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Executive Summary

Financial Modeling for Credit Risk and Portfolio
Optimization

The first research aims to establish a model in which the contribution of systemic
risk can be evaluated using banks’ structure inferred under the European Banking
Authority Stress test exercise. The risk assessment is performed by a dynamic
conditional correlation GARCH (DCC-GARCH) model with a spatial weight matrix
based on the EU-wide stress test. Then, the model results are used to capture the
spillover effect of the credit risk market through CoVaR. We show that the Student-t
spatial DCC GARCH(1,1) model explains the best results on the credit risk market’s
contagion compared to other models.
The main goal of the second research is to investigate the impact of searching query
data and volume on the portfolio optimization models. We consider the different
portfolio strategies applied to the returns conditional on the Google Trends and
volume information. Then, we optimize the corrected returns on the various portfolio
optimization models. The results show that the proposed model can be used as a
profitable strategy.
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1. Introduction

This thesis consists of three research papers. The main focus is on building the
financial models for credit risk on the first paper and portfolio optimization on the
second and third papers. This chapter introduces the idea behind this thesis and
reviews the essential articles that shed some light on the proposed models.

1.1. Credit Risk

In the second Chapter, we examine the banks’ credit risk during the recent global fi-
nancial crisis. The effect generated similar severe economic conditions with spillover
effects of risk across the European countries. This interconnectedness of risk between
the banks has become an increasingly hot topic. According to the linkage among the
banks, the stand-alone measurement of a Value-at-Risk (VaR) of each bank cannot
ensure an accurate risk measurement and cannot capture the risk among the banks.
As a sequence, we focus on the multivariate GARCH model, which has a useful
feature to capture the volatilities’ interactions.
At the starting point, we look for the CCC-GARCH model introduced by Boller-
slev (1990), which is computationally less complex than other multivariate models
(see, among others, Bollerslev et al. (1988); Diebold and Nerlove (1989); Engle et al.
(1990)). However, the CCC-GARCH model cannot allow the interactions between
the volatilities. To overcome this drawback, we come up with the extended (E)CCC-
GARCH model proposed by Jeantheau (1998). Until this stage, we draw a question
of how to improve the estimated results among their interactions. The most in-
teresting model is the spatial model (see, Borovkova and Lopuhaa (2012)), which
can explain the interactions between geographic properties. The authors found that
the spatial GARCH(1,1) can handle the better result of spillover effects than the
GARCH(1,1). Considering the advantage of the multivariate GARCH and the spa-
tial GARCH model, we decide to integrate the spatial weight into the multivariate
model. Thus, we implement the similarity in credit exposure structure as the spatial
components on the multivariate GARCH model.
Next stage, we apply the VaR test (see Zhang et al. (2018); Girardi and Ergün
(2013)) to check whether the model can accurately predict the VaR. To better
capture the contribution of systemic risk, we apply the conditional VaR (CoVaR) to
a stressed situation considering the spillover of risk between a particular institution
and financial system as documented by Adrian and Brunnermeier (2014); Girardi
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Chapter 1 Introduction

and Ergün (2013). Finally, we examine which model is the preferred model using
the backtesting based on loss functions following Cesarone and Colucci (2016).

1.1.1. Credit Risk Model

In second chapter, we propose to consider the cosine similarity of exogenous in-
formation between the different issuers (banks). We collect the credit exposure
information of each bank. Suppose two attribute vectors, Ui,L = (ui,1, ui,2, . . . , ui,L)
and Uj,L = (uj,1, uj,2, . . . , uj,L) describe the credit exposure information of bank i
and j with i, j = 1, . . . , N . We define “the degree of similarity” by the dot product
and the vector length between two different banks:

Cij =

L∑
l=1
ui,l × uj,l√√√√ L∑

l=1
u2
i,l ×

L∑
l=1
u2
j,l

, i, j = 1, . . . , N (1.1)

Then, we normalize the rows of the cosine similarity matrix C = [Cij] by dividing
each row for each sum of the row. Doing so, we obtain the matrix W = [W ij]
that is the spatial weight matrix (N ×N). The most attractive feature of this
spatial weight matrix is that the higher the cosine similarity provides, the stronger
the connectedness. We then plug into the spatial Dynamic Conditional Correlation
(DCC) GARCH model proposed by Borovkova and Lopuhaa (2012). This model
allows systematic dependence between neighbors, and it can be expressed for the
banks i = 1, . . . , N at time t as:

ht = A0 +
q∑

k=1
(A1,k +A2,kW )r2

t−k +
p∑

k=1
(B1,k +B2,kW )ht−k, (1.2)

where:
ht is the vector of the univariate conditional variances, ht = [h1,t, h2,t, . . . , hN,t]>,

r2
t−k is the vector of squared returns, r2

t−k =
[
r2

1,t−k, r
2
2,t−k, . . . , r

2
N,t−k

]>
,

p, q are order of the GARCH model,
A0,A1,k,A2,k,B1,k,B2,k are the parameters of model, which

• A0 is the vector, A0 = [a0,1, a0,2, . . . , a0,N ]>,
• A1,k and B1,k are the (N ×N) diagonal matrix,
• A2,k and B2,k are the (N ×N) matrix.
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1.2 Google Trends

From the idea of the time-varying correlation between the financial system and a par-
ticular institution, Girardi and Ergün (2013) suggested that the conditional CoVaR
is covering more severe distress events than an ordinary CoVaR (see, Adrian and
Brunnermeier (2014)). To measure the contribution of CoVaR to systematic risk,
we first find the estimated parameters of the Spatial DCC-GARCH model. Then,
we calculate the CoVaR from the acquired parameters. The results show that the
Student-t spatial DCC GARCH(1,1) model explains the best results on the credit
risk market’s contagion compared to other models. This study focuses on Chapter
2, namely “The Spatial Multivariate GARCH Model on Credit Risk Application”.

1.2. Google Trends

In the third Chapter, the idea is raising a question about how the information
impacts the financial portfolio as the study of Danah and Kate (2012). The usage of
big data for access the human information has been found in various fields of studies.
The data has also been investigated in the sophisticated human behaviors such as
spatial location, public health, Twitter, internet stock message board, and others
(see, González et al. (2008); Krings et al. (2009); Haklay (2010); Zheng et al. (2013),
Haklay (2010), Bollen et al. (2011), Antweiler and Frank (2004)). Particularly,
Google Trends data used to analyze in the field of economics, medical services,
information systems, and several others, as documented by Jun et al. (2018). As
Google Trends can provide data with respect to human behaviors, we focus on using
it as useful information to implement a portfolio selection model. Further, the use
of Google Trends from the economic point of view found the predictable behavior of
the economic activity, the investment strategy, and the stock market (see, Choi and
Varian (2012); Heiberger (2015); Vlastakis and Markellos (2012); Preis et al. (2013)).
In particular, Rujirarangsan and Ortobelli (2019) suggested that the relationship
between the stock returns and Google Trends seem to have a significant relation.
This result can ascertain the link between financial data and human behavior. We
apply conditional expectation. To evaluate the conditional stock return on Google
Trends information, we apply the conditional expectation using the Gaussian and
Epanechnikov kernel function. The bandwidth is set following the Scott (2015).
For enhancing the portfolio allocation, we apply the second stochastic dominance
rule to penalized the returns. Recall that the stochastic dominance rule provides a
precise decision method to order the return distribution. In recent studies, stochas-
tic dominance has been applied in the portfolio application, for instance, market
portfolio efficiency in Kopa (2010); Kopa and Post (2015), robustness analysis of
optimal portfolios in Dupačová and Kopa (2014), and Portfolio Choice in Post and
Kopa (2017).
Our analysis proposes four optimization models applied to penalized returns: Sharpe
ratio, CVaR, Sortino ratio, and Rachev ratio. The Sharpe ratio calculates the return

9



Chapter 1 Introduction

with risk-free compensates by the risk or the standard deviation, see Sharpe (1966).
In the CVaR optimization, we use the coherent risk measure introduced by Rock-
afellar and Uryasev (2000) to overcome the limits of value at risk. The Sortino ratio
is defined as the ratio between the expected active portfolio return and the semi-
standard target deviation of the underperforming portfolio (see Sortino and Price
(1994)). With this measure of risk, only the downside deviation can be quantified
as risky. We use the quadratic optimization proposed by Stoyanov et al. (2007) in
order to maximize the Sortino ratio. Last, the Rachev ratio introduced by Biglova
et al. (2004) is the performance measure that compared the extreme positive returns
to the extreme negative returns at a certain level of the quantile.

1.2.1. Portfolio Selection that account Google Trends
Information

Chapter 3, entitled “Impact of Google Trends on Portfolio Optimization,” considers
the Google Trends information for enhancing portfolio optimization. In this study,
we use the penalized returns in a portfolio analysis framework to examine portfolio
performance. The penalization method considers two different kinds of penaliza-
tions: the first based on the Google Trends (GT) information and the second based
on momentum strategy. After that, we optimize the Sharpe ratio, CVaR, mean-
variance, mean-CVaR, Sortino ratio, and Rachev ratio models applied to penalized
returns. We found that using approximated in the different portfolio models pro-
vides outstanding results with respect to the classical model.

In this framework, we first compute the GT returns by applying the logarithmic re-
turns on the GT data, GTj = ln

(
gtj
gtj−1

)
, j = 1, . . . , N . In this context, we penalized

the return when it is not coherent with GT interests or the non-isotonic news (we
say that news is isotonic with returns r when r ·GT > 0. In this Chapter, no short
sales are allowed; thus, we apply the first penalization, called one-size penalization,
to consider that we avoid short sales and speculation, (r < 0 &GT > 0) . And the
second subcase, called two-size penalization, penalized the non-isotonic behavior be-
tween return and GT (r > 0 &GT < 0 or r < 0 &GT > 0). On the other case, we
approximate the return conditional GT return for all the other situations. For the
kth asset, we have these approximated returns:

subcase 1 (one-size penalization):

r̃k,(j) =
−1 , for rk,(j) < 0 & GTk,j > 0
E
(
rk,(j)|GTk,j−1

)
otherwise

(1.3)

and,

10



1.3 The Use of Volume in Portfolio Selection Model

subcase 2 (two-size penalization):

r̃k,(j) =
−1 , for rk,(j) > 0 &GTk,j < 0 or rk,(j) < 0 &GTk,j > 0
E
(
rk,(j)|GTk,j−1

)
otherwise

(1.4)

where k is the asset and j is the data series.
Next, in the second type of the penalized model, we evaluate the impact of con-
ditional expectation considering the penalized GT based on momentum strategy.
In particular, we penalized the case that the last two weeks

(
r[(j−10),(j)]

)
of return

distribution are worse in the second stochastic dominance sense (SSD) with respect
to the previous two weeks

(
r[(j−20),(j−11)]

)
.

subcase 1 (historical returns penalization):

r̃k,(j) =
−1 , for rk,[(j−20),(j−11)]

SSD
> rk,[(j−10),(j)]

rk,(j) otherwise
(1.5)

and,
subcase 2 (conditional expectation penalization):

r̃k,(j) =
−1 , for rk,[(j−20),(j−11)]

SSD
> rk,[(j−10),(j)]

E
(
rk,(j)|GTk,j−1

)
otherwise

(1.6)

In this subcase 1, we penalize that the recent returns (last two weeks) are worse than
the previous one (past two weeks), but we do not use the conditional returns on GT
information. On the other hand, in subcase 2, we penalize recent returns, which
are worst than the past (like in some momentum strategies), and we use conditional
returns on GT information. Then, we turn all the cases into portfolio optimization.
We use the Sharpe ratio, global minimum CVaR, Sortino ratio, and Rachev ratio
models for the optimization. To analyze the past performance, we use the different
backtesting of in-sample/out-of-sample periods. The results show that the applied
penalty-based correction gives a profitable strategy.

1.3. The Use of Volume in Portfolio Selection Model

In the last Chapter 4, entitled “Impact of Volume on Portfolio Optimization,” we im-
plement a similar strategy using trading volume as information we get from Google
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Chapter 1 Introduction

Trends. This assumption’s motivation is that the volume explains the rate of in-
formation that flows into the stock market (see, Ying (1966); Westerfield (1977);
Karpoff (1987); Gervais et al. (2001)). Moreover, there is an existing significant
dynamic correlation between the stock return and volume, as documented by Lam-
oureux and Lastrapes (1990); Chen et al. (2001); Lee and Rui (2002).
In this context, we study how the conditional we study stock returns on volumes
information impacts the portfolio performance. We approximate the conditional
expectation using the Gaussian and Epanechnikov kernel density function. Even
in this case, we use penalized stock returns as we have done for GT information.
Then, we optimize the portfolio performance by using Sharpe Ratio, global minimum
CVaR5%, and Rachev Ratio.

1.3.1. Portfolio Selection that account Volume Information

In the last Chapter, we examine how the volume impacts the portfolio selection
scheme. Recall that Ying (1966) and Westerfield (1977) found positive relationships
between the absolute value of price changes and volume. Similarly, Karpoff (1987)
documented that the rate of information flow can explain the evidence of the price-
volume relationship in the stock market. The results also provide the behavior of
relations between the volume to absolute price ratio and the market trend. Moreover,
Gervais et al. (2001) revealed that the large trading volumes tend to induce large
changes in the stock prices in the next future period.
Next, in the dynamic relation scheme, the stock price and volume positively corre-
late to volume. The Granger causality tests also show the persistence of its lagged
relations; see Chen et al. (2001). Considering the volatility, Lee and Rui (2002)
showed that the return volatility reacts to a causal relationship to the trading vol-
ume. Moreover, if we consider the volume as additional information, the forecast
volatility model can be explained appropriately by the behavior of the stock returns
(Lamoureux and Lastrapes (1990); Gallant et al. (2015)).
The change in stock return tends to occur on a high-volume day than a low-volume
day, as suggested by Campbell et al. (1993). The results underlying this work
explained that the buying or selling volume is associated with the stock return
changes. Thus, the basic idea of this work is to implement the effects of volume
returns and stock returns in portfolio strategies based on conditional expectation.
Inspired by taking the volume as information to return, we investigate how the stock
returns conditional volumes information impacts the portfolio performance.
To sum up, Chapter 2 theoretical aspects of the financial modeling on credit risk
will be scrutinized. Chapter 3 will analyze the impact of Google Trends on portfolio
optimization. Chapter 4 is about financial modeling of volume on portfolio opti-
mization. Moreover, the dynamic correlation analyses and results will be defined in
each chapter. Finally, the thesis concludes with Chapter 5.
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2. The Spatial Multivariate GARCH
Model on Credit Risk Application

Kamonchai Rujirarangsan, Rosella Giacometti, Michela Cameletti

2.1. Introduction

Following the recent global financial crisis, several countries have simultaneously
faced similar severe economic conditions with spillover effects of risk across the
EU. The interconnectedness of risk between the banks is an increasingly hot topic.
According to the linkage among the banks, the stand-alone measurement of a Value-
at-Risk (VaR) of each bank can not capture the effect of risk among the banks.

Recently, the multivariate time-varying variance model has been playing a crucial
role in estimating the risk interconnectedness. The constant conditional correla-
tion GARCH (CCC-GARCH) proposed by Bollerslev (1990), is computationally
less complex than other multivariate models (see, among others, Bollerslev et al.
(1988); Diebold and Nerlove (1989); Engle et al. (1990)). However, the CCC-
GARCH model cannot allow the interactions between the volatilities. To overcome
this drawback, Jeantheau (1998) introduced the extended (E)CCC-GARCH. The
possibility to model the volatility interactions motivate the use of spatial compo-
nents to enhance credit risk measures.

Keiler and Eder (2013) introduced the systematic risk that integrates the interac-
tion between the micro and macro stress situations as spatial econometrics parame-
ters. Borovkova and Lopuhaa (2012) introduced the spatial GARCH to handle the
spillover effects. In particular, the spatial weights are obtained from the GDP and
from the market capitalization of the US and European countries’ stock market and
embedded in the extended CCC-GARCH model. As a result, they better capture
the high kurtosis of squared returns. As an alternative of multivariate GARCH
model, a BEKK model proposed by Baba et al. (1991) provide the positive definite
on the conditional covariance matrices. Thus, this model can ensure non-negative
estimated variances. However, it needs a high computations due to the large num-
bers of parameters. Chen (2017) analogously showed that when the spatial weights
are derived from credit rating downgrades, the multivariate spatial BEKK-GARCH
model can capture the spillover effects among the southern European stock index:

13
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Portugal, Italy, Ireland, Greece, and Spain (PIIGS). According to credit risk ap-
plications, the spillover effects have been paid less attention. Zhang et al. (2018)
applied the multivariate GARCH with a dynamic panel of spatial weight matrices
based on the GDP. The method encounters the countries’ interconnectedness of re-
turns and uses the estimated parameter to forecast the portfolio risk of six stock
indices. Then an application for testing on VaR is used.

Our contribution is to extend the work of Borovkova and Lopuhaa (2012) intoduc-
ing a dynamic conditional correlation GARCH (DCC-GARCH) model with spatial
weights based on the structural similarity between banks derived from the EU-
wide stress test. Then, the model results are used to capture the spillover effect of
the credit risk market through CoVaR. We add the spatial components into DCC-
GARCH to improve the accuracy of capturing the spillover effects. We estimate
the spatial DCC-GARCH model and construct a confidence interval using block
bootstrap to assess whether differences between estimation parameters.

We then compute the VaR and pairwise CoVaR, from the given estimated parame-
ters. Lastly, we perform Kupiec (1995); Christoffersen (1998) to evaluate the statis-
tical accuracy of VaR estimates and Abad et al. (2014); Caporin (2008); Cesarone
and Colucci (2016) to compare of VaR estimates by loss functions methods.

The remainder is organized as follows. In Section 2.2, the spatial DCC-GARCH
model is defined with the extension of Student-t distribution on the standardized
residuals. Section 2.3 is devoted to the financial application. The data and prelimi-
nary analysis of spatial weights are studied in Section 2.4, and the empirical results
are described in Section 2.5. Section 2.6 concludes.

2.2. Modelling and Inference

2.2.1. Spatial DCC-GARCH

In a financial context, most of the markets follows the efficient market hypothesis
in which the ex-post returns cannot predict the return of today. Besides, the high
volatility of today may influence the high volatility of tomorrow. This behavior is
defined as volatility clustering or time-varying conditional variance. The GARCH
process is used to capture the volatility clustering. According to the ARCH model
illustrated by Engle (1982), let rt be the return discrete-time process with zero
means. The standardized disturbances εt are independent and identically distributed
(iid) with zero mean, E(εt | εt−1, . . .) = 0, and unit variance, V ar(εt | εt−1, . . .) = 1.
Then, the ARCH(q) process for return rt is defined as

rt =
√
htεt, t = 1, . . . , T (2.1)
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and

ht = ω +
q∑

k=1
αkr

2
t−k, (2.2)

where ht is the conditional variance of return, ω > 0 and αk ≥ 0. In practical cases,
the conditional variance of the ARCH(q) model often needs a high number of lags
(q) to gain more persistence of the process. For solving this issue, the past values of
the conditional variance (ht−k) are added to the ARCH(q) process. This gives rise
to the definition of GARCH(p, q) process introduced by Bollerslev (1986) as follows

ht = ω +
q∑

k=1
αkr

2
t−k +

p∑
k=1

βkht−k, (2.3)

where ω > 0, αk ≥ 0 and βk ≥ 0.
In the portfolio perspective, when the comovement of assets is considered simultane-
ously, the covariance turns out to be a key element to be modeled. Bollerslev et al.
(1988) introduced the multivariate GARCH (MGARCH) to estimate the conditional
covariance of each asset of the portfolio. Consider a portfolio of N assets at time
t = 1, . . . , T . The following are the quantities of interest:

• rt is the vector of returns of the asset i (i = 1, . . . , N)
• H t is the conditional covariance matrix
• ht is the vector of the univariate conditional variances
• Rt is the positive definite conditional correlation matrix
• Qt is the conditional covariance of standardized residuals
• Q̄ is the unconditional covariance matrix of the standardized residuals
• Dt is the conditional standard deviation matrix

Given the N assets Equation (2.3) becomes

rt =
√
htεt, (2.4)

and

ht = ω +
q∑

k=1
αkr

2
t−k +

p∑
k=1
βkht−k, (2.5)
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where ht = [h1,t, h2,t, . . . , hN,t]>, r2
t−k =

[
r2

1,t−k, r
2
2,t−k, . . . , r

2
N,t−k

]>
, ω is the N × 1

dimensional vector of unconditional variances with ω ∈ R+, αk, andβk are the
N dimensional matrices of ARCH and GARCH parameters of order q and p with
αk ∈ R+

0 , βk ∈ R+
0 .

The correlation of errors among assets is a crucial part of the multivariate model.
The constant conditional correlation model (CCC) proposed by Bollerslev (1990)
assumes that the conditional covariance matrix, H t, can be factorized into

H t = DtRDt, (2.6)

where the correlation matrix is assumed to be constant throughout the time (Rt = R ∀t)
and the conditional standard deviation matrix is given by

Dt = diag (ht) .

