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Abstract
The theory of three-layer density-stratified ideal fluids is examined with a view toward
its generalization to the n-layer case. The focus is on structural properties, especially
for the case of a rigid upper lid constraint. We show that the long-wave dispersionless
limit is a system of quasi-linear equations that do not admit Riemann invariants. We
equip the layer-averaged one-dimensional model with a natural Hamiltonian structure,
obtained with a suitable reduction process from the continuous density stratification
structure of the full two-dimensional equations proposed by Benjamin. For a laterally
unbounded fluid between horizontal rigid boundaries, the paradox about the non-
conservation of horizontal totalmomentum is revisited, and it is shown that the pressure
imbalances causing it can be intensified by three-layer setups with respect to their two-
layer counterparts. The generator of the x-translational symmetry in the n-layer setup
is also identified by the appropriate Hamiltonian formalism. The Boussinesq limit and
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a family of special solutions recently introduced by de Melo Viríssimo and Milewski
are also discussed.

Keywords Stratified fluids · Long wave models · Poisson reductions · Hamiltonian
PDEs · Conservation laws · Mixed type evolution equations

1 Introduction

Density stratification is an important aspect of fluid dynamics, being inherent to a
variety of phenomena concerning both the ocean and the atmosphere. In particular,
displacement of fluid parcels from their neutral buoyancy position within a stratified
flow can result in internal wave motion, whose evolution is of fundamental impor-
tance to energy propagation and distribution in both oceanic and atmospheric settings.
Simplified one-dimensional models (in particular, their quasi-linear limit) have been
introduced to isolate key elements in the dynamics of these phenomena and have been
the subject of a number of investigations, e.g., from Ovsyannikov (1979) to the more
recent (Duchêne et al. 2016; Chesnokov et al. 2017; de Melo Viríssimo and Milewski
2019), through (Choi and Camassa 1996, 1999; Lvov and Tabak 2001; Chumakova
et al. 2009a, b).

Such simplified models are the focus of this paper. Two main classes of configura-
tions havebeen examined in the literature: that of a free surface under constant pressure,
and that of a fluid confined in a vertical channel by rigid horizontal plates. We first
frame our discussion in more general terms by using a formalism, employed in Choi
andCamassa (1999) for the case n = 2, encompassing both classes.Within this setting,
we first recall the derivation of the dispersionless n-layer equations by means of the
so-called hydrostatic approximation, which allows to express the pressure in terms of
layer thicknesses, plus a reference (interfacial) pressure. The free-surface case is then
briefly addressed, in particular, for the sake of concreteness, when n = 2. For a com-
prehensive approach, see, e.g., Choi (2000), andGavrilyuk et al. (1998); Barros (2006)
for a discussion of a variational approach. Extension of these results, considering dis-
persive terms (as in (2.6)), can be found in Barros et al. (2007), Percival et al. (2008).
In this respect, our main goal is to highlight the following facts: (1) the non-existence
of Riemann invariants and (2) the existence of a natural Hamiltonian structure.

To illustrate our approach, we focus on a stratified fluid composed of three homo-
geneous layers of constant density ρ1 < ρ2 < ρ3, confined in a vertical channel of
fixed height h. We show that the apparently paradoxical feature of non-conservation of
horizontal momentum, already hinted at in Benjamin (1986) and thoroughly discussed
in Camassa et al. (2012), Camassa et al. (2013) for the 2D Euler equations, can be
detected, not unexpectedly, in the multiply stratified case, as also noted in de Melo
Viríssimo and Milewski (2019). We notice that the added degree of freedom afforded
by the three-layer setting makes the class of initial conditions leading to lack of hori-
zontal momentum conservation much larger than its two-layer counterpart, since one
can have a non-vanishing time-variation of the horizontal momentum at the first order
in the density differences ρ j+1−ρ j evenwith vanishing initial velocities. Hamiltonian
aspects of such models have also been considered, notably in Benjamin and Bridges
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(1997), Craig and Sulem (1993), Craig et al. (2005), with an emphasis on the two-layer
case. We approach this problem from the setup of Hamiltonian reduction methods and
show that the Hamiltonian structure of the resulting reduced equations naturally arises
via a process of reduction from the Hamiltonian structure introduced by Benjamin
(1986) in the study of incompressible, density-stratified Euler system in two spatial
dimensions. TheHamiltonian formalism allows us to derive the equations of motion as
a system of conservation laws and address the paradoxmentioned above by identifying
the generator of the x-translational symmetry of the problem. We present explicit ini-
tial conditions that illustrate the lack of horizontal momentum conservation and note
that unlike the two-layer case, even with zero initial velocity the horizontal momen-
tum is not conserved. Next, we show explicitly that the reduced system does not admit
Riemann invariants. We extend our study to the so-called Boussinesq approximation
of retaining density differences for the buoyancy terms only (while disregarding den-
sity differences for the inertial terms). This limit is readily obtained in our canonical
formalism, together with its effective Hamiltonian density and “symmetric” solutions.

2 Sharply Stratified n-Layered Euler Fluids

The incompressible Euler equations for the velocity field u = (u, w) and non-constant
density ρ(x, z, t), in the presence of gravity −gk and with horizontal fluid domain
bottom at z = 0, are

Dρ

Dt
= 0 , ∇ · u = 0 ,

D(ρu)

Dt
+ ∇ p + ρgk = 0 , (2.1)

with boundary conditions u(x = ±∞, z, t) = 0 for all z ≥ 0 and w(x, 0, t) = 0 for
all x ∈ R. As usual, D/Dt = ∂/∂t + u · ∇ is the material derivative.

A classical way to reduce the dimensionality of the model is to study the spatial
averages of certain fields, such as velocity or density, along suitable regions, as set forth
by Wu (1981). In the case of fluids stratified by gravity, where the vertical direction
plays a distinguished role with respect to the other two directions, one can study the
evolution of vertical means of the fields. In particular, inWu (1981), it was established
that for a density-stratified fluid, for each layer of thickness ηi = ζi−1 − ζi ,

ζi−1∫

ζi

D

Dt
f dz = ∂

∂t

ζi−1∫

ζi

f dz + ∂

∂x

ζi−1∫

ζi

u f dz , i = 1, . . . , n, (2.2)

where f (x, z, t) is any quantity and the elevations ζα are related with the thicknesses
of the fluid’s layers via

⎧⎪⎪⎨
⎪⎪⎩

ζn ≡ 0 (ζn is the flat bottom) ,

ζi =
n−i−1∑
k=0

ηn−k, i = 1, . . . , n − 1 .
(2.3)
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Due to the intrinsic nonlinearity of the Euler equations, by applying the averaging
procedure to (2.1), we obtain in general a non-closed system for the layer thicknesses
ηi and the layer mean velocities ui defined as

ui = 1

ηi

ζi−1∫

ζi

u(x, z) dz . (2.4)

Indeed, additional approximationsmust be introduced to close the system. Inparticular,
the layer averaged equations of motion for a two-layer incompressible Euler fluid in
an infinite channel were derived from the corresponding Euler equations in Choi and
Camassa (1999), and extended the case of n layers in Choi (2000). Motions of typical
wavelength L were considered under the assumptions that the ratios

ε = h

L
� ηi

L
, i = 1, . . . , n , (2.5)

can be considered small. Here, h is the total height of the channel, while ηi is the
thickness of the i-th fluid homogeneous layer.

By using the so-called columnar ansatz (see, e.g., Wu 1981), and by noticing that
equation (2.5) together with the incompressibility of each layer implies that the ratio
of vertical and horizontal velocities scales as ε, in Choi and Camassa (1999) it was
shown that the 2+1-dimensional Euler equations (2.1) reduce to the 1+1-dimensional
equations

ηi t + (uiηi )x = 0 , ui t + uiui x + (−1)i gηi x + Px
ρi

+ Di = 0 , i = 1, 2 ,

(2.6)

where the Di are dispersive terms, which at O(ε2) read Di = 1
3ηi

[η3i (ui xt + uiui xx −
(ui x )

2)]x , the ui ’s are the layer-mean velocities, ρi is the density of the i-th layer,
and P(x, t) is the interfacial pressure. These results were generalized in Choi (2000),
Barros et al. (2020) to the case of n > 2 layers, together with the discussion of suitable
conditions leading to systems of quasi-linear equations, whichwe summarize hereafter
for the reader’s convenience.

