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Abstract In this work, we consider a Yukawa modification
of the Casimir wormhole. With the help of an Equation of
State, we impose Zero Tidal Forces. We will examine two
different approaches: in a first approach, we will fix the form
of the shape function of the Casimir wormholes modified by
a Yukawa term in three different ways and finally a superpo-
sition of different profiles. In the second approach, we will
consider the original Casimir source modified by a Yukawa
term in three different ways and we will deduce the form
of the shape function In both the approaches the reference
energy density will be that of the Casimir source. Connec-
tion with the Absurdly Benign Traversable Wormhole are
also discussed.

1 Introduction

Yukawa in 1935 [1] proposed to describe nonrelativistic
strong interactions between nucleons with the help of a poten-
tial whose profile is

V (r) = −α

r
exp (−μr) . (1)

This is nothing but the screened version of the Coulomb
potential with α describing the strength of the interaction
and 1/μ its range. This short range interaction has cap-
tured the interest of many researchers who have adapted it
to the Newtonian potential to understand if it has deviations
of the same kind. As a result, the Newtonian gravitational
potential between two point masses m1 and m2 (atoms for
instance) separated by a distance r , acquires a Yukawa cor-
rection which formally looks like Eq. (3) . Indeed, one gets

V (r) = −Gm1m2

r
(1 + α exp (−μr)) , (2)

where G is the gravitational constant. Potentials of the form
(2) have been examined from the astrophysical point of view

a e-mail: Remo.Garattini@unibg.it (corresponding author)

with a particular attention also on the graviton mass [2–4].
It is interesting to note that Yukawa-type forces are also pre-
dicted in the context of modified gravity theories [5–8] and
also in bigravity theories [11]. To this purpose, it is important
to say that the GINGER experiment offers the opportunity
of constraining such theories [9]. On the other hand, in a dif-
ferent framework (MOG), it is possible to obtain black holes
and traversable wormholes [10]. This MOG predicts also a
variation of the Newton’s constant G, in such a way to obtain
a Yukawa term which enters the metric. Moreover, a Yukawa
term seems to be directly involved in the Galaxy Rotation
Curves [30]. Even in the context of Casimir effect, devia-
tions of the Newtonian potential of the form (2) have been
considered [12–14]. It is interesting to observe that a con-
nection between the Casimir forces and the Yukawa profile
has been also introduced in Ref. [23] where Van der Waals
himself suggested an interaction potential of the form

V (r) = − A

r
exp (−Br) , (3)

with A and B constants of appropriate dimensions. Since
there exists a connection between the Casimir and the Van
der Waals forces in the case of relatively large separations
when the relativistic effects come into play, one can wonder
if Yukawa deformations can play a fundamental role even
for Traversable Wormholes. To further proceed we need to
recall the Einstein’s Field Equations (EFE)

Gμν = κTμν κ = 8πG

c4 (4)

in an orthonormal reference frame. In such a frame the EFE
reduce to the following set of equations

b′

r2 = κρ (r) , (5)

2

r

(
1 − b (r)

r

)
φ′ − b

r3 = κpr (r) , (6)

×
{(

1 − b

r

)[
φ′′ + φ′

(
φ′ + 1

r

)]

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-021-09634-3&domain=pdf
http://orcid.org/0000-0002-0747-401X
mailto:Remo.Garattini@unibg.it


824 Page 2 of 14 Eur. Phys. J. C (2021) 81 :824

−b′r − b

2r2

(
φ′ + 1

r

) }
= κpt (r), (7)

in which ρ (r) is the energy density,1 pr (r) is the radial
pressure, and pt (r) is the lateral pressure. The EFE (5), ( 6)
and (7) have been obtained with the help of the line element

ds2 = −e2φ(r) dt2 + dr2

1 − b(r)/r
+ r2 (dθ2 + sin2 θ dϕ2) ,

(8)

representing a spherically symmetric and static wormhole
[15,16]. b(r) is the shape function, while φ (r) is the red-
shift function. φ(r) and b(r) are arbitrary functions of the
radial coordinate r ∈ [r0,+∞). A fundamental property
of a traversable wormhole is that a flaring out condition of
the throat, given by (b − b′r)/b2 > 0, must be satisfied
[15,16]. Furthermore, at the throat b(r0) = r0 and the con-
dition b′(r0) < 1 is imposed to have wormhole solutions.
Another condition that needs to be satisfied is 1−b(r)/r > 0.
For the wormhole to be traversable, one must demand that
there are no horizons present, which are identified as the sur-
faces with e2φ → 0, so that φ(r) must be finite everywhere.
The last condition is satisfied if we adopt a Zero Tidal Forces
model (ZTF) represented by φ′ (r) = 0. Such a condition
can be imposed by means of an inhomogeneous Equation of
State (EoS) of the form

pr (r) = ω (r) ρ (r) (9)

and

b (r) + κpr (r) r3 = 0, (10)

where we have used Eqs. (5) and (6). Equations (9) and (10)
lead to

ω (r) = − b (r)

b′ (r) r
. (11)

In Ref. [17], we have found that the Casimir wormhole
described by

φ (r) = ln

(
4r

3r + r0

)
and b(r) = 2r0

3
+ r2

0

3r
, (12)

does not satisfy the ZTF condition. In this paper, we will con-
sider the Casimir wormhole shape function deformed by a
Yukawa profile satisfying also the ZTF condition: in this way
we have the possibility of building a new family of solutions
which have a vanishing redshift function. We also assume that
the Casimir relationship ω = 3 holds, at least on the throat.
There exists another reason to consider a Yukawa deforma-
tion to the Casimir wormhole. Indeed, in Ref. [18] we have

1 However, if ρ (r) represents the mass density, then we have to replace
ρ (r) with ρ (r) c2.

considered a shape function of the form

b(r) = r0 exp (−μ (r − r0)) (13)

obeying Eq. (11) with

ω (r) = 1

μr
(14)

and therefore satisfying the ZTF property. However, if we
simply assume that

μ = r0κρC , (15)

where

ρC = h̄cπ2

720d4 , (16)

then the energy density on the throat becomes

ρ (r) = −r0μ

κr2 exp (−μ (r − r0)) =
r=r0

− μ

κr0
= −ρC , (17)

namely the Casimir energy density. Moreover, with the help
of the relationship (14) on the throat one gets

ω (r0) = 1

μr0
= 1

r2
0 κρC

(18)

and by imposing that ω (r0) = 3, one finds

r0 =
√

1

3κρC
= d2

lPπ

√
30

π
, (19)

in agreement with what found in Ref. [36] but with a factor√
3 missing. This example suggests that the mixing between

the Casimir wormhole and a Yukawa wormhole seems to be
promising. The paper is organized as follows: in Sect. 2 we
study three different combinations of the Casimir wormhole
shape function with a Yukawa term, in Sect. 3 we explore the
consequences of a superposition of the profiles considered in
Sect. 2, in Sect. 4 we adopt the reverse procedure, namely we
fix the form of the energy density and we deduce the form of
the shape function, investigating three different profiles. We
summarize and conclude in Sect. 5. Units in which h̄ = c =
k = 1 are used throughout the paper and will be reintroduced
whenever it is necessary.

