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Abstract

In this paper we describe a novel approach to modelling marked point
patterns based on recent computational developments for Bayesian inference.
We use the flexible class of log-Gaussian Cox Processes to model the intensity
of the different observed point patterns. We propose several types of models
to account for spatial variability and provide a modelling framework that
allows for a common spatial component to all point processes (regardless of
the mark) and also for a mark-specific spatial components. In this way, we
provide a method of assessing whether all processes share a common spatial
distribution or there are specific features.

In order to fit these models, we have resorted to the Integrated Nested
Laplace Approximation (INLA) method and the Stochastic Partial Differen-
tial Equation (SPDE) approach. This defines a connection between point
process and geostatistics, as we model a point pattern by means of a contin-
uous spatial process.

Our new approach to spatial modelling is applied to a massive dataset
on the occurrence of tornados in the United States. We have divided the
tornados in the 1950-2013 period according to their magnitude and fitted
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our proposed models.

Keywords: INLA, Matèrn spatial covariance function, Tornados

1. Introduction

Marked point patterns (Gelfand et al., 2010, Chap. 21) play an important
role in the analysis of different natural phenomena. They have been used,
for example, in veterinary epidemiology, in ecology, spatial disease mapping
and in different applications where spatial locations are supplied with extra
information - i.e. marks or point types - which could be related to the spatial
point pattern. In doing so, a number of different approaches have been
followed. For example, Diggle et al. (2005) analyse the spatial distribution of
different strains of bovine tuberculosis (BTB) in the United Kingdom using a
multivariate point process. Here, the marks are associated to different BTB
genotypes that may have different spatial distributions. A different spatial
Poisson process is fit to each pattern using kernel estimation, and a Monte
Carlo test (based on random labelling) is proposed to assess equal spatial
distribution of the different BTB genotypes.

Liang et al. (2009) analyze colon and rectum cancer data by taking into
account spatially-referenced and non-spatial covariates. One of the latter
is represented by cancer type which is considered as the mark of the point
pattern. In the class of log-Gaussian Cox processes, they consider a model
with mark-varying covariate coefficients and spatial continuos random pro-
cesses. The estimation is performed by Markov Chain Monte Carlo (MCMC)
combined with a knot-based predictive process approximation.

In the ecological context, Illian et al. (2013) model the locations of a
plant species together with health status, which is represented by a cate-
gorical mark and is assumed to depend on the spatial pattern through a
shared spatial effect. In particular, they jointly fit the spatial pattern and
the marks with a bivariate model with Poisson-Binomial distributions using
the Integrated Nested Laplace Approximation (INLA) approach. This work
is extended to the case of multiple marks in Illian et al. (2012a) with an
ecological application for studying the koala-eucalyptus relationship.

Following these ideas, we have developed a novel approach for the analysis
of marked point patterns using recent statistical developments that provide
a powerful computational advantage for the analysis of large point patterns.
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In particular, we model each point type using a log-Gaussian Cox process
(LGCP, see, for example, Diggle et al., 2013) using a smooth spatial term
of the Matèrn family which is fitted using the Stochastic Partial Differential
Equation approach (SPDE, Lindgren et al., 2011) and fitted by means of the
Integrated Nested Laplace Approximation method (INLA, Rue et al., 2009).
This is inspired by the disease mapping models with shared components for
two different diseases (Knorr-Held and Best, 2001), but we have extended
these models to several patterns.

A critical issue connected with the analysis of point patterns is the com-
putational burden that arises when the observed number of points is large
(see, for example, Illian et al., 2012b). If the point process is marked, then
this computational burden increases as models become more complex. In
a Bayesian context, these prohibitive computational costs are mainly due
to MCMC simulation methods which can be very time-consuming when the
number of unknown parameters and latent process is high and/or the amount
of available data is huge. In this work we avoid MCMC by employing the
INLA approach through the R-INLA package (http://www.r-inla.org/).
INLA is an algorithm for Bayesian inference which is especially designed for
latent Gaussian hierarchical models (a class of models which includes also
LGCPs) and, compared to MCMC, it provides accurate results in shorter
computing time. Moreover, INLA can be combined with the SPDE approach
to overcome the so-called “big n problem” (Jona Lasinio et al., 2012) which
occurs in geostatistics. The strength of SPDE stems from representing a con-
tinuos spatial Gaussian field with Matérn covariance function as a discrete
spatial random process (i.e. a Gaussian Markov random field) which enjoys
nice computational properties and leads to fast inference.

In the past few years the number of papers reporting usage and appli-
cations of the INLA-SPDE method has increased considerably in several
scientific fields, e.g. Blangiardo et al. (2013) for spatial and spatio-temporal
models for disease mapping and geostatistics, Bivand et al. (2014) for spatial
econometrics models, Grilli et al. (2014) for binary logit mixed models, Muff
et al. (2014) for measurement error models, Ingebrigtsen et al. (2014) for
non-stationary geostatistical models, Cameletti et al. (2013) for air pollution
modeling, Cosandey-Godin et al. (2014) for fisheries bycatch studies, Papoila
et al. (2014) for modeling stomach cancer incidence, Musenge et al. (2013)
for zero-inflated spatio-temporal models with child mortality data, Saez et al.
(2012) for space-time interpolation of daily air temperatures.

