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Abstract

Among the existing global optimization algorithms, Particle Swarm Opti-
mization (PSO) is one of the most effective methods for non-linear and com-
plex high-dimensional problems. Since PSO performance strongly depends
on the choice of its settings (i.e., inertia, cognitive and social factors, min-
imum and maximum velocity), Fuzzy Logic (FL) was previously exploited
to select these values. So far, FL-based implementations of PSO aimed at
the calculation of a unique settings for the whole swarm. In this work we
propose a novel self-tuning algorithm—called Fuzzy Self-Tuning PSO (FST-
PSO)—which exploits FL to calculate the inertia, cognitive and social factor,
minimum and maximum velocity independently for each particle, thus real-
izing a complete settings-free version of PSO. The novelty and strength of
FST-PSO lie in the fact that it does not require any expertise in PSO func-
tioning, since the behavior of every particle is automatically and dynamically
adjusted during the optimization. We compare the performance of FST-PSO
with standard PSO, Proactive Particles in Swarm Optimization, Artificial
Bee Colony, Covariance Matrix Adaptation Evolution Strategy, Differential
Evolution and Genetic Algorithms. We empirically show that FST-PSO can
basically outperform all tested algorithms with respect to the convergence
speed and is competitive concerning the best solutions found, noticeably
with a reduced computational effort.
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Logic, settings-free optimization, self-tuning algorithms

1. Introduction

Particle Swarm Optimization (PSO) is a population-based global opti-
mization meta-heuristics, inspired by the collective movement of birds flocks
and fish schools [1]. In PSO, a swarm of N individuals, called particles, moves
inside a bounded search space and cooperates to identify the best solution for
a given problem with respect to a given fitness function. Two components are
considered in PSO to the aim of exploiting and controlling the cooperation
within the swarm: (i) the social attraction, which favors the collaboration
among particles; (ii) the cognitive attraction, which prompts a particle to
rely on its individual experience. The former component drives the particle
towards the (current) best particle in the swarm, or towards the best par-
ticle in a specified neighborhood; the latter component guides each particle
towards the best position it autonomously found so far. Both components
influence the velocity and the exploratory capabilities of particles within the
search space. Two parameters are used to balance the influence of these at-
tractors: the so-called social (csoc) and cognitive (ccog) factors. Moreover, to
obtain an effective exploration of the search space, an inertia factor w is used
to weigh the movement of particles, and the magnitude of their velocities is
clamped to a given threshold vmax. A vector vmax = (vmax1 , . . . , vmaxM ) can
also be defined when possibly different velocity values are assigned along the
M dimensions of the search space.

As in the case of many other optimization algorithms, the performance of
PSO strongly depends on the proper settings of the aforementioned factors
(N, csoc, ccog, w,vmax). Unfortunately, an analytic determination of the best
settings is generally impossible, being strongly problem-dependent: only a
thorough knowledge of the shape and roughness of the fitness landscape—the
hyper-surface characterizing all local and global optima—might help in prop-
erly choosing the values for PSO settings [2]. In general, the identification of
the best settings is complex, lengthy and time consuming, so that a big deal
of research is devoted to the definition of self-tuning and adaptive versions
of evolutionary and swarm intelligence algorithms, including PSO. For in-
stance, TRIBES is a settings-free version of PSO that automatically changes
at run-time the particles’ behavior as well as the topology of the swarm [3].
The Parameter-Less Evolutionary Search—based on Genetic Algorithms—
dynamically determines the settings by exploiting some statistical properties
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of the population [4]. The plague technique applied to Genetic Programming
[5] is a strategy consisting in automatically adjusting the number of individ-
uals of the population according to the fitness variation. APSO-MAM is a
PSO variant where, at each iteration, the settings of a particle are dynami-
cally varied. Hu et al. [6] shown that this method performs better than other
algorithms that exploit automatic mechanisms to control parameter values;
however, APSO-MAM is based on a subgradient procedure to improve the
quality of the best particle that can be calculated only for differentiable func-
tions. This procedure is suitable for benchmark functions—based on simple
equations whose gradient can be analytically calculated—but hampers a full
applicability of APSO-MAM in the case of real-world applications, in which
the gradient of the fitness function does not have an analytic formulation.

Other approaches to dynamically select the PSO settings make use of
Fuzzy Logic (FL) [7], to the aim of analyzing the contingent situation of
the swarm. For instance, Shi and Eberhart [8] proposed for the first time
a Fuzzy Rule-Based System (FRBS) to drive the configuration of PSO set-
tings. In general, a FRBS exploits fuzzy sets and FL to represent different
forms of knowledge about the system, as well as to model the relationships
existing between its variables [9]. In the case of PSO considered in [8], the
performance of the current best candidate solution and the current inertia
weight are evaluated at each iteration, and exploited as inputs of the FRBS
to calculate a new inertia weight for the whole swarm. Fuzzy Adaptive Tur-
bulence in Particle Swarm Optimization was then introduced by Abraham
and Liu [10] to deal with the issue of the premature convergence of parti-
cles. This PSO version exploits FL to adaptively tune an additional PSO
settings value, i.e., the minimum velocity of particles, in order to reduce the
crowding of the swarm around the global best. Note that a vector vmin could
be defined, analogously to the case of the maximum velocity vector vmax,
to set different minimum velocity values along each dimension of the search
space. However, Fuzzy Adaptive Turbulence in PSO considers only a com-
mon minimum velocity value for the whole swarm. A Fuzzy Particle Swarm
Optimization algorithm (FPSO) was instead introduced by Tian and Li [11]
to adjust both the inertia weight and the learning coefficient (a parameter
introduced on purpose to modulate the velocity of particles). In FPSO, the
FRBS exploits two input variables: the improvement of the global best and
the deviation of particles’ fitness.

Castillo and Melin [12] reported on works describing different evolution-
ary algorithms improved by means of FL, while a survey on different meth-
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ods used to tune PSO settings was presented by Razaee Jordehi and Jasni
[13]. All these papers show that FL represents an advantageous approach
to develop self-tuning strategies for global optimization algorithms. Anyway,
previous works in the context of PSO considered only a subset of its overall
settings.

Traditional PSO versions consider w, csoc, ccog, vmin and vmax as global
settings, i.e., the velocity and position of all particles in the swarm are up-
dated according to the same values. On the contrary, in the algorithm we
present in this work each particle has its own settings, determined by means
of a FRBS; therefore, the simple reactive individuals of classic PSO become
proactive optimizing agents. The FRBS calculates the individual settings of
particles by computing two functions, the distance from the global best and
a normalized fitness incremental factor, as it was initially proposed in Proac-
tive Particles in Swarm Optimization (PPSO) [14]. Here we introduce Fuzzy
Self-Tuning Particle Swarm Optimization (FST-PSO), which guarantees user
independence via a fully automatic FL-based methodology that calculates at
run-time the settings of w, csoc, ccog,vmin and vmax, independently for each
particle in the swarm. In Section 3 we extensively discuss the features of
FST-PSO with respect to PPSO.

The performances of FST-PSO are compared against standard PSO [1],
PPSO [14] and state-of-the-art competitors like Artificial Bee Colony (ABC)
[15], Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [16], Dif-
ferential Evolution (DE) [17], and Genetic Algorithms (GA) [18]. All these
algorithms are population-based optimization procedures, where the quality
of the individuals is assessed by means of a proper fitness function.

