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Abstract

In this paper we propose a new model for cluster analysis in a Bayesian nonparametric

framework. Our model combines two ingredients, species sampling mixture models of

Gaussian distributions on one hand, and a deterministic clustering procedure (DBSCAN)

on the other. Here, two observations from the underlying species sampling mixture model

share the same cluster if the distance between the densities corresponding to their latent

parameters is smaller than a threshold. We complete this definition in order to define an

equivalence relation among data labels. The resulting new random partition is coarser

than the one induced by the species sampling mixture. Of course, since this procedure

depends on the value of the threshold, we suggest a strategy to fix it. In addition, we

discuss implementation and applications of the model to a simulated bivariate dataset

from a mixture of two densities with a curved cluster, and to a dataset consisting of gene

expression profiles measured at different times, known in literature as Yeast cell cycle

data. Comparison with more standard clustering algorithm will be given. In both cases,

the cluster estimates from our model turn out to be more effective. A primary application

of our model is to the case of data from heavy tailed or curved clusters.

Keywords: Bayesian Nonparametrics, Species sampling mixture models, Cluster analy-

sis, DBSCAN.

1 Introduction

In this paper we propose a Bayesian nonparametric model for cluster analysis. Typically,

clustering means discovering significant groups (clusters) of data points which belong together

because they are similar in some way. Equivalently, the aim is to partition a set of n objects

(i.e. data) into k groups, even if the common features of the objects in each group are

unknown or unobservable (i.e. latent). In general, the data points do not belong to a unique

correct clustering, but, depending on the application, we would like to estimate a “true” one.
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There is plenty of cluster analysis algorithms or models that, in the last decades, have been

proposed. Here, we find useful to distinguish between model-based and heuristic clustering

techniques. The former class refers to those methods that require a statistical model to

describe the problem, i.e. mixture modeling; see, for instance, McLachlan and Peel (2000).

The latter class includes those algorithms defined from a given starting partition, and carried

on following some heuristic scheme. Very popular examples are the hierarchical clustering

(Johnson, 1967), and k-means (MacQueen, 1967). While these methods have been widely

used in practice, they may suffer from serious limitations. For example, a distance between

the objects must always be available, but in general it depends on problem features and data

characterization. Moreover, for some of these methods, the number of clusters must be fixed

in advance.

Here we propose a Bayesian nonparametric model, that combines two ingredients: species

sampling mixture models of Gaussian distributions, and a heuristic clustering procedure,

called DBSCAN. The DBSCAN algorithm (Ester et al., 1996) is a density-based clustering

technique, where the word density refers to the spatial disposition of the data points, that

are dense when forming a group. DBSCAN requires three input parameters: a distance

between data points, the minimum number N of points to define a group to be a cluster, and

a threshold representing the maximum distance between elements of the same cluster. Two

data points are in the same cluster if their distance is smaller than the threshold; moreover,

a cluster is defined using the parameter N (see Ester et al., 1996). As far as the species

sampling mixture model is concerned, it is well-known that this model is convenient in order

to assign a prior directly on the partition of the data, representing the natural parameter

in the cluster analysis context. Moreover, the number of clusters is not fixed a priori, but

it is estimated as a feature of the partition of the observations. See Lee et al. (2012) for a

recent review on this class of models. However, here, instead of considering the prior on the

random partition ρ induced from the species sampling mixture, we consider a deterministic

transformation of ρ as a new parameter. The Bayesian cluster estimate will be given in

terms of this new random partition, and will result from the minimization of the posterior

expectation of a loss function, as usually done in the literature (see Lau and Green, 2007,

among the others).

To summarize, our model is based on the slackness of the natural clustering rule of species

sampling mixture models of parametric densities, when we mean that two observations Xi

and Xj are in the same cluster if, and only if, the latent parameters θi and θj are equal. We

say instead that two observations share the same cluster if the distance between the densities

corresponding to their latent parameters is smaller than a threshold ǫ. We complete the

definition in order to provide an equivalence relation among data labels. The resulting new
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random partition parameter ρǫ is coarser than the original ρ, i.e. the number of elements in

ρǫ is smaller than those in ρ. Moreover, under the new parametrization, data within clusters

are not independent, and come from a finite mixture of Gaussian densities. Of course, this

procedure depends on the value of the threshold ǫ and the distance between densities. As

far as the latter choice is concerned, we use Hellinger distance, symmetrized Kullback-Leibler

I-divergence and L2 distance, since they are easy to interpret, and have a closed analytical

form under Gaussian kernels. On the other hand, the elicitation of a value for ǫ has a key role

in our model, since this threshold greatly affects the cluster estimate. Here we suggest to fix a

grid of reasonable values for ǫ, and choose the value maximizing the posterior expectation of

a function of the random partition. In the applications, we used some predictive distribution

summary statistics, as well as more standard tools like the silhouette coefficient and the

adjusted Rand index.

In this work, we have decided to focus on Gaussian kernels, but of course other parametric

families could be fixed as well. The choice of the Gaussian distribution is essentially due to

nice theoretical properties (mixtures of Gaussians are dense in the space of densities on an

Euclidean space), low computational effort (conjugacy), and closed form of some distances

(L2, Kullback-Leibler and Hellinger).

We discuss implementation and applications of the model to a simulated bivariate dataset

from a mixture of two densities with a curved cluster, and to a dataset consisting of gene

expression profiles measured at 9 different times, known in literature as Yeast cell cycle data.

Comparison with more standard clustering algorithms will be given. In both cases, the cluster

estimates from our model turn out to be more effective. Our estimates fit data particularly

well when they come from heavy tailed or curved clusters.

The rest of this paper is organized as follows. Section 2 describes the underlying species

sampling mixture models. In Section 3 we describe the model under the new parametrization

in details, discussing some of its main features. A short discussion on the computation is

provided in Section 4. Section 5 illustrates the choice of the threshold parameter ǫ. In

Section 6 the simulated bivariate “curved” dataset is analyzed, while Section 7 addresses the

Yeast cell cycle data in Cho et al. (1998). We conclude with a discussion in Section 8.

2 The model

We set up a Bayesian model in which the partition of data is a random variable, distributed

according to some prior distribution. If (X1, ..., Xn) represents the data, its conditional



Bayesian dbscan 4

distribution is:

(1) (X1, ..., Xn)|C1, . . . , Ck, φ1, . . . , φk ∼
k
∏

j=1







∏

i∈Cj

f(xi;φj)







,

where ρρρ := {C1, . . . , Ck} is a partition of the the data label set {1, . . . , n} and {f(·;φ), φ ∈ Θ}

is a family of densities on R
p. We require the family of densities to be identifiable, that is,

Pφ1 = Pφ2 implies φ1 = φ2, where Pφ is the probability measure corresponding to the density

f(·;φ). Observe that here k is the number of clusters in the partition ρρρ. From (1), it is

clear that, conditionally on ρ, the data are independent between different clusters and are

independent and identically distributed (i.i.d.) with density f(·, φ) within each cluster. To

complete the Bayesian model we need to assign a prior for (ρ,φ). As far as ρ is concerned,

we will assume that

(2) π(ρρρ) = P(ρρρ = {C1, . . . , Ck}) = p(#C1, . . . ,#Ck),

where p(·) is an infinite exchangeable partition probability function (eppf), i.e. a symmetric

function such that p(1) = 1 and

p(n1, . . . , nk) =
k

∑

j=1

p(. . . , nj + 1, . . . ) + p(n1, . . . , nk, 1);

see Pitman (1996). Moreover, conditionally on ρ, we assume that the parameters in φ :=

(φ1, . . . , φk) in (1) are i.i.d. from some fixed distribution P0 on Θ ⊂ R
s. By Pitman (1996), for

each distribution P0 and eppf p(·), there exists a unique species sampling prior Π(·; p, P0) on

the space of all probabilities on Θ, such that model (1) under the specified prior is equivalent

to

Xi|θi
ind
∼ f(·|θi) i = 1, . . . , n

θi|P
iid
∼ P i = 1, . . . , n

P ∼ Π(·; p, P0),

(3)

where P0 represents the expectation of P . In this model every Xi has density f(·, θi), which

is univocally determined by the value of θi. In this case, we say that θi is the latent variable

corresponding to Xi in the mixture model (3).