We illustrate our new modelling approach using tornado data from the
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United States. This is a quite huge dataset including 56908 tornado trajec-
tories registered from 1950 to 2013. In our application we assume that the
point pattern mark is given by the tornado magnitude as measured in the
Fujita Tornado Damage Scale with categories from 0 to 5 (with 0 being the
weakest tornado type and 5 the strongest). By assuming one of the marks
as the reference pattern, we set a baseline for the spatial distribution of tor-
nadoes. This simple model is then extended to include mark-specific spatial
patterns and covariates. Hence, we can use model comparison methods to
assess differences in the spatial distribution of tornadoes based on their scale
and the influence of environmental covariates.

This paper is structured as follows. Section 2 introduces marked point
patterns and some methods for their analysis. Section 3 deals with our
methodological approach based on SPDE. Next, Section 4 develops an ex-
ample on data from tornados in the United Stated. Finally, we provide a
short discussion and some important remarks in Section 5.

2. Analysis of marked point patterns

2.1. Summary of relevant models

Given a point pattern that occurs in a bounded region Ω ⊂ R2, we will
assume that the observed pattern is a realisation of a log-Gaussian Cox Pro-
cess (LGCP, Møller et al., 1998; Simpson et al., 2013; Diggle et al., 2013), so
that the intensity at location s ∈ Ω is given by

log(λ(s)) = ξ(s), (1)

where ξ(s) is a stationary Gaussian random field. Conditioning on a realisa-
tion of ξ(s), the LGCP is an inhomogeneous Poisson process with intensity
λ(s). Hence, the observed number of points in any region D ⊆ Ω is dis-
tributed as a Poisson with mean

∫
D λ(s)ds.

For the case of a marked point pattern, we will assume that we have a
categorical mark, so that the point pattern can be split into K + 1 groups.
We will represent the intensities of each group by λj(s), j = 0, . . . , K. The
number of observations attached to each mark will be denoted by nj, j =
0, . . . , K. In addition, other statistics could be computed for these groups,
such as, the cross K-function to assess clustering of one pattern as compared
to another.

Diggle et al. (2005) describe the use of marked point patterns for the anal-
ysis of the spatial distribution of different genotypes of bovine tuberculosis
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in the United Kingdom. They assume a different intensity for each pattern,
which is estimated using non-parametric methods, and propose a test for
equal spatial distribution. Furthermore, they suggest the use of relative risk
surfaces to compare the spatial distribution of the different types using

ρjk(s) =
λj(s)

λk(s)
, ∀j 6= k. (2)

Finally, conditional probability surfaces can be defined for each of the point
types to estimate the probability that a point at a given location is of a
particular type. These type-specific probabilities can be computed as

pj(s) =
λj(s)∑K
k=1 λk(s)

, j = 0, . . . , K. (3)

Diggle et al. (2005) use non-parametric methods for the estimation of the
intensities and type-specific probabilities.

Similarly, Diggle et al. (2007) focus on a two-type point pattern (cases
and controls) and propose the estimation of the intensity of the cases (λ1(s))
by modulating the intensity of the controls (λ0(s)) using a set of covariates,
so that

λ1(s) =
n1

n0

λ0(s) exp(α + βx) (4)

where x is a vector of covariates and β their associated coefficients. Diggle
et al. (2007) use this modulated intensity to propose a test for clustering
of the cases as compared to the controls and accounting for the covariates.
In this particular problem with two point types only, the coefficients can be
estimated using a typical logistic regression on the marks and the covariates.

Diggle et al. (2005, 2007), Møller and Waagepetersen (2007) and Bivand
et al. (2013), among others, suggest that other options are available to esti-
mate the intensity of a point pattern. For example, the intensity of the cases
can be modelled by means of a smooth spatial term ξ(s), so that it becomes

λ1(s) =
n1

n0

λ0(s) exp (ξ(s)) . (5)

Note that ξ(s) can take different forms, such as a smoothing spline, polyno-
mial on the coordinates, etc. (for instance, see the examples in Bivand et al.,
2013).
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2.2. Our new proposal

For the analysis of marked point patterns we combine these two ideas to
develop a new approach to estimating and testing for the intensity of marked
point patterns. We will consider one of the marks as the reference pattern
and define its intensity λ0(s) using a smooth term, such as the one provided
by the SPDE approach that we describe in Section 3.2. Hence, this intensity,
in the log-scale, will become

log(λ0(s)) = α0 + ξ0(s) (6)

with α0 an intercept and ξ0(s) a smooth term based on SPDE. It is worth
noting that other additive terms (e.g., covariates) can be included in the right
hand side of Equation (6) to account for other linear or non linear effects. The
intensities λj(s) for the other marks (j = 1, . . . , K) can be defined similarly.

