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Abstract

While many epidemiological models have being proposed to understand and handle COVID-19, too little

has been invested to understand how the virus replicates in the human body and potential antiviral can be

used to control the replication cycle. In this work, using a control theoretical approach, validated mathemati-

cal models of SARS-CoV-2 in humans are properly characterized. A complete analysis of the main dynamic

characteristic is developed based on the reproduction number. The equilibrium regions of the system are

fully characterized, and the stability of such a regions, formally established. Mathematical analysis high-

lights critical conditions to decrease monotonically SARS-CoV-2 in the host, such conditions are relevant

to tailor future antiviral treatments. Simulation results show the potential benefits of the aforementioned

system characterization.
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1. Introduction

By December 2019, an outbreak of cases of pneumonia of unknown etiology was reported in Wuhan,

Hubei province, China [1]. On January 7, a novel betacoronavirus was identified as the etiological agent

by the Chinese Center of Disease Control and Prevention (CDC), and subsequently named as Severe Acute

Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) [2]. On February 11, the World Health Organization

(WHO) named the disease as Coronavirus disease 2019 (COVID-19) [3]. Although, prevention and control

measures were implemented rapidly, from the early stages in Whuan and other key areas of Hubei [4], the

first reporting of cases outside of China, 2 in Thailand and 1 in Japon [5], showed that the disease was

starting to spread around the world. On March 11, with more that 111.800 cases in 114 countries, and 4921

fatality cases, the COVID-19 is declared pandemic by the WHO [5]. So far, with more than 7.000.000 total

cases confirmed in 213 countries and territories [6, 7], and a estimated case-fatality rate (CFR) of 5.7%

(H1N1 pandemic, CFR<1%)[8], the potential risks associated with this disease are evident.

Facing this situation, and taking into account the nonexistence of vaccines or specific therapeutically

treatments, preventive measures such as social and physical distancing, hand washing, cleaning and dis-

infection of surfaces and use of face masks, among others, have been implemented in order to decrease

the transmission of the virus, which is spread mainly from person-to-person through respiratory droplets

produced when an infected person coughs, sneezes or talks [9]. Furthermore, this infection prevention and

control measures, helps avoid healthcare systems from becoming overwhelmed.

Many epidemiological mathematical models [10, 11, 12] have been proposed to predict the spread of

the disease and evaluate the potential impact of infection prevention and control measures in outbreak

management [13]. However, mathematical models at within-host level that could be useful to understand

SARS-CoV-2 replication cycle and interaction with immune system as well as pharmacological effect of

potential drug therapies [14, 15] are needed. So far, there are approximately 109 trials (including those

not yet recruiting, recruiting, active, or completed) to asses pharmacological therapy for the treatment of

COVID-19 in adult patients[16], including antiviral drugs (i.e. Hydroxychloroquine, Remdesivir, Favipi-

ravir, Lopinavir/Ritonavir, Ribavirin), immunomodulatory agents (i.e. Tocilizumab) and immunoglobulin

therapy, among others.
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Recently, Hernandez-Vargas et. al. [17] proposed different within-host mathematical models (2 based

on target cell-limited model, with and without latent phase, and 1 considering immune response) for 9

infected patients with COVID-19. Numerical results in [17] showed a mean infecting time between suscep-

tible cells of 30 days (about 3 times slower than Ebola and 60 times slower than influenza), which could

explain the slow recuperation rate (12-22 days post symptom onset, pso) showed in COVID-19 infected pa-

tients. Furthermore, they informed within-host reproductive number values consistent to influenza infection

(1.7-5.35).

Although models in [17] have been fitted to COVID-19 patients data, a control theoretical approach

is needed to characterize the model dynamics. Even when the equilibrium states are known, a formal

stability analysis is needed to properly understand the model behavior and, mainly, to properly design

efficient control strategies. Note that the target cell model has been employed previously taking into account

pharmacodynamic (PD) and pharmacokinetics (PK) models of antiviral therapies [18, 19], and this can be

potentially done also for COVID-19.

In this context, the main contribution of this article is twofold. First, a full characterization of equilib-

rium and stability proprieties is performed for the COVID-19 target cell-limited model [17]. Then, formal

properties concerning the state variables behavior before convergence - including an analysis of the virus

peak times - are given. A key aspect in the target cell model for acute infections shows some particularities

such as it has a minimal non-punctual stable equilibrium set, whose stability does not depends on the repro-

duction number. On the other side, assuming a basic reproduction number greater than 1, the virus would

not be cleared before the target cells goes under a given critical value, which is independent of the initial

conditions.

