
This paper is included in the Proceedings of the
30th USENIX Security Symposium.

August 11–13, 2021
978-1-939133-24-3

Open access to the Proceedings of the
30th USENIX Security Symposium

is sponsored by USENIX.

SEApp: Bringing Mandatory Access Control to
Android Apps

Matthew Rossi, Dario Facchinetti, and Enrico Bacis, Università degli
Studi di Bergamo; Marco Rosa, SAP Security Research; Stefano Paraboschi,

Università degli Studi di Bergamo
https://www.usenix.org/conference/usenixsecurity21/presentation/rossi

SEApp: Bringing Mandatory Access Control to
Android Apps

Matthew Rossi
Università degli Studi di Bergamo

matthew.rossi@unibg.it

Dario Facchinetti
Università degli Studi di Bergamo

dario.facchinetti@unibg.it

Enrico Bacis∗

Università degli Studi di Bergamo
enrico.bacis@unibg.it

Marco Rosa
SAP Security Research
marco.rosa@sap.com

Stefano Paraboschi
Università degli Studi di Bergamo

parabosc@unibg.it

Abstract
Mandatory Access Control (MAC) has provided a great con-
tribution to the improvement of the security of modern op-
erating systems. A clear demonstration is represented by
Android, which has progressively assigned a greater role to
SELinux since its introduction in 2013. These benefits have
been mostly dedicated to the protection of system compo-
nents against the behavior of apps and no control is offered
to app developers on the use of MAC. Our solution over-
comes this limitation, giving developers the power to define
ad-hoc MAC policies for their apps, supporting the internal
compartmentalization of app components.

This is a natural evolution of the security mechanisms al-
ready available in Android, but its realization requires to con-
sider that (i) the security of system components must be main-
tained, (ii) the solution must be usable by developers, and
(iii) the performance impact should be limited. Our proposal
meets these three requirements. The proposal is supported by
an open-source implementation.

1 Introduction

Security in operating systems has greatly evolved and has
been able to address many of the threats originating by an
extensive and varied collection of adversaries.

The mitigation of security threats is particularly important
for mobile operating systems, due to their wide deployment
and the confidential information they hold.

Both Android and iOS have seen significant investments
toward the realization of advanced security techniques, which
have led to a great increase in the level of protection offered to
users [58]. The strength of security and the value of protected
resources is testified, for instance, by the payouts associated
with working exploits in markets like Zerodium [72], where
the payouts for mobile operating systems are the highest1.

∗now at Google
1At the time of writing, US$2.5M and US$2M are paid for a zero click

solution able to subvert the security of Androd and iOS, respectively.

A peculiar threat that characterizes mobile operating sys-
tems is the need to balance on one side the high sensitivity of
the information, and on the other hand the need for users to
install into the system a large number of applications (called
simply apps in this domain) often produced by unknown de-
velopers, which may hide malicious functions. A first level of
protection is offered, both in iOS and Android, by a prelimi-
nary screening of apps before they are made available on the
platform market [2] or installed to a device, but this approach
cannot provide a strong guarantee. Security mechanisms in-
ternal to the operating system are needed in order to constrain
the apps to only operate within the boundaries specified by
the device owner at installation time.

The approach used in the design of mobile operating sys-
tems considers as the first requirement the protection of sys-
tem resources. Focusing on Android, which is open source
and more accessible to researchers, we notice a significant evo-
lution in its internal security architecture. This architecture is
quite rich and consists of many security measures [44, 58]. In
this environment, we specifically look at the role of SELinux.
SELinux implements the Mandatory Access Control (MAC)
mechanism, which relies on a system-level policy to declare
the operations that a process can execute over a resource
based on the security labels associated with them. Compared
to classical Discretionary Access Control (DAC), still used
in Android in an extensive way, MAC is more rigid and pro-
vides stronger guarantees against unwanted behaviors. When
SELinux was introduced into Android 4.3 in 2013 (see Fig-
ure 1), it used a limited set of system domains and it was
mainly aimed at separating system resources from user apps.
In the next releases, the configuration of SELinux has progres-
sively become more complex, with a growing set of domains
isolating different services and resources, so that a bug or
vulnerability in some system component does not lead to a
direct compromise of the whole system.

The introduction of SELinux into Android has been a clear
success. Unfortunately, the stronger protection benefits do
not extend to regular apps which are assigned with a single
domain named untrusted_app. Since Android 9, isolation

USENIX Association 30th USENIX Security Symposium 3613

of apps has increased with the use of categories, which guar-
antees that distinct apps operate on separate security contexts.
Our proposal, SEApp, builds upon the observation that giving
app developers the ability to apply MAC to the internal struc-
ture of the app would provide more robust protection against
other apps and internal vulnerabilities.

2 Android security for apps

One of the major requirements considered in the design of
mobile operating systems is the need to constrain the ability
of apps to manipulate the execution environment. Apps may
hide functions that are meant to gain system privileges or
capture valuable information from other apps. Compared to
classical desktop operating systems, there is greater reliance
on the use of apps to access resources or get services, with
more attention paid to limit the ability of apps to operate in the
system. Advancements in this context can have an impact on
how security for applications is managed in other domains [1].

The basic principle adopted to manage the threat introduced
by apps is the design of a sandbox, a restricted environment
for app execution, where anomalous actions by the app are
not able to access resources beyond what has been authorized
at app installation time. The sandbox can be considered a
realization of the “least privilege” security principle.

The construction of the app sandbox is based on three
access control mechanisms: Android permissions [14, 44, 45],
Discretionary Access Control (DAC) [38], and Mandatory
Access Control (MAC) [63]; each of them roughly aligning
with how users, developers, and the platform grant consent,
respectively.

Android permissions restrict access to sensitive data and
services. In file AndroidManifest.xml [16], each app stat-
ically lists the Android permissions needed to fully operate.
Not all of them may be granted; depending on the threat they
pose from a security and privacy standpoint, they may be
granted as part of the installation procedure, or prompted to
the user when the app needs them.

DAC restricts access to resources based on user and group
identity. By assigning each application a unique UNIX user
ID (UID) and a dedicated directory, Android isolates apps
from each other and from the system. However, UID sandbox-
ing has a number of shortcomings. As an example, processes
running as root are not subject to these restrictions. For this
reason, when such a process is misbehaving, for instance due
to a bug, it can access private app data files. DAC discretion-
ality itself is a problem. Indeed, as apps and system processes
could override safe defaults, they are more susceptible to dan-
gerous behavior, such as leaking files or data across security
boundaries via IPC or fork/exec. Despite its deficiencies, UID
sandboxing is still the primary enforcement mechanism that
separates apps from each other, establishing the foundation
upon which further sandbox restrictions have been built.

Before
Android 4.3

Android 4.3 -
Android 8

Since
Android 9

Our
Proposal

system servicessystem servicessystem servicessystem services

 app app app app app app app app1 2 1 2 1 2 1 2

Figure 1: Evolution of the MAC policy in Android. Before 4.3,
MAC was not used. Starting with 4.3, MAC protects system
components. Since 9, categories offer rigid MAC protection
for apps. Our proposal offers flexible MAC protection to apps.

MAC dictates which actions are allowed based on the secu-
rity policy defined by the system. Specifically, only actions ex-
plicitly granted by the policy are permitted. To decide whether
to permit or deny an action, a set of policy rules concerning
the security contexts (i.e., collections of security labels that
classify resources) of the involved parties is evaluated.

In Android, MAC is implemented using SEAndroid, a set
of kernel modifications part of the Linux Security Module
(LSM) framework [70]. Since its first introduction with the Se-
curity Enhanced Android (SEAndroid) project [65], SELinux
has been extensively applied to protect system components.
Initially, it was used to assert the security model requirements
during compatibility testing, then its usage grew further at
each release. In the current version Android 11, SELinux
is also used to isolate the rendering of untrusted web con-
tent (by the isolated_app domain), to restrict ioctl system
calls [56], thus limiting the reachability of potential kernel
vulnerabilities, and to support multi-user separation and app
sandboxing with SELinux categories. This last aspect permits
to enforce app separation both at DAC and MAC. Android
dynamically assigns categories to apps during app installa-
tion, so that: (i) an app running on behalf of a user cannot
read or write files created by the same app on behalf of an-
other user (since Android 6 [9]); and, (ii) an app cannot read
or write files created by another app (since Android 9 [11]).
Before Android 9, this separation was only enforced at DAC
level. This overlap of security measures is of extreme rele-
vance to the enforcement of the Android Security Model and
our proposal moves in the same direction. To bypass these
protections, a process should be granted root permissions,
DAC_OVERRIDE or DAC_READ_SEARCH, and run as SELinux
mlstrustedsubject; only a few critical system services run
in this configuration.

Android restricts the SELinux implementation to the policy
enforcement, ignoring most policy management functions.
The motivation is that the system policy only changes between
releases, therefore support to runtime changes is not needed.

3614 30th USENIX Security Symposium USENIX Association

3 Motivation

As discussed above, SELinux and the MAC support have
been a crucial factor in the realization of a secure design and
the construction of a robust app sandbox. A limitation of
the current design is that this is the only way that apps can
benefit from MAC support. There is currently no option to let
the app developer control the use of the MAC level, as only
platform, vendor, ODM and OEM developers are allowed to
introduce new policy segments [24]. Our solution overcomes
this limitation, giving the application developer the power to
specify new SELinux types and associated permissions.

3.1 Use cases
We envision several scenarios that justify the use of SEApp.
Many of them have been previously considered by researchers
as motivations for the introduction in Android of dedicated
components [33, 41, 55].

In this Section we give a tour of SEApp capabilities us-
ing a showcase app2. The architecture of the showcase app
is shown in Figure 2. Our description is based on three use
cases: fine-granularity in access to files, fine-granularity in
access to services, and isolation of vulnerability prone compo-
nents. Each of the use cases emphasizes the intra-app security
features introduced by SEApp. A dedicated description, along
with policy files that show concretely how to enforce these use
cases, appears in the Appendix; we provide there a technical
demonstration of how SEApp can provide protection against
a number of common security problems in Android apps [51]
that were implemented in the showcase app.

3.1.1 Fine-granularity in access to files

Android apps can collect data from multiple sources, and
the system provides many options to store it. The default
one is Internal Storage: a filesystem region, located at
/data/data/packageName, reserved to each package. Its
content is available to all app’s internal components and in-
accessible to any other app. Since data can be extremely
sensitive, the developer may be interested in restricting its
visibility to only some internal components, labeling sensitive
and non-sensitive data with distinct SELinux types (use case
1). Yet, in the current Android security model, apps do not
have the option to assign distinct MAC labels to different
resources, as all internal files are labeled app_data_file.
SEApp allows the developer to introduce dedicated types,
and to organize the app’s structure with a separation between
components managing non-sensitive data and those requir-
ing access to sensitive data. The sensitive components will
be associated with a more stringent MAC domain. Figure 2
shows an example in which the confidential files are made

2The showcase app is available in the SEApp repository along with the
set of modifications to the AOSP.

libmedia.so

/data/data/SEApp/files

confidential/

Activity Activity
:core_logic :adlibrary

Activity

ads_cache/

Service
:media

Service

Kernel API
 DAC + MAC

ads_d → ads_t
core_logic_d → confidential_t

media_d → media_t

u
se
rs
p
ac
e

fi
le
sy
st
em

ke
rn
el

Service API
Permissions

Binder module

camera
service

location
service

SEApp System Server

Network1 2

3

Figure 2: Security Enhanced App

accessible to :core_logic processes and inaccessible to any
other process.

