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Abstract The use of complex statistical models has substantially increased8

lately in the context of species distribution behavior. This complexity has made9

the inferential and predictive processes challenging to perform. The Bayesian10

approach has become a good option to deal with these models due to the ease11

with which prior information can be incorporated along with the fact that12

it provides a more realistic and accurate estimation of uncertainty. In this13

work, we firstly review the sources of information and different approaches14

(frequentist and Bayesian) to model the distribution of a species. We also15

discuss the Integrated Nested Laplace approximation as a tool for obtaining16

marginal posterior distributions of the parameters involved in these models.17

We finally discuss some important statistical issues that arise when researchers18

use species data: the presence of a temporal effect (presenting different spatial19

and spatio-temporal structures), preferential sampling, spatial misalignment,20

non-stationarity, imperfect detection, and the excess of zeros.21
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1 Introduction24

Understanding spatio-temporal dynamics of species or diseases is a key is-25

sue in many research areas such as ecology or epidemiology. Indeed, the so-26

called Species Distribution Models (SDMs), that link information on the pres-27

ence/absence or abundance of a species to environmental variables to predict28

where (and how much of) a species is likely to be present in unsampled loca-29

tions or time periods, are an important tool in many applied fields.30

In the particular case of ecology, SDMs have been implemented in different31

theoretical and practical cases, including the identification of critical habitats32

(Zhang , 2007; Zhang et al. , 2008; Paradinas et al., 2015; Rufener et al., 2017),33

the study of the risk associated with invasive species (Fitzpatrick et al., 2007;34

Luo and Opaluch , 2011), the potential effects of climate change (Iverson et al.,35

2004; Araújo et al., 2005; Brown et al., 2016), the design of protected areas,36

the protection of threatened species (Parviainen et al., 2008; Roos et al., 2015),37

the distribution of bioclimatic indices (Barber et al., 2017), the reintroduction38

of vulnerable species (Danks and Klein, 2002; Martinez-Meyer et al., 2006;39

Hendricks et al., 2016), the delineation of hot spots of biodiversity and species40

richness (Jiménez-Valverde and Lobo, 2007; Gotelli et al., 2009; Goetz et al.,41

2014), the potential distribution of infectious diseases (Peterson et al., 2002;42

Fatima et al., 2016; Juan et al., 2017; Martinez-Bello et al., 2017; Martinez-43

Minaya et al., 2018), among many others.44

SDMs have also been used in many other contexts such as evolutionary biol-45

ogy, where they have been applied to topics such as speciation or hybrid zones46

(Kozak et al., 2008); in humans epidemiology, to predict the spread of dis-47

eases in humans (Gosoniu et al., 2006), in veterinary epidemiology (González-48

Warleta et al., 2013; Barber et al., 2016), in plants epidemiology (Meentemeyer49

et al., 2011; Václav́ık and Meentemeyer, 2009; Neri et al., 2014; White et al.,50

2017), etc.51

Different review papers about SDMs already exist (see for example, Guisan52

and Thuiller, 2005; Elith and Leathwick, 2009), but most of them are focused53

on the modeling of species data, keeping a more general overview of the sta-54

tistical critical issues. Our intention in this review is to describe with more55

detail some of the statistical issues that arise when dealing with SDMs.56

In addition, nowadays the quantity and the quality of available datasets57

has substantially increased with respect to the last ten years, resulting in a58

higher complexity of the statistical issues that have to be addressed when a59

SDM is performed. Moreover, a detailed spatial and temporal description of60

the modeled phenomenon is becoming mandatory in many research fields from61

national and international organisms. Consequently to this increasing com-62

plexity, the performance of the SDM inferential and predictive processes are63

becoming more challenging, forcing researchers to develop new sophisticated64

statistical techniques. In line with this, new modeling approaches continue to65

be developed because using only geographic information systems (GIS) tools66

is not totally satisfactory for the type of usually available spatial data. In-67

deed, model complexity has generally increased over time from the use of68
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simple environmental matching (two good examples are BIOCLIM, Busby,69

1991, and DOMAIN, Carpenter et al., 1993) to the use of models incorporat-70

ing more complex non-linear relationships between species presence and the71

environment, such as generalized additive models (Guisan et al., 2002), neu-72

ral networks (Park et al., 2003), or multivariate adaptive regression splines73

(Leathwick et al., 2005).74

But more importantly, although most of the methods described in previ-75

ous reviews (see for example, Guisan and Thuiller, 2005; Elith and Leathwick,76

2009) have increased in their complexity, they are based on the assumption77

that the observations are conditionally-independent, while species distribution78

data often depict residual spatial autocorrelation (Kneib et al., 2008; Beale79

et al., 2010). In this review, we will focus on the fact that the spatial autocor-80

relation should be taken into account in species distribution models, even if81

the data were collected in a standardized sampling, since the observations are82

often close and subject to similar environmental features (Muñoz et al., 2013).83

Other complications also arise in the modeling of the species due to imperfect84

survey data such as observer error, gaps in the sampling, missing data, the85

spatial mobility of the species (Latimer et al., 2006) and the fact that data86

have been collected through long periods of time. As a consequence, ignoring87

these issues in this type of analysis could lead to misleading results.88

In line with this, the use of spatial and spatio-temporal models has grown89

enormously, allowing the incorporation of all these issues in the modeling pro-90

cess (Banerjee et al., 2014). Although there are other types of spatial data that91

could describe the behavior of a species (see for instance, Gelfand et al., 2010,92

for a detailed description of the three types of spatial data), we will focus in this93

review on geostatistical or point-referenced data, that come from those situa-94

tions where the interest is to analyze spatially continuous phenomena. Bearing95

in mind that we would like to include the effect of possible covariates in the96

modeling or either to apply it to situations in which the stochastic variation97

in the data is known to be non-Gaussian, we will deal with the model-based98

geostatistics approach (Diggle and Ribeiro, 2007).99

This combination of non-Gaussian data, a linear predictor and unobserved100

latent variables usually makes estimation and prediction computationally dif-101

ficult. Bayesian inference turns out to be a good option to deal with spatial102

hierarchical models because it allows both the observed data and model pa-103

rameters to be random variables (Banerjee et al., 2014), resulting in a more104

realistic and accurate estimation of uncertainty. Another advantage of the105

Bayesian approach is the ease with which prior information can be incorpo-106

rated. Note that prior information can usually be very helpful in discriminating107

spatial autocorrelation effects from ordinary non-spatial linear effects (Gau-108

dard et al., 1999). But as usual in Bayesian complex models, inference needs109

numerical approaches. Among them, in this review we will emphasize on the110

use of the integrated nested Laplace approximation (INLA) methodology (Rue111

et al., 2009) and software (http://www.r-inla.org) as an alternative to Markov112

chain Monte Carlo (MCMC) methods, the main reason being the speed of113

calculation.114
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To summarize, our intention in this review is to describe with more de-115

tail the main statistical issues that arise when dealing with these models. In116

particular, in Section 2 we focus on the statistical aspects of the available117

data, while Section 3 discusses the basic structure of these models and how to118

perform inference. In particular, we provide a critical review of the Bayesian119

approach along with a detailed description of INLA. Our review also includes120

a discussion on some of the particularities appearing when dealing with them,121

including temporal correlation, preferential sampling, spatial misalignment,122

non-stationarity, imperfect detection and excess of zeros in Section 4. Finally123

