
Noname manuscript No.
(will be inserted by the editor)

An authorization model for query execution in the cloud

Sabrina De Capitani di Vimercati · Sara Foresti · Sushil Jajodia ·

Giovanni Livraga · Stefano Paraboschi · Pierangela Samarati

Received: date / Accepted: date

Abstract We present a novel approach for the spec-
ification and enforcement of authorizations that en-
ables controlled data sharing for collaborative queries
in the cloud. Data authorities can establish authoriza-
tions regulating access to their data distinguishing three
visibility levels (no visibility, encrypted visibility, and
plaintext visibility). Authorizations are enforced ac-
counting for the information content carried in the com-
putation to ensure no information is improperly leaked
and adjusting visibility of data on-the-fly. Assignment
of operations to subjects takes into consideration the
cost of operation execution as well as of the encryp-
tion/decryption operations needed to make the assign-
ment authorized. Our approach enables users and data
authorities to fully enjoy the benefits and economic sav-
ings of the competitive open cloud market, while main-
taining control over data.

Keywords Authorization model · Collaborative query
evaluation · Plaintext and encrypted visibility · Implicit
attributes · Equivalent attributes · Relation profile

This work was supported in part by the Office of Naval Re-
search under grant N00014-20-1-2407, by the Army Research
Office under grant W911NF-13-1-0421, by the National Sci-
ence Foundation under grant CNS-1822094, by the EC within
the H2020 Program under grants 825333 and 101017171, and
by JPMorgan Chase & Co.

S. De Capitani di Vimercati, S. Foresti, G. Livraga, P. Sama-
rati
Università degli Studi di Milano, Italy
E-mail: {firstname.lastname}@unimi.it

S. Jajodia
George Mason University, USA
E-mail: jajodia@gmu.edu

S. Paraboschi
Università degli Studi di Bergamo, Italy
E-mail: parabosc@unibg.it

1 Introduction

Today’s ICT (Information and Communication Tech-
nology) scenarios are seeing an ever-growing explosion
of data collection, sharing, and collaborative processing,
as well as an ever-increasing need to efficiently perform
extensive data analysis tasks over data produced and
controlled by different parties (e.g., in medical or ge-
nomic data applications). The evolution of technology,
and especially of the cloud computing paradigm, of-
fering a variety of storage and computation providers
with different costs and performance guarantees, well
responds to such demands and needs. Multi-provider
applications can leverage the richness and diversity of
the cloud market by involving different parties depend-
ing on specific needs and economic benefit. Users and
companies can then enjoy clear social and economic
benefits in terms of convenient, scalable, and elastic
availability of services. At the same time, however, data
could be sensitive, proprietary, or simply subject to ac-
cess restrictions that can affect the possibility of relying
on external cloud providers for their management and
processing [30]. Addressing security concerns over data
exposure by restricting processing within the premises
of each individual data authority (i.e., the entity con-
trolling the data) or at the user side, can hinder the
ability to fully benefit from the rich and diverse cloud
market offering. This represents a significant barrier to-
wards the evolution of the market and the related eco-
nomic growth.

In this paper, we address this problem and pro-
pose a novel approach enabling collaborative and dis-
tributed query execution with the controlled involve-
ment of cloud providers that might be not fully trusted
to access the data content. Our goal is twofold: first,
to allow data authorities to make their data available

Published version available at https://doi.org/10.1007/s00778-021-00709-x

2 Sabrina De Capitani di Vimercati et al.

for possible collaborative processing, while maintaining
control over them; second, to allow users accessing such
data to leverage the rich and diverse offer of the cloud
market, by relying on cloud providers for performing
queries over such data.

The core of our proposal is a simple, yet flexible,
authorization model that enjoys the great advantage
of simplicity of specification and management. Each
data authority can establish authorizations regulating
the release of data under its control to other subjects
(i.e., users, providers, and other data authorities). Au-
thorizations are specified by each authority indepen-
dently (no cross-domain authorization or collaborative
administration is required) and selectively grant visi-
bility on the data to other subjects. Visibility can be
granted either plaintext or encrypted. Subjects autho-
rized for encrypted visibility over some data can per-
form computations (e.g., evaluate conditions or per-
form joins) over the data without accessing the ac-
tual data values. Leveraging the availability of solu-
tions that support operations on encrypted data (e.g.,
CryptDB [23] and the SEEED framework over the SAP
Hana DBMS [16]), this feature increases the spectrum
of potential providers to which operations within a
query can be assigned. Query execution can then se-
lectively involve, in the different steps of the compu-
tation, different data authorities and cloud providers
as deemed desirable for economic or performance rea-
sons. Encryption/decryption operations are injected in
the query process and enforced on-the-fly as needed
to disable/enable data visibility as demanded by au-
thorizations and operation requirements. Authorization
enforcement entails controlling not only direct data ac-
cess, or release, but also accounting for information im-
plicitly conveyed as a result of a computation.

Running example. For concreteness, but without loss
of generality, we frame our work in the context of re-
lational database systems. We consider queries of the
general form “select from where group by hav-

ing” that can include joins among distinct relations
under control of different data authorities. We also sup-
port renaming operations on attributes and queries that
combine the results of other queries of the general form
above through set operators (i.e., union, intersection,
difference). Execution of queries is performed accord-
ing to a query plan established by the query optimizer.
The query plan is represented as a tree T(N), with N

the set of nodes in the tree, whose leaves are base re-
lations and whose non-leaf nodes are operations to be
executed to perform the query. We assume the query
plan to be produced with classical optimization criteria
and, in particular, we assume that projections and se-
lections are pushed down to avoid retrieving data that

are not of interest for the query. Graphically, we rep-
resent a leaf node as a square box that contains (the
projection of) a source relation. We refer to leaf nodes
as base relations. In this paper, we consider as a run-
ning example two data authorities: a hospital H, stor-
ing relation Hosp(S,B,D,T), reporting SSN, Birth, Dis-
ease, and Treatment of hospitalized patients; and an
insurance company I storing relation Ins(C,P), report-
ing, for each Customer, the insurance Premium. We
assume a user U who submits a query, and three cloud
providers X, Y, Z offering computational power. Our
running example considers the execution, on behalf of
user U, of query “select T, avg(P) from Hosp join

Ins on S=C where D=‘stroke’ group by T having

avg(P)>100” retrieving, for each treatment given to pa-
tients hospitalized for stroke, the average insurance pre-
mium (if greater than US$ 100). Figure 1(a) illustrates
a query plan for our query. For simplicity, in the figure
and in the remainder of this paper, we denote a set of
attributes simply with the sequence of the attributes
composing it, omitting the curly brackets and commas
(e.g., SBDT stands for {S,B,D,T}).

Outline. The remainder of this paper is organized as
follows. Section 2 presents our authorization model.
Section 3 describes the concept of relation profile, cap-
turing the informative content of a relation. Section 4
shows how protection requirements stated by authoriza-
tions must be considered to ensure that data are prop-
erly protected in query execution. Section 5 describes
the use of on-the-fly encryption and decryption for pro-
tecting data in a computation, based on the assignment
of query operations to subjects. Section 6 shows how to
compute an assignment that enjoys minimum cost. Sec-
tion 7 illustrates key management and query dispatch
to the subjects involved in a query execution. Section 8
presents experimental results. Section 9 discusses re-
lated work. Finally, Section 10 concludes the paper. The
proofs of theorems can be found in Appendix A.

2 Authorization model

We assume a simple, yet expressive, authorization
model in which each data authority specifies authoriza-
tions regulating the release of its data. Authorizations
are defined at the fine-grained level of attribute speci-
fying, for each attribute, whether a subject (i.e., a user,
a data authority, or a cloud provider) can have:

– plaintext visibility: the subject has complete visibil-
ity on the values of the attribute;

– encrypted visibility: the subject cannot view the
plaintext values of the attribute, but can view an
encrypted version of them;

An authorization model for query execution in the cloud 3

σD=′stroke′

"#S=C

γT,avg(P)

σavg(P)>100

πS,D,T

Hosp(S,B,D,T)
Ins(C,P)

[SBDT,]→H

[C,P]→H

[B,SDT]→I

[CP,]→I

[SDT,]→U

[CP,]→U

[DT,S]→X

[,CP]→X

[BDT,S]→Y

[P,C]→Y

[ST,D]→Z

[C,P]→Z

[DT,]→any
[,P]→any

(a) Query plan (b) Authorizations

Fig. 1 An example of a query plan (a) and of authorizations
on relations Hosp and Ins (b)

– no visibility: the subject cannot view the values
of the attribute at all (neither plaintext nor en-
crypted).

While plaintext and no visibility do not require ex-
planation, since they correspond to traditional ways of
regulating access, the encrypted visibility, which rep-
resents a characteristic and strength of our proposal,
deserves some clarification. The reason behind the con-
sideration of the encrypted visibility is to provide a
subject with the ability to operate on an attribute for
performing joins with other relations or for evaluating
conditions on encrypted values (supported by the kind
of encryption used), while not releasing to the sub-
ject the actual values of the attribute. In the autho-
rization model, we do not distinguish among different
encryption schemes, so to leave the model simple and
the approach flexible. In fact, expressing the encryption
scheme in the authorizations would introduce consider-
able complexity in the specifications, without providing
an actual advantage in the end. As the experience of
null values shows, it is important to maintain specifica-
tions simple and intuitive (the introduction of multiple
null values in SQL-92 was quickly deprecated). The dis-
tinction among encryption schemes will be made by the
query optimizer in the generation of the query plan, de-
pending also on the operations that the query performs
on the encrypted data (Section 7).

Consistently with standard security practice, we as-
sume a “closed” policy for the specification of autho-
rizations, meaning that only accesses explicitly autho-
rized are allowed (i.e., ‘no visibility’ does not need to be
specified, as it applies whenever the other two do not).
Authorizations are then defined as follows.

Definition 1 (Authorization) Let R be a relation
and S be a set of subjects. An authorization is a rule of

the form [P ,E]→S, where P⊆R and E⊆R are subsets
of attributes in R such that P∩E=∅, and S∈S ∪{any}.

Authorization [P ,E]→S states that subject S can
view attributes P in plaintext and attributes E en-
crypted. Sets P and E are required to be disjoint. How-
ever, we note that an authorization that permits a sub-
ject S to access an attribute a in plaintext also allows S
to access the encrypted version of the attribute. We as-
sume that, for each relation, a subject can hold at most
one authorization (the consideration of multiple autho-
rizations would not increase expressivity). Since the set
of subjects who might be involved in a query, and for
whom release of data may be requested, may not be
completely known a priori, a default authorization can
be specified, which applies to all subjects for which no
explicit authorization already exists for the interested
relation. This is accommodated by the consideration of
value ‘any’ as subject of the authorization.

We expect users to have authorizations that in-
clude plaintext attributes only, since users need to be
able to access the queries’ responses and manage keys
for attributes encrypted in the computation. We also
expect the data authority storing a relation to hold
an authorization for accessing its content in plain-
text (i.e., S storing R(a1, . . . , an) holds authorization
[{a1, . . . , an},]→S). Cloud providers and other data
authorities may instead have authorizations that also
include encrypted attributes, allowing them to operate
on these attributes without viewing their plaintext val-
ues. Figure 1(b) illustrates an example of authorizations
for our running example.

3 Relation content model

To determine whether the release of a relation to a sub-
ject should be accepted according to authorizations, we
introduce the concept of relation profile capturing the
informative content of a, base or derived (i.e., computed
by a query), relation. In the following, we first illustrate
how attributes that do not belong to a relation schema
can influence the definition of its profile, and then for-
mally define relation profiles.

3.1 Implicit, equivalent, and renamed attributes

A relation resulting from a computation can convey in-
formation on attributes not explicitly appearing in its
schema. This may happen due to the evaluation of a
selection condition, of a rename or grouping operation,
or of a user defined function (udf) on attributes that
are then removed from the relation schema through a

4 Sabrina De Capitani di Vimercati et al.

projection. As a simple example, the relation result-
ing from “select A from R where B=‘10’”, while
containing only A in its schema, indirectly leaks infor-
mation on the values of attribute B as well, and should
therefore not be visible to subjects not authorized to
see either A or B. A similar observation holds for the
relation resulting from “select A from R1 join R2

on A=B” which, while including only attribute A in its
schema, conveys also information on B, as A and B sat-
isfy the equality predicate (hence, granting visibility on
A implies leaking also B). Similarly, the relation result-
ing from “select B AS A from R”, while including
only A in its schema, releases the values of attribute
B, hence the relation should be visible only to subjects
authorized for B. Note that, in this case, authorization
control cannot be performed against A itself, since it is
not in the schema of any base relation.

Capturing the informative content of a relation R

(resulting from a computation) requires then to take
into account such indirect information leakage and re-
lationships among attributes, which we characterize
through the concepts of implicit , equivalent , and re-
named attributes.

Implicit attributes. Implicit attributes are attributes
not necessarily appearing in a relation schema but that
have been taken into account in the computation of the
relation. Basically, implicit attributes for a relation R

are all those attributes that appear in a selection condi-
tion or grouping operation in the (sub-)query producing
R. The information indirectly conveyed differs depend-
ing on the selection condition considered. For instance,
a selection condition ‘B=10’ leaks the fact that all the
tuples in the result have value of B equal to 10, dis-
closing B precisely even if it is not explicitly visible in
the relation. A selection condition ‘B>10’ leaks instead
the fact that the tuples appearing in the relation have
a value for B greater than 10, but without leaking B’s
actual values. The evaluation of a group by clause
over B is similar to the evaluation of equality condition
‘B=value’, where value may be unknown. Consistently
with the fact that we operate at the schema level, we
do not distinguish among the degrees of leakage and as-
sume an attribute to be implicitly visible in a relation
(i.e., indirectly exposed) if the attribute was taken into
account – in some way – in the computation of the re-
lation. The concept of implicit visibility applies to both
plaintext and encrypted attributes.

Equivalent attributes. Equivalence among attributes
captures the fact that some attributes have been con-
nected in a computation (i.e., some conditions among
them have been applied) and therefore visibility of one
attribute indirectly leaks the other(s). Like for implicit

attributes, the degree of such a leakage can depend on
the condition enforced. For instance, condition ‘A=B’
implies precise leakage of the values of B from the visi-
bility of A, while condition ‘A>B’ entails a partial leak-
age, as a subject viewing A can only infer the fact that B
has a value lower than the one visible for A. Again, we
do not distinguish among different degrees of leakage
(which would introduce considerable complexity and
fuzziness in the approach, with limited advantages in
the enforcement of authorizations), but simply capture
such a connection between the attributes, considering
them as equivalent from the point of view of authoriza-
tion enforcement (as visibility of one entails some visi-
bility of the other). Given a relation R, we say that two
attributes are equivalent if the (sub-)query producing R
involves a condition comparing them. The equivalence
relationship is symmetric and transitive. Different sets
of equivalent attributes can exist for a given relation.
The equivalence relationship can apply to both explicit
as well as implicit attributes, and to plaintext as well
as encrypted attributes.

