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Abstract In this work, we explore the connection between
Casimir energy and an Absurdly Benign Traversable Worm-
hole, which in the literature has been considered only in the
pioneering paper of Morris and Thorne. To have consistency
with the Casimir source, we need to generalize the idea of an
Absurdly Benign Traversable Wormhole into a Generalized
Absurdly Benign Traversable Wormhole. With this general-
ization, we have found that the wormhole throat is not more
Planckian, but huge. Three profiles have been studied: one
of them is directly connected with the Casimir source, while
the other two have been obtained approximating the first one
close to the throat. In all profiles the wormhole throat size is
predicted to be of the order of 1017 m. This huge size can be
fine tuned by modulating the original Casimir energy source
size. We have also found that the traceless and divergenceless
property of the original Casimir stress energy tensor is here
partially reproduced.

1 Introduction

GW150914 is the acronym associated to the first ever detec-
tion of gravitational waves from the merger of two black
holes. Advanced LIGO made this first observation during the
period running from 12th September 2015 to 19th January
2016 [1] and its second run from 30th November 2016 and
25th August 2017. What is the meaning of such an observa-
tion? The meaning is that another prediction of General Rela-
tivity has been confirmed and this shows that General Relativ-
ity is a quite solid theory for gravitation. Among other things,
such a theory predicts other interesting objects: Traversable
Wormholes. Traversable Wormholes (TW) are solutions of
the Einstein’s Field Equations and even if there is no exper-
imental evidence of their existence, their interest has been
growing because potentially they can be considered as black
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hole mimickers [2]. The interesting feature of a traversable
wormhole is its ability in connecting remote regions of space-
time in a reasonable amount of time: of course reasonable
compared with the duration of human life [3–5]. Unfortu-
nately, the traversability is accompanied by unavoidable vio-
lations of null energy conditions, namely, the matter thread-
ing the wormhole’s throat has to be exotic. Classical matter
satisfies the usual energy conditions. Therefore, it is likely
that wormholes must belong to the realm of semiclassical or
perhaps a possible quantum theory of the gravitational field.
In the context of Quantum Field Theory, a possible source
of exotic matter could be represented by the Casimir energy
[6]. The Casimir energy appears between two plane parallel,
closely spaced, uncharged, metallic plates in vacuum. This
phenomenon develops an attractive force; it was predicted
theoretically in 1948 and experimentally confirmed in the
Philips laboratories [7,8]. However, only in recent years fur-
ther reliable experimental investigations have confirmed such
a phenomenon [9,10]. As far as we know, the Casimir energy
represents the only artificial source of negative energy, whose
value in terms of energy density is

ρ0 = − h̄cπ2

720d4 . (1)

Its stress–energy tensor (SET) is represented by

Tμν = h̄cπ2

720d4 [diag(−1,−3, 1, 1)], (2)

where d is the separation of the plates, and has the follow-
ing properties: it is divergenceless and traceless. Neverthe-
less, where is the connection between a TW and the Casimir
energy. First of all to describe a spherically symmetric and
static TW, we need to introduce a spacetime metric of the
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form

ds2 = −e2�(r) dt2 + dr2

1 − b(r)/r
+ r2 (dθ2 + sin2 θ dϕ2) ,

(3)

where �(r) and b(r) are arbitrary functions of the radial
coordinate, r , denoted as the redshift function, and the shape
function, respectively [3,5]. The radial coordinate has a range
that increases from a minimum value at r0, corresponding to
the wormhole throat, to infinity. A fundamental property of
a wormhole is that a flaring out condition of the throat, given
by (b − b′r)/b2 > 0, is imposed [3,5], and at the throat
b(r0) = r0, the condition b′(r0) < 1 is imposed to have
wormhole solutions. Another condition that needs to be sat-
isfied is 1 −b(r)/r > 0. For the wormhole to be traversable,
one must demand that there are no horizons present, which
are identified as the surfaces with e2φ → 0, so that φ(r)
must be finite everywhere. Using the Einstein Field Equa-
tions (EFE)

(
κ = 8πG/c4

)

Gμν = κTμν, (4)

in an orthonormal reference frame, we obtain the following
set of equations

ρ (r) = 1

κ

b′

r2 , (5)

pr (r) = 1

κ

[
2

r

(
1 − b (r)

r

)
�′ − b

r3

]
, (6)

pt (r) = 1

κ

{(
1 − b

r

)[
�′′ + �′

(
�′ + 1

r

)]