In order to provide a way of estimating the intensity and testing for any
particular differences in the patterns, we will define the intensity of the other
marks using λ0(s) as a baseline. If all marks have the same spatial pattern
it is known that the intensities can be written down as

λj(s) =
nj
n0

λ0(s), j = 1, . . . , K. (7)

This can be extended to propose a shared component model (Knorr-
Held and Best, 2001) to account for an overall spatial trend (common to all
patterns) plus a specific spatial process (of a single pattern), as follows:

log(λj(s)) = log

(
nj
n0

)
+ α0 + ξ0(s) + ξj(s), j = 1, . . . , K. (8)

Note that log
(
nj
n0

)
is an offset and that α0 and ξ0(s) are estimated solely

on the baseline point pattern. The term ξj(s) can be any smooth term but
in our setting it is based on a SPDE and it is in fact tested for any spatial
departure from the baseline. If this term is equal to zero then the reference
and the j-th pattern will have the same spatial distribution. Otherwise, they
will not. This new term ξj(s) will also help us to determine the regions where
there is a departure from the baseline. Testing for the significance of ξj(s) is
explained in Section 2.3.

Finally, the model in Equation (8) can be extended to account for relevent
covariates. This will lead to the following expression for the log-intensity:

6



log(λj(s)) = log

(
nj
n0

)
+ α0 + βx(s) + ξ0(s) + ξj(s), j = 1, . . . , K. (9)

Other types of effects can be considered as well, such as, temporal trends but
this will probably make model fitting more complex.

Also, the previous model can be simplified and change the term log
(
nj
n0

)
+

α0 by a pattern-specific intercept αj as

log(λj(s)) = αj + βx(s) + ξ0(s) + ξj(s), j = 1, . . . , K. (10)

All models that we will discuss in this paper are based on the previous one.
The models can be simpler versions that do not include covariates and/or
pattern-specific spatial effects. Hence, we will fit the following joint model
for a given j = 1, . . . , K:

log(λ0(s)) = α0 + βx(s) + ξ0(s)

log(λj(s)) = αj + βx(s) + ξ0(s) + ξj(s). (11)

Note that fitting this model requires a two-stage approach. First, ξ0(s)
needs to be fitted from the baseline point pattern alone and then it must be
plugged-in to the estimation of log(λj(s)). Because R-INLA is not capable
of this type of modeling, we will use an estimate of the terms in log(λ0(s))
so that we will be fitting

log(λj(s)) = log

(
nj
n0

)
+ α̂0 + β̂x(s) + ξ̂0(s) + ξj(s) =

= log

(
nj
n0

)
+ log(λ̂0(s)) + ξj(s) =

= log

(
nj
n0

λ̂0(s)

)
+ ξj(s). (12)

for the other point patterns. Also note that the first term in the last line of
the previous equation is simply an offset in the model. Note that λ̂0(s) can
be easily obtained at any grid location and at the other tornado locations by
making a prediction once we have fitted the model.
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Although this new model is just an approximation to the actual model,
it will provide a convenient way of separating the estimation of the large

scale variation - measured by log
(
nj
n0
λ̂0(s)

)
- from local effects (measured

by ξj(s)). Diggle et al. (2007) discuss the issue of dissentangling first and
second-order variation and how it is not possible to do so unless we impose

further assumptions. We have done so when including log
(
nj
n0
λ̂0(s)

)
in the

model.

2.3. Testing for significance of the spatial effects

In the models that we have described so far, the different spatial effects
that appear are estimated using SPDEs. In order to assess whether a spatial
effect is significantly different from zero we could consider the credible inter-
vals provided at locations on a grid, and whether zero is contained in ther
interval. From this, we could produce a map highlighting the points in the
grid where the spatial effect is different from zero.

A similar approach can be followed if the interest is in comparing the
spatial distribution of two types of patterns. Now, we can take the different
between two SPDEs and make inference on the resulting effect, i.e., inference
is based now on the difference ξi(s)− ξj(s), i 6= j, i, j = 1, . . . , K. Significant
departures from zero will indicate regions where the spatial variation of the
patterns is different.

3. INLA and SPDE for spatial point pattern

For making inference with the LGCP introduced in Section 2, we as-
sume that the Gaussian random field of Equation (1) is defined by a Matérn
covariance function given by

Cov(ξ(si), ξ(sj)) = Cov(ξi, ξj) =
σ2

Γ(λ)2λ−1
(κ||si − sj||)λKλ (κ||si − sj||) ,

(13)
where ||si − sj|| is the Euclidean distance between two generic locations
si, sj ∈ Ω and σ2 is the marginal variance. The term Kλ(·) denotes the
modified Bessel function of second kind and order λ > 0, which measures
the degree of smoothness of the process and is usually kept fixed due to poor
identifiability. Conversely, κ > 0 is a scaling parameter related to the range
r, i.e., the distance at which the spatial correlation becomes almost null.
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Typically, the empirically derived definition for the range is r =
√

8λ
κ

(see
Section 2 in Lindgren et al., 2011), with r corresponding to the distance at
which the spatial correlation is close to 0.1, for each λ ≥ 1/2.