Renamed attributes. Renamed attributes are at-
tributes that do not appear in the schema of base rela-
tions as they result from a change in the name of origi-
nal attributes through a rename operation. The release
of a relation with a renamed attribute clearly discloses
the original attribute, even if such attribute does not
appear in the relation schema. For instance, query “se-
lect B as A from R” reveals the values of attribute B
under attribute name A, but no authorization regulates
the release of A. Clearly, the authorizations originally
defined over B must apply also to A, since B is just
a different name for A. We refer to A as the renamed
version of B. The concept of renamed attribute applies
to both explicit as well as implicit attributes, and to
plaintext as well as encrypted attributes.

3.2 Relation profile

We are now ready to define the profile of a relation, cap-
turing the informative content carried by the relation
in terms of attributes explicitly as well as implicitly vis-
ible and taking into account information conveyed by
equivalent and renamed attributes. In the following, we
refer to attributes explicitly visible in a relation as visi-
ble attributes, and to those implicitly leaked as implicit .
In addition, attributes can be plaintext or encrypted .

Definition 2 (Relation Profile) Let R be a re-
lation. The profile of R is a 6-tuple of the form
[Rvp, Rve, Rip, Rie, R", R!] where: Rvp and Rve are the
visible attributes appearing in R’s schema in plaintext

An authorization model for query execution in the cloud 5

(Rvp) or encrypted (Rve) form; Rip and Rie are the im-
plicit attributes conveyed by R, in plaintext (Rip) or en-
crypted (Rie) form; R" is a disjoint-set data structure
representing the closure of the equivalence relationship
implied by attributes connected in R’s computation;
and R! is a set of attribute pairs [a′, a] denoting the
renaming of a as a′.

The profile of a base relation has all the ele-
ments but Rvp empty, since it is assumed accessible
in plaintext and does not carry any implicit content
or equivalence/renaming relationship. (Note that plain-
text accessibility of a relation does not imply that it
is stored in plaintext but only that it is accessible in
plaintext by the data authority storing it.) Formally,
the profile of a base relation R(a1, . . . , an) is then
[{a1, . . . , an}, , , , ,].

The profile of the relation resulting from a query
depends on the profile of the operand relations and on
the operators involved in its computation. Every opera-
tor only operates on visible attributes (i.e., attributes in
Rvp and Rve, which belong to the schema of the operand
relation R), but it may affect also implicit attributes
in the profile of the resulting relation. In the follow-
ing, we illustrate the profile resulting from the appli-
cation of projection, selection, cartesian product, join,
group-by, rename, union, intersection, difference, and
udf operators as well as encrypt/decrypt operators. In
the treatment, with a slight abuse of notation, we will
use symbol ∪ to denote the insertion into R" of the
equivalence relationship among a set A of attributes.
In other words, R"∪A adds A to R" if no set in R"

intersects A; it merges all the sets intersecting A as
well as A in a single set in R", otherwise. R"

i ∪R
"
j im-

plies inserting into R"
i all the equivalence sets in R"

j

(or, equivalently, vice versa). Also, given an attribute
a′ and component R!, function ω(a′, R!) returns a if
R! includes a pair [a′, a]; it returns a′, otherwise. We
use ω(A,R) to denote the application of function ω to
each attribute in A on R!. In other words, function ω

returns the original names of the attributes on which it
applies (if any) or the attributes themselves.

Graphically, we represent the profile of a relation
as a tag attached to the relation’s node (or the node
of the operator producing it in case of a derived rela-
tion), with four components: v (visible attributes Rvp

and Rve), i (implicit attributes Rip and Rie), ' (sets
of equivalent attributes R"), and ! (pairs of attributes
involved in renaming operations R!). Within visible
and implicit attributes, we distinguish the encrypted
ones (i.e., Rve and Rie) by representing them on a gray
background. We represent an encryption operation as
a gray box, containing the attributes to be encrypted,
on top of the operand relation. We represent a decryp-

tion operation as a white box, containing the attributes
to be decrypted, below the node representing the op-
erator. Figure 2 illustrates the graphical representation
of the profiles resulting from relational and udf opera-
tions, reporting, for each operator, the general formula
(on the left) and an example (on the right). Similarly,
Figure 3 illustrates the graphical representation of the
profiles resulting from encryption and decryption oper-
ations. For the sake of readability, in the figures and in
the paper, we omit the ! component in the graphical
representation of relation profiles, reporting it only for
the rename operator. Indeed, only the rename operator
has an effect on component R!, while R! of the result
is the same as R! of the operand(s) for all the other
unary operators and it is the union of them in case of
binary operators. We now discuss the profile resulting
from the application of each operator.

Projection (π). It returns a subset of the attributes in
the schema of its operand. The profile of the resulting
relation simply contains, in the visible attributes, only
those attributes that have been projected. The implicit
and renamed attributes as well as the equivalence sets
are the same as the ones of the operand.

Selection (σ). It returns a subset of the tuples of its
operand, based on the evaluation of a condition on visi-
ble attributes. Since a selection does not have any effect
on the schema of the operand relation, the result has
the same visible and renamed attributes as the operand.
The other components of the profile depend on the kind
of condition to be evaluated. For conditions of the form
‘a op x’, with x a value, attribute a is added to the
implicit attributes (either encrypted or plaintext, con-
sistently with how a is visible in the operand). For con-
ditions of the form ‘ai op aj ’, equivalence {ai, aj} is
added to the equivalence set. Note that attributes ai
and aj must be either both visible plaintext or both
visible encrypted for the evaluation of condition ‘ai op
aj’.

Cartesian product (×). It returns the cartesian
product of two operand relations Rl and Rr, that is,
all possible combinations of their tuples. The plain-
text/encrypted attributes visible or implicit in the re-
sulting relation, renamed attributes, and the sets of
equivalent attributes are then simply the union of the
corresponding sets in the profiles of the operands.

Join ($%). It returns a relation that contains the con-
catenation of the tuples of the operands Rl and Rr that
satisfy a join condition C, which is a Boolean formula of
basic conditions of the form ‘ai op aj’. It is then equiv-
alent to a selection operating on the cartesian product
of the operands (i.e., σC(Rl × Rr)). The profile of the

6 Sabrina De Capitani di Vimercati et al.

General formula Example

P
ro

je
c
ti
o
n

πA

v:Rvp
∩ARve

∩A

i:Rip Rie

":R!

R

v:Rvp Rve

i:Rip Rie

":R!

v: B P

i: D

!: SC

R1

πBP

v: BDTP

i: D

!: SC

S
e
le
c
t
io
n

σaopx

v:Rvp Rve

i:Rip∪(Rvp∩{a})Rie∪(Rve∩{a})

#:R!

R

σai opaj

v:Rvp Rve

i:Rip Rie

#:R!∪{ai, aj}

R

v:Rvp Rve

i:Rip Rie

#:R!

v:Rvp Rve

i:Rip Rie

#:R!

v: BDTP

i: D

!: SC

σD=′stroke′

v: BDTP

i:

!: SC

v: SCTP

i: D

!: SC

σS=C

v: SCTP

i: D

!:

R1

R1

C
a
rt
e
si
a
n
p
ro

d
u
c
t

v:R
vp
l

∪R
vp
r Rve

l
∪Rve

r

i:R
ip
l
∪R

ip
r Rie

l
∪Rie

r

":R!

l
∪R!

r

Rl Rr

×

v:R
vp
r Rve

r

i:R
ip
r Rie

r

":R!

r

v:R
vp
l

Rve
l

i:R
ip
l

Rie
l

":R!

l

v: SCBP

i: D T

!: SC

v: SCP

i:

!: SC

v: B

i: DT

!:

R1 R2

×

J
o
in

v:R
vp
l ∪R

vp
r Rve

l ∪Rve
r

i:R
ip
l ∪R

ip
r Rie

l ∪Rie
r

":R!

l ∪R
!

r ∪{ai, aj}

!"ai opaj

Rl Rr

v:R
vp
r Rve

r

i:R
ip
r Rie

r

":R!

r

v:R
vp
l Rve

l

i:R
ip
l Rie

l

":R!

l

v: DCB

i: P

!: SCD

v: C

i: P

!: SC

v: DB

i:

!:

!"D=C

R1 R2

G
ro

u
p
b
y

γA,f(a)

v:Rvp∩(A∪{a}) Rve∩(A∪{a})

i:Rip∪(Rvp∩A)Rie∪(Rve∩A)

#:R!

R

v:Rvp Rve

i:Rip Rie

#:R!

γT,avg(P)

v: T P

i: DT

!: SC

v: DTPSC

i: D

!: SC

R1

R
en

a
m
e
(p

la
in
te
x
t)

v:Rvp\{a}∪{a′}Rve

i:Rip Rie

":R"

!:R!
∪{[a′, a]}

R

v:Rvp Rve

i:Rip Rie

":R"

!:R!

ρa′←a

R

v: KD TP
i: D
!: SC
!: [K,B]

R1

v: BDTP
i: D
!: SC
!:

ρK←B

R1

R
en

a
m
e
(e
n
cr
y
p
te
d
)

v:Rvp Rve\{a}∪{a′}

i:Rip Rie

":R"

!:R!
∪{[a′, a]}

R

v:Rvp Rve

i:Rip Rie

":R"

!:R!

ρa′←a

R

v: BD KP
i: D
!: SC
!: [K,T]

R1

v: BDTP
i: D
!: SC
!:

ρK←T

R1

S
e
t
o
p
e
ra

to
rs

v:R
vp
l

Rve
l

i:R
ip
l
∪R

ip
r Rie

l
∪Rie

r

":R!

l
∪R!

r ∪{{ali , ari}|

ali∈R
vp
l

∪Rve
l
,

ari∈R
vp
r ∪Rve

r ,

i=1, . . . , |R
vp
l

∪Rve
l
|}

set op

Rl Rr

v:R
vp
r Rve

r

i:R
ip
r Rie

r

":R!

r

v:R
vp
r Rve

r

i:R
ip
r Rie

r

":R!

r

v: S B
i: DP
!: SDC, BT

∪

R1 R2

v: C T

i: P

!:

v: S B

i: D

!: SD

U
d
f

µA,a

v:Rvp \ (A \ {a})Rve \ (A \ {a})

i:Rip Rie

!:R!∪A

R

v:Rvp Rve

i:Rip Rie

!:R!

µSB,S

v: SC T

i: D

!: SBC

v: SBCT

i: D

!: SC

R1

Fig. 2 Graphical representation of the profiles resulting from
relational and udf operations

General formula Example

E
n
c
ry

p
ti
o
n A

v:Rvp\ARve∪A

i:Rip Rie

":R!

R

R

v:Rvp Rve

i:Rip Rie

":R!

v: SBT

i: D

!:

T

R1

R1

v: SBT

i: D

!:

D
e
c
ry

p
ti
o
n

A

v:Rvp∪ARve\A

i:Rip Rie

":R!

R

v:Rvp Rve

i:Rip Rie

":R!

T

v: SBT

i: D

!:

R1

v: SBT

i: D

!:

Fig. 3 Graphical representation of the profiles resulting from
encryption/decryption operations

result reflects then the information conveyed by both
these operators. Also in this case, for each pair {ai,aj}
of attributes appearing together in a condition C, ai
and aj must be both plaintext or both encrypted for
the evaluation of the join condition.

Group by (γ). It groups the operand relation by a
given set of (plaintext or encrypted) attributes A, then
evaluating an aggregate function f on an attribute a.
For simplicity, we consider the attribute resulting from
f(a) with the same name as a. The case where f(a)
takes a different name can be accommodated with the
rename operator. The profile of the resulting relation
contains, in the visible attributes, only those attributes
on which the grouping (A) and aggregate function (a)
operate (when f(a) is count(∗), only attributes in A

are maintained). Attributes appearing in the group-
ing function (A) are added to the implicit attributes
(to capture the possible information leakage from their
grouping).

Rename (ρ). It changes the name of a subset of
the (plaintext or encrypted) visible attributes of its
operand. The only effect of the operator is the different
name of the renamed attributes in the visible compo-
nent. The implicit attributes and equivalence sets do
not change. For each renamed attribute a′ resulting
from the application of the rename operator over at-
tribute a, pair [a′,ω(a,R!)] is added to the set R! of
renamed attributes. Note that the use of function ω

in the added pair ensures that the rename component
R! keeps always track of the correspondence between a
renamed attribute and the corresponding attribute ap-
pearing in a base relation, enabling transitive closure of
chains of rename operations.

Union, intersection, difference (∪,∩, \). They are
binary operators that apply to operand relations Rl

and Rr characterized by the same number of visible at-
tributes, which need to be of compatible domains and

An authorization model for query execution in the cloud 7

represented in the same form (i.e., the i-th attributes in
Rl and Rr must be both plaintext or both encrypted for
the evaluation of set operators). Set operators return all
the tuples that are in: Rl or Rr (union ∪); both Rl and
Rr (intersection ∩); Rl but not in Rr (difference \). The
visible attributes of the resulting relation correspond to
the visible attributes of the first operand (Rl). The im-
plicit attributes, the sets of equivalent attributes and of
the renamed attributes are the union of the correspond-
ing components in the profiles of the operands. The fact
that the i-th attribute ali appearing in the resulting re-
lation is derived from the i-th attributes ali and ari in
the operand relations Rl and Rr is represented through
the addition of a pair {ali , ari} in the equivalence set
of the result.

User defined function (µ). It performs a time-
consuming procedural computation (e.g., machine
learning and data analytics [8]) over the operand re-
lation, elaborating the values of a set A of attributes
(all plaintext or encrypted) in its schema. We assume
a general udf operator with a set (A) of attributes as
input and an attribute (a) as output. For simplicity, we
assume the attribute in output to have the same name
as one of the attributes in input. The case where the
result assumes a different name can be accommodated
using the rename operation. The profile of the result-
ing relation has, as visible attributes, the attribute re-
turned as output together with the visible attributes of
the operand on which the udf does not operate. The
implicit and renamed attributes are the same as the
ones in the operand. The equivalence relationship is ob-
tained from the one in the operand by adding the set
of attributes on which the udf operates. This reflects
the fact that the attribute in output depends on all the
attributes on which the udf has operated.

Encryption. It changes a relation by encrypting some
of its plaintext attributes. The result has the same pro-
file as the operand, apart from the fact that the at-
tributes on which encryption is applied are moved from
visible plaintext to visible encrypted.

Decryption. It changes a relation by decrypting some
of its encrypted attributes. The result has the same
profile as the operand, apart from the fact that the
attributes on which decryption is applied are moved
from visible encrypted to visible plaintext.

