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Abstract Typically, implied volatilities for defaultable instruments are not
available in the financial market since quotations related to options on de-
faultable bonds or on credit default swaps are usually not quoted by brokers.
However an estimate of their volatilities is nedeed for pricing purposes.
In this paper, we provide a methodology to infer market implied volatilities
for defaultable bonds using equity implied volatilities and CDS spreads quoted
by the market in relation to a specific issuer. The theoretical framework we
propose is based on the Merton’s model under stochastic interest rates where
the short rate is assumed to follow the Hull-White model. A numerical analysis
is provided to illustrate the calibration process to be performed starting from
financial market data. The market implied volatility calibrated according to
the proposed methodology could be used to evaluate options where the under-
lying is a risky bond, i.e. callable bond or other types of credit-risk sensitive
financial instruments.
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1 Introduction

Implied volatilities of financial instruments are derived from the prices of op-
tions having as underlying the financial instrument itself. Typical cases are
represented by equity options (call, put) or derivatives having as underlying
interest rates (caps, floors, swaptions). Market quotations are available for
these types of instruments where the implied volatility is quoted. Such volatil-
ities are widely used by practitioners in order to calibrate stochastic models to
be used for evaluating non-vanilla derivatives or other more complex financial
products.

However, implied volatilities where the underlying financial instrument is
affected by credit risk (credit implied volatility) are not available in the market.
In fact, options on defaultable bonds or options on credit default swaps (CDS)
are usually not quoted by brokers. Still the market implied volatility is funda-
mental to evaluate instruments such as callable bonds where the underlying is
a credit-risky bond or other types of credit-risk sensitive financial instruments.

Several academics and practitioners have focused on credit implied volatil-
ity. Zheng (1999) [12] was the first to address the problem of deriving the
default implied volatility curve from the values of barrier options. Bayraktar
(2008) [1] developed a stock option price approximation for a model which
takes into account both the risk of default and the stochastic volatility. He
also showed that it might be possible to infer the risk-neutral default intensity
from stock option prices. Cao et al. (2010)[5] has showed that CDS are similar
to out-of-the-money put options in that both offer a low cost and effective
protection against downside risk. Bayraktar and Yang (2010) [2] proposed a
model which can be jointly calibrated to the corporate bond term structure
and equity option volatility surface of the same company. The purpose is to
obtain explicit bond and equity option pricing formulas that can be calibrated
to find a risk-neutral model that matches a set of observed market prices. Kelly
et al. (2015) [9] introduced the concept of a credit implied volatility surface us-
ing CDS quotations in order to derive the asset volatility of the firm. Bao and
Pan (2013) [4] study the excess volatility and its drivers in the corporate bond
market. They consider the connection between the return volatilities of credit
market securities, equities, and Treasuries using the Merton (1974) model [7]
with stochastic interest rates. They assume a two-factor Vasicek model to cal-
culate model-implied corporate bond using Treasury bond and equity return
volatilities as inputs in the Merton model. The two processes are assumed to
be uncorrelated They find that in the CDS market, empirical volatilities ex-
ceed model implied volatilities by an average of 1.92% and 2.84% when daily
and monthly returns are used, respectively.

In this paper, we propose a methodology to infer the market implied volatil-
ities for defaultable bonds using observed market equity implied volatilities
and CDS spreads, quoted by the market in relation to a specific specific is-
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suer. The theoretical framework we propose is based on the Merton model
(1974) [7] under stochastic interest rates; the short rate is assumed to follow
the model proposed by Hull and White (1990) [8] and the firm value process is
a Geometric Brownian Motion. In this framework, the equity and the default-
able bond values are exposed to two types of risk: stochastic interest rates and
the firm’s asset value. We assume the two processes are correlated. Using Ito’s
lemma we can derive the dynamic for the equity and the defaultable bond val-
ues and their instantaneous volatility. The default probability is linked to the
probability of the exercise of the underlying put and the instantaneous volatil-
ity of the equity is related to the market implied volatility derived under the
classical Black-Scholes-Merton framework.1 From the two last observations,
we set up a calibration procedure to estimate the parameters of our model
using market prices of CDS and market implied volatility related to equity
options.