Hence, the generic element of conditional covariance matrix H t is constructed as

[H t]ij =
√
hitρij

√
hjt, i 6= j; i, j = 1, . . . , N. (2.7)

The multivariate GARCH model with a dynamic conditional correlation structure
(DCC), introduced by Engle (2002), improves the dynamic relationship, assuming
a time-varying correlation matrix as follows

H t = DtRtDt (2.8)

The dynamic correlation model allows Rt to be time-varying, and its dynamics is
modeled assuming a GARCH(1,1) process for the covariance of the standardized
residuals. Hence Rt is decomposed into

Rt = diag(Q−1
t )Qtdiag(Q−1

t ), (2.9)

where

Qt = Q̄(1− γ − δ) + γ(εt−1ε
>
t−1) + δQt−1, (2.10)

where γ and δ are DCC parameters. By following the GARCH model from Equation
(2.3), the generic element of the time-varying conditional covariance matrix of the
standardized residuals [Qt]ij = qij,t can be expressed as

qij,t = q̄ij (1− γ − δ) + γ(εi,t−1εj,t−1) + δqij,t−1, (2.11)

16
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The process will be mean-reverting as long as 0 < δ < 1 and γ + δ < 1. In
the particular case of γ + δ = 1, the process will follow the exponential smoother
matrix of the standard residuals, as described in Engle (2002). Finally, the generic
conditional correlation

ρij,t = qij,t√
qii,tqjj,t

, (2.12)

can be written into matrix form as in Equation (2.9). Substituting the conditional
correlation matrix into Equation (2.8), the DCC is given by

H t = DtRtDt = Dtdiag(Q−1
t )Qtdiag(Q−1

t )Dt. (2.13)

Following Borovkova and Lopuhaa (2012), in order to enrich the model with a spatial
component, we consider the vector of the conditional variances ht and introduce a
spatial matrix W . The conditional variance is

ht = A0 +
q∑

k=1
(A1,k +A2,kW )r2

t−k +
p∑

k=1
(B1,k +B2,kW )ht−k, (2.14)

where A0 = (a0,1, . . . , a0,N)>,A1,k, A2,k, B1,k, and B2,k are diagonal matrices. The
term W = [W ij] is the weight matrix for banks i and j, with generic element wij

(i, j = 1, . . . , N) such that
N∑
j=1
wij = 1 and wii = 0 ∀i:

W =


0 w12 · · · w1N
w21 0 · · · w2N
... ... . . . ...

wN1 wN2 · · · 0



Given this specification ith element of ht becomes

ht,i = a0,i + a1,ir
2
t−1,i + a2,iXt−1,i + b1,iht−1,i + b2,iYt−1,i, (2.15)

where Xt−1,i = ∑N
j=1 wijr

2
t−1,j and Yt−1,i = ∑N

j=1 wijht−1,j are exogenous variables.
The introduction of the spatial component results in two exogenous spatial variables
in the conditional variance equation and two additional parameters a2,i and b2,i,
which measure the influence of the aggregated lagged variances and squared returns
of all the other banks. These two new variables measure the aggregated spillover
effects.
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2.2.2. ML Estimation of the multivariate spatial GARCH(1,1)
model

When the standardized error εt has a multivariate Gaussian distribution, the log-
likelihood function of rt = H

1
2
t εt is defined as

ln (L (θ)) = −1
2

T∑
t=1

(
N log (2π) + log(|H t|) + r>t H−1

t rt

)

= −1
2

T∑
t=1

(
N log (2π) + log(|DtRtDt|) + r>t D−1

t R
−1
t D

−1
t rt

)
,

(2.16)

where θ is the vector of model’s parameters. Let divide it into two sub vector
θ = (ξ,φ) where ξ = (A0,A1,A2,B1,B2) is matrix parameters of the spatial
GARCH(1,1) and φ = (γ, δ) are the parameters of the time-varying conditional
correlation. The estimation of the correctly specified log likelihood is difficult, and
hence the DCC model is designed to allow for two stage estimation.
We follow a two-steps procedure for the DCC-GARCH estimation, as described in
Engle and Sheppard (2001) and Engle (2002). The first step is devoted to the esti-
mation of (2.15) where the exogenous variable is not observable since it is a fuction
of the conditional variance of the other assets. Hence, following Borovkova and Lop-
uhaa (2012) we first estimate the standard univariate GARCH(1,1) model to obtain
the initial parameters

(
a0

0,i, a
0
1,i, b

0
1,i

)
and the estimated variances

(
h0

1,i, . . . , h
0
T,i

)
.

Then, given the weights (wij) and the initially estimated variances
(
h0

2,i, . . . , h
0
T,i

)
we compute a realizations of the exogenous variables (Yt−1,i). Next, we estimate the
complete set of parameters

(
a1

0,i, a
1
1,i, b

1
1,i, a

1
2,i, b

1
2,i

)
and the new estimated variances(

h1
2,i, . . . , h

1
T,i

)
by following Equation (2.15).

We iterate this procedure till the estimated results percentage variation is less than
a fixed value at 10−3. The introduction of two exogenous variables allow to identify
the presence of an aggregated spillover effect in the conditional variance equation. In
the second step, we consider the correlation part by estimating the quasi log-likehood
as follows

ln
(
L2(φ|ξ̂)

)
= −1

2

T∑
t=1

(
N log (2π) + 2log|Dt|+ log(|Rt|) + r>t D−1

t R
−1
t D

−1
t rt

)

= −1
2

T∑
t=1

(
N log (2π) + 2log|Dt|+ log(|Rt|) + ε>t R−1

t εt
)
,

(2.17)
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where φ is the parameters (γ, δ). Since Dt is constant, we can exclude it and
maximize

ln
(
L2(φ|ξ̂)

)
= −1

2

T∑
t=1

(
log(|Rt|) + ε>t R−1

t εt
)
. (2.18)

Moreover, we estimate the quasi log-likelihood function under the Student-t distri-
bution that can be written as

L2(φ′ξ̂) =
T∑
t=1

(
log

(
Γ
(
ν+N

2

))
− log

(
Γ
(
ν
2

))
− N

2 log (π (ν − 2))
)

= −1
2 log (|DtRtDt|)− ν+N

2

(
log1 + rTt D

−1
t R−1

t D−1
t rt

ν−2

)
,

(2.19)

where ν is the degrees of freedom, Γ (.) is the Gamma function, and φ′ is the mul-
tivariate parameter of (γ, δ, ν). In this study, the BFGS1 algorithm is employed to
optimize the log-likelihood function.

2.2.3. Spatial matrix

To estimate the spatial DCC-GARCH describe in Section 2.2.1, we need to specify
the weight matrixW which incorporates the spatial structure defined a priori. The
most intuitive way to compute the weights is to consider the geographical distance
between the issuers’ market cities. However, according to Borovkova and Lopuhaa
(2012), the obtained weight seems to be counter-intuitive after normalization, and so
they consider a different set of information and compute distance in GDP and market
capitalization as a measure of a system component among the individual returns.
We propose to consider the cosine similarity between exogenous information relative
to the issuers that the higher the cosine similarity, the stronger the connectedness.
We collect the credit exposure information of each bank. Suppose two attribute
vectors, Ui,L = (ui,1, ui,2, . . . , ui,L) and Uj,L = (uj,1, uj,2, . . . , uj,L) which describe the
credit exposure information of bank i and j with i, j = 1, . . . , N . We define “the
degree of similarity” as follows:

Cij =

L∑
l=1
ui,l · uj,l√√√√ L∑

l=1
u2
i,l ·

L∑
l=1
u2
j,l

, i, j = 1, . . . , N. (2.20)

1BFGS named after authors Broyden, Fletcher, Goldfarb, and Shanno (Broyden (1970); Fletcher
(1970); Goldfarb (1970); Shanno (1970))
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We set Cii = 0 for ∀i and we normalize the rows of C by dividing each element by
the sum of the row. Doing so, we obtain the matrixWN×N that is the spatial weight
matrix. Then, we normalize the rows of the cosine similarity matrix C = [Cij] by
dividing each element in a row for each sum of the row.

2.3. Financial application: CoVaR

In general, most financial institutions use VaR to measure the standalone risk where
is implicitly defined as the q-quantile, i.e.,

Pr
(
ri,t ≤ V aRi

q,t

)
= q.

However, the measurement of individual risk is not able to explain the linkages
with the financial system. During the financial crisis, the systematic risk spreads
across the system and enlarges the massive spillover. The Conditional Value-at-
Risk (CoVaR) denoted CoV aRSystem|C(ri)

q is implicitly defined by the q-quantile of
the probability distribution of the financial system conditional on some event C(ri)
of the institution i, where ri is the return of institution i and q ∈ (0, 1) (see Adrian
and Brunnermeier (2014))

Pr
(
rSystem|C (ri) ≤ CoV aRs|C(ri)

q

)
= q.

The CoVaR can capture the contribution of systemic risk by conditioning the VaR to
a stressed situation considering the spillover of risk between a particular institution
and the financial system. Inspired by this idea, we concentrate our attention on a
CoVaR pairwise analysis between institutions.
From the time-varying variance models we compute the VaR and pairwise CoVaR.
Girardi and Ergün (2013) argue that in this setting the conditioning on CoVaR
can cover more severe distress events than the CoVaR of Adrian and Brunnermeier
(2014). Following the same methodology we compute CoV aRj|i

q,t solving

Pr
(
rj,t ≤ CoV aR

j|i
q,t, ri,t ≤ V aRi

q,t

)
= q2, (2.21)

then, we assume alternatively a bivariate Gaussian and Student-t density of return
denoted by pdf (rj,t, ri,t) for solving double integral

� CoV aR
x|y
q,t

−∞

� V aRyq,t

−∞
pdf(x, y)dydx = q2. (2.22)

Last, we numerically compute the integral on a grid of values (starting from -10 to
10 with 0.01 increment step) for CoV aRj|i

q,t to find the approximated solution.
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2.3.1. Backtesting based on VaR and CoVaR

In order to determine the accuracy of model among the ones proposed, we consider
two tests based on the number of violations. The first is the Kupiec test or un-
conditional coverage test (Kupiec (1995)). The observed failure rate equal to the
failure rate suggested by the confidence level of VaR, is tested: the null hypothesis
is given by the observed violation rate statistically equal to the expected violation
rate. If the null hypothesis is rejected, the model is considered inaccurate with 95%
significance level (p > 0.05).
Denote, with a slightly change of notation in favour of readability, Ri

t(x) = ri,t+1 as
the ex-post returns of institution i with t = 1, . . . , N , and V aRi

q,t is the ex-ante of
Value-at-Risk forecasts, where q is the expected coverage. Let define the indicator
function as follows

I it =
{

1, if Ri
t(x) ≤ V aRi

q,t

0, if Ri
t(x) > V aRi

q,t

}
,

where I it is a sequence of violation for a given interval of the Value-at-Risk forecast.
In the case of the backtesting of CoVaR proposed by Girardi and Ergün (2013), the
indicator function is constructed as a first hit sequence for the losses of each insti-
tution (I it) and a second hit sequence for the losses of the institution j conditional
to institution (Ij|it ). We define the second hit sequence, Rj

t (x), by the sub-sample
in which Ri

t(x) ≤ V aRi
q,t. Thus, the number of observations of the second hit se-

quence is equal to the number of violations of the first hit sequence. The second hit
sequence compares between the past ex-post returns of the financial system and the
ex-ante of CoV aRs|i

q,t forecasts,

I
j|i
t =

{
1, if Rj

t (x) ≤ CoV aR
j|i
q,t

0, if Rj
t (x) > CoV aR

j|i
q,t

}
,

where Ij|it is a second hit sequence of violation for a given interval of the CoVaR
forecast. In this study, we will show only the CoVaR

(
I
j|i
t

)
definition for the following

description of unconditional and conditional coverage tests. For the tests on VaR,
the sequence of violation I it can be used instead of the Ij|it .

Assuming that Ij|it is identically and independently distributed Bernoulli with pa-
rameter q, Ij|it ∼ Bernoulli(q). The null hypothesis of unconditional coverage test
(H0,uc) defines the number of observed violations is equal to the expected coverage,
q = q̂. The likelihood under this null hypothesis can be written as

L
(
Ij|i, q

)
= (1− q)N−VI qVI ,
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where VI =
N∑
t=1

I
j|i
t is the number of violations of CoV aRj|i

q,t. Then, the unconditional

coverage test can be formulated as a likelihood ratio (LR) test,

LRuc = 2ln
[
L
(
Ij|i, q̂

)
− L

(
Ij|i, q

)]
,

where q̂ = VI
N

is the maximum likelihood estimate of q, and LRuc is asymptotically
to χ2(1). Next, the likelihood ratio test of independence proposed by Christoffersen
(1998) is used to check whether violations are independently distributed over time.
Let consider the indicator variable,

{
I
j|i
t

}
t=1,...,N

, as a first-order Markov chain with
transition probability matrix

Π =
[

1− π01 π01
1− π11 π11

]
,

where the Rj
t (x) is the sub-sample in which Ri

t(x) ≤ V aRi
q,t:

• π01 is probability (Prt−1) that the conditional on today being a non violation(
Rj
t (x) > CoV aR

j|i
q,t

)
next period is a violation

(
Rj
t (x) ≤ CoV aR

j|i
q,t

)
.

• π11 is probability (Prt−1) that the conditional on today being a violation(
Rj
t (x) ≤ CoV aR

j|i
q,t

)
next period is a violation

(
Rj
t (x) ≤ CoV aR

j|i
q,t

)
.

• 1−π01 is probability (Prt−1) that the conditional on today being a non violation(
Rj
t (x) ≤ CoV aR

j|i
q,t

)
next period is a non violation

(
Rj
t (x) > CoV aR

j|i
q,t

)
.

• 1 − π11 is probability (Prt−1) that the conditional on today being a violation(
Rj
t (x) ≤ CoV aR

j|i
q,t

)
next period is a non violation

(
Rj
t (x) > CoV aR

j|i
q,t

)
.

The null hypothesis of the conditional coverage test, H0,ind : π01 = π11, is that the
violation indicators do repeat over the period of losses. The approximate likelihood
function under this hypothesis is

L
(
Ij|i; π01, π11

)
= (1− π01)N00 πN01

01 (1− π11)N01 πN11
11 ,

where Nmn is the number of observations that state m followed by n. From the null
hypothesis, the previous observations do not affect the probability of considering
a violation. The estimation of π01 and π11 can be written as π̂01 = N01

N00+N01
and

π̂11 = N11
N00+N11

. Then, the LR test statistic for independent test under the null of,
π̂01 = π̂11 = q̂, is given by

LRind = 2ln
[
L
(
Ij|i, π̂01, π̂11

)
− L

(
Ij|i, q̂

)]
,
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where κ̂ = N01+N11
N

= VI
N
, and LRind is asymptotically to χ2(1). From the combi-

nation of the unconditional coverage test and independence test, the joint test or
conditional coverage test can be performed as documented by Christoffersen (1998).
The null hypothesis of this test is H0,cc : π̂01 = π̂11 = q. In case the null hypothesis
of H0,uc or H0,ind is rejected, the H0,cc is also rejected. The likelihood ratio becomes

LRcc = 2ln
[
L
(
Ij|i, π̂01, π̂11

)
− L

(
Ij|i, q

)]
,

where LRcc is asymptotically to χ2(2).
To assess the goodness of risk on a stand-alone basis and among the interconnect-
edness, we analyze the unconditional and conditional coverage test on VaR and
CoVaR. We can apply the test to the CoVaR for those time periods for which the
condition event (Ri

t(x) ≤ V aRi
q,t) is true.

In the backtesting based on VaR analysis, we first iterate the estimated results by
setting the backtest windows as 250-week in-sample and 1-week out-of-sample. We
then count the number of data that fall outside the confidence level of VaR estimates.
If the number is higher than the confidence level, we observe it as a violation. As for
the unconditional coverage test proposed by Kupiec (1995), the number of violations
must be equal to VaR’s correct exceedance. In comparison, the conditional coverage
test proposed by Christoffersen (1998) indicates that the number of violations must
be independently distributed along the testing period or correct exceedance. This
test can prevent the unusual frequency of consecutive exceedances.

2.3.2. Backtesting based on loss function

The backtesting based on the confidence level of VaR estimates shows the accuracy
of an individual model. However, the comparison between the different models is
limited. To overcome the drawback, Lopez (1999) proposed the backtesting based
on a loss function. The method focuses on the magnitude of the failure when the
violation occurs. Thus, the VaR estimates under the loss function can provide the
model’s performance as a numerical score. The loss function can be given as

lt =
f

(
Rt, V aRt|t−1

)
if Rt ≤ V aRt|t−1

g
(
Rt, V aRt|t−1

)
if Rt > V aRt|t−1

where ∑N
t=1 lt defines as the total loss. The best model can be classified by the

lowest total loss. In this analysis, we use the comparison of loss functions meth-
ods as Abad et al. (2014), Caporin (2008), and Cesarone and Colucci (2016). The
method defines the loss functions from the regulator and investors’ point of view.
In the regulator’s view, we consider the size of loss only if the violation occurs
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(
g
(
Rt, V aRt|t−1

)
= 0 if Rt > V aRt|t−1

)
. While, the investors’ view considers both

the loss and the market risk sides
(
f
(
Rt, V aRt|t−1

)
= g

(
Rt, V aRt|t−1

)
∀Rt

)
, as

shown in Table 2.1.

Table 2.1.: The list of regulator’s and investors’ loss functions.

Regulator’s view Investors’ view
Loss side Market risk side Loss & market risk sides

(if Rt ≤ V aRt|t−1) (if Rt > V aRt|t−1) (∀Rt)
Loss Function f

(
Rt, V aRt|t−1

)
g
(
Rt, V aRt|t−1

)
f
(
Rt, V aRt|t−1

)
= g

(
Rt, V aRt|t−1

)
Lopez 1 +

(
Rt − V aRt|t−1

)2 0 -
Caporin 1 |1− | Rt

V aRt|t−1
|| 0 |1− | Rt

V aRt|t−1
||

Caporin 2 (|Rt|−|V aRt|t−1|)2

|V aRt|t−1|
0 (|Rt|−|V aRt|t−1|)2

|V aRt|t−1|

Caporin 3 |Rt − V aRt|t−1| 0 |Rt − V aRt|t−1|

2.4. Data and preliminary analysis

2.4.1. CDS data

The credit default swap (CDS) is a kind of financial contract that allows protection
against losses in the event of default. CDS enables trading on credit risk exposure to
the reference entity. By the definition of International Swaps and Derivatives Associ-
ation (ISDA), credit event includes as following: bankruptcy, obligation acceleration,
obligation default, failure to pay, repudiation/moratorium, and restructuring.
In this study, we consider the modified-modified restructuring (MMR)2 because,
in the European CDS market, MMR shows the most volatile and complete time
intervals on the data stream source.
We consider ten years of weekly data of seven representative banks of Italy, France,
Germany, the United Kingdom, Netherlands, Spain, and Belgium. The data spam
from April 10, 2008, to January 16, 2019, included 562 weeks. Table 2.2 reports
the descriptive statistics and tests of the return of credit default swap (CDS) with
a five-year term. In the first column, we provide the abbreviation for each bank:

• Intesa Sanpaolo S.p.A.-Italy (ISP)
• Crédit Agricole Group-France (ACA)
• Deutsche Bank AG-Germany (DB)

2According to the 2003 International Swaps and Derivatives Association (ISDA) Credit Deriva-
tives Definitions, the modified-modified restructuring term explained that the remaining matu-
rity of deliverable assets of the restructured obligations must be less than 60 months and other
obligations must be less than 30 months.
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2.4 Data and preliminary analysis

• Barclays Plc-United Kingdom (BCS),
• Coöperatieve Rabobank U.A.-Netherlands (RAB)
• Banco de Sabadell S.A.-Spain (SAB)
• KBC Group N.V.-Belgium (KBC)

We test the normality by using the Jarque-Bera test. The null hypothesis of the
test consists of the joint hypothesis that the skewness and the excess kurtosis is
zero. The Ljung-Box (L-B) test checks whether the return is a white noise. The
null hypothesis of the test is that the residuals are independently distributed. Table
2.2 shows the descriptive statistics of CDS returns for each bank.
All the bank returns show a p-values lower than 1%. For the white noise test,
we investigate whether the returns are white noise and the squared returns are
clustered, that the volatility in this period will influence the next period’s volatility.
The Ljung-Box test on returns (L-B[r]) shows that the p-values of ISP, ACA, DB,
BCS, and SAB are less than the 5% significance rejects the null hypothesis of white
noise. The p-value of L-B[r2] are all less than 1%. Thus, the returns are containing
volatility clustering. Next, we consider the correlation between the banks. We found
that the returns are a highly significant positive correlated with each other, as shown
in Figure 2.1. So, the returns of all banks tend to react in the same direction.

Table 2.2.: Descriptive statistics of CDS weekly returns.

Bank Mean Stdev Skewness Kurtosis Normality L-B [r] L-B[r2]
ISP 0.0014 0.1059 0.1087 3.8626 0.0020∗∗∗ 0.0098∗∗∗ 5.55× 10−07∗∗∗

ACA -0.0013 0.1054 0.0874 3.9457 0.0005∗∗∗ 0.0632∗∗ 4.76×10−04∗∗∗

DB 0.0013 0.1037 0.0780 6.1070 0.0000∗∗∗ 0.0001∗∗∗ 1.34×10−08∗∗∗

BCS -0.0004 0.1063 0.0416 8.3448 0.0000∗∗∗ 0.0014∗∗∗ 1.08×10−04∗∗∗

RAB -0.0009 0.0855 -0.0195 5.1053 0.0000∗∗∗ 0.1847 9.44×10−07∗∗∗

SAB -0.0005 0.0695 0.1520 5.3765 0.0000∗∗∗ 0.0021∗∗∗ 5.83×10−04∗∗∗

KBC -0.0022 0.0755 0.9436 18.0952 0.0000∗∗∗ 0.4542 6.66×10−14∗∗∗

Note: ∗,∗∗,∗∗∗ indicates significance of p-value at the 10%, 5%, and 1% levels, respectively.

2.4.2. Spatial weight data

The methodology for the fitting of DCC-GARCH has been described extensively
based on a two-step procedure, see section 2.2.
For the spatial weight approach, we analyze the data from the EU-wide stress testing
under the European Banking Authority (EBA). This test aims to evaluate financial
institutions’ resilience to adverse market conditions. It also provides the overall
assessment of systematic risk in the European banking system. In the EU-wide
stress test analysis report, we consider the base scenarios for each bank. The credit
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Figure 2.1.: Correlation and distribution of CDS weekly returns.

exposure information for each bank consists of four parts: exposure values, risk
exposure amounts, a stock of provision, and leverage ratio under the internal ratings-
based (IRB) approach or Standardized approach (STA) referred to credit exposure
specific asset classes, such as: Central governments Institutions, Corporates, Retail,
Equity, Securitization, and Other non-credit obligation assets, as presented on the
EBA (2021)’s website. We use this information to compute the percentage values
with respect to the total disclosure part.

We organize the pieces of information in a vector to compute the similarity between
couples of banks. This indicator provides a broad view of the bank’s credit structure
and exposure. We then convert each row’s values to the unity range [0, 1], as shown
in Table 2.3.

The spatial components of this study are computed using the EU-wide stress test
of 2018. To ascertain the matrix weight’s consistency, we test the equality of two
matrices (Jennrich (1970)). The null hypothesis is H0 : W 1 = W 2. We compare
the normalized cosine similarity matrix weight from the EU-wide stress test of 2014
to 2016, 2016 to 2018, and 2018 to 2014. We do not reject the null hypothesis. The
p-values are 0.9991, 0.9999, and 0.9999 that higher than the significant level at 0.05.
Thus, this evidence indicates that the spatial components of the EU-wide stress test
are not exogenous.
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Table 2.3.: Normalized of cosine similarity matrix from the cosine similarity ma-
trix.