In fact, in this paper we shall be mainly interested in the leading order approxi-
mation in the long-wave small parameter series expansion, the so-called hydrostatic
limit, which discards the higher-order dispersive terms Di and, consistently, gives the
following simple expression for the pressure pi (x, z) with z in the i-th layer, i.e., for
ζi < z < ζi−1:

pi (x, z) = p(x, ζi (x)) − ρi g(z − ζi )

= P0 − g
n−i−1∑
k=0

ρn−kηn−k − ρi g(z − ζi ) , i = 1, 2, . . . , n − 1 ,

pn(x, z) = P0 − ρngz .

(2.7)
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In these relations, P0 denotes an x and t-dependent reference pressure which, without
loss of generality, we can set from now on to be the pressure at the bottom of the
channel.

In the hydrostatic approximation, the equations of motion for each layer contain
the averaged x-derivative of the pressure pi x (which, owing to the non-commutative
property of exchanging derivative with layer averages, is in general different from the
x-derivative of the averaged pressure (pi )x ). Since by (2.3) ζi = ∑n−i−1

k=0 ηn−k for
i = 1, . . . , n − 1 while ζn ≡ 0, equation (2.7) implies that

pi x =P0
x − g

n−i−1∑
k=0

ρn−kηn−k ,x + gρi (ζi )x

=P0
x − g

n−i−1∑
k=0

(ρn−k − ρi )ηn−k ,x , i = 1, . . . , n − 1 ,

pnx =P0
x .

(2.8)

Notice that in the hydrostatic approximation the x-derivative of the pressure does not
depend on z, and therefore, its layer mean is readily computed as

pi x ≡ 1

ηi

ζi−1∫

ζi

pi x dz = pi x

= P0
x − g

n−i−1∑
k=0

(ρn−k − ρi )ηn−k ,x , i = 1, . . . , n − 1 ,

pnx =P0
x .

(2.9)

We thus obtain the set of 2n equations

ηi t + (ηi ui )x = 0 , i = 1, . . . , n − 1 ,

ui t + ui ui x + P0
x

ρi
− g

n−i−1∑
k=0

ρn−k − ρi

ρi
ηn−k ,x = 0 , i = 1, . . . , n − 1 ,

ηnt + (ηnun)x = 0 ,

unt + unui x + P0
x

ρn
= 0 ,

(2.10)

for the 2n + 1 dependent variables
(
ηi , ui , P0

)
.

3 The Free-Surface Equations: The Case n = 2

A standard way to close system (2.10) consists of considering the free-surface case
(see, e.g., Ovsyannikov 1979; Duchêne et al. 2016; Chesnokov et al. 2017; Craig et al.
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2005; Bona et al. 2008; Choi 2000). In this instance, the reference pressure P0 can be
eliminated by observing that the pressure at the fluid’s domain upper boundary z = ζ0
can be consistently set to vanish, as shown in Fig. 1. Thus, P0 can be expressed, thanks
to eq. (2.7) for i = 1, as

P0 = g
n∑

k=1

ρkηk . (3.1)

So, for i = 1, . . . , n, the pressures pi become (linear) functions of the thicknesses
ηi and the system closes. An example of this procedure in the two-layer case is as
follows (the generalization to arbitrary n being straightforward). The pressure in the
lowest layer is p2(x, z) = P0 − gρ2z. In the upper layer, we have

p1(x, z) = p2(x, ζ1) − gρ1(z − ζ1) = P0 − gρ2η2 − gρ1η1, (3.2)

since ζ1 = η2 and ζ0 − ζ1 = η1. Requiring the vanishing of the pressure at the free
boundary z = ζ0 = η1 + η2 yields, as expected, P0 = g(ρ1η1 + ρ2η2), and so

p2x = P0
x = g(ρ1η1x + ρ2η2x ), p1x = g(ρ1η1x + ρ1η2x ) . (3.3)

Thus, the equations of the motion deduced from (2.10) are

η1t + (η1u1)x = 0 , η2t + (η2u2)x = 0 ,

u1t + u1 u1x + g
(
η1x + η2x

) = 0 , u2t + u2 u2x + g

(
ρ1

ρ2
η1x + η2x

)
= 0 .

(3.4)

These equations can be written in the standard matrix form for quasi-linear systems
as

⎛
⎜⎜⎜⎜⎝

η1t

η2t

u1t

u2t

⎞
⎟⎟⎟⎟⎠ + A2

⎛
⎜⎜⎜⎜⎝

η1x

η2x

u1x

u2x

⎞
⎟⎟⎟⎟⎠ = 0 , (3.5)

where the characteristic matrix reads

A2 =

⎛
⎜⎜⎜⎝

u1 0 η1 0
0 u2 0 η2
g g u1 0
gρ1
ρ2

g 0 u2

⎞
⎟⎟⎟⎠ . (3.6)
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z

x

P(x,t)=0

η1(x,t)ρ1

ρ2

ζ0(x,t)z=

η2(x,t)ζ1(x,t)z= =

Fig. 1 Free-surface, two-layer fluid setup and relevant notation: P(x, t) = 0 is the free-surface (air)
pressure, ζ0 and ζ1 are the free surface and interface locations, and η1 and η2 are the layer thicknesses of
the fluids with densities ρ1 and ρ2, respectively

The question of the existence of Riemann invariants for this quasi-linear system can be
easily solved by computing the so-called Haantjes tensorH of the matrixA2 (Haantjes
1955;Bogoyavlenskij 1993; Ferapontov andMarshall 2007),whosevanishing ensures,
in the hyperbolic case, the existence of the Riemann invariants, and is not granted for
systems with more than 2 quasi-linear equations. The computation can be performed
by means of standard computer algebra programs. We recover the non-existence of
Riemann invariants, conjectured in Ovsyannikov (1979) and proved in Chesnokov
et al. (2017), since it can be easily checked that the Haantjes tensor of A2 has three
non-vanishing components,

H1
1 2 = H3

2 3 = η1g2 (ρ1 − ρ2)

ρ2
and H4

1 3 = −η1g2ρ1 (ρ1 − ρ2)

ρ22
. (3.7)

System (3.4) does admit a natural Hamiltonian formulation. To show this, we pass
from averaged velocities ui to the averaged momentum coordinates μi defined by
μi = ρi ui , with i = 1, 2. The evolution equations translate into

η1t + 1

ρ1
(η1μ1)x = 0 , η2t + 1

ρ2
(η2μ2)x = 0 ,

μ1t + 1

ρ1
μ1μ1x + g

(
ρ1η1x + ρ1η2x

) = 0 , μ2t + 1

ρ2
μ2μ2x

+g
(
ρ1η1x + ρ2η2x

) = 0 .

(3.8)

A direct inspection shows that (3.8) admits the Hamiltonian formulation

⎛
⎜⎜⎝

η1t
η2t
μ1t
μ2t

⎞
⎟⎟⎠ = −

⎛
⎜⎜⎝

0 0 ∂x 0
0 0 0 ∂x
∂x 0 0 0
0 ∂x 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

δη1H
δη2H
δμ1H
δμ2H

⎞
⎟⎟⎠ , (3.9)
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where the vector
(
δη1H , δη2H , δμ1H , δμ2H

)
is the differential of the effective energy

functional

H =
+∞∫

−∞

1

2

(
η1

ρ1
μ2
1 + η2

ρ2
μ2
2 + g(ρ1η

2
1 + 2ρ1η1η2 + ρ2η

2
2)

)
dx . (3.10)

Remark 3.1 The two-layer system (3.8) is a non-diagonalizable Hamiltonian system
of conservation laws in Tsarev’s sense (Tsarev 1985, 1991). The non-existence of
Riemann invariants has deep consequences on the existence of conservation laws
and on solutions of quasi-linear systems, and as such is a topic much studied in the
literature. Notable for our purposes are the results of Tsarev (1985, 1991), showing
that six quantities are guaranteed to be conserved by strong solutions: the Hamiltonian
functional (3.10),

∫ +∞
−∞ η j dx,

∫ +∞
−∞ μ j dx , j = 1, 2 (these are Casimir functionals

of the Poisson brackets), and the total horizontal momentum 	(x) = ∫ +∞
−∞ (η1μ1 +

η2μ2) dx , this being the generator of the x-translational symmetry in the free-surface
case. Furthermore, in Montgomery andMoodie (2001) and Barros (2006), the authors
show that these conserved quantities are the only oneswhose densities do not explicitly
depend on x . Also notable in this regard are the results and conjectures in Ferapontov
(1994), about the complete integrability of quasi-linear systems which are linearly
degenerate (termed weakly nonlinear therein) but lack a complete set of Riemann
invariants. Last but not least, as far as strong solutions of the quasi-linear system
are concerned, the non-existence of Riemann invariants removes the possibility of
constructing, through their level sets, a coordinate system in the hodograph space.
Existence of such a system provides a powerful tool for assuring the persistence of
solutions in the hyperbolic region and for estimating times of possible shock formation.