2 Casimir–Yukawa wormholes

The Casimir wormhole obtained in Ref. [17] has as a source
the original Casimir energy density with a slight but funda-
mental difference: the plates separation has been promoted to
be a variable instead of being a fixed quantity. To satisfy the
EFE a non vanishing redshift function has been computed
described in Eq. (12). In this section we are interested in
examining some modifications of the original Casimir worm-
hole shape function satisfying the ZTF condition, which can

123



Eur. Phys. J. C (2021) 81 :824 Page 3 of 14 824

be obtained with the help of the EoS (9). We will take under
consideration three shape function profiles. We begin with

2.1 b (r) = r0 exp (−μ (r − r0)) (2 + r0/3r)

The shape function of the Casimir wormhole is defined by

b (r) = 2r0

3
+ r2

0

3r
. (20)

We wonder what are the effects of an additional Yukawa
term on the original Casimir shape function whose profile
becomes

b (r) =
(

2r0

3
+ r2

0

3r

)
exp (−μ (r − r0)) , (21)

where μ is a positive mass scale to be identified. The original
Casimir shape function can be reobtained when μ = 0. The
profile (21) satisfies the usual properties, namely the throat
condition b (r0) = r0, the asymptotic flatness and the flare
out condition of the throat, written into the form

b′ (r0) = −1

3
(1 + 3μr0) < 1. (22)

This is always satisfied together with the property 1 −
b(r)/r > 0. Another additional property is

b (r) → 0 when μ → ∞ and r → ∞.

(23)

The energy density can be easily computed and we obtain

ρ (r) = b′

κr2

= − r0

3κr4

(
2μr2 + μrr0 + r0

)
exp (−μ (r − r0))

= − 1

κr2

(
μb (r) + r2

0

3r2 exp (−μ (r − r0))

)
. (24)

It is straightforward to see that, for μ → 0, one gets the
original Casimir energy density with the plates separation
considered as a variable if we make the following identifica-
tion

ρ (r) = − r2
0

3κr4 = − r2
1

κr4 = − h̄cπ2

720r4 , (25)

which is possible if [17]

r2
0 = 3r2

1 . (26)

However, the identification (26) is inconsistent with the
assumption (11) because the relationship (11) leads to a
vanishing redshift, while the identification (26) does not,
as shown in Ref. [17] Therefore, we consider the following

assumption

ρ (r0) = − μ

κr0
− 1

3κr2
0

= − h̄cπ2

720d4 , (27)

where d is the “fixed plate distance”. This identification fixes
the scale mass μ to the following value

μ = κr0h̄cπ2

720d4 − 1

3r0
= r0l2Pπ3

90d4 − 1

3r0
. (28)

Since μ ≥ 0, one finds that

μ = 0 when r0 = d2

lPπ

√
30

π
, (29)

which is in agreement with what found in Ref. [36] but with
a factor

√
3 missing. Note that

lim
r→r0

lim
μ→∞ ρ (r) �= lim

μ→∞ lim
r→r0

ρ (r) , (30)

while

lim
r→r0

lim
μ→0

ρ (r) = lim
μ→0

lim
r→r0

ρ (r) . (31)

Note also that

lim
μ→∞ ρ (r) = 0. (32)

However, due to the relationship (29), μ → ∞ is equivalent
to r0 → ∞. Therefore this limiting value will be discarded.
The second EFE (6) determines the value of the pressure that,
differently from the Casimir wormhole, will be computed by
imposing the relationship (11). A simple calculation gives

ω (r) = 2r + r0

2μr2 + μrr0 + r0
. (33)

ω (r) has the following properties

ω (r0) = 3

3μr0 + 1
(34)

ω (r) −→
r→∞ 0 (35)

ω (r) −→
μ→0

2r + r0

r0
(36)

lim
r→r0

lim
μ→0

ω (r) = lim
μ→0

lim
r→r0

ω (r) = 3, (37)

which is the original relationship between the energy density
and the pressure: in this case the radial pressure. With this
assumption, we get

pr (r) = − 1

κr3

(
2r0

3
+ r2

0

3r

)
exp (−μ (r − r0)) (38)

and when

μ → 0, pr (r) = − 1

κr3

(
2r0

3
+ r2

0

3r

)
=

r→r0
− 1

κr2
0

, (39)
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It remains to compute the transverse pressure

pt (r) = b(r) − b′(r)r
2κr3 = r0

6κr4

(
2μr2 + μrr0 + 2r + 2r0

)
× exp (−μ (r − r0))

= 1

2κr2

(
b(r)

(
μ + 1

r

)
+ r2

0

3r2 exp (−μ (r − r0))

)
,

(40)

which has the following features, for

μ → 0, pt (r) = r0

3κr4 (r + r0) =
r→r0

2

3κr2
0

, (41)

The SET becomes

Tμν = T a
μν + T b

μν (42)

where

T a
μν = b (r)

κr2

[
diag

(
−μ,−1

r
,

1

2

(
μ + 1

r

)
,

× 1

2

(
μ + 1

r

))]
(43)

and

T b
μν = 1

κr2

[
diag

(
−1, 0,

1

2κr2 ,
1

2κr2

)]

× r2
0

3r2 exp (−μ (r − r0)) (44)

On the throat the SET reduces to

Tμν = 1

κr0

[
diag

(
−μ − 1

3r0
,− 1

r0
,

1

2

(
μ + 4

3r0

)
,

1

2

(
μ + 4

3r0

))]
(45)

and in the limit μ → 0, one gets

Tμν = 1

3κr2
0

[diag (−1,−3, 2, 2)] = h̄cπ2

720d4

× [diag (−1,−3, 2, 2)] (46)

which is verified when the relationship (29) is satisfied. More-
over the SET (46) is in agreement with the SET structure
found in Ref. [17]. It is interesting to note that, for r → ∞,
the SET vanishes reproducing a Minkowski SET. With an
abuse of language, one can say that in this limit we find
a behavior that looks like a Generalized Absurdly Benign
Traversable Wormhole [36]. We say “it looks like” because
the SET vanishes for a limiting value of the radial coordinate
and not for a well determined location in space time. The
next profile we are going to examine is