According to the so-called no free lunch theorem [19], there exists no algo-
rithm able to outperform all the other algorithms, on average, given any pos-
sible optimization problem. In this paper we empirically show that FST-PSO
can basically outperform all tested competitors with respect to the conver-
gence speed, and it is also competitive concerning the best solutions found.
We also highlight that FST-PSO requires less computational effort with re-
spect to the state-of-the-art competitors. Considering the aforementioned
theorem and the results shown in this work, a remarkable advantage of FST-
PSO is that it represents a completely settings-free “black-box” self-tuning
algorithm, usable without any expertise in global optimization methods, and
characterized by an excellent trade-off between exploratory capabilities and
computational requirements.

The paper is structured as follows. In Section 2 we describe the standard
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PSO algorithm, while FST-PSO is presented in Section 3. We show the re-
sults of our analyses in Section 4, empirically proving the better performance
of FST-PSO for a set of multi-dimensional benchmark functions. Finally, in
Section 5 we discuss some future developments of our methodology.

2. Particle Swarm Optimization

PSO is a population-based swarm intelligence meta-heuristics, especially
suitable for optimization problems whose solutions can be encoded as real-
valued vectors [1]. In PSO, a population (called swarm) of N candidate
solutions (called particles) cooperates to identify the optimal solution by
moving within a bounded M -dimensional search space, where M is the length
of the real-valued vectors.

Each particle i, i = 1, . . . , N , is characterized by two vectors in the search
space: the position, xi ∈ RM , and the velocity, vi ∈ RM . Usually, the initial
positions of particles are randomly selected with a uniform distribution over
the search space, though different initialization strategies can be exploited
[20]. The position and the velocity of each particle are updated, at each itera-
tion of the optimization phase, according to two attractors: the best position
found so far by the particle itself (bi ∈ RM), and the best position identified
so far by the whole swarm (g ∈ RM). These attractors are balanced by two
non-negative PSO-specific settings, the so-called cognitive factor (ccog ∈ R+)
and social factor (csoc ∈ R+).

Since a deterministic-driven movement of particles could funnel the par-
ticles into local optima, each attractor is multiplied by a vector of random
numbers, sampled from the uniform distribution in [0, 1). In addition, the
update of the velocity is modulated by an inertia weight, w ∈ R+, in order
to avoid chaotic movements of the swarm. Formally, for each i = 1, . . . , N ,
the velocity of particle i at iteration t is given by:

vi(t) = w · vi(t− 1)+

+csoc ·R1 ◦ (xi(t− 1)− g(t− 1)) + (1)

+ccog ·R2 ◦ (xi(t− 1)− bi(t− 1)) ,

where ◦ denotes the component-wise multiplication operator between vectors,
and R1 and R2 are two vectors of random numbers associated with the social
and cognitive factor, respectively [21]. We highlight here that, in standard
PSO, the values of w, csoc, ccog are iteration-independent and are valid for all

5



particles in the swarm. Accordingly, the position of particle i at iteration t
is updated by calculating:

xi(t) = xi(t− 1) + vi(t). (2)

The quality of each particle in the swarm—i.e., of each candidate solution
for the given optimization problem—is evaluated by exploiting an adequate
fitness function (hereby denoted by f). The fitness function drives the move-
ment of all particles within the search space, since it is used to evaluate the
values of the local and global attractors, bi and g, iteration by iteration. By
calculating the fitness values of all particles over the set of feasible solutions,
we obtain a hyper-surface called fitness landscape.

The methodology described so far might drive the particles outside the
feasible space of solutions, or even towards the infinity. To avoid this draw-
back, in PSO the search space is bounded (according to domain knowledge),
and specific boundary conditions are applied to all particles that reach the
fixed limits. In what follows, we denote by bmin ∈ RM and bmax ∈ RM the
vectors indicating the values of the minimum and maximum boundaries of
the search space, respectively. If all components of these vectors have the
same value—namely, all components in vector bmin are equal to bmin ∈ R
and all components in vector bmax are equal to bmax ∈ R—then we simply
denote by [bmin, bmax]M the whole search space. We underline here that the
boundaries of the search space are generally problem-dependent and cannot
be determined with an automatic strategy. As boundary condition, we use
the damping strategy [22]: each particle that goes outside the search space
in any dimension is relocated at the boundary of the solution space in that
dimension; moreover, the velocity component in that dimension is changed
in the opposite direction and it is multiplied by a random factor chosen with
uniform distribution in [0, 1).

Another issue in PSO is that the velocity of particles might diverge during
the optimization process. To avoid this problem, the velocity is usually
clamped to a maximum value, vmaxm ∈ R+, along each m-th dimension of
the search space, with m = 1, . . . ,M [21]. On the contrary, in standard
PSO the particles are not characterized by a minimum velocity. However,
to improve the exploratory capabilities of the swarm, the velocity of each
particle can also be clamped to a minimum value, vminm ∈ R+, along each
dimension of the search space.

In general, the values for N, csoc, ccog, w, the vector of minimum velocity
values vmin and the vector of maximum velocity values vmax, are set by the
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user. These PSO settings usually have a huge impact on the optimization
performance [21], both in terms of convergence speed and quality of the best
solution. To lower the possible negative effects of this choice, and provide
unfamiliar PSO users with a settings-free global problem optimizer, in this
work we propose a novel FL-based algorithm that automatically selects all
these values.

3. Fuzzy Self-Tuning PSO

We describe here a fully-automated version of PSO, called Fuzzy Self-
Tuning Particle Swarm Optimization (FST-PSO), where the values of PSO
settings are dynamically controlled by means of FL. In particular, each par-
ticle is associated with its own values for the inertia, the social and cognitive
factors, the maximum and minimum velocity. This work represents an alter-
native approach to previous FL-controlled versions of PSO [8, 10, 11], whose
aim consisted in improving the performance of this optimization algorithm
by carrying out the automatic determination of its global settings.

FST-PSO is an extended and improved version of the FL-based PSO that
we previously proposed, named Proactive Particles in Swarm Optimization
(PPSO) [14], whereby the velocity and position of every particle were updated
according to individual particle settings—inertia, social and cognitive factors,
each one associated with a fuzzy variable—independently from the values
of the other particles in the swarm. In FST-PSO, also the maximum and
minimum velocity of each particle are individually adjusted by means of FL,
thanks to six additional rules, providing users with a completely settings-
free version of PSO. To determine the swarm size, FST-PSO exploits the
heuristic N = b10 + 2

√
Mc which sets the number of particles N according

to the number of dimensions M of the search space, as suggested by Hansen
et al. [23] and also adopted in PPSO [14].

One of the main differences between FST-PSO and PPSO is that, in the
latter, the velocity of all particles along each dimension of the search space
was clamped to a common maximum value, proportional to a pre-defined
value U ∈ (0, 1] (as default, U = 0.2 was used in PPSO [14]). To be more
precise, in PPSO [14] we considered

vmaxm = U · (bmaxm − bminm) , (3)

where bminm and bmaxm denote the boundaries of the m-th dimension of the
search space. On the contrary, FST-PSO automatically determines this set-
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ting independently for each particle, by replacing U with a linguistic value
of a linguistic variable. Moreover, FST-PSO introduces an additional setting
L ∈ (0, 1],L < U , which is used to clamp also the minimum velocity of each
particle along the m-th dimension of the search space to

vminm = L · (bmaxm − bminm) . (4)

FST-PSO automatically determines this setting independently for each par-
ticle, by replacing L with a linguistic value of a linguistic variable.

So doing, FST-PSO becomes a fully automated self-tuning algorithm,
where each particle computes its current velocity according to its performance
during the previous iteration of the optimization. In Section 4, a comparative
evaluation of FST-PSO with respect to PPSO is reported, which shows the
improved performance of the new algorithm. Moreover, additional compara-
tive evaluations with respect to state-of-the-art optimization techniques are
reported.