After the introduction given in Section 1 the article is organized as follows. Section 2 presents the

general in-host target cell-limited model used to represent SARS-CoV-2 infection dynamic. Section 3

characterizes the equilibrium sets of the system, and establishes their formal asymptotic stability, by stating

both, the attractivity of the equilibrium set in a given domain, and its ǫ− δ (Lyapunov) local stability. Then,

in Section 4, some dynamical properties of the system are stated, concerning the values of the states at the

infection time t = 0. In Section 5 the general model for the SARS-CoV-2 infection is identified according

to patient data, and the general characteristics of the infection are analyzed. Finally, Section 6 gives the

conclusion of the work, while several mathematical formalism - necessary to support the results of Sections

3 and 4 - are given in Appendices 7, 8 and 9.

1.1. Notation

R and I denote the real and integer numbers, respectively. The real vector space of dimension n is

denoted as R
n. R

n
≥0 represents the vectors of dimension n whose components are equal or greater than

zero. The distance from a point x ∈ R
n to a set X ⊂ R

n is defined by ‖x‖X := infz∈X ‖x− z‖2, where

‖ · ‖2 denotes the norm-2. The open ball of radius ǫ around a point x ∈ R
n, with respect to set X , is defined

as Bǫ(x) := {z ∈ X : ‖x − z‖2 < ǫ}. Let us consider the real function y(z) = zez , then, the so-called

Lambert function is defined as the inverse of y(·), i.e., W (z) := f−1(z) in such a way that W (f(z)) = z.

2. SARS-CoV-2 Within-Host Mathematical Model

Although incomplete by definition, mathematical models of in-host virus dynamic improves the un-

derstanding of the interactions that govern infections and, more important, permits the human intervention

to moderate their effects [20]. Basic in-host infection dynamic models usually include the susceptible

cells, infected cells, and the pathogen particles [21]. Among the most used mathematical models, the tar-

get cell-limited model has been employed to represent and control HIV infection [22, 23, 24], influenza

[25, 26, 27, 18], Ebola [28], dengue [29, 30] among others.

In this work, we consider the mathematical model proposed by Hernandez-Vargas [17] given by the

following set of differential equations (ODEs) :

U̇(t) = −βU(t)V (t), U(0) = U0, (2.1a)

İ(t) = βU(t)V (t)− δI(t), I(0) = I0 = 0, (2.1b)

V̇ (t) = pI(t)− cV (t), V (0) = V0, (2.1c)

where U [cell], I [cell] and V [copies/mL] represent the susceptible cells, the infected cells, and the virus

load, respectively. The parameter β [(copies/mL)−1day−1] is the infection rate of susceptible cells by the
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virus. δ [day−1] is the death rate of I . p [(copies/mL)day−1cell−1] is the replication rate of free virus

from infected cell I . c [day−1] is the degradation (or clearance) rate of virus V . The effects of immune

responses are not explicitly described in this model, but they are implicitly included in the death rate of

infected cells (δ) and the clearance rate of virus (c) [26].

The model (2.1) is positive, which means that U(t) ≥ 0, I(t) ≥ 0 and V (t) ≥ 0, for all t ≥ 0. If we

denote x(t) := (U(t), I(t), V (t)), then the states are constrained to belong to:

X := {x ∈ R
3
≥0}. (2.2)

Another meaningful set is the one consisting in all the states in X with strictly positive amount of virus

and susceptible cells, i.e.,

X := {x ∈ X : U > 0, V > 0}. (2.3)

Note that the set X is an open set.

The initial conditions of (2.1) must be carefully established in order to properly represent the host body

evolution from the beginning of the infection. So, it is assumed that the system is at a healthy steady state

before the infection time t = 0, i.e., V (t) = 0, I(t) = 0, and U(t) = U0, for t < 0. At time t = 0,

a small quantity of virions enters to the host body and, so, a discontinuity occurs in V (t). Indeed, V (t)
jumps from 0 to a small positive value V0 at t0 = 0 (formally, V (t) has a discontinuity of the first kind

at t0, i.e., limt→0− V (t) = 0 while limt→0+ V (t) = V0 > 0. The same scenario arises, for instance,

when an antiviral treatment affects either parameter (say p or β).The jump of p or β can be considered as

a discontinuity of the first kind. In any case, for the time after the discontinuity, the virus may spread or

be cleared in the body, depending on its infection effectiveness. To properly determine what such a spread

means, the following (mathematical) definition is given

Definition 1 (Spreadability of the virus in the host body). Consider system (2.1), constrained by the positive

set X, at some time t0, with U(t0) > 0, I(t0) ≥ 0 and V (t0) > 0 (i.e., x(t0) = (U(t0), I(t0), V (t0)) ∈ X ).