The paper is organized as follows. Section 2 presents the theoretical frame-
work. In Section 3 we derive the market implied volatility of the defaultable
bond. Section 4 describes the model calibration using equity implied volatil-
ity and CDS spreads. Numerical analysis is provided in Section 5 and our
conclusions follow in Section 6.

2 The theoretical framework

In order to infer market implied volatilities for defaultable bonds, we apply
the Merton model [7], with stochastic interest rates under a risk-neutral prob-
ability measure Q. We assume that the short rate follows the Hull-White pro-
cess. Our approach involves using equity implied volatilities and CDS spreads
quoted by the market for a specific issuer to derive implied volatility for de-
faultable bonds under the proposed methodology.

According to the Merton model, we assume that the total value A(t) of
a firm’s asset at time t ≥ 0 follows a geometric Brownian motion under the
risk-neutral measure Q,

dA(t)

A(t)
= r(t)dt+ σAdZ(t), (1)

where A(t) > 0, σA is the asset’s volatility, and dZ(t) is a standard Brownian
motion.2 The short rate r(t) follows the Hull-White process,

dr(t) =
[
θ(t) − ar(t)

]
dt+ σrdW (t), (2)

1 See Black and Scholes (1973) [3] and Merton (1974) [7].
2 The Merton model assumes the follow: 1) there is an overly simple debt structure, 2)

there are no bankruptcy costs (i.e., the liquidation value equals the firm value), and 3) the
debt and equity are frictionless tradeable assets.
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where θ(t) is a deterministic function of time, a and σr are constants pa-
rameters, and dW (t) is a Brownian motion.3 The two Brownian motions,
dZ(t) and dW (t), are correlated such that dZ(t)dW (t) = ρdt, where ρ is the
instantaneous-correlation parameter between the asset’s value and the short
interest rate.

Under our proposed framework, the price of a risk-free zero-coupon bond
at time t, with maturity in T > t, is denoted by P (t, T ) and satisfies the
following stochastic differential equation under Q,

dP (t, T )

P (t, T )
= r(t)dt− σrDP (t, T )dW (t), (3)

where DP (t, T ) is the stochastic duration of the zero-coupon bond such that

DP (t, T ) = − 1

P (t, T )

∂P (t, T )

∂r(t)
=

1

a

[
1 − e−a(T−t)

]
. (4)

Consequently, σP = σrDP (t, T ) is the volatility of the zero-coupon bond.

As in the Merton’s model, we assume that the firm is funded by equity
E(t) and defaultable debt P̄ (t, T ). Debt consists of a single outstanding de-
faultable bond with face value K. At the maturity T , if the total value of the
asset is greater or equal than the debt, the latter is paid in full and the re-
mainder is distributed among shareholders. However, if A(t) < K then default
is deemed to occur: the bondholders exercise a debt covenant giving them the
right to liquidate the firm and receive the liquidation value in lieu of the debt
while shareholders receive nothing in this case.
From these simple assumptions, we see that shareholders have a cash flow at

T equal to
[
A(t)−K

]+
and so equity can be viewed as a European call option

on the firm’s assets.
Under the proposed framework, the value at time t of the call option formula
is,

E(t) = A(t)Φ(d1) − P (t, T )KΦ(d2), (5)

where Φ denotes the cumulative distribution function of the standard Gaussian
distribution and,

d1 =

log

[
A(t)
P (t,T )

1
K

]
+ 1

2Σ(t, T )2

Σ(t, T )
, (6)

d2 =

log

[
A(t)
P (t,T )

1
K

]
− 1

2Σ(t, T )2

Σ(t, T )
. (7)

3 An alternative formulation of the Hull-White model can be used where the short rate
is expressed as r(t) = α(t) + x(t). See Russo and Fabozzi (2016) for further details.
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Under stochastic interest rates, the variance to be considered in the option
pricing formula above is calculated as follows,