In what follows, we denote by wi(t), csoci(t), ccogi(t),Li(t) and Ui(t) the
inertia, social factor, cognitive factor, upper clamping value for maximum
velocity and lower clamping value for minimum velocity of the i-th particle
during iteration t, respectively. At each iteration, the current velocity of
particle i is evaluated as:

vi(t) = wi(t− 1) · vi(t− 1)+

+csoci(t− 1) ·R1 ◦ (xi(t− 1)− g(t− 1)) + (5)

+ccogi(t− 1) ·R2 ◦ (xi(t− 1)− bi(t− 1)) ,

where R1 and R2 are two vectors of random numbers associated with the
social and cognitive factors, respectively; xi and bi are the current position
and the best position found so far by particle i, respectively, and g is the
global best position found so far by the swarm. We highlight that, differently
from PSO, in FST-PSO the values of inertia, social and cognitive factors
are iteration-dependent and they possibly assume a different value for each
particle in the swarm.

To dynamically determine the values of wi(t), csoci(t), ccogi(t), Li(t) and
Ui(t) in an automatic way, independently for each particle at each iteration
t, we make use of a FRBS consisting of 15 fuzzy rules, reported in Table
1. These rules are based on two main concepts: the distance of the particle
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Table 1: Fuzzy rules used by FST-PSO

Rule no. Rule definition

1 if (φ is Worse or δ is Same) then (Inertia is Low)

2 if (φ is Same or δ is Near) then (Inertia is Medium)

3 if (φ is Better or δ is Far) then (Inertia is High)

4 if (φ is Better or δ is Near) then (Social is Low)

5 if (φ is Same or δ is Same) then (Social is Medium)

6 if (φ is Worse or δ is Far) then (Social is High)

7 if (δ is Far) then (Cognitive is Low)

8 if (φ is Worse or φ is Same or δ is Same or δ is Near) then (Cognitive is Medium)

9 if (φ is Better) then (Cognitive is High)

10 if (φ is Same or φ is Better or δ is Far) then (L is Low)

11 if (δ is Same or δ is Near) then (L is Medium)

12 if (φ is Worse) then (L is High)

13 if (δ is Same) then (U is Low)

14 if (φ is Same or φ is Better or δ is Near) then (U is Medium)

15 if (φ is Worse or δ is Far) then (U is High)

from the global best g, and a function measuring the fitness improvement of
each particle with respect to the previous iteration.

The distance between two particles i and j, for some i, j = 1, . . . , N , is a
function δ : RM × RM → R+, defined as:

δ(xi(t),xj(t)) = ||xi(t)− xj(t)||2 =

√√√√ M∑
m=1

(xi,m(t)− xj,m(t))2, (6)

where xi,m, xj,m denote the m-th components of the position vectors xi,xj of
particles i and j, respectively.

The normalized fitness incremental factor is a function φ : RM × RM →
[−1, 1], which considers the positions of particle i at the current and previous
iterations; it is defined as follows:

φ(xi(t),xi(t− 1)) =
δ(xi(t),xi(t− 1))

δmax

· (7)

·min{f(xi(t)), f4} −min{f(xi(t− 1)), f4}
|f4|

,
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where δmax is the length of the diagonal of the hyper-rectangle corresponding
to the search space, while f4 represents the (estimated) worst fitness value
for the optimization problem under investigation. In this work we consider
minimization problems: the sign of function φ must therefore be inverted in
the case of maximization problems, in order to exploit the set of fuzzy rules
listed in Table 1.

We stress the fact that, since the fitness landscape of the optimization
problem is generally unknown, an accurate estimate of the worst fitness value
is, intuitively, as difficult as solving the optimization problem itself. For this
reason, we consider f4 equal to the highest fitness value calculated during the
first iteration of FST-PSO, according to the initial position of all particles.
Then, during the optimization phase, we use the min functions in Equation
7 to clamp any fitness value worse than f4. More precisely, the second factor
in Equation 7 considers the possible improvement of the current fitness value
of the i-th particle with respect to the previous iteration; the variation of
the fitness function is then normalized in [−1, 1] by dividing by |f4|. Note
that a lower value of φ(xi(t),xi(t − 1)) in [−1, 1] corresponds to a lower
fitness value of particle i with respect to the previous iteration: this means
that the particle is moving towards a new position xi that represents a better
solution for the optimization problem. The first factor in Equation 7, instead,
is needed to weigh function φ according to the distance between the current
and the previous position of the particle. This distance is normalized by
dividing the distance value by δmax, so that the first factor takes values in
the interval (0, 1).

We describe now the rationale behind the set of fuzzy rules listed in Table
1. In the antecedent of these rules, we use two linguistic variables, named
Distance from g and Normalized fitness incremental factor, denoted by δ and
φ, respectively. The definition of a linguistic variable for δ, expressing the
distance of a particle from the global attractor g, allows to avoid the use
of arbitrary thresholds (i.e., classic sets with crisp boundaries) to character-
ize the proximity to the global best. Similarly, the definition of a linguistic
variable for φ allows to avoid arbitrary thresholds to characterize the im-
provement of a particle with respect to the fitness value it assumed in the
previous iteration. In the consequent of rules, the output variables are called
Inertia, Social, Cognitive, L and U , which correspond to the respective set-
tings of particle i in FST-PSO. We want to stress the fact that, during each
iteration of FST-PSO, all particles compute independently their own values
for δ and φ, which are used to calculate the output variables according to
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the rules reported in Table 1.
The universe of discourse of the variable Distance from g consists of the

numeric values of the distance between the position vector xi and the global
best g, according to Equation 6. Thus, the base variable of δ corresponds to
the interval [0, δmax]. The term set of this variable is composed by three lin-
guistic values, Same, Near and Far. The membership functions of δ, shown
in Figure 1, depend on three parameters, δ1, δ2, δ3 ∈ [0, δmax], used to prop-
erly characterize the concept of fuzzy distance between the particle position
and the global best. The values of δ1, δ2, δ3 are set according to the size of
the search space; following our domain expertise related to PSO, we use the
following heuristic: δ1 = 0.2 · δmax, δ2 = 0.4 · δmax, δ3 = 0.6 · δmax. These are
general-purpose multipliers, created to avoid any overfitting to the bench-
mark functions used in this study, and implementing a general and fuzzy
concept of distance from the global best.

The universe of discourse of variable Normalized fitness incremental fac-
tor consists of the numerical values of function φ, according to Equation
7; the base variable of φ therefore corresponds to the interval [−1, 1]. The
term set of this variable is composed by three linguistic values, Better, Same
and Worse. The membership functions of φ, shown in Figure 2, are three
simple triangular fuzzy sets, which correspond to a simplified version of the
membership functions previously defined in PPSO [14, 24]. FST-PSO relies
on triangular fuzzy sets, for both δ and φ, because of their good trade-off
between expressiveness, simplicity and computational efficiency [25].