4 The Rigid Lid Constraint: The Case n = 3

Another way of closing system (2.10) is by enforcing the so-called rigid lid constraint.
Its basic physical motivation relies on the fact that surface waves effectively decouple
from internal ones. This is a subtle process, since, from a physical point of view, the
interfacial hydrostatic pressure cannot be computed a priori as in the free-surface case,
but rather it has to be eliminated by means of a subtraction process.

The rigid upper lid translates in the (geometrical) constraint

η1 + η2 + · · · + ηn = h , (4.1)

where h is the total height of the vertical fluid “channel”. The sum of all layer-mass
conservation equations ηk t + (ηkuk)x = 0 yields

(η1u1 + η2u2 + · · · + ηnun)x = 0. (4.2)
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Taking into account the boundary conditions

lim
x→∞ ui = 0 , i = 1, 2, . . . , n , (4.3)

equation (4.2) translates into the total flux independence of x

η1u1 + η2u2 + · · · + ηnun = 0 , (4.4)

that can be termed the dynamical constraint.
The system of equations (2.10) written for the momentum densities ηkuk is

(ηi ui )t + (ηi u
2
i )x + P0

x ηi

ρi
− g

n−i−1∑
k=0

ρn−k − ρi

ρi
(ηn−k)xηi = 0 , i = 1, 2, . . . , n .

(4.5)

The sum of all these equations gives the expression of the horizontal gradient of the
pressure at the bottom of the channel,

P0
x = −

∑n
i=1(ηi u

2
i )x + g

∑n
i=1

∑n−i−1
k=0

ρn−k−ρi
ρi

(ηn−k)xηi∑n
i=1 ηi/ρi

. (4.6)

This explicit form for P0 together with the geometric and dynamical constraints
(4.1),(4.4) guarantees the closure of (2.10) as a system of 2n − 2 equations for the
2n − 2 variables, say, (ηα, uα) with α = 2, . . . , n, that govern the evolution of a
sharply n-layer stratified fluid with upper rigid lid, i.e., confined in a vertical channel.

In analogywith the procedure we followed for the free-surface case with two layers,
rather than discussing the general case, we now concentrate our analysis to the case
with four dependent variables, that is, to the rigid lid case with three layers.

4.1 Three-Layer Rigid Lid Case

Our geometrical setting is shown in Fig. 2. From (2.7), it is clear that the explicit
expression for the hydrostatic pressures in the layers is

p3 =P0 − gρ3z

p2 =P0 − gρ3ζ2 − gρ2(z − ζ2) = P0

− g(ρ3 − ρ2)ζ2 − gρ2z

p1 =P0 − gρ3ζ2 − gρ2(ζ1 − ζ2) − gρ1(z − ζ1)

= P0 − g(ρ3 − ρ2)ζ2 − g(ρ2 − ρ1)ζ1 − gρ1z

(4.7)

and therefore

p3x = P0
x , p2x = P0

x − g(ρ3 − ρ2)ζ2x ,
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p1x = P0
x − g(ρ3 − ρ2)ζ2x − g(ρ2 − ρ1)ζ1x . (4.8)

The mass conservation equations read

ζ2t + (u3ζ2)x = 0 , (ζ1 − ζ2)t + (u2(ζ1 − ζ2))x = 0 ,

−ζ1t + (u1(h − ζ1))x = 0 , (4.9)

which imply, together with the vanishing asymptotic conditions on the velocities, the
constraint

u3ζ2 + u2(ζ1 − ζ2) + u1(h − ζ1) = 0 , (4.10)

as seen in (4.4), since η3 = ζ2, η2 = ζ1 − ζ2, η1 = h − ζ1. The Euler equations lead
to

ρ3u3t + ρ3u3u3x + P0
x = 0 ,

ρ2u2t + ρ2u2u2x + P0
x − g(ρ3 − ρ2)ζ2x = 0 ,

ρ1u1t + ρ1u1u1x + P0
x − g(ρ3 − ρ2)ζ2x − g(ρ2 − ρ1)ζ1x = 0 .

(4.11)

The mass conservation equations and the Euler equations imply the following set of
evolution equations (see (4.5)):

(η3u3)t + (η3u3
2)x + P0

x
η3

ρ3
= 0 ,

(η2u2)t + (η2u2
2)x +

(
P0
x − g(ρ3 − ρ2)ζ2x

) η2

ρ2
= 0 ,

(η1u1)t + (η1u1
2)x +

(
P0
x − g(ρ3 − ρ2)ζ2x − g(ρ2 − ρ1)ζ1x

) η1

ρ1
= 0 .

(4.12)

By taking the sum of these three evolution equations and by using the constraint
η3u3 + η2u2 + η1u1 = 0, we can solve for the x-derivative of the pressure P0 as
(see (4.6))

P0
x =

−(η3u32 + η2u22 + η1u12)x + g
(

ρ3−ρ2
ρ2

η3xη2+ρ3−ρ2
ρ1

η3xη1 − ρ2−ρ1
ρ1

η1xη1

)
η3
ρ3

+ η2
ρ2

+ η1
ρ1

,

(4.13)

whereweused again the fact that ζ2 = η3 and ζ1 = h−η1. Substitutingη1 = h−η2−η3
yields

P0
x =

−(η3u32 + η2u22 + η1u12)x + g
(

ρ3(ρ1−ρ2)
ρ1ρ2

η3xη2 + ρ3−ρ1
ρ1

η3x (h − η3) + ρ2−ρ1
ρ1

η2x (h − η2 − η3)
)

1
ρ1

(
h + ρ1−ρ2

ρ2
η2 + ρ1−ρ3

ρ3
η3

) .

(4.14)
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ρ3

 

z

x

 

ρ2

ρ1

P 0(x,t)

η1(x,t)

h
ζ1(x,t)z=

ζ2(x,t)=z= η3(x,t)

η2(x,t)

Fig. 2 Three-layer rigid lid setup and relevant notation: P0 is the bottom pressure, ζi and ηi , i = 1, 2, are
the interface locations and layer thicknesses, respectively.

Hence, we have the following equations of motion for (η2, η3, u2, u3),

η2t + (η2u2)x = 0 , η3t + (η3u3)x = 0 ,

ρ2u2t + ρ2u2u2x + P0
x − g(ρ3 − ρ2)η3x = 0 , ρ3u3t + ρ3u3u3x + P0

x = 0 ,

(4.15)

where P0
x is given by (4.14) and u1 = −(η3u3 + η2u2)/(h − η2 − η3).

4.2 Pressure Imbalances and Non-conservation of Horizontal Momentum

Horizontal momentum conservation can be violated in the dynamics of an ideal strati-
fied fluid with a rigid lid constraint. This phenomenon, already suggested in Benjamin
(1986), was highlighted and substantiated in Camassa et al. (2012), Camassa et al.
(2013). The lack of horizontal momentum conservation is surprising, as the only act-
ing body-force field is the vertical gravity, constraint forces generated through pressure
against horizontal plates are necessarily vertical, and the fluid is free to move laterally.
In the horizontal channel setup, whenever hydrostatic conditions apply at infinity, the
violation of momentum conservation is proportional (up to terms that arise from pos-
sibly different configurations at x = ±∞) to the difference P
 of the layer-averaged
pressure at the far ends of the channel. In turn, in the one-dimensional models for
sharply stratified configurations such as those considered here, the layer averaged
pressure imbalances are eventually those given by the quantity P0(x, t).

Pressure imbalances at the far-ends of the channel (see also de Melo Viríssimo and
Milewski 2019) can be detected looking at equation (4.13). Indeed, its right-hand side

in not a total x-derivatives, and so
+∞∫
−∞

P0
x dx need not vanish even for configurations

with asymptotically flat interfaces ζi at the far-ends of the channel. A very simple
example of such a configuration with non-vanishing P
 is given in Fig. 3 by splicing
together arcs of parabolae for the interface locations. We choose, along with ui = 0
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for i = 1, 2, 3,

η3 =
{

h
4 (1 − x2) + h

5 if − 1 < x < 1
h
5 otherwise

,

η2 =
{

h
3 (x2 − 2 x) + 2h

5 if 0 < x < 2
2h
5 otherwise

. (4.16)

A specific feature of 3- (and, a fortiori, n-) layered fluid configurations is that this
“paradox" about non-conservation of horizontal momentum is an effect of order one
in the single density differences ρ2 − ρ1 and ρ3 − ρ2, even with initial null veloci-
ties, as opposed to two-layer, rigid lid configurations, where non-conservation of the
horizontal total momentum is, with null-velocities, quadratic in the density difference
ρ2 − ρ1 (see Camassa et al. 2013). Indeed, equation (4.14) reduces to

P0
x =

g
(

ρ3(ρ1−ρ2)
ρ1ρ2

η3xη2 + ρ3−ρ1
ρ1

η3x (h − η3) + ρ2−ρ1
ρ1

η2x (h − η2 − η3)
)

1
ρ1

(
h + ρ1−ρ2

ρ2
η2 + ρ1−ρ3

ρ3
η3

) .