2.2 b (r) = r0 (2 exp (−μ (r − r0)) + r0/r) /3

For the following profile

b (r) = 2r0

3
exp (−μ (r − r0)) + r2

0

3r
, (47)

the Yukawa modification is not distributed over the whole
original shape function but only on the constant term. This
little displacement has an interesting consequence, because
when μ → ∞ we obtain the Ellis–Bronnikov (EB)-like
wormhole [28,29]. Indeed, the EB wormhole is

b (r) = r2
0

r
. (48)

The shape function (47) satisfies the usual properties, namely
the throat condition and so on. For completeness, we write
the expression of the flare-out condition, which is

b′ (r) = −2r0μ

3
exp (−μ (r − r0)) − r2

0

3r2

=
r=r0

−2r0μ + 1

3
< 1. (49)

Even in this case, we can easily compute the energy density
to obtain

ρ (r) = b′

κr2 = 1

κr2

(
−2μr0

3
exp (−μ (r − r0)) − r2

0

3r2

)

= − 1

κr2

(
μb (r) + r2

0

3r2 (1 − μr)

)
(50)

which, on the throat becomes

ρ (r0) = −μ2r0 + 1

3κr2
0

. (51)

To fix the value of μ we adopt the same procedure of Sect. 2.1
and we find that even in this case the relationship (29) is sat-
isfied. The pressure can be determined by solving the second
EFE (6) and by imposing that the relationship (11) be satis-
fied, namely

ω (r) = 2r exp (−μ (r − r0)) + r0

2μr2 exp (−μ (r − r0)) + r0
. (52)

This time ω (r) has the following properties

ω (r0) = 3

2μr0 + 1
(53)

ω (r) −→
μ→∞= 1 (54)

ω (r) −→
r→∞= 1 (55)

ω (r) −→
μ→0

= 2r + r0

r0
(56)

lim
r→r0

lim
μ→0

ω (r) = lim
μ→0

lim
r→r0

ω (r) = 3, (57)

and even in this case the original relationship between the
energy density and the pressure is preserved. Thus the radial
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pressure is

pr (r) = − 1

κr3

(
2r0

3
exp (−μ (r − r0)) + r2

0

3r

)
(58)

and one finds that

pr (r) =
μ→0

− r0

3κr3

(
2 + r0

r

)
. (59)

The last quantity to compute is pt (r), namely

pt (r) = b(r) − b′(r)r
2κr3 = 3rb(r) (1 + μr) + r2

0 (1 − μr)

6κr4 ,

(60)

which has the following features, for

μ → 0, pt (r) = r0

3κr4 (r + r0) =
r→r0

2

3κr2
0

. (61)

To summarize the SET for this particular shape function
becomes

Tμν = T a
μν + T b

μν (62)

where

T a
μν = b(r)

κr2[
diag

(−μ,− 1
r ,

1
2r (1 + μr) , 1

2r (1 + μr)
)]

(63)

and

T b
μν = 1

κr2

[
diag

(
−1, 0,

1

2
,

1

2

)]
r2

0

3r2 (1 − μr) (64)

On the throat the SET reduces to

Tμν = 1

3κr2
0

[diag (−2μr0 − 1,−3, 2 + μr0, 2 + μr0)]

(65)

and in the limit μ → 0, one gets

Tμν = 1

3κr2
0

[diag (−1,−3, 2, 2)]

= h̄cπ2

720d4 [diag (−1,−3, 2, 2)] (66)

which is in agreement with the SET structure found in Ref.
[17] only for μ = 0. Finally, we investigate the following
shape function

2.3 b (r) = r0 (2 + r0 exp (−μ (r − r0)) /r) /3

For the following profile

b (r) = 2r0

3
+ r2

0

3r
exp (−μ (r − r0)) , (67)

the Yukawa modification is now put only on the variable
term. Even in this modification, we have an interesting con-
sequence, because when μ → ∞ we obtain a constant term
smaller than the throat. The shape function (47) satisfies the
usual properties, namely the throat condition and so on. For
completeness, we verify if the flare out condition is satisfied.
We find that

b′ (r) = − r2
0

3r2 (1 + μr) exp (−μ (r − r0))

=
(

2

3
r0 − b (r)

)
1 + μr

r
, (68)

and on the throat one gets

b′ (r0) = −1

3
(1 + μr0) < 1. (69)

The energy density is straightforward to obtain since

ρ (r) = b′

κr2 = − r2
0

3κr4 (μr + 1) exp (−μ (r − r0))

= μr + 1

κr3

(
2

3
r0 − b (r)

)
(70)

and for μ → ∞, one finds

ρ (r) = 0. (71)

On the throat we obtain

ρ (r0) = −μr0 + 1

3κr2
0

(72)

The second Einstein’s field equation (6) determines the value
of the pressure that and, even in this case, we impose that the
relationship (11) be satisfied. This implies that the redshift
function vanishes and that

ω (r) = 2r exp (μ (r − r0)) + r0

(μr + 1) r0
. (73)

This time ω (r) has the following properties

ω (r0) = 3

μr0 + 1
(74)

ω (r) −→
μ→∞= ∞ (75)

ω (r) −→
r→∞= ∞ (76)

ω (r) −→
μ→0

= 2r + r0

r0
(77)

lim
r→r0

lim
μ→0

ω (r) = lim
μ→0

lim
r→r0

ω (r) = 3. (78)

As we can see, from the relationship (76) , one finds that ω (r)
is divergent: this is a consequence of the EoS. Indeed for r →
∞, the energy density (70) vanishes because of the presence
of the damping exponential overall, while into the pressure
the damping exponential appears only in the constant term.
For this reason, this profile will be discarded. In the next
section, we explore a profile which is a superposition of the
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previous profiles with the aim of generalizing as much as
possible the features of a Yukawa–Casimir wormhole.

3 Superposing traversable wormholes shape functions

In this section we will consider a linear combination of the
previous profiles described by the following shape function

b(r) = r0

(
α exp (−μ (r − r0)) + (1 − α)

(r0

r

)c
× exp (−ν (r − r0))) , (79)

with μ, ν > 0, α ≥ 0 and c ∈ R. Note that when α = 2/3,
c = 1 and μ = ν = 0, it is immediate to see that the Casimir
wormhole shape function is obtained. When α = 1, we find
a pure Yukawa wormhole discussed in Ref. [18] as well as
for c = 0 and μ = ν. For α = 0 and c = 1, one finds
the Yukawa modification to the EB wormhole. Finally, note
that for μ = ν = 0 and c < −1, the wormhole is no more
traversable. As a first step we examine under what conditions
the flare-out property is satisfied. From

b′(r) = −r0μα exp (−μ (r − r0)) − (1 − α)
(r0

r

)c

× exp (−ν (r − r0))
(
νr0 + c

r0

r

)
, (80)

one finds

b′(r0) < 1 ⇐⇒ α (c + r0ν) < 1 + r0 (αμ + ν) + c.