In this work we will consider only proper species sampling models, that is

P (·) =
∞
∑

i=1

ξiδτττ i(·), where

{

(ξi) ∼ π(·; p)

(τττ i)
iid
∼ P0(·)

,

and (ξi) and (τττ i) are independent. An interesting example is the Normalized Generalized

Gamma (NGG) process prior, introduced by Regazzini et al. (2003). It is well known that
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such a process P can be represented as

P =
+∞
∑

i=1

ξiδτi =
+∞
∑

i=1

Ji
T
δτi

where ξi :=
Ji
T , (Ji)i are the ranked points of a Poisson process on R with mean intensity

ρ(ds), and T =
∑

i Ji. We write P ∼ NGG(σ, α, P0), with parameters (σ, α, P0), where

0 ≤ σ ≤ 1, α ≥ 0. See Lijoi et al. (2007) and Argiento et al. (2010) for more details. This

class encompasses the Dirichlet processes: when σ = 0 and α > 0, P is the Dirichlet process

(Ferguson, 1973) with measure parameter αP0(·).

The eppf p(·) corresponding to a proper species sampling P can be recovered from the

following formula:

(4) p(n1, . . . , nk) =
∑

(j1,...,jk)

E

k
∏

i=1

wni

ji
,

were (j1, . . . , jk) ranges over all permutations of k positive integers. See Lijoi et al. (2007)

for an explicit expression of p(n1, . . . , nk) under a NGG process prior. On the other hand,

when the NGG process prior reduces to the Dirichlet measure, formula (4) turns out to be a

variant of Ewens sampling formula (Ewens, 1972):

p(n1, . . . , nk) =
Γ(α+ 1)

Γ(α+ n)
αk−1

k
∏

j=1

(nj − 1)! ;

see also Antoniak (1974).

Hierarchical mixture models as (3) are frequently adopted in the Bayesian nonparametric

framework for their mathematical tractability; moreover, the corresponding posterior com-

putations are relatively easy, due to the availability of straightforward MCMC schemes. We

will exploit this representation in order to compute posterior inference. On the other hand,

formulation (1)-(2) is the most expressive here, since the random parameter contains ρ, which

is the object of our statistical analysis.

Finally, observe that equivalence between models (1)-(2) on one hand and (3) on the other

holds thanks to the natural clustering rule and identifiability of the likelihood. By natural

clustering rule we mean the following: given θ1, . . . , θn, Xi and Xj belong to the same cluster

if, and only if, θi = θj . In this case we write Xi ↔ Xj . The partition ρ = {C1, . . . , Ck}

represents the quotient set of the equivalence relation on the data label set {1, . . . , n} induced

by ↔, and φ = (φ1, . . . , φk) are the unique values among the θi’s.



Bayesian dbscan 6

3 Relaxing the equality constraint in the mixture model

The sensitivity of cluster estimates to hyperparameters in species sampling mixture models

is a well-known issue. First of all, when the tails of the “true” distribution are heavy, in

order to fit the data, the Bayesian estimate will adopt many kernels to reconstruct the “true”

density shape. This occurs in particular when dealing with kernel densities having positive

support, such as Weibull or Gamma densities. In this case, a deeper analysis on the prior

elicitation could be accomplished. See for instance Argiento et al. (2012) and Griffin (2010).

Secondly, if the “true” distribution has non-convex contour lines, as in Section 6 here, the

hierarchical mixture model generally will give cluster estimates where the cluster components

do not represent real data clusters, unless the kernel density has a proper non-convex shape.

To overcome these problems, here we propose a new rule to assign observations to clusters,

relaxing the equality constraint imposed by the natural clustering rule under the species-

sampling mixture model (3). If d(·, ·) is any distance between densities, the natural clustering

rule can be restated as

Xi ↔ Xj ⇔ d(f(·, θi), f(·, θj)) = 0

when the family {f(·; θ), θ ∈ Θ} is identifiable. To relax the rule, instead of grouping elements

whose kernel densities are equal, we assign those data whose densities are “close” to the same

cluster.

Definition 1. Given a configuration (θ1, . . . , θn), a threshold ǫ > 0, and a distance between

densities d(·, ·), two observation Xi and Xj are directly reachable if

d(f(·, θi), f(·, θj)) < ǫ.

We write Xi
ǫ

! Xj ; since transitivity does not hold in this case,
ǫ

! is not an equivalence

relation.

Definition 2. Given a configuration (θ1, . . . , θn), a threshold ǫ > 0, and a distance between

densities d(·, ·), two observations are reachable if there exist a finite sequence Xj1 , . . . , Xjm

such that

Xi
ǫ

! Xj1
ǫ

! Xj2
ǫ

! . . .
ǫ

! Xjm
ǫ

! Xj .

We write Xi
ǫ
↔ Xj . It is not difficult to prove that

ǫ
↔ is an equivalence relation among

the data (see the proof in the Appendix).

It is worthy to note that Definition 1 was given to relax the condition under which two

observations are in the same cluster. However, as just observed, ! is not an equivalence

relation and for this reason it does not lead to a partition on the data index set {1, . . . , n}.

Consequently, Definition 2 was introduced in order to define an equivalence relation. Now
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we are able to define ρρρǫ = {C
(ǫ)
1 , . . . , C

(ǫ)
m } as the quotient set of the equivalence relation

ǫ
↔

on {1, . . . , n}. Here m := m(ǫ) ≤ k denotes the new number of clusters.

These definitions were suggested by Ester, Kriegel, and Xu (1996), introducing the DB-

SCAN algorithm (density-based spatial clustering of applications with noise). DBSCAN is

a well known algorithm in the data mining community; in brief, it clusters data at hand

through a notion of distance between items and two parameters, an integer N and a positive

real ǫ. In this work we consider only the case N = 1, since if N > 1, the relation
ǫ
↔ induced

by DBSCAN among the data labels is not an equivalence. We refer to the original paper

Ester, Kriegel, and Xu (1996) for the meaning of N .

In this paper, by DBSCAN({f(·; θ1), . . . , f(·; θn)}, d, ǫ) we mean a deterministic func-

tion: the input values are: (i) (θ1, . . . , θn), the latent variables in model (3) correspond-

ing to the data, (ii) a distance d between densities, (iii) a threshold ǫ > 0, having fixed

the kernel density f(·; θ). The input values (θ1, . . . , θn) can be equivalently described as

({C1, . . . , Ck}, (φ1, . . . , φk)), as it is usually done under DPM models for example, while

(ii) can be substituted by a matrix of the distances between f(·;φi) and f(·;φj), i, j =

1, . . . , k. The output values are: (i) a partition (C
(ǫ)
1 , . . . , C

(ǫ)
m ) of the index set {1, . . . , n},

obtained grouping the subset {C1, . . . , Ck} according the deterministic procedure DBSCAN

(i.e. according the equivalence relation
ǫ
↔ given by Definitions 1 and 2), and the vectors

(φφφ
(ǫ)
1 , . . . ,φφφ

(ǫ)
m ) (of the latent variables associated to each C

(ǫ)
j , j = 1, . . . ,m) and (nnn

(ǫ)
1 , . . . ,nnn

(ǫ)
m )

(size vectors of the sets among {C1, . . . , Ck} composing C
(ǫ)
1 , . . . , C

(ǫ)
m ). Specifically, we are

applying the deterministic DBSCAN procedure to the species-sampling mixture model, ob-

taining a new model, called b-DBSCAN. Let us see what we mean in more details.

The b-DBSCAN model

Applying the DBSCAN procedure to the partition ρρρ = {C1, . . . , Ck} with latent variables

(θ1, . . . , θn) and unique values φφφ := (φ1, . . . , φk) from a species-sampling process, we obtain

a new partition ρρρǫ = {C
(ǫ)
1 , . . . , C

(ǫ)
m } such that, for each h = 1, . . . ,m, we have:

(5) C
(ǫ)
h = Clh1

∪ · · · ∪ Clh
kǫ
h

, {lh1 , . . . , l
h
kǫ
h
} ⊆ {1, . . . , k}.

