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Abstract

Financial crises are typically characterized by highly positively cor-
related asset returns due to the simultaneous distress on almost all
securities, high volatilities and the presence of extreme returns. In
the aftermath of the 2008 crisis, investors were prompted even further
to look for portfolios that minimize risk and can better deal with es-
timation error in the inputs of the asset allocation models. The min-
imum variance portfolio a la Markowitz is considered the reference
model for risk minimization in equity markets, due to its simplicity in
the optimization as well as its need for just one input estimate: the
inverse of the covariance estimate, or the so-called precision matrix.
In this paper, we propose a data-driven portfolio framework based
on two regularization methods, glasso and tlasso, that provide sparse
estimates of the precision matrix by penalizing its Li-norm. Glasso
and tlasso rely on asset returns Gaussianity or t-Student assumptions,
respectively. Simulation and real-world data results support the pro-
posed methods compared to state-of-art approaches, such as random
matrix and Ledoit-Wolf shrinkage.
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1 Introduction

Markowitz’s mean-variance model (Markowitz, 1952) represents a corner-
stone for asset allocation frameworks and financial theory in general (see for
example Kolm et al.| (2014) and references therein). Since then, many alter-
native methods and new strands of research have been established, fostered
by the FinTech industry, which relies on the development of data-driven and
automatic investment tools. Markowitz’s simplistic Gaussian framework, the
idea of risk-return optimization and diversification are still the starting points
for the largest majority of more sophisticated recent approaches. Possibly,
one of the main challenge of Markowitz’s mean-variance model is the need to
provide reliable estimates of the input parameters: the expected asset returns
vector and the expected covariance matrix. Concerning the expected returns,
it is acknowledged that they are extremely difficult to estimate and are of-
ten the main source for unreliable allocations (Michaud, [1989; Brodie et al.
2009), with suboptimal Sharpe ratios compared to the minimum variance
portfolios (Black and Litterman, [1992)). Most research has recently focused
on building robust and reliable estimators for the covariance matrix to bet-
ter control for the estimation error, especially to avoid its impact on asset
weights estimates. In the minimum variance setting, the problem with the
estimation of the covariance matrix is amplified by the fact that the input re-
quired for the analytical solution is its inverse, the precision matrix (Stevens,
1998). Hence, the optimal minimum variance portfolio strongly depends on
the largest eigenvalues of the precision matrix, which are the smallest eigen-
values of the covariance matrix and are typically dominated by noise. As
widely discussed in the literature, sample estimates often result in ill con-
ditioned covariance matrices when the number of asset is relatively large
compared to the depth of the time series (see e.g. Ledoit and Wolf, 2004b;
Meucci, 2009; Won et al. 2013). This, in turn leads to optimal portfolios
with extreme and unstable positions over time (see for instance Michaud,
1989 and |Ledoit and Wolf, 2004a)). Furthermore, the presence of positive
multicollinearity among asset returns impacts even further the weight esti-
mates by resulting in unrealistic short positions, which have to be offset by
corresponding long positions. This is exacerbated when the number of assets
is large compared to the number of observations available for the estimates.
High volatilities, positive multicollinearity and the presence of extremes are
typical during financial crises. Some works have focused on GARCH-based
approaches to better capture time-varying volatility (see Engle, [2002). Here,



instead, we rely on a rolling-window mechanism to update the input esti-
mates for the minimum variance portfolio. In the aftermath of the 2008
crisis, the academic literature has seen a surge of contributions to improve
covariance estimation, such as the Ledoit-Wolf shrinkage estimator (Ledoit
and Wolf, 2004a) and random matrix theory (Laloux et al., 1999). Other
strands of research instead focus on robust optimization methods (DeMiguel
and Nogales, 2009) and, most recently, on regularization methods such as
lasso (Tibshirani, |1996), which relies on imposing a penalty function on the
Li-norm of the asset weight vector (DeMiguel et al) 2009a; Brodie et al.)
2009; [Fan et al., 2012)). We refer the reader to Kremer et al. (2017) for a
comparison of state-of-art techniques within a minimum risk framework.

Here, we introduce two approaches that rely on constraining the L;-norm
of the precision matrix to reduce the estimation error impact on optimal
portfolio weights. The proposed methods are based on Markovian graphs
to improve the stability of the precision matrix estimates. In particular,
we consider two statistical set-ups: the first one assumes that asset returns
are normally distributed, hereafter glasso (Friedman et al., 2008), while the
second relies on the assumption of t-Student asset returns, which better
fits assets returns that, as it is widely known, are leptokurtic and typically
characterized by fat tails, hereafter tlasso (Finegold and Drton, 2011)). To
our knowledge, within the financial literature the glasso approach has been
discussed in the context of portfolio optimization by |Goto and Xu| (2015)
and Brownlees et al. (2015]), while the tlasso has not received any attention
yet. Here, we aim to fill some gaps in the literature by showing that glasso
and tlasso are effective tools for the development of data-driven investment
strategies. In particular, the main goal of the analysis is to investigate the
out-of-sample performances of glasso and tlasso in an equity portfolio set-
up. We focus on the minimum variance framework, since it has an analytical
solution that depends on the precision matrix, allowing us to point out the
effect of estimation error in the inputs. Moreover, aligned to many studies
in the literature (e.g., DeMiguel et al., 2009a; [Fan et al., 2012), we focus on
the global minimum variance case, given that estimates of expected returns
are typically unreliable (Michaud, [1989).

We underline that our focus here is on equity portfolios. Asset managers,
whose mandate is investing on equity risky assets, might then benefit from
our findings, when setting up investment strategies. Indeed, the identification
of the global minimum variance portfolio is of interest also for investors who
want to construct equity risky strategies by relying on quantitative modelling,



such as fintech companies. In particular, it has been shown that in presence of
parameter uncertainty, the traditional two-funds portfolio, made of the risk-
free asset and the tangency portfolio, is dominated by a three-fund portfolio
that includes also the global minimum variance portfolio (Kan and Zhou,
2007)).

The paper is structured as follow. Section 2 introduces the minimum
variance portfolio framework and describes the glasso and tlasso approaches.
Section 3 discusses the simulation set-up and the main results, while Section
4 provides empirical results on real-world financial data, when compared with
state-of-art methods. Section 5 then concludes.

2 Methodology

2.1 The Minimum Variance Portfolio

Since the seminal work of Markowitz (Markowitz, 1952), the idea of risk min-
imization by diversification has become central to modern portfolio theory.
Markowitz minimum variance portfolio framework is still considered the ref-
erence model for many scholars and practitioners. The simplicity of the risk
diversification idea, quantified by linear dependence, resulting in the need to
estimate “just” the covariance matrix, and the possibility to rely on an ana-
lytical solution, or to deal with a “simple” quadratic optimization problem,
have been possibly among the main factors behind the widespread use of the
minimum variance model, as stated below:

min ~ wWXw (1)

s.t. 1'w =1,

where X is the n x n true covariance matrix, w the n x 1 vector of asset
weights and 1 a n x 1 unit vector. The optimization problem has then an
analytical solution:
)| )
WMV = s 2)
where w)y is the vector of weights of the optimal minimum variance
portfolio. R
As ¥ is unknown, an estimate 3 has to be computed to obtain the
weights:



Wiy = ——1— (3)

Markowitz’s minimum variance portfolios have been widely critized, mainly
due to the sensitivity to estimation error in the input estimates, resulting in
unrealistic extreme weights and bad out-of-sample properties. One of the
main critiques is related to the use of the sample covariance estimates, and
subsequently its inverse, as an input. Indeed such estimator has a slow con-
vergence rate to the true covariance matrix. As a consequence, finite sample
estimation is characterized by a higher eigenvalue dispersion compared to
the true covariance matrix and by a low accuracy of the eigenvectors corre-
sponding to the smallest eigenvalues, especially for matrices of large dimen-
sion estimated on short time series (Meucci, [2009). Another shortcoming is
related to the role of the inverse of the covariance matrix Q = £, the so
called precision matriz, in the solution of the optimization problem. From
, it is clear that the accuracy of the estimation of the weights is directly
related to the accuracy of the precision matrix. Using spectral decompo-
sition, the relationship between the two matrices can be explicitly studied.
In fact, the eigenvector decomposition of the covariance matrix can be ex-
pressed as ¥ = VAV’ where V is the matrix of eigevectors with V=1 = V'
and A = diag(Aq,...,\,) with Ay > --- > ), is the diagonal matrix of the
eigenvalues sorted in decreasing order on the main diagonal. Analogously, the
eigendecomposition of the precision matrix is such that © = UAU’ , where
A = diag(dy,...,d,) with 9; < --+ < 4, (note that in this case the eigenval-
ues are sorted in ascending order). By inverting the covariance matrix, we
have

= (VAV)! (4)
— (V/)—lAflv—l
=VA'V.
It follows that U = V and A = A~! with the ith element §; = 1 /iy
that is, the eigenvectors of the precision matrix are the same as those of

the covariance matrix and the eigenvalues are the reciprocal of those of the
covariance matrix.