(81)

From the Eq. (80) we can easily compute the energy density

ρ (r) = b′

κr2 = − 1

κr2

[
r0μα exp (−μ (r − r0))

+ (1 − α)
(r0

r

)c
exp (−ν (r − r0))

(
νr0 + c

r0

r

)]
(82)

and on the throat we obtain

ρ (r0) = − 1

κr2
0

[r0μα − (1 − α) (νr0 + c)] . (83)

As we can see, ρ (r0) can be considered as a function of
the throat. In order to fix the wormhole throat, we find the
stationary point of ρ (r0), assuming

ρ′ (r0) = 0 �⇒ r̄0 = 2c (α − 1)

μα − (α − 1) ν
. (84)

Plugging r̄0 into Eq. (83), one finds

ρ (r̄0) = − ((μ − ν) α + ν)2

4c (α − 1) κ
= − h̄cπ2

720d4 , (85)

where we have imposed that, even in this case, the source is
described by Eq. (16). A solution of the previous equation is
given by

μ̄ = ν

α
(α − 1) ± πl p

3αd2

√
c (α − 1)

2π

5
,

c > 0, α > 1
c < 0, α < 1

. (86)

Plugging μ̄ into r̄0 of Eq. (84), one finds

r̄0 = ±3d2√10πc (α − 1)

π2l p
. (87)

The value of α can be determined with the help of the rela-
tionship (11) which, in this case, becomes

ω (r) = r0
(
α exp (−μ (r − r0)) + (1 − α)

( r0
r

)c exp (−ν (r − r0))
)

r
[
r0μα exp (−μ (r − r0)) + (1 − α)

( r0
r

)c exp (−ν (r − r0))
(
νr0 + c r0

r

)] (88)

and on the throat one finds

ω (r0) = 1

[r0μα + (1 − α) (νr0 + c)]
. (89)

ω (r0) can be further reduced to the following simple expres-
sion

ω (r0) = 1

(α − 1) c
= 3, (90)

where we have used Eqs. (86) and (87) and where we
have imposed the Casimir relationship between pressure and
energy density on the throat. Plugging (90) into (87), one gets

r̄0 =
√

30πd2

π2l p
(91)

which is the same result of Eq. (29). With the help of the
Eqs. (86), (87) and (90), it is possible to show that r̄0 rep-
resents the minimum of ρ (r0). This means that if we want
to have a wormhole throat with a radius smaller than r̄0, we
need to have an increasing of negative energy. To complete
the analysis, we compute the transverse pressure
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pt (r) = −r0
(
rc0 (α − 1)

(
νr−c+1 + r−c (c + 1)

)
e−ν(r−r0) − αe−μ(r−r0) (μr + 1)

)
2κr3 (92)

which, on the throat, becomes

pt (r0) = r0 ((μ − ν) α + ν) − cα + c + 1

2κr2
0

. (93)

With the help of the relationships (91), (86) and (90), one
finds

pt (r̄0) = π3l2p
45κd4 =2

π2h̄c

720d4 . (94)

The analytic form of the SET is quite complicated. However,
it becomes very simple on the throat

T a
μν = − 1

κr2
0

×diag

(
r0μα − (1 − α) (νr0 + c) , 1,

r0 ((μ − ν) α + ν) − cα + c + 1

2
,

r0 ((μ − ν) α + ν) − cα + c + 1

2

)
(95)

and in particular in correspondence of the minimum r̄0, it
simplifies to

Tμν = l2pπ
3

90κd4 [diag (−1,−3, 2, 2)] = h̄cπ2

720d4

[diag (−1,−3, 2, 2)] . (96)

Remark It is important to observe that thanks to the EoS
(9), the form of the SET is

Tμν = r0

κr3 diag

(
− 1

ω (r)
,−1,

1

2ω (r)
+ 1

2
,

1

2ω (r)
+ 1

2

)

× exp

[
−

∫ r

r0

dr̄

ω(r̄)r̄

]

= − b(r)

κr3ω (r)

diag

(
1, ω (r) ,−1

2
− ω (r)

2
,−1

2
− ω (r)

2

)

= ρ (r) diag

(
1, ω (r) ,−1

2
− ω (r)

2
,−1

2
− ω (r)

2

)
.

(97)

By construction the SET (97) is divergenceless, but it is not
traceless. However, it is always possible to rearrange the pre-
vious SET (97) in such a way to extract the traceless part.
Indeed

Tμν = T T
μν + T

4
gμν=ρ (r)

2
[diag (1, 2ω (r) + 1,−ω (r) ,

−ω (r)) − gμν

]
, (98)

where T T
μν is the traceless part of the SET (97). It is interesting

to observe that by imposing the following condition

ω (r0) = 1, (99)

one finds that

T T
μν = ρ (r0)

2
[diag (1, 3,−1,−1)] , (100)

independently on the form of ω (r). This means that either by
decomposing the SET like in Eq. (98) and fixing ω (r0) = 1
or by fixing ω (r0) = 3 without the decomposition (98), it
is always possible to preserve the fundamental relationship
between pressure and energy density. Note also that, from
the point of view of the wormholes throat size, the choice
(99) or the choice ω (r0) = 3, do not change the size of the
throat size, as it should be. In the next section, we are going
to examine the reverse procedure, namely we fix the form of
the energy density and we will deduce the form of the shape
function.

4 Traversable wormholes with a Yukawa energy density
profile

In this section we change the strategy and we fix our attention
on some energy density profiles modified by a Yukawa term
and with the help of Eq. (5), we will deduce the form of the
shape function. Three different forms will be examined. We
begin with the following profile

4.1 ρ (r) = −r0ρC
e−μ(r−r0)

r

ρ (r) = −r0ρC
e−μ(r−r0)

r
; ρ0 > 0, (101)

where ρC has dimensions of an energy density and μ is a pos-
itive mass scale parameter. We can identify ρC with the value
expressed by (16). Equation (101) can be easily integrated to
obtain

b (r) = b (r0) + κ

∫ r

r0

ρ
(
r ′) r ′2dr ′

= r0

(
1 − ρCκ

μ2 − r0ρCκ

μ
+ e−μ(r−r0)ρCκ (μ r + 1)

μ2

)

(102)

where we have used the condition b (r0) = r0. It is immediate
to verify that the shape function (102) satisfies the asymptotic
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flatness and the flare-out condition. To have ZTF, Eq. (11)
must be imposed, that it means

ω (r) =
(
μ2 − ρCκ (1 + r0μ)

)
eμ(r−r0) + ρCκ (μ r + 1)

μ2r2ρCκ
.