The output variables (Inertia, Social, Cognitive, L, U) can assume three
different linguistic values, Low, Medium and High. Since our FRBS is based
on the Sugeno inference method [26]—which allows to define rules having
fuzzy inputs and crisp outputs—each linguistic value of the five output vari-
ables is modeled as a fuzzy singleton, as given in Table 2. Formally, given a
set R of R rules having the same output variable in their consequent (e.g.,
rules 1, 2, 3 in Table 1 for Inertia), the Sugeno method calculates the final
numerical value of this output variable as the weighted average of the output
of each rule in R:

output =

∑R
r=1 ρrzr∑R
r=1 ρr

, (8)

where ρr denotes the membership degree of the input variable of the r-th
rule, and zr represents the output crisp value for the r-th rule, as given in
Table 2.
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Figure 1: Membership functions of the linguistic values of the Distance from g variable.
The membership function of Same is trapezoid(δ : 0, 0, δ1, δ2) = {1, if 0 ≤ δ < δ1; (δ2 −
δ)/(δ2 − δ1), if δ1 ≤ δ < δ2; 0, if δ2 ≤ δ ≤ δmax}. The membership function of Near
is triangle(δ : δ1, δ2, δ3) = {0, if 0 ≤ δ < δ1; (δ − δ1)/(δ2 − δ1), if δ1 ≤ δ < δ2; (δ3 −
δ)/(δ3 − δ2), if δ2 ≤ δ < δ3; 0, if δ3 ≤ δ ≤ δmax}. The membership function of Far
is trapezoid(δ : δ2, δ3, δmax, δmax) = {0, if 0 ≤ δ < δ2; (δ − δ2)/(δ3 − δ2), if δ2 ≤ δ <
δ3; 1, if δ3 ≤ δ ≤ δmax}.

Figure 2: Membership function of the linguistic values of the Normalized fitness incre-
mental factor variable. The membership function of Better is triangle(φ : −1,−1, 0) =
{1, if φ = −1;−φ, if − 1 < φ < 0; 0, if 0 ≤ φ ≤ 1}. The membership function of
Unvaried is triangle(φ : −1, 0, 1) = 1 − |φ|. The membership function of Worse is trian-
gle(φ : 0, 1, 1) = {0, if − 1 ≤ φ < 0;φ, if 0 ≤ φ < 1; 1, if φ = 1}.

Figure 3 shows the resulting heatmaps of the five output variables, as
computed by the Sugeno method, which are described in the following sec-
tions.
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Table 2: Output variables and their defuzzification

Output variable Term

Low Medium High

Inertia 0.3 0.5 1.0

Social 1.0 2.0 3.0

Cognitive 0.1 1.5 3.0

L 0.0 0.001 0.01

U 0.1 0.15 0.2

Better Same Worse

φ

Same

Near

Far

δ

Inertia

LOW MEDIUM HIGH

Better Same Worse

φ

Same

Near

Far

δ

Social

LOW MEDIUM HIGH

Better Same Worse

φ

Same

Near

Far

δ

Cognitive

LOW MEDIUM HIGH

Better Same Worse

φ

Same

Near

Far

δ

L

LOW HIGH

Better Same Worse

φ

Same

Near

Far

δ

U

LOW MEDIUM HIGH

Figure 3: The heatmaps show the mapping between the fuzzy value of the input variables
δ and φ and the defuzzified value of the five output variables of particle i: Inertia (top
left), Social (top middle), Cognitive (top right), L (bottom left) and U (bottom right),
according to Tables 1 and 2. Note that, in the plot of the output variable L (bottom left),
the label “Medium” is not reported in the colorbar to avoid its overlap with the label
“Low”.

3.1. Inertia

The aim of the set of rules 1, 2 and 3, which adjust the value of the variable
Inertia for every particle i, is to evaluate the contribution of the velocity value
that particle i had in the previous iteration to update its velocity value at the
current iteration. The rationale behind this is to increase the value of Inertia
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when the particle is improving its fitness value with respect to the previous
iteration, and to lower it otherwise. This is achieved by setting a Low value
of Inertia when either φ is Worse, or the distance δ from the global best is
Same. A High value is instead set when the particle is following the right
direction (i.e., φ is Better), or it is far from the global best (i.e., δ is Far).
Finally, Inertia is set to a “neutral choice” (i.e., the value Medium), when
no relevant changes in the fitness value occur with respect to the previous
iteration (i.e., φ is Same) or the distance is Near.

The heatmap for Inertia (Figure 3, top left) shows that the maximum
value for this output variable is attained when δ is Far and φ is Better. The
value of Inertia decreases when δ varies from Far to Same or φ varies from
Better to Worse, reaching the lowest value when φ is Worse and δ is Same.
In particular, we observe that in the case of δ values between Near and Far,
there is a plateau in the values of Inertia when φ is Better.

3.2. Social attraction

Rules 4, 5 and 6 control the strength of the social information shared
among particles. This is obtained by tuning the Social variable, which de-
termines the attraction of particle i towards the global best position g in the
swarm. If either the particle is finding better solutions for the optimization
problem (i.e., φ is Better), or it is approaching the global best (i.e., δ is
Near), then it is reasonable for it to “ignore” the information shared by the
swarm. Therefore, Social is set to Low in these conditions. On the contrary,
when the particle is not finding better solutions or it is not close to the global
best, it should rather “follow the advice” of the other particles. Hence, we
set Social to the High value. As in the case of Inertia, the FRBS assigns an
intermediate value to Social if no relevant changes occur either in the fitness
value or in the distance from g (i.e., φ and δ are Same).

The Social variable (Figure 3, top middle) assumes its highest value when
δ is Far and φ is Worse. This heatmap can be described by considering
different aspects. On the one hand, when the value of φ changes from Worse
to Better, the value of Social linearly decreases, independently from the value
of δ. On the other hand, when the value of δ changes from Far to Same, the
heatmap of Social is characterized by a dip in correspondence of the value
Near of δ. The modulation of Social is mainly driven by φ, and the lowest
value of this variable is reached when δ is Near and φ lies between Better
and Same.
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3.3. Cognitive attraction

Rules 7, 8 and 9 are defined to calibrate the Cognitive variable, which
weighs the attraction of particle i towards its personal best position bi. If the
distance from the global best is Far, it is advisable that the particle limits the
movement towards bi, therefore setting Cognitive to Low. On the contrary,
if the particle is not improving its fitness value or it is not far from the global
best (i.e., φ is Same or Worse and δ is Same or Near), then an intermediate
value of Cognitive can weigh the particle tendency to move in the direction of
its personal best position bi. Finally, if the particle is finding better solutions
for the optimization problem (i.e., φ is Better), then the local exploration
around its current position within the search space has to be encouraged by
setting Cognitive to High.

The heatmap for Cognitive (Figure 3, top right) shows that the highest
value for this factor is obtained when φ and δ assume the values Better and
Same, respectively. As δ moves from Same to Far and φ moves from Better
to Worse, the value of Cognitive decreases reaching the lowest values in the
opposite configuration (i.e., when δ is Far and φ is Worse). Note that both
input variables have a comparable impact on the Cognitive factor.

3.4. Lower and upper clamping values for velocity

Differently from PPSO, in FST-PSO the maximum and minimum veloc-
ities of each particle are clamped using Equations 3 and 4, respectively, in
which the typical swarm-shared fixed settings of U and L are dynamically
replaced by using particle-specific and iteration-dependent values. Rules 10,
11, 12 and 13, 14, 15 control the values of the output variables L and U ,
respectively.

Concerning the L factor, it is advisable to have a High minimum velocity
when the particle fitness φ is getting Worse. On the contrary, L is set to
Low when φ is Same or Better, or when δ is Far, since in these situations the
velocity of a particle could assume small values in order to perform a local
exploration of the search space. Finally, when the particle position is close
to the global best, the factor L is set to Medium. The heatmap of L factor
is shown in Figure 3 (bottom left). We observe that this factor is mainly
influenced by the value of φ. In particular, the highest value is reached when
φ is Worse, then L decreases as φ reaches the Same value and, finally, there
is a large plateau when φ is between Same and Better, irrespective of the δ
value.
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Regarding the U factor, the maximum velocity allowed is set to High in
the case of a particle whose distance is far from the global best or when its
fitness value is getting worse. On the contrary, this factor is set to Low only
when the distance from the global optimum is Same. U is set to Medium when
the fitness of the particle is improving or when the distance from the global
best is Near. The heatmap of U factor is shown in Figure 3 (bottom right).
In this case both φ and δ influence the value of this factor; in particular,
there is a plateau characterized by medium values of U when φ is between
Better and Same and δ is between Near and Far.