Bank ISP ACA DB BCS RAB SAB KBC
ISP 0 0.1764 0.1693 0.1256 0.1610 0.1834 0.1843
ACA 0.1614 0 0.1593 0.1523 0.1681 0.1823 0.1766
DB 0.1654 0.1700 0 0.1617 0.1584 0.1771 0.1674
BCS 0.1333 0.1766 0.1758 0 0.1652 0.1818 0.1673
RAB 0.1548 0.1765 0.1559 0.1495 0 0.1761 0.1871
SAB 0.1648 0.1790 0.1628 0.1538 0.1646 0 0.1750
KBC 0.1682 0.1761 0.1564 0.1438 0.1777 0.1778 0

2.5. Empirical Results

2.5.1. Block Bootstrap

The spatial DCC-GARCH(1,1) is estimated according to the procedure described
in Section 2.2.2. To obtain a confidence interval, we use a block bootstrapping
technique. We construct the 95% confidence intervals from 500 resamples by using
block bootstrap. Firstly, this method requires cutting the CDS dataset sample into
several blocks of equal dimension. To take into consideration the serial correlation
of each bank data, we use four lagged returns for each block. Then all blocks are
reconstructed into a new 500 resamples. After that, we estimate the Student-t
spatial DCC GARCH(1,1) on all resamples.
Next, we estimate the Student-t spatial DCC GARCH(1,1) with the CDS dataset
and compare them with its confidence intervals from the block bootstrap, as shown
in Table 2.4. The results show that the estimated parameters are mostly specified
within the confidence ranges.
Moreover, we estimate the student-t spatial DCC GARCH(1,1) model using the
CDS weekly data, as shown in Table 2.5. We found that the estimated parameters
on the first stage show all significance in GARCH terms while only significant in
ARCH terms and not significant in unconditional variance terms. In the second
stage, the parameter of the time-varying conditional correlation (δ) and the degree
of freedom (ν) are significantly performed (p-value in brackets). The γ is relatively
small, while the δ is large with a degree of freedom (ν) at 4.69. These results can
reinforce the model’s parameters before we apply them to the subsequent analysis.
Considering the spatial components we observe that, apart from Intesa and Deutsche
bank, the spatial volatility spillovers are indeed present among the credit risk of the
considered banks. Generally, it seems that the spatial (G)ARCH and (G)ARCH



Chapter 2 The Spatial Multivariate GARCH Model on Credit Risk Application

parameters compensate each other: the greater is one, the lower is the other. Spatial
ARCH coefficients are larger than spatial GARCH ones, indicating that the largest
squared returns from other banks matter more for the future volatility levels than
the previous values of other banks volatilities. For ISP, ACA, DB, BCS, and RAB
the previous volatility of other banks matter more than the most recent innovations.

Table 2.4.: The Student-t spatial DCC GARCH(1,1) parameters and its confidence
intervals from 500 samples of block bootstrap of CDS data.

Parameter/Bank ISP ACA DB BCS RAB SAB KBC

5% CI -5.10e-05 -3.24e-05 -3.60e-05 -7.40e-06 -1.98e-05 -8.67e-04 -7.52e-05
A0 5.62e-14 1.02e-15 7.20e-14 4.66e-14 2.66e-16 2.52e-16 2.86e-16

95% CI 3.35e-05 2.36e-05 2.39e-05 5.28e-06 1.35e-05 6.97e-04 5.88e-05

A1

5% CI 2.13e-06 -2.23e-06 -5.12e-03 -1.61e-03 -1.40e-02 -7.59e-02 4.96e-01
2.86e-06 2.69e-06 3.74e-06 3.96e-06 7.78e-06 9.23e-06 9.87e-01

95% CI 6.93e-06 9.48e-06 3.87e-03 1.23e-03 1.14e-02 6.01e-02 2.49

B1

5% CI -2.37e-01 -3.40e-01 -2.98e-01 -3.06e-01 -2.86e-01 -1.03e-01 2.31e-02
5.04e-01 4.78e-01 4.93e-01 5.15e-01 4.91e-01 4.66e-01 4.25e-01

95% CI 7.87e-01 8.31e-01 7.29e-01 8.50e-01 8.61e-01 8.82e-01 1.14

A2

5% CI -6.37e-01 -4.82e-01 -4.27e-01 -1.92e-01 -2.40e-01 -8.45e-01 -1.39e+01
6.07e-07 1.17e-06 3.30e-07 4.75e-06 1.04e-06 1.28e-07 1.01e-08

95% CI 3.35e-01 3.10e-01 2.94e-01 1.55e-01 1.93e-01 3.50e-01 7.20

B2

5% CI 5.99e-02 4.42e-02 4.51e-02 3.73e-02 3.11e-02 2.16e-02 -8.66e-01
6.51e-02 6.39e-02 6.02e-02 6.51e-02 5.71e-02 4.78e-02 1.11e-08

95% CI 1.70e-01 1.66e-01 1.57e-01 1.70e-01 1.41e-01 1.30e-01 3.93e-01

γ

5% CI 5.45e-03
1.58e-02

95% CI 4.30e-02

δ

5% CI 4.36e-01
8.58e-01

95% CI 1.52
5% CI 2.32

ν 4.69
95% CI 5.78

2.5.2. Backtesting Results

In the application, we apply the estimated parameter results under different specifi-
cations of time varying volatility multivariate GARCH(1,1) models, which consists
of Gaussian DCC (GaussDCC), Student-t DCC (tDCC), Gaussian spatial DCC
(GaussSpDCC), and Student-t spatial DCC (tSpDCC).
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2.5 Empirical Results

The VaR5% and CoVaR5% are computed under the different model specifications,
setting a rolling window of 250 data points to calculate the one data point ahead
VaR5% forecasts. The relative CoVaR5% is computed numerically, according to (2.22)
using the time varying covariance matrices.
We report the descriptive statistics of weekly CDS data for VaR5% and CoVaR5% in
Tables 2.6, 2.7, 2.8, 2.9, and 2.10. We observed that the mean, standard deviation,
and skewness of the VaR5% and CoVaR5% are relatively similar among different
models except for the kurtosis.
We apply the two-sample Kolmogorov-Dmirnov test between the VaR5% and CoVaR5%.
The null hypothesis of the test is that VaR5% and CoVaR5% are drawn from a sim-
ilar continuous distribution. The results show that the p-value of the GaussDCC,
tDCC, GaussSpDCC, and tSpDCC models are all close to zeros. Thus, we reject
the null hypothesis that there is no difference between the VaR5% and CoVaR5% for
all models. The CDF function between VaR and CoVaR, as shown in Figures 2.2,
2.3, 2.4 and 2.5 is similarly found consistent with the Kolmogorov–Smirnov test.
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Figure 2.2.: The cdf funtion between VaR5% and CoVaR5% of the Gaussian DCC
model.

For the backtesting based on VaR5%, the analysis examines the accuracy of each
model. The VaR5% forecasts obtained on a rolling window of 250 data points of
in-sample are compared with the one data point ahead out-of-sample. Tables 2.11
provides the p-value of the unconditional coverage (UC) and conditional coverage
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Figure 2.3.: The cdf funtion between VaR5% and CoVaR5% of the Student-t DCC
model.

(CC) tests. We define the bold as accepted at a 95% significance level and the
highlighted light-gray as accepted of model at a 99% significance level but rejected
at 95% significance level.
In Table 2.11, we test the violations of VaR5% on weekly data. The GaussDCC
and GaussSpDCC models show within the UC test’s acceptance range at a 99%
significant level but one rejection case on the CC test at a 95% significant level.
Inversely, the tDCC and tSpDCC models show within the CC test’s acceptance
range at a 99% significant level but one rejection case on the UC test at a 95%
significant level.
To specify which model is the preferred model, we perform the backtesting based on
loss functions following Cesarone and Colucci (2016). The procedure proposes that
the model with the lowest total loss is the best. The VaR5% backtesting in Table
2.12 where the best results are marked as bold, the tSpDCC model performs the
best result from three out of four regulator’s loss functions. For the investors’ loss
functions in Table 2.13, the tSpDCC model provides the best result.
According to the limitation of weekly data that strictly required samples from
the VaR5% violations

(
Ri
t(x) ≤ V aRi

q,t

)
, we extend the backtesting based on the

CoVaR5% test on the daily equity data of each bank instead. We obtain the daily
equity data at 2610 data points by considering the same period of CDS data. There-
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2.5 Empirical Results
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Figure 2.4.: The cdf funtion between VaR5% and CoVaR5% of the Gaussian spatial
DCC model.

fore, the expected violations of the backtesting based on CoVaR5% can provide
around 5 data points from the VaR5% violations of 118 data points, which are large
enough to allow the test. We repeated the analysis on daily equity data. The main
findings are confirmed, as highlighted in Appendix A.
For the backtesting based on CoVaR5% of equity data, we first test the violations
of VaR5% forecast on each bank as same as the weekly CDS data, as described in
Appendix A. Then, Table 2.14, we pairwise test the violation of CoVaR5% forecast
between the institution j and the institution i, for instance, if we consider a pair of
the ACA (as institute jth) to the ISP (as institution ith), we obtain the p-value of
the UC and CC test at 0.0054 and 0.0034 for the Gaussian DCC model.
Table 2.14 shows that the GaussDCC model presents only 15 acceptance cases of
the UC test and 17 acceptance cases of the CC test at a 99% significant level. In
contrast, at a 95% significant level, we found 3 and 3 rejection cases for the UC and
CC tests. Further, the tDCC model found 28 and 28 acceptance cases of the UC
and CC tests at a 99% significant level, but at a 95% significant level, we observe 5
and 3 rejection cases of the UC and CC tests. The results show evidence that the
tDCC model is better than GaussDCC model as consistent with Girardi and Ergün
(2013). Considering the GaussSpDCC model, we found 34 and 30 cases of the UC
and CC test at a 99% significant level, while we found 4 and 5 rejection cases of the
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Figure 2.5.: The cdf funtion between VaR5% and CoVaR5% of the Student-t spatial
DCC model.

UC and CC test at a 95% significant level. The tSpDCC model gives all accepted
cases of the CC test at a 99% significant level and only 3 out of 42 cases of the UC
test that rejected, Still, we observe 2 and 5 rejection cases of the UC and CC test at
a 95% significant level. The tSpDCC model, moreover, presents the highest amount
of the accepted model. Overall, from the four consideration models, the tSpDCC
model shows the best performance.
For the CoVaR5% backtesting based on loss functions, in Tables 2.15 and 2.16 we
observe that the tSpDCC model shows the best result for all cases of the regulator’s
and investers’ loss functions. Moreover, we observed that the differences between the
GaussDCC and tSpDCC models are relatively large compared to the other models,
as shown in Figures 2.17 and 2.18.
To sum up, we observe that the result of backtesting based on VaR5% of weekly CDS
data accepts all models at a 99% significant level for the UC and CC tests. While the
backtesting based on CoVaR5% of the daily equity data provides the applied spatial
models (GaussSpDCC and tSpDCC) show a higher amount of acceptance cases than
the ordinary models (GaussDCC and tDCC). Moreover, the tSpDCC model shows
all acceptance cases (42 cases) for the CC test at a 99% significant level. To justify
the preferred model, the backtesting based on loss functions of CoVaR5% for both
the regulator’s and investors’ loss functions report the tSpDCC model as the best.
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2.6 Conclusions

2.6. Conclusions

As the spillover effects of risk become a problem across the interconnected banks, this
study investigates the spatial multivariate GARCH model to provide more accuracy
of risk measures. In particular, we propose a cosine similarity that appertains under
the spatial multivariate GARCH(1,1) model.
We then apply to financial applications. We investigate the presence of the spa-
tial volatility spillovers among the credit risk of the considerd banks. Next, we
disentangle the pairwise contributions via the CoVaR analysis.
First, we examine the accuracy of the spatial multivariate GARCH model on credit
risk application using the UC and CC tests. The result shows that the Student-t
spatial DCC GARCH(1,1) model explains the highest amount of the accepted model
on CoVaR5% compared to other models.
Second, we investigate the preferred model using the backtesting based on loss func-
tions. We find that the Student-t spatial DCC GARCH(1,1) model on CoVaR5%
are the most preferred model compared to other models.
In summary, the multivariate GARCH model with proposed cosine similarity can im-
prove the assessment of credit risk profiles. The Student-t spatial DCC GARCH(1,1)
model provides the best results on the credit risk market’s spillover.
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2.6 Conclusions

Table 2.6.: The descriptive of statistics of VaR5% .

Statistic Gaussian DCC Student-t DCC Gaussian spatial DCC Student-t spatial DCC

ISP

Mean -0.0375 -0.0367 -0.0386 -0.0341
Stdev 0.0214 0.0193 0.0153 0.0195

Skewness -3.8830 -2.7021 -1.9555 -3.2096
Kurtosis 35.6294 15.1189 8.2145 19.0384

ACA

Mean -0.0342 -0.0347 -0.0372 -0.0323
Stdev 0.0189 0.0175 0.0147 0.0183

Skewness -3.7520 -3.2055 -2.0628 -2.9855
Kurtosis 35.0690 21.5338 8.6644 16.7722

DB

Mean -0.0371 -0.0372 -0.0388 -0.0348
Stdev 0.0216 0.0208 0.0152 0.0201

Skewness -3.5304 -3.2996 -1.9771 -3.0138
Kurtosis 30.6122 23.4637 8.4824 16.7051

BCS

Mean -0.0364 -0.0366 -0.0374 -0.0343
Stdev 0.0205 0.0200 0.0148 0.0214

Skewness -3.2389 -2.7469 -2.0785 -2.8781
Kurtosis 26.5118 14.9644 9.0081 13.7518

RAB

Mean -0.1223 -0.1241 -0.1234 -0.1252
Stdev 0.0203 0.0225 0.0263 0.0259

Skewness -1.1163 -0.9566 -0.9961 -0.7046
Kurtosis 4.3861 3.0589 4.3574 3.6742

SAB

Mean -0.1025 -0.0997 -0.1026 -0.0970
Stdev 0.0124 0.0163 0.0143 0.0171

Skewness 0.0179 -0.9904 -0.5249 -0.7225
Kurtosis 3.7766 6.2165 5.7543 5.5554

KBC

Mean -0.1064 -0.0756 -0.1100 -0.0750
Stdev 0.0353 0.0381 0.0407 0.0398

Skewness -0.1997 -0.1023 -0.5154 -0.0812
Kurtosis 3.2110 2.9495 3.4938 2.8279
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Table 2.7.: The descriptive statistics of CoVaR5% of the Gaussian DCC model.

Statistic ISP ACA DB BCS RAB SAB KBC

ISP

Mean - -0.0638 -0.0623 -0.0627 -0.0622 -0.0618 -0.0638
Stdev - 0.0380 0.0371 0.0387 0.0369 0.0346 0.0386

Skewness - -2.1108 -2.2279 -2.5509 -3.0419 -1.9831 -2.7267
Kurtosis - 12.1748 13.9587 19.1574 31.9169 12.2626 23.3569

ACA

Mean -0.0629 - -0.0617 -0.0617 -0.0618 -0.0612 -0.0630
Stdev 0.0312 - 0.0315 0.0329 0.0314 0.0297 0.0331

Skewness -2.6814 - -2.1085 -2.4583 -2.7155 -2.0527 -2.7946
Kurtosis 18.4454 - 11.7975 15.3471 22.0371 11.4476 19.9384

DB

Mean -0.0689 -0.0685 - -0.0672 -0.0674 -0.0667 -0.0667
Stdev 0.0294 0.0288 - 0.0302 0.0288 0.0275 0.0275

Skewness -2.1290 -1.9330 - -2.0981 -2.1133 -1.8023 -1.8023
Kurtosis 10.8771 8.9475 - 9.4354 10.2073 7.6881 7.6881

BCS

Mean -0.0606 -0.0607 -0.0593 - -0.0595 -0.0587 -0.0610
Stdev 0.0316 0.0323 0.0306 - 0.0303 0.0292 0.0330

Skewness -2.9904 -2.4868 -2.1922 - -2.3265 -2.2493 -2.7021
Kurtosis 20.7334 13.9317 10.1063 - 11.5667 11.6996 15.8104

RAB

Mean -0.0583 -0.0587 -0.0573 -0.0575 - -0.0570 -0.0586
Stdev 0.0345 0.0365 0.0352 0.0365 - 0.0336 0.0368

Skewness -2.7556 -2.5436 -2.4635 -2.5895 - -2.4245 -2.6901
Kurtosis 15.1586 11.9539 11.0846 11.9458 - 11.0958 13.2697

SAB

Mean -0.0706 -0.0698 -0.0685 -0.0685 -0.0692 - -0.0699
Stdev 0.0339 0.0323 0.0318 0.0336 0.0326 - 0.0337

Skewness -3.1337 -2.5190 -2.2350 -2.5898 -2.5858 - -2.7867
Kurtosis 22.8768 14.0589 11.1340 14.0751 14.8425 - 16.2146

KBC

Mean -0.0586 -0.0591 -0.0578 -0.0579 -0.0573 -0.0570 -
Stdev 0.0349 0.0375 0.0358 0.0365 0.0346 0.0342 -

Skewness -2.0684 -2.0394 -1.9066 -1.9635 -1.9119 -1.9486 -
Kurtosis 8.7128 7.4498 6.9544 7.2010 6.8844 7.2752 -
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Table 2.8.: The descriptive of statistics of CoVaR5% of the Student-t DCC model.

Statistic ISP ACA DB BCS RAB SAB KBC

ISP

Mean - -0.0673 -0.0672 -0.0682 -0.0668 -0.0680 -0.0666
Stdev - 0.0347 0.0359 0.0366 0.0353 0.0355 0.0358

Skewness - -2.1981 -2.5295 -2.2573 -2.4245 -1.9112 -2.5733
Kurtosis - 16.1119 24.1635 18.1575 21.0975 13.0569 23.2009

ACA

Mean -0.0662 - -0.0674 -0.0678 -0.0672 -0.0680 -0.0667
Stdev 0.0348 - 0.0359 0.0363 0.0357 0.0359 0.0359

Skewness -2.3977 - -2.2722 -2.1906 -2.1822 -2.0128 -2.3570
Kurtosis 13.1027 - 13.5072 11.3372 11.5261 9.5968 13.3964

DB

Mean -0.0725 -0.0734 - -0.0731 -0.0726 -0.0734 -0.0728
Stdev 0.0323 0.0316 - 0.0321 0.0313 0.0317 0.0322

Skewness -2.1685 -2.0242 - -2.0972 -2.0756 -1.9158 -2.1153
Kurtosis 10.2865 9.1376 - 9.3394 9.0262 8.2519 9.5733

BCS

Mean -0.0619 -0.0621 -0.0618 - -0.0619 -0.0625 -0.0619
Stdev 0.0340 0.0330 0.0333 - 0.0332 0.0336 0.0344

Skewness -2.5397 -2.4856 -2.1827 - -2.2117 -2.1258 -2.3560
Kurtosis 13.4578 13.0468 9.1314 - 9.0939 9.0054 10.4148

RAB

Mean -0.0605 -0.0614 -0.0610 -0.0616 - -0.0623 -0.0603
Stdev 0.0351 0.0346 0.0347 0.0351 - 0.0357 0.0353

Skewness -2.6001 -2.4945 -2.2045 -2.2263 - -2.1401 -2.2963
Kurtosis 13.9952 13.8396 9.8423 9.9284 - 9.5205 10.4852

SAB

Mean -0.0704 -0.0711 -0.0704 -0.0707 -0.0708 - -0.0701
Stdev 0.0314 0.0307 0.0308 0.0312 0.0310 - 0.0313

Skewness -2.5910 -2.3327 -2.2451 -2.3660 -2.2313 - -2.3900
Kurtosis 14.6196 11.5999 10.2738 11.1519 10.1821 - 11.2993

KBC

Mean -0.0642 -0.0645 -0.0652 -0.0656 -0.0642 -0.0655 -
Stdev 0.0396 0.0386 0.0404 0.0407 0.0397 0.0405 -

Skewness -1.8246 -1.7982 -1.6454 -1.6819 -1.6879 -1.6660 -
Kurtosis 6.6293 6.6441 5.5019 5.6431 5.5863 5.6092 -
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Table 2.9.: The descriptive of statistics of CoVaR5% of the Gaussian spatial DCC
model.

Statistic ISP ACA DB BCS RAB SAB KBC

ISP

Mean - -0.0731 -0.0724 -0.0742 -0.0722 -0.0754 -0.0724
Stdev - 0.0401 0.0379 0.0398 0.0385 0.0453 0.0371

Skewness - -4.5070 -3.9739 -3.9535 -3.7228 -6.9596 -3.9343
Kurtosis - 44.0858 35.4756 35.3029 30.5360 107.4077 35.9073

ACA

Mean -0.0748 - -0.0744 -0.0753 -0.0742 -0.0771 -0.0737
Stdev 0.0372 - 0.0361 0.0372 0.0365 0.0397 0.0339

Skewness -2.8397 - -2.8025 -2.8078 -2.5954 -3.0814 -2.7622
Kurtosis 16.6131 - 16.4537 16.4834 13.7778 21.2445 17.3850

DB

Mean -0.0807 -0.0811 - -0.0811 -0.0801 -0.0831 -0.0811
Stdev 0.0369 0.0368 - 0.0369 0.0365 0.0382 0.0356

Skewness -1.8289 -1.8628 - -1.7832 -1.9404 -1.8694 -1.7408
Kurtosis 6.8883 7.3251 - 6.7642 8.1330 7.7427 6.8175

BCS

Mean -0.0700 -0.0695 -0.0686 - -0.0688 -0.0715 -0.0692
Stdev 0.0388 0.0383 0.0367 - 0.0372 0.0425 0.0365

Skewness -2.5450 -2.7335 -2.6215 - -2.6061 -4.4468 -2.5573
Kurtosis 12.0772 14.2683 13.1840 - 12.8705 50.5984 12.8248

RAB

Mean -0.0662 -0.0667 -0.0657 -0.0669 - -0.0693 -0.0653
Stdev 0.0381 0.0388 0.0364 0.0375 - 0.0417 0.0349

Skewness -2.4870 -2.8613 -2.6630 -2.5818 - -3.4649 -2.3409
Kurtosis 11.2325 17.4978 14.1112 13.0757 - 29.1653 11.6928

SAB

Mean -0.0731 -0.0732 -0.0728 -0.0735 -0.0732 - -0.0730
Stdev 0.0267 0.0264 0.0255 0.0266 0.0259 - 0.0262

Skewness -5.3891 -5.5006 -5.5087 -5.6171 -4.9732 - -4.9948
Kurtosis 78.9265 79.3116 82.0662 84.6955 68.8182 - 67.3002

KBC

Mean -0.0714 -0.0710 -0.0713 -0.0721 -0.0703 -0.0736 -
Stdev 0.0449 0.0443 0.0438 0.0447 0.0436 0.0481 -

Skewness -2.4695 -2.7323 -2.5331 -2.5591 -2.3890 -3.1081 -
Kurtosis 10.6740 14.0362 11.6030 11.7622 10.2190 20.2187 -

38
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Table 2.10.: The descriptive of statistics of CoVaR5% of the Student-t spatial DCC
model.