(103)

As one can see, for r → ∞, ω (r) → ∞. However, one can
adopt another strategy to have a finite ω (r). Indeed from the
shape function (102), we can find that there exists r̄ > r0,
such that b (r̄) = 0, where

r̄ = − 1

μ

(
W

(
μ2 − κρC (μr0 + 1)

κρC exp (μr0 + 1)

)
+ 1

)
, (104)

where W (x) is the Lambert function defined mathematically
as the multivalued inverse of the function x exp (x),

W (x) exp W (x) = x . (105)

If −1/e < x < 0, there are two real solutions, and thus
two real branches of W [33–35]. Inspired by the Absurdly
Benign Traversable Wormhole (ABTW) and its generaliza-
tion, the Generalized Absurdly Benign Traversable Worm-
hole (GABTW) [36], we define the shape function (102) in
such a way that

b (r) = r0

(
1 − ρCκ

μ2 − r0ρCκ

μ
+ e−μ(r−r0)ρCκ (μ r + 1)

μ2

)

for r < r̄

b (r) = 0 for r ≥ r̄ , (106)

where r̄ has been defined in (104). As a consequence also
ω (r) behaves in the same way and therefore also the radial
pressure. Nevertheless the energy density does not vanish
because r̄ does not set to zero its value. However ρ (r̄) can
be very small and therefore even the transverse pressure.
Therefore outside the region defined by r ≥ r̄ , one obtains
a quasi-Minkowski spacetime. To complete the analysis, we
compute the value of ω (r) on the throat. We find

ω (r0) = 1

r2
0 ρCκ

, (107)

in agreement with what found in Ref. [36] and with Eq. (19).

4.2 ρ (r) = −ρC
2

(
α + βr0

e−μ(r−r0)

r

)

The second energy density profile we are going to consider
is obtained with a small modification of the profile (101)

ρ (r) = −ρC

2

(
α + βr0

e−μ(r−r0)

r

)
α, β ∈ R. (108)

As we can see, this is a linear combination between the orig-
inal Casimir profile and the Yukawa profile (101). Note that
for μ = 0, α = β = 1 and r = r0, we obtain the pure
Casimir energy density. Note also that this profile is a gen-
eralization of the potential (2). Differently from the profile
(101), here we can choose α and β in such a way to have

ρ (r̄) = 0 �⇒ α = −βr0
e−μ(r̄−r0)

r̄
α, β ∈ R.

(109)

The motivation for this choice will be clarified below. The
shape function can be easily computed and we find

b (r) = r0 + κρC
(−α μ2r3 + αr3

0μ2 − 3βr2
0 μ − 3βr0

)
6μ2

+κρC (3βμrr0 + 3βr0) e−μ (r−r0)

6μ2 . (110)

It is easy to see that for r � r0

b (r) 
 r0 − κρC
(
αμ2r3 − αr3

0μ2 + 3βr2
0 μ + 3βr0

)
6μ2


 −κρCα

6
r3. (111)

This behavior is due to the constant term in (108) which is
dominant and produces a divergent shape function. However,
since β is not fixed, we can impose that b (r̄) = 0, where r̄
is the same of Eq. (109). Plugging the value of α found in
Eq. (109) into Eq. (110), and by imposing that b (r̄) = 0, one
finds

β= 6r̄μ2

ρ κ
(
eμ (r0−r̄)

(
μ2r3

0−μ2r̄3−3μr̄2−3r̄
) + (3μr0+3) r̄

)
(112)

and

b (r)

=
(
(3μr+3) r̄ e−μ (r−r0)+eμ (r0−r̄)

(
μ2r3−μ2r̄3−3 μr̄2−3r̄

))
r0

eμ (r0−r̄)
(
μr3

0 − μ2r̄3 − 3μr̄2 − 3r̄
) + (3μr0 + 3) r̄

(113)

Thus if we assume that for r > r̄ , b (r̄) = 0, we get a feature
similar to the ABTW. Moreover, to have ZTF, ω (r) must be

123



Eur. Phys. J. C (2021) 81 :824 Page 9 of 14 824

ω (r) = − b (r)

b′ (r) r

=r06μ2 + κρC
(−α μ2r3 + αr3

0μ2 − 3βr2
0 μ − 3βr0

) + κρC (3βμrr0 + 3βr0) e−μ (r−r0)

3rμ2ρC

(
α + βr0

e−μ(r−r0)

r

) (114)

and, with the help of Eqs. (109) and (112), we get

ω (r) = (−3μr − 3) r̄ e−μ (r−r0) − eμ (r0−r̄)
(
μ2r3 − μ2r̄3 − 3μr̄2 − 3r̄

)
3
(
reμ (r0−r̄) − e−μ (r−r0)r̄

)
μ2r2

. (115)

For r → r̄ , ω (r) is an indeterminated form of the kind
0/0. However close to the point r = r̄ , the shape function
can be approximated by

b (r) 

r→r̄

O
(
(r − r̄)2

)
, (116)

while b′ (r) can be approximated by

b′ (r) 

r→r̄

3r̄μ2eμ (r0−r̄) (μr̄ + 1) r0

eμ (r0−r̄)
(
μ2r3

0 − μ2r̄3 − 3μr̄2 − 3r̄
) + (3μr0 + 3) r̄

(r−r̄) + O (r − r̄)2 . (117)

Thus, even in this case, we can assume that

ω (r) = 0 r ≥ r̄ . (118)

On the throat the analytic form of ω (r) is far to be simple.
Indeed, we find

ω (r0) = (−3μr0−3) r̄−eμ (r0−r̄)
(
μ2r3

0 − μ2r̄3−3μr̄2−3r̄
)

3
(
r0eμ (r0−r̄) − r̄

)
μ2r2

0

.