(4.17)

The numerator is equal, up to total derivatives, to g(ρ2 − ρ1)(ρ3 − ρ2)η3xη2/(ρ1ρ2),
thus revealing the leading order dependence of P
 on the density differences for
general initial layer thicknesses ηi . Finally, a quick glance at the expression of P0

x for
the n-layer case given by equation (4.6) shows that the lack of conservation of the
horizontal momentum persists for n > 3.

Remark 4.1 Non-dispersive, quasi-linear equations governing stratified flows are
generically systems of mixed type (Chumakova et al. 2009b; Boonkasame and
Milewski 2011), i.e., exhibit hyperbolic to elliptic transitions corresponding to eigen-
values of the characteristic matrix becoming complex across some “sonic" surfaces.
The presence of elliptic domains is associated with instabilities, and, as well-known,
the evolution from initial values in the elliptic domain is ill-posed. One can prove that
the initial data with initial null velocities, and with initial profiles of the kind exempli-
fied by equation (4.16), with density ratios ρ2/ρ3 = 3/4, ρ1/ρ3 = 1/2, lie inside the
hyperbolic region, as the characteristic matrix has four real eigenvalues. By continuity,
the system’s evolution must remain hyperbolic for a possibly small but nonzero finite
time. In fact, numerical integration of this initial value problem (not reported here) by
using the reduced system derived below in §5.3 indicates that the evolution remains
hyperbolic for a relatively long time, at least till the final time t = 5 we have tried,
with a shock forming at around time t � 2.8 (with the non-dimensional parameters
as in the example of Fig. 3).
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Fig. 3 A three-layer configuration with a non-vanishing initial pressure imbalance. Setting ρ1 = 0.5,
ρ2 = 0.75, ρ3 = 1, and g = h = 1, gives P
 � −0.0037395

5 The Three-Layer Rigid Lid Case: The Hamiltonian Structure

In this section, we extend our study of the three-layer rigid-lid system considered in
§4.1 with the aim of endowing its equations of motion with a Hamiltonian structure.
In the free surface two-layer case (as well as in the free-surface three-layer case,
see Appendix), the resulting equations, when written in the momentum coordinates
μk = ρkuk, k = 1, 2, 3, are sufficiently simple to be cast in Hamiltonian form at a
glance. This is not the case in the presence of a rigid top lid, basically owing to the
nonlinear nature of the dynamical constraint (4.4).Anatural avenueof attack to account
for this is by means of a suitable Hamiltonian reduction of the Poisson structure for
continuously stratified flows, originally introduced in Benjamin (1986), by extending
to the multiple-layer case a technique introduced in Camassa et al. (2017).

5.1 The 2D BenjaminModel for Heterogeneous Fluids in a Channel

Benjamin (1986) proposed and discussed a setup for the Hamiltonian formulation of
an incompressible stratified Euler system in two spatial dimension, which we hereafter
summarize for the reader’s convenience.

Benjamin’s idea was to consider, as basic variables for the evolution of a perfect
inviscid and incompressible but heterogeneous fluid in 2D subject to gravity, the den-
sity ρ together with the “weighted vorticity" � defined by

� = ∇ × (ρu) = (ρw)x − (ρu)z . (5.1)

The equations of motion for these two fields, ensuing from (2.1), are

ρt + uρx + wρz = 0
�t + u�x + w�z + ρx

(
gz − 1

2 (u
2 + w2)

)
z + 1

2ρz
(
u2 + w2

)
x = 0 .

(5.2)

They can be written in the form

ρt = −
[
ρ,

δH

δ�

]
, �t = −

[
ρ,

δH

δρ

]
−

[
�,

δH

δ�

]
, (5.3)
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where by definition, [A, B] ≡ Ax Bz − Az Bx , and the functional

H =
∫

D
ρ

(
1

2
|u|2 + gz

)
dx dz (5.4)

is simply given by the sum of the kinetic and potential energy, D being the fluid
domain. The most relevant feature of this coordinate choice is that (ρ,�) are physical
variables. Their use, though confined to the 2D case with the above definitions, allows
one to avoid the introduction of Clebsch variables (and the corresponding subtleties
associated with gauge invariance of the Clebsch potentials) which are often used in
the Hamiltonian formulation of both 2D and the general 3D case (see, e.g., Zakharov
et al. 1985).

As shown by Benjamin, Eqs. (5.3) are a Hamiltonian system with respect to a
Lie-theoretic Hamiltonian structure; that is, they can be written as

ρt = {ρ, H}, �t = {�, H}

for the Poisson bracket defined by the Hamiltonian operator

JB = −
(

0 ρx∂z − ρz∂x
ρx∂z − ρz∂x �x∂z − �z∂x

)
. (5.5)

5.2 The Reduction Process

By means of the Heaviside θ and Dirac δ generalized functions, a three-layer fluid
configuration can be introduced with constant densities ρi and velocity components
ui (x, z),wi (x, z), i = 1, 2, 3 (for the upper i = 1,middle i = 2, and lower layer i = 3,
respectively), with interfaces ζ1 and ζ2. The global density and velocity variables can
be written as

ρ(x, z) = ρ3 + (ρ2 − ρ3)θ(z − ζ2) + (ρ1 − ρ2)θ(z − ζ1)

u(x, z) = u3 + (u2 − u3)θ(z − ζ2) + (u1 − u2)θ(z − ζ1)

w(x, z) = w3 + (w2 − w3)θ(z − ζ2) + (w1 − w2)θ(z − ζ1) .

(5.6)

Thus, the density-weighted vorticity � = (ρw)x − (ρu)z is

� =ρ3(w3x − u3z) + θ(z − ζ2)
(
ρ2w2x − ρ2u2z + ρ3u3z − ρ3w3x

)
+ θ(z − ζ1)

(
ρ1w1x − ρ1u1z + ρ2u2z − ρ2w2x

)
+ δ(z − ζ2)

(
(ρ3w3 − ρ2w2)ζ2x + (ρ3u3 − ρ2u2)

)
+ δ(z − ζ1)

(
(ρ2w2 − ρ1w1)ζ1x + (ρ2u2 − ρ1u1)

)
=ρ33 + θ(z − ζ2)(ρ22 − ρ33) + θ(z − ζ1)(ρ11 − ρ22)

+ (
(ρ3u3 − ρ2u2) + (ρ3w3 − ρ2w2)ζ2x

)
δ(z − ζ2)

+ (
(ρ2u2 − ρ1u1) + (ρ2w2 − ρ1w1)ζ1x

)
δ(z − ζ1) ,
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where i = wi x − ui z for i = 1, 2, 3. Next, we assume the motion in each layer
to be irrotational, so that i = 0 for all i = 1, 2, 3. Therefore, the density-weighted
vorticity acquires the form

� = (
(ρ3u3 − ρ2u2) + (ρ3w3 − ρ2w2)ζ2x

)
δ(z − ζ2)

+ ((ρ2u2 − ρ1u1) + (ρ2w2 − ρ1w1)ζ1x ) δ(z − ζ1) . (5.7)

In the long-wave asymptotics described in Sect. 2, we have, at the leading order in the
long-wave expansion parameter ε = h/L 	 1,

ui ∼ ui , wi ∼ 0 ,

i.e., we can neglect the vertical velocitieswi and trade the horizontal velocities ui with
their layer-averaged counterparts. Thus, from (5.7) and recalling the first of (5.6), we
obtain

ρ(x, z) = ρ3 + (ρ2 − ρ3)θ(z − ζ2) + (ρ1 − ρ2)θ(z − ζ1)

�(x, z) = (ρ3u3 − ρ2u2) δ(z − ζ2) + (ρ2u2 − ρ1u1) δ(z − ζ1) .
(5.8)

The x and z-derivative of the Benjamin’s variables given by equations (5.8) are gen-
eralized functions supported at the surfaces {z = ζ1} ∪ {z = ζ2} and are computed
as

ρx = − (ρ2 − ρ3)ζ2xδ(z − ζ2) − (ρ1 − ρ2)ζ1xδ(z − ζ1)

ρz =(ρ2 − ρ3)δ(z − ζ2) + (ρ1 − ρ2)δ(z − ζ1) ,
(5.9)

and

�z =(ρ3u3 − ρ2u2)δ
′(z − ζ2) + (ρ2u2 − ρ1u1)δ

′(z − ζ1)

�x = − (ρ3u3 − ρ2u2)δ
′(z − ζ2)ζ2x − (ρ2u2 − ρ1u1)δ

′(z − ζ1)ζ1x

+ (ρ3u3x − ρ2u2x ) δ(z − ζ2) + (ρ2u2x − ρ1u1x ) δ(z − ζ1) .

