inf))); % perform COD
x = sdpvar(nt, 1); % define optimization variable

optimize( TxV'xx == U'xb, norm(x,1), hp.yalmip_opt); % optimize
ct = value(x); % get final estimate

8.5 Model order reduction

The identified transfer function, especially after the Padé
approximation, can have a very high order. It is possible
to employ the balance reduction method by Varga (1991)
to simplify the model, by using the MatLab command
balred, along with the command hsvd to obtain a list
of the singular values {o;}7, of the Hankel matrix of
a model or system with order m. An effective strategy
to choose the reduction order m is to first normalize the
singular values such that they sum to one, fix a percentage
threshold Aty € [0,1], and then retain the least number

m of singular values such that Zil o; > A\TH:

TF = ss(TF); % convert estimated transfer function to stae—space
[ s, baldata ] = hsvd(TF); % get Hankel singular values

ninf = sum(isinf(s)); % compute the number of infinite ones

s = s(~isinf(s)); % retain only finite ones

cs = cumsum(flip(sort(s))/sum(s)); % normalize and compute cumsum
o = find(cs > hp.thr_singular_values, 1, 'first'); % find order
TF_red = balred(TF, o + ninf, baldata); % reduce

The proposed algorithm is summarized in Algorithm 1.

Algorithm 1 Continuous-time asymptotically stable

transfer function estimation

Input: The dataset D

Input: A way to compute o* in (6) given ¢ = [\, 5, 7,q|
and two time instants

Input: A way to compute G* in (11) given ¢ and ¢

Discard the part of D corresponding to time instants t; < d
Find the optimal hyper-parameters ¢ using (7)

Compute the matrix O in (5) using ¢ and (6)
Compute a valid solution ¢ of the linear system (5)

Compute G* in (11) given ¢ and ¢
Optional
Optional

Perform a Padé approximation of G with (21)
Reduce the model with balanced reduction

Output: The continuous-time transfer function Gv

Remark 1. The computational complexity of the proposed
method does not differ significantly with respect to tradi-
tional kernel methods, because the most time-consuming
tasks are the computation of (5) and optimization of (7).

4. EXPERIMENTAL SETUP AND RESULTS

We tested the approach on a Electro HydroStatic Actuator
(EHSA), based on a closed-circuit hydraulic transmission
and a BrushLess DC (BLDC) electrical motor. The BLDC
is directly connected to a bidirectional fixed displacement
gear pump, that modulates the oil flow and pressure inside
the two chambers of a hydraulic cylinder, see Figure 2.

The rotation of the motor-pump assembly determines (i)
the oil flow in the cylinder chambers and (ii) an increase
of the differential pressure in the hydraulic cylinder. The
pressure applied to the piston surface generates a force
that acts on the actuator rod. A safety circuit is present
to alleviate the risks of pump cavitation and damage in
particular operating conditions. The safety circuit is made
by over-load valves and anti-cavitation valves that give
access to a small oil tank to restore the hydraulic circuit
pressure to its nominal range. In this configuration, the



M. Mazzoleni et al. / IFAC PapersOnLine 54-20 (2021) 699-704 703

Hydraulic
conducts

Hydraulic cylinder  Safety circuit tank

Fig. 2. Experimental setup components.

hydraulic actuator does not need any oil flow from any
external power supply with the elimination of the oil pipe
normally used to deliver power to the cylinder.

T (t) T, (t)

i(t) gj P :A: ] 8 <
w(t) v
BLDC motor Pump | i );((?)'

10) [ Fexe()

Fig. 3. Schematic of the EHSA system, with highlighted
variables: quadrature current i(¢), motor torque
T, (t), motor speed w, pump torque T, (t), pressures
Py (t), P2(t), external force Fe.:(t) and rod position
and speed z(t), v(t).

An accurate linear and nonlinear model of the system
has been presented in Belloli et al. (2010). The linearized
model can be expressed as:

o) = i( By w(t) — D AP(t) + K, -im(1)
AP(t) = 2%}’( — Kp-AP(t) + D -w(t) — A-u(t)
1) = 57 (A~ AP) ~ Byy - olt) ~ Feal0),

(25)
where Jp, is the BLDC motor inertia, By, is the motor
viscous friction, D is the pump displacement, K; is the
motor torque constant, K, is the pump leakage coefficient,
V' is the average volume of oil in a cylinder chamber, A is
the useful area of the hydraulic cylinder and By, is cylinder
rod viscous friction. The system (25) presents:

e 2 inputs: the BLDC motor quadrature current i, (t)
which will act as a control variable; the external load
force F..+(t), which is an external disturbance;

e 3 state variables: the motor rotation speed w(t), the
differential pressure AP(t) = Pi(t) — P2(t) in the
cylinder chambers; the speed v(t) the cylinder rod;

e 2 measured outputs: the motor rotational speed w(t)
and the cylinder rod linear speed wv(t), obtained
measuring the rod linear position.