(119)

However, one finds that

ω (r0) 

μ→0

−2r2
0 + r0r̄ + r̄2

6r2
0

≥ 0 for r̄ ≥ r0, (120)

while

ω (r0) 

μ→∞

1

r0μ
+ 1

μ2r2
0

→ 0. (121)

However when r̄ � r0, we get

ω (r0) 

r̄�r0

1

r0μ
+ 1

μ2r2
0

, (122)

which is finite and positive. Therefore we can conclude that
from an energy density of the form (108), it is possible to
extract another shape function which generalizes an ABTW.
It is important to observe that such a generalization is real-
ized because of the presence of a repulsive Yukawa–Casimir
profile, otherwise for a choice of the form

ρ (r̄) = −ρC

2

(
1 + r0

e−μ(r̄−r0)

r

)

 −ρC

2
�= 0, (123)

the energy density outside the region r > r̄ is not Minkowski.
Although interesting, the profile (108) has the defect of hav-
ing a way to compare the throat radius with the original
Casimir source, like in Eq. (107).

4.3 ρ (r) = r0ρC
r

(
αe−μ(r−r0) − (1 − α) e−ν(r−r0)

)

To this purpose, we fix our attention on an energy density
profile which can reproduce both a Yukawa behavior and an
ABTW. This is represented by

ρ (r) = r0ρC

r

(
αe−μ(r−r0) − (1 − α) e−ν(r−r0)

)
μ, ν > 0. (124)

When α = 0, we obtain the profile (101), while when α = 1,
we obtain its repulsive version. ∀α �= 0, 1, we have a linear
superposition of the Yukawa–Casimir profile. The combi-
nation of an attractive and repulsive potential is suggested
also by the potential (108) together with the option (109) .
Note that the option (109) is relevant only if one wishes to
reproduce an ABTW. If such an option is not adopted the
existence of a traversable wormhole is guaranteed the same.
For the profile (124), it is immediate to calculate the form of
the shape function

b (r) = r0 + r0 (1 + νr0) (α − 1) ρCκ

ν2 + αr0κρC (1 + μr0)

μ2

−r0κρC (νr + 1) (α − 1) e−ν (r−r0)

ν2

−αr0κρC (μr + 1) e−μ (r−r0)

μ2 (125)
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and for r → ∞, we find

b (r) 

r→∞ r0 + r0 (1 + νr0) (α − 1) ρCκ

ν2

+αr0κρC (1 + μr0)

μ2 (126)

which can be set to zero if

α = μ2
(
κνr0ρC + ρCκ − ν2

)
(
μ2νr0 + μν2r0 + μ2 + ν2

)
ρCκ

. (127)

Plugging Eq. (127) into (125), one finds

b (r) = r0

(
e−ν(r−r0)

(
ρκ (1 + μr0) + μ2

)
(νr + 1) − e−μ(r−r0)

(
ρκ (1 + νr0) − ν2

)
(μr + 1)

)
(νr0 + 1) μ2 + μν2r0 + ν2 (128)

which is useful to compute the function of the EoS ω (r)

ω (r) =
(
ρκ (μr0 + 1) + μ2

)
e−ν(r−r0) (νr + 1) − (

(νr0 + 1) ρκ − ν2
)
(μr + 1) e−μ(r−r0)

r2
(
ν2

(
ρ (μr0 + 1) κ + μ2

)
e−ν(r−r0) − μ2

(
(νr0 + 1) ρκ + ν2

)
e−μ(r−r0)

) . (129)

This time the function ω (r) goes to zero for large values
of r , while on the throat one gets

ω (r0) = (1 + νr0) μ2 + (1 + μr0) ν2

2ν2r2
0 μ2 + r3

0ρκνμ (ν − μ) + r2
0 ρκ

(
ν2 − μ2

) .

(130)

Even in this case, if we desire to extract information on the
throat size, we need to compare ω (r0) with a physical source
like the Casimir source. To do this, we assume that

ω (r0) = 1. (131)

To do calculations in practice, it is useful the following setting

μ = m

r0
; ν = n

r0
andr0 = x√

ρκ
; m, n ∈ R+

(132)

and Eq. (131) becomes

(1 + n)m2 + (1 + m) n2(
2n2m2 + x2nm (n − m) + x2

(
n2 − m2

)) = 1, (133)

whose solution is

x =
√(

2n2 − n − 1
)
m2 − n2m − n2

√
((n + 1)m + n) (m − n)

. (134)

To constraint r to be very small, we observe that the r.h.s. of
Eq. (134) vanishes when

m± = n
1 ± √

9n2 − 4n − 4

2
(
2n2 − n − 1

) n ≥ 2

9

(
1 + √

10
)


 0.92495. (135)

m− will be discarded because is the negative root. Note that
it is not necessary to have a vanishing x , rather we need an x
with a value of the order of 10−10 or greater. This is due to

the rescaling in (132) setting the size of the wormhole throat
to be of the order of

r0 
 x × 1017m. (136)

Therefore we can conclude that with a linear combination of
two Yukawa–Casimir profiles, actually a difference of them,
one finds a traversable wormhole with a throat that can be
fine tuned with respect to the original Casimir source.

5 Conclusions

In this paper we have taken under examination the mod-
ification of the Casimir wormhole examined in Ref. [17]
which uses, as a source, the negative energy density of the
Casimir device. Differently from Ref. [17], this time we have
imposed the ZTF condition to obtain different solutions. We
have found that the ZTF condition can be imposed only if we
modify the form of the energy density or the form of the shape
function. To this purpose we have considered Yukawa type
modifications of the original profile. The motivation for this
choice stands in the attempt to detect signals of variations of
the ordinary gravitational field even for TW. In this context,
it appears interesting to note that, recently, investigations on
how it is possible to see signals of a TW have been considered,
especially in the framework of extended theories of gravita-
tion [37–40]. To further proceed, we have divided the paper
in two parts: the first part is devoted to the analysis of the
modification of the shape function with a Yukawa term and
the second part is devoted to the modification of the original
Casimir energy density with an appropriate Yukawa term. In
the first part we have examined three different profiles having
in common the Casimir wormhole shape function, namely

b (r) = 2

3
r0 + r2

0

3r
(137)