Σ(t, T )2 = σ2
A(T − t) +

σ2
r

a2

[
(T − t) +

2

a
e−a(T−t) − 1

2a
e−2a(T−t) − 3

2a

]
+

2ρ
σAσr
a

[
(T − t) − 1

a

(
1 − e−a(T−t)

)]
.(8)

At maturity T , the bondholder receives the following payoff,

min
[
A(T ),K

]
= A(T ) −

[
A(T ) −K

]+
= K −

[
K −A(T )

]+
. (9)

The risky debt is equivalent to a portfolio composed by a risk-free bond with
the same maturity and a long position in a put written on the value of the
firm’s asset with strike price equal to K,

P̄ (t, T ) = P (t, T ) −
[
P (t, T )KΦ(−Φ2) −A(t)Φ(−d1)], (10)

where P (t, T ) is calculated according to the closed-form solution for the zero-
coupon bond available under the Hull-White model[8].

3 The derivation of implied volatility for defaultable bonds

In this section, we describe how to infer market implied volatilities for default-
able bonds under the framework presented above. Consequently, calculations
we perform are provided in a risk-neutral setting.

Under the stochastic dynamics for A(t) and r(t), applying Ito’s lemma,
we obtain the following differential equation for G

[
A(t), r(t)

]
,

dG(t) =

[
∂G(t)

∂A(t)
A(t)r(t) +

∂G(t)

∂r(t)

[
θ(t) − ar(t)

]
+

1

2

∂2G(t)

∂A(t)2
A(t)2σ2

A +

1

2

∂2G(t)

∂r(t)2
σ2
r +

∂2G(t)

∂r(t)∂A(t)
A(t)ρσAσr

]
dt+[

∂G(t)

∂A(t)
σAA(t)

]
dZ(t) +

[
∂G(t)

∂r(t)
σr

]
dW (t). (11)

Both equity and defaultable bond are functions of A(t) and r(t). Consequently,
from (11),their differential equations are,

dE(t) = µE(t)dt+

[
∂E(t)

∂A(t)
σAA(t)

]
dZ(t) +

[
∂E(t)

∂r(t)
σr

]
dW (t), (12)

dP̄ (t, T ) = µP̄ (t)dt+

[
∂P̄ (t, T )

∂A(t)
σAA(t)

]
dZ(t) +

[
∂P̄ (t, T )

∂r(t)
σr

]
dW (t). (13)
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As the drift under the two stochastic processes above is unnecessary for our
purpose, we neglect the calculations focusing on the diffusion components.

We derive the sensitivities of equity and risky debt with respect to the under-
lying asset and to the interest rate. Using the terminology of the the option
Greeks we have that Delta and Rho respectively are as follows,

DeltaE =
∂E(t)

∂A(t)
= Φ(d1), (14)

RhoE =
∂E(t)

∂r(t)
= K(T − t)P (t, T )Φ(d2), (15)

DeltaP̄ =
∂P̄ (t, T )

∂A(t)
= Φ(−d1), (16)

RhoP̄ =
∂P̄ (t, T )

∂r(t)
= −P (t, T )DP (t, T ) −

[
−K(T − t)P (t, T )Φ(−d2)

]
. (17)

On the base of the equation (12) and using the Greeks, we can calculate σE
as:

σ2
E =

{[
∂E(t)

∂A(t)
σAA(t)

]
dZ(t) +

[
∂E(t)

∂r(t)
σr

]
dW (t)

}2

=

=
[
Φ(d1)σAA(t)

]2
+
[
σrK(T − t)P (t, T )Φ(d2)

]2
+ ρ
[
Φ(d1)σAA(t)

][
σrK(T − t)P (t, T )Φ(d2)].