− b′r − b

2r2

(
�′ + 1

r

)}
, (7)

in which ρ (r) is the energy density, pr (r) is the radial pres-
sure, and pt (r) is the lateral pressure. Using the conservation
of the stress–energy tensor, in the same orthonormal refer-
ence frame, we get

p′
r = 2

r
(pt − pr ) − (ρ + pr )�′. (8)

Finally, the EFE can be rearranged to give

b′ = κρ (r) r2, (9)

�′ = b + κprr3

2r2
(

1 − b(r)
r

) . (10)

However, given the quantum nature of the Casimir effect, the
EFE must be replaced with the semiclassical EFE, namely

Gμν = κ
〈
Tμν

〉Ren
, (11)

where
〈
Tμν

〉Ren describes the renormalized quantum contri-
bution of some matter fields: in this specific case, the electro-
magnetic field. In a recent paper [11], a connection between
the SET (2) and the spacetime metric (3) has been deduced,
obtaining a line element of the form

ds2 = −
(

3r

3r + r0

)2

dt2 + dr2

1 − 2r0
3r − r2

0
3r2

+ r2 (dθ2 + sin2 θ dϕ2) , (12)

with

φ (r) = ln

(
3r

3r + r0

)
and b (r) = 2r0

3
+ r2

0

3r
. (13)

Such a result has been obtained promoting the plate separa-
tion d in the SET to a variable r and an Equation of State
(EoS) of the form pr (r) = ωρ (r) has been used with ω = 3.
A further investigation about the line element (12) has been
done in Refs. [12–14]. The purpose of this paper is to estab-
lish if other connections between the Casimir energy and a
TW can be created. The motivation to insist in this research
is dictated by the fact that a TW needs exotic matter and at
the moment only the Casimir energy can be used as an appro-
priate source. However, this time the plate separation d will
be considered as fixed and not a variable.1 Surprisingly, we
will obtain an interesting result even in this configuration.
The rest of the paper is structured as follows, in Sect. 2 we
continue the investigation to determine if the Casimir energy
density (1) can be considered as a source for an Absurdly
Benign Traversable Wormhole, in Sect. 3 we generalize the
definition of an Absurdly Benign Traversable Wormhole, in
Sect. 4 we give another profile for the Generalized Absurdly
Benign Traversable Wormhole directly connected with the
Casimir source (1) but without approximation. We summa-
rize and conclude in Sect. 5. Units in which h̄ = c = k = 1
are used throughout the paper and will be reintroduced when
they are relevant.

2 The absurdly benign traversable wormhole and the
equation of state

The original case, that in which, the plate separation d is
fixed, has an energy density expressed by Eq. (5). With the
help of Eq. (9), we can compute the form of the shape function

1 A remark on this point is in order: to have a consistent calculation, we
adopt the configuration considered in Ref. [4], where the plates are of
spherical form. as pointed out in Ref. [4], this approximation introduces
an error which can be small if we are very close to the throat, which is
exactly what we need in this paper.
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b(r) = r0 − π3

270d4

(
h̄G

c3

)
(r3 − r3

0 ), (14)

which is not asymptotically flat but asymptotically de Sit-
ter. Indeed, the Casimir energy acts like a “Cosmological
Constant”. This means that a TW in a strict sense cannot be
formed. On this point we will come back in Sect. 5. How-
ever, in proximity of the throat, the shape function (14) can
be rearranged in the following way

b (r) = r0 − π3

270d4

(
h̄G

c3

)
(r − r0) (r2 + r0r + r2

0 )

� r0

(
1 − r0π

3

90d4

(
h̄G

c3

)
(r − r0)

)

= r0

(

1 − r0l2Pπ3

90d4 (r − r0)

)

. (15)

The shape function (15) has the same structure of anAbsurdly
Benign Traversable Wormhole (ABTW) proposed by Morris
and Thorne in Ref. [3] except for the exponent. I recall to the
reader that an ABTW is defined in such a way to have exotic
matter concentrated into the region r0 ≤ r ≤ r0 + a with
a/r0 � 1. In practice, the shape function and the redshift
functions are defined by

b(r) = r0

(
1 −

(
r − r0

a

))2

, �(r) = 0; r0 ≤ r ≤ r0 + a

b(r) = 0, �(r) = 0; r ≥ r0 + a. (16)

Therefore outside the location r = r0 + a, the spacetime is
Minkowski. If we make the identification

a = 90d4

r0l2Pπ3
, (17)

then the similarity between (14) and (16) improves and if we
put real numbers coming from experiments, we find

a � 90
(
10−9 m

)4

r0π3
(
1.6 × 10−35 m

)2 � 1034 m2

r0
, (18)

where we have assumed a plate separation of the order of
the nm, which is the actual distance used in laboratories. In
order to have a small, we have two possibilities:

(a) either r0 � 1034 m
or

(b) the plate separation d must be less of the order of a f m
to have a wormhole throat of the order of 1010 m, which
is bigger of the diameter of the sun.