and we have included a Yukawa modification of the type
exp (−μ (r − r0)) acting on every single term and globally.
Two of the three profiles have shown features compatible
with the throat size estimated in Ref. [36], while one of them
has developed a divergent behavior for large values of the
radial variable r . I recall to the reader that, in this paper, we
have examined the Casimir energy density with the plates
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separation considered as a parameter and not as a variable.
This choice has led to have a huge throat size instead of a
Planckian one like in Ref. [17]. As a further analysis, we have
also considered a superposition of different categories of TW.
Even in this case the resulting size of the wormholes throat
is huge and compatible with the size of a GABTW described
in Ref. [36]. I recall again to the reader that the huge size
of the wormhole throat has been found by imposing that the
inhomogeneous function of the EoS (11) at the throat has
a constant value compatible with the ordinary Casimir rela-
tionship p = 3ρ. In the second part, we have fixed the form
of the energy density and we have deduced the form of the
shape function with the help of the first of the EFE (5). Even
in this case, we have analyzed three different profiles. Since
every of these profiles has produced a correction to the size
of the throat at infinity, we have considered the possibility
of taken another generalization for the ABTW. In particu-
lar we have found a value of the radial variable, located at
r = r̄ where the shape function vanishes and we have trun-
cated the region outside r = r̄ . In this way the pressure
outside the region r = r̄ vanishes. However, for the profile
of Sect. 4.1, the energy density does not vanish for r ≥ r̄ , it
is small because of the exponential but not nought. Therefore
the structure of an ABTW or GABTW cannot be reproduced.
On the contrary, for the profiles discussed in Sects. 4.2 and
4.3, it is possible to reproduce an ABTW in a generalized
form different by the GABTW at the price of introducing
a repulsive potential, namely we have the difference of two
Yukawa profiles: one attractive and one repulsive. I recall the
reader that an ABTW is defined by the following shape and
redshift functions

b(r) = r0

(
1 −

(
r − r0

a

))2

, �(r) = 0;
r0 ≤ r ≤ r0 + a

b(r) = 0, �(r) = 0; r ≥ r0 + a. (138)

Therefore outside the location r = r0 + a, the spacetime
is Minkowski. The same happens for a GABTW, where one
finds

b(r) = r0
(1 − μ (r − r0))

α

(1 − ν (r − r0))
β

,

�(r) = 0; r0 ≤ r ≤ r0 + 1/μ

b(r) = 0, �(r) = 0; r ≥ r0 + 1/μ. (139)

Of course 1/μ plays the rôle of a and viceversa. Note that
it is the exponent in Eq. (138) and in Eq. (139) that plays a
key rôle to determine the Minkowski structure for r ≥ r0 +a
or r ≥ r0 + 1/μ. Such a property is completely absent for
the profiles discussed in Sects. 4.1, 4.2 and 4.3 and one must
build a profile that potentially can develop such a property.

This is the reason why a repulsive Yukawa profile is neces-
sary to have a vanishing value outside a certain region. Of
course this is related to the attempt to reproduce some of the
features of an ABTW. If one abandons this request, the repul-
sive potential is not fundamental. However, our insistence to
reproduce the features of an ABTW is justified by the fact
the negative energy density is concentrated in a very small
region of the space and there is no redshift. Coming back
to the profile (124) in Sect. 4.3, it represents again a differ-
ence of two Yukawa profiles, and behaves “like” a ABTW,
because for a sufficiently large values of r , ρ (r), pr (r) and
pt (r) vanish. Nevertheless, because of the exponentials, it
is not necessary that the radial value r needs to be really
large. Another interesting feature of the profile (124) is that,
this time, we can fine tune the throat size down to accept-
able values, which is exactly what one needs. Always on the
side of phantom energy I proposed the idea of Self-Sustained
Traversable Wormholes, namely TW sustained by their own
quantum fluctuations [41–45]. Even in this case, because the
quantum fluctuation carried by the graviton behaves like the
ordinary Casimir effect, we found that no need for phantom
contribution is necessary. On this context, in a next paper we
will explore how behaves a system formed by the Casimir
TW, here analyzed, and the corresponding self-sustained TW
version. To conclude, we have also to point out that in the
context of Self-Sustained Traversable Wormholes, namely
TW sustained by their own quantum fluctuations [41–45],
could be interesting to consider how the Casimir source and
the quantum fluctuation carried by the graviton combine to
see if the GABTW can be self-sustained in this context. In
this picture, the Casimir source could be interpreted as the
switch on to power the traversability of the wormhole.
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Appendix A: Features of the superposition of traversable
wormholes

In this section we are going to explore some of the features
of the profile ( 79) which is quite general to include the other
profiles discussed in Sect. 2 of this paper. We begin to exam-
ine the proper length which is defined as

b(r) = r0

(
α exp (−μ (r − r0)) + (1 − α)

(r0

r

)c
× exp (−ν (r − r0))) , (A1)

l (r) = ±
∫ r

r0

dr ′√
1 − b(r ′)

r ′
, (A2)

where the “±” depends on the wormhole side we are. In the
case of the shape function (79), we know that it vanishes
exponentially for r → +∞. This is true for μ �= 0 and
ν �= 0. For instance for μ = ν = 0 and c = 1, one finds that
the shape function is represented by the EB wormhole (48) ,
whose proper length is

l (r) = ±
√
r2 − r2

0 . (A3)

For this reason, for the other cases it is sufficient to consider
what happens close to the throat. In general, we can write

√
r√

r − b (r)



r→r0

√
r√

1 − b′ (r0)
√
r − r0

. (A4)

Thus the approximated proper length becomes

l (r) 

r→r0

± 1√
1 − b′ (r0)

∫ r

r0

√
r ′dr ′

√
r ′ − r0

= ± r0√
1 − b′ (r0)

[√
r

r0

√
r

r0
− 1

+ln

(√
r

r0
+

√
r

r0
− 1

)]
. (A5)

A further approximation leads to

l (r) 

r→r0

±r0
√
r/r0

√
r/r0 − 1√

1 − b′ (r0)
(A6)

and, in the case of the shape function (79) , (A6) assumes the
form

l (r) = ± r0
√
r/r0

√
r/r0 − 1√

1 + r0 (αμ + ν (1 − α)) + c (1 − α)
. (A7)

The argument of the denominator is positive if and only if
the flare-out condition is satisfied. However, we can use the
constraint (86) and (90) to have a better estimate. We find

l (r) = 6
√
r − r0

√
r0

√
5d√

π3/2
√

30l pr0 + 30 d2
(A8)

or by means of the constraint (87), we can write the proper
length only in terms of the plates separation

l (r) =
√

3d 4
√

10

π
3
2 l p

√
l pπ

3
2
√

3r − 3d2
√

10. (A9)

In a similar way, to compute the embedded surface, we need
to evaluate

z (r) = ±
∫ r

r0

dr ′√
r ′

b(r ′) − 1
, (A10)

which, close to the throat, becomes

z (r) = ±
∫ r

r0

√
b (r ′)dr ′

√
r ′ − b (r ′)



r→r0

±
√
r0√

1 − b′ (r0)

∫ r

r0

× dr ′
√
r ′ − r0

= ± 2
√
r0

√
r − r0√

1 + r0 (αμ + ν (1 − α)) + c (1 − α)
. (A11)