Statistic ISP ACA DB BCS RAB SAB KBC

ISP

Mean - -0.0851 -0.0852 -0.0875 -0.0827 -0.0847 -0.0854
Stdev - 0.0432 0.0443 0.0457 0.0421 0.0438 0.0437

Skewness - -3.5616 -4.0196 -3.3594 -3.3666 -3.7599 -3.3963
Kurtosis - 31.6903 37.5554 26.6726 27.5719 36.8625 29.0922

ACA

Mean -0.0885 - -0.0890 -0.0904 -0.0868 -0.0889 -0.0886
Stdev 0.0448 - 0.0458 0.0477 0.0443 0.0459 0.0444

Skewness -3.5095 - -3.6041 -3.5329 -3.1185 -3.4123 -3.2438
Kurtosis 25.9678 - 26.5636 26.1069 20.7697 24.6521 22.5953

DB

Mean -0.0927 -0.0929 - -0.0938 -0.0904 -0.0929 -0.0940
Stdev 0.0417 0.0413 - 0.0444 0.0404 0.0413 0.0420

Skewness -2.1244 -2.0372 - -2.1726 -2.1042 -2.0373 -2.0327
Kurtosis 8.5433 7.9759 - 8.7642 8.3066 8.2291 8.0306

BCS

Mean -0.0805 -0.0796 -0.0791 - -0.0777 -0.0801 -0.0806
Stdev 0.0430 0.0415 0.0423 - 0.0406 0.0429 0.0426

Skewness -2.9191 -2.8671 -2.9640 - -2.8196 -2.8069 -2.7900
Kurtosis 14.9903 14.1603 14.7086 - 13.7479 13.5377 13.5715

RAB

Mean -0.0777 -0.0781 -0.0781 -0.0797 - -0.0792 -0.0777
Stdev 0.0446 0.0440 0.0455 0.0466 - 0.0456 0.0437

Skewness -2.8771 -2.6807 -3.3759 -2.8621 - -2.7376 -2.6199
Kurtosis 14.4010 12.6643 22.0884 14.3974 - 13.3848 12.4734

SAB

Mean -0.1000 -0.1005 -0.1006 -0.1019 -0.0990 - -0.1008
Stdev 0.0471 0.0469 0.0476 0.0486 0.0463 - 0.0472

Skewness -2.5373 -2.5913 -2.8085 -2.5913 -2.5026 - -2.5823
Kurtosis 10.7255 10.8972 13.6563 11.3596 10.5028 - 11.0298

KBC

Mean -0.0826 -0.0821 -0.0838 -0.0849 -0.0801 -0.0833 -
Stdev 0.0515 0.0499 0.0527 0.0544 0.0502 0.0531 -

Skewness -2.5646 -2.5517 -2.6933 -2.7149 -2.4567 -2.6528 -
Kurtosis 11.3026 11.2016 12.5515 12.8700 10.4649 12.0970 -
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Table 2.11.: The p-value of backtesting based VaR5% tests of weekly CDS data.

Bank
Gaussian DCC Student-t DCC Gaussian spatial DCC Student-t spatial DCC
UC CC UC CC UC CC UC CC

ISP 0.6819 0.8310 0.6819 0.3111 0.8856 0.9398 0.3367 0.3888
ACA 0.0652 0.0122 0.3367 0.1270 0.1234 0.0310 0.2125 0.0674
DB 0.3367 0.3888 0.0652 0.1395 0.9072 0.4156 0.0652 0.1395
BARC 0.4953 0.6693 0.4953 0.6693 0.8856 0.0920 0.6819 0.3111
ING 0.6819 0.3111 0.6819 0.3111 0.6819 0.3111 0.4953 0.2106
SAB 0.9072 0.9743 0.8856 0.9398 0.8856 0.9398 0.9072 0.9743
KBC 0.8856 0.9398 0.0233 0.0763 0.8856 0.9398 0.0233 0.0763

Note: The UC and CC stand for the unconditional coverage and conditional coverage tests. The
bold defines as the acceptance at a 95% significance level and the highlighted light-gray defines as
the acceptance at a 99% significance level.
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Table 2.12.: The backtesting based the loss functions of VaR5% under the regula-
tor’s view of weekly CDS data.

Regulator’s view

Bank
Lopez

Gaussian DCC Student-t DCC Gaussian spatial DCC Student-t spatial DCC
ISP 308.61 308.56 307.67 310.14
ACA 312.93 309.66 311.81 310.92
DB 309.33 312.05 305.04 312.08
BCS 309.47 307.98 307.32 306.90
RAB 303.53 303.68 303.73 304.84
SAB 299.11 299.94 300.13 298.80
KBC 300.49 288.78 300.84 288.80

Bank
Caporin1

Gaussian DCC Student-t DCC Gaussian spatial DCC Student-t spatial DCC
ISP 188.76 188.26 188.19 181.45
ACA 186.28 184.35 186.01 185.20
DB 189.86 190.79 187.57 191.28
BCS 196.90 196.51 196.76 196.32
RAB 180.48 180.68 180.04 181.66
SAB 201.52 199.71 202.03 196.01
KBC 239.62 438.35 240.65 424.44

Bank
Caporin2

Gaussian DCC Student-t DCC Gaussian spatial DCC Student-t spatial DCC
ISP 23.13 22.70 23.05 18.79
ACA 22.57 21.78 22.41 22.39
DB 22.02 22.09 21.20 22.26
BCS 25.52 24.25 25.85 24.12
RAB 16.36 16.73 16.50 16.85
SAB 16.42 15.85 16.46 15.13
KBC 23.45 60.44 24.36 56.97

Bank
Caporin3

Gaussian DCC Student-t DCC Gaussian spatial DCC Student-t spatial DCC
ISP 49.88 49.52 49.87 45.43
ACA 50.42 49.34 50.08 50.13
DB 47.81 47.86 46.62 47.86
BCS 50.13 48.07 50.27 47.86
RAB 38.24 38.74 38.54 38.99
SAB 31.31 30.45 31.36 29.58
KBC 32.40 23.20 33.44 22.98

Note: The bold defines as the lowest total loss among different models.
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Table 2.13.: The backtesting based the loss functions of VaR5% under the investors’
view of weekly CDS data.

Investors’ view

Bank
Caporin1

Gaussian DCC Student-t DCC Gaussian spatial DCC Student-t spatial DCC
ISP 193.89 193.93 193.77 184.32
ACA 190.86 189.97 190.93 190.22
DB 193.25 193.87 191.77 194.38
BCS 201.26 200.96 201.37 201.10
RAB 186.51 186.16 185.77 186.32
SAB 208.80 206.68 209.19 202.71
KBC 252.73 505.51 252.93 486.99

Bank
Caporin2

Gaussian DCC Student-t DCC Gaussian spatial DCC Student-t spatial DCC
ISP 23.63 23.26 23.59 18.97
ACA 23.05 22.40 22.93 22.95
DB 22.42 22.52 21.59 22.62
BCS 26.02 24.99 26.45 24.95
RAB 16.85 17.16 16.98 17.27
SAB 16.95 16.32 16.99 15.56
KBC 25.99 66.80 26.77 63.11

Bank
Caporin3

Gaussian DCC Student-t DCC Gaussian spatial DCC Student-t spatial DCC
ISP 50.54 50.21 50.56 45.86
ACA 51.14 50.15 50.83 50.89
DB 48.33 48.36 47.21 48.36
BCS 50.77 48.65 50.90 48.47
RAB 38.91 39.36 39.17 39.53
SAB 31.95 31.08 31.99 30.18
KBC 33.49 24.70 34.48 24.43

Note: The bold defines as the lowest total loss among different models.
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Chapter 2 The Spatial Multivariate GARCH Model on Credit Risk Application
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Chapter 2 The Spatial Multivariate GARCH Model on Credit Risk Application

Table 2.17.: The differences comparison between the Gaussian DCC and other
models of backtesting based the loss functions of CoVaR5% under the regulator’s
view of equity data.

Bank Institution i→
ISP ACA DB BCS RAB SAB KBC

System j↓ Model

ISP

Student-t DCC - 0.1066 0.1226 0.1344 0.1170 0.1594 0.0987

Gaussian spatial DCC - 0.0419 0.0581 0.0656 0.0545 0.0729 0.0325

Student-t spatial DCC - 0.2365 0.2613 0.2810 0.2338 0.2640 0.2387

ACA

Student-t DCC 0.1317 - 0.1505 0.1537 0.1396 0.1811 0.1195

Gaussian spatial DCC 0.0361 - 0.0641 0.0686 0.0601 0.0774 0.0399

Student-t spatial DCC 0.2805 - 0.3075 0.3218 0.2789 0.3141 0.2809

DB

Student-t DCC 0.1221 0.1309 - 0.1474 0.1344 0.1744 0.1528

Gaussian spatial DCC 0.0352 0.0483 - 0.0603 0.0531 0.0692 0.0626

Student-t spatial DCC 0.2360 0.2439 - 0.2717 0.2343 0.2699 0.2813

BCS

Student-t DCC 0.1054 0.0986 0.1127 - 0.1057 0.1483 0.0925

Gaussian spatial DCC 0.0145 0.0169 0.0294 - 0.0264 0.0435 0.0106

Student-t spatial DCC 0.2245 0.2125 0.2289 - 0.2087 0.2491 0.2192

RAB

Student-t DCC 0.0958 0.0969 0.1122 0.1176 - 0.1525 0.0833

Gaussian spatial DCC 0.0262 0.0338 0.0480 0.0515 - 0.0656 0.0217

Student-t spatial DCC 0.2333 0.2331 0.2583 0.2721 - 0.2744 0.2292

SAB

Student-t DCC 0.0267 0.0361 0.0507 0.0531 0.0417 - 0.0333

Gaussian spatial DCC -0.0011 0.0135 0.0203 0.0230 0.0158 - 0.0026

Student-t spatial DCC 0.2797 0.2961 0.3165 0.3302 0.2901 - 0.2967

KBC

Student-t DCC 0.1552 0.1461 0.1717 0.1775 0.1634 0.2080 -

Gaussian spatial DCC 0.0668 0.0668 0.0924 0.0960 0.0864 0.1061 -

Student-t spatial DCC 0.2914 0.2787 0.3217 0.3344 0.2845 0.3290 -
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2.6 Conclusions

Table 2.18.: The differences comparison between the Gaussian DCC and other
models of backtesting based the loss functions of CoVaR5% under the investors’
view of equity data.

Bank Institution i→
ISP ACA DB BCS RAB SAB KBC

System j↓ Model

ISP

Student-t DCC - 0.1346 0.1547 0.1698 0.1478 0.2039 0.1248

Gaussian spatial DCC - 0.0518 0.0720 0.0820 0.0680 0.0925 0.0402

Student-t spatial DCC - 0.3036 0.3351 0.3605 0.2993 0.3395 0.3074

ACA

Student-t DCC 0.1713 - 0.1941 0.1993 0.1804 0.2357 0.1548

Gaussian spatial DCC 0.0477 - 0.0831 0.0893 0.0778 0.1006 0.0528

Student-t spatial DCC 0.3651 - 0.3995 0.4186 0.3619 0.4086 0.3657

DB

Student-t DCC 0.1781 0.1888 - 0.2114 0.1947 0.2468 0.2186

Gaussian spatial DCC 0.0451 0.0608 - 0.0772 0.0677 0.0886 0.0804

Student-t spatial DCC 0.3067 0.3157 - 0.3525 0.3038 0.3504 0.3649

BCS

Student-t DCC 0.1700 0.1601 0.1792 - 0.1706 0.2270 0.1520

Gaussian spatial DCC 0.0189 0.0216 0.0367 - 0.0341 0.0564 0.0133

Student-t spatial DCC 0.2928 0.2765 0.2971 - 0.2715 0.3241 0.2852

RAB

Student-t DCC 0.1253 0.1261 0.1447 0.1512 - 0.1991 0.1095

Gaussian spatial DCC 0.0338 0.0435 0.0609 0.0652 - 0.0848 0.0285

Student-t spatial DCC 0.3047 0.3035 0.3351 0.3530 - 0.3576 0.2997

SAB

Student-t DCC 0.0326 0.0429 0.0617 0.0648 0.0511 - 0.0398

Gaussian spatial DCC -0.0023 0.0154 0.0241 0.0279 0.0189 - 0.0018

Student-t spatial DCC 0.3619 0.3816 0.4076 0.4251 0.3740 - 0.3830

KBC

Student-t DCC 0.2019 0.1883 0.2216 0.2296 0.2106 0.2707 -

Gaussian spatial DCC 0.0863 0.0862 0.1185 0.1243 0.1111 0.1378 -

Student-t spatial DCC 0.3795 0.3616 0.4170 0.4347 0.3681 0.4278 -





3. Impact of Google Trends on
Portfolio Optimization

Kamonchai Rujirarangsan, Miloš Kopa, Sergio Ortobelli

3.1. Overview

This study investigates the impact of Google search queries on portfolio optimiza-
tion. We gather the daily stock prices and Google Trends indexes of 30 selected
companies components of S&P100 index. In particular, we propose a methodology
to use Google Trends information in portfolio selection problems. We enhance port-
folio performance by implementing the optimization of several portfolio strategies
applied to corrected log returns. We examine two different penalty-based log-return
corrections that account only for the useful Google Trends investors’ interests when
no shorts sell are allowed. Finally, we show that portfolio strategies applied to
corrected log-returns perform better than the same strategies applied to historical
return series.

3.2. Introduction

In the Information Age, the usage of big data for access the human information has
been investigated in various fields of studies, as suggested by Danah and Kate (2012).
The data sources, for example, spatial location (González et al. (2008); Krings et al.
(2009); Haklay (2010); Zheng et al. (2013)), public health (Haklay (2010)), Twitter
(Bollen et al. (2011)), internet stock message board (Antweiler and Frank (2004)),
and others, have been specifically used to model the sophisticated human behaviors.
In particular, Jun et al. (2018) documented that over the past decade, the data
based Google Trends (referred to as GT henceforth) were analyzed in the field of
economics, medical services, information systems, and several others. From the
economic point of view, the data analysis becomes a successful tool to quantify
the predictable behavior. For instance, Choi and Varian (2012); Heiberger (2015);
Vlastakis and Markellos (2012); Preis et al. (2013) documented the GT information
impacts of economic activity, investment strategy, and the stock market. Moreover,
the evidence of searching pattern data and financial data seems to be related, as
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Chapter 3 Impact of Google Trends on Portfolio Optimization

highlighted in Rujirarangsan and Ortobelli (2019). Thus, this gives us an idea to
enhance portfolio optimization using Google Trends for the portfolio optimal choices.

In particular, we propose to optimize several portfolio strategies starting from the
fundamental mean-variance model Markowitz (1952) to more recent ones such as
mean-CVaR (Rockafellar and Uryasev (2002)), Sortino (Sortino and Price (1994)),
and Rachev (Stoyanov et al. (2007)) type of strategies applied to the conditional
return on GT information.

First, we chose 30 assets from the components of the S&P100 index, taking into
account the case of the sensitivity from the Google searching query. In particular,
we use specific stock tickers that cannot be confused with other products. For
instance, if the stock ticker, say IBM, can be products, the number of chipsets,
shops nearby, recruitments, or several others that cover a broad meaning than an
investment, it will be excluded from our choices. With this selection procedure, our
information perceived solely for an investment reason rather than the others: see,
Da et al. (2011); Vlastakis and Markellos (2012).

Second, we discuss how to consider the innovations of GT using two different penal-
izations of log returns. We want to avoid the speculators’ GT interests (that grows
when returns go down) since we assume no short sales are allowed. Moreover, we
want to avoid counterintuitive information from GT that we have when returns are
growing while the GT interests are decreasing. Thus, we penalize this information
suggesting two alternative penalization procedure. In the first, we use conditional
return on GT information only when the return and GT interest grows jointly, and
then we penalize the other situations. In the conditional expectation estimator, we
use the Gaussian, Epanechnikov, and Student-t kernel function, and the bandwidth
selection follows Scott (2015). In the second, we penalize the negative return when a
momentum condition is applied. In the momentum condition, we consider when the
return distribution of the last two weeks are worse (respect to the second stochastic
dominance order) than the previous two weeks.

For enhancing the portfolio allocation, stochastic dominance plays a pivotal role in
decision making. In particular, when we compared to mean-risk approaches, the
stochastic dominance provides a more precise decision because the entire distribu-
tion of returns is used instead of the mean returns and the risk of returns: see (Levy
(2016)). Recently, the stochastic dominance has been applied in the portfolio ap-
plication, for instance, market portfolio efficiency in Kopa (2010); Kopa and Post
(2015), robustness analysis of optimal portfolios in Dupačová and Kopa (2014), and
Portfolio Choice in Post and Kopa (2017).

The principal contribution of this paper consists of observing that GT useful infor-
mation can be used to portfolio problems with profit and this results is based on
more of 500 portfolio models used during the same period.

The paper is structured as follows. First, Section 3.3 describes the preparation
of Google Trends data and assets data. Then, we define the portfolio optimization
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3.3 Portfolio Selection with Penalized Returns

models, the penalization strategies, and the conditional expectation framework. Sec-
tion 3.4 presents the empirical results of portfolio performance by obtained models
Sharpe ratio, CVaR, mean-variance, mean-CVaR, Sortino ratio, and Rachev ratio.
Last, the paper concludes with Section 3.5.

3.3. Portfolio Selection with Penalized Returns

In this section, we discuss the portfolio selection problem taking into account GT
data. In particular, we first examine the different optimization models. Second, we
introduce the definition of the GT dataset. Third, we consider two different ways to
account for the GT information and SSD on momentum strategy. Finally, we apply
the portfolio selection model to the penalized the return.

3.3.1. Portfolio Optimization

Let us recall different portfolio selection models which we use in our empirical anal-
ysis. In particular, we optimize the following portfolio models on penalized returns,
where the penalization takes into account the main information from GT. We point
out the vector of portfolio weights w = [w1, . . . , wn]

′
. We assume that no short sales

are allowed (i.e. w ≥ 0, w>1 = 1). We denote by r = [r1, . . . , rn]
′
the vector return,

and by µ the vector of mean. We suppose to have J observations; thus, we refer to
r(j) as the jth observation of the vector r.
In particular, we examine two different risk-reward portfolio problems (mean-variance
and mean-CVaR) and alternative portfolio strategies obtained with the maximiza-
tion of three gained-risk ratios (Sharpe, Sortino and Rachev). All portfolio strategies
will be applied either to historical returns, conditional returns on GT information
(see Appendix B), or two penalized returns. Next, we list the four portfolio problems
which will be used in our analysis.

3.3.1.1. Mean-Variance

Modern portfolio theory was born by the fundamental mean-variance analysis, de-
veloped by Markowitz (1952). According to Markowitz, the risk-averse investors
solve the following optimization problem,

Minimize
w

−λ ·w>µ+ (1− λ) ·w>Σw

subject to w>1 = 1,
w ≥ 0,

(3.1)
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Chapter 3 Impact of Google Trends on Portfolio Optimization

For a given λ ∈ [0, 1], where Σ is the variance-covariance matrix of the return vector
r, and µ is the mean return of assets. By varying λ between 0 and 1, we will obtain
all the Pareto optimal mean-variance portfolios.

3.3.1.2. Mean-CVaR

According to the risk-metric (Longerstaey and Zangari (1996)), the Value-at-Risk
(VaR) is a measurement tool that assesses a financial position with a random return.
Consider a random variable X, the VaR at level α, α ∈ (0, 1) is the opposite of
quantile function F−1

X valued at the level α, i.e. V aRα(X) = −F−1X(α) (FX is the
distribution function of X). To overcome the limits of VaR, Artzner et al. (1999)
proposes to use coherent risk measure. In particular, Rockafellar and Uryasev (2000)
introduce the conditional Value-at-Risk, CV aRα(X) = 1

α

� α
0 V aRε(X)dε. We recall

the linearizable mean-CVaR problem:

Minimize
(w,θ,zj)

−λ ·
(

1
J

∑J
j=1 w>r(j)

)
+ (1− λ) ·

(
θ + 1

(α)J
∑J
j=1 zj

)

subject to zj ≥ −w>r(j) − θ, j = 1, 2, . . . , J
w>1 = 1,
w ≥ 0, zj ≥ 0

(3.2)

For a given λ, the resulting optimal θ is the VaRα of the optimal portfolio and
zj=1,2,...,J are auxiliary variables. In our optimization problem, we set the α equal
to 0.05.

3.3.1.3. Sharpe Ratio

One of the extensively used criteria for assessing the portfolio’s performance is the
Sharpe ratio developed by Sharpe (1966). This ratio calculates the return with
risk-free compensations.

Maximize
w

w>µ−rf√
w>
∑

w

subject to w>1 = 1,
w ≥ 0,

(3.3)

where ∑ is variance-covariance matrix of returns.
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3.3.1.4. Sortino Ratio

The Sortino ratio r̄ − τ√√√√ 1
J

J∑
j=1

(Min (0, rj − τ))2

is defined as the ratio between the ex-

pected active portfolio return and the semi-standard deviation of return rj=1,...,J
with the target τ of the underperforming portfolio (see Sortino and Price (1994)).
With this measure of risk, only the downside deviation can be quantified as risky.
We use the quadratic optimization problem proposed by Stoyanov et al. (2007) in
order to maximize the Sortino ratio as follows:

Minimize
(w,τ,dj ,t)

∑J
j=1 d

2
j

subject to dj ≥ −w>r(j) + tτ, j = 1, 2, . . . , J
1
J

∑J
j=1 w>r(j) − tτ ≥ 1,

w>1 = t,
dj ≥ 0, w ≥ 0, t ≥ 0,

(3.4)

where τ is the target rate of return, t is an additional variable, and dj is the downside
risk of the portfolio defined by a lower semi-absolute deviation |τ −w>r(j)|−. In our
empirical analysis, we set the the target τ equal to 0.1. Thus, the returns below the
target rate are considered as losses of the portfolio.