Section 5 concludes. It is worth noting that we have tried to be simple in the124

notation to be readable by a large community of scientists.125

2 Sources of information in SDMs126

SDMs require basically two types of data input: data describing the observed127

species’ distribution, and those data describing the landscape and the envi-128

ronmental characteristics in which the species can be found. In this Section we129

first present biological data, i.e. the observed species distribution, and in the130

second place the environmental data and the usual covariates that characterize131

the species distribution.132

2.1 Biological data133

The first type of data, which usually represent the response variable, can be134

either presence-only (i.e. records of localities where the species has been ob-135

served), presence/absence (i.e. records of presence and absence of the sampling136

localities), abundance data (i.e. the quantity of the species at the sampling137

locations), or proportional data (i.e. the proportion of the species at the sam-138

pling locations). Consequently, biological data can be measured at nominal139

(e.g. presence/absence type), ordinal (e.g. ranked abundance), ratio (e.g. fre-140

quency of detection) or continuous (e.g. abundance, richness) levels, which141

impacts the selection of the appropriate types of modeling algorithms to use,142

and subsequently the measurement level of this kind of models (e.g. probability143

or suitability of occurrence, type, expected mean).144

Presence-only data lack of absence observations making this type of dataset145

unsuitable for many of the commonly used species distribution algorithms, un-146

less pseudo− absences are assigned to unsampled portions of the study area.147

Inclusion of pseudo − absences records can seriously bias analyses. Indeed,148

methods used to generate pseudo-absences and their effects on model perfor-149

mance are an open research field in the species distribution context (Barbet-150

Massin et al., 2012; Iturbide et al., 2015).151

With respect to the abundance, it could be expressed as a continuous152

variable (biomass of the species) or as count data (number of individuals).153

Abundance data reflect the quantitative spatial distribution of the species154
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within the area of interest, while presence/absence information can be used155

as a measure of the relative occurrence of species, thereby giving a different156

approximation. Despite abundance data provide greater information for con-157

servation and management objectives, they are less common, as occurrence158

data are easier and less expensive to be collected. Indeed, abundance estima-159

tions are sensitive to detectability, and sampling methods seldom detect all160

individuals present in an area. Consequently, many researches rely on approx-161

imations of species abundance from species occurrence, although the ability162

to infer abundance from such information has been questioned, because detec-163

tion is not perfect and occurrence probability may not be linearly related to164

density (Nielsen et al., 2005; Joseph et al., 2006).165

Proportional data are also widely used in many ecological processes. The166

traditional approach in ecology is based on Gaussian linear models with previ-167

ous transformation in the proportions. However, model parameters cannot be168

easily interpreted in terms of the original response and measures of proportions169

typically display asymmetry, and hence, inference based on the normality as-170

sumption can be misleading (Ferrari and Cribari-Neto, 2004). Beta regression171

has lately appeared as a good alternative to deal with this type of data allow-172

ing bounded estimates and intervals with model parameters that are directly173

interpretable in terms of the mean of the response (Paradinas et al., 2016,174

2018).175

It is also worth noting that different species do not behave independently176

among them. There are several species whose abundance (or presence) is con-177

strained by competition: a large increase in one is unavoidably linked to de-178

clines of others. In these cases, the response variable should be considered179

using a joint distribution, and the models used for this type of data are known180

as joint species distribution models (Clark et al., 2014; Pollock et al., 2014;181

Hui, 2017; Taylor-Rodrguez et al. , 2017).182

All these types of biological data describing the observed species distribu-183

tion can be obtained in a variety of ways such as museum collection, designed184

field surveys, from related activities (i.e. fisheries) or on-line resources.185

2.2 Environmental data186

With respect to the explanatory variables that could help to describe the187

species behavior, a wide range of environmental variables have been usually188

incorporated in SDMs. These variables are commonly related to climate (e.g.189

temperature, precipitation), topography (e.g., elevation, aspect, bathymetry,190

slope of the seabed), land cover type or seabed type in marine ecosystems.191

Variables tend to describe primarily the abiotic environment, although there192

is potential to include biotic interactions within the modeling.193

This type of variables could be collected in situ, but usually they are derived194

from remoted sensing data. CRU (New et al., 2002), WorldClim (Hijmans195

et al., 2005), and MARSPEC (Sbrocco and Barber, 2013) are all examples of196

spatially explicit datasets of climatic remote sensing conditions. These datasets197
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encompass climatic information based on interpolations from global weather198

stations. However, interpolations are only as good as the underlying data, and199

uneven geographical coverage leads to high model uncertainty, especially in200

developing countries where few weather stations are in place (Daly, 2006; He201

et al., 2015). When uncertainty in spatial climate variables is not accounted202

for, coefficient estimates tend to be biased and this leads to poor performances203

of the SDMs, as shown recently with simulations by Stoklosa et al. (2015). This204

problem, also known as misalignment, is treated in this review in section 4.3.205

3 Inference206

In what follows, after presenting the traditional methods that have been used207

to perform inference in SDMs, we firstly discuss the hierarchical modeling as208

one of the most flexible and encompassing approaches to deal with them. The209

second subsection presents the Bayesian framework as a good option to deal210

with hierarchical models. The final subsection deals with the INLA approach211

for approximating the marginal posterior distributions of the parameters in-212

volved in the SDMs.213

3.1 Gaussian Fields and Hierarchical modeling214

A number of alternative modeling algorithms have been applied to classify215

species distribution as a function of a set of environmental variables. A first216

group of methods developed to deal with presence-only datasets includes maxi-217

mum entropy algorithm, environmental distance, similarity, and envelope meth-218

ods such as MAXENT (Phillips et al., 2006), Gower metric, Mahalanobis dis-219

tance, and ecological niche factor analysis, all of which describe some measure220

of habitat suitability.221

A second group involves machine-learning algorithms that are iterative222

in nature, such as artificial neural networks. These ensemble methods (e.g.223

Boosting Regression Trees, Classification Trees and Random Forests) generally224

involve developing multiple models on different subsets of the data, the results225

of which are averaged (Franklin, 2010).226

A third group of methods is related to traditional regression and includes227

generalized linear models (GLM) and their non-parametric extension, general-228

ized additive models (GAM), both of which can handle several measurement229

levels of the response variable by using a different link function (e.g. logistic230

for presence/absence or log for counts). GAM and a related method, multi-231

variate adaptive regression splines (MARS), are more flexible than GLM as232

they are fit using smoothing and piecewise linear splines, respectively, and are233

particularly useful for identifying the shape of species responses (Leathwick234

et al., 2005). MARS is computationally faster than GAM and the results are235

more easily converted to map predictions in a GIS; however, the currently236

used algorithms require normally distributed error terms. This makes MARS237
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unsuitable for use with presence/absence data unless the basis functions are238

extracted and used to parameterize a GLM (Leathwick et al., 2005). Rodŕıguez239

de Rivera and López-Qúılez (2017) present a comparison of these three groups240

of methodologies stating that GAM models gave the best results.241

However, most of the above mentioned methods are based on the assump-242

tion that the observations are conditionally-independent. But this is not always243

the case, as usually data of species distribution presents residual spatial au-244

tocorrelation (Kneib et al., 2008). GAMs and MARS can model spatial and245

temporal autocorrelation using smoothing splines. A very powerful and flexi-246

ble alternative is to incorporate this spatial relationship is by considering the247

species distribution data as point-referenced or geostatistical data. This type248

of data appears in those situations where the interest is to analyze spatially249

continuous phenomena. The most basic format for this kind of data is a pair250

composed by the spatial location coordinates defined throughout a continuous251

study region and the measurement value observed in the location. Geostatis-252

tical data require methods that allow to relate the species data with potential253

related covariates by quantifying the spatial dependence. However, one of the254

main interests in geostatistics relies on predicting the underlying process on255

those non observed locations (Cressie and Wikle, 2011; Banerjee et al., 2014).256