In both cases, the use of such a source is neither practical
nor physically meaningful. If condition (a) or (b) are not sat-
isfied, the exotic matter is not concentrated close to the throat,
rather is distributed in a wide area of the space. Therefore, it
appears important to establish if a better connection between
the Casimir energy and an ABTW exists in order to use such
a source. Note that except for Refs. [3,5,15,16], the subject
of ABTW has not examined extensively. To further proceed,
we introduce an inhomogeneous Equation of State (EoS) of
the form

pr (r) = ω (r) ρ (r) . (19)

From Eqs. (5) and (6), by imposing

b (r) + κpr (r) r3 = 0, (20)

we find

ω (r) = − b (r)

b′ (r) r
(21)

and the EFE can be solved to give

b(r) = r0 exp

[
−
∫ r

r0

dr̄

ω(r̄)r̄

]
. (22)

From the shape function (22), we can compute ρ (r)

ρ (r) = − r0

κr3ω (r)
exp

[
−
∫ r

r0

dr̄

ω(r̄)r̄

]
, (23)

pr (r)

pr (r) = − r0

κr3 exp

[
−
∫ r

r0

dr̄

ω(r̄)r̄

]
(24)

and pt (r)

pt (r) = r0

2κr3

(
1

ω (r)
+ 1

)
exp

[
−
∫ r

r0

dr̄

ω(r̄)r̄

]
. (25)

If the relationship (21) is satisfied, then we have a zero-tidal-
force wormhole (ZTF), a condition represented by the choice
�(r) = 0. This is also the same condition assumed for the
ABTW. For instance, for the ABTW, it is immediate to obtain
that

ω (r) = a

2r

(
1 −

(
r − r0

a

))
,

ω (r0) = a

2r0
ω (r0 + a) = 0. (26)
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To complete the discussion we include also the form of the
SET2

Tμν = r0

κr3 diag

(
− 1

ω (r)
,−1,

1

2ω (r)
+ 1

2
,

1

2ω (r)
+ 1

2

)

× exp

[
−
∫ r

r0

dr̄

ω(r̄)r̄

]

= − b(r)

κr3ω (r)
diag

(
1, ω (r) ,−1

2
− ω (r)

2
,−1

2
− ω (r)

2

)

= ρ (r) diag

(
1, ω (r) ,−1

2
− ω (r)

2
,−1

2
− ω (r)

2

)
.

(27)

By construction the SET (27) is divergenceless, but it is
not traceless. However, it is always possible to rearrange the
previous SET (27) in such a way to extract the traceless part.
Indeed

Tμν = T T
μν + T

4
gμν = ρ (r)

2
× [

diag (1, 2ω (r) + 1,−ω (r) ,−ω (r)) − gμν

]
,

(28)

where T T
μν is the traceless part of the SET (27). It is interesting

to observe that by imposing the following condition

ω (r0) = 1, (29)

one finds that

T T
μν = ρ (r0)

2
[diag (1, 3,−1,−1)] , (30)

independently on the form of ω (r). In the expression (30),
we can recognize the Casimir structure of the SET. In the
next section, we will examine some specific profiles of ω (r)
which can lead to a generalized ABTW (GABTW).

3 The generalized absurdly benign traversable
wormhole

In Sect. 2, we have derived a form for the shape function
directly by the Casimir energy density described by Eq. (14).
We have also given the expression in proximity of the throat
described by Eq. (15) and we have deduced that it seems to
have a connection with the ABTW. However, the connection

2 Note that the energy density of the SET (2) has been considered in
the context of phantom energy in Ref. [17].

is not complete, because from Eq. (15), we can easily derive
the energy density which has the following form

ρ (r) = − r2
0 l

2
Pπ3

90d4κr2 = − r2
0 π2h̄c

720d4r2 	⇒
r=r0

− π2h̄c

720d4 = −ρ0,

(31)

which is exactly the Casimir energy density only on the
throat, as it should be. Nevertheless, if we assume the validity
of the identification (17), then the associated SET is not the
Minkowski SET outside the point r̄ = r0 + a, but it has the
following expression

Tμν = ρ0
r2

0

r̄2 diag

(
−1, 0,

1

2
,

1

2

)
. (32)