(5.10)

To invert the map (5.8), we can integrate along the vertical direction z. Contrary to
the two-layer case described in Camassa et al. (2017), now we need to integrate on
two vertical slices of the channel in order to obtain four x-dependent fields. To this
end, we extend the Benjamin’s manifold M (parameterized by ρ(x, z) and �(x, z))
by the space F of isopycnals z = f (x) and trivially extend by 0 the Poisson structure
JB given by (5.5).

As shown in Camassa et al. (2014), the operator (5.5) provides a proper Poisson
structure under the condition that the density ρ be constant at the physical boundaries
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z = 0 and z = h. Once equipped with the isopycnal z = f (x), we can define a
projection π : M̃ ≡ M × F → (C∞(R))4 by means of

π (ρ(x, z),�(x, z), f ) = (ξ1, ξ2, τ1, τ2)

=
⎛
⎜⎝

h∫

0

(ρ(x, z)−ρmax ) dz,

f∫

0

(ρ(x, z)−ρmax ) dz,

h∫

0

�(x, z)dz,

f∫

0

�(x, z)dz

⎞
⎟⎠ .

(5.11)

We choose to include the manifold of three-layer fluid configurations in the space
M × F by adding to (5.8) the following choice for the isopycnal f :

f = ζ1 + ζ2

2
, (5.12)

hereafter denoted by ζ . Equations (5.8) and (5.12) define a submanifold I of M̃, in
one-to-one correspondence with the manifold S of three-layer fluid configurations
considered in Sect. 4.1, as it is parameterized by four functions of the horizontal
coordinate x , and this set is equivalent to the 4-tuple (η1, η2, u1, u2). For further
reference, we explicitly remark that on I the projection π is defined by the four-tuple

π
(
ρ(x, z),�(x, z), ζ

) =
⎛
⎜⎝

h∫

0

(ρ(x, z) − ρ3) dz,

ζ∫

0

(ρ(x, z)

−ρ3) dz,

h∫

0

�(x, z)dz,

ζ∫

0

�(x, z)dz

⎞
⎟⎠ . (5.13)

Further, as we shall see below, the ˙̄ζ component of the tangent vector (ρ̇, �̇, ˙̄ζ ) can
be linearly expressed in terms of ρ̇.

To obtain a Hamiltonian structure on themanifold S by reducing Benjamin’s parent
structure (5.5), we perform the following steps:

1. Starting from a 1-form on the manifold S, represented by the four-tuple
(α

(1)
S , α

(2)
S , α

(3)
S , α

(4)
S ), we construct its pull-back to I, that is, the 1-form αM =

(α
(1)
M , α

(2)
M , 0) at T ∗M̃|I satisfying the relation

+∞∫

−∞

h∫

0

(α
(1)
M ρ̇ + α

(2)
M �̇) dx dz =

+∞∫

−∞

4∑
k=1

α
(k)
S · (

π∗(ρ̇, �̇)
)k

dx , (5.14)

where π∗ is the tangent map to (5.13).
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2. We apply Benjamin’s operator (5.5) to the lifted one form αM to get the vector
field

Y ≡
⎛
⎝Y (1)

M

Y (2)
M
0

⎞
⎠ = JB ·

⎛
⎝α

(1)
M

α
(2)
M
0

⎞
⎠ . (5.15)

3. Thanks to the form of Benjamin’s Poisson structure, it turns out that Y is still
supported on the locus {z = ζ1} ∪ {z = ζ2}, and can be easily projected with π∗
to obtain the vector field (X1, X2, X3, X4) on S. The latter depends linearly on
{α(i)

S }i=1,...,4 and defines the reduced Poisson operator P on S.

This construction essentially works as in the two-layer case considered in Camassa
et al. (2017), provided one point is taken into account, namely that the integrals in
the second and fourth components of π have a variable upper bound. We have, for
(ρ̇, �̇) ∈ T M

∣∣I ,

π∗

⎛
⎝

ρ̇

�̇

ζ̇

⎞
⎠ =

⎛
⎜⎜⎜⎝

∫ h
0 ρ̇ dz∫ ζ

0 ρ̇ dz + ζ̇ (ρ(x, ζ ) − ρ3)∫ h
0 �̇ dz∫ ζ

0 �̇ dz + ζ̇ �(x, ζ ) .

⎞
⎟⎟⎟⎠ . (5.16)

We remark that since the inequalities ζ2 < ζ ≡ ζ1 + ζ2

2
< ζ1 hold in the strict

sense, the second term of this vector’s fourth component vanishes. The same cannot
be said for the analogous term in the vector’s second component, since ρ(x, ζ )−ρ3 =
ρ2 − ρ3 �= 0. As anticipated above, on I the mean of the tangent vector component
coming from the ζ ’s, ˙̄ζ = (ζ̇1 + ζ̇2)/2 can be expressed in terms of the tangent vector
component ρ̇. To this end, we can use the analogue of relations (5.9), which generically
give

ρ̇ = (ρ3 − ρ2)ζ̇2δ(z − ζ2) + (ρ2 − ρ1)ζ̇1δ(z − ζ1) . (5.17)

Integrating this with respect to z in [0, h] yields
h∫

0

ρ̇ dz = (ρ3 − ρ2)ζ̇2 + (ρ2 − ρ1)ζ̇1 , (5.18)

while by integrating over [0, ζ ], we obtain

ζ∫

0

ρ̇ dz = (ρ3 − ρ2)ζ̇2 . (5.19)
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Solving the linear system given by (5.18) and (5.19) gives

(ρ2 − ρ3)ζ̇ = 
ρ

h∫

0

ρ̇ dz − (
1

2
+ 
ρ)

ζ∫

0

ρ̇ dz , (5.20)

where


ρ := ρ2 − ρ3

2(ρ2 − ρ1)
. (5.21)

Thus, formula (5.16) for the components of the push forward π∗ does not explicitly

depend on the last component ζ̇ and can be written as

π∗

⎛
⎝

ρ̇

�̇

ζ̇

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

∫ h
0 ρ̇ dz


ρ

∫ h
0 ρ̇ dz + ( 12 − 
ρ)

∫ ζ

0 ρ̇ dz
∫ h
0 �̇ dz

∫ ζ

0 �̇ dz

⎞
⎟⎟⎟⎟⎟⎟⎠

. (5.22)

By substituting this result in relation (5.14), we find

+∞∫

−∞

h∫

0

(ρ̇ α
(1)
M + �̇ α

(2)
M ) dx dz

=
+∞∫

−∞

⎛
⎝

h∫

0

ρ̇(α
(1)
S + 
ρα

(2)
S ) dz+

ζ∫

0

ρ̇ (
1

2
− 
ρ)α

(2)
S ) dz

+
h∫

0

�̇α
(3)
S dz +

ζ∫

0

�̇α
(4)
S dz

⎞
⎟⎠ dx .

(5.23)

Hence, the non-vanishing components of the 1-form αM pulled back to I are

α
(1)
M = α

(1)
S + 
ρα

(2)
S θ(ζ − z) +

(
1

2
− 
ρ

)
α

(2)
S , α

(2)
M = α

(3)
S + α

(4)
S θ(ζ − z) .

(5.24)

Applying the Poisson tensor (5.5) to this 1-form yields, after some manipulations that
crucially use the fact that products of Dirac’s δ supported at different locations can be
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consistently set to zero, the vector field

Y (1)
M =(

(ρ2 − ρ3)δ(z − ζ2) + (ρ1 − ρ2)δ(z − ζ1)
)
α

(3)
S,x + (ρ2 − ρ3)δ(z − ζ2) α

(4)
S,x

Y (2)
M = ((ρ2 − ρ3)δ(z − ζ2) + (ρ1 − ρ2)δ(z − ζ1)) α

(1)
S,x

+ (1
2
(ρ2 − ρ3)δ(z − ζ2) + (ρ1 − ρ2)
ρδ(z − ζ1)

)
α

(2)
S,x

+ (
(τ1 − τ2)δ

′(z − ζ1)ζ1x + τ2δ
′(z − ζ2)ζ2x

)
α

(3)
S,x .