In Appendix A.1 we give a demonstration of how confi-
dential files are made inaccessible to non-confidential compo-
nents in the presence of a path traversal vulnerability.

3.1.2 Fine-granularity in access to services

Often developers introduce into their applications code com-
ing from external sources, which they do not fully trust [40,
46, 61]. For instance, a common need of app developers is
to get revenue from their apps and a simple approach is to
include an Ad delivery library within the app. The library is
a relatively complex piece of code, with local computation
necessities and the need to manage a dialogue with remote
servers. The app developer is clearly interested in supporting
the execution of the library, but may want to have guarantees
that the library cannot abuse the access privileges granted by
the user to the whole application sandbox (use case 2). A com-
mon concern is preventing access to system services such as
location. These requirements can be managed by SEApp with
the definition of a separate MAC domain for the library. The
process managing the delivery of Ads will be associated with
this domain, which will provide only the necessary privileges
to access the dedicated resources needed for the library exe-
cution. SELinux will then guarantee the confinement of the
library, preventing access to the location service even if the
ACCESS_FINE_LOCATION permission is granted to the app.
Figure 2 shows an example in which the :adlibrary process is
granted access to the network but is prevented from accessing
location service.

In Appendix A.2 we give a demonstration of how the show-
case app can support the execution of the Unity Ads [69]
framework with a dedicated SELinux domain. We also de-
scribe in detail how SEApp prevents a malicious component,
which was deliberately injected by us into the library process,
to capture the device location.

USENIX Association 30th USENIX Security Symposium 3615

3.1.3 Isolation of vulnerability prone components

App developers often have to consider that the input provided
to the app can come from untrusted sources. A typical exam-
ple is the rendering of complex Javascript code performed by
WebView. The solution currently offered by Android is to ex-
ecute these potentially dangerous actions within a sandbox us-
ing isolatedprocess, i.e., a special process that is isolated from
the rest of the system and has no permissions of its own [6].
It runs under a dedicated UID and SELinux domain, and it
can only interact with a restricted number of services [8].

A common need of app developers is to take advantage of
complex media or processing libraries, components that are
not considered malicious, but due to their size and complexity
are more likely to have security bugs. The developer is then in-
terested in isolating these potentially vulnerable components
(use case 3). Isolatedprocess offers a high protection level
in Android, however, its use imposes several restrictions on
the developers. For instance, isolatedprocess cannot perform
many of the core Android IPC functions, and the only way to
interact with it is through the bound service API [7]. Also, iso-
latedprocess can only access already open app files received
over Binder. Another shortcoming is that each invocation of
an isolatedprocess requires the creation of a new process. If
a series of requests are made by the app, the performance
impact can be significant. SEApp offers an easier way to do
this compared to isolatedprocess, as it permits to assign a
domain to the process in which the component is executed,
and then configure the required permissions at MAC level. In
terms of performance, the management of multiple requests
does not require the system to activate a new process with a
new UID and a dedicated SELinux category. Figure 2 shows
how to confine the :media component.

In Appendix A.3 we give a demonstration of how the show-
case app can support the execution of media components
relying on a native library in a dedicated process. We also
describe how the developer can leverage SEApp to prevent
the code of the library from the execution of unwanted or
unintended operations, like opening a network connection.

3.2 Modular app compartmentalization

The motivations presented above become more frequent as
apps increase their size and complexity, and several important
apps see a continuous increase in these parameters. For in-
stance, Facebook Messenger version 285 contains more than
500 components and WhatsApp Messenger version 2.20 more
than 300. This increase in size and the need to manage it is
testified by the development of App Bundles [4], Android’s
new, official publishing format that offers a more efficient
way to build and release modular applications.

In these large and modular apps, developers find it difficult
to fully control which components of an app are using sensi-

tive data3. The availability of a solution such as SEApp can
greatly reduce such risk. A better compartmentalization can
reduce the impact of internal vulnerabilities in modular apps,
since each module can be associated with a dedicated policy
fragment. From a security and software engineering stand-
point, SEApp permits to separate the activities of security
policy maintenance and development of new features.

3.3 Compatibility with Android design
Looking at the evolution of Android, it is clear that our pro-
posal is consistent with the evolution of the operating system
and the desire of its designers to let app developers have ac-
cess to an extensive and flexible collection of security tools.
The major obstacles, as perceived by OS developers, on offer-
ing to app developers the use of MAC services are: weakening
of the protection of system components; performance impact;
usability by app developers. The work we did solves these
concerns: our approach guarantees that app policies do not
have an impact on the system policy (Section 4.3); the app
policy can be specified declaratively and attention has been
paid to let developers adopt the approach in a convenient way
(Section 5.2); and, experiments demonstrate the acceptable
performance impact, with a quite limited overhead at app
installation time, and a negligible runtime impact (Section 7).

3.4 Compatibility with other proposals
As presented in Section 3.1, SEApp by itself provides pro-

tection against a broad spectrum of attacks (see Appendix),
but its merit does not end there. As multiple literature pro-
posals (e.g., [35, 55, 71]) build upon process isolation and use
it to accomplish separation of privileges at the application
layer, SEApp could be used as building block to enforce such
restrictions at the MAC layer too, enabling defense in depth.
Moreover, SEApp could also work in conjunction with other
solutions that work at MAC level such as FlaskDroid [37], to
benefit of its Userspace Object Managers (USOMs) coverage
of the Android system services and provide finer granularity
in access to services.

4 SEApp policy language

To support the use cases presented in Section 3, we want the
developer to have control of the SELinux security context of
subjects and objects related to her security enhanced app. To
each of them is assigned a type (also called domain when it
labels processes). As types directly relate to groups of permis-
sions, the evaluation of security contexts is the foundation of
each security decision. Since apps may offer many complex
functions, the policy language has to provide the flexibility of

3The topic was explicitly considered in [30], an interview with Android’s
VP of Engineering.

3616 30th USENIX Security Symposium USENIX Association

Table 1: Application policy module CIL syntax

Policy module syntax
blockStmt → (block blockId cilStmt∗)
cilStmt → typeStmt | typeAttrStmt | typeAttrSetStmt | typeBoundsStmt | typeTransStmt | macroStmt | allowStmt
typeStmt → (type typeId)
typeAttrStmt → (typeattribute typeAttrId)
typeAttrSetStmt → (typeattributeset typeAttrId (〈typeId | typaAttrId〉+))
typeBoundsStmt → (typebounds parentTypeId childTypeId)
typeTransStmt → (typetransition sourceTypeId targetTypeId classId [objectName] defaultTypeId)
macroStmt → (call macroId (typeId))
allowStmt → (allow 〈sourceTypeId | sourceTypeAttrId〉 〈targetTypeId | targetTypeAttrId | self〉 classPermissionId+)

defining multiple domains with distinct privileges so that the
app, according to the task it has to do, may switch to the least
privileged domain needed to accomplish the job.

The app policy is specified in a module, provided by the
app to describe its own types. The policy module is processed
at app installation time by a component of the system, called
SEApp Policy Parser, responsible to verify that the policy is
correct and does not introduce vulnerabilities into the system.
The addition of a policy module is managed by combining
the new module with the platform policy and the previous
installed ones, producing after policy compilation a single
binary representation of the global policy.

In this section we provide a description of the SEApp
policy language and the restrictions each module is subject
to. Policy configuration is detailed in Section 5, while policy
compilation and runtime support are discussed in Section 6.

4.1 Choice of policy language

SEAndroid supports two languages for policies, Type En-
forcement (TE) [67] and Common Intermediate Language
(CIL) [57]. TE was the language available in the early im-
plementations of SELinux, while CIL was later introduced to
offer an easy to parse syntax that avoids the pervasive use of
general purpose macro processors (e.g., M4 [48]). Another
aspect that differentiates them is that, in Android, TE rep-
resentations are internally converted into CIL before being
compiled into the SELinux binary policy. To avoid the addi-
tional translation step being performed at each policy module
installation, we decided to use CIL over TE.

4.2 Definition of types and type-attributes

CIL offers a multitude of commands to define a policy, but
only a subset has been selected for the definition of an app
policy module. This was done to control the impact of the
policy module on the system and it may, as a side effect,
facilitate the work of the app developer writing the policy.

The syntax is described in Table 1. To declare a type, the
type statement can be used. This permits to declare the types

involved in an access vector (AV) rule, which grants to a
source type a list of permissible actions over a target type. AV
rules are defined through the allow statement.

When writing a policy, there is frequently the need to assign
the same set of authorizations to multiple types. To avoid the
repetition of multiple allow declarations, it is convenient to
refer to multiple types using a single entity, the type-attribute.
Using the typeattributeset statement we associate with a
typeattribute a set of types and type-attributes. Each type-
attribute essentially represents the set of types that is produced
by the (possibly multi-step) expansion of its definition. The
semantics is that each of the types that directly or indirectly
(using type-attributes) appears as the source of an allow rule
will be authorized to operate with the specified permission on
each of the types directly or indirectly appearing as the target.
This improves the conciseness and readability of the policy.

After defining the domains with the least group of per-
missions necessary to fulfill the task, the developer can also
configure the domain transitions using the typetransition
statement. By doing so, it is possible to ensure that impor-
tant native processes run in dedicated domains with limited
privileges, leading to intra-app compartmentalization.

4.3 Policy constraints

The introduction of dedicated modules for apps raises the
need to carefully consider the integration of apps and system
policies. The first requirement is that an app policy must
not change the system policy and can only have an impact
on processes and resources associated with the app itself.
To preserve the overall consistency of the SELinux policy,
each policy module must respect some constraints. Since
Android supports the side-loading of apps [3], we cannot
rely on app markets to verify app policies. Therefore, the
enforcement of constraints is done on the device, by both the
SEApp Policy Parser and the SELinux environment. If any of
these components raises an exception, during the verification
or compilation of the policy, app installation is stopped.

To ensure that policy modules do not interfere with the
system policy and among each other, a first necessity is that

USENIX Association 30th USENIX Security Symposium 3617

policy modules are wrapped in a unique namespace obtained
from the package name. This is done through the block CIL
statement, which prevents the definition of the same SELinux
type twice, as the resulting global identifier is formed by the
concatenation of the namespace and the local type identifier.
Also, the use of a namespace specific for the policy module
permits to discriminate between local types or type-attributes
TA (namespace equal to the current app package name), types
or type-attributes of other modules TA′ 6=A (namespace equal to
some other app package), and system types or type-attributes
TS (system namespace). At installation time, the SEApp Pol-
icy Parser determines the origin of each type, with an explicit
prohibition for policies to refer to types or type-attributes de-
fined by other policy modules, while use of system types or
type-attributes is subject to restrictions.