The consequence is that the dominant eigenvectors of the precision matrix
(i.e., the ones corresponding to the largest eigenvalues) are the ones most
likely influenced by noise and estimation error, especially in ill-conditioned
covariance matrices.

2.2 Graphical Lasso or glasso

Graphical models can be useful to describe both the conditional and un-
conditional dependence structure of a set of variables. Gaussian Graphical
Models (GGMs) are probably the most popular tools to capture the network
structure of a set of variables. As Markowitz’s model relies on the normality
assumption of the asset returns, GGMs are the natural choice for captur-
ing and estimating linear dependence among assets (see Dempster, 1972;
Murphy, 2012). Such models are also known as covariance selection or con-
centration graph models, as they rely on the use of partial correlations as a
measure of independence of any two variables, by exploiting the relationship
between partial correlations and the inverse of the correlation matrix.

Let the asset return X ~ N, (@, X) be a random variable with a multi-
variate normal distribution with g the n x 1 vector of the expected returns
and X their n x n covariance matrix. We define the precision matriz as the
inverse of the covariance matrix: Q = 271

We can then associate to the vector X an undirected graph defined as
G = (V, &), where the nodes in the vertex set V correspond to each element
of X, the edges £ consist of the pairs of random variables with non-zero
partial correlations: & = {(i,j) € V x V|r;; # 0}, where 7;; denotes the
partial correlation between two assets, that is, the correlation of the set of
the remaining assets, but ¢ and j. In the graph, the edge weights are the
partial correlations. It can be shown that matrix of the partial correlations
R = {r;;} and the precision matrix €2 are related as follows (Lauritzen, |1996):

R = -DQD, (5)
where D = diag(ﬁ, e \/u%) and wy; is an entry of €.

The estimation of sparse precision matrices, that is, precision matrices
with most off-diagonal entries exactly equal to zero, is then an important
task. A common approach to introduce sparsity is to penalize the maximum



likelihood estimation problem by an L;-norm. In the Gaussian case we can
state the graphical lasso (glasso) estimation problem as

ﬁglasso = arg m{éle (lOg|Q| - tT(QS> - pHﬂ_Hl)’ (6>

where S is the sample covariance matrix, p is a tuning parameter that
controls the sparsity (i.e. the larger p, the larger the number of elements
of the precision matrix set equal to zero), |- | is the determinant, ¢r(-) the
trace, || - ||; the Li-norm of a matrix and €2~ is a square n X n matrix with
the off-diagonal elements equal to the corresponding elements of €2 and the
diagonal elements equal to zero (Friedman et al.| 2008).[1_-]

As pointed out by Yuan and Lin| (2007)), the use of an L; penalty allows to
induce sparsity in the precision matrix, making it possible to perform model
selection and parameter estimation simultaneously. The choice of the tuning
parameter p, that controls the level of sparsity of the estimates assumes
therefore a major role in the estimation and it will be examined in Section
3.3

The statistical properties of the glasso estimator have been studied, among
others, by Banerjee et al. (2008), Rothman et al.| (2008) and Lam and Fan
(2009). Rothman et al. (2008)) show that under some regularity conditions
and for a suitable choice of the parameter p, the estimator in (@ has a
rate of convergence to the true parameter 2 in the Frobenius norm of or-
der \/((n + kq)log(n)/t), where kg is the number of non-zero off diagonal
entries of the true matrix €2 and ¢ the number of observations. The main im-
plication is that the convergence is faster for matrices that are truly sparse.
Lam and Fan| (2009) studied glasso’s consistency and sparsistency (i.e., the
property that all parameters that are zero are actually estimated as zero with
probability tending to one, also known in the literature as selection consis-
tency). They show that sparsistency requires a lower bound on the rate of
the regularization parameter p, while an upper bound is necessary to control
the bias introduced by the L; penalty and to obtain a consistent estimatorE]
Under some technical conditions, the compatibility of these bounds requires
the number of off-diagonal non-zero entries of the true precision matrix to

IThe original specification proposed by |[Friedman et al. (2008) applied the penalty to
the entire matrix 2. The version of the model with the penalty applied to € is the one
studied by Rothman et al.| (2008) and is currently implemented in the R package ‘glasso’
(Friedman et al., [2014).

“See Theorem 2 and Technical Condition (B) in |Lam and Fan| (2009).



be no larger than O(n) (Lam and Fan| [2009). In practical terms, the true
precision matrix has to be sparse enough, and the glasso estimates of dense
precision matrices will not be consistent. On the other hand, the modeliza-
tion of sparse precision matrices has the advantage of reducing the variability
of the estimates, as it will be discussed in Section with reference to the
regression hedge.

The optimization problem @ is convex, as proved by |Banerjee et al.
(2008). |Friedman et al. (2008) proposed an efficient algorithm to solve it,
that is briefly described in Appendix [A]

Empirical analysis show that glasso estimates are better conditioned com-
pared to the sample covariance matrix, even when the number of covariates
n is close to the number of observations ¢ (see e.g., Goto and Xu, [2015).
Moreover, the solution ﬁglasso is always unique and has bounded eigenval-
ues Y| also when n < ¢, allowing the use this method also in high-dimensional
setting, in which the sample covariance matrix estimate is singular. Finally,
we point out that the sparsity of the precision matrix does not necessariliy
correspond to the sparsity of the covariance matrix.

2.3 Sparse Precision Matrix Estimation and Regres-
sion Hedge

From a financial point of view, the sparsity of the precision matrix can be
considered in the framework of regression hedge. In fact, as discussed by
Stevens| (1998)) and (Goto and Xu| (2015]), the precision matrix has an inter-
pretation in terms of optimal hedging between assets: specifically, the ith
row (or column) of €2 is proportional to the ith asset’s hedge portfolio. Such
1th hedge portfolio consists of the combination of a long position in the ith
asset and (n — 1) positions in all the other assets that minimize the variance
of the tracking error of the ith asset w.r.t. the remaining (n — 1) assets. The
1th tracking portfolio is defined as follows:

Xi’T = o+ Z Blgl)Xk,T + €ir 1=1,...,mn, (7)
k=1 ki

where X; - is the ith asset return at time 7, B,(ﬁ is the coefficient of asset
k in the regression for asset 4, ; ; is the unhedgeable component of X .

3see [Banerjee et al.| (2008)), Theorem 1.



The regressions in are typically defined in the financial literature as
regression hedge. As shown in [Stevens| (1998), the OLS estimates of the
Bs can be easily related to the precision matrix. We identify the following
partition of the sample covariance matrix S

s— (30 ), 0

S\ig  Sig

where X\; denotes all the elements of X except the ith, S\;\; denotes the
firsts n — 1 rows and columns of S, s;; the first n — 1 elements of the last
column, and s;; is the element in the last row and Columnﬁ

We then have that the following relationship holds:

6 - S\Zl\Z \2,5 (9>

where 3 is the ((n — 1) x 1) vector of the coefficients in the ith regression
hedge. Moreover, let v; = var(g;) be the variance of the residual ¢;, then the
elements of € can then be computed as followsl

— ifi
— ifi=y
V;

Further details can be found in [Stevens (1998)).

In financial applications, the regression hedge framework generally suf-
fers in presence of multicollinearity among the regressors. Regularization
techniques that allow to set some (s to zero, can then provide more reliable
estimates and better out-of-sample performances, at the cost of introduc-
ing some bias. One of the most common techniques is the lasso regression,
that introduces an Li-norm penalty in the estimation problem. As we dis-
cuss now, the glasso estimator allows to introduce an L, regulatization of all
the regression hedges, While maintaining the relationship with the precision
matrix as presented in

The naive apphcatlon of the lasso penalty on each regression hedge, in-
deed is not consistent with , since this approach does not constrain Q to

4Notice that this representation implies a permutation of the rows and columns to have
the ith asset as the last one.
%v; can be interpreted as the unhedgeable component of X ;.