In brief, (5) states that an element C
(ǫ)
h of the partition ρǫ is finite union of some elements

of the partition ρ, which depend on ǫ and the index h. Let us consider now, for each

h = 1, . . . ,m, the vector φφφ
(ǫ)
h := (φlh1

, . . . , φlh
khǫ

) and the vector nnn
(ǫ)
h := (#Clh1

, . . . ,#Clh
kǫ
h

) =

(nlh1
, . . . , nlh

khǫ

). In the following lines, we will explicit the model w.r.t. the new parameters

ρǫ, φφφ
(ǫ)
h ,nnn

(ǫ)
h , h = 1, . . . ,m.

For each ǫ > 0, reordering the multiplication factors and using notation in (5), we can
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re-write model (1) as

X1, ..., Xn|C1, . . . , Ck, φ1, . . . , φk ∼
m
∏

h=1

kǫ
h

∏

j=1

{

∏

i∈C
lh
j

f(xi;φlhj
)
}

φ1, . . . , φk|k
iid
∼ P0

ρ ∼ π(ρ) = eppf(#C1, . . . ,#Ck).

(6)

From the first line of (6), we see that, conditionally on ρρρ and φφφ, the data are independent

between the m cluster C
(ǫ)
1 , . . . , C

(ǫ)
m . They are also conditionally independent within these

clusters; in fact, if X
C

(ǫ)
h

represents the subvector of data in cluster C
(ǫ)
h , then conditionally

on φφφ
(ǫ)
h and Clh1

, . . . , Clh
kǫ
h

, its density is

(7) L(X
C

(ǫ)
h

|φφφ
(ǫ)
h , Clh1

, . . . , Clh
kǫ
h

) =

kǫ
h

∏

j=1

{

∏

i∈C
lh
j

f(·;φlhj
)
}

.

This expression tells us that every data component in X
C

(ǫ)
h

has (conditional) distribution

that is a finite mixture, whose kernels are the kǫh densities f(·;φlh1
), . . . , f(·, φlh

kǫ
h

). However,

since the process generating the groups of labels Clh1
, . . . , Clh

kǫ
h

is a species sampling scheme,

the components of the subvector X
C

(ǫ)
h

are not independent and identically distributed. To

clarify, let m
(ǫ)
h := #C

(ǫ)
h (it is worth noting that m

(ǫ)
h = nlh1

+ · · ·+nlh
khǫ

), and let us denote by

Zh
1 , . . . , Z

h

m
(ǫ)
h

the data in X
C

(ǫ)
h

. Moreover, let {ηh1 , . . . , η
h

m
(ǫ)
h

} (with values in {lh1 , . . . , l
h
khǫ
})

be the latent variables of Zh
1 , . . . , Z

h

m
(ǫ)
h

, representing the component in the mixture they are

generated from. We have

(8) L(X
C

(ǫ)
h

|φ
(ǫ)
h , ηh1 , . . . , η

h

m
(ǫ)
h

) =

m
(ǫ)
h

∏

i=1

f(zhi ;φηhi
).

The labels (ηh1 , . . . , η
h

m
(ǫ)
h

) yield a partition of the vector X
C

(ǫ)
h

into subgroups: the compo-

nents in X
C

(ǫ)
h

are in the same subgroup if the corresponding labels are equal. In particular,

if this subpartition and {Clh1
, . . . , Ch

kǫ
h
} coincide, then expression (8) and (7) are equal. Equiv-

alently, the law in (7) is the distribution of (Z1, . . . , Zm
(ǫ)
h

), conditionally to the event that

(ηh1 , . . . , η
h

m
(ǫ)
h

) describes the subpartition {Clh1
, . . . , Clh

kǫ
h

}.

Now, let us consider the distribution of (ηh1 , . . . , η
h

m
(ǫ)
h

), conditionally to φφφ
(ǫ)
h and nnn

(ǫ)
h ;

from the conditional independence of the data, this latter distribution is the law of a sample

without replacement of m
(ǫ)
h elements from the set containing nlh1

times the number lh1 , nlh2

times the number lh2 , and so on, up to the set containing nlh
khǫ

times the number lh
khǫ
. Then,
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marginally, each ηhj , j = 1, . . . ,m
(ǫ)
h , has distribution

(9) P(ηhj = ·|φφφ
(ǫ)
h ,nnn

(ǫ)
h ) =

nlh1

nlh1
+ · · ·+ nlh

khǫ

δlh1
(·) + · · ·+

nlh
khǫ

nlh1
+ · · ·+ nlh

khǫ

δlh
khǫ

(·).

Now let f̃(;φφφ
(ǫ)
h ,nnn

(ǫ)
h ) be the density of X

C
(ǫ)
h

obtained integrating out over the values of the

labels ηh1 , . . . , η
h

m
(ǫ)
h

. By (9), f̃(·;φφφ
(ǫ)
h ,nnn

(ǫ)
h ) is such that each component Zh

j , j = 1, . . . ,m
(ǫ)
h ,

of X
C

(ǫ)
h

, has distribution with density

(10)
1

dz
P(Zh

j = dz|φφφ
(ǫ)
h ,nnn

(ǫ)
h ) =

nlh1

nlh1
+ · · ·+ nlh

khǫ

f(z;φlh1
) + · · ·+

nlh
khǫ

nlh1
+ · · ·+ nlh

khǫ

f(z;φlh
khǫ

).

Summing up, now we are able to re-write the model as follows:

X1, . . . , Xn|C
(ǫ)
1 , . . . , C(ǫ)

m ,φφφ
(ǫ)
1 , . . . ,φφφ(ǫ)

m ,nnn
(ǫ)
1 , . . . ,nnn(ǫ)

m ∼
m
∏

h=1

f̃(X
C

(ǫ)
h

;φφφ
(ǫ)
h ,nnn

(ǫ)
h )

(C
(ǫ)
1 , . . . , C(ǫ)

m ,φφφ
(ǫ)
1 , . . . ,φφφ(ǫ)

m ,nnn
(ǫ)
1 , . . . ,nnn(ǫ)

m ) = DBSCAN({C1, . . . , Ck}, (φ1, . . . , φk), d, ǫ)

φ1, . . . , φk|k
iid
∼ P0

ρ ∼ π(ρ) = eppf(#C1, . . . ,#Ck),

(11)

where the density f̃(·;φφφ
(ǫ)
h ,nnn

(ǫ)
h ) has been described above. We will refer to (11) as b-DBSCAN

model in the rest of the paper. In conclusion, we elicit the prior on the parameter of interest

(ρǫ,φφφ
(ǫ)
h ,nnn

(ǫ)
h , h = 1, . . . ,m):= DBSCAN({C1, . . . , Ck}, (φ1, . . . , φk), d, ǫ), as the prior induced

by a deterministic transformation of (ρ,φ).

To make inference, we will need to sample from the posterior distribution

(12) L(ρǫ,φφφ
(ǫ)
h ,nnn

(ǫ)
h , h = 1, . . . ,m|data).

Observe that, augmenting the state space, (12) is the marginal distribution of

L(ρǫ,φφφ
(ǫ)
h ,nnn

(ǫ)
h , h = 1, . . . ,m,ρρρ,φφφ|data) =

L(ρǫ,φφφ
(ǫ)
h ,nnn

(ǫ)
h , h = 1, . . . ,m|ρρρ,φφφ, data)L(ρρρ,φφφ|data).

(13)

Since {ρǫ,φφφ
(ǫ)
h ,nnn

(ǫ)
h , h = 1, . . . ,m} is a deterministic function of (ρρρ,φφφ), the first factor on

the right hand-side of (13) is degenerate on DBSCAN({C1, . . . , Ck}, (φ1, . . . , φk), d, ǫ). The

second factor is the posterior distribution of the parameter (ρρρ,φφφ) in model (1)-(2).

In the rest of the paper we will fix ǫ, without assuming it random. In fact, from (6), it is

clear that, conditionally to (ρρρ,φ), the distribution of the data does not depend on ǫ. This also

implies that, as far as density estimation is concerned, models (3) and (11) are equivalent.
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4 Computational details

One of the main advantages of the DBSCAN procedure is that it is very fast (O(n logn)),

and very simple to implement. Moreover, the package “fpc” (Hennig, 2012) of the R software

(R Development Core Team, 2012) contains a function implementing DBSCAN algorithm,

given a distance matrix among the data.