With regard to the allow statement, a dedicated analysis
is performed by the SEApp Policy Parser. For each rule, the
global origin of source and target types is determined. We
refer to system origin S, when the type is directly or indirectly
associated with a system type in the expansion of its definition,
while to local origin A otherwise. Based on the origin of
source and target of each rule, there are four cases. The case
AllowSS, i.e., a permission with system origin both as source
and target, is prohibited, as it represents a direct platform
policy modification. The case AllowAA is always permitted,
as it only defines access privileges internal to the app module.
The cases AllowAS and AllowSA are more delicate.

An AllowAS originates when a local type needs to be
granted a permission on a system type. A concrete exam-
ple is shown in Section 3, where the :media process needs
access to the camera_service. The case cannot be decided
locally by the SEApp Policy Parser, therefore it is delegated to
the SELinux decision engine during policy enforcement. This
crucial postponed restriction depends on the constraint that
all app types have to appear in a typebounds statement [32],
which limits the bounded type to have at most the access
privileges of the bounding type. As Android 11 assigns to
generic third-party apps the untrusted_app domain, this is
the candidate we use to bound the app types. If the AllowAS
rule gives to the local type more privileges than those asso-
ciated with untrusted_app, and at runtime these privileges
are used, the SELinux decision engine identifies the policy
violation and prohibits the action.

AllowSA rules are the key to regulate how system compo-
nents access internal types. To be compliant with Android,
the local types introduced by the app policy module must
ensure interoperability with system services crucial to the
app lifecycle. As an example Zygote [29], the native service
which spawns and configures new app processes, can only ex-
ecute processes labeled with the type-attribute domain, which
is assigned by default to untrusted_app. However, giving
app developers the freedom to directly define AllowSA rules
would lead to two major issues: (i) the rules would depend
on system policy internals, leading to a solution with lim-

Table 2: SEApp macros to grant permissions to local types

Macro Usage
md_appdomain to label app domains
md_netdomain to access network
md_bluetoothdomain to access bluetooth
md_untrusteddomain to get full untrusted app permissions
mt_appdatafile to label app files

ited abstraction and modularity; (ii) explicit AllowSA rules
could lead to violations of the security assumptions of a sys-
tem service, with the risk of introducing vulnerabilities (e.g.,
leading to a confused deputy attack [36]). For these reasons
we prohibit their explicit use. To limit system types to only
those already dealing with untrusted content and simplify-
ing the policy, we rely on CIL macros, a set of function-like
statements that, when invoked by the SEApp policy module,
produce a predefined list of policy statements. This approach
permits to retain control on the rules produced, ensuring no
violation of the default system policy. Also, it makes the work
of the developer easier, by abstracting away system policy
internal details. To preserve the interoperability with system
services, third-party app functionality has been broken down
into the CIL macros listed in Table 2. This list has been iden-
tified looking at the internal structure of the untrusted_app
domain. With this design philosophy, the developer can grant
a basic set of permissions to a type (by calling one or more
macros), and then add to it fine-grained authorizations with
AllowAS rules.

With regard to the typeattributeset statement, the
SEApp Policy Parser uses a verification strategy similar to the
one used for allow rules. First, the global origin of the type-
attribute and of the set expression of types and type-attributes
is determined. All statements that directy or indirectly relate
to system types are blocked. This avoids implicit permission
propagation from system and local types.

Similarly, for the typetransition statement, the SEApp
Policy Parser verifies the origin of the types involved, with a
prohibition for all the statements that relate to system types,
as they may lead to an escalation of privileges.

5 Policy configuration

In this section we explore the structure of application policy
modules. Before describing the content of SEApp configu-
ration files, we give a short description of how SEAndroid
defines the security contexts of processes, files and system
services. There are strong similarities between the structure of
system and app policies. Indeed, we designed our solution as
a natural extension of the approach used to protect the system.
Also, our design maintains full backward compatibility. De-
velopers who are not interested in taking advantage of MAC
capabilities do not have to change their apps.

3618 30th USENIX Security Symposium USENIX Association

5.1 SEAndroid policy structure
Compared to a traditional Linux implementation, Android
expands the set of configuration files where SELinux [18]
security contexts are described, because a wider set of entities
is supported. SEAndroid complements the common SELinux
files (i.e., file_contexts and genfs_contexts) with 4
additional ones: property_contexts, service_contexts,
seapp_contexts and mac_permissions.xml. Also, the im-
plementation of the SELinux library (libselinux) [68] has
been modified introducing new functions (to assign domains
to app processes and types to their dedicated directory). We
concisely describe the role of SEAndroid context files.

5.1.1 Processes

With reference to app processes, Android assigns the security
context based on the class the app falls in. The specifica-
tion of the classes and their security labels are defined in the
seapp_contexts policy file. Most classes state two security
contexts: one for the process (domain property) and the other
one for the app dedicated directory (type property). A num-
ber of input selectors determine the association of an app with
a class. Among these, seinfo filters on the tag associated
with the X.509 certificate used by the developer to sign the
app. The mapping between the certificate and the seinfo tag
is achieved by the mac_permissions.xml configuration file.
Since the enumeration of all third-party app certificates is
not possible a priori, all third-party apps are labeled with the
untrusted_app domain by default.

5.1.2 Files

SELinux splits the configuration of security contexts of files
between file_contexts and genfs_contexts, with the for-
mer used with filesystems that support extended file attributes
(e.g., /data), while the latter with the ones that do not (e.g.,
/proc). To apply file_contexts updates, two approaches
are available: either rebuild the filesystem image, or run re-
storecon operation on the file or directory to be relabeled (this
is the default method used by permissioned system processes).
Conversely, to apply genfs_contexts changes, a reboot of
the device or a sequence of filesystem un-mount and mount
operations has to be performed.

5.1.3 Services

Unlike what happens for system processes, a system service
requires the assignment of a security context to both its pro-
cesses and its Binder [17], to be fully compliant with SEAn-
droid. The Binder is the lightweight inter-process communi-
cation primitive bridging access to a service. Its retrieval is en-
abled by the servicemanager, a process started during device
boot-up to keep track of all the services available on the de-
vice. Based on the labels specified in the service_contexts

.apk
AndroidManifest.xml
META-INF/
classes.dex
classes2.dex
policy

file_contexts
mac_permissions.xml
seapp_contexts
sepolicy.cil

res/
resources.args

SEApp modificationStock OS

Figure 3: SEApp policy structure

file, it is then possible to control which processes can register
(add) and lookup (find) a Binder reference for the service, and
therefore connect to it. However, since Binder handles resem-
ble tokens with almost unconstrained delegation, denying a
process to get the Binder through the servicemanager does
not prevent the process from obtaining it by other means (e.g.,
by abusing other processes that already hold it). Furthermore,
preventing a process from obtaining a Binder reference pre-
vents the process from using any functionality exposed by the
service.

5.2 SEApp policy structure

Developers interested in taking advantage of our approach to
improve the security of their apps are required to load the pol-
icy into their Android Package (APK). A predefined directory,
policy, at the root of the archive, is where the SEApp-aware
package installer will be looking for the policy module (see
Figure 3). Inside this directory, the installer looks for four files
(which we refer to as local), that outline a policy structure
similar to the one of the system. Specifically, the developer is
able to operate at two different levels: (i) the actual definition
of the app policy logic using the policy language described in
Section 4 (in the local file sepolicy.cil), and (ii) the con-
figuration of the security context for each process (in the local
files seapp_contexts and mac_permissions.xml) and for
each file directory (in the local file file_contexts).

5.2.1 Processes

SEApp permits to assign a SELinux domain to each process
of the security enhanced app. To do this, the developer lists
in the local seapp_contexts a set of entries that determine
the security context to use for its processes. For each entry,
we restrict the list of valid input selectors to user, seinfo
and name: user is a selector based upon the type of UID;
seinfo matches the app seinfo tag contained in the local
mac_permissions.xml configuration file; name matches ei-
ther a prefix or the whole process name. The conjunction of
these selectors determines a class of processes, to which the

USENIX Association 30th USENIX Security Symposium 3619

context specified by domain is assigned. To avoid privilege
escalation, the only permitted domains are the ones the app
defines within its policy module and untrusted_app. As a
process may fall into multiple classes, the most selective one,
with respect to the input selector, is chosen. An example of
valid local seapp_contexts entries is shown in Listing 1,
which shows the assignment of the unclassified and secret do-
mains to the :unclassified and :secret processes, respectively.

In Android, developers have to focus on components rather
than processes. Normally, all components of an application
run in a single process. However, it is possible to change this
default behavior setting the android:process attribute of
the respective component inside the AndroidManifest.xml,
thus declaring what is usually called a remote component.
Furthermore, with the specification of an android:process
consistent with the local seapp_contexts configuration, we
support the assignment of distinct domains to app components.
To execute the component, the developer is only required
to create the proper Intent object [21], as she would have
already done on stock Android for remote components. The
assignment to the process of the correct domain is handled by
the system. This design choice allows us to support Android
activities, services, broadcast receivers and content providers,
while avoiding changes to the PackageParser [62], as there
are no modifications to the manifest schema.

5.2.2 Files

The developer states the SELinux security contexts of internal
files in the local file_contexts. Each of its entries presents
three syntactic elements, pathname_regexp, file_type and
security_context: pathname_regexp defines the direc-
tory the entry is referred to (it can be a specific path or a
regular expression); file_type describes the class of filesys-
tem resource (i.e., directory, file, etc.); security_context is
the security context used to label the resource. The admissible
entries are those confined to the app dedicated directory and
using types defined by the app policy module, with the excep-
tion of app_data_file. Due to the regexp support, a path
may suit more entries, in which case the most specific one
is used. Examples of valid local file_contexts entries are
shown in Listing 2: the first line describes the default label for
app files, second and third line respectively specify the label
for files in directories dir/unclassified and dir/secret.

In SELinux, the security context of a file is inherited from
the parent folder, even though file_contexts might state
otherwise. Since, for our approach, it is essential that files are
labeled as expected by the developer, we decided to enforce
file relabeling at creation. Therefore, a new native service
has been added to the system (see Section 6.2). We then
offer to the developer an alternative implementation of class
java.io.File, named android.os.File, which sets file
and directory context upon its creation, transparently handling
the call to our service.

5.2.3 System services

To support any third-party app, the untrusted_app domain
grants to a process the permissions to access all system
services an app could require in the AndroidManifest.xml.
As an example, in Android 11, the untrusted_app_all.te
platform policy file [28] permits to a process labeled
with untrusted_app to access audioserver, camera,
location, mediaserver, nfc services and many more.

To prevent certain components of the app from holding the
privilege to bind to unnecessary system services, the devel-
oper defines a domain with a subset of the untrusted_app
privileges (in the local sepolicy.cil file), and then she en-
sures the components are executed in the process labeled with
it. Listing 3 shows an example in which the cameraserver
service is made accessible to the secret process.