8



be symmetric and positive definite. Instead, the glasso algorithm estimates
all the regression hedges iteratively as n coupled lasso problems. The infor-
mation is shared between the lasso problems through the common estimate
of the matrix G, providing a positive definite, symmetric and sparse estimate
of Q (Friedman et al., [2008]). This allows to extend the analysis of [Stevens
(1998) to the sparse case (Goto and Xul, 2015). On one hand, the use of the
lasso penalization in the regression hedge equations introduces a bias. On
the other hand it reduces the estimation variation, leading to a more efficient
estimator of the precision matrix.

Overall, the glasso method has a shrinkage effect on the s of the regres-
sion hedge, filtering the estimation noise in 3 and its effect when computing
Q = 2! Empirical evidence suggests that the glasso estimates of € and
3. are better conditioned than the sample covariance matrix (Goto and Xu,
2015)). The spectrum of glasso estimates is therefore typically less disperse
than the one of sample covariance.

Despite its appealing properties, so far, we are aware of only two appli-
cations of glasso within asset allocation frameworks (Goto and Xu, [2015;
Brownlees et all [2015). Here, we contribute to the literature by providing
further evidence when comparing glasso to state-of-art methods. Moreover,
as widely known, asset returns normality assumption is too stringent, as styl-
ized facts suggest that asset returns have a leptokurtic distribution, which
can be better captured by a t-Student assumption (Cont} 2001)). Hence, we
move one step further by introducing the so-called tlasso model that allows to
estimate the precision matrix under the assumption of multivariate t-Student
distribution of asset returns.

2.4 Robust Graphical Modeling With tlasso

As widely discussed in the statistical literature, deviations of returns from
Gaussianity can significantly impact the estimation and the inference on
GGMs. Asset return distributions typically deviate from normality by having
fatter tails and leptokurtic distributions. Hence, the t-Student assumption
with a low number of degrees of freedom is considered a better choice to
model asset returns. Moreover, relying on such distribution can provide more
robust estimates in presence of outliers or contaminated data (Lange et al.,
1989)). Recently, Finegold and Drton| (2011) introduced the so called tlasso,
replacing the glasso Gaussian assumption with a t-Student to provide a tool
for robust model selection. The tlasso algorithm estimates then a sparse



precision matrix under the assumption that the data follow a multivariate
t-Student distribution.

Let X = (Xi,...,X,) be a random vector following a multivariate t-
Student distribution ¢, (w, ¥~ ', df), with df degrees of freedom, mean vector
p and dispersion matrix W' (n x n positive semi-definite matrix). The
covariance matrix is then

»=_Y g, (11)

Q=)= "2"Tw (12)

Similarly to the Gaussian case, we can associate a graph G = {V, £} in
which € = {(, j) € VxV|r;; # 0} and the edge weights are the corresponding
partial correlations r;; computed from the precision matrix.

Under the t-Student assumption, in contrast to the Gaussian set-up, the
absence of correlation does not necessarily correspond to conditional inde-
pendence (Baba et al., 2004). However, despite the lack of conditional inde-
pendence for w;; = 0 (where w;; is an element of ), we have that, if two
nodes j and k are separated by a set of nodes C' in G, then X; and X}, are
conditionally uncorrelated given Xy (see Finegold and Drton| 2011, Propo-
sition 1). Disconnected vertices can be considered orthogonal to each other
after the effects of other variables are removed. The absence of conditional
correlations entails that a mean-square error optimal prediction of variable
X can be based on the variables X}, which correspond to neighbours of the
node 7 in the graph.

We adopt the estimation procedure introduced by |Finegold and Drton
(2011), that exploits the scale-mixture representation of the multivariate t-
Student distribution consisting of a multivariate Gaussian and a gamma dis-
tribution (Kotz and Nadarajah|,2004)) and uses an EM-algorithm (Expectation-
Maximization). In particular, the E-step consists in the estimation of the
mixing gamma variable and the M-step in the estimation of parameters f
and ¥ given the latent variable (the degrees of freedom df are assumed to
be known in this version of the algorithm). Since the sparse parameter W is
the precision matrix of the conditional Gaussian variable, it can be estimated
efficiently in the M-step of the algorithm using glasso (Finegold and Drton,
2011). The E- and the M-steps are then iterated until convergence. The

10



estimate of the precision matrix ﬁtlasso of thg multivariate t-Student vector
is finally obtained by rescaling the estimate W, using .

The tlasso procedure is computationally efficient since it is based on glasso
algorithm at every M-step. While convergence to a stationary point is guar-
anteed in the penalized versions of EM (McLachlan and Krishnan, [1997),
the algorithm is not guaranteed to converge to the global maximum since
the tlasso penalized log-likelihood function to be maximized is not concave
(Finegold and Drton, 2011]).

The scale-mixture representation of the multivariate t-Student also allows
the regression hedge interpretation as in the Gaussian case. Indeed, the non
penalized version of the EM algorithm can be interpreted as an iteratively
reweighted least square estimation of the regression of each variable on all the
others, as shown in |Lange et al.|(1989). In the penalized case, the estimation
is consistent with the iteratively reweighted glasso estimation.

Finally, we underline that in the empirical application we use the tlasso
and glasso to estimate the correlation matrix and its inverse (rather than
the covariance and precision matrices). We then obtain the corresponding
estimates of the covariance and precision matrix by scaling the output using
the sample variances. This approach ensures that the penalization is not
influenced by the scale of the variables (Hgjsgaard et al., 2012) and, as proved
by Rothman et al.| (2008)), ensures a faster convegence of the estimator in the
matrix 2-norm.

3 Simulation Analysis

We conduct a simulation analysis to test the empirical properties of the pre-
cision matrix estimates by glasso and tlasso. In particular, our two main
goals are to measure the quality of the estimates of the true covariance and
precision matrices and to assess their impact on the solution of the mini-
mum variance portfolio. We compare the results obtained with glasso and
tlasso to the traditional sample covariance matrix, as well as to the naive
equally weighted portfolio strategy (EW) and to two state-of-art covariance
estimation methods: random matrix theory filtering (RMT) (Bouchaud and
Potters, 2009) and Ledoit Wolf shrinkage estimation (LW) (Ledoit and Wolf],
20044). Appendix [B| provides a brief description of these methods with rele-
vant references.

11



3.1 Statistical Performance Measures

To test the quality of the covariance and precision matrix estimates we mea-

sure the error, bias and inefficiency with respect to the true parameters. For

explanatory purposes, we describe the measures referring to the covariance

matrix 3, which can then be computed also for the precision matrix 2.
First, we introduce the following loss function:

Loss[Z, %] = [|1= - 3%, (13)

where || - [|> = ¢r[(-)?] is the square of the Frobenius norm. Then, we
can compute three measures to quantify the estimation accuracy. First, the
error, that is the square root of the expected loss between the estimated and

the true parameters:
Err[%, %] = \/E[Hi - 2\\2];

Second, the inefficiency, which is a measure of dispersion of the estimates
and is computed as:

Inef[S) = \/E[HE[EJ} -S|

Finally, the bias, that quantifies the distance between the expected value of
the estimated covariance and the true parameter:

Bias[®, 3] = \/|[E[Z] — =2,
As widely known, the following relationship holds:
Err’[S, 3] = Bias’[E, 3] + Inef’[S]. (14)

Using regularization and shrinkage techniques, we expect to reduce the
estimation error by increasing the efficiency of the estimator compared to the
sample covariance, typically at the cost of an increased bias.

Glasso and tlasso rely on the direct regularization of the precision matrix.
Therefore, we expect them to provide good estimates of the optimal assets’
weights in the minimum variance portfolio framework, given that the preci-
sion matrix represents the input of the optimization. To evaluate the overall

12



impact of the estimation error in 3 and ﬁ, we compute the empirical, actual
and oracle risk of optimal portfolios. In particular, considering the standard
deviation as a risk measure we have:

Rempirical =V VAVEV%WM\/a (15)
Ractual Y, VAVLVEWMVW (16>
Roracle =V W?\}VEWMVU (17>

where X is the true covariance matrix, S is an estimate, wy is the optimal
vector of minimum variance weights with 3 as input and wy,y is the optimal
weight vector for X.