Furthermore, the assumption (17) is physically meaningless.
Therefore, we are going to explore different profiles with the
hope they satisfy as much as possible the ABTW form and,
at the same time, the form of the Casimir SET. Before going
on we have to observe one point: the ABTW shape function
is

b(r) = r0

(
1 −

(
r − r0

a

))2

(33)

and close to the throat, the leading term is

b(r) � r0

(
1 − 2

a
(r − r0)

)
, (34)

which has the same form of (15). This means that the ABTW
can be the right prototype to build a better profile. This ten-
tative improvement will be done by means of the inhomoge-
neous EoS (19) which, in the case of the ABTW obeys the
EoS (19) with the following relationship

ω (r) = 1 − μ (r − r0)

2μr
; μ = 1

a
. (35)

As a first proposal, we will examine the following profile

3.1 Example I ω (r) = (1 − μ (r − r0)) /αμr

When ω (r) assumes the following profile

ω (r) = 1 − μ (r − r0)

αμr
; α > 1, (36)

which is an immediate generalization of the relationship (35),
one finds

ω (r) →
{

1/αμr0 r → r0

−1/α r → ∞ ; r ∈ [r0,∞) , (37)
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where μ is an inverse length scale. However, it is of much
more interest the following assumption

ω (r) = 0 when r = r̄ = r0 + 1

μ
. (38)

When choice (38) is adopted, from Eq. (22), one finds

b(r) = r0 exp

[
−
∫ r

r0

αμr̄dr̄

1 − μ (r̄ − r0) r̄

]

= r0 exp

[
−αμ

∫ r

r0

dr̄

1 − μ (r̄ − r0)

]

= r0 exp [α ln (1 − μ (r − r0))] = r0 (1 − μ (r − r0))
α .

(39)

As we can see, the choice (36) leads to a generalized ABTW,
if we adopt also the following further conditions

b(r) = r0 (1 − μ (r − r0))
α , �(r) = 0; r0 ≤ r ≤ r0 + 1/μ

b(r) = 0, �(r) = 0; r ≥ r0 + 1/μ. (40)

Then the components of the stress–energy tensor can be
easily computed to obtain

ρ (r) = −r0αμ

κr2 (1 − μ (r − r0))
α−1 , (41)

pr (r) = −r0 (1 − μ (r − r0))
α

κr3 , (42)

pt (r) = r0 (1 − μ (r − r0))
α−1

2κr3 (1 − μ (r (1 − α) − r0)) ,

(43)

so that the SET becomes

Tμν = r0

2κr3 (1 − μ (r − r0))
α−1 diag(−2αμr,−2, 1

− μ(r(1 − α) − r0), 1 − μ(r(1 − α) − r0)). (44)

However, to have a vanishing ρ (r) and pt (r) for r ≥ r̄ , we
need α > 1. Note that for α = 2, we recover the familiar
shape function of the ABTW (16). It is easy to see that on
the throat the SET (44) becomes

Tμν = 1

2κr2
0

diag (−2αμr0,−2, 1 + μr0α, 1 + μr0α)

(45)

and the inhomogeneous EoS function (36) reduces to

ω (r0) = 1

αμr0
, (46)

while for r = r0 + 1/μ, one gets

Tμν = diag (0, 0, 0, 0) α > 1; ω (r0 + 1/μ) = 0. (47)

Regarding the energy density on the throat, one finds

ρ (r0) = − αμ

κr0
(48)

and if we impose the constraint (29), one finds

ρ (r0) = − αμ

κr0
= − 1

κr2
0

. (49)

By identifying (49) with the Casimir energy density in (2),
one gets

ρ (r0) = − 1

κr2
0

= − h̄cπ2

720d4 , (50)

which implies

r0 = 3

π

√
10

π

d2

lP
� 1. 7 × 1017 m (51)

where we have fixed the plate separation at a distance of
the order of 10−9 m. To have the exotic energy confined
close to the throat, μ must be huge, but the relationship (46)
constraints α to be small. Therefore we conclude that even
for the first GABTW model, one finds the same problem of
the assumption (17) and (18), even if the size of the GABTW
is estimated to be r0 � 1. 7 × 1017 m, while for the original
Casimir size connected with (17) and (18), the size of the
wormhole throat was of the order r0 � 1034 m. For this
reason, we are going to consider this further generalization.