Given the point pattern data y = (y(s1), . . . , y(sN)) the log-likelihood is
given by

log (p(y | ξ)) = |Ω| −
∫

Ω

exp(ξ(s))ds+
N∑
i=1

ξ(si) (14)

which is an intractable function due to the presence of a stochastic inte-
gral. The usual approach for inference (Diggle et al., 2013; Møller and
Waagepetersen, 2007) is based on the construction of a fine regular lattice
defined over the spatial domain Ω and on the count of number of points yij
for each grid cell sij: this gives rise to independent Poisson random variables
with mean Λij depending on the Gaussian field ξ(s) through the relationship
Λij =

∫
sij
λ(s)ds. This integral can be approximated by Λij ≈ |sij| exp(ξij),

where |sij| is the cell area and ξij is the value of the zero-mean multivariate
Gaussian random variable ξ, whose dimension is given by the grid resolution,
with (dense) covariance matrix defined by the Matérn function of Equation
(13).

3.1. Integrated Nested Laplace Approximation

In the Bayesian framework, inference for this kind of modeling is usu-
ally performed through MCMC methods but giving rise to computationally
challenging tasks, as discussed in Diggle et al. (2013). Recently, a compu-
tationally effective alternative to MCMC has been introduced by Rue et al.
(2009) with the name of Integrated Nested Laplace Approximation (INLA).
INLA, which is not a simulation-based algorithm, is designed for the class of
latent Gaussian models, where the response variable yi observed for the i-th
unit is assumed to belong to a distribution family (not necessarily part of
the exponential family) characterized by a parameter φi (usually the mean)
which is linked to a structured additive predictor ηi through a link function
g(·), such that g(φi) = ηi. A general way for specifying the linear predictor
ηi is the following

ηi = β0 +
M∑
m=1

βmxmi +
L∑
l=1

fl(zli), (15)
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where β0 is a scalar representing the intercept, the coefficients β = (β1, . . . , βM)
quantify the (linear) effect of some covariates x = (x1, . . . ,xM) on the re-
sponse, and f = {f1(·), . . . , fL(·)} is a collection of functions defined in terms
of a set of covariates z = (z1, . . . ,zL). The terms fl(·) can assume different
forms such as smooth and non-linear effects of covariates, time trends and
seasonal effects, random intercept and slopes as well as temporal or spatial
random effects. For this reason, the class of latent Gaussian models can
accommodate a wide range of models including the LGCP introduced in
Section 2. By default, a Gaussian prior is assigned to α, β and f , and then
all the latent Gaussian components are collected in the vector of parameters
(or latent field) θ = {α,β,f}, which is a function of some hyper-parameters
ψ = (ψ1, . . . , ψK).

The objectives of Bayesian inference are the marginal posterior distribu-
tions for each element of the parameter and hyper-parameter vector denoted
by p(θi | y) and p(ψk | y), respectively. INLA provides accurate approxima-
tions to these distributions in a short computing time. More details regarding
INLA can be found in Martins et al. (2013), Simpson et al. (2012a), Simpson
et al. (2012b) and Gómez-Rubio et al. (2014).

3.2. Fitting spatial point patterns with SPDE

Illian et al. (2012a) and Illian et al. (2013) use INLA for fitting com-
plex spatial point process and describe some applications regarding ecological
data. In particular, they fit a log-Gaussian Cox model with the grid-based
approach described previously, where the observed number of points for each
cell sij is distributed as

yij | ηij ∼ Poisson (|sij| exp(ηij)) , (16)

where ηij is the linear predictor of Equation (15) which includes a spatially
structured effect for modeling the discrete spatial process at the grid level
(i.e. a conditional autoregressive model) which approximates the continuous
spatial process ξ(s). In this paper instead, we follow the alternative inference
strategy adopted in Simpson et al. (2013), where the Gaussian field ξ(s)
is approximated through the SPDE method introduced by Lindgren et al.
(2011). A similar approach has been used also in Paula et al. (2013) for
modeling annual wildfire risk.

Briefly, the SPDE approach represents the continuous Matérn Gaussian
field as a discrete indexed Gaussian Markov random field (GMRF, Rue and
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Held, 2005), which is characterized by a sparse precision matrix and enjoys
computational benefits in terms of fast inference. This representation is based
on the following finite combination of piecewise linear functions defined over
a triangulation of the domain Ω with G vertexes

ξ(s) =
G∑
g=1

ϕg(s)ξ̃g , (17)

where {ϕg} is the set of deterministic basis functions and {ξ̃g} are zero-mean
Gaussian distributed weights. Lindgren et al. (2011) show that the vector
of basis weights ξ̃ = (ξ̃1, . . . , ξ̃G) is a GMRF with sparse precision matrix
depending on the Matérn parameters κ and σ2, for α = 1, 2, 3, . . . where
α = λ+ 1 (recall that λ is the smoothness parameter).