Now, when considering model (11) for a fixed ǫ, all the cluster inferences are based on

L(ρǫ|data). To obtain a MCMC sample from this posterior, we first augment the state space

by the parameters (ρ,φ). Then, factorizing the augmented posterior as in (13), we can

hierarchically simulate from L(ρ,φ|data) first, and secondly apply the DBSCAN function to

(ρρρ,φφφ). There is plenty of methods to sample from the posterior law L(ρρρ,φφφ|data) when the

mixing measure is a species sampling model. In particular, we refer to the MCMC algorithm

in Argiento et al. (2009), that extends the Gibbs sampler algorithms under the DPM model

in Neal (2000).

In the Bayesian nonparametric model-based context, the choice of a suitable point esti-

mate ρ̂ǫ of the random partition ρǫ is a key point. By the way, in this context, by cluster

analysis we actually mean any proper summary of the posterior distribution of ρǫ. From

a computational point of view, once we have obtained a MCMC sample from the posterior

law L(ρǫ|data), a Bayesian estimate of ρǫ is evaluated as a summary of the latter sample.

Nevertheless, in general to find such a posterior estimate is a difficult task due to two issues.

In fact, the support of the posterior distribution of ρǫ is a discrete space with large cardi-

nality (the Bell number), so that evaluation of the posterior distribution in all the support

points is computationally unfeasible. Furthermore, this space has a complex topology that

does not allow to uniquely define a standard distance between two partitions. There exist

many papers, in the Bayesian literature, dealing with these problems. Among the others,

we refer to Quintana and Iglesias (2003), Medvedovic et al. (2004), Lau and Green (2007),

Dahl (2009), Fritsch and Ickstadt (2009). Most of them follow this approach: a suitable

loss function L(ρǫ, ρ̂ǫ) is fixed, giving the cost of estimating the “true” ρǫ by ρ̂ǫ. Then the

proposed estimate is given by any ρ̂ǫ which minimizes the posterior expectation of the loss

function, i.e.

ρ̂ǫ ∈ argmin
y

E[L(ρǫ, y)|data].

Following Binder (1978), we consider the loss function assigning cost b when two elements

are wrongly clustered together and cost a when two elements are erroneously assigned to

different clusters,

(14) L(ρρρǫ, ρ̂ρρǫ) =
∑

i<j≤n

(

a1{Xi
ρρρǫ
↔ Xj , Xi

ρ̂̂ρ̂ρǫ
= Xj}+ b1{Xi

ρρρǫ
= Xj , Xi

ρ̂̂ρ̂ρǫ
↔ Xj

)
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where
ρǫ
↔ and

ρ̂̂ρ̂ρǫ
↔ stand for the equivalence relations induced by the partitions ρǫ and ρ̂̂ρ̂ρǫ,

respectively. It is not difficult to see (Lau and Green, 2007) that, if {sij} is the matrix of

the posterior incidence probabilities P(Xi
ρρρǫ
↔ Xj |data) and K = b/(a + b) ∈ [0, 1], then the

posterior mean of (14) can be written as

(15) l(ρ̂ρρǫ) = a
∑

i<j

sij − (a+ b)
∑

i<j

I
{Xi

ρ̂ρρǫ↔Xj}
(sij −K) = a

∑

i<j

sij − (a+ b)g(ρ̂ρρǫ)

Of course, minimizing l(ρ̂ρρǫ) corresponds to maximizing g(ρ̂ρρǫ), with respect to ρ̂ρρǫ. However,

{sij} is unknown. Lau and Green (2007) proposed a sophisticated optimization method

considering a binary integer programming problem. Rather, as suggested by the two authors

themselves, we used a simpler method: we ran the MCMC chain once in order to estimate

the posterior probabilities {sij}, then we plugged this estimate in (15) and ran the MCMC

algorithm a second time, obtaining a posterior sample configurations. Finally, as ρ̂ρρǫ, we chose

the configuration, among the latter sampled ones, that maximize g(ρ̂ρρǫ). Of course, the result

is affected by the choice of the parameter K, which can be seen as the proportion of the

cost to pay by putting together two elements, when they should be separated. In this work,

K = 0.5 is fixed, so that the two costs are equally shared.

5 Clustering validation techniques

It is clear that one of the main issues in our approach is the choice of hyperparameter ǫ. As

the application sections will show, this hyperparameter strongly affects the posterior cluster

estimate. On the other hand, when ǫ is random, it is not straightforward to design an

algorithm for posterior computation. Here we propose to fix ǫ in order to optimize some

suitable posterior functionals. Our approach will be the following:

(a) Fix a grid of values ǫ1, . . . , ǫr

(b) Evaluate the posterior expectation E(H(ρǫj )|data) for a suitable function H for j =

1, . . . , r

(c) choose the optimal ǫj among ǫ1, . . . , ǫr.

In order to introduce suitable functions H we will refer to cluster validation techniques lit-

erature. By such procedures we mean techniques comparing the quality assessment of the

clustering estimates; see Halkidi et al. (2001) for a nice survey. We will use two popular such

tools: the silhouette and the adjusted Rand indexes. To keep the description self-contained,

we briefly review their definitions here.
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The Silhouette Coefficient

The silhouette coefficient or index (Rousseeuw, 1987) evaluates the quality of a partition

using only quantities and features inherent to the dataset. Given a distance (or a similarity)

among the data and a partition ρ = {C1, . . . , Ck} of them, the following steps explain how to

compute the silhouette coefficient for an individual point. First, for the i−th data, calculate

the sample mean of the distance between the data and all the other in its cluster. Call this

value ai. Secondly, compute the sample mean of the distances between the i−th data and all

the points in a cluster not containing it. Find the minimum such value with respect to all

clusters; call this value bi. Finally, for the i−th object, the silhouette coefficient is defined as

si = (bi − ai)/max(ai, bi).

The value of the silhouette coefficient can vary between −1 and 1. It quantifies how good

an observation fits its cluster: specifically, the largest is the value, the “better” the observation

has been assigned to the “right” cluster. Indeed, if ai = 0, the silhouette coefficient of the i-th

observation is equal to 1. Moreover, a negative value is undesirable because this corresponds

to a case in which ai, the average distance to points in the cluster, is greater than bi, the

minimum average distance to points in another cluster. An overall measure of the quality of

a partition can be obtained by computing the average silhouette coefficient of all points. We

mention that, since the silhouette coefficient is not defined when there is a unique cluster, in

this case we set it equal to 0.

Adjusted Rand Index

Differently from the silhouette coefficient, the adjusted Rand index (Hubert and Arabie, 1985)

quantifies the difference among two given partitions. It is widely used in cluster validation

analysis, when a “true” reference partition is available. Given a set of n elements and two

partitions to compare, ρ1 = {C1, . . . , Ck}, ρ2 = {B1, . . . , Bs}, consider the following quanti-

ties: a, the number of pairs of elements that are in the same set in ρ1 and in the same set in

ρ2; b, the number of pairs of elements that are in two different sets in ρ1 and in two different

sets in ρ2; c, the number of pairs of elements that are in the same set in ρ1 but in different

sets in ρ2; d the number of pairs of elements that are in different sets in ρ1 but in the same

set in ρ2. The Rand index (Rand, 1971) is defined as:

R =
a+ b

a+ b+ c+ d
=

a+ b
(

n
2

) .

Keeping in mind that a + b is the number of agreements between ρ1 and ρ2, while c + d is

the number of disagreements, intuitively, R is the proportion of agreements between the two

partition ρ1 and ρ2. With the intent of making the values of this index more interpretable,
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ρ1\ρ2 B1 B2 . . . Bs

C1 n11 n12 . . . n1s a1

C2 n21 n22 . . . n2s a2
...

...
...

. . .
...

...

Ck nk1 nk2 . . . nks ak

b1 b2 . . . bs

Table 1: Contingency table summarizing the overlap between ρ1 = {C1, . . . , Ck} and ρ2 =

{B1, . . . , Bs}.