1 user=_app seinfo=cert_id domain=package_name.
unclassified name=package.name:unclassified

2 user=_app seinfo=cert_id domain=package_name.
secret name=package.name:secret

Listing 1: seapp_contexts example
1 .* u:object_r:app_data_file:s0
2 dir/unclassified u:object_r:package_name.

unclassified_file:s0
3 dir/secret u:object_r:package_name.

secret_file:s0

Listing 2: file_contexts example
1 (block package_name
2 (type secret)
3 (call md_appdomain (secret))
4 (typebounds untrusted_app secret)
5 (allow secret cameraserver_service (

service_manager (find)))...)

Listing 3: Granting cameraserver access to secret domain

6 Implementation

In this section we describe the main changes introduced in
Android by SEApp. We first analyze the modifications re-
quired to manage policy modules, both during device boot
and at app installation. We then describe how the runtime
support was realized.

6.1 Policy compilation

6.1.1 Boot procedure

Since the introduction of Project Treble [10], policy files are
split among multiple partitions, one for each device maintainer
(i.e., platform, SoC vendor, ODM, and OEM). This feature
facilitates updates to new versions of Android, separating
the Android OS Framework from the device-specific low-
level software written by the chip manufacturers. Yet, each
time a partition policy (i.e., a segment) changes, an on-device
compilation is required.

3620 30th USENIX Security Symposium USENIX Association

The init process divides its operations in three stages [19]:
(i) first stage (early mount), (ii) SELinux setup, and (iii) sec-
ond stage (init.rc). The first stage mounts the essential parti-
tions (i.e., /dev, /proc, /sys and /sys/fs/selinux), along-
side some other partitions specified as early mounted (since
Android 10 using an fstab file in the first stage ramdisk, in
Android 9 and lower adding fstab entries using device tree
overlays). Once the required partitions are mounted, init en-
ters the SELinux setup. As the name suggests, this is the stage
where init loads the SELinux policy. As the /data partition,
where policy modules are stored, is not yet mounted, it is not
yet possible to integrate them with the policy of the system.
Then, as last operation of the SELinux setup stage, init re-
executes itself to transition from the initial kernel domain
to the init domain, entering the second stage. As the sec-
ond stage starts, init parses the init.rc files and performs
the builtin functions listed there, among them mounting the
/data partition. Now, the policy modules are available, and
we can produce with secilc [26] (the SELinux CIL compiler)
the binary policy consisting of the integration among the sys-
tem policy, the SEApp macros and the app policy modules.
To trigger the build and reload of the policy, we implemented
a new builtin function, and modified the init.rc to call this
function right after /data is mounted. The policy is consid-
ered immediately after the /data partition is available and
this ensures that the policy modules are loaded far before an
application starts, making the policy not bypassable.

Even though most Android devices supporting Android 10
were released with Treble support and, therefore, execute their
SELinux setup stage on the sepolicy.cil fragments scat-
tered among multiple partitions, init still supports the use of a
legacy monolithic binary policy. For compatibility towards de-
vices using a monolithic binary policy, additional changes are
required, as SEApp needs the system policy written in CIL to
be compiled alongside with app modules. To this end, we mod-
ified the Android build process to push the sepolicy.cil
files onto the device even for non-Treble devices. New entries
in the device tree were added to make the policy segments
available during init SELinux setup stage [22].

As previously mentioned, we decided to store the policy
modules in the /data partition; even if this choice required
us to adapt the boot procedure of the device, it smoothly in-
tegrates SEApp with the current Android design. In fact, the
/data partition is one of the few writable partitions, it is
dedicated to hold the APK the user installs, as well as their
dedicated data directories and, therefore, it represents the best
option to contain also the app policy modules. Moreover,
whenever a user performs a factory reset, Android automati-
cally wipes the /data partition, removing the customization
the user made to the device configuration, including the apps.
By placing the app policy modules and the apps into the same
partition, a factory reset removes the policy modules as well.

 /data/selinux/packageName
 file_contexts
 mac_permissions.xml
 seapp_contexts
 sepolicy.cil

.apk

policy write
2

installd secilcexec
4

10101
11001
00100

system
policy

fragments
+

SEApp
macros

sys/selinux/load

3 call

read

8 write 6 write

binary
policy

read
5

+

7

SEApp modificationStock OS

PackageManagerService

PolicyModuleValidator
read
1

SEAppPolicyParser

Figure 4: Installation process

6.1.2 App installation

As introduced in Section 5.2, the developer willing to define
its own policy module is expected to load it in the app pack-
age. At app installation, the PackageManagerService [23]
inspects the APK to identify whether or not the current instal-
lation involves a policy module, by looking for the policy
directory at the root of the archive. When the app has a policy
module attached to it (see Figure 4), the PackageManager-
Service extracts it (1) and uses our PolicyModuleValidator
to verify the respect of all the constraints on sepolicy.cil
(through the SEAppPolicyParser, Section 4) and on the con-
figuration files (Section 5). In case of a violation of the con-
straints, the app installation stops. Otherwise, the policy mod-
ule is stored within /data/selinux, in a dedicated directory
identified by the package name (2). Then, the PackageMan-
agerService invokes installd [20] through the Installer to
trigger the policy compilation with an exec call to the se-
cilc program (3 , 4). Secilc reads the system sepolicy.cil
fragments, the SEApp macros and the sepolicy.cil frag-
ments of the app policy modules in the /data/selinux di-
rectory (5), and builds the binary policy (6). When the se-
cilc execution returns and no compilation errors have been
raised, the binary policy is then read by installd (7) and
loaded with selinux_android_load_policy, which writes the
sys/selinux/load file (8).

To load the policy files after init, the implementation of
SELinux in Android has been slightly modified. In particu-
lar, we modified the policy loading function within libselinux
(function selinux_android_load_policy), and changed the sys-
tem policy to allow installd to load the app policy module.

As for the policy configuration files, some changes were
introduced to properly load the application file_contexts,
seapp_contexts and mac_permissions.xml. SELinux-
MMAC [27], i.e., the class responsible for loading the
appropriate mac_permissions.xml file and assigning
seinfo values to apks, was modified to load the new
mac_permissions.xml specified within the app policy mod-
ule. The loading of file_contexts and seapp_contexts

USENIX Association 30th USENIX Security Symposium 3621

ActivityManagerService

1. StartActivity
 (Intent)

Zygote

2. Process.start()

Initialization
set GID

setup seccomp filter
set UID read

set SELinux context
/data/selinux/packageName/

seapp_contexts

Activity Thread

packageName:process

looper.loop()

App class

New Activity3. fork()

4. BIND

5. LAUNCH

SEApp modification
Stock OS

Figure 5: Application launch

Android RunTime

java.io.Fileandroid.os.File

/data/data/packageName

ap
pl

ic
at

io
n

sy
st

em ServiceManager restorecon /data/selinux/packageName
 file_contexts

file2

Activity
Activity

Activity Service
ServiceService

1

2 3 4 6

B
A

init

5

file1

SEApp modification
confidential_file
app_data_file

Figure 6: File relabeling

was configured to treat system and app configuration files
apart. So, SEApp-enhanced applications will load exclusively
their configuration files, whereas the loading of system’s
and other apps’ configuration files is not needed since their
use is prohibited. System services and daemons, instead,
load the base system configurations once, and then load
the app policy module specific configuration files as they
are needed. An example of this are Zygote and restorecon
services, which need to retrieve at runtime seapp_contexts
and file_contexts, respectively (see Section 6.2).

Our implementation also supports the uninstallation of
SEApp apps. The regular uninstallation process is extended
with a step where the global policy is recompiled, in order to
remove the impact of old modules on the overall binary policy.
With reference to application updates, the native installd runs
with the necessary permission to remove and apply new file
types based on the content of the file_contexts.

6.2 Runtime support

In addition to the steps described above, other aspects have
to be considered in order to extend SELinux support at the
application layer.

6.2.1 Processes

Android application design is based on components. Each of
them lives inside a process, and can be seen as an entry point
through which the system or the user can enter the app.

To activate a component, an asynchronous message called
intent, containing both the reference to the target component
and parameters needed for its execution, has to be created.
The intent is then routed by the system to the ActivityManag-
erService [12] via Binder IPC. Before delivering the intent
request to the target component, the ActivityManagerService
checks if the process in which the target component should be
executed is already running; if not, the native service called
Zygote [29] is executed. Its role is to spawn and correctly
setup the new application process. To achieve this, it first
replicates itself by performing a fork, then, using the input
provided by the ActivityManagerService (namely, package
name, seinfo, android:process, etc.), it starts configuring
the process GID, the seccomp filter, the UID and finally the
SELinux security context. We adapted the final configuration
step, forcing Zygote to set the security context based on the
seapp_contexts located at /data/selinux/packageName
(i.e., the one provided by the developer for her app). Process
name is used to assign the proper context to the process when
it starts, before the logic of the process kicks in. In case the de-
veloper did not specify a domain, then Zygote uses the system
seapp_contexts as fallback. After the correct labeling, the
ActivityManagerService finishes the configuration by binding
the application class, launching the component, and finally
delivering the intent message. Figure 5 details the process.

This implementation design offers several benefits, includ-
ing backward compatibility, support for all components, and
ease of use. Indeed, a developer who wants to use our solution
only has to configure some files; changes in the application
code are reduced to a minimum, thus facilitating the introduc-
tion of SELinux in already existing apps.

In our study we have also explored other design alterna-
tives, in which the developer could explicitly state a domain
transition in the code, wherever she needs it. Although this
category of solutions would give the developers more control
over domain transitions, it also has some drawbacks. First, the
developer would be expected to enforce the isolation among
source and target domains managing the multi-threaded sce-
nario, and second, this design implies granting too many per-
missions to the app (e.g., dyntransition, setcurrent and
read/write access to selinuxfs). Moreover, such solution
would introduce a new Android API, that would be quite deli-
cate and, if not used correctly, it might be difficult to control.

6.2.2 Files

Android applications aiming to create a file can use the
java.io.File abstraction. Each file creation request that
is generated is captured by the Android Runtime (ART) [15],
and then converted into the appropriate syscall. The result

3622 30th USENIX Security Symposium USENIX Association

installation order (from Google Play)

0

5

10

15

20

25

30

in
st

al
la

ti
on

ti
m

e
[s

]

basic apps

policy overhead

normal installation

(a)

installation order (from Google Play)

0

5

10

15

20

25

30

in
st

al
la

ti
on

ti
m

e
[s

]

ordinary apps

policy overhead

normal installation

(b)

installation order (from Google Play)

0

5

10

15

20

25

30

in
st

al
la

ti
on

ti
m

e
[s

]

huge apps

policy overhead

normal installation

(c)

Figure 7: Installation time overhead for apps with different complexity

is the creation of the target file, to which a security context
inherited from the parent directory is assigned (see flow A ,
B of Figure 6). Since Android 9, the separation between files

of different apps is enforced at MAC level (a unique context
based on UID and SELinux category is assigned); however,
all the files stored in the same app folder are labeled with the
app_data_file type.

