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Abstract
The evaluation of Casimir energies in curved background spacetimes is an essential ingredient to study
the stability of traversable wormholes. In practice one has to calculate the contribution of the
transverse-traceless component of themetric perturbation on a curved spacetime background. This
implies the study of an eigenvalue equation involving amodified formof the Lichnerowicz operator.
For arbitrary background spacetimes, however, such an operator does not display transverse-traceless
properties, a fact that impedes the determination of the eigenvalues. Against this background, we show
that the problem can be circumvented. Casimir energies can be calculated by gauging the original
formof themodified Lichnerowicz operator into a transverse-traceless one.

1. Introduction

Traversable wormholes are spacetime geometries emerging as solutions of Einstein equations. Conventionally
they are thought as fascinating configurations thatmight have formed in remote regions of theUniverse.
Nowadays such a perspective has changed: The understanding of the physics governingwormholes is
instrumental for the concrete realization of laboratory devices for interstellar travels [1].

The current efforts in such a research field are focused on the conditions of traversability of wormholes. In
practice, thewormhole throat can be stable only if there is a source of energy able to balance the gravitational
pull. Contrary to the case of ordinary stars, such a balance implies the source to be of exotic type. The latter is a
termused to indicate a non standardmatter that violates the null energy conditions (NEC), namely the
positiveness of the energymomentum tensor, mn

m n T k k 0 for any null vector mk .Wormholes necessitate such a
violation ofNEC since, according to theRaychaudhuri equation [2], the expansion of timelike congruence
becomes negative at the throat while remains positive elsewhere. In otherwords, a set of world lines undergoes a
contraction at the throat, indicating an inevitable collapse into a singularity unless exoticmatter locally
counteracts it. Although the pressure of ordinarymatter can, in general, counteract a collapse, it would not be
enough high to reestablish the positiveness of the congruence expansion on the other side of the throat [3]. As far
aswe know, theCasimir energy represents the only artificial source of exoticmatter realizable in a laboratory [1,
4–7]. Alternatively, a local violation of energy conditions can occur due to the quantum fluctuation of the
graviton. This fact propelled the idea of self-sustained traversable wormholes, that have been introduced in [8–10].
To study suchwormholes one considers the semiclassical Einstein equations,

( ¯ ) ( )k
k

= á ñ á ñ = - áD ñmn mn mn mn mn mnG T T G g h,
1

, 1ren ren ren

where the source term is the expectation value of the renormalized quantum stress tensor of themetric
perturbation mnh , with ¯= +mn mn mng g h . Equation (1) simplifies by focusing on the energy components, namely
by a projection on a constant time spacelike hypersurfaceΣ. In such away, one obtainsHamiltonian and energy
densities, that, after integration, give the equation for the stability of thewormhole:

OPEN ACCESS

RECEIVED

11May 2021

REVISED

20 July 2021

ACCEPTED FOR PUBLICATION

22 July 2021

PUBLISHED

23August 2021

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 4.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2021TheAuthor(s). Published by IOPPublishing Ltd

https://doi.org/10.1088/2633-1357/ac1725
https://orcid.org/0000-0002-0747-401X
https://orcid.org/0000-0002-0747-401X
https://orcid.org/0000-0001-7286-9774
https://orcid.org/0000-0001-7286-9774
mailto:remo.garattini@unibg.it
mailto:nicolini@fias.uni-frankfurt.de
https://crossmark.crossref.org/dialog/?doi=10.1088/2633-1357/ac1725&domain=pdf&date_stamp=2021-08-23
https://crossmark.crossref.org/dialog/?doi=10.1088/2633-1357/ac1725&domain=pdf&date_stamp=2021-08-23
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0


( )( ) = -S
^H E . 20

Here ^E is the total regularized graviton one loop energy coming from the quantized stress tensor and ( )
SH 0 is the

classical term, coming from the Einstein tensor. Only the transverse traceless (TT) component of the graviton
contribute to the energy ^E and for this reasonwe introduced the superscript ^. For a spherically symmetric line
element of the form