Hubert and Arabie (1985) introduced a correction based on a standardization (correction for

chance). Suppose that the two partition ρ1 and ρ2 to be compared are chosen according

a generalized hypergeometric distribution, i.e. ρ1 and ρ2 are picked at random, with fixed

numbers of classes and objects in both. The authors define the adjusted Rand index as

AR =
R− E(R)

max(R)− E(R)
;

moreover they show that, under the generalized hypergeometric assumption,

AR =

∑

ij

(nij

2

)

− [
∑

i

(

ai
2

)
∑

j

(bj
2

)

]/
(

n
2

)

1
2 [
∑

i

(

ai
2

)

+
∑

j

(bj
2

)

]− [
∑

i

(

ai
2

)
∑

j

(bj
2

)

]/
(

n
2

)

,

where nij , ai, bj are those in Table 1. More precisely, the overlap between ρ1 = {C1, . . . , Ck}

and ρ2 = {B1, . . . , Bs} can be summarized by a contingency table [nij ], where each entry nij

denotes the number of objects in common between Ci and Bj , i.e. nij = #{Ci ∩ Bj}; the

values ai and bj denote the marginal frequencies, respectively.

A model-based predictive index

The indexes introduced so far are not completely satisfactory. On one hand, the adjusted

Rand index needs a “true” partition as a reference. Generally, in real applications this “true”

partition does not exist. On the other hand, the silhouette index needs a distance between

data to be computed; however, our approach to clustering is based on the notion of distance

between densities depending on latent variables. For this reason, we will compute these two

indexes only in the simulated data example in Section 6, where we know the “true” partition.

For real applications as in Section 7, we introduce an index built from predictive distributions

under our model.

Let Xnew be a new observation from (1)-(2). For i = 1, . . . , n, let

Y ǫ
new(Xi) =

{

1 if Xnew is in the same cluster of Xi

0 otherwise.
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In other words, Y ǫ
new(Xi) tells us if the new observation Xnew belongs to the same cluster

where Xi is. Therefore, for each i, we consider L(Xnew|Y
ǫ
new(Xi) = 1, data), that is the

predictive law of a new observation conditionally to the event that this observation share the

same cluster with Xi.

In the same spirit as in Gelfand et al. (1992), for a fixed ǫ, we compute conditional

predictive residuals defined as

(16) r
(ǫ)
i := ri =

Xi − E(Xnew|Y
ǫ
new(Xi) = 1, data)

(Var(Xnew|Y ǫ
new(Xi) = 1, data))1/2

. i = 1, ..., n.

When the data are multivariate, the square root of the matrix in the denominator in (16)

represents its Cholesky decomposition. For each data component j = 1, . . . , p, we compute

(17) Ind
(ǫ)
j :=

1

n

n
∑

i=1

r2i,j ,

which represents a predictive goodness-of-fit index of our DBSCAN-mixture model on the

j−th data component as a function of ǫ.

Moreover, we compute the following predictive probabilities, for any fixed ǫ > 0:

(18) P(Y ǫ
new(Xi) = 1|Xnew = Xi, data), i = 1, . . . , n.

In words, for each i, (18) is the probability that a new observation is assigned to the same

cluster as Xi, conditionally to the event that Xnew and Xi assume exactly the same value.

However, for a fixed i, the value assumed by such an index cannot be interpreted “per se”,

but it must be compared to all the other values (j 6= i). High values denote that Xi is

“nested” in its cluster, while small values suggest that Xi is a “frontier” point in the cluster

it has been assigned to. Hence, those probabilities have an interpretation as misclassification

indexes.

The Appendix shows how to compute (16) and (18) through a posterior sample of (ρ,φ).

6 Simulated data

In this section we illustrate our model with application to a simulated dataset of size n = 1000.

In particular, we simulated i.i.d. observations from a mixture of bivariate densities. Data are

shown in Figure 1; there are two main groups of observations, from the two components of

the mixture: the first one has a sharp round shape and it is located around the point (0, 0),

while the second group lays on a semicircular region on the right of the first group. This

peculiar disposition of the observations on a non-convex support is a popular choice when

dealing with clustering algorithms, in order evaluate how well they perform even in unusual

situations.
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Figure 1: Simulated bivariate dataset.

As far as the b-DBSCAN mixture model (11) is concerned, we assume the Gaussian

kernel for f(·; θ), while the mixing measure is the Dirichlet process. In particular, we

complete the prior specification by assuming a prior α ∼ gamma(γ1, γ2), while P0(dθ) =

N(dµ|m0,Σ/κ0) × Inv-Wishart(dΣ|ν1,Ψ1), where θ = (µ,Σ). Here gamma(γ1, γ2) denotes

the univariate gamma distribution with mean γ1/γ2 and Inv-Wishart(ν1,Ψ1) represents the

Inverse-Wishart distribution having ν1 degrees of freedom and precision matrix Ψ1 (and

E(Σ) = Ψ1/(ν1 − p − 2)). First of all, we fixed ǫ = 0, that is when model (11) reduces to

a DPM model. As far as the hyperparameters are concerned, we did a robustness analysis,

choosing different values for γ1, γ2, m0, κ0, ν1 and Ψ1. We will not report these analyses

here, but we would like to point out that the conclusions on the cluster estimates are always

the same: the estimated number of clusters is larger than the true one, that is 2. This is an

expected result, since many Gaussian densities are needed to fit the non-convex region on

the right of the plot in Figure 1. On the other hand, when ǫ is larger than 0, to make the

b-DBSCAN model more flexible, it is better to fix hyperparameters so that the conditional

variance of f(·; θ) is small, and the prior expected number of mixture components is large.

In particular, we fixed a and b such that E(α) = 11, Var(α) = 4, m0 = 0, k0 = 0.001, ν1 = 10

and Ψ1 = diag(0.1). Figure 2 displays the incidence matrices of the estimated clusters for



Bayesian dbscan 16

−0.5 0.0 0.5 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

Figure 2: Cluster estimation when ǫ = 0 (i.e. DPM model): incidence matrix (left) and

classification of the data (right).

ǫ = 0 on the left and the corresponding data clustering representation on the right. By an

incidence matrix M we mean a n × n matrix whose entries mij records whether two obser-

vations are clustered together (mij = 1) or not (mij = 0). Moreover, to produce summary

plots, we order rows and columns of the incidence matrices according their membership to

clusters, assigning them different colours; of course, only the elements with positive entries

are shown. The incidence matrix in all the figures here is always followed by a plot of the

dataset, where each observation is coloured according to the estimated group it belongs to.

As discussed in Section 3, to define the b-DBSCAN model, we need to to fix a distance

d(·, ·) between distribution. Here we use Hellinger, L2 distances and Kullback-Leibler I-

divergence (it can be symmetrized to become a pseudo-distance). Figures 3, 4 and 5 show

the estimates for different values of ǫ under these distances. As we expected, the estimated

number of clusters reduces as ǫ increases in Figures 3, 4, 5: in fact, the model groups the DPM

clusters into new bigger clusters. The choice of the distance can greatly affect the posterior

cluster estimate: for the Hellinger distance and Kullback-Leibler I-divergence, as ǫ increases

groups with similar mean parameters are merged, and we find good posterior estimates (third

column of Figures 3 and 4). In contrast, under L2 distance, as ǫ increases groups with similar

covariance matrix are merged, and in this case the clusters follow a different grouping path,

leading to unsatisfactory estimated partitions.

The choice of ǫ and misclassification

We mentioned many times that the choice of hyperparameter ǫ is the most difficult task

in our model. Let us see how we fixed it in this application, for instance when d is the

symmetrized Kullback-Leibler I-divergence. Following the scheme outlined at the beginning
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Figure 3: Posterior estimate of the random partition, i.e. incidence matrix and data cluster

membership, when d is the Hellinger distance, for ǫ = 0 (panels (a) and (d)), ǫ = 0.8 ((b) and

(e)), ǫ = 0.9 ((c) and (f)).

of Section 5, we fixed a grid of values of ǫ. On the log-scale we chose these values: log(1+ǫ) ∈

{0.5, 1.5, 2, 2.5, 2.75, 3, 3.5, 4}. For each j = 1, . . . , 8 we computed E(H(ρǫj )|data) through the

MCMC method, where H is the silhouette or the adjusted Rand index (here we know the

true data partition). Figure 6(a) shows the two posterior functionals, as ǫ varies. Both lines

lead to the same conclusion: log(1 + ǫ) = 3 is the optimal choice. Figure 4 (right column)

shows that, under this choice, our estimate is very close to the true partition.