Given the SPDE representation the log-likelihood in Equation (14) can
be rewritten as

log
(
p
(
y | ξ̃

))
≈ |Ω| −

p∑
j=1

α̃j exp

(
G∑
g=1

ϕg(s̃j)ξ̃g

)
+

N∑
i=1

G∑
g=1

ϕg(si)ξ̃g, (18)

where the second term on the right hand side derives from a numerical ap-
proximation of the stochastic integral by using p integration points s̃1, . . . , s̃p
with weights α̃1, . . . , α̃p. As shown in Simpson et al. (2013), this log-likelihood
can be referred to the standard Poisson case. In particular, by introducing
some fake observations (equal to 0) for the p integration points and expo-
nentiating Equation (18), we obtain the following likelihood function

p
(
y
∣∣ ξ̃) ≈ c

p+N∏
i=1

ηyii exp (−αiηi) (19)

which is the product of p+N conditionally independent Poisson distributions
with mean equal to αiηi. In Equation (19), c is a constant, yi is the i-th
element of the observation vector y defined by assigning 0 for each integration
point and 1 to the actual N locations, as follows:

y = (0, . . . , 0︸ ︷︷ ︸
p times

, 1, . . . , 1︸ ︷︷ ︸
Ntimes

).

In the same way, αi is the generic element of the weight vector α defined as

α = (α̃1, . . . , α̃p, 0, . . . , 0︸ ︷︷ ︸
Ntimes

),
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and finally ηi comes from the following vector

η = exp

((
A1ξ̃

)′
,
(
A2ξ̃

)′)′
,

where A1 and A2 are the (p × G)- and (N × G)-dimensional matrices with
elements ϕg(s̃i) and ϕg(si), respectively. In Section 4.3 we will describe how
to implement this using INLA and its associated R package R-INLA.

4. Example: Tornado in the United States

4.1. Introduction

The Storm Prediction Center provides accurate information on the occur-
rence of tornados in the United States of America. We will use this dataset1

to illustrate the use and application of the new approach described before.
The dataset is available as a shapefile that contains the tornado trajectories
from 1950 to 2013. We will focus on the strength of the tornado as mea-
sured in the Fujita Tornado Damage Scale2. This scale divides the tornados
in 6 groups from 0 to 5, with 0 being the weakest tornado type and 5 the
strongest.

This dataset has been previously analysed by several authors. For ex-
ample, Karpman et al. (2013) propose a number of spatio-temporal models,
implemented using a nonparametric kernel-based approach, to study tornado
point pattern by accounting for topographic variation and performing model
selection using the Akaike information criterion (AIC). Elsner et al. (2013)
propose a Poisson point process on the non-violent tornadoes to predict vi-
olent tornados during springtime across the US central Great Plains. In ad-
dition to predict violent tornadoes using the nearest distance to non-violent
tornado, they correct for population bias (i.e. there are fewer tornado reports
in lower populated areas) by including the distance to the nearest city. In
Elsner et al. (2014) the tornado intensity is assumed to be distributed like
a Weibull with log-mean depending linearly on the path length and width
which are strongly correlated to the Fujita categories. The relationship of the
length and width of tornadoes to the intensity is also analyzed in Akers et al.
(2014) by means of a multinomial logistic model (without spatial random

1Available from http://www.spc.noaa.gov/gis/svrgis/zipped/tornado.zip
2See http://www.spc.noaa.gov/faq/tornado/f-scale.html
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effects) to calculate the odds that a particular tornado with a given Fujita
category occurs. Wikle and Anderson (2003) consider a Bayesian hierarchi-
cal spatio-temporal model on the tornado dataset based on count data. In
particular, they employ a zero-inflated Poisson likelihood in order to model
the excess of zeros. The mean of the Poisson process is then modelled using
different spatial and non-spatial random effects.

We have used the R software (R Core Team, 2014) to conduct all the anal-
ysis described in this section. We will only consider tornados whose starting
point has occurred inside the Contiguous United States. Boundaries have
been obtained from the U.S. Census Bureau (http://www.census.gov/) at
the state level and then internal boundaries dissolved by means of R package
maptools (Bivand and Lewin-Koh, 2014). This leaves a total of 56908 torna-
dos in 6 categories, according to the magnitude of the tornado. The number
of tornadoes ranges from 26088 (scale 0) to 59 (scale 5), and the number
decreases monotonically as the scale number increases. The locations of the
starting points of the tornados are plotted in Figure 1 according to their
intensity. It can be seen that most of the tornados occur in the central and
eastern part of US. Moreover, while some non-violent events (with magni-
tude lower than 4) take place in western areas, destructive tornados (with
magnitude 4 or 5) are located just in the midwest and in the south.

4.2. Modeling details

We have fitted several of the models described in Section 2 to the tornado
data. First of all, we have considered a separate model for each tornado type
with 6 different intensity models (named MODEL 1A) given by

log(λj(s)) = αj + ξj(s), j = 0, . . . , 5 (20)

where αj is the intercept and ξj(s) is a spatial term that we have modelled
using a SPDE latent effect. We extend this case by including also a linear
effect on the altitude, giving rise to the following model (named MODEL
1B):

log(λj(s)) = αj + βjx(s) + ξj(s), j = 0, . . . , 5. (21)

Note that since these models are fitted independently for each type of point
pattern, we allow the covariates’ coefficients to be different for different values
of j.
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  MAGNITUDE 0   MAGNITUDE 1

  MAGNITUDE 2   MAGNITUDE 3

  MAGNITUDE 4   MAGNITUDE 5

Figure 1: Map of the tornado locations according to the magnitude.