3.3.1.5. Rachev Ratio

The Rachev ratio introduced by Biglova et al. (2004) is the performance measure
that compared the extreme positive returns to the extreme negative returns at a
certain level of the quantile. It can be defined as RRα,β(X) = CV aRα(−X)

CV aRβ(X) , where
α is the upper tail probability, β is the lower tail probability. In the portfolio
optimization, we use the mixed-integer linear programming by setting the binary
variables into the optimization as shown by Stoyanov et al. (2007) for a symmetric
case α = β:
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Maximize
(w,yj ,λ,zj ,θ,t)

1
(α)J

∑J
j=1 yj

subject to yj ≤ Bγj, j = 1, 2, . . . , J
yj ≥ w>r(j) −B (1− λj) ,
yj ≤ w>r(j) +B (1− λj) ,
γT1 = [αJ ] , γj ∈ {0, 1} ,
θ + 1

(α)J
∑J
j=1 zj ≤ 1,

zj ≥ −w>r(j) − θ,
w>1 = t,
zj ≥ 0,w ≥ 0, t ≥ 0,

(3.5)

where zj and yj are auxiliary variables, γj is a vector of binary variables, α is set
at 0.01, B is a very large number, such that |w>r(j)| ≤ B, and t is the additional
variable. In our empirical, we consider the symmetric case α = β = 0.01.

3.3.2. Google Trends data

The GT data is used to recognize the investors’ information from the searching
queries. To perceive the investors’ information, we focus on the searching pattern
data on the Google search engine. The Google search analysis called Google Trends
provides the query search on a specific geographic location and category. To define
the shifts in gathering information, we consider SVj as a search volume for a specific
keyword with amount j = 1, . . . , N . The relative search volume (RSVj) can be
calculated as

RSVj = SVj
N∑
k=1

SVj−k

Then, the RSVn is scaled on the ranges between 0 to 100 by standardized its maxi-
mum value at a specific interval. The GT data is

gtj = RSVj
max(RSVj, ..., RSVj−N) × 100 (3.6)

where N defines a specific temporal interval; in our analysis, we use N = 30 days.
As described in Equation 3.6, the Google Trends data provides only a query index
instead of raw data. As a sequence, our data will be dynamically adjusted based on
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every new query search. In particular, in our analysis, we calculate the GT return
by applying the logarithmic return on the GT data, GTj = ln

(
gtj
gtj−1

)
.

We carefully select the 30 assets components of S&P100 index,1 avoiding the sen-
sitive cases of search queries. For instance, the International Business Machines
(IBM), which trades on the market, is similar to the company’s name IBM. The
investors may intend to search for products, the number of chipsets, shops nearby,
recruitments, etc., which are not relevant to the trading proposed. In the Google
queries data, we retrieved the upper case of each asset name as a query search,
“United States” as a geographic location, and “Finance” as a category. As a limita-
tion of the Google server, we can download only a limited length of daily data. Thus,
we split the download of daily data length into a monthly basis and then aggregate
them back into a single file. With this method, however, we need to normalize every
piece of data to ascertain the real value of Google Trends. After we gather the daily
closing stock prices and the daily Google Trends index, we propose two alternative
return penalization to account for GT information.

3.3.3. Penalization

A relationship between Google searching information and asset price is revealed in
several studies: see Da et al. (2011); Vlastakis and Markellos (2012); Vozlyublennaia
(2014). For this reason, we propose a penalty-based correction by using GT return
(GT ) and asset return (r). We distinguish two types of penalization which consist
of the GT interest and the momentum strategy-based SSD. In this framework, we
compute the GT returns by applying the logarithmic returns on the GT data, GTj =
ln
(

gtj
gtj−1

)
, j = 1, . . . , N .

Before we consider the penalization cases, we apply the returns conditional GT re-
turn using three alternative kernel functions, Gaussian, Epanechnikov, and Student-
t (see Appendix B), when the return grows with GT interest (r > 0 &GT > 0) is
observed.

In this context, we penalized the return when it is not coherent with GT interests or
the non-isotonic news (we say that news is isotonic with returns r when r ·GT > 0.
In this Chapter, no short sales are allowed. Thus, we apply the first penalization,
called one-size penalization, to consider that we avoid short sales and speculation,
(r < 0 &GT > 0). And the second subcase, called two-size penalization, penalized
the non-isotonic behavior between return and GT (r > 0 &GT < 0 or r < 0 &GT > 0).
On the other case, we approximate the return conditional GT return for all the other
situations. For the kth asset, we have these approximated returns:

1The list of selected assets components of S&P100 index consists of AAPL, ADBE, AMGN,
AMZN, AXP, BDX, BMY, BRKB, CMCSA, CSCO, CVX, INTC, ISRG, JNJ, JPM, KSS,
MCD, MRK, MSFT, NVDA, ORCL, QCOM, SBUX, SLB, TXN, UTX, VLO, WFC, WMT,
and XOM.
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subcase 1 (one-size penalization):

r̃k,(j) =
−1 , for rk,(j) < 0 & GTk,j > 0
E
(
rk,(j)|GTk,j−1

)
otherwise

(3.7)

In this subcase 1, we penalize interests for short-sales and speculation.
subcase 2 (two-size penalization):

r̃k,(j) =
−1 , for rk,(j) > 0 &GTk,j < 0 or rk,(j) < 0 &GTk,j > 0
E
(
rk,(j)|GTk,j−1

)
otherwise

(3.8)

In this subcase 2, we want to penalize the non-isotonic behavior of return and GT.
Following the investment decision rules (see, Hanoch and Levy (1969)), the second-
order stochastic dominance (SSD) can be used as a comparison of prospects ranking.
We provide the SSD decision rules by the following condition that let two investments
be X and Y, whose cumulative distributions are F and G, respectively. Then, X
dominates Y by SSD for if and only if:

I2 (x) ≡
x�

−∞

[G (t)− F (t)] dt ≥ 0

for all x, and G 6= F for some x0. In our analysis, F and G define as two series of
returns.
Next, in the second type of the penalized model, we evaluate the impact of con-
ditional expectation considering the penalized GT based on momentum strategy.
In particular, we penalized the case that the last two weeks

(
r[(j−10),(j)]

)
of return

distribution are worse in the second stochastic dominance sense (SSD) with respect
to the previous two weeks

(
r[(j−20),(j−11)]

)
.

The first subcase is called historical returns penalization. We will be considered
when the returns between the last weeks SSD dominates the last two week. In the
second subcase, called conditional expectation penalization, we use the conditional
expectation when the past two weeks SSD dominates the previous two week. Thus,
for the kth asset, we get:
subcase 1 (historical returns penalization):

r̃k,(j) =
−1 , for rk,[(j−20),(j−11)]

SSD
> rk,[(j−10),(j)]

rk,(j) otherwise
(3.9)
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In this subcase 1, we penalize that the recent returns (last two weeks) are worse
than the previous ones (past two weeks), but we do not use the conditional returns
on GT information.
subcase 2 (conditional expectation penalization):

r̃k,(j) =
−1 , for rk,[(j−20),(j−11)]

SSD
> rk,[(j−10),(j)]

E
(
rk,(j)|GTk,j−1

)
otherwise

(3.10)

On the other hand, in subcase 2, we penalize recent returns, which are worst than
the past (like in some momentum strategies), and we use conditional returns on GT
information. Then, we turn all the cases into portfolio optimization.
Example: Let us consider AAPL stock returns during the period from 02/04/2020
till 30/04/2020. In subcase 2, we separate daily returns from 17/04/2020 till
30/04/2020 and from 02/04/2020 till 16/04/2020. Under this condition we have:

rAAPL,[17/04/2020,...,30/04/2020] = [−0.013,−0.020,−0.0313,0.028,−0.003,0.028,0.001,−0.016,0.032,0.020],

rAAPL,[02/04/2020,...,16/04/2020] = [0.016,−0.014,0.083,−0.011,0.025,0.007,0.019,0.049,−0.0091,0.007].

Observe that rAAPL,[02/04/2020,...,16/04/2020]
SSD
> rAAPL,[17/04/2020,...,30/04/2020], thus, we

penalized the returns by -1, i.e.,

r̃AAPL,(30/04/2020) = −1 .

Therefore, substituting into equation (3.10), we get

rAAP L,[30/04/2020] =

{
−1 , for rAAP L,[02/04/2020,...,16/04/2020]

SSD
> rAAP L,[17/04/2020,...,30/04/2020]

E
(
rk,(j)|GTk,j−1

)
otherwise

3.4. Ex-Post Empirical Analysis

In this section, we apply the returns conditional GT information with different
penalization cases. In particular we classifies the different in-sample/out-of sample.
Then, we measure the ex-post performance of optimum portfolio models using the
rolling backtesting analysis and the ex-post performance returns.
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First of all, we retrieved the assets data series from Thomson Reuter DataStream.
We download the daily adjusted closing prices of 30 selected assets, avoiding the
sensitive cases of GT, as shown in Footnote 1. Then, we calculate the logarithmic
returns from the asset prices series. To synchronize the GT with asset data, we
retrieve the data from January 01, 2004, to December 31, 2018, excluding the week-
ends and holidays from the GT data. In particular, we also compute the logarithmic
returns from the GT data (see Section 3.3.2). Next, we apply the returns condi-
tional GT return using three alternative kernel functions, Gaussian, Epanechnikov,
and Student-t. The condition will observe when the return grows with GT interest
(r > 0 &GT > 0). After that, we use two types of penalization: the GT interest
and the momentum strategy-based SSD, as shown in Section 3.3.3. In particular we
classify in Table 3.1 the different models, we get according to the penalization and
conditional expectation definition used in this empirical analysis.

Table 3.1.: Description of the different penalization and conditional expectation
definition.

Model Description

Historical We use historical returns.

Gauss We use conditional expectation based on Gaussian kernel (see Appendix B)

Gauss1side We use conditional expectation based on Gaussian kernel applied to penalized return according to equation 3.7

Gauss2side We use conditional expectation based on Gaussian kernel applied to penalized return according to equation 3.8

GaussSSD We use conditional expectation based on Gaussian kernel applied to penalized return according to equation 3.10

Epa We use conditional expectation based on Epanechnikov kernel (see Appendix B)

Epa1side We use conditional expectation based on Epanechnikov kernel applied to penalized return according to equation 3.7

Epa2side We use conditional expectation based on Epanechnikov kernel applied to penalized return according to equation 3.8

EpaSSD We use conditional expectation based on Epanechnikov kernel applied to penalized return according to equation 3.10

Student We use conditional expectation based on Student-t kernel (see Appendix B)

Student1side We use conditional expectation based on Student-t kernel applied to penalized return according to equation 3.7

Student2side We use conditional expectation based on Student-t kernel applied to penalized return according to equation 3.8

StudentSSD We use conditional expectation based on Student-t kernel applied to penalized return according to equation 3.10

SSD We use penalized historical returns according to equation 3.9

We examine the optimum portfolio models of Sharpe ratio, CVaR5%, Sortino ratio,
and Rachev ratio as mentioned in equations 3.3, 3.2, 3.4, and 3.5, respectively. To
minimize CVaR5%, we give the weight λ in the mean-CVaR equation (3.2) equal to
zero. We analyze the ex-post results by the percentage of annual return, maximum
drawdown, and Sharpe ratio. And we additionally use stochastic dominance to
pairwise compare the ex-post returns. Moreover, we perform the optimum portfolio
models by varying the weight parameters (λ) on mean-variance and mean-CVaR5%.

In particular, we summarize the main steps of our procedure of optimization as
follows, i.e., at kth optimization, four main steps are used to compute the ex-post
wealth:
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3.4 Ex-Post Empirical Analysis

Step 1 Compute the return conditional GT information based on different kernel
functions with different penalization cases as described in Section 3.3.3.

Step 2 Determine the optimal portfolio according to Section 3.3.1. At this stage,
to assess the portfolio optimization problem, we account for the compu-
tationally complexity. In fact, we find that:

• We need to solve a quadratic problem to maximize either the Sharpe
ratio (3.3) and Sortino ratio (3.4)

• A linear optimization problem is used for the minimization of CVaR5%.

• A mixed interger linear program (3.5) is used to maximize the
Rachev ratio.

Step 3 Compute the ex-post wealth.

Step 4 Repeat the previous steps for all models, for different kernel functions,
and for different in/out sample windows till observations are finished.

The final results of this procedure are illustrated in Tables 3.2, 3.3, 3.4, 3.5, 3.6, 3.7,
3.8, and Figures 3.1, 3.2.

In Tables 3.2, 3.3, and 3.4, we summarize respectively the ex-post annual return,
the Sharpe ratio, and the maximum drawdown2 valued on the ex-post results ob-
tained by the optimization models with different penalizations, kernel functions,
and in/out sample windows. For the out-of-sample analysis, we propose to recal-
ibrate the portfolio every week, or every month, or every two months. Moreover,
we consider three possible lengths of in-samples before each ex-ante analysis: 125
daily trading observations (6 months), 250 daily trading observations (1 year), and
500 daily trading observations (2 years). Thus, considering all these parameters, we
analyze 504 ex-post sample paths of wealth in total using conditional returns and
conditional penalized returns for different in-sample and out-of-sample length peri-
ods. In comparison, the symbol little star (∗) underlines the highest ex-post annual
return, ex-post Sharpe ratio, and ex-post maximum drawdown for each in-sample
and out-of-sample length period among all penaliztions (one-side, two-side), mod-
els (SR, CVaR5%, Sortino, Rachev), and conditional expectation definitions (Gauss,
Epa, Student, see Appendix B). The plus symbol (+) points out the highest ex-post
annual return (3.2), the ex-post Sharpe ratio (Table 3.3), and the minimum ex-post
maximum drawdown (Table 3.4) for each model among all in-sample/out of sample
periods. Last, the big star sign (F) points out the highest ex-post annual return
(3.2), the ex-post Sharpe ratio (Table 3.3), and the minimum ex-post maximum
drawdown (Table 3.4).

To refine all optimization models’ performance with the length periods, we examine
which model gives the best analysis of the percentage of annual return, maximum
drawdown, and Sharpe ratio. Tables 3.2, 3.3, and 3.4 show that

2We use the maxdrawdown formula proposed by Matlab version R2020a for maximum drawdown.
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• In view of backtesting length periods, the ex-post annual return of 2-year in-
sample and 1-week out-of-sample shows 17 more times better results for any
fixed model, conditional expectation kernel definition, and penalization model
(see Table 3.2). We have got similar results in Table 3.3 where, the Sharpe ratio
of 2-year in-sample and 1-week out-of-sample shows 14 times better results.
However, in terms of risk, Table 3.4 shows that the best in/out of sample
period performance is given by 1-year in-sample and 1-month out-of-sample,
while for the 2-year in-sample and 1-week out-of-sample, we get 9 times better
results with respect to other models (that is anyway good enough).

• In view of the models, the Sortino ratio optimization model performs 5 times
better ex-post annual return and Sharpe ratio compared to the other in-
sample/out-of-sample length periods (see Tables 3.2, 3.3). Instead, the op-
timization Sharpe ratio model presents the most conservative strategies with
7 times the lowest ex-post maximum drawdown compared to the other in-
sample/out-of-sample length period.

• At 1-year in-sample and 1-month out-of-sample, the Sortino ratio optimiza-
tion model applied the penalized SSD with the conditional expectation using
Epanechnikov kernel functions shows the best ex-post annual return (see Ta-
ble 3.2) and the best ex-post Shape ratio (see Table 3.3). While the Rachev
ratio model represents the lowest maximum drawdown applied the penalized
conditional expectation using Gaussian kernel function at 6-month in-sample
and 1-week out-of-sample.

• For the Sharpe ratio model, the conditional expectation using Gaussian and
Epanechnikov kernel functions with any possible penalizations we obtain very
good results (in term of ex-post annual return and Shape ratio) generally bet-
ter than the ones obtained with historical returns. We obtain similar results
for the Sortino ratio and CVaR5% models. However, the Rachev ratio gives the
best performance when we use historical returns. This phenomenon is justifi-
able because the Rachev ratio is based on both right and left tails definition.
Therefore we have a much higher impact on the Rachev ratio definition when
we correct the returns taking into account the tail behavior returns and GT
information clearly.

Moreover, the ex-post annual return of S&P500 during that period was -0.24%, that
is 499 times lower than the analyzed models.
Furthermore, we perform stochastic dominance tests on the Sharpe ratio model,
CVaR5%, Sortino ratio, and Rachev ratio to compare the portfolios’ performance
(see, e.g. Davidson and Duclos (2000), Müller and Stoyan (2002), Ortobelli et al.
(2015), and Castellano and Cerqueti (2016)). We use the performance returns from
different penalization models and in-sample/out-of-sample length periods. We then
pairwise test for the first-order stochastic dominance (FSD), second-order stochastic
dominance (SSD), and increasing-convex-order (ICX). The FSD is used to find the
investors who prefer more wealth to less (non-satiable). The SSD requires more
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assumptions that the investors who do not like risk but still prefer more wealth to
less (non-satiable risk-averse). The ICX inversely requires that the investors prefer
risk and more wealth to less (non-satiable risk-seeking). We find only fours case
of first-order stochastic dominance and for this reasons we do not insert FSD test
in the following tables. From the results of this analysis, the wealth seems to have
characteristics for coving investors’ preferences of non-satiable risk-averse and non-
satiable risk-seeking. In Tables 3.5, 3.6, 3.7, and 3.8, we observed that

• From these Tables we deduce that the best results in terms of stochastic domi-
nance test for when we optimize the Sharpe ratio, CVaR5%, Sortino ratio, and
Rachev ratio models are respectively obtained for SSD, GaussSSD, Epa2side,
and historical returns for ICX order. Therefore, we confirm that Rachev ratio
works better with historical returns while the other models perform better
using particular penalization or conditional return definitions.

• These stochastic dominance tests justify the use of conditional penalized re-
turns in particular for models like Sharpe ratio, Sortino Ratio and CVaR5%
based models.

• When we optimize Sharpe ratio and CVaR5% applied to historical returns, we
often obtain good performance for non satiable risk averse investors respect to
other strategies.

Finally, we evaluate how the weight (λ) of mean-variance and mean-CVaR5% op-
timization models (see Subsection 3.3.1.1 and 3.3.1.2) influence all optimum mean
choices. For the mean-variance model, we use SSD penalization (see Table 3.1)
and 6-month in-sample and 1-week out-of-sample length period, because we obtain
the best performance of the Sharpe ratio with this length period and penalization
model. For the mean-CVaR5% we use Gaussian conditional expectation (see Table
3.1) and 1-year in-sample/1-month out-of-sample length period because it was the
most performing in the minimization of CVaR5%.
The mean-variance in Figure 3.1 shows a peak for λ = 0.88. The ex-post wealth
for mean-CVaR5% is minimum when we consider the global minimium CVaR5%
(corresponding to λ = 0) or the maximum mean strategy (λ = 1). The mean-
CVaR5% model gives the highest ex-post wealth for λ = 0.45, as displayed in Figure
3.2.
To sum up, after we analyzed 504 ex-post samples, we observed that most of the
models present better performance than the S&P500 index during the same period.
In particular, the ex-post annual return of the Sharpe ratio, CVaR5%, Sortino ratio,
and Rachev ratio are higher 77, 63, 74, and 8 times than the historical. Moreover,
all the best results of each optimization model dominate in the sense of ICX order
the S&P500 index.
Our finding indicates that the portfolio optimizations using the conditional expecta-
tion with penalty-based correction models can apply as a profitable strategy. From
the results mentioned above, there is evidence of using the searching information to
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Figure 3.1.: The ex-post performance of mean-variance of penalization with SSD
at 6-month in-sample and 1-week out-of-sample performs by varying the weight
(λ) from 0 to 1.

Figure 3.2.: The ex-post performance of mean-CVaR5% of conditional expectation
using the Gaussian kernel function at 1-year in-sample and 1-month out-of-sample
performs by varying the weight (λ) from 0 to 1.
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predict the financial data as consistent with Da et al. (2011); Vlastakis and Markellos
(2012); Vozlyublennaia (2014); Ortobelli et al. (2015).

3.5. Conclusions

As data becomes a new source for financial prediction, we investigate the impact
of searching query data on the portfolio optimization models in this study. In
particular, we propose a penalty-based correction with conditional expectation and
second-order stochastic dominance. We then perform different portfolio optimization
problems.
First, we examine the impact of penalization models using portfolio optimization.
The result shows the highest ex-post annual return and Sharpe ratio when using
EpaSSD with 1-year in-sample and 1-month out-of-sample. As with the dominance
comparison, the best results of each optimization model seem to have characteristics
for coving investors’ preferences of non-satiable risk-seeking (ICX).
Second, we suggest adding the mean-variance and mean-CVaR5% optimization mod-
els by varying its weight (λ) to evaluate the performance because the results are
related to the λ parameter’s change.
In summary, the proposed penalty-based correction with conditional expectation
using portfolio optimization models can provide a profitable return on investment.
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Table 3.2.: The summary of the ex-post annual return using the Sharpe ratio,
CVaR5%, Sortino ratio, and Rachev ratio optimization models with different pe-
nalizations and kernel function over the backtesting periods.