Table 2 reports a summary of the misclassification error when the distance is the Kullback-

Leibler I-divergence, under the optimal (i.e. log(1 + ǫ) = 3) estimated partition. To simplify

the discussion, let us call cluster A the one with round shaped support on the left of Figure 1

and cluster B the other one. We found that 337 points in cluster A, and 644 points in

cluster B, were correctly classified; the misclassification rate is 1.9%. Moreover we computed

the misclassification probability index in (18) for each data points. Since all the individual

values of this index should be compared to the others in order to use it meaningfully, we first
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Figure 4: Posterior estimate of the random partition, i.e. incidence matrix and data cluster

membership, when d is the symmetrized Kullback-Leibler I-divergence, for ǫ = 0 (panels (a)

and (d)), log(1 + ǫ) = 2.5 ((b) and (e)), log(1 + ǫ) = 3 ((c) and (f)).

computed q.25 and q.75, the first and the third sample quantile of the values of the index.

We classified as boundary points all the data such that the corresponding probability index

is smaller than q.25 − 1.5(q.75 − q.25). A summary of the results is depicted in Figure 6(b),

where the boundary points are represented by (red) triangles, while misclassified data are

represented by (blue) crosses. Observe as misclassified data lie in the middle of the two main

groups, where there is uncertainty between the two clusters membership. Moreover, there is

an area of cluster membership uncertainty on the left side of cluster A. For these points the

uncertainty is between the membership to cluster A or to a new cluster not included in the

estimated ones.

DBSCAN algorithm

As described in the Introduction, the DBSCAN algorithm is a heuristic clustering method

that unifies elements close to each other, and is able to locate dense group of observations.
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Figure 5: Posterior estimate of the random partition, i.e. incidence matrix and data cluster

membership, when d is the L2 distance, for ǫ = 0 (panels (a) and (d)), ǫ = 1.925 ((b) and

(e)), ǫ = 2.2 ((c) and (f)).

Cluster membership Estimated A Estimated B

True A 337 13

True B 6 644

Table 2: Summary of the true and estimated clustering, i.e. 337 points belonging to cluster

A were correctly classified, and 664 points belonging to cluster B were correctly classified.

For the aim of comparison, here we would like to directly cluster the simulated data using this

procedure, not resorting to the corresponding latent variables in the b-DBSCAN model, fixing

d as the Euclidean distance among points in R
2. Moreover, we fixed N equal to 1, but also

larger than 1. Recall that, when N > 1, the partitions are not uniquely determined, because

the relation defined among the data is not an equivalence. Furthermore, when N > 1, noise

elements are usually identified by the algorithm. In Figure 7 we report clustering results for
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Figure 6: Panel (a) Posterior expectation of the adjusted Rand and silhouette functionals

under various choice of log(1 + ǫ) (panel (a)) and misclassification graph (panel (b)).

two different values of (N, ǫ), choosing these two pairs among those better reflecting the true

partition.

When N = 1 (Figure 7, left column), noise elements are not allowed, and every singleton

could represent a cluster. This is the reason why so many different clusters are identified

by the method. Of course, this partition does not seem to be satisfactory, if compared to

b-DBSCAN estimates. In contrast, when N = 6, less clusters are found, but many points are

classified as “noise” by the algorithm. See the red points in Figure 7(d): they correspond to

the red square on the bottom of the incidence matrix in panel (b), but do not form a cluster.

The main reason why this happens is that the heuristic DBSCAN algorithm does not need

any model to be defined, and hence points generated from the tails of the true distribution are

not included into the clusters. Finally, as an example of the non-uniqueness of the partition

found by the heuristic method when N > 1, consider the triangle blue points (just above

the red central group), which are classified as a unique cluster. This group contains only

three points, despite that N = 6 is the minimum number of points to define a cluster. The

ambiguity arises since, in this case, N is larger than 1, so that the clustering produced by

the heuristic DBSCAN is not uniquely defined.

7 Yeast cell cycle data

We fitted our model to a dataset, very popular in the literature on clustering of gene expression

profiles, usually called Yeast cell cycle data (see Cho et al., 1998, for instance). A gene

expression data set from a microarray experiment can be represented by a real-valued matrix
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Figure 7: Heuristic DBSCAN clustering results of the simulated dataset when N = 1, ǫ =

0.075 (panel (a) and (b)) and N = 6, ǫ = 0.1 (panel (b) and (d)).

[Xij , 1 ≤ i ≤ n, 1 ≤ j ≤ p], where the rows (X1, . . . , Xn) contain the expression patterns of

genes and will be our data points. Each cell Xij is the measured expression level of gene i

in sample (or at time) j. The Yeast cell cycle data contain n = 389 gene expression profiles,

observed at 17 different time values, one every 10 minutes from time zero. We chose a subset

of the original dataset, representing the second cell cycle. The final dataset (n = 389, p = 9)

has been obtained by a filter, i.e. standardizing each row of the gene expression matrix to

have zero mean and unit variance. By visual inspection Cho et al. (1998) grouped the data

according the peak times of expression levels; see Figure 8. They detected five peaking points,

corresponding to five phases of the cell cycle: the early G1 phase at time j = 10, the late G1

phase at time j = 11, the late S phase at time j = 12, the G2 phase at time j = 14 and the M

phase at time j = 16. This clusterization can be considered as a reference partition. However,

we would like to stress that, since this clusterization was obtained by visual inspection, it

could be dramatically affected by subjective belief. For this reason, we will not consider this
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Figure 8: Reference partition by Cho et al. (1998) for the Yeast cell cycle data.

partition as the “true” one, but rather as as benchmark to compare with our results.

As in the previous example, we assume the Gaussian kernel as f(·; θ) and the Dirichlet

process as mixing measure. The latent variable here is θ = (µ, σ2
Ip) representing mean

and covariance matrix of the Gaussian distribution. Moreover, conditionally on the to-

tal mass parameter α, P ∼ Dirichlet(α, P0), with α ∼ gamma(γ1, γ2), and P0(dµ, dσ
2) =

N(dµ|m0, σ
2/κ0Ip) × inv-gamma(dσ|a, b). Observe that, following the work of Qin (2006),

the Gaussian kernel densities were chosen to have diagonal covariance matrices. This as-

sumption greatly simplifies computation, since only diagonal matrices must be inverted in

the MCMC algorithm. On the other hand, under this assumption, data are modelled from

a mixture of Gaussian kernels with spherical contour lines. This assumption is very strong

when ǫ = 0: it implies that all clusters have spherical shapes a priori. However, this is not

the case under the b-DBSCAN model for ǫ > 0, where the clusters are modelled as finite

unions of round shaped groups, and therefore they can recover many different shapes.

As far as the choice of the hyperparameters is concerned, in order to make the model more

flexible, we fixed them so that the prior number of mixture components is large. In particular,
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Figure 9: Plots of Ind
(ǫ)
j , j ∈ {10, 11, 12, 14, 16}, and their cumulative value for the Yeast cell

cycle data.

we fixed (m0, κ0, a, b) so that the prior variance for µ is large (10Ip), but the prior mean and

variance of σ2 are small (both equal to 0.1). Furthermore, we set (γ1, γ2) = (2, 0.01), in order

to obtain a vague prior for the total mass parameter α.