In general, by increasing the values of φ and δ, U increases and reaches
its highest value in the case of φ equal to Worse and δ equal to Far.

4. Results

We investigated the performance of FST-PSO by testing the algorithm
on 12 reference benchmark functions, listed in Table 3, which are all para-
metric in the number of dimensions M and have RM as domain of definition.
The graphical representation given in Figure 4, for M = 2, shows that these
functions are emblematic examples of non-linear, multi-modal and rugged
problems which can hardly be solved by means of classic optimization algo-
rithms (e.g., gradient descent [27]).
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Figure 4: Plots of the benchmark functions (with M = 2) listed in Table 3.
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Table 3: Benchmark functions
Function Equation Search space Value in global minimum∗

Ackley fAck(x) = 20 + e − 20 exp(−.2
√

1
M

∑M
m=1 x

2
m) −

exp( 1
M

∑M
m=1 cos(2πxm))

[−30, 30]M fAck(0) = 0

Alpine fAlp(x) =
∑M
m=1 |xm sin(xm) + .1xm| [−10, 10]M fAlp(0) = 0

Bohachevsky fBoh(x) =
∑M−1
m=1 (x2m + 2x2m+1 − .3 cos(3πxm) −

.4 cos(4πxm+1) + .7)
[−15, 15]M fBoh(0) = 0

Griewank fGri(x) = 1
4000

∑M
m=1 x

2
m −

∏M
m=1 cos( xm√

m
) + 1 [−600, 600]M fGri(0) = 0

Michalewicz fMic(x) = −
∑M
m=1 sin(xm) sin2k(

mx2m
π

), with k = 10
in this work

[0, π]M fMic(0) = −1.8013

Plateau fPla(x) = 30 +
∑M
m=1bxmc [−5.12, 5.12]M fPla(-5.12) = −6M + 30

Quintic fQui(x) =
∑M
m=1 |x5m−3x4m+4x3m+2x2m−10xm−4| [−10, 10]M fQui(-1) = 0

Rastrigin fRas(x) = 10M +
∑M
m=1(x2m − 10 cos(2πxm)) [−5.12, 5.12]M fRas(0) = 0

Rosenbrock fRos(x) =
∑M−1
m=1 [100(x2m − xm+1)2 + (xm − 1)2] [−5, 10]M fRos(1) = 0

Shubert fShu(x) =
∏M
m=1(

∑5
i=1 i cos[(i+ 1)xm + i]) [−10, 10]M Many global minima

Vincent fVin(x) =
∑M
m=1 sin(10 log(xm)) [0.25, 10]M fVin(7.706281) = −M

Xin-She Yang fXin(x) =
∑M
m=1 |xm|[exp(

∑M
m=1 sin(x2m)]−1 [−2π, 2π]M fXin(0) = 0

∗Boldface numbers refer to vectors whose M components have the same value

FST-PSO was compared against PSO, PPSO, ABC, CMA-ES, DE and
GA, which are all population-based optimization methods where candidate
solutions are encoded in a specific mode, according to each algorithm. The
functioning of each algorithm, along with a brief description of the settings
used for the tests, is summarized in the next section. Independently from the
mathematical representation of the population individuals and the algorithm
itself, in each optimization method the quality of each candidate solution is
evaluated by means of the fitness function. In order to make a quantitative
comparison between FST-PSO and each competitor algorithm, we exploited
the Average Best Fitness (ABF), i.e., the mean of the fitness values of the
best solution found at each iteration t, evaluated over a number Θ of runs.
In all tests that follow, we set Θ = 30.

Formally, denoting by Bθ(t) the best candidate solution found at iteration
t during the θ-th run, it holds

ABF =
1

Θ

Θ∑
θ=1

f(Bθ(t)). (9)

To perform a fair comparison, for each algorithm the number of iterations
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was fixed to tMAX = 400 and the population size N was chosen by using the
same heuristic defined for FST-PSO, so that the same number of fitness
evaluations was performed for all methods.

We implemented FST-PSO using the Python language—exploiting the
pyfuzzy package (website: http://pyfuzzy.sourceforge.net) as fuzzy engine,
extended to fully support Sugeno inference—and relying on NumPy (website:
http://www.numpy.org) (see [28] for further information). The source code
of FST-PSO can be installed as PyPI package (pip install fst-pso).

PSO, ABC, CMA–ES, DE and GA were implemented using the PyGMO
Python package [29]. Except for N , throughout all tests we relied on the
default settings of PyGMO, in order to perform an “out-of-the-box” opti-
mization.

4.1. Competitor algorithms

PSO and PPSO. The basics of PSO and PPSO were introduced in Sections
2 and 3. We used the following settings for PSO:

• inertia w linearly decrementing from 0.9 to 0.4;

• cognitive factor ccog = 2.05;

• social factor csoc = 2.05.

In the case of PSO, the vmaxm values were chosen using the same heuristic
used for PPSO, as described in Section 3. For both PSO and PPSO, the
vminm values were set equal to 0, that is, no minimum velocity was forced.
Similarly to FST-PSO, damping boundary conditions were used for PSO and
PPSO.

ABC. Artificial Bee Colony [15] is a swarm intelligence population-based op-
timization algorithm inspired by the foraging behavior of bees. In ABC, the
population is composed of three different kinds of individuals: scout, em-
ployed and onlooker bees. Scout bees perform the exploration process, as
they are randomly placed within the search space. Employed and onlookers
carry out the exploitation process by means of a local search nearby the posi-
tion identified by the scout. More precisely, scout bees randomly determine a
new food source (i.e., a position in the search space) and, at this stage, they
become employed. Free onlookers bees are then assigned to the position of
employed food sources, proportionally to the fitness values of these positions.

18



After a given number of trials (in PyGMO this number is equal to 20), if
onlookers did not improve their positions they go back to the hive and be-
come scout again, so that they can be randomly placed in a different position.

CMA-ES. Covariance Matrix Adaptation Evolution Strategy [16] is gener-
ally considered one of the most effective evolutionary algorithms for single-
objective real-valued optimization [30], and it is often regarded as the state-
of-the-art for stochastic continuous optimizers. The basic ES algorithm ex-
ploits a mutation operator to explore the search space. In particular, the
mutation creates novel individuals during each generation by perturbing the
best individual, or by perturbing a novel individual created using a weighted
average of the population. The perturbation is performed using multivariate
normally distributed random deviates, having mean 0 and standard deviation
σ (which is called the step-size). The Covariance Matrix Adaptation variant
of ES is able to dynamically adapt such distribution to perform more effective
mutation steps. In particular, CMA-ES relies on a M×M symmetric positive
covariance matrix, which is used to determine pairwise dependencies between
parameters of the problem under investigation. In other words, CMA-ES
introduces a modified mutation operator, based on an M -dimensional distri-
bution ellipsoid whose size and rotation are updated iteration by iteration,
according to the optimization performances.

CMA-ES is meant to be a settings-free algorithm, although the popula-
tion size N and the initial step-size can be selected by the user. In our tests,
we used PyGMO’s default setting σ = 0.5. For further reference on CMA-ES
parameters we refer the reader to [31] and references therein.