The aim is to estimate the function GO( ) =Q(s)/1(s),
where Q(s) = L[w](s) and I(s) = L[i](s), i.e. between the
current reference and the BLDC motor speed, i.e.

[l ) () B

N(s) =
&) =7 v vV o m

o=(or ) o2 ). -+
ek (oxB0) o Bt (12

Go(s) = N(s)/D(s),
so that Go(s) has two zeros and three poles.

(26)

We performed open-loop experiments using a step cur-
rent input of 1.25 A amplitude and measuring the motor
rotational speed output, with a sampling frequency of
fs =200 Hz, see Figure 4.

Input Output
_ 750
=15 2'5 40
k= © 30
o 1 A
%‘ = 20
O 0.5 % 10
o
0 0
0 0.5 1 0 0.5 1
Time [s] Time [s]

Fig. 4. Step input and output data used for identification.

The proposed black-box approach is compared with a gray-
bor approach that makes use of the knowledge of the
system structure (25). The gray-box estimate is obtained
by minimizing the squared error between measured and
simulated output data. The simulated (gray-box) output
data are obtained by feeding the (measured) step input
to the parametric model (26). The simulation error is
minimized using the fmincon MatLab command with the
constraint that all parameters J,,,, By, V, Kr,m, By, Kt,
D, A, By, 74 have to be positive.

The step response results are reported in Figure 5, where
we simulated the identified models (gray-box and black-
box) using two different step inputs of the same amplitude.
Notice how, due to the system nonlinearities (mainly
friction) and noise, the measured data are not the same.
However, the proposed method, even if does not assume
to know the system structure, performs better than the
gray-box approach thanks to its flexibility. The black-box
model corresponds to a transfer function of a 16th order.
We reduced it using balred to the 3rd order to make it
comparable with the gray-box model. Even in this case,
the proposed method appears superior.

Figure 6 depicts the Bode diagrams of the estimated
transfer functions. Both attain a very similar DC gain
of about 40, while the dominant pole is around 1Hz
for all systems. The 16th order model obtained with
the proposed method is clearly able to describe more
accurately the system dynamics, where its pole attains
a natural frequency up to 10 Hz. The reduced 3rd order
model is a compromise between the gray-box one and the
16th order model. The model estimates are compared by
the FIT index
ly(t)

NARTOETOIAY
= (1 Ty(®) — gl ) 100,

where §(t), y(t), § are respectively the estimated, measured
and average measured output, respectively.

(27)
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Identification data

23
<
S 40+
=]
2
S Gray-box FIT:87%
"8 20 o s Proposed - No reduction (order 16) FIT:96%
o5} : 1 = = = . Proposed - 20% reduction FIT:95%
C% Data
0 gy | I I I 1 ]
0 0.2 0.4 0.6 0.8 1
Test data
22
<
S 40+
=]
2
— 2 Gray-box FIT:83%
'-8 [— -~ s Proposed - No reduction (order 16) FIT:86%
& | = = = :Proposed - 20% reduction (order 3) FIT:86%
wn Data
0E==1 I T T T ]
0 0.2 0.4 0.6 0.8 1

Time [s]

Fig. 5. Step responses on identification and test data. The
highlighted initial transient dynamics is not captured
by the gray-box model.

50

5 ,
< = ;
= 0 RN ]
=
gio Gray-box
S 25 Proposed - No reduction (order 16) )
= - = = -Proposed - 20% reduction (order 3)

-50

10! 10°
400 T

107! 10°
Frequency (Hz)

Fig. 6. Bode plots of the estimates transfer functions.

5. CONCLUSIONS

In this paper, we presented the computational aspects of
a proposed algorithm black-box nonparametric algorithm
for the estimation of continuous-time transfer function of
SISO LTI models. The methodology was tested on an
experimental setup and compared with a simulation er-
ror minimization gray-box identification scheme. The pro-
posed approach showed superior performance even when
using a low-exciting (but very commonly employed) input
such as the step. Future research will be devoted to the
analysis of different case studies and the extension of the
analysis to other more general excitation signals.
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