( ( )) ( )( )= - - F +
-

+ Wds r dt
dr

r dexp 2
1

, 3
b r

r

2 2
2

2 2

where ( )F r is the redshift function, ( )b r is the shape function and q q fW = +d d dsin2 2 2 2 is the line element of
the unit sphere, the classical term reduces to
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Herewe have expressed the three dimensional scalar curvature 3R in terms of b(r). The symbolGijkm denotes the
super-metric and pij the super-momentum.Due to static conditions the kinetic term p pGijkm

ij km disappears.
For a full derivation see [11]. At the one-loop approximation level, the energy ^E is identified as a Casimir like
energy against the fixed background. Its evaluation requires functional integrationmethods including the
solution of an appropriate eigenvalue equation in terms of amodified Lichnerowicz operator (see [11] for the full
derivation).

The conventional Lichnerowicz operator can be defined through its action on a tensor hij as

( )
( )

= - + +

=- 

 


h h R h R h R h2

, 5

L ij ij ikjm
km

ik j
k

jk i
k

a
a

where Latin indexes run from1 to 3 and∇a is the covariant derivative with respect to the 3-metric, ḡij. For ease of
notationwe employ, in the following equations, the symbol gij for the backgroundwithout superscript ¯. As said
above, we have to consider the TT component of the field hij describing a spin 2 particle, namely

( )=  =^ ^g h h0, 0. 6ij
ij

i
ij

Thus, the problem turns into the determination of the eigenvalues of the followingmodified Lichnerowicz
operator,

( ˜ ) ( ) ( )= - +^ ^ ^ ^ h h R h R h4 . 7L ij L ij i
k

kj ij
3

namely

( ˜ ) ( )l=^ ^ h h , 8L ij ij

describing the energy spectrumof ^hij resulting from (1). To have awell-posed equation in (8), one has, however,
tomake sure that the above operator does not change the TTproperties of ^hij . This is, in general, amajor issue
because the l.h.s. is not a TT tensor for some kind of backgrounds [12].

The present paper aims to circumvent such difficulties and pave theway of a consistent study of wormhole
stability within this formalism.

2. The Lichnerowicz operator for TT tensors

It is straightforward to see that the standard Lichnerowicz operator, ( )^ hL ij, is traceless. This is, however, not
enough to conclude that ( ˜ )^ hL ij is traceless too. Indeed, one has

[( ) ] ( )- + = -^ ^ ^ ^ h R h Rh R hTr 4 4 . 9L ij ik j
k

ij k
m

m
k3

As afirst step, we aim towrite such an operator in terms of a trace free part and a termdetermining the trace. For
the line element (3), themixed Ricci tensorRj

i is:
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Therefore, we canwrite

( ) ( ( ))   d d= + -^ ^ ^R h f r h R f r hk
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with the trace free part defined as
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Nowwe compute the divergence of the above trace free part, namely [12]
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wherewe have used the transverse property  =^h 0m
m
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In summary onefinds:
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The r.h.s. of the above equation vanishes provided
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r
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constant.
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Thus, one obtains

( ) ( )=b r Ar 153

whereA is a constant coefficient. Accordingly, one has >A 0 for de Sitter space, <A 0 for Anti-de Sitter space
andA=0 forMinkowski space. In such cases, onefinds that the trace in (11) vanishes. As a result, one can
conclude, from the condition (15), that the operator, ( ˜ )^ hL ij, is a TT tensor in case of constant or vanishing
curvature.

In the presence of a gravitational source, the curvature is, in general, not constant. The operator ( ˜ )^ hL ij can,
however, satisfy the transverse condition up to negligible terms if the curvature variation is small. The reference
scale in such a case is the Planckmass cubed, MP

3. The vanishing of the trace in (11) requires the curvature itself
to be small with respect to MP

2, namely

( ) ¢b

r

r

L
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L
, , 16

2

P
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2

where =L M1P P. As a result, the trace freedom is a stronger conditionwith respect to the small variation of the
curvature. Both conditions are easilymet in the large distance limit. It is sufficient to assume r LP for having
the TT condition fulfilled, provided ¢b is bounded.