Then we consider the case, denoted by MODEL 2A, given by Equa-
tion (12) but with β̂ = 0 and ξj(s) = 0. This means that the tornados
with magnitude 0 represents the baseline point pattern which is shared by
all the other marks. The same model is then implemented by including the
covariate term, as stated in Equation (12), and it will be denoted as MODEL
2B. So both models can be expressed as

log(λj(s)) = log

(
nj
n0

)
+ log(λ̂0(s)), j = 1, . . . , K (22)

with the difference that MODEL 2A does not include the term on the co-
variates in λ̂0(s).

The last models we fit (MODEL 3A and 3B) are given by Equation (12),
that may include covariates and specific spatial variation through ξj(s), to
assess different spatial distributions for each magnitude. As in the previ-
ous cases, MODEL 3B is MODEL 3A plus a linear term on the covariates
(altitude, in our case).

All models are compared by using the Deviance Information Criterion
(DIC) given by the sum of two components, one for quantifying the model fit
and the other for evaluating the complexity of the model (the latter measured
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through the effective number of parameters). Note than since models 2A and
2B are based on models 1A and 1B, respectively, fitted for the baseline point
pattern we have not included the DIC.

4.3. Implementation details

To estimate models of type 1A/1B, 2A/2B and 3A/3B introduced in the
previous section, we have used the SPDE approach discussed in Section 3.2
and implemented through R-INLA (Rue et al., 2014; Lindgren and Rue, 2015).
In particular, the mesh used to compute the SPDE is available in Figure 2.
It covers the study area at a reasonable resolution to estimate the SPDE
effects. We have considered the same mesh when estimating the different
SPDE effects as they all occurred within the same study region. As we will
see in Section 4.4, we believe that this mesh is good because we obtain very
similar estimates of the intensity between kernel smoothing and model 1A.

Figure 2: Mesh over the Contiguous United States that has been used to compute SPDE
spatial effects.
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As regards the integration points discussed in Section 3.2, we use the
approach described in Krainski and Lindgren (2014): the integration points
coincide with the mesh vertices with weights given by the relative area of the
polygons obtained through a Voronoi tessellation.

To implement models 2A/2B we have simply taken models 1A/1B fitted
on the baseline point pattern and then used a prediction at the locations of
the other point patterns. Then, we have re-scaled the predictions to match
the scale of the intensity, as shown in Equation (22).

We have included these predictions as an offset to implement models
3A/3B, that also include a specific spatial term using SPDEs. Hence, the
offset will account for the large scale variation whilst we hope that the SPDE
will account for the small scale variation.

When estimating the SPDE we have further imposed the condition to
integrate-to-zero. This will help to make the model identifiable and will
provide a more stable model fitting. We have also reduced the value of the
step-length for the gradient calculations for the hyperparameters and set it
to 0.001 to avoid numerical problems.

4.4. Results

An initial point pattern analysis has been conducted using the R package
spatstat (Baddeley and Turner, 2005). First of all, we have estimated the
intensity of each point pattern using a kernel smoothing based on a bivariate
Normal distribution with bandwidth equal to 1.6. This bandwidth has been
obtained by using the bw.scott function, that implements the bandwidth
method proposed in Scott (1992). This criterion provides a bandwidth for
each dimension and we have taken the largest of these two values. Other
methods for the selection of the bandwidth were not feasible given the large
number of points for low magnitudes. The estimated log-intensity, separately
for each point pattern, is shown in Figure 3. We have also included the
estimate of the intensity using independent SPDE models (MODEL 1A)
for each point pattern. It can be seen how both approaches provide very
similar estimates of the intensity. The kernel smoothing provides very small
estimates in the regions with no points. These results also confirm that our
mesh is good enough to estimate the intensity of the different point patterns.

Tables 1 and 2 contain a summary of the parameter estimates for models
1A and 1B as well as the DIC and the effective number of parameters.

Regarding the spatial variation account for the smooth spatial term, Fig-
ure 4 shows the point estimates and 95% credible intervals for the spatial
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Figure 3: Intensities (log-scale) of the marked patterns using kernel smoothing and SPDE
with MODEL 1A.

effects at the mesh vertices that lay inside the Contiguous United States.
In order to visualise the spatial trend better, we have sorted the value in
increasing order according to the point estimates. This will place the points
with negative values on the left and values with positive values on the right.

According to the credible intervals, it is clear that the SPDEs pick some
of the spatial variation present in the data. Credible intervals are also wider
for the patterns with a smaller number of points. This is not surprising
as estimating the spatial distribution is harder when only a few points are
present. For example, we only have 59 tornados of Magnitude 5 and, in this
case, credible intervals are very wide with only a few points of the mesh
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α (mean) α (sd) σ2 (mean) σ2 (sd) r (mean) r (sd) DIC P.EFF
MAG0 3.24 0.12 41.04 56.17 88.86 53.85 -155216.20 216.14
MAG1 2.94 0.20 4.30 1.48 14.25 2.66 -102509.93 248.76
MAG2 1.22 0.14 4.44 2.92 33.43 11.29 -33597.80 154.22
MAG3 -0.77 0.17 114.12 390.32 200.67 242.02 -3413.16 71.42
MAG4 -3.03 0.44 569.05 2865.89 290.77 478.75 704.88 45.47
MAG5 -5.58 1.00 88.61 257.46 124.30 159.95 337.43 21.11

Table 1: Summary statistics: posterior mean and standard deviation (sd) for the param-
eters of MODEL 1A, DIC and effective number of parameters (P.EFF).