Geostatistical or point-referenced data can be seen as realizations of a257

spatial process (random field) {y(s), s ∈ D} characterized by a spatial index258

s which varies continuously in the fixed domain D. This process is called a259

Gaussian field (GF) if for any n ≥ 1 and for each set of locations (s1, . . . , sn),260

the vector (y(s1), . . . , y(sn)) follows a multivariate Normal distribution with261

mean µ = (µ(s1), . . . , µ(sn)) and with covariance matrix Σ defined by a262

covariance function C(·, ·), such that Σij = Cov(y(si), y(sj)) = C(y(si), y(sj)).263

If the mean is constant in space, i.e. µ(si) = µ for each i, and the generic spatial264

covariance matrix element depends only on the difference vector (si−sj) ∈ R2,265

the spatial process is second-order stationary. In addition, if the covariance266

function only depends on the Euclidean distance ‖si− sj‖, the process is said267

to be isotropic.268

In a hierarchical framework, the first step in defining a model for a random269

field is to identify a probability distribution for the observations available at270

n spatial locations and represented by the vector y = (y(s1), . . . , y(sn)) =271

(y1, . . . , yn) (the notation is simplified and the index i is used for denoting the272

generic spatial points si). At the first level of the hierarchy, we usually select a273

distribution from the exponential family, characterized by a set of parameters.274

These parameters are linked with a linear predictor which also includes a latent275

GF denoted by ξ(s) whose covariance function Σ depends on two parameters:276

σ2 which represents the variance (partial sill in kriging terminology) and the277

range φ of the spatial effect.278

Computational costs required to estimate these parameters are high when279

we deal with the spatial covariance function because the generated matrices280

are dense. This problem is known as “big n problem” (Banerjee et al., 2014;281

Jona Lasinio et al., 2012) and despite computational power today, it is still282

a computational bottleneck in many situations. A computationally effective283
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alternative is given by the stochastic partial differential equation (SPDE) ap-284

proach proposed by Lindgren et al. (2011) (see Section 3.3).285

In addition to the spatial pattern, the temporal variation could be equally286

important because the phenomenon can not only vary in space, but also in287

time (see Hefley and Hooten, 2016, for a comprehensive overview of modeling288

species distribution with a spatio-temporal perspective). Then, extending the289

spatial case to the spatio-temporal case including a time dimension, the process290

indexed by space and time can be defined as {y(s, t), (s, t) ∈ D ⊂ R×R}, and291

is observed at n spatial locations and at T time points.292

The general structure for modeling the spatial distribution of species is293

given by the following formulation and notation. If y = (y1, . . . , yn) represents294

the observed values of the corresponding response variable Y with mean µ =295

(µ1, . . . , µn), each µi can be easily linked to a structured additive predictor296

ηi through a link function g(·), so that g(µ) = η. The structured additive297

predictor η accounts for the effect of various covariates in an additive way:298

ηi = β0 +

M∑
m=1

βmxmi +

L∑
l=1

fl(zli) , (3.1)

where β0 corresponds to the intercept; the coefficients β = {β1, . . . , βM}299

quantify the (linear) effect of some covariates x = (x1, . . . ,xM ) on the re-300

sponse; and f = {f1(·), . . . , fL(·)} are unknown functions of the covariates301

z = (z1, . . . ,zL), and can assume different forms such as smooth nonlinear302

effects of covariates, time trends and seasonal effects, random intercept and303

slopes as well as temporal or spatial random effects. Note that this general304

structure can also be seen as a Generalized Additive Mixed Model (GAMM).305

It is also worth noting that here it is assumed that covariates are observed306

at the same locations of the response variable. The situation where covariates307

are observed in different locations than response variable (misalignment) will308

be discussed in Section 4.3.309

In many statistical applications, in particular, in SDMs, the model involves310

multiple parameters that can be regarded as related or connected in some way311

by the structure of the problem, implying that a joint probability model for312

these parameters should reflect their dependence (Gelman et al., 2014). It313

is natural to model such a problem hierarchically, with observable outcomes314

modeled conditionally on certain parameters, which in turn are given a prob-315

abilistic specification in terms of further parameters, adding various levels of316

the modeling and thus defining a hierarchical model (HM). Note that Hierar-317

chical models provide a generalization of all the models here presented, and318

moreover that they are capable to deal with all types of the data that we could319

find when dealing with SDMs. Table 3.1 describes all the models mentioned320

in this subsection along with a diagram emphasizing their nested nature.321

Although other approaches can be used such as maximum likelihood (MLE;322

Le Cam, 1990), restricted maximum likelihood (RMLE; Bartlett, 1937), quasi-323

maximum likelihood (QMLE; Cox and Reid, 2004), the method of moments324

(Bowman and Shenton, 2006), the generalized method of moments (GMM;325
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Table 1 Matching of models presented and data types. LM: linear models. LMM: linear
mixed models. GLM: Generalized linear models. GLMM: Generalized linear mixed models.
AM: additive models. AMM: additive mixed models. GAM: Generalized additive models.
GAMM: Generalized additive mixed models. HM: Hierarchical models. By construction,
these models are nested: LM < GLM < GAM < GAMM < HM.

Explanatory Response variable distribution

Variable(s) NORMAL OTHER DIST. EXP. FAMILY

LP LM GLM
R. effects LMM GLMM

Non-Lin. effects AM GAM
R. effects + Non-Lin. effects AMM GAMM

Hansen, 1982), M-estimators (Shapiro, 2000), the maximum spacing estima-326

tion (MSE; Anatolyev and Kosenok, 2005), etc., in this work we will focus on327

the Bayesian approach to make inference for hierarchical models with a linear328

predictor of the form (3.1).329

3.2 Bayesian approach330

The use of the Bayesian framework as a way to make inference has increased331

in the last 50 years and it has been applied in different areas such as so-332

cial sciences (Jackman, 2009), medicine and public health (Berry and Stangl,333

1999), finance (Rachev et al., 2008), ecology (McCarthy, 2007), bioinformat-334

ics (Mallick et al., 2009), health economics (Baio, 2012), physical sciences335

(Andreon and Weaver, 2015) and econometrics (Gómez-Rubio et al., 2014).336

Bayesian reasoning is based on the assumption that parameters are treated337

as random variables, and prior knowledge has to be incorporated via the cor-338

responding prior distributions of the said parameters. Bayes’ theorem is the339

tool that combines prior information with the likelihood yielding the posterior340

distributions. It is worth noting that the Bayesian approach is perfectly suited341

for complex spatial models such as SDMs because it allows model parameters342

to be random variables, resulting in a more realistic and accurate estimation343

of uncertainty.344

SDMs are a very good example of a hierarchical structure that can be345

expressed as a hierarchical Bayesian model (Wikle and Hooten, 2010; Hefley346

and Hooten, 2016). It can be structured in three levels: the first one refers347

to the data and is conditioned on the process and parameters in whatever348

aspects of the process are appropriate. The second level contains the latent349

components, which can be spatial and/or dynamic and the stochastic form can350

be univariate or multivariate. Finally, the third stage defines the priors for the351

parameters the latent processes depend on. The parameters in this level are352

also known as hyperparameters.353

The most commonly approach used to perform Bayesian inference for spa-354

tial species distribution models are MCMC methods (Gelfand et al., 2006);355
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they are flexible computational tools which can be easily adapted to any kind356

of inferential problem. The most used software to implement MCMC algo-357

rithms are WinBUGS (Lunn et al., 2000; Brooks et al., 2011), OpenBUGS (Lunn358

et al., 2009) and JAGS (Plummer, 2016), which can also be run within other359

programs like R (through the R2OpenBUGS, R2WinBUGS, BRugs and rjags pack-360

ages), Stata and SAS. Alternatively other R packages are BayesX (Brezger361

et al., 2003), CARBayes (Lee, 2013), stocc (for binary data only), spatcounts362

(for count data only), CARramps (for Gaussian data only), and spdep (for363

Gaussian data only). Several hierarchical processes including ecological pro-364

cesses (habitat suitability, spatial dependence and anthropogenic disturbance)365

and observation processes (species detectability) can also be performed using366

the hSDM package of R developed by Vieilledent et al. (2014). Functions in this367