At short distance, namely at thewormhole throat, the r.h.s. of (14) vanishes because of the presence of the
metric coefficient g11. The conditions (16) are fulfilled for awormhole throat rt such that r Lt P, being

( )¢ <b r 1t according to theflaring out condition. Up to now, the presented analysis has been focused on
differential conditions. To calculate the sought eigenvalues, one has, however, to considermatrix elements,
expressed in terms of the following integral

( ˜ ) ( )òS
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resulting from the one loopHamiltonian at the r.h.s of (1),

⎡
⎣⎢

⎤
⎦⎥

¯ ( ) ( )
( )

( ˜ ) ( ) ( )ò k
k

= +S
^

S

- ^ ^H
V

d x g G K x x K x x
1

4
2 ,

1

2
, , 18ijkm

ijkm L j
a

iakm
3 1

3

IOP SciNotes 2 (2021) 035204 RGarattini and PNicolini



where
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is the graviton propagator, ℓ ( )t a set of variational parameters to be determined byminimizing (18) and τ
denotes a complete set of indexes (see [11]).

One can try to circumvent the problemof the TTnature of the operator ( ˜ )^ hL ij, since integral relations
generally demand softer conditions than differential relations. To this purposewe observe that
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The integral of the term ^R hm
k

k
m at the r.h.s. identically vanishes, being = =^ ^h hTr 0k

m
k

k . Due to (9) and the
generic relation

( ) [ ] ( )= -T T g T
1

3
Tr . 21ij ij ij km

T

we obtained the trace free part. The operator ( ˜ )^ hL ij is not traceless, but its integral is equivalent to that of its
trace free part. This property is instrumental to prove that, at level of integral relations, the transverse property is
satisfied too. After gauging the trace away bymeans of (20), the transverse property can be analyzed by
considering just the integral of the trace free part (12). The latter can bewritten as

⎛
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Wecan further gauge the integral of ( ˜ )^ hL i
j T by adding a vanishing contributionwhose integrand is traceless in

order not to alter the trace free property, namely
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k

One can check that the integral of ( )LM ij is vanishing by integrating by parts the first two terms Mi j and using

the transverse condition  =^h 0i j
i . The third term vanishes because ^hj

i is trace free.
At this point, one can suitably select ( )LM ij to get the tranverse condition, namely
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provided (25) has solutions.
Alternatively one can consider, in place of ( )LM ij in (23), an antisymmetric termof the kind

( ) ( )=  - LN N N , 26ij i j j i

that is trace free and has a vanishing integral. Its covariant derivative is formally equivalent to the four current of
the electromagnetic field tensor, namely

( ) ( ) =LN S . 27i
i
j j

In such a case, one can select S j provided the equivalent of (25) for ( )LN ij has solutions.
In conclusion, even if the operator is not a TT tensor for arbitrary backgrounds, its integral (17) is equivalent

to the integral of an operator (23) that display TT properties.

3. Final remarks

In this paper we have presented a solution to an open issue in the literature, namely the calculation of graviton
energies at the one-loop approximation associated to a Lichnerowicz operator. In case of spherically symmetric
spacetimes, such energies come from the TT component of the perturbation, namely

4
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where the eingenvalues correspond to the two graviton polarizations. Unfortunately, the operator ( ˜ )^ hL ij is
not, in general, a TT tensor, a fact that deprives the formalismof its predictive power, apart from the case of
specific spacetimes where the eigenvalue equations can be solved.

Against this background, we have shown that ^E can be calculated in terms of another operator that exhibits
TTproperties. Such an operator is obtained by a suitable ‘gauge’ of the original operator ( ˜ )^ hL ij in the integral
relations (17) and (18).

The proposed results can pave theway to further studies based on the Lichnerowicz operator to scrutinize
the conditions of stability of traversable wormholes spacetimes.
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