While relations in the query plans, and their pro-
files, can contain renamed attributes, authorizations are
defined over attributes appearing in base relations only
and do not regulate the release of attributes with differ-
ent (new) names. To determine whether a relation can
be released, we need to reconstruct the correspondence

σD=′stroke′

"#S=C

γT,avg(P)

σavg(P)>100

UY

HU

U

UY

v: SDT
i:
":

v: SDT
i:D
":

v: SDTCP
i:D
": SC

v:TP
i:DT
": SC

v:TP
i:DTP
": SC

v:CP
i:
":

πS,D,T

Hosp(S,B,D,T)
Ins(C,P)

Fig. 4 Query plan with profiles and authorized assignees

between renamed attributes in its profile and attributes
in the base relations. In other words, for each relation
R, each component in R’s profile must be closed (pos-
sibly implying recursively chasing a sequence of rename
operations) against the relationships in R!. To main-
tain the notation simple, instead of repeating such a
closure throughout the model, we simply (and equiva-
lently) assume profiles to be closed against the renam-
ing relationship so to refer to attributes in the base
relations. Formally, the closed profile of a relation is
defined as follows.

Definition 3 (Relation Profile – Closed) Let R

be a relation and [Rvp, Rve, Rip, Rie, R", R!] be its re-
lation profile (Def. 2). The closed profile of R is a 5-
tuple of the form [Rvp

! , Rve
! , Rip

!, R
ie
!, R

"
!] where Rvp

! =
ω(Rvp, R!), Rve

!
= ω(Rve, R!), Rip

! = ω(Rip, R!),
Rie

!
= ω(Rie, R!), and R"

!
= ω(R", R!).

The closed profile of a relation is equivalent to its
profile, since it simply replaces attribute names as-
signed by rename operations with the corresponding
ones in base relations. In the following, we will use the
term profile to refer to the closed profile of a relation
(Definition 3), and notation [Rvp, Rve, Rip, Rie, R"] to
denote the (closed) profile of R.

Figure 4 illustrates the profiles of the relations re-
sulting from the operations of our running example.
Each node has, on its left, the user and a set of cloud
providers (we will elaborate on this in the next section).
Also, note that there are no encryption/decryption op-
erations, as they do not appear in the original query
plan; we will illustrate how and why the query plan is
extended with them in Section 5. In the following, given
a query plan, we use the term node to denote one of its
components (a base relation or an operation) and the
term relation to denote either a base relation or the re-
sult of an operation (represented by an internal node).

8 Sabrina De Capitani di Vimercati et al.

Given a node nx, representing an operation, Rx denotes
the relation resulting from it.

Profiles allow us to capture the informative content
of a relation resulting from a computation. The follow-
ing theorem proves that in a query plan: i) attributes
appearing in the profile of the relation resulting from
an operation survive in the profiles of relations resulting
from subsequent operations (i.e., they never disappear
from the profile, they can only move from one com-
ponent to another), and ii) equivalence sets can only
increase going up in the query plan (i.e., when an at-
tribute is inserted into an equivalence set, it is never
removed from it).

Theorem 1 Let T(N) be a query plan.
∀nx, ny ∈ N with profile [Rvp

x , Rve
x , Rip

x , R
ie
x , R

"
x]

and [Rvp
y , Rve

y , Rip
y , R

ie
y , R

"
y], respectively, s.t. ny is a

descendant of nx:

i) (Rvp
y ∪ Rve

y ∪ Rip
y ∪ Rie

y ∪ {A | A ∈ R"
y }) ⊆ (Rvp

x ∪
Rve

x ∪Rip
x ∪Rie

x ∪ {A | A ∈ R"
x })

ii) ∀A ∈ R"
y : ∃A′ ∈ R"

x , A ⊆ A′.

4 Authorized visibility and assignment

The definition of relation profile, capturing the infor-
mative content carried by a relation, allows us to reg-
ulate query execution ensuring obedience to authoriza-
tions. Such regulations concern both visibility of rela-
tions as well as execution of operations in the query
plan. Since a computation might involve different base
relations, different authorization sets (and authorities)
might be involved in the control for the release of a de-
rived relation. We will elaborate on this in Section 7. In
this section, for simplicity, we assume an overall view of
the authorizations and we use notation PS (ES , resp.)
as a short-hand for the abstract concept summarizing
the attributes that subject S is authorized to access in
plaintext (encrypted, resp.) form. In other words, PS =
{a∈P | [P,E]→S} and ES = {a∈E | [P,E]→S}. Fig-
ure 5 shows the authorizations for our running example
and the corresponding overall views for the different
subjects.

The following definition captures the authorization
control on a relation (based on its profile) to determine
whether releasing it to a subject obeys authorizations,
taking into account also information leakage caused by
implicit attributes and equivalence relationships.

Definition 4 (Authorized Relation) Let R be a re-
lation with profile [Rvp, Rve, Rip, Rie, R"]. A subject S
∈ S is authorized for R iff:

1. Rvp∪Rip ⊆ PS (authorized for plaintext);

Authorizations Authorized attributes

Subject Hosp(S,B,D,T) Ins(C,P) Plaintext Encrypted

H [SBDT,]→H [C,P]→H PH=SBDTC EH=P

I [B,SDT]→I [CP,]→I PI=BCP EI=SDT

U [SDT,]→U [CP,]→U PU=SDTCP EU=

X [DT,S]→X [,CP]→X PX=DT EX=SCP

Y [BDT,S]→Y [P,C]→Y PY=BDTP EY=SC

Z [ST,D]→Z [C,P]→Z PZ= STC EZ=DP

any [DT,]→any [,P]→any Pany=DT Eany=P

Fig. 5 Authorizations and corresponding overall views for
the subjects of our running example

2. Rve∪Rie ⊆ PS∪ES (authorized for encrypted);
3. ∀A∈R", A⊆PS or A⊆ES (uniform visibility).

According to Definition 4, a subject S is authorized
to access a relation R iff all the following three condi-
tions hold: 1) S is authorized to access in plaintext
all the (visible or implicit) attributes represented in
plaintext in R; 2) S is authorized to access in plain-
text or in encrypted form all the (visible or implicit)
attributes represented in encrypted form in R; 3) S is
authorized to access in the same form (either plaintext
or encrypted) all the equivalent attributes, that is, at-
tributes that appear together in an equivalence set in
R".

Conditions 1 and 2 correspond to a simple enforce-
ment of authorizations, taking into account both the
visible and implicit attributes. Also, Condition 2 con-
siders the fact that subjects authorized for plaintext
visibility over an attribute can also have encrypted vis-
ibility over the same (since the encrypted representation
conveys less information than the plaintext one). Con-
dition 3 enforces control on indirect information leak-
age caused by equivalence relationships established in
query computation, to prevent unauthorized exposure
of information. It requires the subject to have the au-
thorizations for the attributes in equivalence sets, since
the relation implicitly carries information about them.
In other words, since they leave a trace in the com-
putation result, all attributes in equivalence sets are
always treated as implicit attributes. Condition 3 also
imposes that, within each equivalence set, the autho-
rizations be the same (either plaintext or encrypted)
for all attributes in the set. In fact, equivalence relation-
ships in a profile express the fact that some attributes
have been related in a computation (e.g., an equi-join
operation) and therefore visibility of one attribute in
an equivalence set leaks information on the other at-
tributes in the same set. Imposing uniform visibility
allows us to account for such inference channels, block-
ing them when not consistent with the authorizations.
Note that uniform visibility must be satisfied for all
attributes in an equivalence set, regardless of whether

An authorization model for query execution in the cloud 9

they belong to the relational schema (i.e., they are vis-
ible).

Example 1 Consider the authorizations in Figure 5 and
a relation R with profile [P,BSC, , , {SC}]:

– Y is authorized for R;
– H is not authorized for R (condition 1, attribute P);
– U is not authorized for R (condition 2, attribute B);
– I is not authorized for R (condition 3, attributes

SC).

Note that the enforcement of uniform visibility en-
tails a possibly counter-intuitive result: a subject could
be not authorized for a relation due to the subject’s
plaintext visibility over some attributes, while another
subject that, on these attributes, has only encrypted
visibility could be authorized for the relation. For in-
stance, with reference to Example 1, I is not authorized
for R because it has plaintext visibility over C and en-
crypted visibility over S (and the equivalence between
C and S could leak S to I), while Y is authorized for R
since it has only encrypted visibility over C and S, and
therefore cannot draw any inference from R.

Definition 4 states when a subject can be authorized
for a relation, based on its authorizations and on the
relation profile. Another aspect involved in the enforce-
ment of authorizations concerns regulating the assign-
ment of operations within a query plan to authorized
subjects. An operation of the query plan, correspond-
ing to a non-leaf node in the tree, operates on one or
two operand relations, and produces a relation as out-
put. A subject can be authorized for the execution of
an operation if and only if it is authorized for all the
relations involved: the operand(s) as well as the result.
The authorized visibility for the operand(s) is needed
since otherwise the subject could not access them. The
authorized visibility for the result enforces the control
over the information entailed by the execution of the
operation itself. This is captured by the following defi-
nition.

Definition 5 (Authorized Assignee) Let T(N) be
a query plan, n∈N be a non-leaf node, nl,nr∈N be its
children (if any) producing relations Rl and Rr, and
S be a set of subjects. Subject S∈S is an authorized
assignee of n over Rl and Rr iff S is authorized for Rl,
for Rr, and for the relation produced by n, according
to Definition 4. Function λ : N → S is said to be an
authorized assignment function for T(N)iff ∀n ∈ N, λ(n)
is an authorized assignee of n.

Subjects appearing on the left-hand side of each
node in Figure 4 are authorized assignees for the node.
Leaf nodes do not have any assignee since they remain
with the party storing the corresponding base relation.

σD=′stroke′

"#S=C

γT,avg(P)

σavg(P)>100

P

CPSDT
v: SDT
i:
":

v: SDT
i:D
":

v: SDTCP
i:D
": SC

v:TP
i:DT
": SC

v:PT
i:PDT
": SC

HIUXYZ

HUXYZ

UY

HUXYZ

v:CP
i:
":

Ins(C,P)
πS,D,T

Hosp(S,B,D,T)

Fig. 6 An extended query plan

5 Extended plans and encryption/decryption

Given a query plan, our goal is to produce an autho-
rized assignment of operations to subjects. While the
definitions in Section 4 accounted for the possible pres-
ence of encrypted attributes, the original query plan,
including only operations requested by the query com-
putation, does not include any encryption/decryption
operation. Encryption and decryption operations are
inserted on-the-fly by our approach to adjust visibil-
ity of attributes as required by operation requirements
or authorizations. Encryption protects attributes so to
permit the assignment of operations to subjects that
could not be considered otherwise. Decryption permits
accessing plaintext values of encrypted attributes when
needed in the computation. For instance, assume that,
for the query plan in Figure 4, all operations but the
final selection (σavg(P)>100) could be performed on en-
crypted values. If all attributes were encrypted at their
source (and avg(P) decrypted only for the last opera-
tion), more subjects could be considered for executing
operations in the query. Figure 6 illustrates the query
plan in Figure 4 extended to consider such encryption
and decryption operations, reporting on the left-hand
side of each node the subjects that could now be con-
sidered for the execution of the node’s operation. The
specific encryption scheme to apply for the encryption
of each attribute is decided by the query optimizer in
the analysis of the query plan, depending on the kind
of operations to be supported over such attributes (Sec-
tion 7). For instance, deterministic symmetric encryp-
tion can be used to efficiently support evaluation of
equality conditions in joins and selections, while not
disclosing plaintext data values.

A query plan T′ that is obtained by inserting encryp-
tion and decryption operations into another query plan

10 Sabrina De Capitani di Vimercati et al.

T is called an extended query plan for T and is defined
as follows.

Definition 6 (Extended Query Plan) Let T(N) be
a query plan. A query plan T′(N) is an extended query
plan for T iff T′ is T enriched with some encryption and
decryption operations.

In the following, the set of extended query plans for
T is denoted T . As said, encrypting attributes enables
the consideration, for the assignment of an operation, of
subjects not otherwise authorized for the execution of
the operation. However, the encryption needed to make
assignments authorized eventually depends on the ac-
tual subjects to which operations are assigned (e.g., P
would need to be encrypted for assigning the execution
of the join to X, but could remain in plaintext if the
join is assigned to Y). There are basically two oppo-
site approaches that can be followed in the insertion
of encryption/decryption operations in the query plan,
corresponding to maximizing or minimizing visibility of
attributes. Maximizing visibility corresponds to always
leave plaintext visibility of data, applying encryption
only when strictly needed for protecting attributes vis-
ibility from the subject executing a specific operation.
Minimizing visibility corresponds to always apply en-
cryption by default, decrypting attributes only when
needed for operation execution. Each of the two ex-
tremes has some pros and cons. Maximizing visibility by
default can avoid unnecessary encryption/decryption
operations and allows for operating as much as pos-
sible on plaintext data, but could reduce the number
of subjects to which an operation can be assigned. For
instance, suppose that attribute D is not encrypted for
the execution of the selection operation (σD=′stroke′),
since such an operation is assigned to H, which can see
D in plaintext. Then, provider Z cannot be considered
for the join since it does not have the authorization for
plaintext visibility of D. In fact, encrypting D only for
the join would not protect it from the possible leakage
caused by the prior evaluation of the condition (as a
matter of fact, D would remain in the implicit plain-
text component of the profile of all relations computed
after the selection over plaintext attribute D). Maxi-
mizing visibility of attributes at a given step may then
rule out the consideration of possible subjects in sub-
sequent steps of the query plan. Minimizing visibility,
while not affecting the choice of subjects for subsequent
operations in the query plan, could result in executing
more encryption/decryption operations than actually
needed. For instance, encrypting D before the execution
of the selection operation may eventually result unnec-
essary if Z were not the best choice for the join anyway,
implying an overhead for query execution (encryption

and possible less efficient evaluation of the condition)
which could have been avoided.

To avoid predetermining one of the possible sce-
narios above, we adopt a more flexible approach by
first determining the candidate subjects for the oper-
ations in the plan, and then injecting encryption and
decryption only as needed, depending on the decided
assignment of operations to subjects. The query opti-
mizer can then decide assignments of operations based
on costs and performance aspects. Of course, assign-
ment of operations to subjects must be bounded by the
authorizations and the operation requirements, which
can limit the application of encryption (as some opera-
tions need to access some attributes in plaintext for ex-
ecution). With respect to authorizations, for example,
while it is desirable for the execution of the join oper-
ation to possibly consider X (since S and C could be
encrypted for that), it does not make sense to consider
I since, as already noted, its non-uniform visibility over
S and C (it is authorized to view C in plaintext but S
only in encrypted form) rules it out from consideration
(Condition 3 of Definition 4). With respect to operation
requirements, an attribute should not be encrypted if
the operation to be executed on it requires accessing
the attribute’s plaintext values. For instance, if the en-
cryption scheme available for P does not support range
conditions, the possibility of encrypting avg(P) for as-
signing the last selection operation should be excluded.
For operations that are not supported by cryptographic
techniques (not existing or not available to the applica-
tion), we assume the optimizer to specify the need for
maintaining data in plaintext for execution of the oper-
ation. For each node we then have a set Ap of attributes
that are needed in plaintext.