R package use an adaptive Metropolis algorithm (Robert and Casella, 2011)368

in a Gibbs sampler (Gelfand and Smith, 1990) to obtain the posterior dis-369

tribution of model parameters. The Gibbs sampler is written in C code and370

compiled to optimize computation efficiency. Thus, the hSDM package can be371

used for very large data-sets while reducing drastically the computation time.372

However, with hSDM it is not possible at the moment to model spatio-temporal373

or proportion response variables.374

Despite of their generalized use, it is worth noting that MCMC methods375

still have many challenges to deal with (like the so-called “big n problem” men-376

tioned above; see Banerjee et al. 2014; Jona Lasinio et al. 2012). Indeed, they377

can be extremely slow and even computationally unfeasible especially when378

the models are extremely complex (with many random effects or hierarchical379

levels) or when big datasets are considered in the space-time setting.380

As a result, other options have appeared to make inference in SDMs. Tak-381

ing advantage of the hierarchical structure of SDMs, Golding and Purse (2016)382

propose the use of an empirical Bayesian approach. In particular, they maxi-383

mize the marginal posterior density of the model, which, in their words, enables384

the incorporation of prior knowledge over hyperparameters whilst being much385

less computationally intensive than fully Bayesian inference.386

Here, we will focus on the integrated nested Laplace approximation (INLA)387

methodology (Rue et al., 2009), as a computational effective alternative to388

MCMC. Our choice is based on two facts: the speed of calculation and the389

ease with which model comparison can be performed.390

3.3 INLA and SPDE framework391

The INLA methodology is now a well established tool for Bayesian inference in392

several research fields, including ecology, epidemiology, econometrics and envi-393

ronmental science (Rue et al., 2017). It can be used through R with the R-INLA394

package. For more details about INLA for spatial and spatio-temporal models395

we refer the reader to Blangiardo et al. (2013) and Blangiardo and Cameletti396

(2015), where practical examples and code guidelines are also provided.397
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The reason underneath the possibility of using INLA is based on the fact398

that SDMs can be seen as latent Gaussian models (Rue and Held, 2005), the399

class of models INLA is designed for. After identifying the distribution for the400

observed data, we can link its corresponding mean to the linear predictor as401

in Eq.(3.1). If conditional independence is assumed, the distribution of the n402

observations is given by the likelihood403

p(y | θ,ψ) =

n∏
i=1

p(yi | θi,ψ) , (3.2)

where θ represents the set of latent (nonobservable) components of interest404

θ = {β0,β,f}, also known as the latent field, and ψ = (ψ1, . . . , ψK) denotes405

the vector of K hyperparameters. As we can observe in Eq. (3.2), each data406

point yi is connected to one element θi in the latent field. This assumption can407

be relaxed and each observation may be connected with a linear combination408

of elements in θ (Martins et al., 2013). In addition, the multiple likelihood409

case could also be taken into account.410

In the context of latent Gaussian models, it is assumed a multivariate411

Normal prior distribution on θ with mean 0 and precision matrix Q(ψ), i.e,412

θ ∼ N(0,Q−1(ψ)) with density function given by413

p(θ | ψ) = (2π)−n/2|Q(ψ)|1/2 exp

(
−1

2
θ′Q(ψ)θ

)
, (3.3)

being | · | the matrix determinant and ′ the transpose operation. When the414

precision matrix Q(ψ) is sparse a GF becomes a Gaussian Markov random415

field (GMRF, Rue and Held, 2005). Interestingly, when making inference with416

GMRFs, linear algebra operations are performed using numerical methods for417

sparse matrices and this gives rise to computational benefits.418

In spite of the wide acceptance of INLA, its precision and its computa-419

tional efficiency in many latent Gaussian models (see for instance, Martino420

et al., 2011; Schrödle et al., 2011; Ruiz-Cárdenas et al., 2012, for a descrip-421

tion of how to use INLA in spatio-temporal disease mapping, in state-space422

models and in survival models, respectively), INLA cannot be directly applied423

when dealing with models that incorporate geostatistical data (that is, contin-424

uously indexed Gaussian Fields). The underlying reason is that a parametric425

covariance function needs to be specified and fitted based on the data, which426

determines the covariance matrix Σ and enables prediction in unsampled lo-427

cations. But from the computational perspective, the cost of factorizing the428

dense covariance matrix Σ is cubic in its dimension. Despite computational429

power today, in many situations, it is still challenging to factorize it for com-430

puting the inverse and the determinant.431

Lindgren et al. (2011) proposed an alternative approach by using an ap-432

proximate stochastic weak solution to a Stochastic Partial Differential Equa-433

tion (SPDE) as a GMRF approximation to a continuous Gaussian Field (GF)434

with Matérn covariance structure. Specifically, they used the fact that a Gaus-435

sian Field ξ(s) with Matérn covariance is a solution to the linear fractional436
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SPDE437

(κ2 −∆)α/2(τξ(s)) = W(s), s ∈ Rd, α = ν + δ/2, κ > 0, ν > 0, (3.4)

where ∆ is the Laplacian, α controls the smoothness, κ is the scale parameter,438

τ controls the variance, and W(s) is a Gaussian spatial white noise process.439

The exact and stationary solution to this SPDE is the stationary GF ξ(s) with440

Matérn covariance function given by:441

Cov(ξ(si), ξ(sj)) = C(ξi, ξj) =
σ2

2ν−1Γ (ν)
(κ||si − sj ||)νKν(κ||si − sj ||), (3.5)

being ||si − sj || the Euclidean distance between two locations si, sj ∈ Rd,442

and σ2 the marginal variance. Also, Kν is the modified Bessel function of the443

second kind and order ν > 0, which measures the degree of smoothness of the444

process. This parameter is usually kept fixed due to its poor identifiability.445

Conversely, κ > 0 is a scaling parameter related to the distance at which the446

spatial correlation becomes almost null, i.e., the range (for more information447

on the Matérn covariance model see Handcock and Stein, 1993; Stein, 1999).448

Typically, as it is pointed out in Lindgren et al. (2011), the empirically derived449

definition for the range is r =
√
8ν
κ , with r corresponding to the distance at450

which the spatial correlation is close to 0.1, for each ν ≥ 1
2 .451

The link between equations (3.4) and (3.5) is given by the expressions ν =452

α − δ
2 , and σ2 = Γ (ν)

