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Does phantom energy contribute to self sustained
traversable wormholes?

Remo Garattini

Abstract. We compute the graviton one loop contribution to a classical energy in a traversable
wormhole background. The form of the shape function considered is obtained by the equation
of state p = wp. We investigate the size of the wormhole as a function of the parameter
w. The investigation is evaluated by means of a variational approach with Gaussian trial
wave functionals. A zeta function regularization is involved to handle with divergences. A
renormalization procedure is introduced and the finite one loop energy is considered as a
self-consistent source for the traversable wormhole.The case of the phantom region is briefly
discussed.
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1. Introduction
The discovery that our universe is undergoing an accelerated expansion[l] leads to reexamine
the Friedmann-Robertson-Walker equation

4

=5 (p+3p). M)

Q| a:

to explain why the scale factor obeys ¢ > 0. Indeed, it is evident from the previous formula,
that a sort of dark energy is needed to cause a negative pressure with equation of state

p = wp. (2)

A value of w < —1/3 is required for the accelerated expansion, while w = —1 corresponds to a
cosmological constant. A specific form of dark energy, denoted phantom energy has also been
proposed with the property of having w < —1. It is interesting to note that the phantom energy
violates the null energy condition, p + p < 0, necessary ingredient to sustain the traversability
of wormholes. A wormhole can be represented by two asymptotically flat regions joined by
a bridge. To exist, it must satisfy the Einstein field equations: one example is represented
by the Schwarzschild solution. One of the prerogatives of a wormbhole is its ability to connect
two distant points in space-time. In this amazing perspective, it is immediate to recognize the
possibility of traveling crossing wormholes as a short-cut in space and time. Unfortunately,
although there is no direct evidence, a Schwarzschild wormhole does not possess this property.
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It is for this reason that in a pioneering work Morris and Thorne[2] and subsequently Morris,
Thorne and Yurtsever[3] studied a class of wormholes termed “traversable”. Unfortunately, the
traversability is accompanied by unavoidable violations of null energy conditions, namely, the
matter threading the wormhole’s throat has to be “exotic”. It is clear that the existence of dark
and phantom energy supports the class of exotic matter. In this direction, Lobo[4], Kuhfittig[5]
and Sushkov[6] have considered the possibility of sustaining the wormhole traversability with
the help of phantom energy. In a previous work, we explored the possibility that a wormhole can
be sustained by its own quantum fluctuations[7]. In practice, it is the graviton propagating on
the wormhole background that plays the role of the “exotic” matter. This has not to appear as
a surprise, because the computation involved, namely the one loop contribution of the graviton
to the total energy, is quite similar to compute the Casimir energy on a fixed background. It is
known that, for different physical systems, Casimir energy is negative and this is exactly one of
the features that the exotic matter should possess. In particular, we conjectured that quantum
fluctuations can support the traversability as effective source of the semiclassical Einstein’s
equations. However in Ref.[7], we limited the analysis in the region where the equation of
state(2) assumes the particular value w = 1. In this paper, we will consider w € (0,+00),
although the semiclassical approach can be judged suspicious because of the suspected validity
of semiclassical methods® at the Planck scale[8].

2. The effective Einstein equations and the traversable wormhole metric
We begin with a look at the classical Einstein equations

Gl“/ == K/Tuy, (3)

where T),, is the stress-energy tensor, GG, is the Einstein tensor and x = 87w(G. Consider a
separation of the metric into a background part, g,,, and a perturbation, h,,

Juw = Guv + h/u/- (4)

The Einstein tensor G, can also be divided into a part describing the curvature due to the
background geometry and that due to the perturbation,

G;w (gaﬁ) = Guu (gaﬁ) + AGuV (gaﬁu haﬁ) ) (5)

where, in principle AG ., (Gog, hap) is a perturbation series in terms of hy,. In the context of
semiclassical gravity, Eq.(3) becomes

Guu =K (Tuuyen ) (6)
where (T),,)"“" is the renormalized expectation value of the stress-energy tensor operator of
the quantized field. If the matter field source is absent, nothing prevents us from defining an
effective stress-energy tensor for the fluctuations as?

<Tuu>ren = _% <AGuV (gaﬂu ha6)>ren . (7)

From this point of view, the equation governing quantum fluctuations behaves as a backreaction
equation. If we fix our attention to the energy component of the Einstein field equations, we

! To this purpose, see also paper of Hochberg, Popov and Sushkov[9] and the paper of Khusnutdinov and
Sushkov[10].