‘These measures give us insights on the impact of the estimation error
of X and €2 in the optimization process: the empirical risk represents the
perceived risk by the investor, the actual risk is the one which the investor is
exposed to, while the oracle risk is the minimum risk possible given the true
covariance matrix (Fan et al.; 2012). Since in the real world the last two are
unknown, the estimation process should minimize errors due to estimation
and provide an empirical risk as close as possible to the oracle and actual.

3.2 Simulation Set-up

We consider two different approaches for the simulation set-up. The first one
is a three-factors model, similar to the one in Fan et al. (2012) (which we
denote as the Factor Model data). It assumes that the excess returns of the
assets are generated according to:

Xi =binfi +biafo + bisfs + e 1=1,...,n, (18)

where f1, fo and f3 are the three factors’ returns, b, are the factor load-
ings for the kth factor and for the ith asset and ¢; is the idiosyncratic noise.
The factors’ are generated by a multivariate t-Student distribution with 5
degrees of freedomE] while the idiosyncratic terms are generated from a uni-
variate t-Student distribution. The parameters of factor returns, factor load-
ings and level of idiosyncratic noise are calibrated on real market data (see
Fan et al., [2012 for more details).

6In the original model the factors followed a multivariate normal distribution (Fan
et al., 2012)). We used a t-Student to capture the leptokurtic distribution of financial time
series (Cont|, 2001)).
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In the second approach (henceforth Simulated S€/P100), we generate the
assets’ returns by a multivariate t-Student distribution with 5 degrees of free-
dom and a covariance matrix estimated on the daily returns of constituents
of the S&P100 equity index for the period 01/01/2006 — 31/12/2016, adding
to each asset a noise factor distributed as univariate t-Student with variance
equal to 0.1 times the variance of each asset.

For each setting, we consider two configurations characterized by different
dimensionality: 50 and 85 assets, respectively. In both cases the parameters
are estimated over a window of 100 observations and we consider 30 simu-
lation runs. The number of degrees of freedom for the tlasso has been set
equal to 5.

3.3 Optimal Choice of p

The structure of the precision matrix estimated by glasso and tlasso depends
largely on the choice of the penalization parameter p, that controls the level
of sparsity in the precision matrix. We select the optimal p on a grid of
values using the Bayesian Information Criterion (BIC)

BIC = —2log(Lik,,) + kg x log(t), (19)

where Lik,, is the value of the likelihood function corresponding to the ith
value of p in the grid, kg is the number of non-null elements in the estimate
of the precision matrix, and ¢ the number of observations.[] The grid is
composed by 20 logarithmically spaced values between (0 and 1. The choice
of this interval guarantees that the glasso estimates span from a completely
dense precision matrix (p = 0) to a completely sparse one (p = 1) when
estimated using the correlation matrix as inputﬁ. For tlasso such result is
not guaranteed, but we found empirically that such interval is wide enough
to include the estimate characterized by the optimal BIC in all the cases (see
Figures [I] and [2).

For sake of brevity, we report exclusively the parameter calibration of
tlasso; the procedure and the results are analogous for glasso and available

"In the case of glasso we refer to the likelihood of a multivariate normal distribution,
while with tlasso we refer to the one of a multivariate t-Student distribution.

8The result follows from Corollary 1 in Witten et al. (2011), according to which the ith
node is fully unconnected to all other nodes if and only if |3;;| < p Vi # j. When X is
the correlation matrix, all its elements are smaller or equal to one and therefore for p =1
all the elements are disconnected, that is, the precision matrix is diagonal.

14



from the authors upon request.

(a) BIC (b) Error, bias and inef. of the cov. matrix
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Figure 1: Optimal Choice of p for tlasso, Factor Model, 85 assets. Panel (a)
displays the value of BIC for every value of p in the grid. Panel (b) shows
the values of error, bias and inefficiency of the estimation of the covariance
matrix (see and (14)). Panel (c) displays the in- and out-of-sample
standard deviation of the optimal minimum variance portfolios. The value
reported are based on 30 runs and the vertical lines denote the median of the
optimal p across the runs.

Figures|If and [2| show for tlasso the values of error, bias and inefficiency of
the covariance matrix estimator, as well as the in- and out-of-sample standard
deviation as a function of p for the Factor Model and Simulated SEP100),
respectively. In both cases we consider 85 assets estimated on a window of 100
observations. Panel (a) reports the value of BIC, Panel (b) the error, bias and
inefficiency of the estimation of covariance matrix and Panel (c) the in-sample
and out-of-sample standard deviations. We observe in Panel (a) that the BIC
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Figure 2: Optimal Choice of p for tlasso, Simulated SEIP100, 85 assets. Panel
(a) displays the value of BIC for every value of p in the grid. Panel (b) shows
the values of error, bias and inefficiency of the estimation of the covariance
matrix (see and (14)). Panel (c) displays the in- and out-of-sample
standard deviation of the optimal minimum variance portfolios. The value
reported are based on 30 runs and the vertical lines denote the median of the
optimal p across the runs.

optimal model lies within the interval p € [0, 1], in both cases with values
close to 0.4, characterized by a medium sparsity level in €. From Panel (b),
the bias increases with the values of p, while the inefficiency decreases. This
pattern is consistent with the fact that, for the tlasso estimates computed
with higher values of p, the number of parameters to estimate is smaller, given
that more elements of the precision matrix are set equal to zero. The overall
estimation error reaches a minimum for intermediate values of p not distant
from the ones chosen by the BIC. Concerning the portfolio performances,
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we see from Panel (c) that the effect of p on the out-of-sample standard
deviation is different for the two simulation settings: in the case of Factor
Model, the portfolios have minimum risk with a rather low value of p, while
for Sitmulated SEP100, the out-of-sample risk is minimized for a wider range
of p.

3.4 Simulation Results
3.4.1 Accuracy of the Estimates

Table [1| reports bias, inefficiency and error for the covariance (columns 2-4)
and the precision matrix (columns 5-7) computed on 30 runs for four test
cases: Factor Model and Simulated SEP100, with 50 and 85 assets. It also
reports the average condition numbers of the estimates for 30 runs (column
8) and the ones of the true covariance matrices. Concerning the estimation of
the covariance matrix, we observe that glasso, tlasso, RMT and LW present
in all the cases a low inefficiency compared to the sample covariance matrix.
This comes at the cost of a higher bias. As a consequence of these two
opposite effects, the overall error levels end up being similar. Indeed, glasso,
tlasso and LW provide only minor improvements in terms of overall error
with respect to the naive sample covariance approach, while RMT shows
in three out of four test cases an estimation error larger than the sample
covariance due to a particularly high bias. The results are consistent for
all the simulation set-ups. The fact that the Factor Model test cases are
characterized by larger errors then the Simulated S€P100 can be explained
by higher values of the entries of the covariance matrix, resulting from higher
volatility and collinearity in the data.

In the context of minimum variance portfolio selection, the focus is on
the estimation of the precision matrix, that is the input of the closed form
optimal solutions in . Indeed, the analysis of the estimation error of such
matrix displays a rather different picture, more aligned to the well docu-
mented pitfalls of minimum variance portfolios estimated using sample co-
variance (Michaud, |1989)). The estimation of the precision matrix obtained
by inverting the sample covariance is indeed characterized by an error much
higher than the alternative estimates in all the test cases considered, espe-
cially when the number of assets is large. For instance, in Panel 2 (Factor
Model with n = 85), the error for the precision matrix is equal to 102120.68,
while the error of the estimates obtained using glasso and tlasso is equal to
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less than a tenth of it: 8928.08 and 8985.56, respectively. The large error of
the sample covariance estimator is not surprising, given that such matrices
are characterized by high condition numbers, and their inverses are therefore
highly sensitive to estimation error (the most relevant eigenvectors of the pre-
cision matrix are indeed the ones corresponding to the smallest eigenvalues
of the covariance matrix, which are typically dominated by noise). Glasso
and tlasso show good performances, with the smallest error in test case 1,
3 and 4. The difference with RMT and LW in terms of error are generally
moderate. The results are similar for the Factor Model and the Simulated
SE€P100 set-ups, although in the latter the absolute value of the estimation
errors for the precision matrix are smaller than in the Factor Model. This
difference is probably due to the worse conditioning of the covariance ma-
trices in the Factor Model cases, which amplifies the estimation error of the
covariance matrix.