Then, it is said that the virus spreads (in some degree) in the body host for t > t0 if there exists at least one

t∗ > t0 such that V̇ (t∗) > 0.

The latter definition states that the virus spreads in the body host if V (t) has at least one local maximum.

On the other hand, the virus does not spread if V (t) is strictly decreasing for all t > t0, which means that

V (t) has neither local minima nor local maxima. As it will be stated later on (Property 1), limt→∞ V (t) = 0
for system (2.1), independently of the fact that the virus reaches or not a maximum (this is a key difference

between acute and chronic infection models [20, 21]).

The infection severity could be related with the virus spreadability established in Definition 1. Liu et.al.

[31] have shown that patients with severe COVID-19 tend to have a high viral load and a long virus shedding

period. The mean viral load of severe cases was around 60 times higher than that of mild cases, suggesting

that higher viral loads might be associated with severe clinical outcomes. Furthermore, they found that

the viral load of severe cases remained significantly higher for the first 12 days after the appearance of

the symptoms than those of corresponding mild cases. Mild cases were also found to have an early viral

clearance, with 90% of these patients repeatedly testing negative on reverse transcription polymerase chain

reaction (RT-PCR) by day 10 post symptoms onset (pso). By contrast, all severe cases still tested positive at

or beyond day 10 pso. In addition, Zheng et.al. [32] from an study with 96 SARS-CoV-2 positive patients

(22 with mild disease and 74 with severe disease) reported a longer duration of SARS-CoV-2 in lower

respiratory samples of severe patients, such as, for patients with severe disease (21 days, 14-30 days) was

significantly longer than in patients with mild disease (14 days, 10-21 days; p=0.04). Moreover, higher viral

loads were detected in respiratory samples, although no differences were found in stool and serum samples.

Although, these findings suggest that reducing the viral load through clinical means and strengthening

management should help to prevent the spread of the virus, they are preliminary and it remains controversial

whether virus persistence is necessary to drive the dysfunctional immune response characteristic of COVID-

19 patients [33].

Remark 1. Note that the virus spreadability may or may not cause a severe infection (a disease that

eventually cause the host death) depending on how much time the virus is above a given value.

To properly establish conditions under which the virus does not spread for t > 0 (i.e., after the infection

time t = 0) the so-called basic reproduction number within-host is defined next.
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Definition 2. The basic reproduction number within-host R is defined as the number of infected cells (or

virus particles) that are produced by one infected cell (or virus particle), at a given time. Its mathematical

expression is given by:

R(t) := U(t)
βp

cδ
. (2.4)

Particularly, for t = 0, this number describes the number of infected cells produced by one infected cell,

when a small amount of virus, V0, is introduced into a healthy stationary population of uninfected target

cells, U0,

R0 := U0
βp

cδ
. (2.5)

A discussion about the way this value is obtained is given in Appendix 8. The relation between the basic

reproduction number at the infection time (R0) and the virus spreadiblity is stated in the next theorem.

Theorem 2.1. Consider system (2.1), constrained by the positive set X, at the beginning of the infection,

i.e., U(0) = U0 > 0, I(0) = 0 and V (0) = V0 > 0 (i.e., x(0) = (U(0), I(0), V (0)) ∈ X ). Then, a

sufficient condition (not necessary) for the virus not to spread in the host body is given by R0 < 1.

Proof: It is easy to see that the initial conditions are such that RV (0) :=
pI(0)
cV (0) = 0 < 1. So, considering

that R0 < 1 by hypothesis, the result corresponds to Theorem 9.1. (i)., when t0 = 0. �

Remark 2. According to Theorem 9.1, in Appendix 9, there exists a positive value α(0) > 0 (which is an

implicit function of the initial conditions and the parameters, and it can be computed numerically) such

that condition R0 < 1 + α(0) is a necessary and sufficient condition for the virus not to spread in the host

body, after the infection time t = 0. This means that for R0 > 1 + α(0) the virus spreads in the host, as

it is usually the case in real infections. In any case, the value of α(0) is generally close to zero (when β is

small), so to consider 1 as a threshold for the virus to spread seems to be a reasonable approximation.