Γ (α)(4π)δ/2κ2ντ2 . In the particular case where the dimension453

is 2, i.e., δ = 2, it follows that ν = α− 1 and σ2 = Γ (ν)
Γ (α)(4π)κ2ντ2 .454

Finally, in R-INLA, the Gaussian field ξ(s) is found numerically as a weak455

solution to the SPDE in (3.4), and by default the smoothness parameter α is456

fixed to 2, corresponding with ν = 1. With this assumption, the range is given457

by φ ≈ r =
√

8/κ, while the variance is given by σ2 = 1/(4πκ2τ2).458

Bayesian geostatistical analysis using R-INLA has been already applied in459

different contexts. Along with introducing the package geostatsinla for per-460

forming geostatistics with INLA in an easy way, Brown (2015) applies it in the461

context of mapping the Loa loa filiarasis disease (a dataset previously cited462

in Diggle and Ribeiro, 2007). Moreover, Karagiannis-Voules et al. (2013) have463

used Bayesian geostatistical negative binomial models to analyze reported inci-464

dence data of cutaneous and visceral leishmaniasis in Brazil covering a 10-year465

period, while González-Warleta et al. (2013) have used Bayesian geostatistical466

binomial models to predict the probability of infection of paramphistomosis in467

Galicia (NW Spain). In the context of fisheries, Bayesian geostatistical analysis468

using R-INLA has also been used to predict the presence/absence, the abun-469

dance, or the proportion of fish species (Muñoz et al., 2013; Pennino et al.,470

2013, 2014, 2016a,b; Paradinas et al., 2015, 2016; Cosandey-Godin et al., 2015;471

Quiroz et al., 2015; Roos et al., 2015; Rufener et al., 2017).472
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4 Extending statistical modeling of species distribution473

There are a number of additional potential sources of bias and error that should474

be carefully considered when analyzing and modeling species distribution data.475

Errors may arise through the incorrect identification of species, or inaccurate476

spatial referencing of samples. Biases can also be introduced because collectors477

tend to sample in easily accessible locations. Here we discuss some of these478

issues.479

4.1 Temporal autocorrelation480

As above mentioned, in addition to the spatial pattern, the temporal varia-481

tion could be equally important because the phenomenon can not only vary482

in space, but also in time. This happens in problems such as the evolution of483

epidemics (Stein et al., 1994; Hefley et al., 2017b), the spatio-temporal evo-484

lution of temperature (Hengl et al., 2012) or the understanding of the spatial485

dynamism of species over time (Wikle, 2003; Hooten et al., 2007; Hooten and486

Wikle, 2008; Paradinas et al., 2015, 2017; Williams et al., 2017).487

As pointed out by Cressie and Wikle (2011), temporal correlation depends488

on the same principle as spatial correlation: temporally close observations tend489

to be more related than temporally distant observations. Consequently, model490

fitting and predictions improve when a temporal term is added. However, tem-491

poral and spatial scales are different and the spatio-temporal analysis is more492

complicated than the simple addition of an extra dimension to the continuous493

spatial domain.494

In the context of species distribution modeling, most of the studies (sur-495

veys, plant coverage surveys, air pollution surveys, etc.) have been repeated496

periodically for long periods of time (Gitzen, 2012; Aizpurua et al., 2015). Al-497

though the main interest is the spatial evolution of the system under study, it498

must be taken into account that it varies not only in space, but also in time.499

Here we focus in this most common situation of discrete and regular time ob-500

servations. For situations in which data are collected in irregular time-lags,501

that is, when the issue is handling continuous-time data, a good option is to502

consider 1D SPDE models with a second order B-Spline basis representation503

(Lindgren and Rue, 2008, 2015).504

The spatio-temporal behavior of the data can vary depending on the nature505

of the process under study and the available sampling resolution. In particular,506

the basic model in (3.1) can be rewritten by splitting the f term into two507

terms, one indicating different possible spatio-temporal structures and another508

indicating any other latent model or non-linear effect. If yit represents the509

response variable analyzed at location si (i = 1, . . . , n) at time t (t = 1, . . . , T ),510

then the mean of the response variable µit is linked to the linear predictor with511
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a link function g(·), as512

ηit = g(µit) = β0 +

M∑
m=1

βmxmit +

K∑
k=1

fk(zkit) + uit , (4.6)

where β0 corresponds to the intercept; the coefficients β = {β1, . . . , βM} quan-513

tify the linear effect of some covariates on the response; uit represents the514

spatio-temporal structure of the model; zkit is the value of the k-th explana-515

tory variable at a given location si and time t; and f represents any latent516

model applied to the covariates.517

Among other structures, and following Paradinas et al. (2017), we just518

comment here four basic structures for uit, each one allowing for different519

degrees of flexibility in the temporal domain of the spatio-temporal model.520

Paradinas et al. (2017) provide a figure that schematically illustrates all these521

structures:522

– Opportunistic spatial distribution: this flexible structure consists in523

expressing uit as different spatial realizations wt = {w1t, . . . , wit, . . . , wnt}524

of the same spatial field for each time unit t, while sharing a common525

covariance function (same κ and τ) to avoid overfitting:526

uit = wit , (4.7)

wt ∼ N(0,Q−1(κ, τ)) .

This structure is a good approximation for processes where the spatial527

distribution varies considerably among different time units and unrelatedly528

among neighboring times. This structure has been used in Cosandey-Godin529

et al. (2015) and in Paradinas et al. (2015).530

– Persistent spatial distribution with random intensity changes over531

time: when the pattern of spatial variation persists over time, but with532

possibly varying scales of intensity, a time structure is introduced in the533

model using a zero mean Gaussian random noise effect vt. In this case, uit534

is decomposed in a common spatial realization wit along with an indepen-535

dent random noise effect vt that absorbs the different mean intensities at536

each time t:537

uit = wit + vt ,

wt ∼ N(0,Q−1(κ, τ)) , (4.8)

vt ∼ N(0, τ−1v ) .

For processes where the spatial component persists in time, this structure538

may be the most suitable. This structure has been used by Pennino et al.539

(2014) and in Paradinas et al. (2015).540

– Persistent spatial distribution with temporal intensity trend: the541

process could show a temporal progression in its mean. To model that, a542

temporal trend effect h(t) can be added to the linear predictor. In this case,543

uit is decomposed in a common spatial realization wi and an independent544
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temporal structured trend h(t) to absorb the temporal progression of the545

process:546

uit = wi + h(t) , (4.9)

w ∼ N(0,Q−1(κ, τ)) .

This structure is highly recommended in situations where a temporal ten-547

dency is present. It was proposed by Paradinas et al. (2016) to identify548

intra-annual trends in fishery discards.549

– Progressive spatio-temporal distribution: this structure incorporates550

both spatial and temporal correlation of the data to accommodate those551

cases where the spatial realizations change in a related manner over time.552

Here, uit is decomposed in a common spatial realization wit and an au-553

toregressive temporal term rit expressing the correlation among temporal554

neighbors of order K:555

uit = wit + rit ,

wt ∼ N(0,Q−1(κ, τ)) , (4.10)

rit ∼ N

(
K∑
k=1

ρkri(t−k), τ
−1
r

)
.