(18)

Easily available from the market and commonly used from practitioners is the
implied volatility computed according to the well-known Black-Scholes-Merton
formula. According to this formula, the process for the equity is

dE(t)M = µE(t)E(t)Mdt+ σME E(t)MdZ(t). (19)

If the firm’s equity is traded in the markets and European options on eq-
uity are quoted according to the standard Black-Scholes-Merton formula, we
can observe the market value E(t)M and the equity’s implied volatility σME .
Consequently, combining (18) and (19), the following relation must hold,

E(t)MσME = σE . (20)

In establishing the relation above, we refer to the approach proposed by KMV
Corporation.4 However, in a different manner with respect to the KMV ap-
proach, the solution we propose is derived in a stochastic interest rates envi-
ronment. Moreover, under the proposed model the equity value is an output of
the model as it is derived across the calibration process while under the KMV

4 See Crosbie and Bohn (1997) for further details.
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model E(t)M is observed in the market.

We apply the same approach from (14) to (19) in order to derive the
market implied volatility for defaultable bonds. Denoting by σP̄ the volatility
of the defaultable zero-coupon bond, we have that,

σ2
P̄ =

{[
∂P̄ (t, T )

∂A(t)
σAA(t)

]
dZ(t) +

[
∂P̄ (t, T )

∂r(t)
σr

]
dW (t)

}2

=

=
[
Φ(−d1)σAA(t)

]2
+
[
− σrP (t, T )DP (t, T ) + σrK(T − t)P (t, T )Φ(−d2)

]2
+

+ ρ
[
Φ(−d1)σAA(t)

][
− σrP (t, T )DP (t, T ) + σrK(T − t)P (t, T )Φ(−d2)].

(21)

On the basis of the results obtained in the previous section, we also are
able to calculate the market implied volatility for defaultable bonds. Denoting
such volatility by σ̂P̄ (t, T ), we have that,

P̄ (t, T )σ̂P̄ = σP̄ , (22)

where P̄ (t, T ) is the value of a defaultable zero-coupon bond for the maturity
T . Finally, the market implied volatility for defaultable bonds can be calculated
as

σ̂P̄ =
σP̄

P̄ (t, T )
. (23)

It is important to highlight the fact that σME , the equity’s implied volatility,
is quoted by the market while σ̂P̄ (t, T ) is the market implied volatility of
a defaultable bond derived according to the proposed approach. In order to
calculate σ̂P̄ (t, T ), it is needed to perform the calibration procedure described
in the following section.

4 Calibration of the model

In order to perform the calibration process of the proposed modelfor a specific
date, the following information must be obtained:5

– term structure of risk-free interest rates;
– quotation of swaption to be used for the calibration of the Hull-White

model;
– at-the-money (ATM) equity implied volatility (σME );
– CDS par spread related to the maturity Tn denoted by SM (t, Tn);
– market consensus for the recovery rate (RR) embedded in the CDS quo-

tations and the relative loss given default (LGD) with RR = 1 − LGD.

5 For all quantities observed in the market we use the suffix M .
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In the first step, the Hull-White model parameters (a, σr) are calibrated. The
objective of calibration is to choose the model parameters in such a way that
the model prices are consistent with the market prices of simple instruments. In
order to derive the volatility parameters, we use at-the-money (ATM) swap-
tions quoted by the market. The calibration to swaptions is performed by
choosing the values of the parameters so as to minimize the square root of
the sum of the squares of the relative differences between market and model
swaption prices,

arg min
a,σr

√√√√ N∑
i=1

(
Swpti − SwptMi

SwptMi

)2

, (24)

where SwptMi is the value of the swaption quoted by the market and Swpti
represents the swaption’s theoretical price under the Hull-White model. The
number of calibrated instruments is N .