(5.25)

The push-forward under the map π∗ of this vector field gives the following four
components:

h∫

0

Y (1)
M dz = (ρ1 − ρ3)α

(3)
S,x + (ρ2 − ρ3)α

(4)
S,x


ρ

h∫

0

Y (1)
M dz +

(
1

2
− 
ρ

) ζ∫

0

Y1 dz

= 
ρ

(
(ρ1 − ρ3)α

(3)
S,x + (ρ2 − ρ3)α

(4)
S,x

)

+
(
1

2
− 
ρ

)
(ρ2 − ρ3)(α

(3)
S,x + α

(4)
S,x )

= (

ρ(ρ1 − ρ3) +

(
1

2
− 
ρ

)
(ρ2 − ρ3)

)
α

(3)
S,x + 1

2
(ρ2 − ρ3)α

(4)
S,x

= 1

2
(ρ2 − ρ3)α

(4)
S,x

h∫

0

Y (2)
M dz = (ρ1 − ρ2)α

(1)
S,x + (ρ2 − ρ3

2
+ 
ρ (ρ1 − ρ2)

)
α

(2)
S,x = (ρ1 − ρ3)α

(1)
S,x

ζ∫

0

Y (2)
M dz = (ρ2 − ρ3)α

(1)
S,x + ρ2 − ρ3

2
α

(2)
S,x ,

(5.26)

where we used definition (5.21) of
ρ and the fact that the terms with the z-derivatives
of theDirac’s δ give a vanishing contribution since they are integrated against functions
of x only.

From (5.26), we obtain the expression of the reduced Poisson tensor P on S, in the
coordinates (ξ1, ξ2, τ1, τ2), as

P =

⎛
⎜⎜⎝

0 0 ρ1 − ρ3 ρ2 − ρ3

0 0 0 1
2 (ρ2 − ρ3)

ρ1 − ρ3 0 0 0
ρ2 − ρ3

1
2 (ρ2 − ρ3) 0 0

⎞
⎟⎟⎠ ∂x . (5.27)
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The variables (ξ1, ξ2, τ1, τ2) are related to (ζ1, ζ2, σ1 = ρ2u2 − ρ1u1, σ2 = ρ3u3 −
ρ2u2) by

ξ1 = (h − ζ2) (ρ2 − ρ3) + (h − ζ1) (ρ1 − ρ2) , ξ2 = 1

2
(ρ2 − ρ3) (ζ1 − ζ2) ,

τ1 = σ1 + σ2 , τ2 = σ2 .

(5.28)

Solving these relations with respect to the ζi ’s and the σi ’s gives:

ζ1 = − ξ1

ρ1 − ρ3
+ 2ξ2

ρ1 − ρ3
+ h , ζ2 = − ξ1

ρ1 − ρ3
− 2 (ρ1 − ρ2) ξ2

(ρ2 − ρ3) (ρ1 − ρ3)
+ h ,

σ1 = τ1 − τ2 , σ2 = τ2.

(5.29)

A straightforward computation shows that in these coordinates the Poisson operator
(5.27) acquires the particularly simple form

P =

⎛
⎜⎜⎝

0 0 −∂x 0
0 0 0 −∂x

−∂x 0 0 0
0 −∂x 0 0

⎞
⎟⎟⎠ . (5.30)

Remark 5.1 According to the terminology favored by the Russian school, for Hamil-
tonian quasi-linear systems of PDEs (see, e.g., Tsarev 1991), the coordinates
(ξ1, ξ2, τ1, τ2) and, a fortiori, the coordinates (ζ1, ζ2, σ1, σ2), are “flat" coordinates
for the system. In view of the particularly simple form of the Poisson tensor (5.30),
the latter set could be called a system of flat Darboux coordinates.

Remark 5.2 It should be clear how to proceed in the n-layered case, with a stratification
given by densities ρ1 < ρ2 < · · · < ρn and interfaces ζ1 > ζ2 > · · · > ζn−1. We
consider intervals

I1 = [0, h], I2 =
[
0,

ζ1 + ζ2

2

]
, I3 =

[
0,

ζ2 + ζ3

2

]
, . . . , In =

[
0,

ζn−2 + ζn−1

2

]
,

(5.31)

and define the analogue of the map (5.13) by integrating both ρ(z) − ρn and σ(x, z)
over each of the intervals Ik , with k = 1, . . . , n. The procedure can be repeated
verbatim. We conjecture that in the long-wave limit, the quantities

(ζ1, ζ2, . . . , ζn−1, σ1, σ2, . . . , σn−1), (5.32)

where σk = ρk+1uk+1 − ρkuk , for k = 1, . . . , n − 1, are flat Darboux coordinates
for the reduced Poisson structure. We verified that this conjecture holds true in the
four-layer case.
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Remark 5.3 The steps performed here are borrowed from the Poisson reduction theory
ofMarsden, Ratiu andWeinstein (see, e.g., Marsden and Ratiu 1986); however, a more
elaborate exposition of our procedure within such a general framework falls beyond
the scope of the present work and we omit it here.

5.3 The Reduced Hamiltonian

The full energy (per unit length) of the 2D fluid in the channel is just the sum of the
kinetic and potential energy,

H =
+∞∫

−∞

h∫

0

1

2
ρ

(
u2 + w2

)
dx dz +

+∞∫

−∞

h∫

0

gρz dx dz . (5.33)

The potential energy is readily reduced, using the first of (5.6), to

U =
+∞∫

−∞

1

2

(
g (ρ2 − ρ1) ζ1

2 + g (ρ3 − ρ2) ζ2
2
)
dx . (5.34)

When the layer thicknesses are not asymptotically zero, both energies can be appropri-
ately renormalized subtracting the far-field contributions of ζi . To obtain the reduced
kinetic energy density, we use the fact that at order O(ε2)we can disregard the vertical
velocity w and trade the horizontal velocities with their layer-averaged means. Thus,
the x-density is computed as

T = 1

2

⎛
⎜⎝

ζ2∫

0

ρ3u
2
3 dz +

ζ1∫

ζ2

ρ2u
2
2 dz +

h∫

ζ1

ρ1u
2
1 dz

⎞
⎟⎠

= 1

2

(
ρ3ζ2u

2
3 + ρ2(ζ1 − ζ2)u

2
2 + ρ1(h − ζ1)u

2
1

)
, (5.35)

so that the reduced kinetic energy is

T =
+∞∫

−∞

1

2

(
ρ3ζ2u

2
3 + ρ2(ζ1 − ζ2)u

2
2 + ρ1(h − ζ1)u

2
1

)
dx . (5.36)

Wenowuse the dynamical constraint for localized solutions,whereby velocities vanish
at infinity,

(h − ζ1)u1 + (ζ1 − ζ2)u2 + ζ2u3 = 0 , (5.37)
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to obtain

u1 = (ζ1 − ζ2)u2 + ζ2u3
ζ1 − h

. (5.38)

Next, we express u2, u3 in terms of σ1, σ2 as

u2 = ρ3 (h − ζ1) σ1

�
− ζ2ρ1σ2

�

u3 = ρ2(h − ζ1)σ1

�
+ (hρ2 + (ρ1 − ρ2)ζ1 − ζ2ρ1) σ2

�
,

(5.39)

where

� = hρ2ρ3 − ρ3 (ρ2 − ρ1) ζ1 − ρ1 (ρ3 − ρ2) ζ2 . (5.40)

The kinetic energy density turns out to be, in the new set of variables,

T = 1

2�

(
(h − ζ1) (ρ3ζ1 + (ρ2 − ρ3)ζ2) σ 2

1

+ 2(h − ζ1)ρ2 ζ2 σ1σ2 +
(
(ρ1 − ρ2)ζ2 ζ1 + ρ2 ζ2 h − ρ1 ζ 2

2

)
σ 2
2

)
,

(5.41)

so that the Hamiltonian functional is

H =
+∞∫

−∞

(
T + 1

2
g

(
(ρ2 − ρ1)ζ

2
1 + (ρ3 − ρ2)ζ

2
2

))
dx . (5.42)

Explicitly, the equations of motion can be written as conservation laws,

⎛
⎜⎜⎝

ζ1t
ζ2t
σ1t
σ2t

⎞
⎟⎟⎠ = −

⎛
⎜⎜⎝

(
δσ1H

)
x(

δσ2H
)
x(

δζ1H
)
x(

δζ2H
)
x

⎞
⎟⎟⎠ , (5.43)
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where the gradient of the Hamiltonian is, explicitly,

δζ1H = 1

2�

(
(hρ3 − 2 ζ1ρ3 + ζ2(ρ3 − ρ2)) σ1

2 − 2 ζ2ρ2σ2σ1 − ζ2 (ρ2 − ρ1) σ2
2
)

− ρ3(ρ1 − ρ2) T
�

+ g (ρ2 − ρ1) ζ1 ,

δζ2H = 1

2�

(
(h − ζ1) (ρ2 − ρ3) σ1

2 + 2 (h − ζ1) ρ2σ2σ1

+ (ρ2h + ζ1ρ1 − ζ1ρ2 − 2 ζ2ρ1) σ2
2
)

− ρ1 (ρ2 − ρ3T )

�
+ g (ρ3 − ρ2) ζ2 ,

δσ1H = 1

�
((ζ1ρ3 + ζ2ρ2 − ζ2ρ3) (h − ζ1) σ1 + ρ2ζ2 (h − ζ1) σ2) ,

δσ2H = 1

�
(ρ2ζ2 (h − ζ1) σ1 + ζ2 (hρ2 + ζ1(ρ1 − ρ2) − ζ2ρ1) σ2) .