DE. Differential Evolution [17] is a population-based algorithm where, at
each generation, the individuals of the population evolve by means of two
operators: mutation and crossover. In particular, three distinct candidate
solutions are randomly selected and mixed using a weighted function (i.e.,
mutation). Then, the outcome is recombined by means of crossover with a
fourth randomly chosen individual, to produce a new offspring called trial
vector. This vector replaces the recombined individual in the next generation
if it is characterized by an improved fitness value. The variant of DE used in
the following tests makes use of random selection of mutation vectors (with
self-adaptive weighing factor), one difference vector for trial vector genera-
tion, and exponential crossover with self-adaptive probability (this variant is
called rand/1/exp, using the standard nomenclature [32]).
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GA. Genetic Algorithms [18] are a population-based optimization strategy
that mimics Darwinian processes like natural selection. In GA, a population
of randomly generated individuals undergoes a selection mechanism and is
modified by genetic operators (i.e., crossover and mutation). The selection
strategy is used to choose the individuals according to their fitness values;
these individuals will generate possibly improved offspring thanks to the ap-
plication of the crossover operator. In order to better explore the search
space, a random mutation is also performed on the offspring. The crossover
and mutation operators are applied according to a specified probability. A
relevant improvement to standard GA consists in the application of elitism,
where the individual characterized by the best fitness value in the current
generation is directly promoted to belong to the population at the next gener-
ation. PyGMO exploits the elitism operator, while the other individuals are
selected using a roulette wheel strategy (i.e., selection probability is propor-
tional to the fitness of the individual); the (single point) crossover operator
exchanges parts of parents individuals and is applied with probability 0.95;
mutation operator perturbs the individual exploiting a Gaussian distribution
(with standard deviation equal to 0.1) and is applied with probability 0.02.

4.2. Optimization performance

To evaluate the optimization performance of each algorithm, in all ex-
ecuted tests we assumed M = 100 for every benchmark function listed in
Table 3. In Figure 5 we show the comparison of the ABF of FST-PSO (black
solid lines) against standard PSO (blue dashed lines), PPSO (gray dotted
lines), ABC (red solid lines), CMA-ES (light blue solid lines), DE (green
solid lines) and GA (orange solid lines). The standard deviation of each test
is also pictured as a transparent filled area around the corresponding ABF
curve, having the same color semantics. ABF and standard deviation values
were measured during the Θ = 30 runs and tMAX = 400 iterations of each
algorithm.
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Figure 5: Comparison of the optimization performances of FST-PSO (black solid line),
PPSO (gray dotted line), PSO (blue dashed line), ABC (red solid line), CMA-ES (light
blue solid line), DE (green solid line) and GA (orange solid line), over the benchmark
functions listed in Table 3. Lines and filled areas represent the ABF and the corresponding
standard deviation, measured during 30 runs and 400 iterations of each algorithm (due to
the logarithmic scale on the y axis, standard deviation is not represented for the Shubert
and Xin-She Yang functions for the sake of readability). These results show that FST-
PSO often achieves the best performance in terms of convergence speed and is competitive
concerning the best solution found. 21
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Figure 6: Comparison of the ABF and the standard deviations evaluated after tMAX = 400
iterations of each optimization algorithm. FST-PSO (black triangles) ranks first in the case
of Rastrigin and Xin-She Yang functions; it is close to CMA-ES in the case of Bohachevsky,
Griewank, Quintic and Rosenbrock functions; it ranks second in the case of Ackley, Alpine
and Vincent functions. In the case of the Plateau function, its performance is impaired
because of the peculiar shape of the fitness landscape.

Our results show that, in the case of Bohachevsky, Griewank, Quintic,
Rastrigin, Rosenbrock and Xin-She Yang functions, FST-PSO achieves the
best performances in terms of convergence speed (Figure 5). To prove in a
quantitative way the better performances of FST-PSO, from the point of view
of the average convergence speed, we report in Table 4 the integrals of the
ABF curves, calculated using the trapezoidal rule. Bold values correspond to
a lower ABF achieved throughout the optimization, highlighting the faster
convergence of our algorithm. According to these numerical results, FST-
PSO is characterized by a faster convergence than the competitor algorithms
also in the case of Alpine and Vincent functions. Moreover, the ABF of
FST-PSO found after 400 iterations is competitive: as reported in Figure
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Table 4: Convergence speed measured as the integral of the ABF curves, calculated on
every benchmark function during 400 iterations of each optimization algorithm

Function PSO PPSO FST-PSO ABC CMA-ES DE GA

Ackley 5.19 · 103 4.52 · 103 2.84 · 103 6.23 · 103 1.63 · 103 6.27 · 103 4.52 · 103

Alpine 3.16 · 104 2.48 · 104 1.05 · 104 3.24 · 104 1.41 · 104 4.88 · 104 2.66 · 104

Bohachevsky 6.67 · 105 4.99 · 105 2.00 · 105 2.02 · 106 4.27 · 105 2.22 · 106 1.07 · 106

Griewank 8.49 · 104 6.48 · 104 2.44 · 104 2.69 · 105 5.59 · 104 2.96 · 105 1.41 · 105

Michalewicz −1.24 · 104 −1.21 · 104 −1.82 · 104 −1.83 · 104 −1.04 · 104 −1.37 · 104 −2.17 · 104

Plateau −1.65 · 105 −1.64 · 105 −1.09 · 105 −1.16 · 105 −1.44 · 105 −9.44 · 104 −1.35 · 105

Quintic 7.46 · 106 6.17 · 106 2.31 · 106 9.40 · 107 1.58 · 107 6.55 · 107 3.28 · 107

Rastrigin 3.19 · 105 2.57 · 105 1.44 · 105 2.73 · 105 3.18 · 105 3.87 · 105 2.48 · 105

Rosenbrock 8.51 · 107 7.64 · 107 4.06 · 107 7.41 · 108 1.17 · 108 4.38 · 108 2.34 · 108

Shubert −1.89 · 1065 −1.63 · 1064 −3.51 · 1075 −3.32 · 10100 −4.22 · 1079 −2.12 · 1078 −3.57 · 10105

Vincent −2.39 · 104 −3.16 · 104 −3.40 · 104 −3.02 · 104 −3.09 · 104 −2.28 · 104 −3.32 · 104

Xin-She Yang 1.36 · 107 1.03 · 107 6.74 · 108 8.25 · 108 3.57 · 108 3.02 · 107 3.13 · 107

6, FST-PSO outperforms the other algorithms in the case of Rastrigin and
Xin-She Yang functions, and it ranks second in 7 out of 12 test cases, that is,
Ackley, Alpine, Bohachevsky, Griewank, Quintic, Rosenbrock and Vincent
functions. Figure 6 also shows that CMA-ES and FST-PSO achieve very
similar ABF in the case of Bohachevsky, Griewank, Quintic and Rosenbrock
functions. Regarding the Ackley function, CMA-ES is the only algorithm
able to find the global optimum within 400 iterations, while FST-PSO ranks
second.

As evidenced by the standard deviations plotted in Figure 5, in the spe-
cific case of the Rastrigin function, CMA-ES is characterized by a peculiar
behavior at the end of the optimization process. Despite an initial worse
convergence speed, CMA-ES is able to collect—during some of the 30 runs
of the optimization—enough statistical information for the covariance ma-
trix adaptation, yielding better solutions than the other tested algorithms.
However, FST-PSO converges more consistently to optimal solutions with a
negligible variance.

It is worth noting that FST-PSO is more performant than PSO and PPSO
on almost all tested benchmark functions: in particular, in the case of Quintic
and Shubert functions, FST-PSO outperforms the other two algorithms by
many orders of magnitude. A notable exception is instead represented by the
Plateau function, whose piecewise “flat” fitness landscape (Figure 4) might
induce the firing of fuzzy rules that mislead particles in the early phases of
the optimization.