2 Note that our approach is very close to the gravitational geon considered by Anderson and Brill[12]. The
relevant difference is in the averaging procedure.
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need to introduce a time-like unit vector u* such that u - u = —1. Then the semi-classical
Einstein’s equations (6) projected on the constant time hypersurface ¥ become

G;w (gaﬁ) wtul = K <Tuuuﬂuu>r6n — _ (AG;W (gaB, haﬁ) uuuu>ren ) (8)

To further proceed, it is convenient to consider the associated tensor density and integrate over

3. This leads to 1
% /E dsx \V 3gGuV (gaﬁ) utu”

]_ _ — v\ren
= — /2] d3$7'[(0) = _ﬂ /E d3$\/% (AG;W (9(167 haﬂ) utu > ) (9)

where H(© is the background field super-hamiltonian. Thus the fluctuations in the Einstein
tensor are, in this context, the fluctuations of the hamiltonian. To compute the expectation
value of the perturbed Einstein tensor in the transverse-traceless sector, we use a variational
procedure with gaussian wave functionals. In practice, the right hand side of Eq.(9) will be
obtained by expanding

0 1 2
5 _<\1,|HE|\1,>_<\I!‘H(E>+Hé>+Hé)+...‘\Il>
wormhole — (\I/|\I/> - <\Ij|\1j>

(10)

and retaining only quantum fluctuations contributing to the effective stress energy tensor. Hg )
represents the hamiltonian approximated to the i** order in hij and ¥ is a trial wave functional
of the gaussian form. Then Eq.(9) becomes

v HY +HY + .| @
(v g ) "

HY = / PP = —
%

The chosen background to compute the quantity contained in Eq.(9) will be that of a traversable
wormbhole. In Schwarzschild-like coordinates, the traversable wormhole metric can be cast into
the form

T |67 + sin? 0dy? ] . (12)

r

d 2
ds® = —exp (—2¢ (r)) dt* + ! L

where ¢ (r) is called the redshift function, while b(r) is called the shape function. Using the
Einstein field equation (3), in an orthonormal reference frame, we obtain the following set of
equations

pir) = ot (13
)= e |2 (1- 1) 9 - 2], (1)
pr) =g (1= 2 [ (- 2)] - 522 (w4 3)), (15)

in which p (r) is the energy density, p, (r) is the radial pressure, and p; (1) is the lateral pressure.
Using the conservation of the stress-energy tensor, in the same orthonormal reference frame, we
get

2

p (pt _pr) - (P +pr) ¢,' (16)

The Einstein equations can be rearranged to give

’
b=

v = 8nGp (r)r?, (17)
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3
¢ = % (18)
2r? (1 40)

T

Now, we introduce the equation of state p, = wp, and using Eq.(13), Eq.(18) becomes

b+ wbr
# = (19)
2r? (1 %)
The redshift function can be set to a constant with respect to the radial distance, if
b+ wb'r=0. (20)

The integration of this simple equation leads to

1
Tt

b(r)=r <?> : ’ (21)

where we have used the condition b (r;) = ;. Thus, the line element (12) becomes

2

d
ds? = —Adt? + ﬁ + % d6? + sin? dg? | (22)

w

—
S|2
N—

where A is a constant coming from ¢’ = 0 which can be set to one without loss of generality.
The parameter w is restricted by the following conditions

b (ry) < 1 (23)
and
b(r)
”
This implies that w € (—o00,—1) U (0,+00). Proper radial distance is related to the shape

function by
L) :I:/T dr'
T = —
Tt )1_b:|:75,7")
B 2w /(H—i) <1 l—w 3 (H—i))
=tr 1 P Lok 272w+27271 p ) (25)

w

—0 when T — +00. (24)

where the plus (minus) sign is related to the upper (lower) part of the wormhole or universe and
where o F (a,b;c; ) is a hypergeometric function. Two coordinate patches are required, each
one covering the range [ry, +00). Each patch covers one universe, and the two patches join at
r¢, the throat of the wormhole defined by

re = min{r (l)}. (26)

When w = 1, we recover the special case where b (r) = rZ/r. To concretely compute the r.h.s of

Eq.(11), we note that the correct setting is
(1) — /5P \p>
3 3 - _ B, v\ren 3 3< ‘
[ a\/29 (8G s (G, has) )" = [ g s NG
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where we have considered perturbations of the line element (22) of the type g;; = gij + hi;.The
linear term disappears because of the Gaussian integration. Following the same procedure of
Refs.[14, 15], we arrive at the following relevant expression of the one-loop-like Hamiltonian form
for TT (traceless and transverse) deformations

1 _ 1 a
H§=1/Ed3$\/§m“ {(167TG)K = (xux)ijkl+m(A2)j K+ (2,2);] - (28)

The propagator K=+ (z, %);ae comes from a functional integration and it can be represented as

h(.T)J‘ 7 h(T)J-
K (2,7 )iy = D2 (2;(;); @)