To make the most out of SELinux, SEApp complements
Android with the implementation of a new service, which
we called restorecon (to recall the SELinux restorecon.c
tool). The restorecon service is spawned by init at boot,
and works in its own SELinux domain. Its role is to cre-
ate and label files as specified by the developer in the local
file_contexts. To ease development, we implemented the
new android.os.File abstraction, which exposes an inter-
face equal to that of java.io.File, and transparently han-
dles the call to our service. Figure 6 details the new control
flow. A component running in a SEApp-enhanced process
(highlighted in green in Figure 6) invokes android.os.file,
and triggers a new file creation request (1). The new API
first interacts with the ServiceManager (2) to get a han-
dle of the restorecon service (3), then it interacts with
the service using the AIDL [5] interface we defined for
it, informing the restorecon of the target path (4). The re-
storecon service verifies whether the caller is the legitimate
owner of the path, it reads the file_contexts file located
at /data/selinux/packageName (5), and finally it creates
the target file enforcing the correct labeling (6).

We also investigated three other implementation ap-
proaches: (i) change of the default security context
inheritance behavior for the ext4 filesystem, (ii) execution of
the SELinux restorecon operation by the app, once the file is
successfully created, and (iii) use of restorecond [25]. The
first option would change the default behavior system-wide.
As it might cause compatibility issues, we decided not to
choose it. The second option is not ideal from a security
standpoint, as it requires to grant the application too many
permissions (e.g., relabelfrom, relabelto, as well as
read/write access to selinuxfs to check the validity of
the SELinux context). The third option refers to the use of
restorecond, a system daemon that watches (inodes of) a

configurable list of files and checks that they are labeled
as stated in the system file_contexts. Although it may
realize the control, restorecond was meant for a few system
files, therefore its performance would hardly scale, especially
considering that SEApp needs to manage all files created
by SEApp-aware apps. Another major issue is that this
approach is exposed to race conditions, because there is a
delay between file creation and its relabeling.

7 Performance

We now present a performance evaluation of SEApp. The
experiments have been conducted on both Android 9 and 10,
each with Linux kernel v4.9. However, all the measurements
shown refer to Android 10 (release android-10.0.0_r41). The
device used to run the tests is a Google Pixel 3 (blueline),
in which the four gold cores frequency was set to 2.8 GHz,
while the four silver ones were disabled. The change in CPU
configuration has been performed to reduce the variability of
measures. The confidence intervals provided have an associ-
ated confidence level of 99%.

7.1 App installation

The introduction of dedicated app policies implies further
steps to be executed at app installation time, as each SEApp
module has to be validated, compiled, and loaded. To evaluate
the impact on performance, we wrote dedicated tests to stress
the installation procedure with multiple application samples.

To build representative samples of a typical consumer sce-
nario, we first downloaded the 150 most popular free apps
from Google Play (retrieved in October 2020) [52]. The apps
were subsequently divided into three buckets: basic, ordinary
and huge apps, according to the weighted normalized aver-
age of the .apk size, the number of Android activities and
the number of services. Based on the bucket, each app was
equipped with one of the following policy configurations: (i)
basic, 1 domain and 1 type per policy module, (ii) ordinary,
10 domains and 25 types, and (iii) huge, 20 domains and 100
types. The rationale is that larger apps can gain considerable

USENIX Association 30th USENIX Security Symposium 3623

1 20 40 60 80 100

installed apps

0

200

400

600

800

1000

1200
cu

m
ul

at
iv

e
in

st
al

la
ti

on
ti

m
e

[s
]

policy overhead

normal installation

Figure 8: Cumulative install time overhead when installing
the top 100 free apps on Google Play Store with our policies

benefit from the use of a large policy. The basic configuration
mimics how third-party apps are currently handled, but with
some key improvements, as it permits to define the subset of
services the domain can use, and it permits to enforce app iso-
lation, not only based on MAC category, but also through the
specification of its own type. The ordinary and huge policy
configurations are meant to take full advantage of intra-app
isolation and flexibility via the definition of multiple domains.
Each test was repeated five times, measuring the time each
package took to install. The measurements were done with
the *nix date utility.
Test I. To measure the overhead caused by the presence of the
policy module, we performed on device installation of each
of the previously described app buckets (basic, ordinary and
huge) via Android Debug Bridge (adb) [13].

The results of Test I are illustrated in Figure 7. In detail, it
shows in blue (i.e., the lower part of the bar) the time required
by the system to install the current package without the dedi-
cated policy module, while in orange (i.e., the top of the bar)
the overhead caused by the presence of the policy module.
The data report that a limited overhead is associated with apps
with huge policies, at most 3.59±0.04s, while basic and or-
dinary policy configurations exhibit a negligible slowdown,
never exceeding 1.22±0.02s.
Test II. To evaluate the overall impact of SEApp in a typical
consumer scenario, we performed a test evaluating cumulative
installations. At first, we repeated the installation of the top
100 apps on Google Play Store with the same policy configu-
ration as in Test I (see Figure 8). In this case, we measured
an overhead of 20.98±1,31% on total installation time.

As explained in Section 6, each time a new application is
installed, all policy fragments stored in the device have to be
recompiled to produce the new binary policy. The installation
time overhead then grows with the increase in the number
of installed policy modules. To further analyze this aspect,
we repeated the installation of the top 100 free apps adding
to all the packages in three separate experiments the same
basic, ordinary, and huge policy configurations. The experi-
mental results illustrated in Figure 9, show that only the use

1 20 40 60 80 100

installed apps

0%

20%

40%

60%

80%

100%

ov
er

he
ad

huge policy

ordinary policy

basic policy

Figure 9: Install time overhead for the three policy sizes

of huge policy modules introduces a non-negligible overhead
(45.35±2.44% on total installation time). However, this pol-
icy configuration simulates an edge case, as we do not expect
to find 100 of them in a real scenario. To give a comparison,
the huge policy declares 100 types; public/file.te, i.e.,
the file used to define all the file types of the system, declares
314 types in Android 10.

In Table 3 we report the sizes of the overall policies for the
three scenarios considered in this experiment. We report the
number of MAC types, the number of produced AV rules, and
the overall size in KBytes of the binary policy.

Table 3: Policy size

policy #types #avrules KB
system 1536 29228 596
system + 100 basic 1836 47028 867
system + 100 ordinary 6036 213228 3512
system + 100 huge 15536 417228 7064

7.2 Runtime performance

We now evaluate the runtime overhead for an app taking
full advantage of SEApp. We focus on the creation of pro-
cesses and files, as they are the entities directly affected by the
changes made in the implementation. The data shown refer to
the creation time of each resource. The measurements have
been acquired via System.nanoTime and have been repeated
100 times for each test. Also, all outliers diverging more than
3 standard deviations from the mean have been suppressed.

7.2.1 Processes

As discussed in Section 6, in SEApp the creation of a process
is originated from the request of execution of an Android
component. Thus, the slowdown occurs between the request
for the component and the execution of the method onCreate,
which is the time interval subject to measurement. Our evalu-
ation is limited to activities and services, as these are the com-

3624 30th USENIX Security Symposium USENIX Association

Table 4: Cold and warm start performance for activities and services

Cold start (ms) Warm start (ms)

Component Stock OS SEApp Stock OS SEApp
µ σ µ σ µ σ µ σ

LocalActivity 39.102 1.094 38.689 0.980 21.052 6.046 18.685 5.001
RemoteActivity 123.468 3.176 124.649 3.526 15.722 2.682 15.933 3.256
SEApp Activity - - 127.356 3.542 - - 15.188 2.394

LocalService 19.164 1.444 18.835 1.392 1.399 0.208 1.328 0.208
RemoteService 105.467 2.800 106.935 2.565 2.617 0.879 2.676 0.593
IsolatedService 103.923 2.425 104.260 3.727 - - - -
SEApp Service - - 106.925 3.774 - - 2.528 0.675

Table 5: File creation
performance

File creation
Test µ (µs) σ (µs)
Stock OS 57.077 5.174
SEApp 60.696 6.782
SEApp +

431.472 109.494
restorecon

ponents most used by developers. Our analysis showed iden-
tical behavior for broadcast receivers and content providers,
the other two components supporting the android:process
attribute in the manifest.

Separate test cases have been identified based on the type
of process that supports the component. We refer to Local,
Remote, Isolated or SEApp components when we run compo-
nents respectively in the current process, in another process,
in another process with the isolated_app domain (using
the isolatedprocess we described in Section 3.1.3), or in a
package specific domain (declared in the app policy module).
Furthermore, we cover cold and warm start scenarios. The
cold start corresponds to the first time the application brings
up the component, and the warm start to the subsequent times
the app reuses a previously instantiated one.

The results shown in Table 4 demonstrate that the perfor-
mance of a stock version of the OS and SEApp are equiv-
alent. Also, we observe that apps willing to benefit of the
intra-app isolation feature get from the use of SEApp the
same performance they would get from the use of remote
components. Our approach also proves to outperform the Iso-
latedService, as the isolatedprocess option forces the creation
of a new process every time an IsolatedService that was previ-
ously unBind-ed is activated. This introduces a slowdown of
102±1ms compared to the SEAppService warm start, which
instead benefits from the system caching mechanism.

7.2.2 Files

Alongside the usual creation method, SEApp introduces in
Android the possibility of creating files with a security do-
main defined by the app dedicated file_contexts. Table 5
shows the time required to create a file, for each of the meth-
ods discussed. We observe no overhead on direct file creation,
but the overall execution time becomes larger due to the invo-
cation, as described in Section 6.2, of the restorecon service,
which requires approximately 374±30µs. This overhead only
occurs at file creation and every subsequent operation on the
file does not exhibit any performance degradation.

8 Related work

In traditional desktop operating systems significant effort has
been spent in retrofitting legacy code for authorization pol-
icy enforcement leveraging MAC. An approach is to place
reference monitor calls to mediate sensitive access locations
through the use of static and dynamic analysis [49, 59]. An
evolution of this solution is the multi-layer reference mon-
itor [54], in which the MAC policy is enforced at different
levels (e.g., application, OS, Virtual Machine Manager). An-
other approach is to identify integrity-violating permissions
through the use of information-flow analysis [64].

Android’s open source nature and popularity made it the
target of careful security investigations (e.g., [1, 42, 43, 47])
and several proposals aiming at strengthen its security proper-
ties. In the following we discuss the ones that try to address
app isolation and modularity, underlining the key differences
with our methodology.

Our approach presents similarities with Secure Application
INTeraction (Saint) proposed by Ongtang et al. in [60], in
which the authors also try to address the issue of allowing
developers to define policies that can be verified at both in-
stallation time and runtime, to better specify the permissions
for each component of their app. However, since the paper
has been published in 2010, Saint could not leverage SEAn-
droid [65], which was introduced later, thus the authors had to
define their own Android security middleware, which would
not fit into the current Android architecture [58].