3.4.2 Empirical, Actual and Oracle Risk

Table [2| reports empirical, actual and oracle risk. Concerning the Factor
Model test cases (Panel 1 and 2), we see that, in terms of actual risk, glasso
and tlasso obtain the best results: in the case with 50 assets, they have an
actual risk of 0.038 and 0.037 (Panel 1), lower than the LW, RMT and EW
portfolios. They are also the portfolios with the lowest actual risk in the
setting with 85 assets (Panel 2). The portfolios estimated using the sample
covariance are a peculiar case, since they obtain the lowest actual risk for
50 assets, but have the highest actual risk for 85 assets. This is consistent
with the high error in the estimation of the precision matrix, as highlighted
in Section [3.4.1] Such portfolios are also the ones with the largest difference
between actual and empirical risk (especially in Panel 2, 85 assets settings,
where they are equal to 0.045 and 0.006, respectively), while the other tech-
niques provide much less divergent values (in Panel 2 for instance the actual
and empirical risk for tlasso are equal to 0.030 and 0.032). As the empirical
risk is the only one known to investors in real-world applications, positive
differences between actual and empirical can lead to risk underestimation.
In the Simulated SEP100 test cases we observe that, again, glasso and
tlasso portfolios have the lowest actual risk. The advantage over RMT and
LW in this case is limited, much smaller than the Factor Model framework
(Panels 3 and 4). Sample covariance portfolios show a particularly high actual
risk (0.182 and 0.270 for the settings with 50 and 85 assets, respectively,
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Table 1: Bias, inefficiency and error for the estimation of covariance and pre-
cision matrices; condition number of covariance matrix. Values are computed

in 30 runs.

Panel 1 - Factor Model - 50 assets, 100 obs. (cond. number of 3: 12359.42)

Covariance matrix

Precision matrix

Cond. number

bias inef error bias inef error
sample cov. | 0.08 0.64 0.64 | 8390.62  4801.40 9667.26 29770.64
glasso 0.19 0.60 0.63 | 5476.29 190.52 5479.60 1401.60
tlasso 0.16 0.57 0.59 | 5331.74 244.77 5337.35 1645.16
RMT 0.73 043 085 | 6127.47 79.91 6127.99 425.54
LW 0.21 0.60 0.63 | 5579.33 327.75 5588.94 1336.68
Panel 2 - Factor Model - 85 assets, 100 obs. (cond. number of 3: 27016.97)

Covariance matrix

Precision matrix

Cond. number

bias inef error bias inef error
sample cov. | 0.12 0.96  0.97 | 74698.65 69632.92 102120.68 296622.82
glasso 0.32 0.89 094 | 8924.83 240.91 8928.08 2119.29
tlasso 0.35 0.82 0.89 | 8981.38 274.12 8985.56 1938.62
RMT 1.27 0.59 1.41 | 9706.34 100.23 9706.86 679.27
LW 0.30 0.90 095 | 8&8732.19 702.21 8760.37 2825.45

Panel 3 - Stmulated S€&P100 - 50

assets, 100 obs. (cond. number of 3: 1064.35)

Covariance matrix

Precision matrix

Cond. number

bias inef error bias inef error
sample cov. | 0.20 1.20 1.22 402.24 601.64 723.72 2014.03
glasso 0.47 1.07 1.17 263.69 57.79 269.94 275.73
tlasso 0.87 0.75 1.15 284.75 45.29 288.32 190.13
RMT 1.25 0.73  1.45 312.06 31.60 313.66 137.84
LW 0.53 0.92 1.06 289.43 64.61 296.56 294.64

Panel 4 - Simulated SEP100 - 85

assets, 100 obs. (cond. number of ¥: 1630.18)

Covariance matrix

Precision matrix

Cond. number

bias inef error bias inef error
sample cov. | 0.77 3.78  3.85 | 4327.64 9170.36  10140.22 37909.67
glasso 1.21 3.42  3.63 309.70 79.65 319.77 446.39
tlasso 1.49 1.58 217 330.86 71.30 338.46 315.02
RMT 2.13 235  3.17 367.85 50.81 371.34 218.32
LW 0.99 182 207 332.10 103.70 347.91 428.29
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against the 0.135 and 0.122 for tlasso), highlighting the limits of this simple
estimation technique. Equally weighted portfolios, typically considered a
difficult benchmark to beat (DeMiguel et al., 2009b)), do not seem to show
interesting performances in terms of the risk measures that we consider,
exhibiting the highest actual risk in three out of four test cases.

Summing up, glasso and tlasso perform well in all the test cases, ex-
hibiting low portfolio risk exposures compared to the alternative techniques,
especially in markets characterized by ill-conditioned covariance matrices (i.e.
the Factor Model case). This suggests that these techniques might be par-
ticularly suitable in presence of multicollinearity, a characteristic typically
associated to financial crises.

Table 2: Empirical, actual and oracle risk for the optimal portfolios. Average

results over 30 runs.
Panel 1 - Factor Model

50 assets, 100 observations | 85 assets, 100 observations
empirical actual oracle | empirical actual oracle
sample cov. 0.015 0.032  0.022 0.006 0.045  0.018

glasso 0.039 0.038  0.022 0.031 0.030  0.018
tlasso 0.038 0.037  0.022 0.032 0.030  0.018
RMT 0.052 0.053  0.022 0.042 0.041 0.018
LW 0.039 0.044  0.022 0.028 0.037  0.018
EW 0.190 0.193  0.022 0.186 0.188  0.018

Panel 2 - Simulated SEP100
50 assets, 100 observations | 85 assets, 100 observations
empirical actual oracle | empirical actual oracle
sample cov. 0.074 0.182  0.122 0.032 0.270  0.103

glasso 0.098 0.136  0.122 0.079 0.123  0.103
tlasso 0.101 0.135  0.122 0.082 0.122  0.103
RMT 0.100 0.136  0.122 0.080 0.125  0.103
LW 0.102 0.138  0.122 0.080 0.129  0.103
EW 0.239 0.244  0.122 0.217 0.228  0.103
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4 Real-World Data Analysis

4.1 Empirical Set-up

We test the performance of the portfolio determined by glasso and tlasso on
four real-world datasets. The first two are provided by Kenneth French and
are publicly available on his website[] One consists of the monthly returns
of 48 US industry portfolios (FF 48) and the other of the returns of 100
portfolios formed on size and book-to-market ratio (FF 100) of US compa-
nies. The third and the fourth datasets are made of the stock returns of the
constituents of S&P 100, at monthly and daily frequency (S&P 100 monthly
and S&P 100 daily). The choice of the datasets spans different combinations
of constituents, dimensionality and sampling frequency, providing robustness
to the results.

We analyse the out-of-sample performances using a rolling window ap-
proach, rebalancing the portfolios every three months by computing the op-
timal global minimum variance portfolio on a window of fixed size. The
out-of-sample period is defined for all the portfolios from January 2006 to
December 2016. The estimation windows consist of 1 year (252 observations)
in the case of the daily data, while for the monthly data we considered longer
time windows in order to have sufficient data points (10 years, 120 observa-
tions). The main characteristics of the datasets are summarized in Table
Bl

We evaluate the resulting portfolios in terms of risk/return profile (com-
puting standard deviation, average return and Sharpe ratio) and in terms of
portfolio composition, computing statistics relative to shorting, diversifica-
tion and turnover. As in the simulation study, we estimated the tlasso with
5 degrees of freedom.

4.2 Empirical Results

Table [4] displays the performance measures for the portfolios estimated on
real data. As we construct minimum variance portfolios, we focus in par-
ticular on the standard deviation, which is the quantity of interest in the
optimization. Still, we also compute the average return and the Sharpe ratio
of the portfolios to analyse the risk-adjusted return profiles.

9http://mba.tuck.dartmouth.edu/pages/faculty /ken.french /data_library.html
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Table 3: Descriptive statistics of the real-world datasets. The first three
columns report the number of assets (n), the window size for the calibration
(t) and the ratio between these two values (n/t), respectively. Columns 4
and 5 report the period spanned by each dataset and the frequency of the
data. Note that, concerning the S&P100, we included in the analysis only
the assets whose time series spanned the entire time period.