T

(29)

where hz(g)J' (T) are the eigenfunctions of Ay, whose eigenvalues will be denoted with E? (7). 7

denotes a complete set of indices and A (7) are a set of variational parameters to be determined
by the minimization of Eq.(28). The expectation value of H is easily obtained by inserting the
form of the propagator into Eq.(28)

)iy PR i
E(\) 422 (167G) \; (T)+(167TG)>\.(7_) : (30)
T =1 t

By minimizing with respect to the variational function \; (7), we obtain the total one loop energy

for TT tensors )
BT =13 {\/Ef (1) + /3 (7)} . (31)

The above expression makes sense only for E? (1) > 0, i = 1,2. The meaning of E? will be
clarified in the next section. Coming back to Eq.(11), we observe that the value of the wormhole
energy on the chosen background is

1 r
3,0 — = 3, JaRB) — t _
/Ed TH 1671'G/2d T/ gR A(w)G, w>—1 (32)

where

e

1t 214w (33)

B (z,y) is the Beta function and I' (z) is the gamma function. Then the one loop the self-
consistent equation for T'T tensors becomes

A (w) g — (34)

Note that for the special value of w = 1, we get

7rrt YAIR

2t _E 35

2G Y ( )
in agreement with the result of Ref. [7]. Note also that the self-consistency on the hamiltonian
as a reversed sign with respect to the energy component of the Einstein field equations. This
means that an eventual stable point for the hamiltonian is an unstable point for the effective
energy momentum tensor and vice versa.
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3. Phantom energy and the traversable wormbhole
The key point to establish the possible role of phantom energy is the following eigenvalue problem

(AthT)Z = 2K (36)
where E? is the eigenvalue of the corresponding equation, where A, is the associated
Lichnerowicz operator computed on the background of Eq.(22). By following the method of

Regge and Wheeler in analyzing the equation as modes of definite frequency, angular momentum
and parity[18], we are led to study the following system of PDE’s

(—ar+2 (552 -2 — O b (r) = B2 H (v)

r3 r
; (37)
(—o+2 (58 + 53 - 20 K (r) = B3,K (r)
where /\; is
b(r)\ d? dr —=b' (r)yr—=3b(r)\ d 1(I+1) 6 b(r)
(1‘ >ﬁ+< 202 )5‘7?(1‘7)- (38)

Defining reduced fields and passing to the proper geodesic distance from the throat of the bridge,
the system (37) becomes

[~ &+ Vi (0] 1 (2) = B2, 1 ()

(39)
|~ + Vo ()] 2 (2) = B3 2 ()
where we have defined r = r (z) and
Vi (r) =" 4 gy ()
, (40)
Va(r) = G5 + Uz (r)
with
Up(r)=c (r)+ (% — 3) ey (1),
Us(r) =1 () +3 (L +1) e (r), . (41)

1+1 141
am=%1-®") e =)
In order to use the WKB approximation, we define two r-dependent radial wave numbers
kl (xalvEl,nl) and k? (xvlaEQ,nl)

k%(x’l’EL”l) B}y — 5 — U (r)

(42)
B (0 Bau) = B3, — G = Uz ()
The number of modes with frequency less than E;, i = 1,2, is given approximately by
i (B) = /yi (1.5 21 +1)d, (43)
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where v; (I, w;), i = 1,2 is the number of nodes in the mode with (/,w;), such that

1 [t
vi (l,w;) = %/ dz\/k? (z,1, w;). (44)
—0o0

Here it is understood that the integration with respect to z and [ is taken over those values
which satisfy kf (w, [ EZ) >0, 42 =1,2. Thus the total one loop energy for T'T tensors is given
by (recall that r = r (z))

2 dg —I—oo +00 ~ = ~
ETT = iz / d( dE; = Z / l4 B\ E? - U; (T)dEi] :
i=170 ™ J\/U;i(r

We use the zeta function regularization method to compute ETT. To this purpose, we introduce
the additional mass parameter p in order to restore the correct dimension for the regularized
quantities. Such an arbitrary mass scale emerges unavoidably in any regularization schemes.