FlaskDroid [37] defines a versatile middleware and kernel
layer policy language. It is based on Userspace Object Man-
agers (USOMs), which control access to services, intents and
data stored in Content Providers. However, FlaskDroid does
not focus on intra-app compartmentalization, a central aspect
in our proposal.

ASM [53] and ASF [34] promote the need for a pro-
grammable interface that could serve as a flexible ecosystem
for different security solutions. The generality of these solu-
tions, however, requires to introduce several changes to the
current Android security model.

AppPolicyModules [31] is another proposal that allows app
developers to create dedicated policy modules. The authors

USENIX Association 30th USENIX Security Symposium 3625

focus more on how apps could use SEAndroid to better protect
their resources from the system and from other apps, paying
limited attention to internal compartmentalization.

DroidCap [39] is a recent contribution proposed by Da-
woud and Bugiel, in which the authors propose to replace An-
droid’s UID-based ambient authority (DAC) with per-process
Binder object capabilities. The proposal is interesting as it
permits to achieve security compartmentalization between
different app components. To introduce capability-based ac-
cess control on files, DroidCap had to integrate Capsicum
for Linux [50] in Android. Overall, DroidCap is a nicely en-
gineered solution, which shares similar objectives with ours,
and the two could work in parallel as they do not interfere
with each other. However, as our proposal relies on SELinux
and SEAndroid, which are already part of the Android secu-
rity framework, our architecture appears to be more aligned
with the natural evolution of the Android ecosystem.

Boxify [35] is a virtualization environment for Android
apps, which could be used to achieve a higher level of privacy
and better control over app permissions. The authors also
describe how their solution could be used to compartmental-
ize Ads libraries to reduce the risk of sensible information
leakage. Yet, since the virtualization environment acts as a
mediator between the applications and the system, it extends
the set of trusted components the app has to rely on.

AFrame [71] and CompARTist [55] propose to compart-
mentalize third-party libs from their host app using a separate
process with a dedicated UID. In AFrame the Android Man-
ifest is modified with the introduction of library ad-hoc per-
missions, while CompARTist uses compile time app rewriting.
Both proposals do not extend the protection at the MAC level.

To summarize, the main differences that characterize our
proposal are: (i) we propose a natural extension of the role of
SELinux to apps leveraging what is already used to protect
the system itself, thus minimizing the impact on it, and (ii) we
empower the developers while limiting the amount of changes
an application must undergo in order to take advantage of our
solution.

9 Conclusions

In this paper we proposed an extension to the current MAC
solution (SELinux) already available in Android. Developers
can use SELinux to define domains that are internal to their
apps, in such a way that it is possible to leverage the mod-
ules that are already providing protection to the system. By
mapping SELinux domains to activities and services, devel-
opers can limit the impact that a vulnerability has on the app
processes and files. We described in the paper the changes
that we introduced into Android, and our experimental evalu-
ation shows that the overhead introduced by our proposal is
compatible with the additional security guarantees.

Acknowledgments

We thank our shepherd Sven Bugiel and the anonymous re-
viewers for their valuable comments and feedback. This work
was supported in part by the European Commission under
grant agreement No 825333 (MOSAICrOWN), and by the
2015 Google Faculty Research Award Program.

Availability

The implementation source and artifacts produced for the
evaluation of our proposals are freely available at this URL:
https://github.com/matthewrossi/seapp

References

[1] Y. Acar, M. Backes, S. Bugiel, S. Fahl, P. McDaniel, and
M. Smith. SoK: Lessons learned from Android security re-
search for appified software platforms. In IEEE S&P, 2016.

[2] Android. Google Play Protect. https://www.android.com/
play-protect/, 2021.

[3] Android Developers. adb install. https:
//developer.android.com/studio/command-line/
adb#move, 2021.

[4] Android Developers. Android App Bundles. https:
//developer.android.com/platform/technology/app-
bundle, 2021.

[5] Android Developers. Android Interface Definition Language.
https://developer.android.com/guide/components/
aidl, 2021.

[6] Android Developers. android:isolatedProcess.
https://developer.android.com/guide/topics/
manifest/service-element#isolated, 2021.

[7] Android Developers. Bound services overview.
https://developer.android.com/guide/components/
bound-services#Creating, 2021.

[8] Android Developers. isolated_app.te. https:
//android.googlesource.com/platform/system/
sepolicy/+/refs/heads/master/private/
isolated_app.te, 2021.

[9] Android Open Source Project. Enable per-user isolation for
normal apps. https://android.googlesource.com/
platform/external/sepolicy/+/
a833763ba04147e840fd054b613f759395bada35, 2014.

[10] Android Open Source Project. SELinux for Android
8.0. https://source.android.com/security/selinux/
images/SELinux_Treble.pdf, 2017.

[11] Android Open Source Project. Android 9 release
notes. https://source.android.com/setup/start/p-
release-notes#per-app_selinux_sandbox, 2018.

3626 30th USENIX Security Symposium USENIX Association

https://github.com/matthewrossi/seapp
https://www.android.com/play-protect/
https://www.android.com/play-protect/
https://developer.android.com/studio/command-line/adb#move
https://developer.android.com/studio/command-line/adb#move
https://developer.android.com/studio/command-line/adb#move
https://developer.android.com/platform/technology/app-bundle
https://developer.android.com/platform/technology/app-bundle
https://developer.android.com/platform/technology/app-bundle
https://developer.android.com/guide/components/aidl
https://developer.android.com/guide/components/aidl
https://developer.android.com/guide/topics/manifest/service-element#isolated
https://developer.android.com/guide/topics/manifest/service-element#isolated
https://developer.android.com/guide/components/bound-services#Creating
https://developer.android.com/guide/components/bound-services#Creating
https://android.googlesource.com/platform/system/sepolicy/+/refs/heads/master/private/isolated_app.te
https://android.googlesource.com/platform/system/sepolicy/+/refs/heads/master/private/isolated_app.te
https://android.googlesource.com/platform/system/sepolicy/+/refs/heads/master/private/isolated_app.te
https://android.googlesource.com/platform/system/sepolicy/+/refs/heads/master/private/isolated_app.te
https://android.googlesource.com/platform/external/sepolicy/+/a833763ba04147e840fd054b613f759395bada35
https://android.googlesource.com/platform/external/sepolicy/+/a833763ba04147e840fd054b613f759395bada35
https://android.googlesource.com/platform/external/sepolicy/+/a833763ba04147e840fd054b613f759395bada35
https://source.android.com/security/selinux/images/SELinux_Treble.pdf
https://source.android.com/security/selinux/images/SELinux_Treble.pdf
https://source.android.com/setup/start/p-release-notes#per-app_selinux_sandbox
https://source.android.com/setup/start/p-release-notes#per-app_selinux_sandbox

[12] Android Open Source Project. ActivityManager-
Service. https://android.googlesource.com/
platform/frameworks/base/+/refs/heads/master/
services/core/java/com/android/server/am/
ActivityManagerService.java, 2021.

[13] Android Open Source Project. Android Debug Bridge (adb).
https://developer.android.com/studio/command-
line/adb, 2021.

[14] Android Open Source Project. Android Permissions.
https://developer.android.com/guide/topics/
permissions/overview, 2021.

[15] Android Open Source Project. Android Runtime. https:
//developer.android.com/guide/platform#art, 2021.

[16] Android Open Source Project. App manifest overview.
https://developer.android.com/guide/topics/
manifest/manifest-intro, 2021.

[17] Android Open Source Project. Binder. https:
//developer.android.com/reference/android/os/
Binder, 2021.

[18] Android Open Source Project. Implementing SELinux. https:
//source.android.com/security/selinux/implement,
2021.

[19] Android Open Source Project. init. https:
//android.googlesource.com/platform/system/core/
+/refs/heads/master/init/main.cpp, 2021.

[20] Android Open Source Project. installd. https:
//android.googlesource.com/platform/frameworks/
native/+/refs/heads/master/cmds/installd/, 2021.

[21] Android Open Source Project. Intent and intent filters.
https://developer.android.com/guide/components/
intents-filters, 2021.

[22] Android Open Source Project. Mounting partitions early.
https://source.android.com/devices/architecture/
kernel/mounting-partitions-early, 2021.

[23] Android Open Source Project. PackageManager-
Service. https://android.googlesource.com/
platform/frameworks/base/+/refs/heads/master/
services/core/java/com/android/server/pm/
PackageManagerService.java, 2021.

[24] Android Open Source Project. Policy compatibil-
ity. https://source.android.com/security/selinux/
compatibility, 2021.

[25] Android Open Source Project. restorecond ser-
vice. https://android.googlesource.com/
platform/external/selinux/+/refs/heads/master/
restorecond/restorecond.service, 2021.

[26] Android Open Source Project. secilc. https:
//android.googlesource.com/platform/external/
selinux/+/refs/heads/master/secilc/, 2021.

[27] Android Open Source Project. SELinuxMMAC.
https://android.googlesource.com/platform/
frameworks/base/+/refs/heads/master/services/
core/java/com/android/server/pm/SELinuxMMAC.java,
2021.

[28] Android Open Source Project. untrusted_app_all.te.
https://android.googlesource.com/platform/
system/sepolicy/+/refs/heads/master/private/
untrusted_app_all.te, 2021.

[29] Android Open Source Project. Zygote. https:
//android.googlesource.com/platform/frameworks/
base.git/+/master/core/java/com/android/
internal/os/Zygote.java, 2021.

[30] Ars Technica. The Android 11 interview. https:
//arstechnica.com/gadgets/2020/09/the-android-
11-interview-googlers-answer-our-burning-
questions/, 2020.

[31] E. Bacis, S. Mutti, and S. Paraboschi. AppPolicyModules:
Mandatory access control for third-party apps. In ASIACCS,
2015.

[32] E. Bacis, S. Mutti, and S. Paraboschi. Policy specialization to
support domain isolation. In SafeConfig, 2015.

[33] M. Backes, S. Bugiel, and E. Derr. Reliable third-party library
detection in Android and its security applications. In CCS,
2016.

[34] M. Backes, S. Bugiel, S. Gerling, and P. von Styp-Rekowsky.
Android security framework: Extensible multi-layered access
control on Android. In ACSAC, 2014.

[35] M. Backes, S. Bugiel, C. Hammer, O. Schranz, and P. Von
Styp-Rekowsky. Boxify: Full-fledged app sandboxing for
stock Android. In USENIX Security, 2015.

[36] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.R. Sadeghi,
and B. Shastry. Towards taming privilege-escalation attacks
on Android. In NDSS, 2012.

[37] S. Bugiel, S. Heuser, and A.R. Sadeghi. Flexible and fine-
grained mandatory access control on Android for diverse secu-
rity and privacy policies. In USENIX Security, 2013.

[38] H. Chen, N. Li, W. Enck, Y. Aafer, and X. Zhang. Analysis of
SEAndroid policies: Combining MAC and DAC in Android.
In ACSAC, 2017.

[39] A. Dawoud and S. Bugiel. DroidCap: OS support for capability-
based permissions in Android. In NDSS, 2019.