To complete the b-DBSCAN specification we need to fix the distance and the threshold

ǫ. In our experiments we considered the Hellinger distance, as well as the Kullback-Leibler

I-divergence, obtaining very similar results. Here we report only the analysis under the

Kullback-Leibler I-divergence. As far as the choice of ǫ is concerned, we applied the strategy

described in Section 5, using the index (17). We fixed the following grid of values: log(ǫ+1) ∈

{0, 2.6, 2.7, 2.8, 2.9, 2.95, 3, 3.1, 3.15, 3.2, 3.3, 3.4, 3.6}. In particular we computed Ind
(ǫ)
j for

each j ∈ {10, 11, 12, 14, 16}, which are the times at which the data have peaks according to

Cho et al. (1998). As we can see from Figure 9, except for the late G1 phase (panel (b)), all the

index trajectories have a minimum around ǫ = 2.8; furthermore, the trajectories of the sum

of the indexes (see panel (f)) has a minimum exactly at ǫ = 2.8. Figure 10 shows our cluster

estimate for such a value of ǫ. Observe that we found 8 clusters, a number larger than the five

clusters in the reference partition in Figure 8. However, the reference partition is based only
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on peak times of the five cell cycle phases, so that it could not be able to capture the patterns

of the gene expression across time. On the other hand, our clusterization takes into account
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Figure 10: Posterior cluster estimate for the Yeast cell cycle data.

not only the different peaks, but also the entire trajectories of gene expression. For example,

Figure 10 shows that the cluster in panel (a) groups trajectories with a peak in the early

G1 phase, while the cluster in panel (b) groups those with a peak in the late G1 phase. The

correspondence between the reference and our partitions is not so unequivocal for the other

groups: for example the cluster in Figure 10(c) puts together trajectories with peaks in the

late S phase or G2 phase. Moreover, according to our estimated partition, the trajectories in

each groups seem more homogeneous. In particular, our algorithm is able to split the late S

phase group in Figure 8 into more homogeneous clusters, in terms of trajectories. As a final

remark, note that a positive feature of our procedure is the ability to classify non-standard

data: see the “outlier” trajectories grouped into two clusters 7 and 8 (Figure 10, panels (g)

and (h)).

We have also checked robustness of these results to choices of hyperparameters; for brevity,

this analysis is not reported here.

8 Comments

We have presented a Bayesian nonparametric framework for model-based clustering. Data

have been initially modeled through a species sampling mixture model. The core of our

work lies in defining the data partition parameter in a new way: two observations are in



Bayesian dbscan 25

the same cluster if the distance between densities corresponding to their latent parameters

is smaller than a threshold ǫ. This definition is made mathematically coherent introducing

the reachability property in Definition 1 and 2. We call the proposed model b-DBSCAN

mixture. This model can be interpreted as a mixture whose components are themselves

mixtures of parametric densities (for instance, Gaussian kernels). Crucial ingredients are the

(pseudo-)distance d between densities, and the hyperparameter ǫ.

We discussed implementation and applications of the b-DBSCAN mixture model to two

datasets. The first one is simulated from a mixture of two components, one of them being

with curved support. The second dataset is well-known in the literature of clustering gene

expression data; each observation represents a trajectory over time of gene expression. From

our analysis we conclude that the b-DBSCAN mixture model is affected by the choice of the

distance between densities. In fact, when ǫ is fixed, Kullback-Leibler I-divergence (or Hellinger

distance) and L2 distance give very different estimates. In particular, we have observed that

clusters with centers close to each other are grouped (more and more as ǫ increases) when the

distance is Kullback-Leibler I-divergence or Hellinger. On the other hand, robust features of

the estimates hold with respect to the choice of the hyperparameters of the baseline P0, of

the total mass α, and the parameter K (the proportion of misclassification costs). See the

extensive robustness analysis in Cremaschi (2012). As far as the elicitation of ǫ is concerned,

we suggested a strategy to fix it, as the optimal value of the posterior expectation of a function

of the random partition. For the Yeast cell cycle data, we computed the cluster estimates

based on a predictive fit index. They results particularly satisfactory, since they have some

features in common with the reference partition on one hand, while grouping data into more

homogeneous clusters in terms of trajectories.

As a further remark, we point out that we made a comparison between our estimates and

more standard heuristic algorithms, as hierarchical or k-means clustering, for the simulated

dataset. Apart from the statistical advantages of model-based methods (estimating missing

data, or taking into account the “randomness nature” of the data), we found that the heuristic

approaches provide estimates far from the true partition (see Cremaschi, 2012). Here, we have

reported only the clustering obtained using the standard heuristic DBSCAN procedure, which

still provides unsatisfactory grouping.

In the two applications here, we have always assumed σ = 0 in the underline NGG process

(i.e. the mixing measure), indeed obtaining a DPM model. The interested reader should refer

to Cremaschi (2012) for an application with σ > 0.

Finally, extensions to the current approach include further work on the elicitation of ǫ

and categorical formulations of this clustering model. These and other topics are the subject

of current research.
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Appendix

Computation of (16) and (18).

In this Appendix we fix the hyperparameters of the mixing distribution P , i.e. σ, α, P0. When

some of them are random, the reader can easily understand how the following calculations

modify.

Let us start observing that, in order to compute the conditional mean and variance

in (16), we must evaluate the posterior distribution of Xnew, conditionally to the event

{Y ǫ
new(Xi) = 1}:

(19) P(Xnew ∈ dx|Y ǫ
new(Xi) = 1, data) =

P(Xnew ∈ dx, Y ǫ
new(Xi) = 1|data)

P(Y ǫ
new(Xi) = 1|data)

Analogously, to compute (18) we need to evaluate

(20) P(Y ǫ
new(Xi) = 1|Xnew = dx, data) =

P(Xnew ∈ dx, Y ǫ
new(Xi) = 1|data)

P(Xnew ∈ dx|data)

Fractions (19) and (20) share the same numerator. If θθθ := (θ1, . . . , θn), and θnew is the latent

variable associated to Xnew, then it holds:

P(Xnew ∈ dx, Y ǫ
new(Xi) = 1|data) =

∫

Θ×Θn

P(Xnew ∈ dx, Y ǫ
new(Xi) = 1, dθnew, dθθθ|data)

=

∫

Θ×Θn

P(Xnew ∈ dx, Y ǫ
new(Xi) = 1|θnew, θθθ, data)L(dθnew, dθθθ|data)

=

∫

Θ×Θn

P(Xnew ∈ dx|θnew, θθθ, data)P(Y
ǫ
new(Xi) = 1|θnew, θθθ, data)L(dθnew|θθθ, data)L(θθθ|data).

Keep in mind that, conditionally to θnew, the future observation Xnew does not depend on

either θθθ or the data, and it has density f(·; θnew). Moreover the θnew is independent from

the data conditionally on θθθ. Finally, observe that the variable Y ǫ
new(Xi) is a deterministic

function of θnew and θθθ. Consequently, we have

P(Xnew ∈ dx, Y ǫ
new(Xi) = 1|data) =

∫

Θ×Θn

f(x;θθθnew)dx1{Y ǫ
new(Xi)=1}L(dθθθnew|θ)L(dθθθ|data).

Suppose now that θ is a sample from L(θθθ|data), such that ρρρ = {C1, . . . , Ck} and φφφ =

(φ1, . . . , φk) with ρρρǫ = {C
(ǫ)
1 , . . . , C

(ǫ)
m }. Moreover, suppose that i ∈ Cǫ

h = Clh1
∪ · · · ∪ Clh

kǫ
h

,

with {lh1 , . . . , l
h
kǫ
h
} ⊆ {1, . . . , k}. If P in (3) is a NGG process, i.e. P ∼ NGG(σ, α, P0), then

the predictive distributions L(θnew|θθθ) can be represented as

(21) P (θnew ∈ B|θθθ) = w0(n, k;σ, α)P0(B) + w1(n, k;σ, α)
k

∑

j=1

(nj − σ)δφj
(B),

where nj is the cardinality of the j-th cluster of ρ and where w0 and w1 are predictive weights

associated to the NGG process prior (see Lijoi et al., 2007, for an explicit expression). Now

if θnew is a sample from (21), it is clear that we have the following four alternatives:
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(a) θnew is one among the values φlh1
, . . . , φlh

kǫ
h

, associated with the elements in Cǫ
h. Then

Xnew
ǫ
↔ Xi, and hence, conditionally to θ and θnew, we have Y ǫ

new(Xi) = 1;

(b) θnew coincides with one of the φ1, . . . , φk different from φlh1
, . . . , φlh

kǫ
h

. Then Xnew
ǫ
= Xi,

and hence, conditionally on θθθ and θnew, we have Y ǫ
new(Xi) = 0;

(c) θnew is a new value chosen according to P0(·) such that d(f(·, θnew), f(·;φlhj
)) < ǫ for

some j ∈ {1, . . . , kǫh}, so that Xnew
ǫ
↔ Xi; then, conditionally on θθθ and θnew, we have

Y ǫ
new(Xi) = 1;

(d) θnew is a new value chosen according to P0(·) such that d(f(·, θnew), f(·;φlhj
)) ≥ ǫ for

all j ∈ {1, . . . , kǫh}, so that Xnew
ǫ
= Xi; then, conditionally on θθθ and θnew, we have

Y ǫ
new(Xi) = 0.