Penalization Model

In-sample/Out-of-sample

AnnualReturn% (Number of timeswe recalibrate the optimal portfolios)
6mth/1wk 6mth/1mth 6mth/2mth 1yr/1wk 1yr/1mth 1yr/2mth 2yr/1wk 2yr/1mth 2yr/2mth

Winner
(796) (199) (99) (771) (192) (96) (721) (180) (90)

Historical

SR 11.2266% 12.3882% + 9.9810% 10.9923% 8.6750% 9.4493% 12.0782% 11.5431% 10.4293% 0

CVaR 9.0664% 8.4434% 6.8457% 10.2287% 8.6715% 10.3103%+ 9.6026% 7.9987% 9.1033% 0

Sortino 8.3363% 10.0582% 14.2156% 15.2371% 17.2726%+ 12.2620% 3.5526% 4.7785% 9.4497% 0

Rachev 26.7139%∗ 14.0297% 17.3294% 27.5344%∗ 17.6892% 16.6314% 28.1955%∗+ 18.0668% 13.8439% 3

Gauss

SR 11.3555% 12.3730% 10.3220% 8.4393% 7.7217% 7.9981% 14.6247%+ 12.1828% 11.2440% 0

CVaR 9.8031%+ 8.8894% 8.1128% 8.7965% 7.2765% 7.3065% 8.1004% 7.5536% 7.5406% 0

Sortino 13.4847% 15.5690% 25.6119%∗+ 16.8144% 17.6990% 11.8878% 5.6646% 5.9189% 7.5433% 1

Rachev 13.6364% 11.6499% 9.5079% 15.4415%+ 10.1850% 14.1848% 12.4470% 9.5544% 10.2552% 0

Gauss1side

SR 13.5729% 12.2498% 12.5984% 13.6385% 12.4475% 10.9878% 14.5945%+ 12.5301% 13.1047% 0

CVaR 7.4526% 11.4281% 12.1853% 10.9059% 10.8726% 10.1133% 14.7947%+ 11.8319% 13.0790% 0

Sortino 16.8983% 12.9041% 14.0015% 11.3853% 9.1609% 9.3402% 18.2292%+ 14.9751% 15.9905% 0

Rachev 12.7261% 12.3283% 3.8039% 11.0708% 6.6991% 7.4229% 17.3068% 19.9915%∗+ 13.0981% 1

Gauss2side

SR 13.6554%+ 13.4564% 11.7746% 12.5541% 12.0631% 11.1349% 13.4970% 12.3117% 12.9736% 0

CVaR 7.1807% 8.4038% 10.4748% 5.6112% 9.5715% 10.2192% 9.0645% 8.1764% 11.9630%+ 0

Sortino 18.3152% 13.7179% 15.8914% 14.2601% 8.6652% 6.7246% 16.9496% 18.7823%+ 21.6733%∗ 1

Rachev 6.3832% 10.6535% 12.5767% 14.8927% 13.0983% 11.4715% 20.2021%+ 12.7066% 15.5406% 0

GaussSSD

SR 15.1630% 13.7022% 15.6325% 16.4492% 17.0404% 16.3199% 17.2259%+ 16.2938% 14.8993% 0

CVaR 10.1851% 14.9927% 13.8213% 8.5802% 17.4536%+ 9.5234% 10.2082% 13.2154% 7.5209% 0

Sortino 9.1611% 10.8812% 14.4226% 16.9174% 23.8910%+ 17.8663% 14.7202% 9.2351% 3.7783% 0

Rachev 17.5480%+ 14.3055% 15.5523% 9.8610% 11.4259% 11.3401% 7.1483% 4.7333% 4.1981% 0

Epa

SR 15.2333%+ 13.9903% 13.5328% 8.6617% 8.2596% 12.7341% 12.4431% 11.8960% 12.0904% 0

CVaR 10.0142%+ 8.9100% 7.5754% 8.6295% 6.5279% 6.3922% 8.0411% 7.2869% 7.5512% 0

Sortino 4.7737% 7.6899% 16.9683% 14.7496% 17.8579%+ 10.3010% 3.8552% 2.3897% 7.4644% 0

Rachev 13.8830%+ 13.8246% 12.9482% 10.3210% 9.7895% 11.1208% 11.2897% 8.5476% 9.9400% 0

Epa1side

SR 16.3960%+ 15.6885% 14.2701% 13.8862% 12.7890% 10.6983% 14.5335% 12.4756% 13.1202% 0

CVaR 8.0892% 13.2340% 14.2927% 10.5605% 11.3819% 10.0912% 14.2960%+ 11.3733% 12.8414% 0

Sortino 19.7460%+ 17.3507%∗ 17.9932% 12.3519% 9.9000% 10.6199% 18.5086% 14.9751% 15.9905% 1

Rachev 4.0653% 11.9533% 9.0257% 3.2676% 4.2288% 9.2820% 8.7334% 16.0729% 18.2559%+ 0

Epa2side

SR 14.2144% 13.2495% 11.5997% 13.3030% 14.0958% 14.3405%+ 13.5210% 12.3438% 12.9854% 0

CVaR 7.7391% 10.2049% 12.1405%+ 5.1821% 9.4786% 10.8036% 8.8703% 8.3833% 11.9924% 0

Sortino 18.3333% 16.9274% 18.1825% 16.4584% 10.2833% 10.2453% 17.2591% 18.5235% 21.6733%+ 0

Rachev 11.5602% 12.1012% 11.8256%+ 9.4122% 2.8953% -0.5265% 11.4427% 10.3215% 2.0681% 0

EpaSSD

SR 14.8015% 14.5436% 13.3100% 12.0002% 13.3111% 14.7109% 15.5891%+ 13.9033% 13.0492% 0

CVaR 7.0053% 8.5705% 3.2983% 9.8676% 6.9393% 4.5842% 13.6857% 17.0268%+ 11.3348% 0

Sortino 6.7238% 13.6417% 14.1175% 19.6542% 30.0183%∗+F 23.0347%∗ 20.4578% 12.4107% 8.6860% 2

Rachev 11.2413% 14.9660% 11.9909% 11.7539% 7.7254% 11.7235% 16.0946%+ 14.2563% 12.0665% 0

Student

SR 6.6690% 7.2769% 5.9196% 4.3086% 3.2987% 3.7524% 9.7599%+ 7.9673% 6.9162% 0

CVaR 9.3245%+ 8.4397% 8.1672% 8.4211% 7.3297% 7.3188% 8.1059% 7.5414% 7.5404% 0

Sortino 11.9124% 11.7775% 21.9390%+ 20.1074% 17.4403% 10.5801% 6.7643% 6.2601% 9.3601% 0

Rachev 11.1704% 8.3437% 5.7221% 11.5844% 8.0976% 3.9896% 18.1074%+ 9.5321% 8.1691% 0

Student1side

SR 8.0261% 7.5575% 7.6817% 8.1617% 7.5957% 6.2065% 8.8308%+ 7.4202% 8.2539% 0

CVaR 7.7489% 11.6919% 12.2768% 10.8310% 11.2074% 10.0059% 15.1614%+ 11.6589% 13.0668% 0

Sortino 16.3605% 12.2297% 14.0441% 11.1222% 9.1610% 9.3402% 18.1205%+ 14.9751% 15.9905% 0

Rachev 4.7921% 11.1472% 8.6889% -1.7422% 5.8581% 6.0202% 14.6354%+ 10.7523% 11.7058% 0

Student2side

SR 7.9300% 8.2685%+ 6.8089% 6.9631% 7.0704% 6.1628 7.6408% 7.0154% 7.8265% 0

CVaR 7.1664% 8.4720% 10.3738% 5.2569% 9.6364% 10.0875 9.0707% 8.1962% 11.9755%+ 0

Sortino 16.9224% 14.6723% 16.3128% 14.7070% 9.3726% 7.2141 17.5235% 19.2543% 21.6733%+ 0

Rachev 9.5102% 3.9166% 15.3276% 10.0773% 3.1926% 9.0917 16.6400%+ 7.4675% -0.7346% 0

StudentSSD

SR 10.9937% 9.3932% 10.3508% 10.9690% 11.2671%+ 9.6363% 11.0034% 10.7682% 10.3875% 0

CVaR 7.2523% 12.3287% 9.0210% 10.4993% 20.8491%+ 12.7582% 9.1615% 13.7249% 7.1550% 0

Sortino 7.8073% 12.8066% 13.2857% 14.9467% 22.3679%+ 18.8489% 13.3266% 12.8550% 6.8669% 0

Rachev 11.0165% 9.2622% 5.8789% 12.3126% 18.2351%+ 10.6348% 5.0481% 1.7988% 7.3484% 0

SSD

SR 19.0000%+ 16.7655% 12.2557% 18.2190% 17.5032% 14.9611% 17.1762% 14.0944% 14.1259% 0

CVaR 9.1387% 10.9185% 2.4116% 7.6541% 11.1759%+ 6.0474% 3.0404% 3.5719% 4.1205% 0

Sortino 4.6510% 5.7289% 14.3378% 11.9611%+ 6.1692% 2.9030% 9.3035% 9.5106% 7.6176% 0

Rachev 1.9546% 7.3160% 20.4234%+ -0.9326% 10.1543% 0.6379% -4.0255% 5.1377% 14.3789% 0

Winner 10 2 5 2 10 2 17 3 5

Note:
∗ is the highest ex-post annual return among all models (for each column) among all in-sample/out-of-sample
backtesting periods,
+ is the highest ex-post annual return among all models (for each row),
F is the highest ex-post annual return.
64



3.5 Conclusions

Table 3.3.: The summary of the Sharpe ratio with different penalizations and ker-
nel functions over the backtesting periods.

Penalization Model

In-sample/Out-of-sample

SharpeRatio (Number of timeswe recalibrate the optimal portfolios)
6mth/1wk 6mth/1mth 6mth/2mth 1yr/1wk 1yr/1mth 1yr/2mth 2yr/1wk 2yr/1mth 2yr/2mth

Winner
(796) (199) (99) (771) (192) (96) (721) (180) (90)

Historical

SR 2.90 3.11 2.78 2.76 2.84 2.43 3.24+ 2.78 2.67 0

CVaR 2.17 1.88 1.88 2.66 2.66 2.93+ 2.20 2.18 2.68 0

Sortino 1.49 0.99 2.88 5.07 5.57+ 3.66 -0.62 -0.72 0.82 0

Rachev 9.64∗ 5.86 5.46 9.77∗ 5.70 5.63 10.00∗+ 5.76∗ 4.26 4

Gauss

SR 3.18 3.44 3.59 2.39 2.66 2.38 3.90+ 3.57 3.24 0

CVaR 2.84+ 2.49 2.49 2.51 2.25 2.26 2.22 2.04 2.04 0

Sortino 3.05 3.91 8.26∗+ 5.69 5.65 3.50 1.21 0.74 1.58 1

Rachev 0.18 2.96 2.74 4.00 3.15 4.87+ 2.94 2.49 3.48 0

Gauss1side

SR 4.04 3.52 3.82 4.07 4.01 3.31 4.52 3.80 3.78 0

CVaR 2.12 3.31 3.56 2.51 3.04 3.10 3.29 4.11 4.85+ 0

Sortino 4.65 4.35 4.48 3.91 3.16 3.28 5.36+ 4.48 4.61 0

Rachev 3.19 3.29 0.80 3.35 1.79 1.58 5.06 5.14+ 2.74 0

Gauss2side

SR 4.11+ 4.08 3.63 3.58 3.82 3.43 4.02 3.50 3.63 0

CVaR 2.32 2.59 2.95 1.41 3.00 3.35+ 2.84 2.20 3.04 0

Sortino 4.59 3.13 4.85 3.75 3.77 3.33 5.15 5.29 5.33+ 0

Rachev 2.15 2.93 3.47 3.82 3.34 2.64 4.70+ 2.15 2.77 0

GaussSSD

SR 4.02 3.75 4.94 4.09 5.09+ 4.94 4.75 4.62 4.28 0

CVaR 4.47 5.68 5.02 3.03 6.75+ 2.25 3.62 3.64 1.59 0

Sortino 3.77 4.54 5.10 4.88 7.53+ 4.97 5.34 2.45 0.13 0

Rachev 6.33+ 4.70 5.89 3.73 4.37 4.07 2.85 2.07 1.23 0

Epa

SR 4.98+ 4.40 4.79 2.42 2.82 4.42 3.94 3.73 3.63 0

CVaR 2.95+ 2.72 2.18 2.18 1.91 1.95 2.25 2.01 2.05 0

Sortino 0.54 0.56 3.91 5.25 6.06+ 2.97 -0.53 -1.21 0.69 0

Rachev 3.64+ 3.58 3.17 3.11 3.09 3.19 3.18 2.32 2.56 0

Epa1side

SR 5.36+ 5.14 4.63 4.18 4.19 3.18 4.48 3.78 3.78 0

CVaR 2.40 4.09 4.52 2.41 3.25 3.12 3.11 3.95 4.76+ 0

Sortino 6.06 6.43+ 6.37 4.20 3.17 3.30 5.41 4.48 4.61 0

Rachev 1.54 4.50 1.96 1.30 -0.10 1.31 3.92 4.13 5.09+ 0

Epa2side

SR 4.36 3.98 3.54 3.92 4.81 4.98+ 4.01 3.51 3.64 0

CVaR 2.53 3.35 3.74+ 1.22 2.84 3.58 2.76 2.27 3.05 0

Sortino 4.77 4.54 5.63+ 4.32 4.49 4.86 5.15 5.07 5.33 0

Rachev 4.11+ 4.02 3.28 3.02 -0.30 -0.86 3.60 1.92 -0.16 0

EpaSSD

SR 4.10 4.08 3.68 3.13 4.10 4.97+ 4.73 4.09 3.66 0

CVaR 2.31 2.68 0.37 2.03 2.10 0.65 3.25 4.24+ 2.52 0

Sortino 2.84 6.66∗ 6.06 6.40 10.70∗+F 7.140∗ 6.00 3.54 1.42 3

Rachev 3.78 4.28 4.18 3.31 2.19 3.81 4.35+ 4.26 3.97 0

Student

SR 1.64 1.75 1.81 1.02 1.29 1.09 2.47+ 2.14 1.97 0

CVaR 2.86+ 2.53 2.52 2.44 2.28 2.28 2.22 2.04 2.04 0

Sortino 3.02 2.59 6.90+ 6.90 5.72 3.04 1.19 1.07 2.33 0

Rachev 2.38 2.71 2.23 2.83 2.21 1.64 5.69+ 2.03 1.98 0

Student1side

SR 2.32 2.08 2.20 2.39 2.45 1.79 2.73+ 2.22 2.24 0

CVaR 2.20 3.38 3.59 2.52 3.21 3.06 3.38 4.02 4.83+ 0

Sortino 4.48 4.06 4.50 3.94 3.16 3.28 5.34+ 4.48 4.61 0

Rachev 0.95 2.03 1.32 -0.24 2.12 1.76 3.77+ 2.78 2.73 0

Student2side

SR 2.33 2.44+ 2.03 1.86 2.20 1.82 2.19 1.83 1.98 0

CVaR 2.31 2.59 2.89 1.28 2.97 3.29+ 2.86 2.23 3.05 0

Sortino 4.10 3.12 4.78 3.91 3.99 3.49 5.15 5.29 5.33∗+ 1

Rachev 2.48 0.83 4.18 2.03 0.74 2.25 5.91+ 1.26 -1.12 0

StudentSSD

SR 2.93 2.65 3.20+ 2.22 3.01 2.71 2.65 2.64 2.45 0

CVaR 3.11 5.27 2.95 3.46 7.37+ 2.85 3.04 4.13 2.01 0

Sortino 4.16 5.57 4.78 4.22 7.20+ 5.51 4.65 4.00 1.22 0

Rachev 4.73 4.11 2.63 4.50 6.56+ 5.52 1.11 1.05 2.00 0

SSD

SR 5.64+ 5.31 4.00 5.25 5.38 4.88 4.70 4.18 4.12 0

CVaR 2.22 3.78+ 0.67 2.06 3.64 1.67 0.24 0.65 0.85 0

Sortino 1.99 0.84 3.73 4.25 1.15 0.76 4.37+ 2.80 1.34 0

Rachev 2.08 3.23 6.72+ 1.45 4.28 1.76 -0.54 0.46 3.72 0

Winner 10 3 6 2 9 6 14 2 6

Note:
∗ is the highest Sharpe ratio among all models (for each column) among all in-sample/out-of-sample backtesting
periods,
+ is the highest Sharpe ratio among all models (for each row),
F is the highest Sharpe ratio.
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Table 3.4.: The summary of the maximum drawdown with different penalizations
and kernel functions over the backtesting periods.

Penalization Model

In-sample/Out-of-sample∗+

AnnualReturn% (Number of timeswe recalibrate the optimal portfolios)
6mth/1wk 6mth/1mth 6mth/2mth 1yr/1wk 1yr/1mth 1yr/2mth 2yr/1wk 2yr/1mth 2yr/2mth

Winner
(796) (199) (99) (771) (192) (96) (721) (180) (90)

Historical

SR 0.37 0.35∗ 0.37 0.37 0.35+ 0.38 0.37 0.41 0.37 1

CVaR 0.48 0.41 0.45 0.43 0.42 0.42 0.46 0.51 0.38+ 0

Sortino 0.83 0.91 0.82 0.61 0.59+ 0.71 0.87 0.86 0.82 0

Rachev 0.39 0.54 0.52 0.39 0.41 0.36∗ 0.39 0.34+ 0.44 1

Gauss

SR 0.43 0.41 0.38+ 0.46 0.47 0.49 0.43 0.41 0.40 0

CVaR 0.54+ 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0

Sortino 0.84 0.81 0.61+ 0.61+ 0.66 0.75 0.84 0.85 0.85 0

Rachev 0.10∗+F 0.64 0.66 0.58 0.50 0.54 0.54 0.65 0.53 1

Gauss1side

SR 0.44 0.43 0.46 0.44 0.45 0.48 0.44 0.44 0.40+ 0

CVaR 0.60 0.49 0.50 0.56 0.57 0.56 0.56 0.45+ 0.53 0

Sortino 0.54 0.47 0.49 0.51 0.42 0.52 0.37+ 0.43 0.45 0

Rachev 0.54 0.62 0.77 0.70 0.80 0.79 0.67 0.52+ 0.59 0

Gauss2side

SR 0.46 0.48 0.53 0.46 0.49 0.50 0.46+ 0.50 0.49 0

CVaR 0.56 0.49+ 0.55 0.55 0.53 0.55 0.56 0.53 0.55 0

Sortino 0.58 0.51 0.47 0.37+ 0.49 0.67 0.42 0.41 0.37 0

Rachev 0.75 0.69 0.57+ 0.61 0.77 0.80 0.70 0.68 0.78 0

GaussSSD

SR 0.53 0.46 0.46 0.52 0.44 0.43 0.41+ 0.42 0.44 0

CVaR 0.60 0.66 0.68 0.59 0.55+ 0.60 0.73 0.68 0.62 0

Sortino 0.67 0.72 0.73 0.63 0.46+ 0.64 0.68 0.71 0.76 0

Rachev 0.32+ 0.40 0.52 0.58 0.65 0.54 0.51 0.54 0.55 0

Epa

SR 0.36 0.39 0.45 0.35∗ 0.40 0.45 0.34∗ 0.33∗ 0.32∗+ 4

CVaR 0.51+ 0.52 0.59 0.58 0.59 0.59 0.55 0.56 0.56 0

Sortino 0.85 0.89 0.71 0.64 0.61+ 0.76 0.89 0.91 0.84 0

Rachev 0.49 0.50 0.50 0.54 0.45+ 0.54 0.60 0.59 0.58 0

Epa1side

SR 0.44 0.43 0.45 0.44 0.45 0.48 0.44 0.44 0.40+ 0

CVaR 0.60 0.49 0.49 0.55 0.55 0.58 0.56 0.45+ 0.53 0

Sortino 0.54 0.47 0.49 0.50 0.42 0.43 0.37+ 0.43 0.45 0

Rachev 0.78 0.67 0.89 0.78 0.79 0.77 0.64 0.57 0.55+ 0

Epa2side

SR 0.46 0.48 0.53 0.46 0.49 0.50 0.46+ 0.50 0.49 0

CVaR 0.57 0.48+ 0.55 0.56 0.54 0.55 0.56 0.52 0.55 0

Sortino 0.60 0.51 0.47 0.37+ 0.49 0.65 0.46 0.37 0.37 0

Rachev 0.59+ 0.61 0.85 0.74 0.75 0.75 0.66 0.64 0.68 0

EpaSSD

SR 0.44 0.41 0.37∗+ 0.47 0.44 0.49 0.44 0.44 0.46 1

CVaR 0.66 0.58 0.70 0.51+ 0.64 0.64 0.77 0.73 0.60 0

Sortino 0.61 0.72 0.76 0.57 0.46+ 0.57 0.64 0.66 0.61 0

Rachev 0.61 0.61 0.76 0.61 0.62 0.72 0.56+ 0.62 0.67 0

Student

SR 0.51 0.50 0.47 0.53 0.52 0.54 0.49 0.51 0.47+ 0

CVaR 0.54+ 0.56 0.56 0.57 0.56 0.56 0.56 0.56 0.56 0

Sortino 0.83 0.80 0.61 0.58+ 0.68 0.73 0.84 0.83 0.85 0

Rachev 0.63 0.62 0.67 0.63 0.65 0.51+ 0.59 0.68 0.68 0

Student1side

SR 0.53 0.53 0.55 0.53 0.55 0.58 0.53 0.51 0.49+ 0

CVaR 0.60 0.49 0.49 0.57 0.55 0.57 0.56 0.45+ 0.53 0

Sortino 0.54 0.47 0.49 0.51 0.42 0.52 0.37+ 0.43 0.45 0

Rachev 0.77 0.67 0.69 0.80 0.82 0.75 0.76 0.66 0.63+ 0

Student2side

SR 0.56+ 0.58 0.62 0.56+ 0.59 0.60 0.56+ 0.60 0.58 0

CVaR 0.56 0.48+ 0.55 0.56 0.54 0.55 0.56 0.52 0.55 0

Sortino 0.60 0.51 0.47 0.37+ 0.49 0.67 0.45 0.41 0.37+ 0

Rachev 0.73 0.76 0.65+ 0.73 0.79 0.77 0.71 0.74 0.87 0

StudentSSD

SR 0.58 0.52+ 0.55 0.62 0.60 0.59 0.52+ 0.52+ 0.54 0

CVaR 0.59 0.73 0.70 0.59 0.49+ 0.63 0.73 0.67 0.61 0

Sortino 0.69 0.72 0.75 0.62 0.42+ 0.64 0.68 0.64 0.64 0

Rachev 0.53 0.53 0.57 0.36+ 0.40 0.69 0.62 0.52 0.54 0

SSD

SR 0.41 0.38 0.45 0.41 0.32∗+ 0.39 0.41 0.43 0.41 1

CVaR 0.64 0.50 0.57 0.65 0.49+ 0.54 0.66 0.53 0.56 0

Sortino 0.76 0.86 0.69 0.48+ 0.69 0.73 0.68 0.59 0.61 0

Rachev 0.78 0.82 0.86 0.77 0.74 0.85 0.79 0.78 0.74+ 0

Winner 7 4 5 9 11 1 9 6 10

Note:
∗ is the lowest maximum drawdown among all models (for each column) among all in-sample/out-of-sample
backtesting periods,
+ is the lowest maximum drawdown among all models (for each row),
F is the lowest maximum drawdown .
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3.5 Conclusions

Table 3.5.: Amount of ICX and SSD stochastic dominance relations obtained
by maximizing the Sharpe ratio for each in-sample/out-of-sample length period
changing penalization typologies and conditional expectation definition.