[40] S. Demetriou, W. Merrill, W. Yang, A. Zhang, and C.A. Gunter.
Free for all! Assessing user data exposure to advertising li-
braries on Android. In NDSS, 2016.

[41] M. Diamantaris, E.P. Papadopoulos, E. Markatos, S. Ioannidis,
and J. Polakis. REAPER: Real-time app analysis for augment-
ing the Android permission system. In CODASPY, 2019.

[42] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A study
of Android application security. In USENIX Security, 2011.

[43] W. Enck, M. Ongtang, and P. McDaniel. Understanding An-
droid security. IEEE S&P Magazine, 2009.

[44] A.P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android
Permissions demystified. In CCS, 2011.

[45] A.P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wag-
ner. Android Permissions: User attention, comprehension, and
behavior. In SOUPS, 2012.

USENIX Association 30th USENIX Security Symposium 3627

https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/am/ActivityManagerService.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/am/ActivityManagerService.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/am/ActivityManagerService.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/am/ActivityManagerService.java
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/platform#art
https://developer.android.com/guide/platform#art
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/reference/android/os/Binder
https://developer.android.com/reference/android/os/Binder
https://developer.android.com/reference/android/os/Binder
https://source.android.com/security/selinux/implement
https://source.android.com/security/selinux/implement
https://android.googlesource.com/platform/system/core/+/refs/heads/master/init/main.cpp
https://android.googlesource.com/platform/system/core/+/refs/heads/master/init/main.cpp
https://android.googlesource.com/platform/system/core/+/refs/heads/master/init/main.cpp
https://android.googlesource.com/platform/frameworks/native/+/refs/heads/master/cmds/installd/
https://android.googlesource.com/platform/frameworks/native/+/refs/heads/master/cmds/installd/
https://android.googlesource.com/platform/frameworks/native/+/refs/heads/master/cmds/installd/
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/guide/components/intents-filters
https://source.android.com/devices/architecture/kernel/mounting-partitions-early
https://source.android.com/devices/architecture/kernel/mounting-partitions-early
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/pm/PackageManagerService.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/pm/PackageManagerService.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/pm/PackageManagerService.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/pm/PackageManagerService.java
https://source.android.com/security/selinux/compatibility
https://source.android.com/security/selinux/compatibility
https://android.googlesource.com/platform/external/selinux/+/refs/heads/master/restorecond/restorecond.service
https://android.googlesource.com/platform/external/selinux/+/refs/heads/master/restorecond/restorecond.service
https://android.googlesource.com/platform/external/selinux/+/refs/heads/master/restorecond/restorecond.service
https://android.googlesource.com/platform/external/selinux/+/refs/heads/master/secilc/
https://android.googlesource.com/platform/external/selinux/+/refs/heads/master/secilc/
https://android.googlesource.com/platform/external/selinux/+/refs/heads/master/secilc/
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/pm/SELinuxMMAC.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/pm/SELinuxMMAC.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/pm/SELinuxMMAC.java
https://android.googlesource.com/platform/system/sepolicy/+/refs/heads/master/private/untrusted_app_all.te
https://android.googlesource.com/platform/system/sepolicy/+/refs/heads/master/private/untrusted_app_all.te
https://android.googlesource.com/platform/system/sepolicy/+/refs/heads/master/private/untrusted_app_all.te
https://android.googlesource.com/platform/frameworks/base.git/+/master/core/java/com/android/internal/os/Zygote.java
https://android.googlesource.com/platform/frameworks/base.git/+/master/core/java/com/android/internal/os/Zygote.java
https://android.googlesource.com/platform/frameworks/base.git/+/master/core/java/com/android/internal/os/Zygote.java
https://android.googlesource.com/platform/frameworks/base.git/+/master/core/java/com/android/internal/os/Zygote.java
https://arstechnica.com/gadgets/2020/09/the-android-11-interview-googlers-answer-our-burning-questions/
https://arstechnica.com/gadgets/2020/09/the-android-11-interview-googlers-answer-our-burning-questions/
https://arstechnica.com/gadgets/2020/09/the-android-11-interview-googlers-answer-our-burning-questions/
https://arstechnica.com/gadgets/2020/09/the-android-11-interview-googlers-answer-our-burning-questions/

[46] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar,
M. Backes, and S. Fahl. Stack overflow considered harm-
ful? The impact of copy paste on Android application security.
In IEEE S&P, 2017.

[47] Y. Fratantonio, A. Bianchi, W. Robertson, M. Egele, C. Kruegel,
E. Kirda, and G. Vigna. On the security and engineering impli-
cations of finer-grained access controls for Android developers
and users. In DIMVA, 2015.

[48] Free Software Foundation. GNU M4. https:
//www.gnu.org/savannah-checkouts/gnu/m4/manual/
m4-1.4.18/index.html, 2016.

[49] V. Ganapathy, T. Jaeger, and S. Jha. Retrofitting legacy code
for authorization policy enforcement. In IEEE S&P, 2006.

[50] Google. Capsicum object-capabilities on Linux. https://
github.com/google/capsicum-linux, 2017.

[51] Google Play Protect. Android app vulnerabil-
ity classes: A whirlwind overview of common
security and privacy problems in Android apps.
https://static.googleusercontent.com/media/
www.google.com/en//about/appsecurity/play-
rewards/Android_app_vulnerability_classes.pdf,
2021.

[52] Google Play Store. Android top apps. https://
play.google.com/store/apps/top, 2021.

[53] S. Heuser, A. Nadkarni, W. Enck, and A.R. Sadeghi. ASM:
A programmable interface for extending Android security. In
USENIX Security, 2014.

[54] R. Hicks, S. Rueda, D. King, T. Moyer, J. Schiffman, Y. Sreeni-
vasan, P. McDaniel, and T. Jaeger. An architecture for enforcing
end-to-end access control over web applications. In SACMAT,
2010.

[55] J. Huang, O. Schranz, S. Bugiel, and M. Backes. The ART of
app compartmentalization: Compiler-based library privilege
separation on stock Android. In CCS, 2017.

[56] J. Vander Stoep. ioctl command whitelisting in SELinux. http:
//kernsec.org/files/lss2015/vanderstoep.pdf, 2015.

[57] K. MacMillan, C. Case, J. Brindle, and C. Sellers. SELinux
Common Intermediate Language motivation and design.
https://github.com/SELinuxProject/cil/wiki, 2020.

[58] R. Mayrhofer, J. Vander Stoep, C. Brubaker, and N. Kralevich.
The Android platform security model. arXiv, 2019.

[59] D. Muthukumaran, T. Jaeger, and V. Ganapathy. Leveraging
“choice” to automate authorization hook placement. In CCS,
2012.

[60] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel. Se-
mantically rich application-centric security in Android. In
ACSAC, 2009.

[61] P. Pearce, A.P. Felt, G. Nunez, and D. Wagner. AdDroid:
Privilege separation for applications and advertisers in Android.
In ASIACCS, 2012.

[62] Android Open Source Project. PackageParser.
https://android.googlesource.com/platform/
frameworks/base/+/master/core/java/android/
content/pm/PackageParser.java, 2021.

[63] R. Sandhu and P. Samarati. Authentication, access control, and
audit. CSUR, 1996.

[64] U. Shankar, T. Jaeger, and R. Sailer. Toward automated
information-flow integrity verification for security-critical ap-
plications. In NDSS, 2006.

[65] S. Smalley and R. Craig. Security Enhanced (SE) Android:
Bringing flexible MAC to Android. In NDSS, 2013.

[66] Statista. Most popular installed ad network soft-
ware development kits (SDKs) across Android
apps worldwide as of September 2020. https:
//www.statista.com/statistics/1035623/leading-
mobile-app-ad-network-sdks-android/, 2020.

[67] The SELinux Project. Type Enforcement. https://
selinuxproject.org/page/NB_TE, 2015.

[68] The SELinux Project. libselinux. https://github.com/
SELinuxProject/selinux/tree/master/libselinux,
2021.

[69] Unity. Unity Ads. https://unity.com/solutions/unity-
ads, 2021.

[70] C. Wright, C. Cowan, J. Morris, James, S. Smalley, and
G. Kroah-Hartman. Linux Security Module framework. In
Ottawa Linux Symposium, 2002.

[71] Z. Xiao, A. Amit, and D. Wenliang. AFrame: Isolating adver-
tisements from mobile applications in Android. In ACSAC,
2013.

[72] Zerodium. Zerodium - The leading exploit acquisition platform.
https://zerodium.com, 2021.

A Application of SEApp
In this Section we give a technical demonstration of the

security measures introduced by SEApp. The description is
based on the showcase app presented in Section 3. We show
that: (1) the showcase app can operate without a policy mod-
ule; in this mode, its vulnerabilities can be exploited; (2) the
showcase app can also operate with the policy module listed in
Appendix A.4 and use the services offered by SEApp; in this
mode, the internal vulnerabilities are no longer exploitable.

The showcase app has a minimal structure. Its entry point is
the MainActivity, which is associated with the core_logic pro-
cess. From the MainActivity it is possible to send a startActiv-
ity intent to one among UseCase1Activity, UseCase2Activity
and UseCase3Activity; the entry points of use cases 1, 2 and 3,
respectively. For each entry point Zygote starts a dedicated
process and, according to the content of the seapp_contexts
(in Listing 4), assigns its specific domain (user_logic_d to
UC#1, ads_d to UC#2, media_d to UC#3). A dedicated de-
scription of each use case follows.

A.1 Use case 1
In this use case we demonstrate how an app could benefit
from the fine-granularity access to files. In particular, we

3628 30th USENIX Security Symposium USENIX Association

https://www.gnu.org/savannah-checkouts/gnu/m4/manual/m4-1.4.18/index.html
https://www.gnu.org/savannah-checkouts/gnu/m4/manual/m4-1.4.18/index.html
https://www.gnu.org/savannah-checkouts/gnu/m4/manual/m4-1.4.18/index.html
https://github.com/google/capsicum-linux
https://github.com/google/capsicum-linux
https://static.googleusercontent.com/media/www.google.com/en//about/appsecurity/play-rewards/Android_app_vulnerability_classes.pdf
https://static.googleusercontent.com/media/www.google.com/en//about/appsecurity/play-rewards/Android_app_vulnerability_classes.pdf
https://static.googleusercontent.com/media/www.google.com/en//about/appsecurity/play-rewards/Android_app_vulnerability_classes.pdf
https://play.google.com/store/apps/top
https://play.google.com/store/apps/top
http://kernsec.org/files/lss2015/vanderstoep.pdf
http://kernsec.org/files/lss2015/vanderstoep.pdf
https://github.com/SELinuxProject/cil/wiki
https://android.googlesource.com/platform/frameworks/base/+/master/core/java/android/content/pm/PackageParser.java
https://android.googlesource.com/platform/frameworks/base/+/master/core/java/android/content/pm/PackageParser.java
https://android.googlesource.com/platform/frameworks/base/+/master/core/java/android/content/pm/PackageParser.java
https://www.statista.com/statistics/1035623/leading-mobile-app-ad-network-sdks-android/
https://www.statista.com/statistics/1035623/leading-mobile-app-ad-network-sdks-android/
https://www.statista.com/statistics/1035623/leading-mobile-app-ad-network-sdks-android/
https://selinuxproject.org/page/NB_TE
https://selinuxproject.org/page/NB_TE
https://github.com/SELinuxProject/selinux/tree/master/libselinux
https://github.com/SELinuxProject/selinux/tree/master/libselinux
https://unity.com/solutions/unity-ads
https://unity.com/solutions/unity-ads
https://zerodium.com

show how the UseCase1Activity, suffering of a path traversal
vulnerability, cannot be exploited when the app is associated
with a properly configured policy module. According to the
Google Play Protect report on common application vulnera-
bilities [51], unsanitized path names that lead to path traversal
are a primary source of problems in applications.