The second step involves calibrating the Merton model parameters (A(t)
and σA) and the correlation coefficient (ρ).
An important result under the Merton model is that the probability of default
of the firm (PD), fixed at time t for the maturity Tn, is such that

PD(t, Tn) = Φ(−d2), (25)

where d2 is calculated according to (7). Therefore, under the Merton model, it
is possible to derive the firm’s probability of default by looking at the asset’s
volatility and other balance sheet items.
In order to calibrate the model, we need to derive an estimate of the probability
of default implied by the market on the time horizon Tn. This probability,
denoted by PDM (t, Tn), is derived using CDS quotations. For this scope, we
need to establish a CDS pricing model using as input the term structure of the
risk-free interest rates, the value of the quoted CDS spread, and the recovery
rate.
Consider a CDS written on a single name with a set of n annual payments at
the discrete times T1, T2, ..., Ti, ...Tn. Assuming (1) the fair value of the CDS
is the difference between the premium leg and the protection leg and (2) the
CDS spread is quoted at par, we have that,

N∑
i=1

PM (t, Ti)
[
1 − PDM (t, Ti)

]
SM (t, Tn)τ(Ti−1, Ti) −

N∑
i=1

PM (t, Ti)
[
PDM (t, Ti) − PDM (t, Ti−1)

]
LGD = 0, (26)

where PM (t, Ti) is the value of a risk-free zero-coupon bond quoted in the
market and τ(Ti−1, Ti) denotes the time measure between Ti−1 and Ti com-
puted as a fraction of the year. For simplicity, we have assumed that payments
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by the CDS protection seller are postponed to the first discrete time Ti.

Assuming a time-inhomogeneous Poisson process,6 we are able to com-
pute numerically the deterministic but time-varying default intensity for the
maturity Tn denoted by λM (t, Tn). Such simple calculation is established on
the basis of the following relationship,

PSM (t, Tn) = e−λ
M (t,Tn)τ(t,Tn), (27)

where PSM (t, Tn) is the survival probability such that PSM (t, Tn) = 1 −
PDM (t, Tn).
A numerical optimization procedure allows us to derive the value of the default
intensity by simply imposing that the fair value of a CDS contract has to be
equal to zero at the valuation date. This procedure also allows us to derive
the default probability PDM (t, Tn).

Consequently, we can calculate the price of the defaultable zero-coupon
bond denoted by P̄M (t, Tn) and implied by the CDS market such that,7

P̄M (t, Tn) = PM (t, Tn)PSM (t, Tn) + PM (t, Tn)PDM (t, Tn)RR. (28)

At this point, the remaining model parameters can be calibrated: the as-
set’s value A(t), the asset’s volatility (σA), and the correlation coefficient (ρ).
The optimization procedure involves minimizing the sum of the squares of (1)
the difference between the equity volatility implied by the market and the eq-
uity volatility according to the proposed model and (2) the difference between
the default probability implied by the market (by means of CDS quatations)
and the default probability according to the Merton model with stochastic
interest rates.

In order to perform the model calibration, the accounting equation has
to hold,

Â(t) = P̄M (t, Tn) + Ê(t), (29)

where Â(t) represent the total asset’s value of the firm while the liability side
is composed by the sum of P̄M (t, Tn) and Ê(t). As balance sheet amounts con-
sidered in our model are conventional, we standardize both asset and liability
items at the valuation date. Consequently, we assume that Â(t) = 100% while
both P̄M (t, Tn) and Ê(t) are represented as a percentage of the total asset.

6 See Lando (1998).
7 An alternative approach could be adopted using, directly, prices of zero-coupon default-

able bonds (if they exist for the relevant issuer) in place of CDS quotations. Our choice to
use CDS in place of bonds derive by the fact that CDS are quoted in a standardized and
liquid market while defaultable bond quotations are not always available for the desired
maturity and sometimes they are not liquid.
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Finally, the optimization procedure is performed according to the following
expression,

arg min
A(t),σA,ρ

{[
σME − σE

]2
+
[
PDM (t, T ) − PD(t, T )

]2}
. (30)

Once we have estimated Â(t), σ̂A, and ρ̂, we can calculate σ̂P̄ (t, Tn) according
to the equation (23).