(5.44)

As can be seen from the above formulae, even with the simple, constant Hamilto-
nian operator (5.30) in (5.43), this Hamiltonian gradient leads to rather lengthy (albeit
explicit) expressions for the evolution equations, which are not particularly illuminat-
ing and hence are omitted here. Suffices to say that the conciseness of the Hamiltonian
formalism allows to show quickly the existence of at least six conserved quantities,

Z j =
+∞∫

−∞
ζ j dx, S j =

+∞∫

−∞
σ j dx, j = 1, 2

H given by equation (5.42), K =
+∞∫

−∞
(ζ1σ1 + ζ2σ2) dx .

(5.45)

In particular, the quantity K indicates how the momentum paradox mentioned in
Sect. 4.2 can be viewed from the canonical formulation of the evolution equations.
In fact, we see that, rather than the horizontal momentum 	(x), it is K that plays
the role of generator of x-translations ( cf. Benjamin 1986 for the case of continuous
stratification). By expressing its density K = ζ1σ1 + ζ2σ2 in terms of the horizontal
mean velocities, we obtain

K = ρ2u2 (ζ1 − ζ2) + ρ3u3ζ2 − ρ1u1ζ1 = π(x) − hρ1u1 , (5.46)

where

π(x) = (h − ζ1) ρ1u1 + ρ2u2 (ζ1 − ζ2) + ρ3ζ2u3

is the total horizontal momentum density. Thus, the total momentum 	(x) =∫ +∞
−∞ π(x) dx is not conserved, while K = ∫ +∞

−∞ Kdx is.
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6 The Boussinesq Approximation

A dramatic simplification of the problem is provided by the so-called Boussinesq
approximation, that is, the double scaling limit

ρi → ρ = ρ1 + ρ2 + ρ3

3
, i = 1, 2, 3, with g(ρ1 − ρ2) and g(ρ2 − ρ3) both finite.

(6.1)

Since the Poisson tensor (5.30) is independent of the densities, this double scaling
limit can be implemented most simply within the Hamiltonian formulation. While the
potential energy is unchanged, from (5.41) the kinetic energy acquires the form

(h − ζ1) ζ1σ1
2

2hρ
+ ζ2 (h − ζ1) σ2σ1

hρ
+ ζ2 (h − ζ2) σ2

2

2hρ
, (6.2)

so that the Hamiltonian energy functional in this Boussinesq limit is

HB =
+∞∫

−∞

1

2 hρ

(
ζ1(h − ζ1)σ1

2 + 2ζ2 (h − ζ1) σ1σ2 + ζ2 (h − ζ2) σ2
2
)

+ g((ρ2 − ρ1) ζ1
2 + (ρ3 − ρ2) ζ2

2) dx .

(6.3)

The ensuing equations of motion are

⎛
⎜⎜⎝

ζ1t
ζ2t
σ1t
σ2t

⎞
⎟⎟⎠ = P

⎛
⎜⎜⎝

δζ1HB

δζ2HB

δσ1HB

δσ2HB

⎞
⎟⎟⎠ , (6.4)

with P the “canonical" Poisson tensor (5.30). As a system of quasi-linear equations,
they can be cast in the form

⎛
⎜⎜⎝

ζ1t
ζ2t
σ1t
σ2t

⎞
⎟⎟⎠ + A

⎛
⎜⎜⎝

ζ1x
ζ2x
σ1x
σ2x

⎞
⎟⎟⎠ = 0 , (6.5)
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where the characteristic matrix reads

A = 1

h ρ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(2 ζ1 − h) σ1
+σ2ζ2

(ζ1 − h) σ2 ζ1 (ζ1 − h) ζ2 (ζ1 − h)

ζ2σ1
(ζ1 − h) σ1
+ (2 ζ2 − h) σ2

ζ2 (ζ1 − h) ζ2 (ζ2 − h)

σ 2
1 + g̃ (ρ1 − ρ2) σ1σ2

(2 ζ1 − h) σ1
+σ2ζ2

ζ2σ1

σ1σ2 σ 2
2 + g̃ (ρ2 − ρ3) (ζ1 − h) σ2

(ζ1 − h) σ1
+ (2 ζ2 − h) σ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.6)

and g̃ = g h ρ is the reduced gravity.
As in the free-surface case, the question of existence of Riemann invariants for this

quasi-linear system can be easily answered by computing (by means of standard com-
puter algebra programs) the Haantjes tensorH of the matrixA. A lengthy computation
shows that H has 12 (out of 24) non-vanishing components, namely

H1
1 2 = H3

2 3 = −H4
1 3 = −g r32 ζ2 (h − ζ1) σ1

2

ρ̄3h2

+ g r21 (ζ1 − 2 ζ2) (h − ζ1) σ2
2

ρ̄3h2
+ g2r21r32ζ2 (h − ζ1)

ρ̄2h

H2
1 2 = H3

2 4 = −H4
1 4 = −g r32 ζ2 (ζ2 + h − 2 ζ1) σ1

2

ρ̄3h2

− g r21 ζ2 (h − ζ1) σ2
2

ρ̄3h2
+ g2 r21r32 ζ2 (h − ζ1)

ρ̄2h

H1
1 4 = −H2

1 3 = −H3
3 4 = 2

g r21ζ2σ2 (ζ1 − ζ2) (h − ζ1)

ρ̄3h2

H1
2 4 = −H2

2 3 = −H4
3 4 = −2

g r32 ζ2σ1 (ζ1 − ζ2) (h − ζ1)

ρ̄3h2

(6.7)

where ri j = ρi − ρ j . As should be expected from the free surface case, even in the
Boussinesq approximation the model for three-layer fluid confined between rigid sur-
faces does not admit Riemann invariants. As can also be expected, this non-existence
extends a fortiori to the general non-Boussinesq system, aswell as to n-layeredmodels
with a rigid lid for n > 3. The implications on the structural properties of quasi-linear
systems that do not admit Riemann invariants briefly discussed inRemark 3.1 naturally
apply to all these cases as well.

6.1 Symmetric Solutions

In the recent paper (de Melo Viríssimo and Milewski 2019), the authors have focused
on the symmetric solutions defined by the equality of the upper (i = 1) and lower (i =
3) layer thicknesses, i.e., ζ2 = h−ζ1, and the averaged horizontal velocities, u1 = u3.
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In the Boussinesq approximation, our variables (σ1, σ2) are actually proportional to
the velocity shears,

σ1 = ρ(u2 − u1), σ2 = ρ(u3 − u2) , (6.8)

so that the symmetric solutions found in de Melo Viríssimo and Milewski (2019) are
given by the relations

ζ2 = h − ζ1, σ2 = −σ1 . (6.9)

A straightforward computation confirms that the submanifold defined by these rela-
tions is invariant under the flow (6.5) if and only if the relation

ρ3 − ρ2 = ρ2 − ρ1 (6.10)

is fulfilled among the density differences. In this case system (6.5) reduces to a system
with 2 “degrees of freedom," parameterized, e.g., by the pair (ζ2 ≡ ζ, σ2 ≡ σ). The
reduced “symmetric" equations of the motion are

(
ζt
σt

)
= 1

ρh

(
(4 ζ − h) σ ζ (2 ζ − h)

2 σ 2 − gρρ
h (4 ζ − h) σ

) (
ζx
σx

)
, (6.11)

where we have defined ρ
 = ρ3 − ρ2. These equations follow from the Hamiltonian
functional

HB,S =
+∞∫

−∞

(
ζ (h − 2 ζ ) σ 2

2ρh
+ 1

2
gρ


(
ζ − h

2

)2
)
dx , (6.12)

with the “standard" Poisson tensor

P(2) =
(

0 −∂x
−∂x 0

)
, (6.13)

where the reference level for the potential energy in the Hamiltonian density is chosen
at the midpoint of the channel. From equations (6.11), the characteristic velocities of
the system can be read off immediately,