3.2 Example II ω(r) = (1 − μ(r − r0))(1 − ν(r −
r0))/r [αμ((1 − ν(r − r0)) − βν(1 − μ(r − r0)))]

We now assume the following profile

ω (r) = (1 − μ (r − r0)) (1 − ν (r − r0))

r [αμ ((1 − ν (r − r0)) − βν (1 − μ (r − r0)))]
,

(52)

where α, β ∈ R and μ, ν are mass scales with μ > ν. In the
range r ∈ [r0,∞), one finds

ω (r) →
{

1/ (r0 (αμ − βν)) r → r0

−1/ (α + β) r → ∞.
(53)

However, like in the Example I, it is of much more interest
the following assumption

ω (r) = 0 when r = r̄ = r0 + 1

μ
. (54)
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When this choice is adopted, from Eq. (22), one finds

b(r) = r0 exp

[
−
∫ r

r0

[αμ ((1 − ν (r̄ − r0)) − βν (1 − μ (r̄ − r0)))] r̄dr̄

(1 − ν (r̄ − r0)) (1 − μ (r̄ − r0)) r̄

]

= r0 exp

[
−αμ

∫ r

r0

dr̄

1 − μ (r̄ − r0)

+βν

∫ r

r0

dr̄

1 − ν (r̄ − r0)

]

= r0 exp[α ln (1 − μ (r − r0))

− β ln (1 − ν (r − r0))] = r0
(1 − μ (r − r0))

α

(1 − ν (r − r0))
β

. (55)

As we can see, the choice (36) leads to another generalized
ABTW, if we adopt also the following conditions

b(r) = r0
(1 − μ (r − r0))

α

(1 − ν (r − r0))
β

, �(r) = 0;
r0 ≤ r ≤ r0 + 1/μ

b(r) = 0, �(r) = 0; r ≥ r0 + 1/μ. (56)

The components of the stress–energy tensor can be easily
computed and represented by Eq. (27), while on the throat
one finds

Tμν = 1

2κr2
0

diag (−2 (αμ − βν) r0,

−2, 1 + r0 (αμ − βν) , 1 + r0 (αμ − βν)) (57)

and for r ≥ r0 + 1/μ, the whole SET is vanishing, namely a
Minkowski SET. Note that for α = 2 and β = 0, we recover
the familiar shape function of the ABTW (16). On the throat,
we can impose that the energy density be

ρ (r0) = − 1

κr0
(αμ − βν) = − h̄cπ2

720d4 (58)

and with the additional condition (29), one finds

ρ (r0) = 1

κr2
0

= h̄cπ2

720d4 (59)

leading to

r0 = 3d2

πlP

√
10

π
, (60)

which is in agreement with the result (51). Note that in prox-
imity of the throat, the shape function (55) can be rewritten
as

b (r) � r0 (1 − (αμ − βν) (r − r0)) (61)

which looks like the shape function (15). Note also that the
constraint (29) leads to

μ = β

α
ν + πlP

3αd2

√
π

10
(62)

and by setting

α = β + 1; β = β and ν � 1

r0
, (63)

we can mimic the shape function (15). However, this time the
parameter μ can be large satisfying therefore the request of
concentrating the exotic matter close to the throat. One can
see that although the original Casimir structure for the SET
(30) is reproduced, the whole SET is divided by a factor 2
while the SET (27) becomes on the throat

ρ (r0) diag (1, 1,−1,−1) , (64)

which is in agreement with the Casimir SET except for the
radial pressure. This behavior was present also in the SET of
the Ref. [11]. It is important to remark that, differently from
the shape function (14) reproducing the Casimir energy den-
sity not only on the throat but in every point of the space, the
shape function (56) reproduces the Casimir energy density
on the throat with the help of the identification (59). This can
be done because the throat radius can be fine tuned to give
the desired expression. A similar fine tuning is not possible
for the shape function (14).

4 Reexamining the original Casimir structure

In this section we are going to reconsider the shape function
(14) without the approximation leading to the form (15). We
have already observed that, for r � r0, the shape function
assumes a de Sitter profile. However, we can also observe
that b (r) without approximations has one real root. This is
located at

b (r̄) = 0 ⇐⇒ r̄ = r0
3

√

1 + 3

r2
0 ρ0κ

. (65)

Therefore, it is straightforward to assume that

b(r) = r0 − ρ0κ

3

(
r3 − r3

0

)
, �(r) = 0; r0 ≤ r ≤ r̄

b(r) = 0, �(r) = 0; r ≥ r̄ . (66)

Nevertheless, this choice does not lead to a Minkowski space
outside the region located at r = r̄ , because the SET has a
structure which looks like the SET of Eq. (32). However, it
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is immediate to realize that the profile described by (66) can
be generalized to

b(r) = 1

rα−1
0

[
r0 − ρ0κ

3α
(r3 − r3

0 )
]α

,

α > 1; �(r) = 0; r0 ≤ r ≤ r̄

b(r) = 0, �(r) = 0; r ≥ r̄ , (67)

where, this time

r̄ = r0
3

√

1 + 3α

r2
0 ρ0κ

. (68)