From these arguments, analytically integrating out θnew (where possible), and by a change-

of-variable in the integral, we have:

1

dx
P(Xnew ∈ dx,Y ǫ

new(Xi) = 1|data)

=

∫

{

w1(nlh1
− σ)f(x;φlh1

) + · · ·+ w1(nlh
kǫ
h

− σ)f(x;φlh
kǫ
h

)

+

∫

w0f(x; θnew)1{Y ǫ
new(Xi)=1}P0(dθnew)

}

L(dρρρ, dφφφ|data).

Now factor the mixing measure in the integral above as L(dρρρ, dφφφ|data) = L(dρρρ|data) ×

L(dφφφ|ρ, data); in addition, it holds that

L(φφφ|ρ, data) =
k
∏

j=1

L(φj |XCj
) ∝

k
∏

j=1







∏

i∈Cj

f(xi;φj)P0(dφj)







.

In practice, conditionally on partition ρ and data, φ1 . . . , φk are independent, and the condi-

tional law of φj depends only on data belonging to cluster Cj , j = 1, . . . , k. The distribution

L(φj |XCj
) represents the posterior of φj when π(·; p, P0) in (3) is a degenerate prior on P0

(parametric model), for j = 1, . . . , k:

{Xi, i ∈ Cj}|φj
iid
∼ f(·|φj) for j = 1, . . . , k

φ1, . . . , φk
iid
∼ P0.

(22)

Now let m(x;XCj
) =

∫

Θ f(x;φj)L(dφj |XCj
) the predictive density (under the parametric

model) of Xnew, given the subvector XXXCj
of data in cluster j. If f(·;φ) is conjugate w.r.t.

P0, the functions m(x;XXXCj
) have closed-form analytic expressions. Hence,

1

dx
P(Xnew ∈ dx, Y ǫ

new(Xi) = 1|data)

=

∫

{

w1(nlh1
− σ)m(x;xC1) + · · ·+ w1(nlh

kǫ
h

− σ)m(x;xC
lh
kǫ
h

)
}

L(dρρρ|data) +A,
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where A :=
∫

w0f(x; θnew)1{Y ǫ
new(Xi)=1}P0(dθnew)L(dρρρ, dφφφ|data). If we evaluate (18) for a

given Xi = xi through a MCMC sample {ρρρ(1), . . . , ρρρ(G)}, {φφφ(1), . . . ,φφφ(G)} from L(ρρρ,φφφ|data),

then a MCMC estimate of (18) is

1

G

G
∑

g=1

{

w1(n
(g)

lh1
− σ)m(x;xCg

1
) + · · ·+ w1(n

(g)

lh
kǫ
h

− σ)m(x;x
(g)
C

lh
kǫ
h

) +A(g)

}

.

In order to compute the integral A(g), we will resort to an importance sampling algorithm,

with importance function

(23) w1(n
(g)

lh1
− σ)π(dθnew|C

(g)
1 ) + · · ·+ w1(n

(g)

lh
kǫ
h

− σ)π(dθnew|C
(g)

lh
kǫ
h

),

where π(dθnew|C
(g)
1 ) ∝

∏

i∈Cj
f(xi;φj)P0(dφj), with j ∈ {lh1 , . . . , l

h
kǫ
h
}, are the posterior dis-

tributions of θnew under the parametric model (22) defined above.

As far as the denominator of (20) is concerned, it is the posterior predictive distribution

of a new observation under (3). We will compute it from a MCMC sample from L(ρρρ,φφφ|data),

as usually done in the Bayesian context.

On the other hand, the denominator in (19) is the integral, w.r.t. Xnew, of the numerator;

therefore, for i = 1, . . . , n, we have

K(Xi) :=

∫

Rp

P(Xnew ∈ dx,Y ǫ
new(Xi) = 1|data)

=

∫

w1(nlh1
− σ) + · · ·+ w1(nlh

khǫ

− σ)L(ρ|data) +B,

where {lh1 , . . . , l
h
khǫ
} are such that i ∈ Cǫ

h = Clh1
∪ · · · ∪ Clh

khǫ

, and

B :=

∫

w0I{Y ǫ
new(Xi)=1}P0(dθnew)L(ρ,φ|data).

Clearly, a MCMC estimation of K(Xi) is:

K̂(Xi) =
1

G

G
∑

g=1

{

w1(n
(g)

lh1
− σ) + · · ·+ w1(n

(g)

lh
kǫ
h

− σ) +B(g)

}

.

Similarly as before, in order to compute the integral B(g), we will resort to an importance

sampling algorithm, with importance importance function defined in (23).

Finally to compute (16), for a fixed i, we need to evaluate

E(Xnew|Y
ǫ
new(Xi) = 1, data) =

∫

Rp

xP(Xnew ∈ dx|Y ǫ
new = 1, data)

=
1

K(Xi)

∫

Rp

xP(Xnew ∈ dx, Y ǫ
new = 1|data)

=
1

K(Xi)

∫

w1(nlh1
− σ)E(Xnew|XXXCl1

) + · · ·+ w1(nlh
khǫ

− σ)E(Xnew|XXXC
lh

khǫ

)L(ρρρ|data) + C,
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where with E(Xnew|XXXClj
), j = lh1 , . . . , l

h
khǫ
, we denote the predictive mean under the paramet-

ric model in (22), while

C :=

∫

w0µ(θnew)I{Y ǫ
new(Xi)=1}P0(dθnew)L(ρρρ,φφφ|data),

with µ(θnew) :=
∫

Rp xf(x; θnew)dx. Observe now that if P0 and f(·, φ) are conjugate, the

posterior mean is easy to compute analytically, so that E(Xnew|Y
ǫ
new(Xi) = 1, data) can be

estimated by

1

K̂(Xi)

1

G

G
∑

g=1

{

w1(n
(g)

lh1
− σ)E(Xnew|X

(g)
Cl1

) + · · ·+ w1(n
(g)

lh
kǫ
h

− σ) + E(Xnew|X
(g)
C

lh

khǫ

) + C(g)

}

.

The term C(g) can be evaluated using the importance function (23). Computations to esti-

mate E(X2
new|Y

ǫ
new(Xi) = 1, data) and hence Var(Xnew|Y

ǫ
new(Xi) = 1, data) are very similar

and we will skip here the details.

ǫ
↔ is an equivalence relation.

Let X := {X1, X2 . . . } a sequence of data, and let {θ1, θ2, . . . } be a sequence of labels attached

to X , such that, for each i, Xi|θi ∼ f(·|θ). Let ǫ ≥ 0 and d(·, ·) a distance between densities;

we prove that the relation
ǫ
↔, defined in Definition 1 and 2, is an equivalence relation on X ,

i.e. it is reflexive, symmetric and transitive.

Reflexivity: Let Xi ∈ X ; then trivially d(f(·, θi), f(·, θi)) = 0 ≤ ǫ, so that then Xi
ǫ

! Xi and

hence Xi
ǫ
↔ Xi.

Symmetry: Suppose that Xi
ǫ
↔ Xj ; then by Definition 2, there exist a finite sequence of

index {j1, . . . , jmj
} such that

Xi
ǫ

! Xj1
ǫ

! Xj2
ǫ

! . . .
ǫ

! Xjm
ǫ

! Xj .

Hence, the sequence {jm, . . . , j1} is such that

Xj
ǫ

! Xjm
ǫ

! . . .
ǫ

! Xj2
ǫ

! Xj1
ǫ

! Xi,

so that Xj
ǫ
↔ Xi.

Transitivity: If Xi
ǫ
↔ Xj and Xj

ǫ
↔ Xk, then there exists two set of indexes {j1, . . . , jmj

}

and {k1, . . . , kmk
}, such that

Xi
ǫ

! Xj1
ǫ

! Xj2
ǫ

! . . .
ǫ

! Xjm
ǫ

! Xj
ǫ

! Xk1
ǫ

! . . .
ǫ

! Xkmk

ǫ
! Xk;

hence Xi
ǫ
↔ Xk.
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