λ± = 1

ρh

(
σ(h − 4ζ ) ±

√
ζ (h − 2 ζ )

(
ghρρ
 − 2 σ 2

)) ; (6.14)

since in this case ζ ∈ (0, h/2), and the domain of hyperbolicity coincides with the
rectangular region

(
0,

h

2

)
×

(
− 1√

2

√
ghρρ
,

1√
2

√
ghρρ


)
.
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Alternatively, the Hamiltonian formulation shows that the simple map ζ → η, σ →
hσ , ρ → ρ2, ρ
 → ρ2 −ρ1 turns the Hamiltonian in (6.12) and the operator in (6.13)
into that of the two-layer Boussinesq system in a channel of half width h/2 reported
in Camassa et al. (2019) (as also remarked in de Melo Viríssimo and Milewski 2019,
though only reported explicitly from the motion equation viewpoint in the PhD thesis
de Melo Viríssimo 2018), thereby translating all the properties discussed therein to
the present three-layer Boussinesq symmetric case. In fact, these symmetric solutions
have a clear meaning in the Hamiltonian setting. Consider the involution J defined
by

ζ̃1 = h − ζ2 , ζ̃2 = h − ζ1 , σ̃1 = −σ2 , σ̃2 = −σ1 . (6.15)

Since its Jacobian is

J∗ =

⎛
⎜⎜⎝

0 −1 0 0
−1 0 0 0
0 0 0 −1
0 0 −1 0

⎞
⎟⎟⎠ , (6.16)

the Poisson tensor (5.30) is preserved by the involution. As far as theHamiltonian (6.3)
is concerned, the kinetic energy density is invariant under the involution (6.15), while
the potential energy density, when ρ3 − ρ2 = ρ2 − ρ1 ≡ ρ
, changes by a constant

term added to the linear term H
 = −gρ
 (̃ζ1 + ζ̃2). Since
+∞∫
−∞

H
 dx is a Casimir

function for the Poisson tensor (5.30), the equations of motion are left invariant by
the involution (6.15). In other words, symmetric solutions correspond to the manifold
of fixed points of the canonical involution (6.15), and HB,S is just the restriction of
the Hamiltonian HB (up to a factor 1/2) to the space defined by relations (6.9) under
conditions (6.10) for the density differences.

7 Summary and Conclusions

In this paper, we examined some structural properties of multilayered incompressible
Euler flows in the long-wave regime. In order to present explicit computations, we
mainly focused on the three-layer case. The aim was to point out similarities and dif-
ferences with the two-layer setups which has received much attention in the literature
(see, e.g., Chumakova et al. 2009b; Camassa et al. 2012).

At first, we briefly recalled how effective equations in one space dimension are
obtained by layer-means and the hydrostatic approximation for the pressure in the
dispersionless case. We then recalled some known facts about the free-surface case,
highlighting the natural Hamiltonian structure of the ensuing equations, and the non-
existence of the Riemann invariants for the quasi-linear resulting system, a fact proven
in Chesnokov et al. (2017).

Next, we moved onto the main focus of the present paper, the case of stratified fluid
in a vertical channel, a configuration that mathematically translates to the enforcement
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of the rigid lid upper constraint. The phenomenon of effective pressure differentials
implying the “paradox” of non-conservation of the horizontal momentum, highlighted
in Camassa et al. (2012) for the two-layer case, has been shown to persist for an n-
layered situation, n ≥ 3, and in fact even be enhanced, for zero initial velocities, by
scaling linearlywith density differences, as opposed to quadratically as in the two-layer
case. A natural Hamiltonian structure on the configuration space of effective (in one
space dimension) three-layered fluid motions was derived by means of a geometrical
reduction process from the full two-dimensional Hamiltonian structure introduced
in Benjamin (1986). This allowed us to write the equations of motion in the form
of a system of conservation laws and to recover the correct conserved quantity (the
impulse) associated with the translational Noether symmetry of the system.

The Hamiltonian formulation led to a simple derivation of the Boussinesq limit
of the motion equations. The (expected) non-existence of Riemann invariants in the
rigid lid case was proved, and the geometrical meaning of the “symmetric” config-
urations recently studied in de Melo Viríssimo and Milewski (2019) is pointed out.
The determination of invariant submanifolds of the full equations ensuing from the
Hamiltonian (5.42), conditioned by suitable constraints on the density differences,
and the study of the properties of such reduced systems is a non-trivial question. Its
analysis is left for future investigations.

Future developments will include the extension of our formalism to the next order
in the long-wave parameter asymptotics, with the inclusion in this framework of
the dispersive terms Di of the n-layer equations (2.6). Framing this problem within
Dubrovin’s approach of the expansion of Hamiltonian PDEs in the dispersion param-
eter (see, e.g., Dubrovin 2008; Dubrovin et al. 2015) is a task worth pursuing, as well
as the comparison of our setting with that of Percival et al. (2008).
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Appendix:HamiltonianStructure in theFree-SurfaceThree-LayerCase

The effective equations of motion in the general case of n-layer stratified fluids with
a free upper surface are given by system (2.10) with the pressure at the bottom being
P0(x) = g

∑n
k=1 ρkηk . These possess a natural Hamiltonian structure, which we

illustrate here with the special case of a three-layered fluid. We denote by ηi the
thickness of the i-th layer, by z = ζ0 the free surface, by z = ζ1 and z = ζ2 the
upper interface and lower interface, respectively, and by z = ζ3 = 0 the bottom of the
channel, as illustrated in Fig. 4. The interfacial pressures are, respectively,

p3(x, z) = P0(x) − ρ3gz ,

for the lowest layer 0 < z < ζ2,

p2(x, z) = P0(x) − gρ3η3 − ρ2g(z − ζ2) ,

for the middle layer ζ2 < z < ζ1,

p1(x, z) = P0(x) − g(ρ3η3 + ρ2η2) − ρ1g(z − ζ1) ,

for the first layer ζ1 < z < ζ0. The corresponding layer-mean pressures are pi,x = pix
for i = 1, 2, 3, that is,

p1x = gρ1(η1x + η2x + η3x ) ,

p2x = g(ρ1η1x + ρ2η2x + ρ2η3x ) ,

p3x = P0
x = g(ρ3η3x + ρ2η2x + ρ1η1x ) .

Plugging these expressions in the general formula (2.10), we obtain the equations of
motion for the three-layered stratified fluid with free upper surface

(ηi t ) + (ηi ui )x = 0 for i = 1, 2, 3

u1t + u1u1x + g(η1x + η2x + η3x ) = 0 ,

u2t + u2u2x + g

(
ρ1

ρ2
η1x + η2x + η3x

)
= 0 ,

u3t + u3u3x + g

(
η3x + ρ2

ρ3
η2x + ρ1

ρ3
η1x

)
= 0 .

To show that these equations admit a natural Hamiltonian formulation, the averaged
velocities ui can be replaced by the averaged momentum coordinates μi defined by
μi = ρi ui , i = 1, 2, 3, so that

ηi t + 1

ρi
(ηiμi )x = 0 , for i = 1, 2, 3,

μ1t + 1

ρ1
μ1μ1x + gρ1(η1x + η2x + η3x ) = 0 , (A1)
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Fig. 4 Schematic of the free-surface, three-layer stratified fluid setup, notation adapted from Fig. 1

μ2t + 1

ρ2
μ2μ2x + g(ρ1η1x + ρ2η2x + ρ2η3x ) = 0 ,

μ3t + 1

ρ3
μ3μ3x + g(ρ3η3x + ρ2η2x + ρ1η1x ) = 0 . (A2)

It is straightforward to check that these equations can be written in Hamiltonian form

⎛
⎜⎜⎜⎜⎜⎜⎝

η1t
η2t
η3t
μ1t
μ2t
μ3t

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 −∂x 0 0
0 0 0 0 −∂x 0
0 0 0 0 0 −∂x

−∂x 0 0 0 0 0
0 −∂x 0 0 0 0
0 0 −∂x 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

δη1H
δη2H
δη3H
δμ1H
δμ2H
δμ3H

⎞
⎟⎟⎟⎟⎟⎟⎠

, (A3)

with the natural Hamiltonian functional H = T + V given by

H =
+∞∫
−∞

1
2

(
η3

ρ3
μ2
3 + η2

ρ2
μ2
2 + η1

ρ1
μ2
1 + g

(
ρ3η

2
3 + ρ2η

2
2 + ρ1η

2
1

+2ρ2η2η3 + 2ρ1η1 η2 + 2ρ1η1η3)) dx . (A4)
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