A different scenario concerns the Michalewicz function, where GA obtains
the best performances, FST-PSO achieves the same performances of ABC,
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while CMA-ES shows the worst performances. In the case of the Shubert
function, GA and ABC achieve the best results, while FST-PSO and CMA-
ES obtain performances similar to DE. These results highlight the validity
of the no free lunch theorem [19], as mentioned in Section 1.

Alpine, Plateau and Vincent functions are those characterized by the
most interesting results. For what concerns the optimization of the Plateau
function, standard PSO and PPSO achieve the best results, while FST-PSO
is characterized by a lower convergence speed and worse final solutions (only
DE performances are worse than FST-PSO). In the case of Alpine func-
tion, FST-PSO has the highest convergence speed at the beginning of the
optimization; however, after around 140 iterations CMA-ES overtakes FST-
PSO but, by the end of the optimization, they both achieve the same ABF.
Similarly, for what concerns the Vincent function, GA has the highest con-
vergence speed at the beginning of the optimization, but after 100 iterations
FST-PSO overtakes GA and finally achieves better solutions by the end of
the optimization. Moreover, CMA-ES convergence speed is very slow at the
beginning, but increases abruptly around iteration 100 and, by iteration 180,
the ABF of this algorithm results to be the best one: CMA-ES indeed reaches
the best solution by the end of the optimization process for this benchmark
function.

In order to further investigate the performance of FST-PSO, we consid-
ered the 28 shifted/rotated benchmark functions proposed during the con-
test on real-parameters single-objective bound-constrained optimization of
the 2013 IEEE Congress on Evolutionary Computation (CEC’13). For this
batch of tests, we compared FST-PSO with standard PSO and with CMA-
ES, which represents the FST-PSO’s main competitor, given the previous
results. For each test, we assumed M = 100 for every benchmark function.

As shown in Figure 7, FST-PSO always outperforms standard PSO, ex-
cept for the case of function f8 (a rotated Ackley function). FST-PSO and
CMA-ES exhibit similar performance for almost all benchmark functions,
except for the case of functions f3, f7, f9, f11, f12, f13, f19, f25 and f27,
where CMA-ES achieves, on average, better results. FST-PSO outperforms
standard PSO and CMA-ES in the case of functions f14 (a strongly multi-
modal, rotated, non-separable, asymmetrical Schwefel function, in which the
second better local optimum is placed very far from the global optimum to
mislead the optimization) and f16 (the rotated Katsuura function: multi-
modal, non-separable, asymmetrical, and non-differentiable). It is worth
noting that in three cases (f15, f22, and f23), FST-PSO is characterized
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by better results throughout the whole optimization and it is outperformed
by CMA-ES only in the latest stages of the execution. Stated otherwise, in
such cases, FST-PSO can yield better results than CMA-ES when a limited
budget of fitness evaluations or running time is allowed. This topic will be
discussed in the following section.

25



Figure 7: Comparison of the optimization performances of FST-PSO (black solid line),
PSO (blue dashed line), and CMA-ES (light blue solid line) over the shifted/rotated CEC
2013 benchmark functions. These results show that FST-PSO outperforms standard PSO
and it is largely competitive with CMA-ES.
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4.3. Computational performance
Given the results presented in Section 4.2, it is interesting to assess the

computational performances of the compared algorithms, especially in the
case of FST-PSO and CMA-ES, which result to be the best optimization
strategies for the benchmark functions tested in this work. To this aim, we
executed additional tests to perform the optimization of the Plateau, Rast-
rigin and Vincent functions, for which FST-PSO and CMA-ES are charac-
terized by the most divergent results: FST-PSO performs worse, better and
initially better than CMA-ES on each of these benchmark functions, respec-
tively (see Figure 5). The comparison between FST-PSO and CMA-ES was
carried out by measuring their computational costs while increasing the num-
ber of dimensions of the search space—namely, M = 1, 10, 20, 30, 50, 100—of
these three benchmark functions.

Table 5 reports the running time, expressed in seconds, required for the
execution of 400 iterations of optimization of each fitness function using FST-
PSO and CMA-ES on a workstation equipped with a Intel®Core™i7-3770
CPU @ 3.40GHz, 16GB RAM and running Ubuntu 14.10. According to our
results, even in the case of low-dimension problems FST-PSO scales better
than CMA-ES, which is tied to the numerous calculations for the covariance
matrix adaptation. In the case of the Rastrigin function, FST-PSO is able
to give, on average, better solutions than CMA-ES with lower computational
costs. For instance, when M = 100, FST-PSO is approximately 70× faster
than CMA-ES. For the Plateau function, FST-PSO is strongly more efficient
than CMA-ES, even for low dimension problems, being from 13× to 77×
faster. The same holds for the Vincent function, where FST-PSO is around
81× faster than CMA-ES when M = 100. Therefore, despite its additional
computational costs due to the multiple Sugeno inferences, FST-PSO proves
to be a very efficient optimization algorithm.

The computational efficiency of FST-PSO can also be analyzed from a
different perspective. Let us assume to fix a total amount of computation
time T to execute an optimization task. In this situation, although CMA-ES
can (in principle) converge to better fitting solutions, according to our tests
it would be outperformed by FST-PSO, which is able to execute a larger
number of iterations in the same amount of time. To properly discuss this
topic, we optimized the Plateau, Rastrigin and Vincent functions with FST-
PSO and CMA-ES, performing 30 runs of each algorithm for each value of
M = 1, 10, 20, 30, 50, 100. During each test, we stopped CMA-ES as soon as
FST-PSO completed 400 iterations, keeping track of the fitness value of the

27



Table 5: Computational time (expressed in seconds) required to execute 400 iterations
of FST-PSO and CMA-ES on the Plateau, Rastrigin and Vincent functions, with an
increasing number of dimensions M

Plateau Rastrigin Vincent

M CMA-ES FST-PSO CMA-ES FST-PSO CMA-ES FST-PSO

1 15.04 1.13 1.24 1.21 6.42 1.19

10 26.04 1.81 5.41 2.04 28.11 1.92

20 39.65 2.41 12.26 2.82 46.06 2.60

30 58.81 3.16 26.70 3.78 72.67 3.36

50 134.90 4.77 88.03 5.94 159.69 5.08

100 703.22 9.14 702.07 10.16 785.96 9.68

best individuals identified during the last iteration of each run, which were
later used to asses the ABF. The results of these analyses, reported in Table
6, prove that the higher efficiency of FST-PSO with respect to CMA-ES
allows a better convergence when the same budget of computational time is
used: the ABF is consistently better (except in the case of Rastrigin with
M = 10 and Vincent with M = 1), especially in the case of high values of
M .