To define the potential candidates for an opera-
tion, we first need to characterize the operation re-
quirements, which may limit the application of encryp-
tion. We capture this by defining the minimal visibil-
ity needed over an operand to allow the evaluation of
an operator. For instance, in our running example, we
assume that the execution of the last selection in the
query plan needs to view avg(P) in plaintext, while all
other attributes can be encrypted. Intuitively, the mini-
mum required view over an operand for the execution of
an operation is the operand relation where all the (visi-
ble) attributes, except those that need to be in plaintext
for operation execution, are encrypted. This is formally
captured by the following definition.

Definition 7 (Minimum Required View) Let
T(N) be a query plan, n∈N be a non-leaf node, ny

be one of its children, producing relation Ry, and
Ap be the set of attributes of Ry that must be in
plaintext for the execution of n. The minimum re-

An authorization model for query execution in the cloud 11

σD=′stroke′

"#S=C

γT,avg(P)

σavg(P)>100

HIUXYZ

HUXYZ

UY

v: SDT
i:D
":

v: SDTCP
i:D
": SC

v:TP
i:DT
": SC

v:PT
i:PDT
": SC

v:SDT i:D

v:SDTCP i:D ":SC

v:PT i:DT ":SC

v:CP

v:SDT

HUXYZ

v: SDT
i:
":

v:CP
i:
":

πS,D,T

Hosp(S,B,D,T)
Ins(C,P)

Fig. 7 Minimum required views and assignment candidates

quired view over ny for the execution of n is relation
R̂y=decrypt(Ap,encrypt(Rvp

y \Ap, Ry)).

In the definition above and in the following,
encrypt(A,R) denotes the encryption of attributes A

in R and decrypt(A,R) denotes the decryption of at-
tributes A in R. Figure 7 illustrates (in boxes on the
arcs from the operands to the operations) the profiles of
the minimum required views for our running example.
The profiles associated with nodes are those that result
assuming as operands such minimum required views.
For instance, the minimum required view over Ins for
the execution of the join has all attributes (CP) visible
and encrypted.

Minimum required views allow us to take into ac-
count the visibility requirements for operation execu-
tion: only subjects authorized for the minimum required
views can be candidates for the assignment (since for
them the operands can be protected with encryption
without affecting operation execution). This is captured
by the following definition.

Definition 8 (Assignment Candidates) Let T(N)

be a query plan, n∈N be a non-leaf node, nl,nr∈N be its
children (if any), and S be a set of subjects. A subject
S∈S is a candidate for the execution of n iff S is an
authorized assignee of n over R̂l and R̂r according to
Definition 5. Candidate assignment function Λ : N → 2S

associates with each n ∈ N the set of candidates for the
execution of n.

Figure 7 illustrates assignment candidates for the
operations of our running example.

The set of candidates along a query plan T(N) en-
joys a nice monotonic behavior. For each n ∈ N, the set
of candidates of n’s ancestors is a subset of the set of

n’s candidates. This applies to any node representing
an operation that does not need to operate on plaintext
attributes or that, doing so, leaves an implicit trace of
such attributes (i.e., causes them to be included in the
implicit attributes of the result’s profile). In fact, all
such attributes will also remain implicit plaintext in
the profile of the minimum required view of any node
nx ancestor of n, and therefore, by definition, any can-
didate for nx is certainly also a candidate for n. This is
formalized by the following theorem.

Theorem 2 Let T(N) be a query plan, n∈N be a non-
leaf node nl,nr∈N be its non-leaf children, if any. R̂vp

l ∪
R̂vp

r ⊆ R̂ip =⇒ Λ(nx) ⊆ Λ(n), ∀nx ancestor of n.

This monotonic behavior can be easily observed in
Figure 7, where the set of candidates for each node
decreases going up in the query plan.

Intuitively, the set of candidates for a node are all
and only those subjects that can be made authorized
assignees (Definition 5), assuming to extend the query
plan with encryption/decryption operations, as stated
by the following theorem.

Theorem 3 Let T(N) be a query plan, and Λ be a can-
didate assignment function for it:

i) ∀T′ ∈ T , λ, and n ∈ N, if T′ is an extended query
plan for T and λ is an authorized assignment for T′,
then λ(n) ∈ Λ(n).

ii) ∀λ, if ∀n ∈ N,λ(n) ∈ Λ(n), then there exists an
extended query plan T′ for T such that λ is an au-
thorized assignment for T′.

In other words: i) any assignment that can be made
authorized by inserting some encryption and decryp-
tion operations is included in Λ, and ii) any assign-
ment included in Λ can be made authorized by in-
serting some encryption and decryption operations. For
instance, Figures 8(a-b) illustrate two extended query
plans for our running example, assuming operations al-
located to the subject indicated on the left-hand side
of each node. For convenience of the reader, sets P and
E of each subject (copied from Figure 5) are repeated
in Figure 8(c). In the plan in Figure 8(a): S, C, and P
are encrypted before being passed to X, since X cannot
access them in plaintext. In the plan in Figure 8(b), P
is encrypted before being passed to Z, since Z cannot
access it in plaintext, while D is encrypted before exe-
cuting the selection (i.e., the condition on D will have to
be dispatched formulated on encrypted values) so not
to leave an implicit plaintext trace in the computation
given that Z, executing subsequent steps, cannot access

12 Sabrina De Capitani di Vimercati et al.

σD=′stroke′

"#S=C

γT,avg(P)

σavg(P)>100

P

H

X

X

Y

CP
v: SDT
i:
":

v:DTS
i:D
":

v:DTSCP
i:D
": SC

v:T P
i:DT
": SC

v:TP
i:DTP
": SC

v:CP
i:
":

S

πS,D,T

Hosp(S,B,D,T)
Ins(C,P)

σD=′stroke′

"#S=C

γT,avg(P)

σavg(P)>100

P

H

Z

Z

Y

P
v: STD
i:
":

v: STD
i: D
":

v: STCDP
i: D
": SC

v:TP
i:TD
": SC

v:TP
i:TPD
": SC

v:CP
i:
":

D
πS,D,T

Hosp(S,B,D,T)
Ins(C,P)

PH:SBDTC
EH:P

PI:BCP
EI:SDT

PU:SDTCP
EU:

PX:DT
EX:SCP

PY:BDTP
EY:SC

PZ:STC
EZ:DP

Pany:DT
Eany:P

(a) (b) (c)

Fig. 8 Extended authorized query plans (a-b) and authorized attributes (c) for the plan in Figure 1

D in plaintext.1 In both plans, avg(P) is decrypted be-
fore the execution of the final selection that needs to
access plaintext values. Encryption and decryption op-
erations are assigned to the same subjects as the nodes
they complement. Indeed, the subject authorized for
a node is also clearly authorized for the preceding de-
cryption (of attributes that are needed in plaintext for
the operation) and for the following encryption (of at-
tributes available in plaintext).

Given a query plan T, we are interested in identi-
fying an assignment λ and an extended query plan T′

that makes λ authorized. An extended query plan that
makes an assignment authorized is defined as follows.

Definition 9 (Extended Authorized Query
Plan) Let T(N) be a query plan, Λ be a candidate
assignment function for it, and λ be a function
λ : N → S such that ∀n ∈ N : λ(n) ∈ Λ(n). An extended
authorized query plan of T for λ is an extended query
plan T′ ∈ T such that λ is an authorized assignment
for T′ (Definition 5).

For instance, Figures 8(a-b) illustrate two extended
authorized query plans for our running example.

Given a query plan, there are a number of possi-
ble authorized assignments in the candidate assignment
function Λ. Also, for each possible authorized assign-
ment function λ such that ∀n ∈ N : λ(n) ∈ Λ(n), there
are different ways in which encryption and decryption
could be inserted in T to make λ authorized. For in-
stance, enforcing all encryptions corresponding to the
minimum required views (as in Figure 7) could work.
Among these extended authorized query plans, the user

1 Note that this does not necessarily imply the evaluation
of the condition in encrypted form. Since H is the authority
over D and it knows the encryption key (it encrypts D itself),
H can operate on plaintext values and encrypt D afterwards.

can choose the one optimizing a parameter of her in-
terest such as cost or performance. In particular, we
expect the economic cost to be the driving factor in the
choice of the assignment of operations to candidates.
Given a query plan T and a cost function γ, we aim at
identifying an assignment λ′ and an extended autho-
rized query plan T′ for λ′ that minimizes the economic
cost γ(λ′,T′) for the evaluation of T′ according to as-
signment λ′. Formally, our minimization problem is as
follows.

Problem 1 (Minimum Cost Assignment) Given
a query plan T(N), a candidate assignment function Λ

for it, the set T of extended query plans for T, and a
cost function γ : Λ× T → R, determine an assignment
function λ′ such that ∀n ∈ N,λ′(n) ∈ Λ(n), and an
extended query plan T′ ∈ T such that:

1. T′ is an extended authorized query plan of T for λ′;
2. ∀λ′′ such that ∀n ∈ N,λ′′(n) ∈ Λ(n), and ∀T′′ ∈ T

such that T′′ is an extended authorized query plan
of T for λ′′, γ(λ′,T′) ≤ γ(λ′′,T′′).

The economic cost must clearly take into account
the cost of executing computation, the cost of trans-
ferring data between different subjects involved in the
computation, and the cost of the enforcement of the
encryption and decryption operations that need to be
injected in the plan. In the next section, we illustrate
our approach to model and solve the minimum cost as-
signment problem.

6 Computing a minimum cost assignment

The results of the previous section prove that, for any
operation in the query plan, only subjects in the op-
eration’s candidate set need to be considered (Theo-
rem 3, i). Also, any of them would do, since any as-
signment taken from the candidate set can be made

An authorization model for query execution in the cloud 13

authorized by inserting encryption and decryption op-
erations (Theorem 3, ii). At the same time, however,
each authorized assignment may result in different costs
and require injection of different encryption/decryption
operations. Also, since encryption and decryption op-
erations themselves bear a cost, the computation of a
minimum cost assignment needs to consider also pos-
sible encryption/decryption that would be required for
the selected candidates to be authorized for the opera-
tions assigned to them.

To compute a minimum cost assignment for a query
plan T(N), we operate in two steps:

1. compute the candidate assignment function Λ for
T(N), that is, identify the set of candidate subjects
for the execution of each node in N;

2. determine the assignment λ in Λ (i.e., such that ∀n∈
N:λ(n)∈Λ(n)) such that the extended query plan T′

making λ authorized has minimum cost.

The first step restricts the evaluation of possible as-
signees for each node to the subjects who can be au-
thorized for its execution. The second step determines,
among all possible assignments, the one for which the
total cost for evaluating the query (including the cost
of encryption/decryption operations that need to be
injected to make the selected assignees authorized) is
minimum.

The computation of candidate assignment function
Λ (step 1) is relatively straightforward and can be per-
formed by simply executing a post-order visit of the
query plan, also leveraging monotonicity of the candi-
dates along the tree (Theorem 2). The identification of
the minimum cost assignment λ (step 2) requires in-
stead solving a minimization problem. We model such
a problem as a binary programming problem that can
be then solved with off-the-shelf solvers. A binary pro-
gramming problem is formulated as follows: given a set
of variables that can take values in {0, 1}, a set of con-
straints over them, and an objective function, find an as-
signment of values to variables that satisfies all the con-
straints and that minimizes (or maximizes) the value of
the objective function. In the remainder of this section,
we describe how our optimization problem (Problem 1,
step 2 above) can be translated into a binary program-
ming problem by illustrating the corresponding vari-
ables, constraints, and objective function.

6.1 Variables

Figure 9 summarizes the variables of our binary pro-
gramming problem. It distinguishes between output
variables , which represent the solution to the problem,
and input variables, which represent its input.

OUTPUT

Variable: 1 if and only if

λs,n : λ(n)=s

vpa,n : a∈Rvp

vea,n : a∈Rve

ipa,n : a∈Rip

iea,n : a∈Rie

INPUT

Variable: 1 if and only if

πn̄,n : n̄ is parent of n

cs,n : s∈Λ(n)

ιa,n : n’s operation is σ or γ over a

êqa,ā,n : n’s operation defines an equivalence on a and ā

auth ps,a : a∈Ps

auth es,a : a∈Es

v̂pa,n : a is visible plaintext in n’s profile on the MRVs

v̂ea,n : a is visible encrypted in n’s profile on the MRVs

îpa,n : a is implicit plaintext in n’s profile on the MRVs

îea,n : a is implicit encrypted in n’s profile on the MRVs

Fig. 9 Variables of the binary programming problem

Output variables. They model the solution of our
minimization problem. In particular, given a query plan
T(N), the output variables model an authorized assign-
ment function λ for T(N), and the format (plaintext or
encrypted) of the, visible or implicit, attributes in the
relation profile associated with each node n ∈ N.

– Assignments. For each subject s ∈ S and each node
n ∈ N, there is a binary variable λs,n that is equal to
1 if node n is assigned to subject s for evaluation;
it is 0, otherwise.

– Profiles. For each attribute a ∈ A and each node
n ∈ N, there are four binary variables vpa,n , vea,n ,
ipa,n , and iea,n . Variable vpa,n (vea,n , ipa,n , iea,n ,
resp.) is equal to 1 if a is a visible plaintext (visi-
ble encrypted, implicit plaintext, implicit encrypted,
resp.) attribute in the profile of node n; it is 0, oth-
erwise.

Input variables. They model the input of the prob-
lem, namely: the query plan tree, the candidates for
each node (step 1), the attributes involved in the eval-
uation of each node (needed to guarantee uniform
encrypted/plaintext representation of attributes that
need to be compared and to set the implicit compo-
nent in the node profile), the authorizations (needed to
determine possible encryption that has to be enforced
on some attributes to make candidates authorized for
the nodes they have been assigned), and the profiles of
nodes over minimum required views (needed to guaran-
tee the correctness of node profiles in terms of the com-

14 Sabrina De Capitani di Vimercati et al.

pleteness of the set of visible and implicit attributes and
to ensure the operation feasibility through the plaintext
representation in the profiles of the attributes needed
for the operation’s evaluation). For readability, in the
reminder of this section, we denote minimum required
views with MRVs and, when referring to the profile re-
sulting from executing the operation of a node on the
MRVs over its children (i.e., with reference to our run-
ning example, to the profiles in Figure 7), we will omit
“over its children”.

– Tree structure. For each pair of nodes n̄,n∈N, there
is a variable πn̄,n that is set to 1 if n̄ is the parent
of n in the tree; it is 0, otherwise.

– Candidates. For each subject s ∈ S and each node n
∈ N, there is a variable cs,n that is set to 1 if subject
s is a candidate for n; it is 0, otherwise.

– Attributes involved in operations. For each attribute
a ∈ A and each node n ∈ N, there is a variable
ιa,n that is set to 1 if the operation represented by
node n inserts a into the implicit component of the
relation profile of n; it is 0, otherwise. Furthermore,
for each node n ∈ N and each pair of attributes a

and ā, there is a variable êqa,ā,n that is set to 1
if the operation represented by node n defines an
equivalence relationship between a and ā; it is 0,
otherwise.