Penalization Historical Gauss Gauss1side Gauss2side GaussSSD Epa Epa1side Epa2side EpaSSD Student Student1side Student2side StudentSSD SSD Sum
ICX
� - 0 0 0 0 0 0 0 0 4 0 0 0 0 4

SSD
� - 1 1 0 0 0 0 0 0 2 6 5 1 0 16

ICX
≺ - 3 5 3 5 3 6 9 9 1 2 1 5 6 58

Historical

SSD
≺ - 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Gauss

ICX
� 3 - 0 0 0 2 0 0 0 5 0 2 0 0 12

SSD
� 0 - 1 0 0 0 1 0 0 0 1 0 0 0 3

ICX
≺ 0 - 2 6 9 1 3 6 9 0 1 4 6 9 56

SSD
≺ 1 - 0 0 0 1 0 0 0 0 0 0 0 0 2

ICX
� 5 2 - 3 0 0 3 2 0 2 0 4 0 0 21

SSD
� 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0

ICX
≺ 0 0 - 0 6 1 3 3 4 0 1 0 6 7 31

Gauss1side

SSD
≺ 1 1 - 1 0 0 0 0 0 1 0 0 0 0 4

Gauss2side

ICX
� 3 6 0 - 0 0 1 0 0 6 0 2 0 0 18

SSD
� 0 0 1 - 0 0 0 0 0 0 0 0 0 0 1

ICX
≺ 0 0 3 - 5 1 5 5 6 1 3 0 6 8 43

SSD
≺ 0 0 0 - 0 1 0 0 0 0 0 0 0 0 1

ICX
� 5 9 6 5 - 6 6 5 3 9 6 3 2 5 70

SSD
� 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0

ICX
≺ 0 0 0 0 - 0 2 0 0 0 0 0 2 3 7

GaussSSD

SSD
≺ 0 0 0 0 - 1 0 0 0 0 0 0 1 0 2

Epa

ICX
� 3 1 1 1 0 - 1 0 0 3 1 3 0 0 14

SSD
� 0 1 0 1 1 - 0 1 0 0 0 0 1 0 5

ICX
≺ 0 2 0 0 6 - 3 0 4 0 0 0 4 6 25

SSD
≺ 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0

ICX
� 6 3 3 5 2 3 - 2 0 3 3 4 1 1 36

SSD
� 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0

ICX
≺ 0 0 3 1 6 1 - 2 3 0 3 1 5 7 32

Epa1side

SSD
≺ 0 1 0 0 0 0 - 0 1 1 0 0 0 0 3

Epa2side

ICX
� 9 6 3 5 0 0 2 - 0 6 2 4 0 0 37

SSD
� 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0

ICX
≺ 0 0 2 0 5 0 2 - 2 1 2 0 3 6 23

SSD
≺ 0 0 0 0 0 1 0 - 0 0 0 0 0 0 1

ICX
� 9 9 4 6 0 4 3 2 - 6 4 8 0 0 55

SSD
� 0 0 0 0 0 0 1 0 - 0 0 0 0 0 1

ICX
≺ 0 0 0 0 3 0 0 0 - 0 0 0 0 3 6

EpaSSD

SSD
≺ 0 0 0 0 0 0 0 0 - 0 0 0 2 0 2

Student

ICX
� 1 0 0 1 0 0 0 1 0 - 0 1 0 0 4

SSD
� 0 0 1 0 0 0 1 0 0 - 1 0 0 0 3

ICX
≺ 4 5 2 6 9 3 3 6 6 - 3 6 9 6 68

SSD
≺ 2 0 0 0 0 0 0 0 0 - 0 0 0 0 2

ICX
� 2 1 1 3 0 0 3 2 0 3 - 4 0 0 19

SSD
� 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0

ICX
≺ 0 0 0 0 6 1 3 2 4 0 - 0 6 6 38

Student1side

SSD
≺ 6 1 0 0 0 0 0 0 0 1 - 0 0 0 8

Student2side

ICX
� 1 4 0 0 0 0 1 0 0 6 0 - 0 0 12

SSD
� 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0

ICX
≺ 0 2 4 2 3 3 4 4 8 1 4 - 6 6 47

SSD
≺ 5 0 0 0 0 0 0 0 0 0 0 - 0 0 5

ICX
� 5 6 6 6 2 4 5 3 0 9 6 6 - 1 59

SSD
� 0 0 0 0 1 0 0 0 2 0 0 0 - 0 3

ICX
≺ 0 0 0 0 2 0 1 0 0 0 0 0 - 2 5

StudentSSD

SSD
≺ 1 0 0 0 0 1 0 0 0 0 0 0 - 0 2

SSD

ICX
� 6 9 7 8 3 6 7 6 3 6 6 6 2 - 75

SSD
� 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0

ICX
≺ 0 0 0 0 5 0 1 0 0 0 0 0 1 - 7

SSD
≺ 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0
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Table 3.6.: Amount of ICX and SSD stochastic dominance relations obtained by
minimizing the CVaR5% for each in-sample/out-of-sample length period changing
penalization typologies and conditional expectation definition..

Penalization Historical Gauss Gauss1side Gauss2side GaussSSD Epa Epa1side Epa2side EpaSSD Student Student1side Student2side StudentSSD SSD Sum
ICX
� - 1 0 1 0 3 0 0 2 1 0 1 0 1 10

SSD
� - 3 2 4 2 1 2 2 1 0 2 3 2 0 24

ICX
≺ - 0 4 1 6 0 4 4 3 1 4 2 3 1 33

Historical

SSD
≺ - 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Gauss

ICX
� 0 - 0 0 0 3 0 0 2 0 0 0 0 0 5

SSD
� 0 - 0 0 1 0 0 0 1 0 0 0 2 0 4

ICX
≺ 1 - 5 3 6 0 5 4 3 1 5 3 4 1 41

SSD
≺ 3 - 0 0 0 1 0 0 0 0 0 0 0 0 4

ICX
� 4 5 - 4 0 5 3 4 5 3 0 5 0 3 41

SSD
� 0 0 - 0 2 0 0 0 0 0 0 0 2 0 4

ICX
≺ 0 0 - 0 4 0 1 0 1 0 5 0 2 0 13

Gauss1side

SSD
≺ 2 0 - 0 0 0 0 0 0 0 0 0 0 0 2

Gauss2side

ICX
� 1 3 0 - 0 3 0 0 3 2 0 0 0 2 14

SSD
� 0 0 0 - 0 0 0 0 0 0 0 0 1 0 1

ICX
≺ 1 0 4 - 4 0 1 2 2 0 4 0 4 0 22

SSD
≺ 4 0 0 - 0 0 0 0 0 1 0 1 0 1 7

ICX
� 6 6 4 4 - 6 3 6 5 4 4 4 3 4 59

SSD
� 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0

ICX
≺ 0 0 0 0 - 0 0 0 2 0 0 0 2 0 4

GaussSSD

SSD
≺ 2 1 2 0 - 1 3 0 2 0 1 0 0 0 12

Epa

ICX
� 0 0 0 0 0 - 0 0 2 0 0 0 0 0 2

SSD
� 0 1 0 0 1 - 0 0 0 0 0 0 2 0 4

ICX
≺ 3 3 5 3 6 - 5 4 3 1 5 3 4 1 46

SSD
≺ 1 0 0 0 0 - 0 0 0 0 0 0 0 0 1

ICX
� 4 5 1 1 0 5 - 1 5 2 2 2 1 2 31

SSD
� 0 0 0 0 3 0 - 0 0 1 0 0 3 1 8

ICX
≺ 0 0 3 0 3 0 - 0 1 0 3 0 1 0 11

Epa1side

SSD
≺ 2 0 0 0 0 0 - 0 0 1 0 0 0 1 4

Epa2side

ICX
� 4 4 0 2 0 4 0 - 4 1 0 2 0 1 22

SSD
� 0 0 0 0 0 0 0 - 0 0 0 0 1 0 1

ICX
≺ 0 0 4 0 6 0 1 - 2 0 4 0 4 0 21

SSD
≺ 2 0 0 0 0 0 0 - 0 1 0 0 0 1 4

ICX
� 3 3 1 2 2 3 1 2 - 3 1 2 2 3 28

SSD
� 0 0 0 0 2 0 0 0 - 0 0 0 0 0 2

ICX
≺ 2 2 5 3 5 2 5 4 - 3 5 3 2 3 44

EpaSSD

SSD
≺ 1 1 0 0 0 0 0 0 - 0 0 0 0 0 2

Student

ICX
� 0 2 0 0 0 2 0 0 2 - 0 0 0 0 6

SSD
� 0 0 0 0 0 0 0 0 0 - 0 0 2 0 2

ICX
≺ 1 0 5 3 6 0 5 4 3 - 5 3 4 1 40

SSD
≺ 4 3 0 0 0 2 0 0 0 - 0 0 0 0 9

ICX
� 4 5 5 4 0 5 3 4 5 5 - 4 0 3 47

SSD
� 0 0 0 0 1 0 0 0 0 0 - 0 2 0 3

ICX
≺ 0 0 0 0 4 0 2 0 1 0 - 0 2 0 9

Student1side

SSD
≺ 2 0 0 0 0 0 0 0 0 0 - 1 0 0 3

Student2side

ICX
� 2 3 0 0 0 3 0 0 3 3 0 - 0 2 16

SSD
� 0 0 0 1 0 0 0 0 0 0 1 - 1 0 3

ICX
≺ 1 0 5 0 4 0 2 2 2 0 4 - 4 0 24

SSD
≺ 3 0 0 0 0 0 0 0 0 0 0 - 0 1 4

ICX
� 3 4 2 4 2 4 1 4 2 4 2 4 - 5 41

SSD
� 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0

ICX
≺ 0 0 0 0 3 0 1 0 2 0 0 0 - 0 6

StudentSSD

SSD
≺ 2 2 2 1 0 2 3 1 0 2 2 1 - 1 19

SSD

ICX
� 1 1 0 0 0 1 0 0 3 1 0 0 0 - 7

SSD
� 0 0 0 1 0 0 1 1 0 0 0 1 1 - 5

ICX
≺ 1 0 3 2 4 0 2 1 3 0 3 2 5 - 26

SSD
≺ 0 0 0 0 0 0 1 0 0 0 0 0 0 - 1

68
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Table 3.7.: Amount of ICX and SSD stochastic dominance relations obtained by
maximizing the Sortino ratio for each in-sample/out-of-sample length period
changing penalization typologies and conditional expectation definition.

Penalization Historical Gauss Gauss1side Gauss2side GaussSSD Epa Epa1side Epa2side EpaSSD Student Student1side Student2side StudentSSD SSD Sum
ICX
� - 0 2 2 1 2 2 1 1 0 2 2 2 5 22

SSD
� - 1 1 0 0 0 0 0 1 1 1 0 1 0 6

ICX
≺ - 6 5 6 5 2 6 6 5 5 4 6 4 0 60

Historical

SSD
≺ - 0 0 0 1 0 0 1 0 0 0 0 0 1 3

Gauss

ICX
� 6 - 4 4 3 6 3 3 1 2 4 4 3 5 48

SSD
� 0 - 0 0 0 0 0 0 1 0 0 0 0 0 1

ICX
≺ 0 - 4 4 3 1 5 4 4 1 4 3 3 0 36

SSD
≺ 1 - 0 0 1 0 0 0 1 0 0 0 0 1 4

ICX
� 5 4 - 0 3 5 0 0 2 5 2 0 2 6 34

SSD
� 0 0 - 0 0 0 0 0 0 0 0 1 1 0 2

ICX
≺ 2 4 - 3 3 3 3 8 6 3 1 4 2 0 42

Gauss1side

SSD
≺ 1 0 - 0 0 0 0 0 0 0 0 0 0 1 2

Gauss2side

ICX
� 6 4 3 - 3 5 2 0 2 4 4 1 3 7 44

SSD
� 0 0 0 - 1 0 0 0 1 0 0 0 1 0 3

ICX
≺ 2 4 0 - 3 2 3 6 4 3 0 4 2 0 33

SSD
≺ 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0

ICX
� 5 3 3 3 - 3 3 2 0 3 3 3 4 7 42

SSD
� 1 1 0 0 - 1 0 0 1 0 0 0 1 0 5

ICX
≺ 1 3 3 3 - 1 5 5 6 3 3 3 3 0 39

GaussSSD

SSD
≺ 0 0 0 1 - 0 0 0 0 1 1 0 0 0 3

Epa

ICX
� 2 1 3 2 1 - 2 1 0 1 3 2 2 4 24

SSD
� 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0

ICX
≺ 2 6 5 5 3 - 6 6 5 5 4 5 4 0 56

SSD
≺ 0 0 0 0 1 - 0 1 1 0 0 0 1 1 5

ICX
� 6 5 3 3 5 6 - 2 3 5 3 3 4 8 56

SSD
� 0 0 0 0 0 0 - 1 1 0 0 1 0 0 3

ICX
≺ 2 3 0 2 3 2 - 4 4 3 0 2 2 0 27

Epa1side

SSD
≺ 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0

Epa2side

ICX
� 6 4 8 6 5 6 4 - 3 5 8 6 5 9 75

SSD
� 1 0 0 0 0 1 0 - 1 0 0 0 0 0 3

ICX
≺ 1 3 0 0 2 1 2 - 4 3 0 1 2 0 19

SSD
≺ 0 0 0 0 0 0 1 - 0 0 0 0 0 0 1

ICX
� 5 4 6 4 6 5 4 4 - 5 6 4 6 7 66

SSD
� 0 1 0 0 0 1 0 0 - 0 0 0 0 0 2

ICX
≺ 1 1 2 2 0 0 3 3 - 3 2 3 0 0 20

EpaSSD

SSD
≺ 1 1 0 1 1 0 1 1 - 0 0 1 0 1 8

Student

ICX
� 5 1 3 3 3 5 3 3 3 - 3 3 3 6 44

SSD
� 0 0 0 0 1 0 0 0 0 - 0 0 0 0 1

ICX
≺ 0 2 5 4 3 1 5 5 5 - 5 3 4 0 42

SSD
≺ 1 0 0 0 0 0 0 0 0 - 0 0 0 0 1

ICX
� 4 4 1 0 3 4 0 0 2 5 - 0 2 6 31

SSD
� 0 0 0 0 1 0 0 0 0 0 - 1 0 0 2

ICX
≺ 2 4 2 4 3 3 3 8 6 3 - 3 3 0 44

Student1side

SSD
≺ 1 0 0 0 0 0 0 0 0 0 - 0 0 1 2

Student2side

ICX
� 6 3 4 4 3 5 2 1 3 3 3 - 2 8 47

SSD
� 0 0 0 0 0 0 0 0 1 0 0 - 1 0 2

ICX
≺ 2 4 0 1 3 2 3 6 4 3 0 - 2 0 30

SSD
≺ 0 0 1 0 0 0 1 0 0 0 1 - 0 0 3

ICX
� 4 3 2 2 3 4 2 2 0 4 3 2 - 6 37

SSD
� 0 0 0 0 0 1 0 0 0 0 0 0 - 0 1

ICX
≺ 2 3 2 3 4 2 4 5 6 3 2 2 - 0 38

StudentSSD

SSD
≺ 1 0 1 1 1 0 0 0 0 0 0 1 - 2 7

SSD

ICX
� 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0

SSD
� 1 1 1 0 0 1 0 0 1 0 1 0 2 - 8

ICX
≺ 5 5 6 7 7 4 8 9 7 6 6 8 6 - 84

SSD
≺ 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0
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Table 3.8.: Amount of ICX and SSD stochastic dominance relations obtained by
maximizing the Rachev ratio for each in-sample/out-of-sample length period
changing penalization typologies and conditional expectation definition.

Penalization Historical Gauss Gauss1side Gauss2side GaussSSD Epa Epa1side Epa2side EpaSSD Student Student1side Student2side StudentSSD SSD Sum
ICX
� - 2 3 6 3 6 4 5 3 3 3 4 4 6 52

SSD
� - 0 0 0 1 0 0 0 1 0 0 0 1 1 4

ICX
≺ - 0 0 0 0 0 1 0 0 0 1 1 1 0 4

Historical

SSD
≺ - 0 0 0 1 1 0 0 0 0 0 0 0 0 2

Gauss

ICX
� 0 - 1 0 1 1 0 0 0 0 0 0 0 4 7

SSD
� 0 - 1 0 3 0 1 1 1 0 0 2 1 1 11

ICX
≺ 2 - 2 1 1 0 0 0 2 8 6 2 4 0 28

SSD
≺ 0 - 1 0 0 0 0 0 0 0 0 0 0 0 1

ICX
� 0 2 - 3 3 2 5 2 0 0 1 1 0 6 25

SSD
� 0 1 - 0 0 0 1 1 1 0 1 0 0 1 6

ICX
≺ 3 1 - 0 0 0 0 0 1 4 4 2 4 0 19

Gauss1side

SSD
≺ 0 1 - 0 0 2 0 0 0 0 0 0 0 0 3

Gauss2side

ICX
� 0 1 0 - 0 3 5 3 0 0 1 1 0 2 16

SSD
� 0 0 0 - 0 0 1 0 2 0 1 0 1 1 6

ICX
≺ 6 0 3 - 1 0 2 0 2 3 5 2 3 1 28

SSD
≺ 0 0 0 - 0 2 0 0 0 0 0 0 0 0 2

ICX
� 0 1 0 1 - 0 3 2 0 1 2 1 0 5 16

SSD
� 1 0 0 0 - 0 1 1 0 0 0 0 1 0 4

ICX
≺ 3 1 3 0 - 0 0 0 3 3 3 2 4 0 22

GaussSSD

SSD
≺ 1 3 0 0 - 3 0 0 0 1 0 0 1 0 9

Epa

ICX
� 0 0 0 0 0 - 3 2 0 0 0 0 0 1 6

SSD
� 1 0 2 2 3 - 1 2 4 1 2 1 1 2 22

ICX
≺ 6 1 2 3 0 - 2 0 2 4 5 4 4 1 34

SSD
≺ 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0

ICX
� 1 0 0 2 0 2 - 0 0 0 0 1 0 4 10

SSD
� 0 0 0 0 0 0 - 1 1 0 0 0 0 2 4

ICX
≺ 4 0 5 5 3 3 - 2 6 6 4 3 3 1 45

Epa1side

SSD
≺ 0 1 1 1 1 1 - 2 1 1 0 0 1 0 10

Epa2side

ICX
� 0 0 0 0 0 0 2 - 0 0 1 0 0 3 6

SSD
� 0 0 0 0 0 0 2 - 0 0 0 0 0 0 2

ICX
≺ 5 0 2 3 2 2 0 - 3 3 0 3 3 1 27

SSD
≺ 0 1 1 0 1 2 1 - 1 0 0 0 1 0 8

ICX
� 0 2 1 2 3 2 6 3 - 1 1 1 2 7 31

SSD
� 0 0 0 0 0 0 1 1 - 0 0 0 0 1 3

ICX
≺ 3 0 0 0 0 0 0 0 - 1 3 2 1 0 10

EpaSSD

SSD
≺ 1 1 1 2 0 4 1 0 - 3 1 0 1 0 15

Student

ICX
� 0 8 4 3 3 4 6 3 1 - 3 1 2 6 44

SSD
� 0 0 0 0 1 0 1 0 3 - 0 4 2 0 11

ICX
≺ 3 0 0 0 1 0 0 0 1 - 0 1 3 0 9

SSD
≺ 0 0 0 0 0 1 0 0 0 - 0 0 0 0 1

ICX
� 1 6 4 5 3 5 4 0 3 0 - 4 3 7 45

SSD
� 0 0 0 0 0 0 0 0 1 0 - 0 0 0 1

ICX
≺ 3 0 1 1 2 0 0 1 1 3 - 2 3 0 17

Student1side

SSD
≺ 0 0 1 1 0 2 0 0 0 0 - 0 0 0 4

Student2side

ICX
� 1 2 2 2 2 4 3 3 2 1 2 - 2 4 30

SSD
� 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0

ICX
≺ 4 0 1 1 1 0 1 0 1 1 4 - 4 0 18

SSD
≺ 0 2 0 0 0 1 0 0 0 4 0 - 0 0 7

ICX
� 1 4 4 3 4 4 3 3 1 3 3 4 - 5 42

SSD
� 0 0 0 0 1 0 1 1 1 0 0 0 - 0 4

ICX
≺ 4 0 0 0 0 0 0 0 2 2 3 2 - 1 14

StudentSSD

SSD
≺ 1 1 0 1 1 1 0 0 0 2 0 0 - 0 7

SSD

ICX
� 0 0 0 1 0 1 1 1 0 0 0 0 1 - 5

SSD
� 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0

ICX
≺ 6 4 6 2 5 1 4 3 7 6 7 4 5 - 60

SSD
≺ 1 1 1 1 0 2 2 0 1 0 0 0 0 - 9
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4. Impact of Volume on Portfolio
Optimization

Kamonchai Rujirarangsan, Sergio Ortobelli Lozza

4.1. Overview

This study explores the use of volumes of stock returns in portfolio problems. In the
analysis, we consider different portfolio strategies applied to the portfolio returns
conditional the portfolio of transaction volume using two different estimators of
the conditional expectation based either on the Gaussian kernel density function
or the Epanechnikov one. In addition, we value some strategies based on penalized
returns. To compute the optimal portfolios, we implemented the Sharpe ratio, global
minimum CVaR5%, and Rachev ratio optimization, and we found that taking into
account volume has an impact on the ex-post wealth. However, this work is not
exhaustive but is the starting point for future research.

4.2. Introduction

The relationship between the stock price and trading volume has been studied in
several financial works of literature. In early studies, Ying (1966) and Westerfield
(1977) found positive relationships between the absolute value of price changes and
volume. Further, the evidence of the price-volume relationship can be explained
by the rate of information flow into the stock market, as documented by Karpoff
(1987). The results provide the behavior of relations between the volume to absolute
price ratio and the markets trend. However, the prediction powers have not been
investigated. After that, Gervais et al. (2001) revealed that the large trading volumes
tend to induce large changes in the stock prices in the next future period.

In the dynamic relationship scheme, the stock returns contribute a positive correla-
tion to volume. The Granger causality tests also show the persistence of its lagged
relations; see Chen et al. (2001). Taking a volatility approach to stock return, Lee
and Rui (2002) showed that the return volatility reacts to a causal relationship to
the trading volume. Moreover, considering the volume as additional information,
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Chapter 4 Impact of Volume on Portfolio Optimization

the forecast volatility model can be explained appropriately by the behavior of the
stock returns (Lamoureux and Lastrapes (1990); Gallant et al. (2015)).
In the short-run of stock market behavior, the autocorrelation of stock returns tends
to be lower on high-volume days than on low-volume days, as suggested by Campbell
et al. (1993). The results underlying this work explained that the buying or selling
volume is associated with the stock return. Thus, the basic idea of this work is
to implement the effects of volume returns and stock returns in portfolio strategies
based on conditional expectation.
Inspired by taking the volume as information to return, we investigate how the stock
returns conditional volumes information impacts the portfolio performance. To do
so, we apply the conditional expectation using Gaussian and Epanechnikov kernel
density function in which the stock returns are conditional to the volumes. The
false information may generate if the stock returns are decreasing while the volume
returns are positively increasing. Thus we use penalized stock returns to compensate
for this effect. We then optimize the portfolio performance by using Sharpe Ratio,
global minimum CVaR5%, and Rachev Ratio applied to the penalized returns.