To further investigate the properties of the Traversable Worm-
holes described by the shape function (79), we consider the
computation of the total gravitational energy for a wormhole,
defined as [31]

EG (r) =
∫ r

r0

[
1 −

√
1

1 − b (r ′) /r ′

]
ρ

(
r ′) dr ′r ′2

+ r0

2G
= M − MP± , (A12)

where

M =
∫ r

r0

4πρ
(
r ′) r ′2dr ′ + r0

2G
(A13)

is the total mass and

MP± = ±
∫ r

r0

4πρ
(
r ′) r ′2√

1 − b (r ′) /r ′ dr
′. (A14)

is the proper mass. In particular we find for the total mass

Mc2 =
∫ r

r0

4πρ
(
r ′) r ′2dr ′ + r0

2G
= 4π

κ

∫ r

r0

b′ (r ′) dr ′

+ r0

2G
= 4π

κ
b (r) →

r→∞ 0 (A15)

where we have used the relationship (91) and we have
momentarily reintroduced the speed of light. For MP± , we
can estimate the value of the integral close to the throat, fol-
lowing what has been done for the proper length and the
embedded surface. We can write

MP±c2 = ±
∫ r

r0

4πρ
(
r ′) r ′2√

1 − b (r ′) /r ′ dr
′ 

r→r0

± b′ (r0)

2G
√

1 − b′ (r0)

×
∫ r

r0

dr ′
√
r − r0

123
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 ± (α − 1) (νr0 + c) − r0μα

G
√

1 + r0 (αμ + ν (1 − α)) + c (1 − α)

√
r − r0,

(A16)

where the “±” depends one the wormhole side we are. Thus
the total gravitational energy (A12) becomes

EG (r) 

r0
2G r → r0

0 r → ∞
. (A17)

Even for the total energy, this is true for α �= 0, ν �= 0 and
c �= 1. Indeed for α = ν = 0 and c = 1 we can write the total
gravitational energy of the EB wormhole (48) which reduces
to

EG (r) = r0

3G

(
1 ∓

√
3πc4

6

)
. (A18)

It is interesting to note that the total energy is concentrated
completely on the throat and at infinity vanishes showing a
screening mechanism: in other words, the “imprint at infin-
ity” disappears [16]. Another important traversability con-
dition is that the acceleration felt by the traveller should not
exceed Earth’s gravity g⊕ 
 980 cm/s2. In an orthonormal
basis of the traveller’s proper reference frame, we can find

|a| =
∣∣∣∣∣
√

1 − b (r)

r
e−�(r)

(
γ e�(r)

)′
∣∣∣∣∣ ≤ g⊕

c2 (A19)

and in this case, because �(r) = 0, the traveller has no
acceleration, which is in agreement with Ref. [15]. As regards
the lateral tidal forces, we find
∣∣∣∣γ

2c2

2r2

[
v2 (r)

c2

(
b′ (r)−b (r)

r

)
+2r (r−b (r)) �′ (r)

]∣∣∣∣ |η|

=
∣∣∣∣γ

2c2

2r3

[
−v2 (r) b (r)

c2

(
1

ω (r)
+ 1

)]∣∣∣∣ |η| ≤ g⊕,

(A20)

where we have used the relationship (11). This is a constraint
about the velocity with which observers traverse the worm-
hole. η represents the size of the traveller which can be fixed
approximately equal, at the symbolic value of 2 m [15]. If
we assume a constant speed v and γ 
 1, close to the throat,
the lateral tidal constraint becomes∣∣∣∣∣

γ 2c2

2r2
0

[
−v2 (r0)

c2 (1 + [r0μα + (1 − α) (νr0 + c)])

]∣∣∣∣∣ |2|



∣∣∣∣∣
[

v2 (r0)

r2
0

]
(1 + [r0μα + (1 − α) (νr0 + c)])

∣∣∣∣∣ � g⊕

�⇒ v � r0
√

(1 + [r0μα + (1 − α) (νr0 + c)]) g⊕.

(A21)

If the observer has a vanishing v, then the tidal forces are
null. Note that the total time defined by

�t =
∫ r

r0

e−φ(r ′)dr ′

v

√
1 − b(r ′)

r ′
(A22)

and the total proper time given by

�τ =
∫ r

r0

dr ′

v

√
1 − b(r ′)

r ′
(A23)

are the same for the profile (79) because the redshift function
is nought. Assuming that v is approximately constant, we
can use the estimate (A21) to complete the evaluation of the
crossing time which approximately is

�τ = �t 
 2 × 104

(1 + r0 (αμ + ν (1 − α)) + c (1 − α))
√
g⊕

.

(A24)

However, we can use the constraint (84), (86), (87) and (90)
to have a better estimate of the crossing time which becomes

�τ = �t 
 3 × 104

2
√
g⊕


 4.79 × 103s, (A25)

where we have considered a possible time trip in going from
one station located in the lower universe, say at l = −l1,
and ending up in the upper universe station, say at l = l2.
Following Ref. [15], we have located l1 and l2 at a value of
the radius such that

l1 
 l2 
 104r0√
1 − b′ (r0)

(A26)

that it means 1−b (r) /r 
 1 which is in agreement with the
estimates found in Ref. [15]. The last property we are going
to discuss is the “ total amount” of ANEC violating matter
in the spacetime [27] which is described by Eq. ( A27). For
the metric (79), one obtains

IV = 1

κ

∫ r0+ε

r0

(r − b (r))

[
ln

(
e2φ(r)

1 − b(r)
r

)]′
dr

= 1

κ

∫ r0+ε

r0

b (r)

r

(
1 + 1

ω (r)

)
dr (A27)


 1

κ

[∫ r0+ε

r0

αμr0 − βνr0 + 1 + c (r) (r − r0)

]
dr,

(A28)

where we have approximated the expression close to the
throat and where we have defined

c (r) = −αμ − r−1
0 + βν − α2μ2r0 + αμr0β ν + αμ2r0

− (−αμr0 + βνr0) βν − βν2r0. (A29)
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After the integration, we find

IV = 1

κ

(
3

2
αr0 − 1

2
α2r0 + νr0βα

μ
− βνr0

μ
− α

2μ
+ 1

μ

−βν2r0

2μ2 − β2ν2r0

2μ2 + βν

2μ2 − 1

2μ2r0

)



μr0�1

1

κ

(
3

2
αr0 − 1

2
α2r0

)
, (A30)

and the result is finite. Therefore we can conclude that, in
proximity of the throat the ANEC can be arbitrarily small as
it should be.
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