Portfolio n t  n/t time period data freq.
FF 48 48 120 0.40 01/1996 - 12/2016 monthly
FF 100 100 120 0.83 01/1996 - 12/2016 monthly
S&P 100 monthly | 86 120 0.72 01/1996 - 12/2016  monthly
S&P 100 daily 91 252 0.36 01/2005 - 12/2016 daily

As expected, the out-of-sample standard deviation is larger than the in-
sample in all the cases. The difference between the two is especially relevant
for the portfolios computed using the sample covariance estimator when the
number of assets is large compared to the length of the estimation win-
dow. For instance, in the FF 100 case, in which we consider 100 assets and
the estimation window is made of 120 observations, the in-sample standard
deviation for the sample covariance portfolio is equal to only 3.8%, while
its out-of-sample counterpart is equal to 23.0%, more than 6 times larger.
This provides further evidence to previous findings related to the large im-
pact of estimation error, when using the sample covariance (e.g., Michaud,
1989). The other estimation techniques do a better job at minimizing the
out-of-sample standard deviation and reducing the gap between in- and out-
of-sample results. In particular, tlasso compares favourably to the alternative
approaches, obtaining the lowest out-of-sample standard deviation in the FF
48 and S&P 100 daily datasets and performing well also in the FF 100 and
S&P 100 monthly. Table [5 shows the differences between the out-of-sample
standard deviation of tlasso portfolios and the ones optimized using other
techniques. The confidence levels are computed using the Ledoit and Wolf
bootstrap confidence interval for the ratio of two variances (Ledoit and Wolf,
2011). We observe that the out-of-sample standard deviation of tlasso is
lower, and statistically significantly different than both glasso and LW in the
FF 48 and S&P 100 daily datasets, while it is never higher and statistically
significantly different from any other model.

We underline that tlasso in real-world scenarios shows better performance
compared to glasso, while in the simulation study they obtain similar results.
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This can be related to the robustness of tlasso to misspecification and outliers
in the data (Finegold and Drton, |2011)), and therefore the better capability of
dealing with the typical fat-tail distribution of asset returns. The comparison
between the results on the S&P 100 with daily and monthly returns allows to
better characterize the relationship between glasso and tlasso. Indeed, from
Table[5], we notice that the difference in the out-of-sample standard deviation
of the tlasso and the glasso portfolios is statistically significant when using
data with daily frequency, but not for the monthly ones. This may be due
to the stylized property of aggregational Gaussianity, as reported by |Cont
(2001)), which refers to the fact that the distribution of equity returns tends to
have ticker tails for shorter time frequencies (e.g., daily), while being better
approximated by a Gaussian distribution as the time frequency increases
(e.g., monthly). Moreover, when the length of the estimation time interval
is large compared to the number of asset weights to be estimated (e.g., 120
observations for FF 48), and consequently the precision matrices are less
ill-conditioned, tlasso portfolios exhibit better out-of-sample risk properties
than glasso. Finally, we notice that the equally weighted portfolios generally
show high standard deviations compared to glasso, tlasso, RMT and LW. In
two of the datasets, however, it performs better than the sample covariance
matrix portfolios.

Concerning the Sharpe ratio, we obtain different results across the test
cases: the sample covariance estimator shows the most inconsistent perfor-
mance, with the highest out-of-sample Sharpe ratio in the FF 100 case (1.039)
and the lowest in the FF 48 and S&P 100 monthly (0.384 and 0.151, respec-
tively). The other estimators generally obtain good performance in all the
test cases, with glasso and tlasso displaying the highest out-of-sample Sharpe
ratios in the S&P 100 daily, RMT in the S&P 100 monthly and FF 48 and
LW in the FF 100 case. Finally, we notice that the EW portfolio, despite
beating the sample covariance portfolio in FF 48 and S&P100 monthly, does
not seem to be competitive with the other methods in terms of risk adjusted
performance.

Table [0] reports summary portfolio statistics. Columns 2 to 4 display the
gross exposure (i.e., the sum of absolute values of the portfolio weights), the
total negative exposures and the maximum negative exposure of individual
assets. We see that the sample covariance portfolios are characterized by
extreme exposures, especially for the FF 100 portfolios, where the gross ex-
posures is more than 22 times higher than the initial endowment, due to a
short exposure of 10.758. glasso, tlasso, RMT and LW show considerably
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Table 4: In-sample and out-of-sample (oos) standard deviation, mean return
and Sharpe ratio for for real-world data analysis.

Standard deviation Mean return Sharpe ratio
Model in-sample 008 in-sample  oos | in-sample  o0o0s

Panel 1 - 48 Industry Portfolios (FF 48)
sample cov. 0.068 0.124 0.070 0.048 1.042 0.384

glasso 0.083 0.110 0.074 0.077 0.889 0.697
tlasso 0.081 0.106 0.072 0.065 0.887 0.618
RMT 0.085 0.108 0.075 0.081 0.885 0.756
LW 0.074 0.113 0.068 0.070 0.917 0.620
EW 0.166 0.179 0.097 0.105 0.592 0.587

Panel 2 - 100 Size and Book-to-Market Portfolios (FF 100)
sample cov. 0.038 0.230 0.228 0.239 6.147 1.039

glasso 0.085 0.127 0.102 0.069 1.189 0.546
tlasso 0.085 0.124 0.099 0.075 1.152 0.608
RMT 0.098 0.129 0.088 0.068 0.890 0.531
LW 0.070 0.121 0.105 0.092 1.496 0.758
EW 0.187 0.187 0.091 0.073 0.493 0.392

Panel 3 - S&P 100 2006-2016 - monthly data (S&P 100 mon.)
sample cov. 0.039 0.206 0.100 0.031 2.652 0.151

glasso 0.084 0.119 0.099 0.079 1.211 0.663
tlasso 0.075 0.116 0.099 0.066 1.330 0.570
RMT 0.074 0.107 0.110 0.084 1.488 0.788
LW 0.069 0.115 0.094 0.052 1.362 0.453
EW 0.160 0.160 0.077 0.082 0.489 0.516

Panel 4 - S&P 100 2006-2016 - daily data (S&P 100 daily)
sample cov. 0.067 0.138 0.090 0.090 1.531 0.649

glasso 0.086 0.124 0.110 0.108 1.411 0.872
tlasso 0.083 0.121 0.102 0.108 1.377 0.892
RMT 0.085 0.122 0.099 0.097 1.308 0.799
LW 0.074 0.125 0.100 0.094 1.475 0.755
EW 0.181 0.202 0.089 0.084 0.844 0.414

lower exposures, both in terms of whole portfolios and of individual securi-
ties. The EW portfolio, as it is long only by construction, is trivially the
one with the lowest exposures. None of the methods promote sparsity of the
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Table 5: Difference in out-of-sample standard deviations between the tlasso
portfolios and the alternative methods. Negative numbers denote a lower
standard deviation for tlasso compared to the alternative method (i.e., sam-
ple covariance, glasso, RMT, LW and EW). Statistical significance has been
assessed with Ledoit and Wolf procedure (Ledoit and Wolf, [2011]). * ** ***
denote 90%, 95% and 99% confidence level, respectively.

sample cov. glasso RMT LW EW
FF 48 -0.019** -0.004*%*  -0.002 -0.007* -0.073%+*
FF 100 -0.106*** -0.002 -0.004  0.003 -0.063***
S&P 100 mon. | -0.091%** -0.003 0.009  0.001 -0.044%**
S&P 100 daily | -0.018%** -0.003***  -0.001 -0.004*** -0.081***

weights, therefore in all cases the percentage of active position is 100%. The
level of diversification is computed by the modified Herfindahl concentration
coefficient H*. Such measure can deal with short portfolio exposures and
takes the lowest value for the most diversified portfolio (i.e., the EW port-
folio). The concentration levels are similar for different portfolios, including
the sample covariance one. This suggests that the main differences in the
portfolio structure result from the allocation of weights and the level of gross
exposures and not from the excessive concentration in a limited number of
assets. Finally, we compute the turnover rate of the portfolios. The sample
covariance portfolios show the worst performance in terms of turnover, due
to both the amount of gross exposure and the estimation error. The equally
weighted portfolio has zero turnover by construction and all the other tech-
niques show considerably lower turnover levels than the sample covariance
case.