5 Numerical results

The model calibration is performed looking at the market data quoted as of 15
June 2017 and applying our model to three issuers: Bank of America (BoA),
Microsoft, and General Electric (GE).8

First, we derive the initial term structures of interest rates from USD
traded instruments quoted in the cash, forward rate agreement/futures, and
swap markets. We applied the bootstrapping technique to derive the spot rates
from the traded market instruments for the reference date.

The Hull-White model calibration is performed using USD swaption prices
quoted at the same date. We consider the 10-year ATM co-terminal swaptions.
This is a common practice adopted to calibrate interest rate models (in part
due to hedging reasons) which consists of selecting swaptions with a fixed co-
terminal (maturity and tenor). The algorithm proposed by Russo and Fabozzi
(2016) was adopted for calibration purposes. The calibration results for the
two parameters of the Hull-White model are â = 0.0577 and σ̂r = 0.0104.

In the second step, for each of the three issuers (BoA, Microsoft, and GE)
we collect market quotations for equity implied volatilities and CDS. We refer
to maturities of 5 and 10 years. In addition, in all cases considered, we assume
K = 1 and RR = 40% on the base of the market conventions related to the
CDS quotations. Using the Hull-White parameters calibrated in the first step,
we performed the second calibration step. Tables 1 and 2 show the results of
the calibration procedure.

In Table 1, we report the simplified balance sheet for the three names
considered at the valuation date. Table 2 shows market data used as input for
the calibration and the market implied volatility of defaultable zero-coupon
bonds, denoted by σ̂P̄ (t, Tn), respectively with maturity 5 and 10 years.

8 Market data were obtained from Datastream.
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Table 1 Simplified balance sheet for each issuer considered in the analysis.

Issuer Â(t) P̄M (t, T ) Ê(t)

Bank of America 100,0% 34,1% 65,9%
Microsoft 100,0% 77,9% 22,1%

General Electric 100,0% 83,3% 16,7%

a Maturity of 5 years

Issuer Â(t) P̄M (t, T ) Ê(t)

Bank of America 100,0% 26,1% 73,9%
Microsoft 100,0% 70,6% 29,4%

General Electric 100,0% 73,4% 26,6%

b Maturity of 10 years

Table 2 Merton’s model calibrated parameters as of 15 June 2017.

Issuer SM (t, Tn) σM
E σ̂A ρ̂ σ̂P̄

Bank of America 0,54% 36,0% 24,8% -50,2% 5,0%
Microsoft 0,29% 18,9% 6,7% -78,7% 4,6%

General Electric 0,31% 14,6% 5,5% -89,9% 4,6%

a Maturity of 5 years

Issuer SM (t, Tn) σM
E σ̂A ρ̂ σ̂P̄

Bank of America 0,95% 36,0% 28,6% -50,0% 9,0%
Microsoft 0,49% 18,9% 8,1% -72,1% 7,9%

General Electric 0,71% 14,6% 8,7% -87,5% 8,1%

b Maturity of 10 years

6 Conclusion

In this paper, we propose a methodology to infer the market implied volatili-
ties for defaultable bonds using observed market equity implied volatilities and
CDS spreads quoted by the market in relation to a certain issuer. The theo-
retical framework we propose is based on the Merton’s model under stochastic
interest rates where the short rate is assumed to follow the Hull-White model
which is correlated with the asset.
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In this framework, the equity and the defaultable bond are functions of two
sources of risk: the stochastic interest rates and the value of asset of the firm.
Using Ito’s lemma we can derive the dynamic for the equity and the default-
able bond and their instantaneous volatility.
The default probability is linked to the probability of the exercise of the under-
lying put and the instantaneous volatility of the equity is related to the market
implied volatility derived under the classical Black-Scholes-Merton framework.
From the two last observations, we set up a calibration procedure to estimate
the parameters of our model using market prices of CDS and market implied
volatility related to equity options. The estimated parameters are finally used
to derive the implied volatility of defaultable bonds. Such market implied
volatility, calibrated according to the proposed model, could be used to evalu-
ate options having as underlying risky bonds, i.e. callable bonds or other types
of credit-risk sensitive financial instruments.
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