– Authorizations. For each subject s ∈ S and each at-
tribute a ∈ A, there are two variables, auth ps,a and
auth es,a . Variable auth ps,a (auth es,a , resp.) is set
to 1 if subject s is authorized to access attribute a in
plaintext (encrypted, resp.) form; it is 0, otherwise.

– Profiles over minimum required views. For each at-
tribute a ∈ A and each node n ∈ N, there are four
variables v̂pa,n , v̂ea,n , îpa,n , and îea,n . Variable v̂pa,n
(v̂ea,n , îpa,n , îea,n , resp.) is set to 1 if a belongs
to the visible plaintext (visible encrypted, implicit
plaintext, implicit encrypted, resp.) component of
the profile of n on the MRVs; it is 0, otherwise.
Note that for each leaf node n (representing a base
relation), these four variables correspond to the min-
imun required view over n for the execution of the
parent node n̄.

6.2 Constraints

Constraints restrict the combination of values for the
output variables described in Section 6.1 to guarantee
that the solution computed for our binary programming
problem represents a minimum cost assignment for the
query plan given in input. Such constraints are formu-
lated as follows.

Authorized assignment.This set of constraints guar-
antees that the values of variables λs,n represent an as-
signment function that is compliant with the candidate
assignment function and the authorizations.

– Each node in the query plan is assigned to exactly
one subject.

∀n∈N:
∑

s∈S
λs,n=1 (1)

Intuitively, for each node n, the constraint sums λs,n

over all the subjects in S. If the sum is equal to 1,
then there exists only one subject s such that λs,n

is equal to 1, meaning that there exists only one
subject to which n has been assigned.

– Assignees are candidates for nodes they have been
assigned.

∀n∈N:
∑

s∈S
λs,n ·cs,n=1 (2)

The product λs,n ·cs,n is equal to 1 only if the op-
eration at node n is assigned to subject s (λs,n=1)
and s is a candidate for n (cs,n=1).

– The extended query plan ensures assignees are au-
thorized for the nodes they have been assigned. As-
signing a node to one of its candidates guarantees
that the assignee has sufficient authorization for ex-
ecuting the operation (Theorem 3), which however
can be provided extending the query plan with en-
cryption to cover attributes the assignee cannot ac-
cess plaintext. The profile of the nodes in the ex-
tended query plan returned should then be compli-
ant with authorizations. In other words, the assignee
of a node must be authorized for all the attributes
in the profile of the node and visibility (plaintext
or encrypted) should be compliant with authoriza-
tions.

∀a∈A, ∀n∈N, ∀s∈S:

vpa,n ·λs,n≤auth ps,a (3)

ipa,n ·λs,n≤auth ps,a (4)

vea,n ·λs,n≤auth ps,a+auth es,a (5)

iea,n ·λs,n≤auth ps,a+auth es,a (6)

The products vpa,n ·λs,n and ipa,n ·λs,n (vea,n ·λs,n ,
iea,n ·λs,n , resp.) are equal to 1 if the operation at
node n is assigned to s and attribute a is visible
plaintext or implicit plaintext (visible encrypted or
implicit encrypted, resp.) in the profile of the rela-
tion resulting from the evaluation of n. If the prod-
uct is equal to 1, the constraint is satisfied only if
also auth ps,a=1 (auth ps,a+auth es,a=1, resp.) and
hence s is authorized to access a in plaintext (in
plaintext or encrypted, resp.). If the product is equal
to 0 the constraint is always satisfied, independently
from authorizations.

An authorization model for query execution in the cloud 15

Integrity of the profiles. This set of constraints guar-
antees integrity of the profiles, meaning that they cap-
ture the informative content of base and derived rela-
tions as discussed in Section 3.2.

– Attribute representation in schema. An attribute
cannot appear in each node more than once (i.e.,
in both the plaintext and encrypted component).

∀a∈A, ∀n∈N: vpa,n+vea,n≤1 (7)

If an attribute is represented both in plaintext and
encrypted in a node, both vpa,n and vea,n are equal
to 1, hence their sum is 2 violating the constraint.

– Attribute representation in implicit component. An
attribute cannot appear in the implicit component
more than once (i.e., in both the implicit plaintext
and implicit encrypted component).

∀a∈A, ∀n∈N: ipa,n+iea,n≤1 (8)

If an attribute is represented both in plaintext and
encrypted in a node, both ipa,n and iea,n are equal
to 1, hence their sum is 2, violating the constraint.

– Base relations have all their attributes in plaintext
and have no implicit attributes. The profile of a base
relation R includes all and only the attributes in the
relation schema in plaintext. The implicit compo-
nent is empty and no attribute is encrypted. This
specific format of the relation profile translates in
the following constraints that need to be satisfied
by the relation profiles associated with nodes repre-
senting base relations.

∀n∈{n∈N:πn,n̄=0, ∀n̄∈N}:

vpa,n=1, ∀a∈R (9)

vpa,n+vea,n=0, ∀a .∈R (10)

ipa,n+iea,n=0, ∀a∈A (11)

Here, R is the relation represented by node n, and
set {n∈N:πn,n̄=0, ∀n̄∈N} contains all leaf nodes in N.
Constraints above require then that: each attribute
a in the schema of a base relation (i.e., a∈R) is
visible plaintext in its profile; for each attribute a

that does not appear in the visible component of R,
variables vpa,n and vea,n are set to 0 (i.e., modeling
the fact that the attribute does not belong to R);
and for all attributes a ∈ A, variables ipa,n and iea,n
are both set to 0 (i.e., the implicit component in the
profile of base relations is empty).

Support for query evaluation. This set of con-
straints models the requirements that impose the plain-
text/encrypted representation of attributes in the pro-
file of nodes to support the execution of the nodes’ op-
erations. In fact, for the execution of an operation, some

attributes might be required to be represented in plain-
text (e.g., for the evaluation of a selection condition) or
be represented in the same form (e.g., both plaintext or
encrypted for comparing their values).

– Operation feasibility. For each node, attributes that
are requested to be in plaintext for supporting the
execution of the operation at the node appear plain-
text in the node, as dictated by the profile of the
node on the MRVs.

∀a∈A, ∀n∈N: vpa,n≥v̂pa,n (12)

If an attribute a is plaintext in the profile of node
n on the MRVs, v̂pa,n is equal to 1. In this case,
the constraint imposes that also the value of vpa,n is
equal to 1, that is, the attribute must be in plaintext
also in the node profile of the computed solution.

– Comparison feasibility. In each node, attributes that
need to be used together (i.e., compared or input to
an udf) must appear in the same (either plaintext
or encrypted) form.

∀a, ā∈A, ∀n∈N: (13)

(êqa,ā,n ·vpa,n ·vpā,n)+(êqa,ā,n ·vea,n ·veā,n)=êqa,ā,n

For each node n, the constraint is specified for each
pair of attributes a and ā that are used together in
the node, expressed by input variable êqa,ā,n equal
to 1. The product êqa,ā,n ·vpa,n ·vpā,n is equal to 1 iff
a and ā are compared and are both visible plaintext
in the profile of n. Analogously, the product êqa,ā,n ·
vea,n·veā,n is equal to 1 iff a and ā are used together
and are both visible encrypted. Note that the sum of
such products is constrained to be equal to êqa,ā,n ,
meaning that if the attributes are used together (i.e.,
êqa,ā,n=1), then they are either both plaintext or
both encrypted.

Profile correctness. This set of constraints specifies
correctness criteria on the profile of nodes associated
with the extended query plan of the solution. It cap-
tures correctness of each node’s profile, which must take
into account all attributes of its operands (as expressed
in the MRVs), and the correct computation of implicit
information, which must take into account implicit at-
tributes carried by the operands as well as new implicit
information originated by the node’s operation.

– Compliance with MRVs. For each node, all at-
tributes visible (implicit, resp.) in the profile of the
node on the MRVs must be visible (implicit, resp.)
in the node. Intuitively, such compliance dictates

16 Sabrina De Capitani di Vimercati et al.

that no attribute can be lost or added in the node
profile.

∀a∈A, ∀n∈N:

vpa,n+vea,n=v̂pa,n+v̂ea,n (14)

ipa,n+iea,n=îpa,n+ îea,n (15)

Note that, for each node, only one of the variables at
any side of the equality can be equal to 1, as an at-
tribute cannot appear both encrypted and plaintext
in the schema of a node (or in the implicit compo-
nent). This mutual exclusion is guaranteed for the
attributes in the profile of the node on the MRVs as
they are provided as input, and for the attributes
in the solution’s profile by the attribute representa-
tion constraints (Constraints 7 and 8). The equali-
ties above then require attributes in the profile of a
node to be all and only the attributes in the profile
of the node on the MRVs. Note that the constraints
only impose that attributes do not appear or disap-
pear from the schema (or the implicit component),
but they do not impose that attributes must be in
the same form (i.e., encrypted or plaintext) as this
depends on the specific assignment of the solution
(which might need - or not need - to inject encryp-
tion to cover attributes that the assignee cannot ac-
cess in plaintext).

– Correctness of the implicit component. For each
node, the (plaintext/encrypted) implicit compo-
nent in the profile must include all the (plain-
text/encrypted) implicit attributes carried by the
children (i.e., in the implicit components of the chil-
dren) as well as all (plaintext/encrypted) attributes
involved in a selection or group by operation in the
node.

∀a∈A, ∀n, n̄∈N:

ipa,n≥ipa,n̄ ·πn,n̄ (16)

iea,n≥iea,n̄ ·πn,n̄ (17)

∀a∈A, ∀n∈N:

ipa,n≥ιa,n ·vpa,n (18)

iea,n≥ιa,n ·vea,n (19)

The first two constraints require ipa,n(iea,n , resp.)
to be 1 whenever ipa,n̄ (iea,n̄ , resp.) is 1 in at least
a child of n; enforcing propagation in n’s profile of
the implicit attributes of its children. The latter two
constraints require ipa,n (iea,n , resp.) to be equal to
1 for any attribute a such that vpa,n=1 (vea,n=1,
resp.), meaning that the attribute is in the schema
of node n, and the attribute has been involved in
a selection or group by operation in n (i.e., ιa,n is

costs : CPU usage cost of subject s

tr costs : outbound data transfer cost of subject s

eval effn : computational effort for the execution of n

eeffa : computational effort for encrypting attribute a

deffa : computational effort for decrypting attribute a

sizea : size of attribute a

esizea : size of the encrypted version of attribute a

ocardn : cardinality of the relation resulting from n

Fig. 10 Cost parameters

1). These constraints then impose n’s implicit com-
ponent to include the attributes that affected n’s
computation (i.e., attributes that leave a trace in
the result).

6.3 Objective function

The objective function of the binary programming
problem models the economic cost of the evaluation
of the extended authorized query plan T′(N) for λ′,
with λ′(n)=λs,n , ∀n∈N. The cost is computed as the
sum of three components: i) the computational cost
OP EXEC of evaluating each node in the query plan;
ii) the encryption/decryption cost ENC DEC of enforc-
ing encryption and decryption operations; and iii) the
transmission cost TRANSF of data among subjects. For-
mally, the objective function is defined as:

min(OP EXEC+ENC DEC+TRANSF)

We now describe each of the three cost components.
Figure 10 summarizes the cost parameters that will be
used in such cost components.

Operation execution. The cost of executing the op-
erations in the query plan is the sum of the costs of
executing the different nodes’ operations at the subject
to which they have been assigned. For each node n ∈ N,
such a cost depends on the CPU usage cost costs of the
subject s to which the node has been assigned (i.e., for
which λs,n is equal to 1), multiplied by the computa-
tional effort eval effn required for the execution, which
depends on the operation to be executed and on the
size of the input to be processed. The computational
cost of the query is then computed as:

OP EXEC=
∑

n∈N,s∈S
(λs,n ·costs ·eval effn)

Encryption/decryption. Encryption and decryption
operations must be executed whenever the representa-
tion of a visible attribute changes from a node n to
its parent n̄ (from visible plaintext to visible encrypted
or vice versa), as dictated by the extended query plan

An authorization model for query execution in the cloud 17

determined from the solution of the minimization prob-
lem. A change from plaintext to encrypted requires
the execution of an encryption operation by the child
node(s)’ assignee(s) before data are transmitted to the
parent node’s assignee. A change from encrypted to
plaintext requires the execution of a decryption op-
eration by the parent node’s assignee upon reception
of data from the child(ren) assignee(s). The costs con-
sidered for the operation are therefore the computa-
tional cost (costs) of the subject performing the oper-
ation (i.e., subject s for which λs,n=1 for encryption
and λs,n̄=1 for decryption), the computational effort
of such operation (eeffa and deffa, resp.), which de-
pends on the encryption scheme used for the attribute
involved, and the size of the data to be encrypted (de-
crypted, resp.). This latter is computed, for each at-
tribute involved in the operation, as the size (sizea for
encryption and esizea for decryption) of the attribute
multiplied for the cardinality of the operand (ocardn),
where the distinction between sizea and esizea takes
into account the fact that encryption can increase the
size of the attribute. The cost of the execution of en-
cryption and decryption operations is then computed
as:

ENC DEC=
∑

n∈N,n̄∈N,s∈S,a∈A(λs,n ·πn̄,n ·vpa,n ·vea,n̄·

costs ·eeffa ·sizea ·ocardn) + (λs,n̄ ·πn̄,n·

vpa,n̄ ·vea,n ·costs ·deffa ·esizea ·ocardn)

The first part of this formula computes the cost of
encryption operations, and the second one computes
the cost of decryption operations. Note that, product
πn̄,n·vpa,n·vea,n̄ (πn̄,n·vpa,n̄·vea,n , resp.) is equal to 1 only
if a appears plaintext in n and encrypted in the parent
node n̄ (or vice versa).

Data transfer. The cost of data transfer refers to the
cost involved for transferring data from one subject to
another that occurs whenever a node n in the query
plan and its parent n̄ are assigned to different subjects.
Since inbound data transfer is usually free, we consider
only the outbound data transfer cost, that is, the cost
for the assignee s of the child node (such that λs,n=1)
to send out its results. The cost of such operation is the
transfer cost tr costs of such subject s multiplied by the
amount of data to be transferred, which is in turn given
by the cardinality of the relation multiplied by the size
of the attributes. The latter is the plaintext size (sizea)
if the attribute is transmitted plaintext, that is, it ap-
pears plaintext in both n and n̄ profiles (i.e., vpa,n·vpa,n̄
is 1); it is the encrypted size (esizea) if the attribute
is transmitted encrypted, that is, it either appears en-
crypted in n (i.e., vea,n is equal to 1) or it appears
plaintext in n but encrypted in n̄ (i.e., vpa,n ·vea,n̄ is

equal to 1), meaning that the attribute has to be en-
crypted before transmission. The cost of transferring
data is then computed as:

TRANSF=
∑

n∈N,n̄∈N,s∈S,a∈A λs,n ·(1− λs,n̄)·πn̄,n·

tr costs ·ocardn ·((sizea ·vpa,n ·vpa,n̄)+

(esizea ·(vea,n+(vpa,n ·vea,n̄))))

Here, product λs,n·(1−λs,n̄)·πn̄,n is equal to 1 when-
ever nodes n and n̄, with n̄ parent of n (i.e., for which
πn̄,n is equal to 1) are such that the assignee s of n
(i.e., for which λs,n is equal to 1) is not the assignee of
n̄ (i.e., λs,n̄ is equal to 0).