5 Conclusion

The estimation of the precision matrix is fundamental to the implementa-
tion of investment strategies based on the minimum variance framework. In
this paper, we consider two innovative methods based on Markovian graphs:
glasso and tlasso. These techniques allow us to regularize the estimation of
the precision matrix (i.e., the inverse of the covariance matrix) by imposing a
constraint on the Li-norm, assuming Gaussian and t-Student distributions,
respectively. We test the models both on simulated and real world data,
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measuring the quality of the estimation and the out-of-sample performances
of the optimized portfolios. We compare them to the naive sample covariance
estimator, equally weighted portfolios and two state-of-art techniques: ran-
dom matrix and Ledoit Wolf shrinkage methods. According to our analysis,
glasso and tlasso show interesting results: in the simulation framework they
both improve the estimation of the precision matrix compared to the alterna-
tive techniques, reducing the bias and error of the estimates, and the actual
risk in simulated portfolios, especially with ill-conditioned matrices. When
applied to real data, they obtain good out-of-sample performances. Tlasso,
which is more robust to misspecification and outliers, stands out for the low
out-of-sample standard deviation, providing better results than glasso by just
paying a small price in computational efficiency compared to glasso. The re-
sults are consistent across all the dataset considered, and the advantage of
tlasso over glasso is larger when using data with daily frequency compared to
monthly. Moreover, glasso and tlasso limit the portfolio short exposures and
reduce considerably the turnover compared to the sample covariance estima-
tor. High on the agenda, glasso and tlasso should be studied in other asset
allocation frameworks. Indeed, the good portfolio performance, together
with the simple implementation, make glasso and tlasso interesting tools for
the Fintech industry and for the implementation of data-driven investment
models, suitable also for distressed markets, when covariance matrices of the
assets tend to be ill-conditioned.
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A The glasso Algorithm

Here we briefly describe the algorithm proposed by |Friedman et al.| (2008) to
solve @, the glasso model. For convenience, we define X; as the ¢th element
of X, and and X\7 as the vector of all the elements of X except the ith.
We also define the matrices G to be the estimate of 3, and S the sample
covariance matrix. Furthermore, we identify the following partitions:m

G — (G\z N B\, 7,> : S — (S\z i S\, z) . (2())

g\’L’L gll \ZZ S’LZ

Banerjee et al. (2008) show that the solution for w\;; can be computed
by solving the following box-constrained quadratic program:

gvi = argmin {y' Gy ¢ ly = suiallow < o} (21)

or in an equivalent way, by solving the dual problem

min { JIGYE50 — P+ plla® | (22)
8(0)

where ¢ = Gr\Z Zs\” and ﬂ G\’:\ig\ivi. As noted by [Friedman
et al. (2008), resembles a lasso least square problem (see [Tibshirani,
1996)). The algorithm estimates then the ¢th variable on the others using
as input Gy;\;, where Gy;\; is the current estimate of the upper left block.
The algorithm then updates the corresponding row and column of G using
8\ii = G\ij\iﬁ (@) and cycles across the variables until convergence.

Glasso algorithm

1. Start with G = S + pI . The diagonal of G is unchanged in the next
steps.

2. For each i = 1,2,...,n,1,2,...,n,..., solve the lasso problem ,
which takes as input G;\; and s\;;. This gives a n — 1 vector solution

B . Fill in the corresponding row and column of G using g\;; = G\ B :

3. Repeat until a convergence criterion is satisfied.

10The dimension of Gi\is 9\, and g;; are respectively ((n—1) x (n—1)), (n—1) x 1)
and (1 x 1).
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The algorithm has a computational complexity of O(n?) for dense prob-
lems, and considerably less than that for sparse problems (Friedman et al.,
2008)).

B Alternative Covariance Estimation Meth-
ods

Here, we briefly describe the benchmark covariance estimators we use in the
comparative analysis. Differently from glasso and tlasso, these approaches
provide an estimate for the covariance matrix and not for the precision ma-
trix. Hence, we compute the precision matrix for such methods to be plug-in
into the minimum variance portfolio by inverting the covariance.

In particular, we consider the sample covariance and the equally weighted
methods (that are commonly regarded as naive approaches) and two state-
of-art estimators: random matrix theory and Ledoit Wolf Shrinkage.

The equally weighted (EW) portfolio, a tough benchmark to beat (DeMiguel
et al., 2009b)), can be interpreted as an extreme shrinkage estimator of the
global minimum variance portfolio, obtained using the identity matrix as
the estimate of the covariance matrix. Indeed, using , we obtain wgy =

I1
111
proach is very conservative in terms of estimation error and it suitable in
case of severe unpredictability of the parameters.

= %1. By assuming zero correlations and equal variances, such ap-

The second naive approach is the sample covariance estimator, defined

as:
t

S = 43X~ X)X, — X, (23)
=1

where t is the length of the estimation period, X; is the multivariate vari-
ate vector of assets’ returns at time 7 and X is the vector of the average return
for the n assets. Such estimator, when computed on datasets with a number
of asset close to the length of the window size, is typically characterized by a
larger eigenvalue dispersion compared to true covariance matrix, causing the
matrix to be ill-conditioned (Meucci, |2009)). Therefore, when computing the

precision matrix by inverting the covariance matrix, estimates are typically
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not reliable and unstable on different samples as its ill-conditioning nature
amplifies the effects of the estimation error in the covariance matrix.

The shrinkage methodology of Ledoit-Wolf (LW) is well-known to better
control for the presence of estimation errors, especially for datasets with a
large ratio of n/t, where n is the number of assets and ¢ the length of the
estimation window. The Ledoit-Wolf shrinkage estimator is defined to be
a convex combination of the sample covariance matrix S and X7, a highly
structured target estimator, such that X,y = aS+ (1 —a)Xy with a € [0, 1].
Following |Ledoit and Wolf (2004al), we consider as structured estimator S
the constant correlation matrix, such that all the pairwise correlations are
identical and equal to the average of all the sample pairwise correlations.
As the target estimator is characterized by good conditioning, the result-
ing shrinkage estimator Xy, has a smaller eigenvalues dispersion than the
sample covariance matrix. In fact, the sample covariance matrix is shrunk
towards the structured estimator, with intensity depending on the value of
the shrinkage constant a. Ledoit-Wolf estimation of a is based on the mini-
mization of the expected distance between X,y and 3. For further details,
the reader is referred to [Ledoit and Wolf (2004a))[]

The last approach we focus on is the so called random matrix theory (RMT)
estimator & ruT, introduced by |Laloux et al. (1999). The approach is based
on the fact that, in the case of financial time series, the smallest eigenvalues
of the correlation matrices are often dominated by noise. From the known
distribution of the eigenvalues of a random matrix, it is possible then to filter
out the part of spectrum that is likely associated with estimation error and
maintain only the eigenvalues that carry useful information (Laloux et al.,
1999). In particular, when assuming i.i.d. returns, the eigenvalues of the sam-
ple correlation matrix are then distributed according to a Marcenko-Pastur
(MP) distribution as a consequence of the estimation error. Therefore, we
can compute the eigenvalues that correspond to noise based on the minimum

HTnterestingly, the Ledoit-Wolf shrinkage is closely related to portfolio optimization with
Lo penalization of weight estimates. Indeed, the optimization problem mingcc(w'Xw +
aw'w), with C = {w|l'w = 1} can be equivalently stated as minyec(w'(Z + al)w),
which then is equivalent to solving the problem using the Ledoit-Wolf shrinkage estimator
with 37 =T (Bruder et al., 2013).
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and maximum eigenvalues of the theoretical distribution, such that:

Aminmax = 02 (1 £ v/n/t)%, (24)

where A\, and A\, are the theoretical smallest and largest eigenvalues in
anxn random covariance matrix estimated by a sample of ¢ observations and
o2 is the variance of the i.i.d. asset returns. Only the eigenvalues outside the
interval [Amin, Amax] are then assumed to bring useful information, while the
others correspond to noise. Here, we estimate the covariance matrix then by
ergenvalue clipping, a technique that consists in substituting the eigenvalues
smaller than A\, with their average:

Srur = VAryr V', (25)

where V represents the eigenvectors of the sample covariance matrix and
A gyr is the diagonal matrix with the ordered eigenvalues, where the eigen-
values A < Apax are substituted by their average (Bouchaud and Potters,
2009). The RMT filtering has then the effect of averaging the lowest eigen-
values, improving the conditioning of the matrix and therefore reducing the
sensitivity of the precision matrix to estimation errors.

For further details the reader is refereed to|Laloux et al.| (1999), Bouchaud
and Potters| (2009) and Bruder et al. (2013)).

Acknowledgement

Sandra Paterlini acknowledges ICT COST Action 1C1408 from CRoNoS.
Gabriele Torri acknowledges the support of the Czech Science Foundation
(GACR) under project 15-23699S and SP2017/32, an SGS research project
of VSB-TU Ostrava. Rosella Giacometti and Gabriele Torri acknowledge the
support given by University of Bergamo research funds 2016 2017.