Table 6: Comparison of the optimization performances (ABF ± standard deviation) of
CMA-ES and FST-PSO, given the same amount of execution time, for the optimization
of the Plateau, Rastrigin and Vincent benchmark functions

Plateau Rastrigin Vincent
M CMA-ES FST-PSO CMA-ES FST-PSO CMA-ES FST-PSO
1 24.88± 0.01 24.13± 0.34 0.01± 0.01 4.8 · 10−9 ± 5.6 · 10−9 −1.00± 0.0 −0.99± 2.3 · 10−10

10 −14.87± 1.42 −19.27± 4.29 9.09± 4.39 11.41± 5.74 −7.72± 1.19 −9.91± 0.11
20 −50.77± 3.43 −61.34± 8.29 49.71± 44.22 33.96± 9.34 −12.76± 2.31 −19.74± 0.29
30 −82.08± 3.88 −105.80± 12.05 184.32± 44.86 53.23± 15.36 −15.94± 1.99 −29.07± 0.24
50 −126.02± 5.25 −194.16± 18.66 423.08± 22.67 95.42± 17.66 −19.99± 1.73 −49.41± 0.41
100 −166.08± 9.94 −352.84± 48.71 1036.09± 28.95 181.86± 29.37 −26.21± 2.48 −98.67± 0.63

4.4. Analysis of FST-PSO settings and input variables

In order to determine the robustness of the FST-PSO algorithm with
respect to the numerical values used for the defuzzification of the output
variables (Table 2), we performed a systematic analysis consisting in the
variation of each defuzzification value for each output variable. Namely,
the three crisp numerical values associated with the linguistic values Low,
Medium and High, were sampled from a normal distribution, clamped in
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zero, with mean equal to the reference value given in Table 2 and standard
deviation equal to 0.1. Each test was repeated 30 times, in order to assess
the ABF.

Figure 8 shows the effect of these perturbations on the optimization per-
formances of FST-PSO. In general, we can observe that the values reported
in Table 2 represent the best choice for the optimal functioning of FST-PSO:
the perturbations allowed to achieve only similar or worse results, with the
exception of Ackley and Quintic functions in which different settings of U al-
lowed to obtain slightly better results with respect to those obtained with the
values listed in Table 2. If we compare these results with those obtained with
the competitor algorithms (see Figure 9), we can observe that the results de-
scribed in Figures 5 and 6 are confirmed, since the ranking of the algorithms
remains overall unchanged, thus proving the robustness of FST-PSO.

We also investigated the distribution of φ and δ values during the opti-
mization process of FST-PSO. Figure 10 shows the distributions of φ and
δ values calculated during the iterations of a single run of FST-PSO for
the optimization of two peculiar benchmark functions: Rastrigin (top) and
Michalewicz (bottom). Each point represents the value of φ (left) and δ
(right) of a single particle at each iteration. The solid line shows the “trajec-
tory” of such values for a single (randomly selected) particle. Even though
both functions are multi-modal (as shown in Figure 4), the Rastrigin func-
tion is characterized by a high number of evenly distributed local minima
with similar value, while the Michalewicz function has exactly M ! narrow
local minima with different values. This peculiar difference in the fitness
landscapes impinges on the distribution of φ (Figure 10, left): the particles
moving in the search space of the Rastrigin function show small changes of
φ, while the particles moving in the search space of the Michalewicz function
are characterized by wide fluctuations of φ. This circumstance leads to the
fast convergence of FST-PSO in the case of the Rastrigin function (faster
than any competitor, as shown in Figure 6). On the contrary, in the case
of the Michalewicz function, the execution of opposite rules might misguide
particles and slow down the convergence speed.

5. Conclusion

In this paper we presented a novel self-tuning version of the PSO algo-
rithm, starting from the concept of proactive particles in swarm optimization
introduced by Nobile et al. [14]. The algorithm introduced here, named FST-
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Figure 8: Comparison of the ABF obtained from different perturbations of the crisp values
used in FST-PSO. Inertia (yellow lines), Social (light green lines), Cognitive (pink lines),
U (silver lines) and L (brown lines) refer to the perturbation of the corresponding values
listed in Table 2; “None” (black lines) refers to the results obtained with FST-PSO’s
default values.

PSO, exploits a FRBS to dynamically adjust the values of inertia, cognitive
factor, social factor, lower and upper clamping values for minimum and max-
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Figure 9: Comparison of the ABF obtained from different perturbations of the crisp values
used in FST-PSO against the ABF obtained from the competitor algorithms considered in
this work: DE (dark green lines), GA (orange lines), CMA-ES (light blue lines) and ABC
(red lines). The perturbations were applied to the Inertia (yellow lines), Social Factor
(light green lines), Cognitive Factor (pink lines), U (silver lines), L (brown lines). “None”
(black lines) corresponds to the default values used by FST-PSO.
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Figure 10: Values of φ (left) and δ (right) in the swarm during the optimization of the
Rastrigin (top) and Michalewicz (bottom) functions. Each point corresponds to the φ and
δ values of a single particle of the swarm, the black solid line is used to highlight how
the φ and δ values of a (randomly chosen) particle change during the iterations of the
optimization. The plots are limited to the first 200 iterations for the sake of clarity.
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imum velocity of the swarm particles. In particular, each particle adjusts its
own values during each iteration, according to its performance, therefore
turning a swarm of reactive particles typical of PSO into a population of
proactive agents. Thanks to this approach, FST-PSO does not require any
manual user-setting and can be used “out-of-the-box”. This represents a
fundamental feature to facilitate the adoption of swarm intelligence methods
by inexpert users, and it is especially useful in real case applications when
no a priori knowledge is available about the optimization problem under
investigation.

The performance of FST-PSO was compared against different optimiza-
tion methods—standard PSO, PPSO, ABC, CMA-ES, DE and GA—by ex-
ploiting twelve well known multi-dimensional and multi-modal benchmark
functions. In particular, we investigated the optimization performance by an-
alyzing the convergence speed and the Average Best Fitness obtained through
30 repetitions of each algorithm, showing that FST-PSO turns out to be the
best approach in terms of convergence speed and it is also competitive con-
cerning the best solutions found. The main competitor of FST-PSO is CMA-
ES, which achieves better results in the case of Ackley, Alpine and Vincent
functions. We also showed the competitiveness of FST-PSO with respect
to CMA-ES on shifted/rotated benchmark functions using the CEC’13 suite:
CMA-ES resulted more performing than FST-PSO only on 9 functions out of
28. In these tests, FST-PSO also outperformed standard PSO in all but one
benchmark functions. However, considering the computational time required
by the two methods, we observed that FST-PSO is up to 80 times faster than
CMA-ES, making our method more suitable for the application to real-world
problems characterized by a high number of dimensions. Moreover, since
FST-PSO was implemented in pure Python code, there is still room for a
further improvement of computational performances by re-implementing the
method with more performing languages like C or C++.

As a future research direction, we plan to investigate alternative fuzzy in-
ference methods, exploring the impact of different implication operators on
the FST-PSO performance. We are also planning to investigate a differential
modification of proactive particle’s behavior—instead of the direct change
of the functioning settings, which is commonly used in all versions of fuzzy
PSO—in order to prevent any situation in which the consecutive applica-
tion of contradictory rules might slow down the exploration capability of a
particle. In addition, FST-PSO might be extended with rules able to assign
negative values to the Social factor, to the aim of preserving the diversity of
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the swarm throughout the optimization process, thus avoiding the necessity
of reboot strategies for particles [33]. An additional interesting issue regards
the execution of a global sensitivity analysis [34] on the vertexes of the fuzzy
sets for the two input variables considered in this work.

PSO is a very popular optimization method because, despite the lack
of a proper convergence theorem, it has been successfully applied to many
real-life problems (see [35] and references therein), including the problem of
kinetic parameters estimation (PE) of biological systems. As a matter of
fact, PSO was empirically shown to be one of the most suitable algorithm for
PE [36, 37]. In particular, Dräger et al. [37] showed that PSO outperforms
many of the algorithms that have also been tested in this paper, assumed
that its functioning settings are properly selected. Therefore, as a future
application we plan to integrate FST-PSO in the multi-swarm methodology
for PE that we previously defined [38], in order to provide the community
of Computational Systems Biology with a fully automatic methodology to
determine the missing kinetic values of biochemical reaction networks.
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