Then we have -
1 +oo ~ E*
pi(g) = Eu% dE;— — 1 (45)
veo (B - i)

If one of the functions U; (r) is negative, then the integration has to be meant in the range where
E? +U; (r) > 0. In both cases the result of the integration is

1 w2 1
g+ln<Ui(T)>+21n2—§], (46)

where the absolute value has been inserted to take account of the possible change of sign. Then
the total regularized one loop energy is

o % z'2 (r)
6472

o0 72
E™ (ry,e5p) = 4n {2/r+ drﬁ [(p1 (e) + p2 (5))]} ) (47)

r

where the factor 47 comes from the angular integration, while the factor 2 in front of the integral
appears because we have come back to the original radial coordinate r: this means that we have
to double the computation because of the upper and lower universe. Therefore the self consistent
equation (34) can be written in the form

A(w)%:ﬁl%ﬁ-%ﬁ-” (‘f\g“)] (48)

where the coefficients ¢ and b come from the integration over the r coordinate. Following the
same steps of Ref.[7] of renormalizing the Newton’s constant, we get

A(w) :ng+ gln(ﬂt“O)], (19)

Go(po) 167 |17 rj Ve
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where we have used a renormalization group-like equation. In order to have only one solution?,
we find the extremum of the r.h.s. of Eq.(49) and we get

a—b:1n<\/§rt,uo> . 7y = Ve exp<a_b> (50)

2a Ve V8o 2a

and
r apd oxp [0~ b
ar ~ e () (51

We fix firstly our attention on the following choice: Gy (o) = lf), then the wormhole radius

becomes
| a(w)
"=\ 1674 (w) 2 (52)

where we have reestablished the w dependence of the coefficient a. It is useful to write the
expression for w — +o00 and for w — 0. We get

ft:[gjﬁ(l+%(%—2ln(2))+O(w_2))]lp w — 400

(53)

= [z o)y w0

The following plots show the behavior of ¥, as a function of w. It is visible the presence of a

- r(w
1.3:
1.25—]
1.2:
1.15:
] i
I I Y I B A A
5 10 15 20

Figure 1. Plot of the wormhole throat 7; as a function of w in the positive range with a fixed
Go (ko).

3 Note that in the paper of Khusnutdinov and Sushkov[10], to find only one solution, the minimum of the ground
state of the quantized scalar field has been set equal to the classical energy. In our case, we have no external
fields on a given background. This means that it is not possible to find a minimum of the one loop gravitouns,
in analogy with Ref.[10]. Moreover the renormalization procedure in Ref.[10] is completely independent by the
classical term, while in our case it is not. Indeed, thanks to the self-consistent equation (34), we can renormalize
the divergent term.
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minimum for w = 3.35204, where r; (w) = 1.11891. As we can see, from the expression (53) and
from the Fig.1, the radius is divergent when w — 0. At this stage, we cannot establish if this is
a physical result or a failure of the scheme. When w — +o0, 7; approaches the value 1.15624[,,
while for w = 1, we obtained 7; = 1.15882[,. It is interesting to note that when w — +oo, the
shape function b(r) in Eq.(21) approaches the Schwarzschild value, when we identify 7, with
2M@G. In this sense, it seems that also the Schwarzschild wormhole is traversable. Secondly, we
identify po with the Planck scale and we get from Eq.(50) the following plot Note the absence

w

T T T[T T T T[T T T T[T T TT[TI]
0 1 2 3 4

Figure 2. Plot of the wormhole throat r; as a function of w in the positive range with a fixed
Ho-

of a minimum.

4. Summary and Conclusion

In this paper, we have generalized the analysis of self-sustaining wormholes[7] by looking how the
equation of state (2) can affect the traversability, when the sign of the parameter w is positive.
The paper has been motivated by the work of Lobo[4], Kuhfittig[5] and Sushkov[6] , where
the authors search for classical traversable wormholes supported by phantom energy. Since the
phantom energy must satisfy the equation of state, but in the range w < —1, we have investigated
the possibility of studying the whole range —oco < w < +4o0. Unfortunately, evaluating the
classical term we have discovered that such a term is well defined in the range —1 < w < +o0.
The interval —1 < w < 0 should be interesting for the existence of a “dark” energy support.
Once again, the “dark” energy domain lies outside the asymptotically flatness property. So,
unless one is interested in wormbholes that are not asymptotically flat, i.e. asymptotically de
Sitter or asymptotically Anti-de Sitter, we have to reject also this possibility. Therefore, the
final stage of computation has been restricted only to positive values of the parameter w. In
this context, it is interesting to note that also the Schwarzschild wormhole is traversable, even
if in the limiting procedure of w — +4o00. Despite of this, the obtained “traversability” has
to be regarded as in “principle” rather than in “practice” because the wormhole radius has a
Planckian size. We do not know , at this stage of the calculation, if a different approach for a
self sustained wormbhole can give better results. On the other hand, the positive w sector seems
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to corroborate the Casimir process of the quantum fluctuations supporting the opening of the
wormhole. Even in this region, we do not know what happens approaching directly the point
w = 0, because it seems that this approach is ill defined. Nevertheless, in this paper we have
studied the behavior of the energy. Work in progress seems to show that dealing with energy
density one can get more general results even in the “phantom” sector[21].
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