4.3. Methodology

In this section, we apply the conditional expectation of returns using Gaussian and
Epanechnikov kernel functions to the returns and the penalized returns. Then, we
use different portfolio optimization models to find optimum choices. In particular,
we use the conditional expectation to approximate the returns from the volumes of
the portfolio. We set the Nadaraya-Watson as a kernel density estimator:

E (y|V ol = x) =
∑N
n=1 ynK

(
x−xn
h(N)

)
∑N
n=1 K

(
x−xn
h(N)

)
where V ol is volume, y is return, K (.) is kernel density function, and h (.) is the
bandwidth function defined following the Scott rule (see Scott (2015)) as h (N) =
3.5N (−1/3)std for Gaussian and h (N) = 3.2N (−0.8) for Epanechnikov kernel function.
As for kernel function, we use either the univariate Gaussian:

K(z) = 1√
2π
e−

1
2 z

2

or the Epanechnikov one :

K(z) = 3
4
(
1− z2

)
I (|z| ≤ 1)
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4.3 Methodology

where I (|z| ≤ 1) is the indicator function that indicates the value outside [−1, 1]
are zero.
As the "bad" news observed, the stock returns tend to be a large decrease. Mean-
while, the volume returns react to the highly increasing trend. This result may
influence the choice of optimized returns. To overcome this drawback, we calculate
the log return of stock price and the volume as yn = ln

(
rn
rn−1

)
and V oln = ln

(
voln
voln−1

)
,

where rn is the return and voln is the volume at time n = 1, . . . , N . Then, we penal-
ize the return of asset m as -1 when the return of the stock is decreasing while the
return of the volume is increasing. Otherwise, we apply the stock return conditional
the volume return as:

ym,(n) =
−1 , for ym,(n) < 0 & V olm,n > 0
E
(
ym,(n)|V olm,n−1

)
otherwise

The basic idea of this penalization is that we want to avoid speculation because we
assume that no short sales are allowed. To compare the optimum performance of
the portfolio, we use the different optimizations based on the Sharpe ratio, global
minimum CVaR5%, and Rachev ratio. The risk-free rate of the Sharpe ratio defines
as the 13-week of daily U.S. treasury bill.
Recall that the Sharpe ratio is given by:

Max
w

w>µ−rf√
w>
∑

w

s.t. w>1 = 1
w ≥ 0

the global minimum CVaR5% is given by

Min
(w,γ,zn)

γ + 1
(α)N

N∑
n=1

zn

s.t. zn ≥ −w>y(n) − γ
w>1 = 1
w ≥ 0
zn ≥ 0
n = 1, 2, 3, . . . , N
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and the Rachev Ratio portfolio optimization problem is given by:

Max
(w,α,λ,zn,γ,t)

1
(α)N

N∑
n=1

zn

s.t. zn ≤ Bλn,
zn ≥ w>y(n) −B (1− λn) ,
zn ≤ w>y(n) +B (1− λn) ,

γ + 1
(α)N

N∑
n=1

zn ≤ 1,

zn ≥ −w>y(n) − γ,
w>1 = t,
w ≥ 0, j = 1, 2, . . . , J
zn ≥ 0
t ≥ 0
λ>1 = [αN ]
n = 1, 2, 3, . . . , N
λn ∈ {0, 1}

4.4. Empirical Analysis

In the analysis, we select 30 companies among the components of the S&P500. The
companies are the same we select in Chapter 3. The adjusted closing price of daily
data and volume retrieve from 01 January 2004 to 31 May 2020. We then convert
the data into the log-returns form. To obtain the persistence length of observations,
we use backtesting data preparation by setting the in-sample and out-of-sample as
1-year and 1-month. Thus, the dataset contains 250-day for each observation point
and rebalances every 20-day before the next analysis.
In the following step, we estimate the data by using the conditional expectation. The
stock returns are conditional to the volume returns with Gaussian and Epanechnikov
kernel density functions. Furthermore, to compensate for the stock returns by the
volume information, we apply the penalization method. We thus have five differ-
ent returns to analyze, namely, historical return, Gaussian, penalized Gaussian,
Epanechnikov, and penalized Epanechnikov. Finally, we optimize the portfolio by
Sharpe ratio, global minimum CVaR5%, and Rachev Ratio methods.
Table 4.1 shows the ex-post annual returns of portfolio performance using different
optimization models and approximated returns that:
- The penalized Gaussian shows the highest the ex-post annual returns with the
Rachev Ratio optimization model.
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4.5 Conclusion

- Compared with the historical return, the penalized Gaussian is higher for all opti-
mization models. In particular, by considering the figures 4.1, 4.2, and 4.3, we find
that the Sharpe Ratio optimization shows a steady increase in the ex-post annual
returns than the other models.

Optimization/Approximation
Historical

Gaussian
Penalized

Epanechnikov
Penalized

Return Gaussian Epanechnikov
Sharpe Ratio 18.97 % 11.37 % 20.00 % 10.98 % 16.17 %

Global minimum CVaR5% 8.45 % 15.53 % 10.30 % 7.85 % 9.37 %
Rachev Ratio 16.53% 16.27 % 21.66 % 18.71 % 14.06 %

Table 4.1.: The ex-post annual returns of portfolio performance using different
optimization models and approximated returns.
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Figure 4.1.: The ex-ante performance of Sharpe ratio optimization among the dif-
ferent of return conditions.

4.5. Conclusion

In this research, we study the impact of volume information on stock returns. In
particular, we apply the conditional expectation with Gaussian and Epanechnikov
kernel density function and penalization of returns to investigate the impact on
the performance of different portfolio selection strategies. We then compute the
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Figure 4.2.: The ex-ante performance of global minimum CVaR5% optimization
among the different of return conditions.

ex-ante performance by the Sharpe ratio, global minimum CVaR5%, and Rachev
ratio optimizations. From the results, there is evidence that the volume provides
some information to the stock return, in particular when we penalize the returns to
avoid the speculative strategies. To sum up, the stock return conditional volume
information with penalized return can be able to use as a profitable model.
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Figure 4.3.: The ex-ante performance of Rachev ratio optimization among the dif-
ferent of return conditions.
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5. Summary

In this chapter, we sum up the contributions of this thesis and we discuss the impor-
tant directions of future work. The principal contribution of this thesis is to address
the financial modeling problems, which are the assessment application of credit risk
profiles and the enhancement of portfolio performance.

5.1. Conclusion

In Chapter 2, we propose the cosine similarity as a spatial component in the mul-
tivariate DCC GARCH(1,1) model. The results can provide more accurate results
on the diversification scheme for credit risk application. Moreover, the CoVaR with
bivariate Gaussian distribution model can be better in capturing the spillover effects
of risk than the ordinary CoVaR model. So, the cosine similarity of banks’ structure
inferred can be used to explain the spillover effects of credit risk.

Next, in Chapter 3, we construct the conditional expectation with kernel defini-
tion and penalized model from the return conditional Google Trends information
before applied the portfolio optimization. Furthermore, the mean-variance and
mean-CVaR5% can be used to enhance the optimum portfolio performance. For the
dominance comparison, the best results of each optimization model seem to have
characteristics for coving investors’ preferences of non-satiable risk-seeking (ICX).
Thus, the GT useful information can provide a profitable return on investment.

Following the main idea from the previous chapter, Chapter 4 uses the return that
conditional volume instead of Google Trends information. This chapter shows the
evidence that the volume provides some information to the stock return, in partic-
ular, when we penalize the returns to avoid the speculative strategies.

5.2. Further Extension

Further possible development consists of the financial of credit risk and portfolio
optimization. A specific point of each model will describe the suggestion.
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Chapter 5 Summary

5.2.1. Credit Risk

In the credit risk, we focus on the essential features of this research paper. The first
feature will be the spatial components on the DCC-GARCH(1,1) model, and the
test of CoVaR will be the second feature.
Spatial components:

• Instead of using CDS data, we suggest using the equity data of banks. The
advantage can be included the better volatile of data and provided more choice
of banks.

• In case we use banks’ equity data, we can generate the spatial component from
the banks’ financial statements.

Estimated parameters and CoVaR:
• To estimate the parameters, we can apply the different multivariate GARCH

models, for instance, EGARCH, GJR-GARCH, and TGARCH, to the DCC
model to improve the assessment of credit risk profiles.

• In the CoVaR calculation, the bivariate Gaussian density can be used the
copulas model to improve the interaction between the correlated VaR.

5.2.2. Portfolio Optimization

For portfolio optimization, the improvement can be extended into the expected
returns and the optimization model. The suggestion is as follows:
Expected returns:

• The other useful information that shows a strong relationship with the ex-
pected returns can be investigated.

• The multivariate estimation is suggested for the estimation of the condi-
tional expectation model. For example, the multivariate locally weighted least
squared regression.

Optimization model:
• The different perspectives of portfolio optimization models may be used—for

instance, Treynor Index, Sterling Ratio, and Calmar Ratio.
• The broad spectrum of backtesting samples can be investigated to perceive

the best of portfolio performance.

The above suggestion points that have been undertaken for this thesis have high-
lighted many topics on which further research can be developed.
There is a gap of studies of the CDS data for the credit risk that might have occurred
in the spatial components’ relationship. Future studies might, for example, look for
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5.2 Further Extension

the equity data and check for similar spatial components. In another case, the cosine
similarity might be used the financial statement of each bank to calculate. These
include further investigation of the credit risk model of spatial components on how
banks’ performance influences the contagion of risk interconnectedness. Do the eq-
uity returns and the banks’ structure inferred under the stress test exercise affect risk
mechanisms? The multivariate GARCH(1,1) model might be further investigated as
the EGARCH, GJR-GARCH, and TGARCH. These might give better estimation
results. Moreover, the bivariate density implementation using the copulas would
help provide more accuracy of the CoVaR.
For portfolio optimization, first, the proposed developed techniques would be applied
to different useful information. It might give a better performance and also allow
a comparison between the different model’s performance. Moreover, this thesis has
been studied the univariate estimation of conditional expectation. Thus, further
investigation of the portfolio optimization might be how the multivariate estimation
impacts portfolio performance? Second, there are also several optimization models
for further development of the research undertaken in this thesis. The Sharpe ratio,
CVaR, Sortino ratio, and Rachev ratio have been used in this thesis; however, the
other optimization models might be the different choices such as Treynor Index,
Sterling Ratio, and Calmar Ratio. These would provide the inter-model comparison
for the portfolio performance. Finally, the backtesting of in-sample/out-of-sample
period lengths might be adjusted to obtain the best portfolio performance.
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A. Extension Results

In this section, we show the extension of the results of daily equity data. Since
weekly CDS data is not enough for the CoVaR5% violation test, we consider the
daily equity data with the same data period as the weekly CDS data. Then, the
descriptive statistics for each bank are presented in Table A.1. Also, in Table A.2, we
show the estimation of the Student-t spatial DCC GARCH(1,1) with its confidence
intervals from the block bootstrap. Then, the result of the backtesting based on
VaR5% and the backtesting based on loss functions are shown in Tables A.3, A.4
and A.5.
The descriptive statistics for the white noise test show a lower than 1%. The Ljung-
Box test on returns (L-B[r]) shows that the p-values of BCS, SAB, and KBC are less
than the 5% significance, rejects the null hypothesis of white noise. The p-value of
L-B[r2] are all less than 1%. Thus, the daily equity returns are containing volatility
clustering, as described in Table A.1. Next, the results from Table A.2 show that
the estimated parameters are mostly specified within the 5% and 95% confidence
ranges. In Table A.3, we found that the GaussDCC, GaussSpDCC, and tSpDCC
models show all acceptance cases of the UC test while 6 out of 7 acceptance cases
of the CC test at a 99% significant level. At a 95% significant level, we found 1
rejection case for the GaussDCC and GaussSpDCC models and 2 rejection cases
for tSpDCC model of the UC test while 1 rejection case only for tSpDCC model of
the CC test. The tDCC presents 4 acceptance cases of both UC and CC models
at a 99% significant level while 2 acceptance cases of both UC and CC models at
a 95% significant level. For the VaR5% backtesting based on loss functions, the
tDCC model performs the best result for regulator’s loss functions and investors’
loss functions, as shown in Tables A.4 and A.5.

Bank Mean Stdev Skewness Kurtosis Normality L-B [r] L-B[r2]
ISP -0.0001 0.0254 -0.8170 11.8147 0.0000*** 0.0967 0.0000***
ACA -0.0001 0.0251 -0.3844 11.4020 0.0000*** 0.9800 0.0000***
DB -0.0006 0.0242 0.1201 8.3327 0.0000*** 0.5928 0.0000***
BCS -0.0004 0.0233 -0.6631 13.1494 0.0000*** 0.0196** 0.0000***
RAB -0.0001 0.0234 -0.4745 11.6734 0.0000*** 0.0663* 0.0000***
SAB -0.0008 0.0246 -0.3479 11.1351 0.0000*** 0.0013*** 0.0000***
KBC 0.0001 0.0252 -0.3025 10.1976 0.0000*** 0.0004*** 0.0000***

Table A.1.: Descriptive statistics of equity data.
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Table A.2.: The Student-t spatial DCC GARCH(1,1) parameters and its confi-
dence intervals from 500 samples of block bootstrap of equity data (2610 data
points).

Parameter/Bank ISP ACA DB BCS RAB SAB KBC

5% CI 1.89e-06 -1.93e-04 -2.39e-04 1.86e-05 7.72e-07 -3.54e-04 -1.73e-04
A0 2.81e-06 9.57e-15 6.59e-06 1.06e-05 2.20e-06 4.48e-15 6.43e-16

95% CI 7.80e-06 1.39e-04 1.67e-04 2.25e-05 6.46e-06 2.51e-04 1.21e-04

A1

5% CI 1.15e-01 -1.87e-01 -4.79e-02 1.26e-01 8.23e-02 -1.62e-01 -3.54e-01
8.52e-02 2.04e-04 5.03e-02 7.62e-02 6.81e-02 6.74e-05 2.10e-02

95% CI 2.10e-01 1.24e-01 1.87e-01 1.70e-01 1.63e-01 1.15e-01 3.01e-01

B1

5% CI 6.27e-01 -2.78e-01 5.68e-01 4.42e-01 5.85e-01 -4.28e-01 -2.94e-01
9.17e-01 4.66e-01 9.38e-01 9.04e-01 9.31e-01 4.74e-01 4.75e-01

95% CI 1.90 1.01 1.92 2.00 2.18 5.77e-01 1.18

A2

5% CI -5.83e-01 -5.72e-01 -5.21e-01 -3.66e-01 -1.12e-07 3.06e-08 -7.77e-08
1.00e-08 3.45e-08 1.06e-08 1.05e-08 1.04e-08 3.28e-08 2.67e-08

95% CI 3.56e-01 3.49e-01 3.18e-01 2.64e-01 6.42e-08 7.38e-08 1.08e-07

B2

5% CI -2.61e-02 2.23e-03 -1.98e-02 -2.60e-02 -3.05e-02 2.52e-02 2.79e-03
1.01e-08 1.52e-02 1.08e-08 1.07e-08 1.13e-08 1.81e-02 1.43e-02

95% CI 9.12e-03 4.27e-02 1.21e-02 9.39e-03 5.31e-03 4.41e-02 3.52e-02

γ

5% CI -2.82e-03
1.25e-02

95% CI 2.88e-02

δ

5% CI 9.09e-01
9.47e-01

95% CI 1.78
5% CI 5.81

ν 6.67
95% CI 1.02e+01
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Table A.3.: The p-value of backtesting based VaR5% tests of equity data.

Bank
Gaussian DCC Student-t DCC Gaussian spatial DCC Student-t spatial DCC
UC CC UC CC UC CC UC CC

ISP 0.1139 0.1389 0.0015 0.0060 0.1139 0.1989 0.1362 0.2241
ACA 0.5675 0.0985 0.0782 0.0233 0.8572 0.6090 0.3463 0.1095
DB 0.7000 0.5129 0.0947 0.0466 0.9173 0.2744 0.3463 0.1978
BARC 0.3463 0.6416 0.0170 0.0577 0.3012 0.5859 0.3012 0.5338
ING 0.0423 0.0046 0.0271 0.0018 0.0423 0.0020 0.0133 0.0007
SAB 0.2604 0.3019 0.0271 0.0604 0.2604 0.3019 0.0271 0.0429
KBC 0.0522 0.0905 0.0002 0.0008 0.9173 0.6981 0.3463 0.4613

Note: The UC and CC stand for the unconditional coverage and conditional coverage tests. The
bold defines as the acceptance at a 95% significance level and the highlighted light-gray defines as
the acceptance at a 99% significance level.
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Table A.4.: The backtesting based the loss functions of VaR5% under the regula-
tor’s view of equity data.

Regulator’s view

Bank
Lopez

Gaussian DCC Student-t DCC Gaussian spatial DCC Student-t spatial DCC
ISP 2228.78 2209.97 2228.72 2229.50
ACA 2239.42 2225.95 2247.69 2235.49
DB 2241.43 2227.14 2244.46 2235.19
BCS 2234.78 2218.39 2233.95 2233.98
RAB 2222.84 2220.66 2222.97 2217.79
SAB 2233.09 2220.69 2233.31 2220.95
KBC 2224.53 2203.24 2244.27 2235.79

Bank
Caporin1

Gaussian DCC Student-t DCC Gaussian spatial DCC Student-t spatial DCC
ISP 1407.44 1363.13 1397.97 1392.85
ACA 1420.49 1397.45 1423.48 1421.54
DB 1418.55 1395.25 1423.84 1400.72
BCS 1426.45 1394.74 1435.65 1426.39
RAB 1398.24 1385.80 1399.20 1385.11
SAB 1479.86 1450.17 1479.22 1452.14
KBC 1369.20 1339.61 1377.38 1375.44

Bank
Caporin2

Gaussian DCC Student-t DCC Gaussian spatial DCC Student-t spatial DCC
ISP 41.07 35.56 40.29 39.00
ACA 40.29 37.41 40.99 40.49
DB 42.13 39.82 42.57 40.35
BCS 37.85 34.88 39.07 38.54
RAB 35.45 34.02 35.80 34.47
SAB 44.62 41.26 45.16 42.14
KBC 35.68 33.31 34.16 36.86

Bank
Caporin3

Gaussian DCC Student-t DCC Gaussian spatial DCC Student-t spatial DCC
ISP 90.94 83.64 90.06 88.47
ACA 88.54 84.18 89.71 88.58
DB 91.79 88.65 92.39 89.27
BCS 81.72 77.80 83.41 82.28
RAB 81.00 79.36 82.00 80.05
SAB 90.18 85.97 91.14 87.60
KBC 84.56 80.99 83.13 85.98

Note: The bold defines as the lowest total loss among different models.
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Table A.5.: The backtesting based the loss functions of VaR5% under the investors’
view of equity data.

Investors’ view

Bank
Caporin1

Gaussian DCC Student-t DCC Gaussian spatial DCC Student-t spatial DCC
ISP 1469.29 1441.15 1460.41 1458.24
ACA 1476.34 1460.93 1477.31 1482.50
DB 1473.51 1456.54 1479.46 1463.55
BCS 1485.04 1464.91 1488.98 1487.98
RAB 1457.54 1446.87 1452.62 1445.22
SAB 1551.56 1524.49 1548.19 1524.16
KBC 1425.78 1412.82 1427.64 1435.58

Bank
Caporin2

Gaussian DCC Student-t DCC Gaussian spatial DCC Student-t spatial DCC
ISP 43.33 38.33 42.61 41.39
ACA 42.28 39.66 42.90 42.81
DB 43.93 41.76 44.40 42.41
BCS 40.07 37.44 41.19 40.66
RAB 37.19 35.85 37.39 36.25
SAB 48.24 44.75 48.62 46.72
KBC 37.40 35.53 35.77 38.70

Bank
Caporin3

Gaussian DCC Student-t DCC Gaussian spatial DCC Student-t spatial DCC
ISP 92.99 86.09 92.08 90.58
ACA 90.33 86.24 91.45 90.46
DB 93.68 90.71 94.32 91.33
BCS 83.50 79.78 85.07 84.13
RAB 82.74 81.13 83.61 81.78
SAB 92.49 88.42 93.39 89.98
KBC 86.15 82.84 84.64 87.66

Note: The bold defines as the lowest total loss among different models.
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B. Conditional Expectation

B.1. Conditional Expectation

In the financial context, the conditional expectation E [Y |X] is a random variable
related to the expectation of Y given the available information of the random variable
X. Let us consider two random variable X : Ω→ R and Y : Ω→ R are integrable
in a probability space (Ω,F ,P) and FX is σ-algebra generated by X

FX = σ (X) = X−1 (B) =
{
X−1 (B) : B ∈ B

}
where B is Borel set of σ-algebra on R. As the approximation of FX by σ-algebra
generated by the partition of Ω, the E [Y |X] is equivalent to E [Y |FX ]. Next, we
consider the two-dimensional mapping of (X, Y ) from Ω to R2 that is an inde-
pendent random observation, (x1, y1) , (x2, y2) , . . . , (xn, yn). Then the conditional
expectation of Y under {X = x} can be defined in the discrete case as

E [Y |X = x] =
∞∑
i=1

yiP {Y = yi|X = x} , (B.1)

where i = 1, 2, . . . , n and x ∈ R. To estimate the unknown parameter of the
conditional expectation, the Nadaraya–Watson kernel density estimator is used as
follows

E (r|GT = x) =
∑J
j=1 rjK

(
x−xj
h(J)

)
∑J
j=1 K

(
x−xj
h(J)

) , (B.2)

where r is asset return, GT is Google Trends rate, K(·) is the kernel density function,
and h (J) is the bandwidth. To avoid the bandwidth choice problem as suggested
by Scott (2015), we select the univariate kernel estimator with the bandwidth of
h (J) = 3.5J−1/3stdmax.
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Chapter B Conditional Expectation

B.2. Kernel Density Estimator

According to the asymptotic behavior of kernel density estimator B.2, the sequence
of bandwidth h tends to zero as J approaches infinity. Thus, the univariate kernel
function can be considered. In this study, we use the Gaussian, Student-t and
Epanechnikov as defined follows:

KGaussian(u) = 1√
2π
e−

1
2u

2
, (B.3)

KEpanechnikov(u) = 3
4
(
1− u2

)
I (|u| ≤ 1) , (B.4)

KStudent−t(u) =
Γ
(
ν+1

2

)
√
νπΓ

(
ν
2

) (1 + u2

ν

)− ν+1
2

, (B.5)

where I (|u| ≤ 1) in Epanechnikov kernel function defines as an indicator function
that any values outside the domain [−1, 1] are zero. For the Student-t kernel func-
tion, Γ is the Gamma function and ν is the number of degrees of freedom.
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