α (mean) α (sd) β (mean) β (sd) σ2 (mean) σ2 (sd) r (mean) r (sd) DIC P.EFF
MAG0 27.27 0.39 -0.06 0.0005 6352.72 7.07 415.62 0.20 -209355.65 240.81
MAG1 9.33 0.25 -0.02 0.0003 566143.08 3637854.07 2523.98 5053.89 -111157.95 223.86
MAG2 14.30 0.65 -0.03 0.0007 2384343.80 14860179.93 1981.09 4098.49 -38862.33 228.53
MAG3 0.05 0.20 -0.002 0.0002 21.89 44.82 105.20 90.03 -3466.91 72.87
MAG4 -1.90 0.43 -0.002 0.0005 77.12 246.94 139.34 163.16 693.36 45.10
MAG5 -4.36 1.11 -0.002 0.001 15.84 26.62 62.35 58.20 338.37 21.05

Table 2: Summary statistics: posterior mean and standard deviation (sd) for the param-
eters of MODEL 1B, DIC and effective number of parameters (P.EFF).

showing a significant (positive) spatial effect. The effect of including covari-
ates reduces the width of the credible intervals when the number of points
in the pattern is large, but it seems to have no impact on the patterns with
a smaller number of points.

With regards to the results shown in Table 1 and Table 2 the values
of the spatial range are usually smaller for MODEL 1A (at least for the
magnitudes 0-2). This means that the spatial term is picking the small scale
spatial variation in MODEL 1A, but that this spatial variation is accounted
for by the covariate, and so the ranges in MODEL 1B are larger, i.e., the
scale of the spatial effect is larger. Furthermore, the coefficient of the altitude
is negative with a 95% credible interval that leaves the null value out in all
cases but for tornadoes of magnitude 5. We believe this happens because of
the small number of points which is not enough to obtain accurate estimates
of the coefficient.

Table 3 and Table 4 show the estimates of the parameters of the SPDE
spatial term for MODEL 3A and MODEL 3B, respectively. These models
only include the baseline point pattern, through an offset with the predicted
intensity using MODEL 1A and MODEL 1B respectively, plus a specific
SPDE spatial effect. For tornados of Magnitude 1 the baseline pattern does
not seem to account for small scale variations as the estimates of the range
of the spatial smooth term indicate that it is picking small scale spatial
variation. On the other hand, including the prediction in the model seems
to be important because now the estimates of the parameters indicate that
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σ2 (mean) σ2 (sd) r (mean) r (sd) DIC P.EFF
MAG1 1.20 0.73 32.24 10.96 -102790.41 150.13
MAG2 335.86 753.70 296.22 390.76 -33786.87 162.96
MAG3 275.23 117.62 102.22 37.61 -3327.26 151.99
MAG4 1492.22 1894.93 280.58 309.96 836.15 129.56
MAG5 763.01 570.17 66.75 24.37 458.32 88.74

Table 3: Summary statistics: posterior mean and standard deviation (sd) for the param-
eters of MODEL 3A, DIC and effective number of parameters (P.EFF).

σ2 (mean) σ2 (sd) r (mean) r (sd) DIC P.EFF
MAG1 8.64 0.13 4.65 0.02 -111572.25 288.19
MAG2 4.76 0.93 6.04 0.88 -35875.66 247.78
MAG3 259.80 160.21 100.41 70.14 -3706.02 159.05
MAG4 1505.04 2064.36 278.77 316.72 750.68 128.61
MAG5 5277.91 11100.82 738.68 956.84 465.92 92.68

Table 4: Summary statistics: posterior mean and standard deviation (sd) for the param-
eters of MODEL 3B, DIC and effective number of parameters (P.EFF).

the spatial term is accounting for large scale spatial variation. This is seen
by noticing how the range estimates are higher than in MODEL 1A for
magnitudes 1 and 2. Opposite results are observed for magnitudes 3-5 and
this could be an effect of the decreasing number of tornados.

Figure 5 shows the estimates of the SPDE effects for MODEL 3A and
MODEL 3B for all types of point patterns but the baseline one. For tornados
of Magnitude 1 it seems reasonable to use the ones with Magnitude 0 as a
baseline, as the residual spatial variation is very small. For all the other types
of tornado there is clear evidence that the baseline pattern does not account
for all the spatial variation, as many credible intervals do not include the
null value. In fact, point estimates are larger than for the case of MODEL
1A and MODEL 1B, which means that there is important spatial difference
between these tornado types and tornados of Magnitude 0.