This structure is favored when the spatial realization varies between differ-556

ent times but not as much as in (4.8). Indeed, the structure has been used557

by Cameletti et al. (2011, 2013) and also by Cosandey-Godin et al. (2015).558

Note that this list is just an overview of the different spatio-temporal struc-559

tures which allow us to discern the nature of the general spatial behavior of the560

process over time. Unfortunately, the temporal resolution of spatio-temporal561

datasets is typically too low to fit most of the highly structured models.562

4.2 Preferential sampling563

In studies of species distributions, collecting data on the species of interest is564

not a trivial problem. With the exception of a few studies, species distribu-565

tion models frequently rely on opportunistic data collection due to the high566

cost and time consuming nature of collecting data in the field, especially on a567

large spatial scale. As an example, studies on bird monitoring data are often568

collected by volunteers who concentrate the sampling process on areas where569

they expect to find species of interest. These types of opportunistically col-570

lected data tend to suffer from a specific complication: the sampling process571

that determines the data locations and the species observations are not inde-572

pendent (Diggle et al., 2010). Statistical models used for species distribution573

usually assume, if only implicitly, that sampling is non-preferential and that574

the selection of the sampling locations does not depend on the values of the575

spatial variable. However, opportunistic data are a clear example of preferen-576

tial sampling, that occurs because sampling locations are deliberately chosen577
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in areas where the values of the species of interest are thought likely to be578

particularly high or low (Diggle et al., 2010).579

Hence, applying standard geostatistical methods to preferentially sampled580

data potentially leads to biased results if the choice of monitoring locations581

is not accounted for in the modeling process. A possible approach to correct582

this issue is to interpret the data as a marked point pattern (Fortin and Dale,583

2005; Diggle, 2013) where the sampling locations form a point pattern and584

the observations taken in those locations are the marks. By assuming that the585

intensity of the point process depends on the amount of species of interest, the586

marks and the pattern become not independent.587

A preferential sampling model can be considered as a two part model588

that share information. Firstly, it is supposed that the observed locations589

(s1, . . . , sn) come from a non-homogeneous Poisson process with intensity590

Λi = exp {α1 + wi}, i.e., a log-Gaussian Cox process (LGCP; Fortin and Dale,591

2005; Diggle, 2013) is assumed, being α1 the intercept of the LGCP and wi592

the spatial effect of the model and i = 1, . . . , n the index corresponding to593

the si location. Secondly, the species characteristic (usually the abundance) yi594

is assumed to follow an exponential family distribution (such as a Normal or595

a Gamma distribution when dealing with abundances, although clearly other596

options such as exponential, lognormal, etc., could be possible), whose mean is597

related with the spatial term using a link function g(·), g(µi) = α2+βwi, being598

α2 the intercept of the model and wi the spatial term shared with the LGCP,599

but scaled by β to allow for the differences in scale between the abundances600

and the LGCP. More formally, the model can be expressed as follows:601

yi ∼ F(µi, γ
2)

g(µi) = α2 + βwi (4.11)

w ∼ N(0,Q−1(κ, τ))

where w = {w1, . . . , wn}, the precision matrix Q(κ, τ) is computed internally602

by the SPDE approach and represents the GMRF approximation to the con-603

tinuous GF (see Illian et al., 2012; Krainski et al., 2017; Pennino et al., 2018,604

for details about how to implement these models within INLA), and F (µ, γ)605

represents a distribution coming from the Exponential family with mean µ606

and variance γ2.607

4.3 Spatial misalignment608

One of the crucial issues in studying the effect of environmental physical fac-609

tors on species distribution concerns spatial misalignment (Clark and Gelfand,610

2006; Gelfand et al., 2010) (Foster et al., 2012; Miller, 2012).611

This occurs when the response biological variable (e.g. presence/absence of612

the species) is observed in locations which are different from the spatial points613

where covariate data are available. Additionally, it can happen that covariates614

have a different spatial scale if they are defined at the area or cell grid level615

(as in the case of remote sensing data).616
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The näıve solution to deal with spatial misalignment is represented by a617

two-stage approach: the first step consists in the prediction of the covariate618

in the spatial locations where the response variable is observed (through a619

geostatistical model by means of kriging or inverse-distance weighting) or in620

the downscaling of the gridded covariate to the point-level resolution (usually,621

it is considered the value of the cell where the spatial point is located). Then, at622

the second stage, these predicted values are plugged-in in the linear predictor623

(3.1) as known constants. The problem with this approach is that it doesn’t624

take into account the uncertainty related to the covariate spatial estimation625

of the first stage, with the consequence of erroneous inference of the statistical626

model and a potential biased estimate of the environmental variable effect on627

the response variable (Foster et al., 2012).628

A solution to incorporate the spatial prediction uncertainty in SDMs con-629

sists in implementing one of the so-called errors-in-variables models (Carroll630

et al., 2016) which can be estimated in a frequentist (by means of the EM-631

algorithm) or Bayesian framework (with MCMC or INLA). If we assume for632

example that the predicted covariate is a noisy version of the true one, a clas-633

sical measurement error model can be adopted (Stoklosa et al., 2015). Other-634

wise, a Berkson-error model can be considered if the predicted covariate is a635

smoothed version (i.e. less variable) of the true variable (Foster et al., 2012).636

As reported in Stoklosa et al. (2015) “Which of these two types of error models637

to consider will depend on what the analyst believes to be the true underlying638

explanatory variable, and how the data were collected/measured. The analyst639

must take into account: how and whether the species responds to a particular640

climate observation (Berkson); or that it might respond to an average, such641

that relatively minor deviations from this are immaterial (classical)”.642

Another alternative to the two-stage approach is the joint modeling strat-643

egy implemented in Barber et al. (2016) for evaluating the presence of the644

Fasciola hepatica in Galicia (Spain) using the annual mean temperature as645

covariate. In this case a spatial geostatistical model is specified for the covari-646

ate and is estimated jointly with the species distribution models in a Bayesian647

context. The joint model is specified as follows648

yi ∼ Bernoulli(πi)

logit(πi) = β0 + β1φi + wi

w ∼ N(0,Q−1(κ, τ)) (4.12)

xi
iid∼ N(φi, σ

2
x)

φ ∼ N(0,Q−1(γ, δ))

where πi is the probability of occurrence at site si, xi is the covariate of in-649

terest whose spatial distribution is specified through its mean (a realization of650

the Matérn Gaussian process φ depending on the parameters γ and δ), and651

through its variance σ2
x, which is introduced to express any possible measure-652

ment error. The model also includes another spatial process for the response653

represented by w. This kind of model is part of the latent Gaussian model fam-654

ily and can be estimated using the SPDE-INLA approach (see Blangiardo and655
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Cameletti, 2015, Chap. 8 and Muff et al., 2015). The advantage is that this656

joint model allows to properly propagate all the uncertainty related to the657

covariate prediction; on the other side it can be extremely computationally658

expensive especially when there is more than one explanatory variable.659

Finally, another alternative is the one proposed by Gómez-Rubio and Rue660

(2017) that, using a more general approach, deals with missing values in the661

covariates, based on fitting conditional latent Gaussian models where covari-662

ates are imputed using a Metropolis-Hastings algorithm.663

4.4 Non-stationarity664

The Matérn spatial covariance function C(·, ·) specified by Eq. (3.5) enjoys665

the second-order stationarity and isotropy property, i.e. it depends only on666

the distance between the spatial locations and not on the direction or the667

coordinates. In some situations, this stationarity assumption, which is very668

convenient to simplify the inferential procedures, may not be suitable. For669

example, for some applications it is not realistic to assume that the spatial670

dependence structure is the same through the considered domain, especially671

when geographical elements or physical barriers (river, lakes, islands, etc.)672

exist. In such situations characterized by spatial heterogeneity and barriers, it673

may be more reasonable to adopt a non-stationary Gaussian field (see Gelfand674

et al. 2010, Chapter 9 and Risser 2016 for a review).675

In ecological applications, heterogeneity in space (i.e. non-stationarity) oc-676

curs when a latent global process is also affected by some underlying local677

processes (Miller, 2012). A local modeling technique to include this hetero-678

geneity in SDMs is given by the geographically weighted regression (GWR)679

characterized by covariate coefficients which vary spatially and are specific680

for each spatial location; a spatial kernel function is used to define spatial681

neighborhoods (see e.g. Brunsdon et al. 1998; Windle et al. 2010; Holloway682

and Miller 2015; Liu et al. 2017). Some authors do not completely agree with683

the use of these models due to the large degree of multicollinearity that their684

coefficients tend to exhibit, as well as strong positive spatial autocorrelation.685