Note that the cost of data transfer must also include
the cost for sending the query result to the user (which
might not be the assignee of the root of the query tree
plan). We model such a cost by adding a node at the
root of the query tree plan. Such a node does not cor-
respond to any operation and has the same profile as
the original root, except for the fact that all the visi-
ble attributes appear in plaintext since the assignee is
forced to be the user who submitted the query. This
extra node permits to keep into consideration the cost
of transferring the query result to the user as well as
the cost of the decryption operations performed by the
user on the encrypted attributes in the query result.

Figure 11 summarizes the formulation of our binary
programming problem for computing a minimum cost
assignment. The solution gives a value to the output
variables in Figure 9, modeling assignment of nodes’ op-
erations to subjects (value of variables λs,n), and the at-
tributes that appear in the visible and implicit compo-
nent of the profiles along with their plaintext/encrypted
representation (value of variables vpa,n , vea,n , ipa,n , and
iea,n). This induces the natural injection of encryption
and decryption in the query plan, resulting in an ex-
tended authorized query plan, thus solving Problem 1.

7 Computing and distributing assignments

In this section, we discuss some aspects related to en-
cryption and authorization enforcement in the actual
execution of the extended query plan.

Key distribution. Query operation assignment en-
tails, besides assigning operations to candidates, also
establishing and distributing keys for attributes that
need to be encrypted/decrypted in the query plan exe-
cution. The only constraint on key establishment is that
attributes involved in some conditions comparing them
in encrypted form need to be encrypted with the same
key. To ensure this, we simply require attributes ap-
pearing together in an equivalence set to be encrypted

18 Sabrina De Capitani di Vimercati et al.

min

OP EXEC
∑

n∈N,s∈S
(λs,n ·costs ·eval effn)+

ENC DEC
∑

n∈N,n̄∈N,s∈S,a∈A (λs,n ·πn̄,n ·vpa,n ·vea,n̄ ·costs ·eeffa ·sizea ·ocardn)+

(λs,n̄ ·πn̄,n ·vpa,n̄ ·vea,n ·costs ·deffa ·esizea ·ocardn)+

TRANSF
∑

n∈N,n̄∈N,s∈S,a∈A (λs,n ·(1− λs,n̄)·πn̄,n ·tr costs ·ocardn ·((sizea ·vpa,n ·vpa,n̄)+(esizea ·(vea,n+(vpa,n ·vea,n̄))))

s.t.

(1)
∑

s∈S
λs,n=1, ∀n∈N

(2)
∑

s∈S
λs,n ·cs,n=1, ∀n∈N

(3) vpa,n ·λs,n≤auth ps,a , ∀a∈A, ∀n∈N, ∀s∈S

(4) ipa,n ·λs,n≤auth ps,a , ∀a∈A, ∀n∈N, ∀s∈S

(5) vea,n ·λs,n≤auth ps,a+auth es,a ,∀a∈A, ∀n∈N, ∀s∈S

(6) iea,n ·λs,n≤auth ps,a+auth es,a ,∀a∈A, ∀n∈N, ∀s∈S

(7) vpa,n+vea,n≤1, ∀a∈A, ∀n∈N

(8) ipa,n+iea,n≤1, ∀a∈A, ∀n∈N

(9) vpa,n=1, ∀a∈R, ∀n∈{n∈N:πn,n̄=0, ∀n̄∈N}

(10) vpa,n+vea,n=0, ∀a∈A \ (Rvp ∪ Rve), ∀n∈{n∈N:πn,n̄=0, ∀n̄∈N}

(11) ipa,n+iea,n=0, ∀a∈A, ∀n∈{n∈N:πn,n̄=0, ∀n̄∈N}

(12) vpa,n≥v̂pa,n , ∀a∈A, ∀n∈N

(13) (êqa,ā,n ·vpa,n ·vpā,n)+(êqa,ā,n ·vea,n ·veā,n)=êqa,ā,n , ∀a, ā∈A,∀n∈N

(14) vpa,n+vea,n=v̂pa,n+v̂ea,n , ∀a∈A, ∀n∈N

(15) ipa,n+iea,n=îpa,n+ îea,n , ∀a∈A, ∀n∈N

(16) ipa,n≥ipa,n̄ ·πn,n̄ , ∀a∈A, ∀n, n̄∈N

(17) iea,n≥iea,n̄ ·πn,n̄ , ∀a∈A, ∀n, n̄∈N

(18) ipa,n≥ιa,n ·vpa,n , ∀a∈A, ∀n∈N

(19) iea,n≥ιa,n ·vea,n , ∀a∈A, ∀n∈N

Fig. 11 Binary programming for computing a minimum cost assignment

with the same key (even if they are encrypted after
they have been compared, using the same key would
not provide any leakage as they are equivalent). As per
Theorem 1, it is sufficient to look at the equivalence sets
in the profile of the root to determine which attributes
should be encrypted with the same key. For instance,
consider the extended authorized query plans in Fig-
ure 8. Attributes S and C must be encrypted with the
same key since they belong to the equivalence set of the
profile of the root node. We then define the keys to be
established for a query plan execution as follows.

Definition 10 (Query Plan Keys) Let T(N) be an
extended authorized query plan, nT be its root, and
Ak be the set of attributes involved in encryption oper-
ations. Let A={{Ak∩Aj}|Aj∈R"

T }∪{{a}|a∈Ak, !Aj∈
R"

T , a∈Aj}. The set KT of keys for T is KT = {kA|A∈
A}, with kA an encryption key.

In the definition, the set of sets A clusters at-
tributes to be encrypted based on the equivalence sets
in the root profile (attributes appearing together in an
equivalence set belong to the same set in A, while at-
tributes not belonging to any equivalence set appear

as singletons). The key associated with an attribute
(or set thereof) will be distributed only to the sub-
jects in charge for its (their) encryption, and possible
decryption. Since such subjects are authorized for the
encryption/decryption operation (i.e., they are autho-
rized for plaintext visibility of the attributes to be en-
crypted/decrypted in the operand relation), key distri-
bution obeys authorizations. For instance, for the query
plan in Figure 8(a), A={SC,P}, resulting in kSC dis-
tributed to H and I, and kP distributed to I and Y. For
the query plan in Figure 8(b), A={D,P}, resulting in
kD distributed to H, and kP distributed to I and Y.

Encryption algorithm. As stated in Section 2, our
authorization model does not distinguish among dif-
ferent encryption schemes. The query optimizer should
however choose the scheme (e.g., deterministic or ran-
domized encryption) depending on the operation that
has to be executed on the resulting encrypted val-
ues [13,29]. As a matter of fact, the ability to operate
on encrypted data (Figure 12) comes with possible ex-
posure to inference as well as with a cost. For instance,
direct encryption can be exposed to frequency attacks,
while order preserving encryption leaks order relation-

An authorization model for query execution in the cloud 19

Randomized
RND (none)

Additive
Homomorphic

AH (+)

Multiplicative
Homomorphic

MH (∗)

Deterministic
DET (=)

Order
Preserving

OPE (=,>,<)

Fully
Homomorphic

FH (all)

Fig. 12 Functionality of encryption schemes

ships of data. We propose to adopt, for each attribute,
the scheme providing the highest protection, while sup-
porting the operations to be executed on the attribute’s
encrypted values. For instance, if for an attribute no
operation needs to be executed on encrypted values,
randomized encryption is used, while if equality con-
ditions need to be evaluated, deterministic encryption
is used. Similarly, additive homomorphic (e.g., Paillier)
or multiplicative homomorphic (e.g., ElGamal) schemes
are applied when only sums or products need to be ex-
ecuted over attribute values. Each attribute can be en-
crypted with a different encryption scheme and with
a different key, the only constraint is that attributes
that are involved together in some operations (i.e., at-
tributes that belong to the same set in the equivalence
set of the root’s profile) need to be encrypted with the
same key to enable the execution of the operations.

Query dispatch. The query dispatch operates ac-
cording to classical approaches, with the only differ-
ence that subjects may be communicated keys and
they may need to execute, in addition to operations
requested by query computation, also encryption and
decryption operations. We assume each subject S in-
volved in a query plan to have a private (priS), public
(pubS) key pair. The communication to each subject
will be signed with the private key of the user and en-
crypted with the subject’s public key. Having a sub-
query signed allows the recipient to verify its authen-
ticity and integrity. Encrypting a sub-query with the
public key of the recipient supports confidentiality of
the communication. Note, however, that the correct-
ness of our approach does not depend on the simple
protection of the communication. As a matter of fact,
the definition of profiles does not make any assump-
tion on the confidentiality of the query, which could
potentially be known (of course with conditions oper-
ating on encrypted values when demanded by encryp-
tion operations in the plan). Figure 13 illustrates the

S Receives (reqS) Performs (qS)

select T,decrypt(Pk,kP) as P
Y [[qY,(P,kP)]priU]pubY

from !reqX"
where P >100

select T,avg(Pk) as Pk

X [[qX,-]priU]pubX from !reqH" join !reqI" on Sk=Ck

group by T

select encrypt(S,kSC),D,T
H [[qH,(S,kSC)]priU]pubH from Hosp

where D=‘stroke’

I [[qI,(C,kSC)(P,kP)]priU]pubI
select encrypt(C,kSC),encrypt(P,kP)
from Ins

Fig. 13 Query dispatch for the plan in Figure 8(a)

query dispatch for the plan in Figure 8(a). In the fig-
ure, term reqS=[[qS ,(A1,k1),. . .,(An,kn)]priU]pubS

repre-
sents the request (signed with priU and encrypted with
pubS) sent to subject S, where qS is the sub-query and
(A1,k1), . . . , (An,kn) is the list of attributes that subject
S must encrypt/decrypt with the corresponding key.
The plan starts with the request from U to Y (reqY),
which will call the sub-query at X (reqX), which in turn
will call the sub-queries at H (reqH) and I (reqI).

Authorization enforcement. Our approach relies on
the correct enforcement of authorizations throughout
the query plan. Since the definition of the query plan
is outside the control of the involved data authorities,
the query optimizer has to be trusted for such an en-
forcement. Each data authority will perform a control
at its side, before releasing the data to a third party,
to check that the user is authorized for the released
data. In fact, a user requesting query execution must
be authorized to access all data that are input to the
query, which correspond to the base relations. The user
is then trusted to involve other authorized subjects.
With respect to the authorization enforcement, in the
description of our approach, for simplicity, we have as-
sumed the control of the authorizations holding for a
given subject simply as a check against the set PS (ES ,
resp.) summarizing the attributes that subject S is au-
thorized to access plaintext (in encrypted form, resp.).
While the realization of such a control directly against
a global repository storing PS and ES , for all subjects,
can be possible, in real applications we can expect au-
thorizations over the different relations to be stored in
a distributed manner, like the relations are, and re-
main under the control of the respective data author-
ities. This distributed storage and management of au-
thorizations is completely in line with our approach. As
a matter of fact, a major advantage of the consideration
of authorizations holding only on specific relations (no
cross-relations/cross-authority authorizations) is that it
simplifies authorizations specification and management
and makes our solution completely independent from
the approach adopted for storing and managing autho-

20 Sabrina De Capitani di Vimercati et al.

rizations. For instance, a data authority can: i) publish
its access control policy (which would then result pub-
licly visible), or ii) respond to explicit authorization
requests. The first approach can facilitate access to the
policy, but entails its complete exposure. The second
approach has instead the advantage of maintaining the
whole policy confidential, providing only the responses
to individual authorization checks. Our proposal is in-
dependent of the specific approach adopted and can
work with both of them.

8 Experimental results

Our authorization model, supporting and enforcing en-
crypted visibility to external authorities and providers,
enables the delegation of intensive computation to ex-
ternal parties in a way that produces the greatest ad-
vantage in the query execution. Such ability to delegate
computation to providers with the lowest cost among
those trusted to access (in plaintext or encrypted form)
the involved data can bring considerable advantages
since even small reductions in price lead to a reduction
in the economic costs associated with the execution of
queries. To evaluate the economic benefits of our ap-
proach in distributed query execution, which enables
to fully enjoy the economic benefit of the open cloud
market, we realized a tool implementing the two steps
illustrated in Section 6 for computing a minimum cost
assignment for a query plan and performed a series of
experiments. We implemented the first step, comput-
ing the candidate assignment function Λ, in Java and
the second step, computing the minimum cost assign-
ment, using LINGO2 for solving our binary program-
ming problem. Our tool receives in input a relational
schema, a query plan, the price lists of each subject
(i.e., user, data authorities, and cloud providers) for
cpu usage and data transfer, and the authorizations.
It provides as output a minimum cost assignment of
operations in the query plan to subjects, and the cor-
responding extended authorized query plan, introduc-
ing the encryption and decryption operations needed to
make the computed assignment authorized and enable
the evaluation of operations.

Queries. Aiming at considering a scenario with queries
explicitly using udf functionalities (which are not used
in existing benchmarks), we considered queries repre-
sentative of a use-case provided by a large manufactur-
ing company that applies data analysis to extract infor-
mation from production data combined with customers
data and data provided by external agencies. These

2 LINGO https://www.lindo.com/index.php/products/lingo-
and-optimization-modeling

q1 q2 q3 q4 q5

σ

π

R1

γ

$%

π

R2

σ

σ

π

µ

"#

"#

σ σ

π π

R1 R3

π

R2

γ

µ

"#

σ

π π

R1 R3 R4 R2

σ π

"#

"#

γ

"#

π π

R2 R3

σ

µ

π

"#

"#

σ

π

R2 R1 R4

π

σ

µ

Fig. 14 Query plans for the use-case

analyses typically require the execution of udfs. The
queries operate on four relations, distributed among
three data authorities. The query plans differ in: 1) the
number of relations involved (ranging from 2 to 4), and
2) the position in the query tree plan where the udf
operates (i.e., close to a base relation, and hence oper-
ating on the data owned by a single authority, or up
in the query plan, and hence operating on the result of
computations combining data of different authorities).
Figure 14 provides a high-level representation (omit-
ting attributes and operation parameters) of the query
plans. In particular, query q1 involves two relations and
has no udf; q2 involves three relations and the udf op-
erates close to the root; q3 involves four relations and
the udf operates close to the root; q4 involves two rela-
tions and the udf operates close to a base relation; and
q5 involves three relations and the udf operates close
to a base relation. We estimated the size of processed
data, the increase in size that may derive from the ap-
plication of encryption, and the computational costs of
relational operators and of encryption/decryption op-
erations based on the estimates produced by query op-
timizers and on common benchmarks.