UseCase1Activity is quite simple: it displays the content of
a file given its relative path through an intent. While this
may be fine when the intent comes from trusted compo-
nents, the activity supports also implicit intents coming from
untrusted sources. This makes the vulnerability easily ex-
ploitable by an attacker targeting the confidential files written
by the core_logic components.

In our setup phase, we leverage MainActivity to create an
internal directory structure by using the android.os.File
abstraction, which sets file and directory context upon its cre-
ation (see Section 6.2.2). Two directories are created: user/
and confidential/; inside both folders a file data is saved.

To test this use case, we first start UseCase1Activity, then
we send an intent to “confuse” UseCase1Activity into showing
us the content of confidential/data. This can be done via
ADB with the command:
adb shell am start
-n com.example.showcaseapp/.UseCase1Activity
-a "com.example.showcaseapp.intent.action.SHOW"
--es "com.example.showcaseapp.intent.extra.PATH"
"../ confidential/data"

When the policy module is missing, all internal files are
flagged with app_data_file and every app component exe-
cutes within the untrusted_app domain, which holds read
access to app_data_file. As a consequence the vulnerabil-
ity is successfully exploited and UseCase1Activity shows the
content of the confidential/data file.

Instead, when the policy module is enforced by SEApp, the
file confidential/data is flagged with confidential_t,
as indicated in line 2 in file_contexts (see Listing 5).
Since no permission is granted on confidential_t in the
sepolicy.cil to user_logic_d, any access to the file
confidential/data by UseCase1Activity is blocked by
SELinux. The following denial is written to the system log: de-
nied search to user_logic_d domain on confidential_t
type. The confidential directory cannot then be accessed
despite the exploitation of the path traversal vulnerability.

A.2 Use case 2

In this use case we show how to confine an Ad library into an
ad-hoc process, with guarantees that it cannot abuse the access
privileges granted to the whole application sandbox by the
user. To do that, we deliberately inject, in the same process the
library is executed, a malicious component (which is directly
invoked by the library) that tries to capture the location when
the permission ACCESS_FINE_LOCATION is granted to the
app. The Ad library used is Unity Ads [69], which according
to [66] in 2020 was used by 11% of apps that show ads.

In this case the library is invoked by UseCase2Activity,
and according to line 3 of the seapp_contexts, both the
activity and the components created by the library are ex-
ecuted by Zygote in a process labeled with ads_d. To in-
teract with the Ad library, UseCase2Activity instances a
UnityAdsListener. After the Ad initialization (including
the registration of the listener) and displaying the Ad to the
user, the Ad framework invokes the listener callback method
onUnityAdsFinish, which executes the malicious routine
captureLocation. The routine probes the app permissions;
if ACCESS_FINE_LOCATION was granted to the app, the
malicious component retrieves through the servicemanager a
handle to the LocationManager, and registers to it an asyn-
chronous listener that captures GPS location.

We show that when the policy module is enforced by
SEApp, the malicious component cannot access the GPS co-
ordinates. This is because the component is executed in the
same process of the library, which is labeled with ads_d. If we
look at the sepolicy.cil (lines 43-50), ads_d is not granted
access to the SELinux type location_service, so the ma-
licious routine cannot retrieve and therefore connect to the
location_service. The following denial is written to the sys-
tem log: denied find on location_service to the ads_d
domain. As a result, the malicious component is terminated
by the ActivityTaskManager.

The Ad library was included in the app as an .aar archive.
To confine it, no modification was necessary, only the use of
AndroidManifest.xml and sepolicy.cil was required.

A.3 Use case 3

In this use case we show how to confine a set of components,
which rely on a high performance native library written in
C to perform some task. Our goal is to demonstrate that the
context running the native library code is prevented to ac-
cess the network, even when the permissions INTERNET and
ACCESS_NETWORK_STATE are granted to the app sandbox.

The native library is invoked by UseCase3Activity, which,
according to line 4 in the seapp_contexts, is executed
in a process labeled with media_d by Zygote. The call to
the library is performed via JNI. Its job is to connect to
the camera_service and take a picture. Since the app is
granted the CAMERA permission, the native library code
(legitimately, line 53 in the sepolicy.cil) connects to the
CameraManager.

Since the native library performs image processing, we do
not want it to access the network. However, the permissions
INTERNET and ACCESS_NETWORK_STATE are granted to
the app, as they are required by the Ads framework. Thus,
when the policy module is missing, the native library can con-
nect to the ConnectivityManager and successfully bind the
current process to the network. Instead, when the policy mod-
ule is enforced by SEApp, since media_d was granted only
the basic app permissions (line 11 in sepolicy.cil), the

USENIX Association 30th USENIX Security Symposium 3629

connection to the network is forbidden. This happens because
binding a process to the network is associated with opening a
network socket, an operation not permitted by SELinux with-
out the required permissions. The following denial is written
to the system log: denied create on udp_socket to media_d
domain.

This use case, besides showing how SEApp confines a
native library, also demonstrates the power and simplic-
ity of the macro, as adding the line (call md_netdomain
(media_d)) to the policy module grants to media_d the
needed permissions to access the network. The application de-
veloper is thus not required to know or understand the internal
SELinux policy in order to leverage this functionality.

The isolation properties introduced by SEApp applies also
to other common security problems presented in [51]. Just
to mention one, SEApp can mitigate the impact of incorrect
sandboxing of a scripting language.

A.4 Showcase app policy module
Here we report the showcase app policy module files.

1 user=_app seinfo=showcase_app domain=
com_example_showcaseapp.core_logic_d name=com.
example.showcaseapp:core_logic levelFrom=all

2 user=_app seinfo=showcase_app domain=
com_example_showcaseapp.user_logic_d name=com.
example.showcaseapp:user_logic levelFrom=all

3 user=_app seinfo=showcase_app domain=
com_example_showcaseapp.ads_d name=com.example.
showcaseapp levelFrom=all

4 user=_app seinfo=showcase_app domain=
com_example_showcaseapp.media_d name=com.
example.showcaseapp:media levelFrom=all

Listing 4: showcase app seapp_contexts

1 .* u:object_r:app_data_file:s0
2 files/confidential u:object_r:

com_example_showcaseapp.confidential_t:s0
3 files/ads_cache u:object_r:

com_example_showcaseapp.ads_t:s0

Listing 5: showcase app file_contexts

1 <?xml version ="1.0" encoding="iso -8859-1"?>
2 <policy ><signer signature="SIGNATURE">
3 <package name="com.example.showcaseapp">
4 <seinfo value="showcase_app"/></package >
5 </signer ></policy >

Listing 6: showcase app mac_permissions.xml

1 (block com_example_showcaseapp
2 ; creation of domain types
3 (type core_logic_d)
4 (call md_untrusteddomain (core_logic_d))
5 (type user_logic_d)
6 (call md_appdomain (user_logic_d))
7 (type ads_d)
8 (call md_appdomain (ads_d))
9 (call md_netdomain (ads_d))

10 (type media_d)
11 (call md_appdomain (media_d))

12 (typeattribute domains)
13 (typeattributeset domains (core_logic_d

user_logic_d ads_d media_d))
14 ; creation of file types
15 (type confidential_t)
16 (call mt_appdatafile (confidential_t))
17 (type ads_t)
18 (call mt_appdatafile (ads_t))
19 ; bounding the domains and types
20 (typebounds untrusted_app core_logic_d)
21 (typebounds untrusted_app user_logic_d)
22 (typebounds untrusted_app ads_d)
23 (typebounds untrusted_app media_d)
24 (typebounds app_data_file confidential_t)
25 (typebounds app_data_file ads_t)
26 ; grant core_logic_d access to confidential files
27 (allow core_logic_d confidential_t (dir (search

write add_name)))
28 (allow core_logic_d confidential_t (file (create

getattr open read write)))
29 ; grant ads_d access to ads_cache files
30 (allow ads_d ads_t(dir(search write add_name)))
31 (allow ads_d ads_t(file(create getattr open read

write)))
32 ; minimum app_api_service subset
33 (allow domains activity_service (service_manager

(find)))
34 (allow domains activity_task_service (

service_manager (find)))
35 (allow domains ashmem_device_service (

service_manager (find)))
36 (allow domains audio_service (service_manager (

find)))
37 (allow domains surfaceflinger_service (

service_manager (find)))
38 (allow domains gpu_service (service_manager (find

)))
39 ; grant core_logic_d the needed permissions
40 (allow core_logic_d restorecon_service (

service_manager (find)))
41 (allow core_logic_d location_service (

service_manage r(find)))
42 ; grant ads_d access to unity3ads needed services
43 (allow ads_d radio_service (service_manager (find

)))
44 (allow ads_d webviewupdate_service (

service_manager (find)))
45 (allow ads_d autofill_service (service_manager (

find)))
46 (allow ads_d clipboard_service (service_manager (

find)))
47 (allow ads_d batterystats_service(service_manager

(find)))
48 (allow ads_d batteryproperties_service (

service_manager (find)))
49 (allow ads_d audioserver_service (service_manager

(find)))
50 (allow ads_d mediaserver_service (service_manager

(find)))
51 ; grant media_d the needed permissions
52 (allow media_d autofill_service (service_manager

(find)))
53 (allow media_d cameraserver_service (

service_manager (find))))

Listing 7: showcase app sepolicy.cil

3630 30th USENIX Security Symposium USENIX Association

	Introduction
	Android security for apps
	Motivation
	Use cases
	Fine-granularity in access to files
	Fine-granularity in access to services
	Isolation of vulnerability prone components

	Modular app compartmentalization
	Compatibility with Android design
	Compatibility with other proposals

	SEApp policy language
	Choice of policy language
	Definition of types and type-attributes
	Policy constraints

	Policy configuration
	SEAndroid policy structure
	Processes
	Files
	Services

	SEApp policy structure
	Processes
	Files
	System services

	Implementation
	Policy compilation
	Boot procedure
	App installation

	Runtime support
	Processes
	Files

	Performance
	App installation
	Runtime performance
	Processes
	Files

	Related work
	Conclusions
	Application of SEApp
	Use case 1
	Use case 2
	Use case 3
	Showcase app policy module