As an alternative, spatial filtering provides a methodology for better dealing686

with multicollinearity, while accounting for spatial autocorrelation (see e.g.687

Griffith 2008). The Bayesian counterpart of GWR models, which are usually688

estimated by weighted least squares, is given by spatially-varying coefficients689

models (Gelfand et al., 2003; Finley, 2011).690

In the SPDE framework non-stationarity is achieved by allowing the Matérn691

covariance function parameters to vary smoothly over space according to a log-692

linear function: thus, we will have σ2(s) for the marginal variance in (3.5) and693

r(s) for the spatial range (Ingebrigtsen et al., 2014; Lindgren and Rue, 2015).694

Bakka et al. (2016) extend this approach to solve specifically the barrier prob-695

lem for SDMs. In particular, they force the spatial correlation to go around696

the barrier (and not through them) by means of a partition of the considered697

spatial field- in a normal and in a barrier area - and in the specification of698
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two corresponding non-stationary processes with different range parameters699

(in particular for the barrier region the range parameter is almost zero). The700

application considered in Bakka et al. (2016) regards fish larvae data in the701

Finnish archipelago.702

4.5 Imperfect detection703

Detection in studies of species abundance and distribution is often imperfect704

due to observer error (Nichols et al., 2000), species rarity (Dettmers et al.,705

1999) or because detection varies with confounding variables such as envi-706

ronmental conditions (Gu and Swihart, 2004; Pennino et al., 2016b). When707

detection is imperfect, additional steps are usually needed to improve infer-708

ence. Indeed, failure to do so could result in biased estimation and erroneous709

conclusions.710

In the last years, new models called site-occupancy (Hoeting et al., 2000;711

MacKenzie et al., 2002) for presence-absence data and N-mixture models712

(Royle, 2004) for abundance data have been developed to solve this problem.713

These models combine two processes, an ecological process to describe habitat714

suitability and an observation process to take into account imperfect detec-715

tion. To estimate detectability, these models use information from repeated716

observations at several sites. Detectability may vary with site characteristic717

such as habitat variables, or survey characteristics such as weather conditions,718

since suitability relates only to site characteristics. Different studies showing719

the advantages of site occupancy and N-mixture models over classical models720

that do not considerer the problem of detectability can be found in the liter-721

ature: Royle (2004); Dorazio et al. (2006) for birds, MacKenzie et al. (2002)722

for amphibians or Pennino et al. (2016b) for cetaceans. In addition to the723

detectability problem, a variety of methods have been developed to correct724

for the effects of spatial autocorrelation (Latimer et al., 2006; Johnson et al.,725

2013; Hefley et al., 2017a).726

A Bayesian version for site-occupancy spatial models and N-mixture spa-727

tial models could also be implemented to take into account simultaneously728

both imperfect detection and spatial autocorrelation. To describe Bayesian729

site-occupancy spatial models, let zi be a random variable describing habitat730

suitability at site si. It can take the value 1 or 0 depending on the habitat731

suitability, i.e. zi = 1 or zi = 0, thus a Bernoulli distribution is assumed with732

parameter πi. Several visits at time t = 1, . . . , T can happen at site i. Let yit733

be a random variable representing the presence of the species at site i and time734

t. The species is observed at site i (
∑
t yit ≥ 1) only if the habitat is suitable735

(zi = 1). The species is unobserved at site i (
∑
t yit = 0) if the habitat is736

not suitable (zi = 0), or if the habitat is suitable (zi = 1) but the probability737

αit of detecting the species at site si and time t is lower than 1. Then, yit738

follows a Bernoulli distribution of parameter ziαit, and the model is expressed739

as follows740
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Ecological process:741

zi ∼ Bernoulli(πi) , (4.13)

logit(πi) = β0 +

M1∑
m=1

βmx
(1)
mi + wi ,

Detection process:742

yit ∼ Bernoulli(zi αit) , (4.14)

logit(αit) = γ0 +

M2∑
m=1

γmx
(2)
mit ,

where {β0, . . . , βM1
} and {γ0, . . . , γM2

} are the parameters that quantify the743

linear effects of some covariates (x
(1)
1 , . . . ,x

(1)
M1

) and (x
(2)
1 , . . . ,x

(2)
M2

) in the744

ecological and observation process respectively. These covariates are usually745

variables refereed to site characteristics such as habitat variables or survey746

characteristics such as weather conditions. w = (w1, . . . , wn) represents the747

spatial effect in the ecological process. Normally, this spatial effect is a Gaus-748

sian process that can be incorporated as geostatistical terms (in the way al-749

ready introduced in Section 3), but other options are possible (such as CAR750

Normal distributions, as in Pennino et al. (2016b)). The R-package hSDM, which751

make inference using MCMC, can be used easily to fit some of these models. In752

addition, the inlabru package also handle the problem of detectability (Yuan753

et al., 2016).754

With respect to N-mixture models, which are used for count data with755

imperfect detection, they implement a Poisson distribution for the ecologi-756

cal process, while using a Binomial distribution for the observability process757

(Royle and Nichols, 2003; Dodd Jr and Dorazio, 2004; Royle, 2004). The struc-758

ture of the model is similar to site-occupancy model, in particular:759

Ecological process:760

Ni ∼ Poisson(λi) , (4.15)

log(λi) = β0 +

M1∑
m=1

βmx
(1)
mi + wi ,

Detection process:761

yit ∼ Bernoulli(Ni αit) , (4.16)

logit(αit) = γ0 +

M2∑
m=1

γmx
(2)
mit .

The R-package hSDM allow us to fit some of these models. In addition, the762

INLA group is developing some methods to fit N-mixture models (Meehan763

et al., 2017).764



Title Suppressed Due to Excessive Length 21

4.6 Excess of zeros765

The study of datasets with zero excess has a relevant role in the literature,766

particularly, in species distribution modeling (Agarwal et al., 2002; Ver Hoef767

and Jansen, 2007; Neelon et al., 2013), becoming highly relevant in last years768

indeed. Bayesian softwares like INLA already contain different functions to769

handle situations with zero excess. Generally, these situations are a source of770

overdispersion caused by a disagreement between the data and the distribution771

assumed: there are more zeros in the dataset than the proposed distribution772

could reasonably explain.773

Zero-inflated models are a widely known tool for dealing with this problem.774

These models assume that the data follow a finite mixture of a degenerate775

distribution with all its mass at zero with a discrete distribution with support776

in Z+ ∪ {0} (Yau et al., 2003). If 1 − πi represents the probability of species777

presence, πi the probability of the species absence, i.e., p(yi|πi) = πi and778

p(yi > 0) = 1−πi, and h a probability mass function (pmf) of some parametric779

discrete distribution with support on Z+ ∪ {0}, the distribution of yi has the780