References

Baba K, Shibata R, Sibuya M (2004) Partial correlation and conditional
correlation as measures of conditional independence. Australian & New
Zealand Journal of Statistics 46(4):657-664

30



Banerjee O, Ghaoui LE, d’Aspremont A (2008) Model selection through
sparse maximum likelihood estimation for multivariate gaussian or binary
data. Journal of Machine Learning Research 9:485-516

Black F, Litterman R (1992) Global portfolio optimization. Financial Ana-
lysts Journal 48(5):28-43

Bouchaud JP, Potters M (2009) Financial applications of random matrix
theory: a short review. arXiv preprint arXiv:09101205

Brodie J, Daubechies I, De Mol C, Giannone D, Loris I (2009) Sparse and sta-
ble Markowitz portfolios. Proceedings of the National Academy of Science
106(30):12,267-12,272

Brownlees CT, Nualart E; Sun Y (2015) Realized networks. Working Paper,
available on SSRN

Bruder B, Gaussel N, Richard JC, Roncalli T (2013) Regularization of port-
folio allocation. Working Paper, available on SSRN

Cont R (2001) Empirical properties of asset returns: stylized facts and sta-
tistical issues. Quantitative Finance 1:223-236

DeMiguel V, Nogales FJ (2009) Portfolio selection with robust estimation.
Operations Research 57:560-577

DeMiguel V|, Garlappi L, Nogales F, Uppal R (2009a) A generalized approach
to portfolio optimization: Improving performance by constraining portfolio
norm. Management Science 55:798-812

DeMiguel V, Garlappi L, Uppal R (2009b) Optimal versus naive diversifica-
tion: How inefficient is the 1/N portfolio strategy? Review of Financial
Studies 22(5):1915-1953

Dempster AP (1972) Covariance selection. Biometrics 28(1):157-175

Engle R (2002) Dynamic conditional correlation: A simple class of multi-
variate generalized autoregressive conditional heteroskedasticity models.
Journal of Business & Economic Statistics 20(3):339-350

31



Fan J, Zhang J, Yu K (2012) Vast portfolio selection with gross-exposure
constraints. Journal of the American Statistical Association 107(498):592—
606

Finegold M, Drton M (2011) Robust graphical modeling of gene networks us-
ing classical and alternative t-distributions. The Annals of Applied Statis-
tics 5(2A):1057-1080

Friedman J, Hastie T, Tibshirani R (2008) Sparse inverse covariance estima-
tion with the graphical lasso. Biostatistics 9(3):432-441

Friedman J, Hastie T, Tibshirani R (2014) glasso: Graphical lasso-estimation
of gaussian graphical models. R package

Goto S, Xu Y (2015) Improving mean variance optimization through
sparse hedging restrictions. Journal of Financial and Quantitative Analysis
50(6):1415-1441

Hgjsgaard S, Edwards D, Lauritzen S (2012) Graphical models with R.
Springer Science & Business Media

Kan R, Zhou G (2007) Optimal portfolio choice with parameter uncertainty.
Journal of Financial and Quantitative Analysis 42(3):621-656

Kolm PN, Titiincti R, Fabozzi F (2014) 60 years following harry markowitz’s
contribution to portfolio theory and operations research. European Journal
of Operational Research 234 (2):343-582

Kotz S, Nadarajah S (2004) Multivariate t-distributions and their applica-
tions. Cambridge University Press

Kremer PJ, Talmaciu A, Paterlini S (2017) Risk minimization in multi-factor
portfolios: What is the best strategy? Annals of Operations Research pp
1-37

Laloux L, Cizeau P, Bouchaud JP, Potters M (1999) Noise dressing of finan-
cial correlation matrices. Physical Review Letters 83(7):1467-1469

Lam C, Fan J (2009) Sparsistency and rates of convergence in large covariance
matrix estimation. Annals of Statistics 37(6B):4254

32



Lange KL, Little RJ, Taylor JM (1989) Robust statistical modeling us-
ing the t distribution. Journal of the American Statistical Association
84(408):881-896

Lauritzen SL (1996) Graphical models, vol 17. Clarendon Press

Ledoit O, Wolf M (2004a) Honey, I shrunk the sample covariance matrix.
The Journal of Portfolio Management 30(4):110-119

Ledoit O, Wolf M (2004b) A well-conditioned estimator for large-dimensional
covariance matrices. Journal of multivariate analysis 88(2):365-411

Ledoit O, Wolf M (2011) Robust performances hypothesis testing with the
variance. Wilmott 2011(55):86-89

Markowitz H (1952) Portfolio selection. The Journal of Finance 7(1):77-91

McLachlan GJ, Krishnan T (1997) The EM Algorithm and Extensions, Sec-
ond Edition. Wiley Online Library

Meucci A (2009) Risk and asset allocation. Springer Science & Business Me-
dia

Michaud RO (1989) The Markowitz optimization enigma: Is optimized op-
timal? ICFA Continuing Education Series 1989(4):43-54

Murphy KP (2012) Machine learning: a probabilistic perspective. The MIT
Press

Rothman AJ, Bickel PJ, Levina E, Zhu J, et al. (2008) Sparse permutation
invariant covariance estimation. Electronic Journal of Statistics 2:494-515

Stevens GV (1998) On the inverse of the covariance matrix in portfolio anal-
ysis. The Journal of Finance 53(5):1821-1827

Tibshirani R (1996) Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society Series B (Methodological) 58(1):267-288

Witten DM, Friedman JH, Simon N (2011) New insights and faster compu-
tations for the graphical lasso. Journal of Computational and Graphical
Statistics 20(4):892-900

33



Won JH, Lim J, Kim SJ, Rajaratnam B (2013) Condition-number-regularized
covariance estimation. Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 75(3):427-450

Yuan M, Lin Y (2007) Model selection and estimation in the Gaussian graph-
ical model. Biometrika 94(1):19-35

34



Table 6: Portfolio statistics on real-world data. The Table reports, from left
to right, gross exposure (gross exp.) (D_,|w;|), total short exposure (short
exp), maximum negative exposure of individual assets (max short), percent-
age of active positions in the portfolios (active pos.), modified Herfindahl
diversification index corrected to account for short portfolio (H* = >, w/?
where w], = w;/(D_, |w;|)) and portfolio turnover (turnover). The reported
values are the average across all the rebalancing periods.

Model ‘ gross exp. short exp. max short active pos. H* turnover
Panel 1 - 48 Industry Portfolios

sample cov. 4.426 1.713 -0.213 100% 0.036 1.149
glasso 2.142 0.571 -0.068 100% 0.040 0.282
tlasso 2.253 0.627 -0.070 100% 0.039 0.317
RMT 1.894 0.447 -0.046 100% 0.046 0.201
LW 2.866 0.933 -0.103 100% 0.040 0.455
EW 1.000 0.000 0.000 100% 0.021 0.000
Panel 2 - 100 Size and Book-to-Market Portfolios

sample cov. 22.516 10.758 -0.807 100% 0.017 11.799
glasso 4.656 1.828 -0.121 100% 0.018 0.703
tlasso 4.573 1.786 -0.114 100% 0.018 0.798
RMT 3.022 1.011 -0.062 100% 0.022 0.272
LW 5.512 2.256 -0.141 100% 0.018 0.973
EW 1.000 0.000 0.000 100% 0.010 0.000
Panel 3 - S&P 100 2006-2016 (monthly data)

sample cov. 6.954 2977 -0.297 100% 0.020 3.016
glasso 1.488 0.244 -0.025 100% 0.022 0.309
tlasso 1.707 0.353 -0.030 100% 0.025 0.271
RMT 1.850 0.425 -0.036 100% 0.023 0.258
LW 2.190 0.595 -0.039 100% 0.024 0.338
EW 1.000 0.000 0.000 100% 0.011 0.000
Panel 4 - S&P 100 2006-2016 (daily data)

sample cov. 4.569 1.785 -0.186 100% 0.022 3.192
glasso 2.376 0.688 -0.061 100% 0.023 1.058
tlasso 2.479 0.739 -0.058 100% 0.025 1.113
RMT 2.121 0.561 -0.043 100% 0.026 0.888
LW 3.043 1.021 -0.078 100% 0.025 1.650
EW 1.000 0.000 0.000 100% 0.011 0.000
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