In this way by imposing the EoS we find

ω (r) = 1

r3ρ0κ

(
r0 − ρ0κ

3α
(r3 − r3

0 )
)

ω (r) = 0 r ≥ r̄ , ω (r0) = 1

r2
0 ρ0κ

. (69)

The corresponding SET can be derived from the Eq. (28)
where

ρ (r) = − ρ0

rα−1
0

[
r0 − ρ0κ

3α
(r3 − r3

0 )
]α−1

	⇒ ρ (r0) = −ρ0. (70)

This is very interesting, because independently on the expo-
nent α, on the throat, we can find always the Casimir energy
density. A result different compared with (50) and (58). Note
that outside the region located at r = r̄ , the spacetime is
Minkowski. Moreover by fixing

ω (r0) = 1

r2
0 ρ0κ

= 1, (71)

we can recover the Casimir structure of the SET and putting
numbers inside the previous relationship, one finds

r0 =
√

1

ρ0κ
= 3d2

πlP

√
10

π
, (72)

which is compatible with what we have investigated in
Sect. 3. To determine if the root (68) is close to the throat,
we need to evaluate the ratio

R = r̄ − r0

r0
= 3

√

1 + 3α

r2
0 ρ0κ

− 1 = 3
√

1 + 3α − 1 (73)

	⇒ 0.59 α = 1
0.91 α = 2

, (74)

where we have used the constraint (71). To have consistency,
1 < α ≤ 2. For α > 2, R > 1: in this case the exotic matter
is not confined close tho the throat. Note that it is sufficient
to choose α very close to 1 to have the Minkowski space
time outside r̄ . Unfortunately as we can see R < 1 and not
R � 1. This is due to the constraint induced by (71). If we
give up this constraint, we cannot recover the Casimir SET
structure.

5 Conclusions

In this paper, we have further extended the study began by
Morris and Thorne [3]; Morris et al. in Ref. [4] and, sub-
sequently explored by Visser [5] on the Casimir effect as a
possible source for a TW. We have also further extended the
results obtained in Ref. [11] and the result of such an exten-
sion has revealed an interesting further connection between
the Casimir source and a particular TW: an ABTW. How-
ever, the structure of the solution directly connected with the
Casimir source presents some problems in reproducing the
features of an ABTW. One of these problems is the lack of
a smooth change between the curved and flat space. For this
reason, we have investigated some profiles, termed GABTW,
that in some particular cases can mimic the original solu-
tion derived by the Casimir source. The first GABTW profile
failed to be a good candidate because the constraint (29) and
the relationship (46) forbid to fix large values of the param-
eter μ, a necessary request to have the exotic matter con-
fined close to the throat. For this reason, we have examined
another profile defined by Eq. (55), obtained by imposing the
inhomogeneous EoS (52). This profile has produced interest-
ing results which go in a completely opposite direction with
respect to the results obtained in Ref. [11]: namely in this
paper the wormhole throat can be huge, while in Ref. [11] is
Planckian. The main difference in this result is that, in case of
Ref. [11], the Casimir source has a plate separation which is
variable, while in this paper it is not: it is a parameter. A ques-
tion is in order: why do we insist in analyzing an ABTW and
its generalization? Because, by definition, the region of the
exotic matter is confined in a very small region and outside of
this region, space-time is flat. Therefore, instead of having
a long tail that asymptotically becomes flat, the flatness is
almost in proximity of the throat. Even if the results related
to the profiles (40) and (55) seem not to be encouraging,
we have to observe that the estimated size of the wormhole
throat obtained in Eq. (18) predicts a wormhole throat of
the order of 1034 m, but the GABTW described by (40) and
(55) predicts a wormhole throat of the order of 1017 m. This
huge size is essentially due to the request of having imposed
ω (r0) = 1. Note also that the size 1017 m is principally due
to the plate separation of the order of the nm, which is the
actual plate separation used in the experiments, but an inter-
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esting improvement can arrive at the next scale, namely a pm
scale, which is surely more easier to reach compared to the
f m scale. In this case, one obtains

r0 � 1011 m. (75)