Authorization scenarios. We considered different
authorization scenarios with increasing visibility over
data by authorities and external providers.

– UA: authorizations allow the user to access all data
and data authorities to access their own base rela-
tions.

– UAenc: enriches the previous scenario with autho-
rizations allowing each data authority to access, in
encrypted form, all the attributes in the base rela-
tions owned by the other data authorities.

– UAmixPenc: enriches the previous scenario with
authorizations that allow authorities to access in
plaintext some of the attributes in the base relations
owned by the other authorities, and cloud providers
to access, in encrypted form, all the attributes of all
the base relations.

– UAmixPmix: enriches the previous scenario with
authorizations allowing cloud providers to access in

An authorization model for query execution in the cloud 21

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

U

n
o
rm

a
liz

e
d
 c

o
st

query

UAmixPmix

UAmixPenc

UAenc

UA

(a) 2-20 configuration

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

U

n
o
rm

a
liz

e
d
 c

o
st

query

UAmixPmix

UAmixPenc

UAenc

UA

(b) 10-100 configuration

Fig. 15 Normalized cost for evaluating different queries un-
der different authorization profiles

plaintext some of the attributes that were only ac-
cessible in encrypted form in UAmixPenc scenario.

These scenarios enable increasing involvement of
authorities and computational providers in perform-
ing computation, hence leveraging authorizations sup-
ported by our model for delegating computational in-
tensive portions of the query and enjoy cost-saving op-
portunities. The baseline for comparison is given by
considering the case, which we denote as U, in which
the query is executed completely by the user itself.

Cost configurations and economic benefits. We
set the cost values input to the experiments considering,
as it is to be expected in the scenarios that motivate this
research, a relatively high cost for the direct involve-
ment of the user and of data authorities. In particular,
also based on considerations from our use-case and on
the listings of the most common cloud providers on the
market (e.g., Amazon AWS, Google Cloud Platform),
we assumed the cpu usage and data transfer costs of
the user from 2 to 10 times that of data authorities,
and from 20 to 100 times that of cloud providers. We
then performed different experiments for different cost
combinations, having confirmation from each of them
of cost-saving in the adoption of our approach. Fig-

ures 15(a-b) illustrate the results in the two configura-
tions at the extreme of our considered cost ranges where
cost-saving is lowest (i.e., 2-20 scenario) and highest
(i.e., 10-100 scenario). Given the heterogeneity of the
different queries and their cost, we report the cost in
a normalized form considering, for each query, a uni-
tary cost for U (reported by the continuous horizontal
line in the figure). As expected, compared with the base
scenario (U) where only the user can perform computa-
tions, the involvement of data authorities and providers
enables significant savings. Indeed, our approach per-
mits to partially delegate operations running on en-
crypted data to cloud providers with economically con-
venient price lists, even if they are not trusted to access
plaintext data. As it is to be expected, the more permis-
sive the authorizations, the larger the potential savings,
which reach already considerable levels when providers
are allowed to access data only in encrypted form. As
a matter of fact, as visible from the figure, for the 2-
20 configuration cost reduction ranges and from 69%
(q1 in UAmixPenc) to 94% (q4 in UAmixPmix). For
the 10-100 configuration, cost reduction ranges from
92% (q1 in UAmixPenc) to 98% (q4 in UAmixPmix).
The higher cost reductions in the 10-100 configuration,
with respect to the 2-20 configuration, are clearly due
to the impact of the difference in cost savings (higher in
the former and lower in the latter), which has its effect
throughout query execution. The reason for the differ-
ent cost reductions can be interpreted observing that in
q4 and q5 (which show a higher cost reduction) the udf
calls are closer to the leaves (and therefore operate on
more data), while in q2 and q3 udf calls are closer to the
root. Also, q1, which sees a lower (with respect to the
other queries) cost reduction for the 2-20 configuration,
involves a lower computational effort (q1 does not call
any udf).

We close this section with a note on the improve-
ment brought by the constraint-modeling formulation
presented with respect to the modeling in [10], where
operation assignment did not take into account the cost
of encryption and decryption operations that the as-
signment would have entailed. Considering such cost
in computing the assignment allows us to rule out a
solution if the cost needed for encryption/decryption
would eventually make it more expensive than alterna-
tives. Figure 16 compares the (normalized) costs of the
extended query plans generated by our approach for the
considered five queries and the ones computed accord-
ing to the heuristics in [10]. The figure has been ob-
tained considering the UAmixPmix authorization sce-
nario, since it is the most general authorization sce-
nario. As expected, in the tested configurations, our as-
signment presents higher economic benefits compared

22 Sabrina De Capitani di Vimercati et al.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

n
o
rm

a
liz

e
d
 c

o
st

query

our proposal

[10]

(a) 2-20 configuration

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

n
o
rm

a
liz

e
d
 c

o
st

query

our proposal

[10]

(b) 10-100 configuration

Fig. 16 Normalized cost for evaluating different queries with
our solution and the solution in [10]

with the assignment computed by the heuristics in [10]
(up to 29% for the 2-20 configuration and up to 42%
for the 10-100 configuration). In both configurations,
the higher cost reductions observable in q2 and q3 are
motivated by the fact that these queries see the in-
volvement of (and return) more data – compared to
the other queries – which need to be encrypted and
subsequently decrypted for enabling the involvement of
the providers chosen by the heuristics in [10]. The pre-
sented constraint-modeling formulation is able to con-
sider these costs, hence producing a different assign-
ment that, while seeing the involvement of providers
that are not the most economic for computation and
transfer costs, require less encryption and decryption,
ensuring a reduction in the cost for the overall execu-
tion.

9 Related work

The problem of managing queries in distributed scenar-
ios has been extensively studied, but traditional solu-
tions (e.g., [19,21]) as well as modern approaches that
consider big data analytics (e.g., [2,4,25]) do not take
into consideration access restrictions. In the relational

database context, access restrictions can be supported
by views (e.g., [9,17,26]), access patterns (e.g., [3,6]),
or data masking (e.g., [20]). Such proposals however do
not consider encryption.

Work closest to ours has addressed the problem of
protecting data confidentiality in distributed computa-
tions (e.g., [11,22,27,32]). In [32] the authors present
an approach to collaboratively execute queries on data
subject to access restrictions, considering different join
evaluation strategies. In [27] the authors propose an op-
erator placement approach aimed at satisfying privacy
constraints, while maximizing performance in query
evaluation. The proposed solution relies on program-
ming language techniques for regulating and control-
ling information flows. In [11] the authors provide a so-
lution for restricting access and sharing of distributed
data, which supports the explicit consideration of join
paths in the authorizations. The proposal in [22] aims
at protecting computations in hybrid clouds, prevent-
ing flows of sensitive information to the public cloud.
These works confirm the relevance of the problem, but
focus on different aspects. In particular, the approach
in [32] considers only data explicitly exchanged among
providers and do not take into consideration implicit in-
formation disclosure. While providing a more expressive
authorization model, the approach in [11] requires col-
laborative specification of authorizations. None of the
proposals considers the possibility of protecting data
with encryption. Our proposal takes then a novel ap-
proach supporting different visibility levels over data
and flexibly injecting encryption on-the-fly to protect
data and enable the controlled involvement of cloud
providers in query computation. In [15] the authors ad-
dress a complementary problem allowing users to spec-
ify confidentiality requirements in query evaluation to
protect the objective of their queries to some providers.
The idea of specifying different visibility levels over data
has been first proposed in [10]. The approach in [14] in-
tegrates this authorization model in a distributed query
optimizer. In this paper, we considerably extend the
prior work in [10] by enriching it with the support for
additional operators (i.e., rename and set operators),
providing formal proofs of theorems, and introducing a
novel approach for identifying a minimum cost assign-
ment, also taking into consideration the cost of encryp-
tion and decryption operations.

Other related work has investigated leveraging
Trusted Execution Environments (e.g., Intel SGX) for
storing or processing sensitive data, in an otherwise non
fully trusted scenario or host [24,28,31]. These works
are complementary to ours and the consideration of
trusted execution environments for delegating part of

An authorization model for query execution in the cloud 23

the computation in our model can represent an inter-
esting direction of investigation.

Several works (e.g., [1,18,23,29]) have investigated
the use and support of encryption for the protection of
data in storage or query execution. Other approaches
(e.g., [5,7]) proposed solutions for using secure multi-
party computation in query evaluation, to keep both
the input operands and the result secret to the party
in charge of query evaluation. Specific works (e.g., [12])
have designed techniques to verify the integrity of query
results computed by potentially untrusted providers.
All these solutions are complementary to our proposal.

10 Conclusions

We leverage the availability of emerging solutions sup-
porting computation over encrypted data to provide a
novel flexible approach enabling controlled query exe-
cution in the cloud. Our approach allows independent
data authorities to make their data available for access
and collaborative query execution, and enables users to
execute queries over such data with selective and con-
trolled involvement of external cloud providers. A main
advantage of our approach is the flexibility in the as-
signment of query operations to providers as most eco-
nomically convenient, with on-the-fly insertion of en-
cryption and decryption to adjust visibility of data as
dictated by the authorizations. The experimental eval-
uation confirms the benefits provided by our proposed
authorization model. Our work leaves room for exten-
sions, among which we mention two in particular. The
first extensions can be the inclusion in the authorization
specification of encryption schemes. In other words, au-
thorizations could support different encryption ‘levels’,
for instance limiting encrypted visibility only to certain
‘types’ of encryption. With respect to its impact on the
model, this would imply the non validity of encrypted
visibility (i.e., ineffectiveness of authorizations on an en-
crypted attribute) if the encryption required for the ex-
ecution of the operation is not allowed by the authoriza-
tion. A second interesting direction of investigation is
the consideration of Trusted Execution Environments.
Intuitively, TEEs on board of computational providers
can be captured assuming the presence of an additional
provider, modeling the trusted execution environment,
characterized by its own set of authorizations and price
list. However, the authorizations of the TEE and the
computational provider hosting it cannot be completely
independent since communication to the TEE passes
through the hosting environment. Basically, the autho-
rizations of a TEE should be at least as permissive as
the ones of its hosting environment, and as a matter of
fact more permissive (e.g., a TEE can be authorized a

plaintext access to attributes that its hosting environ-
ment can view only in encrypted form). However, since
communication to the TEE passes through the host-
ing environment, attributes going to the TEEs need to
be accessible (even if in more restrictive form) to the
hosting environment. With respect to operation assign-
ments, computational cost to be considered is the one
of the TEE and the communication cost is the one of
its hosting environment.

References

1. Agrawal, R., Asonov, D., Kantarcioglu, M., Li, Y.:
Sovereign joins. In: Proc. of ICDE. (2006)

2. Alkowaileet, W., Alsubaiee, S., Carey, M., Li, C., Ra-
mampiaro, H., Sinthong, P., Wang, X.: End-to-end ma-
chine learning with Apache AsterixDB. In: Proc. of
DEEM. (2018)

3. Amarilli, A., Benedikt, M.: When can we answer queries
using result-bounded data interfaces? In: Proc. of PODS.
(2018)

4. Armbrust, M., Xin, R.S., Lian, C., Huai, Y., Liu, D.,
Bradley, J.K., Meng, X., Kaftan, T., Franklin, M.J., Gh-
odsi, A., Zaharia, M.: Spark SQL: Relational data pro-
cessing in Spark. In: Proc. of SIGMOD. (2015)

5. Bater, J., Elliott, G., Eggen, C., Goel, S., Kho, A., Dug-
gan, J.: SMCQL: Secure query processing for private data
networks. PVLDB 10(6), 673–684 (2017)

6. Benedikt, M., Leblay, J., Tsamoura, E.: Querying with
access patterns and integrity constraints. PVLDB 8(6),
690–701 (2015)

7. Chow, S.S., Lee, J.H., Subramanian, L.: Two-party com-
putation model for privacy-preserving queries over dis-
tributed databases. In: Proc. of NDSS. (2009)

8. Cohen, J., Dolan, B., Dunlap, M., Hellerstein, J.M., Wel-
ton, C.: Mad skills: New analysis practices for big data.
PVLDB 2(2), 1481–1492 (2009)

9. De Capitani di Vimercati, S., Foresti, S., Jajodia, S.,
Livraga, G., Paraboschi, S., Samarati, P.: Fragmentation
in presence of data dependencies. IEEE TDSC 11(6),
510–523 (2014)

10. De Capitani di Vimercati, S., Foresti, S., Jajodia, S.,
Livraga, G., Paraboschi, S., Samarati, P.: An authoriza-
tion model for multi-provider queries. PVLDB 11(3),
256–268 (2017)

11. De Capitani di Vimercati, S., Foresti, S., Jajodia, S.,
Paraboschi, S., Samarati, P.: Authorization enforcement
in distributed query evaluation. JCS 19(4), 751–794
(2011)

12. De Capitani di Vimercati, S., Foresti, S., Jajodia, S.,
Paraboschi, S., Samarati, P.: Efficient integrity checks for
join queries in the cloud. JCS 24(3), 347–378 (2016)

13. De Capitani di Vimercati, S., Foresti, S., Livraga, G.,
Samarati, P.: Practical techniques building on encryp-
tion for protecting and managing data in the cloud. In:
P. Ryan, D. Naccache, J.J. Quisquater (eds.) Festschrift
for David Kahn, pp. 205–239. Springer (2016)

14. Dimitrova, E., Chrysanthis, P., Lee, A.: Authorization-
aware optimization for multi-provider queries. In: Proc.
of SAC. (2019)

15. Farnan, N., Lee, A., Chrysanthis, P., Yu, T.: PAQO:
Preference-aware query optimization for decentralized
database systems. In: Proc. of ICDE. (2014)

24 Sabrina De Capitani di Vimercati et al.

16. Grofig, P., Haerterich, M., Hang, I., Kerschbaum, F.,
Kohler, M., Schaad, A., Schroepfe, A., Tighzert, W.: Ex-
periences and observations on the industrial implemen-
tation of a system to search over outsourced encrypted
data. In: Proc. of Sicherheit. (2014)

17. Guarnieri, M., Basin, D.: Optimal security-aware query
processing. PVLDB 7(12), 1307–1318 (2014)

18. Hacigümüs, H., Iyer, B., Mehrotra, S., Li, C.: Executing
SQL over encrypted data in the database-service-provider
model. In: Proc. of SIGMOD. (2002)

19. Kossmann, D.: The state of the art in distributed query
processing. ACM CSUR 32(4), 422–469 (2000)

20. Kwakye, M.M., Barker, K.: Privacy-preservation in the
integration and querying of multidimensional data mod-
els. In: Proc. of PST. (2016)

21. Levy, A.Y., Srivastava, D., Kirk, T.: Data model and
query evaluation in global information systems. JIIS 5(2),
121–143 (1995)

22. Oktay, K.Y., Kantarcioglu, M., Mehrotra, S.: Secure and
efficient query processing over hybrid clouds. In: Proc. of
ICDE. (2017)