following mixture density:781

p(yi|πi, µi,ψ1) = πiδ0 + (1− πi)h(yi|µi,ψ1) , (4.17)

being δ0 the Dirac delta function, µi and ψ1 hyperparameters depending on782

h, and h is a pmf coming from a Poisson, binomial or negative-binomial (note783

that this latter distribution is one of the usually considered to account for784

overdispersion). The model is completed when linking πi and µi with the785

linear predictors by means of:786

logit(πi) = η
(1)
i = α(1) +

M(1)∑
m=1

β(1)
m x

(1)
mi +

L(1)∑
l=1

f
(1)
l (z

(1)
li ) , (4.18)

g(µi) = η
(2)
i = α(2) +

M(2)∑
m=1

β(2)
m x

(2)
mi +

L(2)∑
l=1

f
(2)
l (z

(2)
li ) ,

where logit denotes the link function between the linear predictor η
(1)
i and the787

probability of absence πi, and g(·) is an appropriate link for the mean of h.788

An alternative to these models is given by hurdle models (Mullahy, 1986;789

Cameron and Trivedi, 1998), where data are assumed to follow a finite mixture790

of a degenerate distribution with all its mass at zero and a zero truncated791

discrete distribution. That is, unlike the zero inflated models, in hurdle models,792

all observed zeros come from the zero-degenerate distribution. Following the793

same notation of Eq. (4.17), a hurdle model can be expressed as follows:794

p(yi|πi, µi,ψ1) = πiδ0 + (1− πi)h(yi|µi,ψ1)I[yi>0] . (4.19)

As in (4.18), the hurdle model is completed when linking πi and µi with their795

corresponding linear predictors.796
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However, the response variable is not always a discrete variable. Semi-797

continuous processes like rain, plant coverage, chemical concentrations, etc.,798

are measured in the [0,∞) interval having high proportions of zero values, and799

there are neither an appropriate probability distribution nor a transformation800

available to adequately fit them. To model this type of processes, an exten-801

sion of hurdle models for continuous data is required (Aitchison, 1955; Quiroz802

et al., 2015). Again, data are modeled as two independent sub-processes, one803

determines whether the response is zero, and the other determines the inten-804

sity when the response is non-zero using a continuous well known distribu-805

tion as the log-Normal or the Gamma (Stefánsson, 1996; Brynjarsdóttir and806

Stefánsson, 2004; Paradinas et al., 2018). In this case, hurdle models are de-807

fined as a finite mixture of a degenerate distribution with point mass at zero808

and a distribution with support on R+. If h is a pdf of some parametric continu-809

ous distribution with support on R+ (e.g. Gamma, log-Normal or log-logistic),810

the hurdle model for yi (now assumed to be a continuous distribution) has the811

same mixture density as in (4.19). Although there exist an extensive list of812

zero-inflated or hurdle models dealing with correlated discrete data in many813

fields (Agarwal et al., 2002; Ver Hoef and Jansen, 2007), this approach has not814

been widely used with continuous responses.815

It is worth noting that all the models commented in this section are a mix-816

ture of two processes, and in almost all cases, they are modeled independently817

(Neelon et al., 2013; Balderama et al., 2016). However, generally both sub-818

processes are related: low intensities are linked to low probabilities of presence819

and vice versa. Shared component modeling (SCM) are a good tool to deal820

with it by combining information both from the two subprocesses (Paradinas821

et al., 2018).822

5 Discussion823

This paper has reviewed some of the statistical challenges that can arise824

when the distribution of the species is modeled using geostatistical or point-825

referenced data. In particular, after describing in detail data and methods826

commonly used to model species distribution, we have focused on complex827

issues and we have discussed how they can be solved using Bayesian hier-828

archical spatio-temporal models. Specifically, in this review we have focused829

on the Bayesian approach and the INLA methodology (Rue et al., 2009) as830

they have several benefits with respect to the classical geostatistical meth-831

ods. INLA allows to perform complex models with a minimum computa-832

tional effort while obtaining accurate estimates. Its importance in the context833

of SDMs can be even more appreciated with the appearance of the recent834

project inlabru which has been created to develop and implement innovative835

methods to model spatial distribution and change from ecological survey data836

(https://sites.google.com/inlabru3.org/inlabru). In addition, classical837

geostatistical methods typically overestimate their predictive accuracy by us-838

ing plug-in estimations of parameters in their predictive equations. (Diggle839

https://sites.google.com/inlabru3.org/inlabru
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and Ribeiro, 2007). On the contrary, inference about uncertainty, based on840

the observations and models, is a byproduct of the model predictions when841

the Bayesian framework is employed.842

However, some limitations can arise when the INLA approach is used.843

For example, INLA can not handle missing values in spatially structured co-844

variates. This issue can be framed in the misalignment problem discussed in845

Section 4.3; this means that it could be overcome applying a two-stage or846

joint modeling approach that allows to predict the covariate values in the847

locations where they were not measured. As above mentioned, an alterna-848

tive is the one proposed by Gómez-Rubio and Rue (2017) that, using a more849

general approach, deals with missing values in the covariates, based on fit-850

ting conditional latent Gaussian models where covariates are imputed using a851

Metropolis-Hastings algorithm.852

We would like to remark that, due to space limitation, we did not fully853

review the several complications that can derive from the sampling process.854

Indeed, we have only focused on the preferential sampling problem (Diggle855

et al., 2010), which, as previously mentioned, refers to the possibility that the856

sample design is stochastically dependent on the studied process. Nevertheless,857

other types of sampling procedures could produce different issues that should858

be taken into account in the statistical analysis. For example, one of the most859

popular methods used in ecology to estimate an animal population’s size is860

the capture-recapture method that involves to capture, mark and release an861

initial sample of individuals (Otis et al., 1978; McInerny and Purves, 2011).862

Subsequently, a second sample of animal individuals is obtained independently863

and it is noted how many of them in that sample were marked. To model this864

type of data, a feasible solution could be the implementation of Bayesian865

hierarchical N-mixture models described in Section 4.5, which are currently866

being developed in INLA (Meehan et al., 2017).867

Finally, an important point to consider is that INLA is not the only com-868

putational approach to make inference for Bayesian spatio-temporal models.869

In the last years, other approaches that also enable to achieve accurate species870

distribution models results, such as stan (Stan Development Team, 2015; Mon-871

nahan et al., 2017), have been widely used.872
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Araújo MB, Pearson RG, Thuiller W, Erhard M (2005) Validation of species-894

climate impact models under climate change. Global Change Biology895

11(9):1504–1513.896

Baio G (2012) Bayesian Methods in Health Economics. CRC Chapman and897

Hall.898

Bakka H, Vanhatalo J, Illian J, Simpson D, Rue H (Aug. 2016) Accounting899

for physical barriers in species distribution modeling with non-stationary900

spatial random effects. ArXiv e-prints.901

Balderama E, Gardner B, Reich BJ (2016) A spatial-temporal double-hurdle902

model for extremely over-dispersed avian count data. Spatial Statistics903

18:263–275.904

Banerjee S, Carlin BP, Gelfand AE (2014) Hierarchical Modeling and Analysis905

for Spatial Data. CRC.906

Barber X, Conesa D, Lladosa S, López-Qúılez A (2016) Modelling the pres-907
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Gómez-Rubio V, Rue H (Jan. 2017) Markov Chain Monte Carlo with the1041

Integrated Nested Laplace Approximation. ArXiv e-prints.1042
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