Note also that the presence of the Planck length square in the
expression of the wormhole throat is principally due to the
combination of the Newton’s constant G, the Planck constant
h̄ and the speed of light c. These last two constants appear
in the Casimir energy density calculation. It is interesting to
note that in some Casimir experiments, if the plates enter in
a superconductive phase, it is possible to show an increase
of negative energy [18,19]. This is promising because from
Eq. (60), one finds

r0 = 3d2

πlP

√
10

Aπ
, (76)

where A comes from the increase of the negative energy
density coming from the superconducting phase. This means
that in this particular situation it could be possible to combine
the plates separation with the superconducting phase energy
density increase to obtain a more realistic wormhole throat
size. Finally, we have investigated also the profile generated
by the Casimir energy source without approximation, but
having in mind a GABTW structure. There are several inter-
esting points about the profile (67): the first one is that the
relationships (51) and (60) are confirmed even for this shape
function, the second one is the reproduction of the Casimir
source for every exponent α. Therefore, it seems that with
the profile (67), everything seems to go in the right ballpark
except for the exotic matter region that cannot be shrunk to
a very small region exactly like for the profile (55). At this
stage, we do not know how much is important to force the
exotic matter to stay in a region very close to the throat to
keep the GABTW (67) valid and, at the same time, the repro-
duction of some features of the Casimir SET, i.e. traceless
and divergenceless. To conclude, we have also to point out
that in the context of Self-Sustained Traversable Wormholes,
namely TW sustained by their own quantum fluctuations [20–
24], could be interesting to consider how the Casimir source
and the quantum fluctuation carried by the graviton combine
to see if the GABTW can be self-sustained in this context.
In this picture, the Casimir source could be interpreted as the
switch on to power the traversability of the wormhole.
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Appendix A: Features of the traversable wormhole of
Sect. 3.2

In this section we are going to explore some of the features
of the GABTW (55). The motivation of examining only this
kind of profile is that it is quite general to include many
GABTW profiles in proximity of the throat. We begin to
examine the proper length which is defined as

l (r) = ±
∫ r

r0

dr ′
√

1 − b(r ′)
r ′

, (A1)

where the“±” depends on the wormhole side we are. In this
case, one gets

l (r) = ±
∫ r

r0

dr ′
√

1 − r0
r ′

(1−μ(r ′−r0))α

(1−ν(r ′−r0))β

. (A2)

The exact evaluation of the integral is really complicated.
However, it is sufficient to consider that the amount of exotic
matter for the GABTW is concentrated near the throat by con-
struction. Therefore, it is sufficient to consider the expression
close to the throat with μ very large. To this purpose, we can
write

l (r) �
r→r0

± 1√
1 + αμr0 − βνr0

∫ r

r0

√
r ′dr ′

√
r ′ − r0

= ± 1√
1 + αμr0 − βνr0

×
[√

r
√
r − r0 + r0ln

(√
r

r0
+
√

r

r0
− 1

)]

r0 ≤ r ≤ r0 + 1/μ (A3)

and the complete l (r) is
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l (r) = ±

⎧
⎪⎪⎨

⎪⎪⎩

1√
1+αμr0−βνr0

[√
r
√
r − r0 + r0ln

(√
r
r0

+
√

r
r0

− 1
)]

r0 ≤ r ≤ r0 + 1/μ

1√
1+αμr0−βνr0[√

r0 + 1
μ

√
1
μ

+ r0ln
(√

1 + 1
r0μ

+
√

1
r0μ

)]
+ r −

(
r0 + 1

μ

)
r ≥ r0 + 1/μ

⎫
⎪⎪⎬

⎪⎪⎭
. (A4)

Note that the time lapse dt , and proper time lapse as measured
by the observer dτ , for the GABTW are the same, because
the redshift function is nought. In a similar way, to compute
the embedded surface, we need to evaluate

z (r) = ±
∫ r

r0

dr ′
√

r ′
b(r ′) − 1

, (A5)

which, for the present case, is

z (r) = ±
∫ r

r0

dr ′
√

r ′
r0

(1−ν(r ′−r0))β

(1−μ(r ′−r0))α
− 1

. (A6)

By repeating the same procedure adopted for the proper
length, we can write

z (r) �
r→r0

±
√
r0√

1 + αμr0 − βνr0

∫ r

r0

dr ′
√
r ′ − r0

= ± 2
√
r0

√
r − r0√

1 + αμr0 − βνr0
. (A7)

To further investigate the properties of the GABTW, we con-
sider the computation of the total gravitational energy for a
wormhole [25], defined as

EG (r) =
∫ r

r0

[

1 −
√

1

1 − b (r ′) /r ′

]

ρ
(
r ′) dr ′r ′2

+ r0

2G
= M − MP± , (A8)

where M is the total mass and MP is the proper mass, respec-
tively. Differently from the case where the Casimir energy
was considered variable depending on the radial radius r ,
here we have no asymptotic mass, since outside the radius
μ−1, spacetime is flat. In particular we find for the total mass