23. Popa, R., Redfield, C., Zeldovich, N., Balakrishnan,
H.: CryptDB: Protecting confidentiality with encrypted
query processing. In: Proc. of SOSP. (2011)

24. Priebe, C., Vaswani, K., Costa, M.: EnclaveDB: A secure
database using SGX. In: Proc. of SP. (2018)

25. Rheinländer, A., Leser, U., Graefe, G.: Optimization of
complex dataflows with user-defined functions. ACM
CSUR 50(3), 38:1–38:39 (2017)

26. Rizvi, S., Mendelzon, A., Sudarshan, S., Roy, P.: Extend-
ing query rewriting techniques for fine-grained access con-
trol. In: Proc. of SIGMOD. (2004)

27. Salvaneschi, G., Köhler, M., Sokolowski, D., Haller, P.,
Erdweg, S., Mezini, M.: Language-integrated privacy-
aware distributed queries. Proc. ACM Program. Lang.
3(OOPSLA) (2019)

28. Thoma, C., Lee, A., Labrinidis, A.: Behind enemy lines:
Exploring trusted data stream processing on untrusted
systems. In: Proc. of CODASPY. (2019)

29. Tu, S., Kaashoek, M., Madden, S., Zeldovich, N.: Pro-
cessing analytical queries over encrypted data. PVLDB
6(5), 289–300 (2013)

30. Vaidya, J.: Privacy in the context of digital government.
In: Proc. of DG.O. (2012)

31. Vinayagamurthy, D., Gribov, A., Gorbunov, S.:
StealthDB: a scalable encrypted database with full
SQL query support. PoPETS 2019(3), 370–388 (2019)

32. Zeng, Q., Zhao, M., Liu, P., Yadav, P., Calo, S., Lobo,
J.: Enforcement of autonomous authorizations in collab-
orative distributed query evaluation. IEEE TKDE 27(4),
979–992 (2015)

A Proofs of theorems

Theorem 1 Let T(N) be a query tree plan. ∀nx, ny∈N with

profile [Rvp
x ,Rve

x ,Rip
x ,Rie

x ,R"
x] and [Rvp

y , Rve
y , Rip

y , Rie
y , R"

y], respec-
tively, s.t. ny is a descendant of nx:

i) (Rvp
y ∪Rve

y ∪Rip
y ∪Rie

y ∪{A|A∈R"
y })⊆(Rvp

x ∪Rve
x ∪Rip

x ∪Rie
x ∪{A|

A∈R"
x })

ii) ∀A∈R"
y , ∃A′∈R"

x , A⊆A′.

Proof We separately prove the two conditions of the theo-
rem.
i) Let us first analyze the case in which nx is the direct ances-
tor of ny. Assume, by contradiction, that ∃a∈{Rvp

y ∪Rve
y ∪R

ip
y ∪

Rie
y ∪ {A|A∈R"

y }} s.t. a)∈{Rvp
x ∪Rve

x ∪Rip
x ∪Rie

x ∪ {A|A∈R"
x }}.

This would imply that attribute a is removed from the profile
of Rx by the execution of the operation represented by nx.
According to the operations in Figures 2 and 3, projection,
group-by, udf, and rename operations remove attributes from
relation profiles (and, more precisely, from the visible com-
ponents of profiles). However, the attributes removed from
the visible components by rename operation are inserted into
the renamed attributes component and, from there, into the
components of the relation profile where the new attribute
name appears. The attributes removed from the visible com-
ponents by projection, group-by, and udf operations already
belong to R

ip
x ∪ Rie

x ∪ {A|A∈R"
x }. In fact, since projections

have been pushed down in T(N), the first projection removes
all attributes that are neither involved in operations in the
query plan, nor returned in the query result. Therefore, for
each relation, only the attributes explicitly appearing in the
clauses of the query survive in the profile of the relation corre-
sponding to the projection pushed down at each relation. The
attributes removed can only be the attributes on which oper-
ations have already been evaluated, since otherwise the query
could not be evaluated correctly. The operations in which an
attribute a, removed by the projection, the group-by, or the
udf at nx, have possibly been involved (as illustrated in Fig-
ure 2) are: selection (a would be in Rip

x , Rie
x , or R"

x); join (a
would be in R"

x); group-by (a would be in R
ip
x or Rie

x); a set
operator (a would be in R"

x); and udf (a would be in R"
x).

Note that the cartesian product does not specifically operate
on any attribute. Also, attributes involved in aggregations
will be subject to operations or will belong to the query re-
sult. Encryption/decryption operations are instead functional
to query evaluation. Hence, no attribute is removed from the
profile of Rx, contradicting our hypothesis.
Since ∀nx, ny s.t. ny is a direct descendant of nx, (R

vp
y ∪Rve

y ∪

Rip
y ∪Rie

y ∪ {A|A∈R"
y }) ⊆ (Rvp

x ∪Rve
x ∪Rip

x ∪Rie
x ∪ {A|A∈R"

x }),
by the transitivity of operator ⊆ the first condition of the
theorem holds.

ii) Let us first analyze the case in which nx is the direct an-
cestor of ny and assume, by contradiction, that ∃A∈R"

y s.t.
!A′∈R"

x , A⊆A′. The sets of attributes included in R"
y are im-

pacted only when the operation in nx is one of the operations
described in the following.

ii.1) nx is a cartesian product. The cartesian product com-
bines R"

y with R"
z , with Rz the other operator of nx (i.e.,

R"
x =R"

y ∪ R"
z). Then, if A∈R"

y and ∃Ai∈R"
z s.t. A ∩ Ai)=∅,

then A′=A ∪Ai is inserted into R"
x in place of A. Otherwise,

A belongs to the R"
x . This contradicts our hypothesis.

ii.2) nx is a selection or join with condition ai op aj . The se-
lection/join operations cause R"

x =R"
y ∪ R"

z ∪ {ai, aj}, which
inserts equivalence {ai,aj} in the result of R"

y ∪ R"
z . Then,

it merges the set Ai∈(R"
y ∪ R"

z) s.t. ai∈Ai with the set
Aj∈(R"

y ∪R"
z) s.t. aj∈Aj , producing a new set Aij=Ai ∪Aj ,

if such sets exist; it inserts aj into Ai if Aj does not ex-
ist (and viceversa), producing a new set Aij=Ai ∪ {aj} (or
Aij=Aj ∪ {ai}) in place of Ai or Aj , respectively. It creates
set Aij={ai, aj} if neither Ai nor Aj exist. The set R"

x is
then obtained as R"

x =R"
y ∪R"

z \ {Ai, Aj} ∪ {Aij}. Therefore,
if ai)∈A and aj)∈A (remember that A∈R"

y), then A∈R"
x . Oth-

erwise, Aij∈R"
x and A⊂Aij . This contradicts our hypothesis.

ii.3) nx is a set operator. Any set operator causes R"
x =

R"
y ∪ R"

z ∪ {ayi, azi}, which inserts equivalence {ayi,azi}, for
i=1, . . . , |Rvp

y ∪ Rve
y |, in the result of R"

y ∪ R"
z . The insertion

of each pair {ayi,azi} into the result of R"
y ∪ R"

z operates as
illustrated above for the selection/join operation. Hence, if

An authorization model for query execution in the cloud 25

ayi)∈A and azi)∈A (remember that A∈R"
y), then A∈R"

x , else
Ayizi∈R"

x and A⊂Ayizi. This contradicts our hypothesis.

ii.4) nx is a udf operating over a set Ax of attributes. The
udf operation causes R"

x =R"
y ∪Ax, which inserts equivalence

Ax into R"
y . Then, it merges the set Ai∈R"

y s.t. Ai∩Ax)=∅
with the set Ax, producing a new set Aix=Ai∪Ax, if such set
exists, and inserts Aix into R"

y in place of Ai. It creates set
Ax otherwise. Therefore, if Ax∩A=∅, then A∈R"

x . Otherwise,
Aix∈R"

x and A⊂Aix. This contradicts our hypothesis.

Renaming does not have impact on the second condition of
the theorem, since renamed attributes are substituted by the
corresponding original attribute names when the profile is
closed (Definition 3). Since ∀nx, ny s.t. ny is a direct descen-
dant of nx, ∀A∈R"

y , ∃A′∈R"
x s.t. A⊆A′, for the transitivity of

operator ⊆, the second condition of the theorem holds. -.

Theorem 2 Let T(N) be a query tree plan, n∈N be a non-leaf
node nl,nr∈N be its non-leaf children, if any. R̂vp

l ∪ R̂vp
r ⊆R̂ip=⇒

Λ(nx)⊆Λ(n),∀nx ancestor of n.

Proof Let us first analyze the case in which nx is the di-
rect ancestor of n in T(N) and assume, by contradiction, that
∃S∈Λ(nx) s.t. S)∈Λ(n). By Definition 8, this implies that S

is authorized for relation Rx produced by nx over operands
R̂ and possibly R̂w, with nw the other direct descendant of
nx if nx represents a binary operation, and S is authorized
for R̂ and R̂w (if it is the case). At the same time, S is not
authorized for R, R̂l, and/or R̂r. By Theorem 1, all attributes
in the profile of a node also belong to the profiles of its an-
cestors. Then, S could be authorized for Rx and not for R

only if there exists an attribute a∈ES s.t. a appears plaintext
(visible and/or implicit) in the profiles of R̂l, R̂r, or R and
is included encrypted in the profiles of R̂, R̂w, and Rx. Let
us separately analyze the cases in which a is visible plaintext
and implicit plaintext. If a appears implicit plaintext in the
profile of R or of an operand of n (meaning in R̂l or R̂r),
since no operation removes attributes from an implicit com-
ponent of a profile (see Figure 2), then a will also be included
in the implicit plaintext component of the profiles of all an-
cestors of n, including nx. Therefore, S)∈Λ(nx), contradicting
our hypothesis. Let us now analyze the case in which a is
visible plaintext in the profile of R̂l, R̂r, or R. In all these
cases, by Definition 7, a is needed plaintext for the execution
of the operation in n (as otherwise it would be encrypted
in R̂l, R̂r, and then also in the profile of the relation result-
ing from n). However, by hypothesis R̂vp

l ∪ R̂vp
r ⊆R̂ip. Then,

a would be included in the implicit plaintext components of
the ancestors of n, thus making S)∈Λ(nx), contradicting our
hypothesis. Since ∀n, nx s.t. nx is the direct ancestor of n,
R̂vp

l ∪ R̂vp
r ⊆R̂ip=⇒Λ(nx)⊆Λ(n), for the transitivity of opera-

tor ⊆, the theorem holds. -.

Theorem 3 Let T(N) be a query plan, and Λ be a candidate
assignment function for it:

i) ∀T′ ∈ T , λ, and n∈N, if T′ is an extended query plan for T

and λ is an authorized assignment for T′, then λ(n)∈Λ(n).
ii) ∀λ, if ∀n∈N, λ(n)∈Λ(n), then there exists an extended query

plan T′ for T such that λ is an authorized assignment for T′.

Proof To clearly distinguish between nodes of the original tree
T(N) and the same nodes in the extended tree T′(N), we will
denote with n′ the counterpart in T′(N) of node n in T(N). We
now separately prove the two conditions of the theorem.

i) Suppose, by contradiction, that ∃S=λ(n′) s.t. S)∈Λ(n),
meaning that S is authorized for n′, n′

l, and n′
r and not for

n, R̂l, and R̂r. This can occur in two scenarios.

i.1) ∃a in the profiles of n, R̂l, and/or R̂r s.t. a does not be-
long to the profiles of n′, n′

l, and n′
r, and a)∈PS ∪ ES .

Theorem 1 states that all attributes in the profile of a rela-
tion belong to the profile of its ancestor. Therefore, if a does
not belong to the profile of n (n′, resp.), then a belongs to
the profiles of neither nl nor nr (n′

l nor n′
r, resp.). On the

other hand, if a belongs to the profile of n (n′, resp.), then
a certainly belongs to the profiles of either nl or nr (n′

l or
n′
r, resp.). Therefore, we can focus on the profiles of n and

n′. The profile of n is computed assuming operands R̂l and
R̂r. According to Definition 7, the computation of minimum
required views does not change which attributes are included
in the profile of a node. This implies that the attributes in the
profile of n be the same of n′, contradicting our hypothesis.

i.2) ∃a appearing plaintext in the profiles of n, R̂l, and/or R̂r

s.t. a is encrypted in the profiles of n′, n′
l, and n′

r, and a∈ES .
Let us first analyze the case in which a is visible plaintext in
the profile of n, R̂l, and/or R̂r. In all these cases, by Defini-
tion 7, a is needed plaintext for the execution of the operation
in n but then it should also be represented in the clear also in
n′, n′

l, and n′
r to ensure computability of the operation, thus

contradicting our hypothesis.
Let us now analyze the case in which a is implicit plaintext in
the profile of n, R̂l, or R̂r. This can occur only if an operation
over a has been executed by (at least) one descendant nd of n
and left a trace in the implicit component. Since nd, being in
T(N), operates on the minimum required view(s) of its descen-
dant(s), it left a trace in the implicit plaintext component of
the profile of nd only if the operation required to operate on
the plaintext representation of a. However, the same opera-
tion is to be evaluated also by n′

d in T′(N), and therefore a

appears in the implicit plaintext component of the profiles of
n′, n′

l, and/or n′
r, thus contradicting our hypothesis.

ii) Suppose, by contradiction, that ∀n, S=λ(n)∈Λ(n) and that
!T′(N) s.t. T′(N) is an extended plan for T(N) for which λ is an
authorized assignment. This can occur in two scenarios.

ii.1) ∃a in the profiles of n′, n′
l, and/or n′

r s.t. a does not

belong to the profiles of n, R̂l, R̂r, and a)∈PS ∪ ES .
As previously shown, the sets of attributes in the profile of a
node in T(N) and of its counterpart in T′(N) include the same
set of attributes.

ii.2) ∃a plaintext in the profiles of n′, n′
l, and/or n′

r s.t. a is

encrypted in the profiles of n, R̂l, and R̂r, and a∈ES .
Let us first analyze the case in which a is visible plaintext in
the profiles of n′, n′

l, and/or n′
r. Since a appears in encrypted

form in the profiles of the original query plan, plaintext vis-
ibility over a is not required to execute the operation in n′.
Then, T′(N) can be extended encrypting a before n′.
Let us now analyze the case in which a is implicit plaintext
in the profiles of n′, n′

l, and/or n′
r. In this case, an opera-

tion inserting a into the implicit component of a profile has
been carried out over the plaintext representation of a in (at
least) one descendant n′

d of node n′ in T′(N). However, since
a belongs to the implicit plaintext component of the profiles
of neither R̂l, nor R̂r, this operation can also be evaluated
over the encrypted representation of a. Hence, T′(N) can be
extended with an encryption operation over a preceding n′

d.
This includes a in the implicit encrypted component in the
profile of n′

d and of its ancestors, rather than their implicit
plaintext component. Indeed, no operation moves attributes
out from implicit components (see Figures 2 and 3). -.