4.5. Testing for equal spatial distribution

In Section 2.3 we have discussed some ideas to assess whether the spa-
tial distribution of two point patterns is the same. In particular, when us-
ing MODEL 1A it could be possible to compute the difference between the
spatial smooth terms used to estimate the models and check whether cred-
ible intervals contain the null value. Hence, we can plot the estimates of
ξi(s) − ξj(s), i 6= j at the mesh points, that provide a summary of the es-
timates of the spatial distribution, and see whether the two spatial terms
differ.

Note that this implies computing 15 differences. In order to provide
a summary of the difference we have computed point estimates and 95%
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Figure 4: Point estimates and 95% credible intervals for the spatial effects using SPDEs
for MODEL 1A (top) and MODEL 1B (bottom).

credible intervals at the mesh points. In Table 5 we have summarised the
results by including the proportions of points at which the 95% credible
intervals contain the null value. Also, Figure 6 shows the pairs of marks with
the highest and least agreement.

The two marks that have the least agreement are Magnitudes 0 and 4. As
it can be seen in Figure 6 (left plot), there are clearly a few points where the
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Figure 5: Point estimates and 95% credible intervals for the spatial effects using SPDEs
for MODEL 3A (top) and MODEL 3B (bottom).

difference is either too low or too high. On the other hand, the two marks
that have the highest agreement are Magnitudes 3 and 4. As it can be seen
in the same figure, now it looks like most of the credible intervals contain
the zero value. These results can be used to argue about the convenience of
using a baseline point pattern to model all the other types of tornadoes.

Finally, we have produced some maps with type-specific probabilities as
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MAG0 MAG1 MAG2 MAG3 MAG4 MAG5

MAG0 1.00 0.75 0.72 0.59 0.58 0.74
MAG1 0.75 1.00 0.72 0.63 0.68 0.78
MAG2 0.72 0.72 1.00 0.84 0.78 0.92
MAG3 0.59 0.63 0.84 1.00 0.95 1.00
MAG4 0.58 0.68 0.78 0.95 1.00 1.00
MAG5 0.74 0.78 0.92 1.00 1.00 1.00

Table 5: Proportion of points at the mesh for which 95% credible intervals of the difference
of the spatial effects contains the null value.
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Figure 6: Difference of the spatial effects, for the two marks with the highest (Magnitudes
3 and 4, right) and least (Magnitudes 0 and 4, left) agreement.

in Equation (3). Instead of computing the posterior distribution of each
probability surface pj(s), j = 0, . . . , 5, we have used posterior means of the
intensities (from MODEL 1A in this case) at the points of a grid. The
resulting plots can be seen in Figure 7. As expected, the tornadoes with the
lowest magnitudes are the ones with the highest probabilities. Nevertheless,
the spatial distributions of the tornados with the highest magnitudes can be
seen in the plots. For example, tornadoes of magnitude 5 are more likely to
be observed in the central-east part of the United States.

5. Discussion

In this paper we have considered the analysis of marked point patterns
using recent methodological development, namely, the Integrated Nested
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Figure 7: Conditional probabilities of finding each type of tornado obtained from MODEL
1A.

Laplace Approximation and spatial smooth effects estimated with Stochastic
Partial Differential Equations. We have described how these new develop-
ments can be used to estimate the intensity of point patterns using some
recents works and we have tackled the problem of comparing the spatial
distributions of point with different marks.

Our approach considers a point pattern (with a particular mark) as a
baseline for the remainder of the types of point patterns. We have proposed
different types of models to account for covariates and to use an estimate of
the baseline point pattern to build the intensity of the other point patterns.
This in addition provides a way of assessing whether this is a reasonable
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modelling or not by looking at the credible intervals of the spatial smooth
term point estimates and credible intervals.

Furthermore, we have shown an application of these methods in the anal-
ysis of the spatial distribution of tornados. Being able to predict the intensity
of a tornado would allow for more effective forecasting and increased weather
safety in extreme storms.

Although we have only focused on the spatial nature of the data in our
example, it is very easy to extend the methodology presented in this paper
to include a (separable) temporal trend. However, including a separable
temporal effect will only influence the number of tornados in time and it is
not of interest in this case. An interesting new direction is that of having
a spatio-temporal interaction term but it is not evident how this can be
combined with our SPDE approach.
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Diggle, P. J., Gómez-Rubio, V., Brown, P. E., Chetwynd, A. G., Gooding,
S., 2007. Second-order analysis of inhomogeneous spatial point processes
using case-control data. Biometrics 63 (2), pp. 550–557.

Diggle, P. J., Moraga, P., Rowlingson, B., Taylor, B. M., 11 2013. Spatial and
spatio-temporal log-gaussian cox processes: Extending the geostatistical
paradigm. Statistical Science 28 (4), 542–563.

Elsner, J., Jagger, T., Elsner, I., 2014. Tornado intensity estimated from
damage path dimensions. PLoS ONE 9 (9), n/a–n/a.

Elsner, J., Murnane, R., Jagger, T., Widen, H., 2013. A Spatial Point Process
Model for Violent Tornado Occurrence in the US Great Plains. Mathemat-
ical Geosciences 45 (6), 667–679.

Gelfand, A., Diggle, P., Fuentes, M., Guttorp, P. (Eds.), 2010. Handbook of
Spatial Statistics. Chapman & Hall.
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