Mc2 =
∫ r0+ 1

μ

r0

4πρ
(
r ′) r ′2dr ′

= 4π

3

[(
r0 + 1

μ

)3

− r3
0

](
h̄cπ2

720d4

)
(A9)

�
r→r0

4πr2
0

μ

(
h̄cπ2

720d4

)
, (A10)

where we have considered the Casimir energy density as a
source and we have momentarily reintroduced the speed of
light. For the proper mass, one gets

MP±c2 = ±
∫ r0+ 1

μ

r0

4πρ
(
r ′) r ′2

√
1 − b (r ′) /r ′ dr

′ �
r→r0

± 4πr2
0√

1 + αμr0 − βνr0

(
h̄cπ2

720d4

)∫ r0+ 1
μ

r0

dr ′
√
r − r0

� ± 8πr2
0
√
r0√

μ
√

1 + αμr0 − βνr0

(
h̄cπ2

720d4

)

−→
μr0�1

±8πr2
0

μ
√

α

(
h̄cπ2

720d4

)
, (A11)

where the “±” depends one the wormhole side we are. Thus
the total gravitational energy (A8) becomes

EG (r) �
(
h̄cπ2

720d4

)
4πr2

0

μ

[
1 ± 2√

α

]
. (A12)

For large μ, one finds that EG vanishes, independently on the
scale choice we make aboutμ. Another important traversabil-
ity condition is that the acceleration felt by the traveller
should not exceed Earth’s gravity g⊕ � 980 cm/s2. In an
orthonormal basis of the traveller’s proper reference frame,
we can find

|a| =
∣∣
∣∣∣

√

1 − b (r)

r
e−�(r)

(
γ e�(r)

)′
∣∣
∣∣∣
≤ g⊕

c2 (A13)

and in this case, because �(r) = 0, the traveller has no
acceleration, which is in agreement with Ref. [3]. As regards
the lateral tidal forces, we find

∣∣∣
∣
γ 2c2

2r2

[
v2 (r)

c2

(
b′ (r) − b (r)

r

)

+2r (r − b (r))�′ (r)
]∣∣ |η|

=
∣∣∣∣
γ 2c2

2r3

[
−v2 (r) b (r)

c2

(
1

ω (r)
+ 1

)]∣∣∣∣ |η| ≤ g⊕,

(A14)

where we have used the relationship (21). This is a constraint
about the velocity with which observers traverse the worm-
hole. η represents the size of the traveller which can be fixed
approximately equal, at the symbolic value of 2 m [3]. If we
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assume a constant speed v and γ � 1, close to the throat, the
lateral tidal constraint becomes

∣
∣∣∣∣
γ 2c2

2r2
0

[
v2 (r0)

c2 (−r0 (αμ − βν) − 1)

]∣∣∣∣∣
|2|

�
∣∣∣
∣∣

[
v2 (r0)

r2
0

]∣∣∣
∣∣
� g⊕

	⇒ v � r0
√
g⊕

	⇒ v � 3.1r0 m/s. (A15)

If the observer has a vanishing v, then the tidal forces are null.
We can use these last estimates to complete the evaluation of
the crossing time which approximately is

�t � 2 × 104 3r0

4v
� 5 × 103 s, (A16)

which is in agreement with the estimates found in Ref.
[3].The last property we are going to discuss is the “total
amount” of ANEC violating matter in the spacetime [26]
which is described by Eq. (A17). For the metric (55), one
obtains

IV = 1

κ

∫ r0+ 1
μ

r0

(r − b (r))

[

ln

(
e2φ(r)

1 − b(r)
r

)]′
dr

= 1

κ

∫ r0+ 1
μ

r0

(
b (r)

r
− b′ (r)

)
dr (A17)

� 1

κ

[∫ r0+ 1
μ

r0

αμr0 − βνr0 + 1 + c (r) (r − r0)

]

dr,

(A18)

where we have approximated the expression close to the
throat and where we have defined

c (r) = −αμ − r−1
0 + βν − α2μ2r0

+ αμr0β ν + αμ2r0 − (−αμr0 + βνr0) βν − βν2r0.

(A19)

After the integration, we find

IV = 1

κ

(
3

2
αr0 − 1

2
α2r0 + νr0βα

μ

− βνr0

μ
− α

2μ
+ 1

μ
− βν2r0

2μ2

−β2ν2r0

2μ2 + βν

2μ2 − 1

2μ2r0

)

�
μr0�1

1

κ

(
3

2
αr0 − 1

2
α2r0

)
, (A20)

and the result is finite. Therefore we can conclude that, in
proximity of the throat the ANEC can be arbitrarily small as
it should be.
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