Before proceeding with a full dynamic analysis of system (2.1), let us define first the so-called critical

value of the susceptible cells, which shows to be an useful threshold value to properly understand the spread

of the virus.

Definition 3. The critical value for U , Uc, is defined as

Uc :=
cδ

pβ
, (2.6)

which, for fixed system parameters β, p, δ and c, is a constant.

Note that U(t) < Uc if and only if R(t) < 1, for every t ≥ 0.

2.1. Equilibrium set characterization

By equaling U̇ , İ and V̇ to zero, in (2.1), it can be shown that the system only has healthy equilibria of

the form xs = (Us, 0, 0), with Us being an arbitrary positive value, i.e., Us ∈ [0,∞). Thus, there is only

one equilibrium set, which is the healthy one, and it is defined by

Xs := {(U, I, V ) ∈ R
3 : U ∈ [0,∞), I = 0, V = 0}. (2.7)

To have a first look on the stability of the equilibrium points in Xs, system (2.1) can be linearized at a

general state xs ∈ Xs. By simplifying (2.1) we have:

U̇ = f(U, I, V ),

İ = g(U, I, V ),

V̇ = h(U, I, V ).

Then, the Jacobian matrix is given by
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J =













∂f

∂U

∂f

∂I

∂f

∂V
∂g

∂U

∂g

∂I

∂g

∂V
∂h

∂U

∂h

∂I

∂h

∂V













=





−βV 0 −βU
βV −δ βU
0 p −c



 .

And the Jacobian evaluated at any point xs ∈ Xs reads

As =





0 0 −βUs

0 −δ βUs

0 p −c



 .

with Us ∈ [0,∞). Then, the eigenvalues (λ1, λ2, λ3) are computed as the solution to Det(As − λI) = 0,

being the matrix As − λI given by

As − λI =





−λ 0 −βUs

0 (−δ − λ) βUs

0 p (−c− λ)



 .

Then, considering that Det(A− λI) = λ[−λ2 − (c+ δ)λ+ (βUsp− cδ)], condition Det(A− λI) = 0 is

given by

λ[−λ2 − (c+ δ)λ+ (βUsp− cδ)] = 0.

The first eigenvalue is trivially given by λ1 = 0. The other two, are given by:

λ2,3 =
(c+ δ)±

√

(c+ δ)2 + 4(βUsp− cδ)

−2
.

To analyze the eigenvalues qualitatively, note that for Us = Uc it is

λ2,3 =
(c+ δ)±

√

(c+ δ)2 + 4(βp cδ
pβ

− cδ)

−2

=
(c+ δ)±

√

(c+ δ)2 + 4(cδ − cδ)

−2

=
(c+ δ)± (c+ δ)

−2
,

which means that λ2 = 0 and λ3 = −(c+δ) < 0 (given that c, δ > 0). Furthermore, λ2 < 0 and λ3 < 0 for

Us < Uc; and λ2 > 0 and λ3 < 0 for Us > Uc. Given that the maximum eigenvalue is the one dominating

the stability behavior of the equilibrium under consideration, it is possible to infer how the system behaves

near some segments of Xs. The first intuition is that the equilibrium set

X 1
s := {(U, I, V ) ∈ R

3 : U ∈ [0,Uc), I = 0, V = 0} (2.8)

is stable, and that the equilibrium set

X 2
s := {(U, I, V ) ∈ R

3 : U ∈ [Uc,∞), I = 0, V = 0} (2.9)

is unstable. These are just intuitions, given that one of the eigenvalues of the linearization system is null and

so the linear approximation cannot be used to fully determine the stability of the nonlinear system (Theorem

of Hartman-Grobman [34, 35]). To formally prove the asymptotic stability of X 1
s in a given domain, it is

necessary to prove its global attractivity (in such domain) and local ǫ-δ stability.

3. Asymptotic stability of the equilibrium sets

A key point to analyze the general asymptotic stability (AS) of system (2.1) is to consider stability of

the complete equilibrium sets X 1
s and X 2

s , and not of the single points inside them (as defined in Definitions

5, 6 and 7, in Appendix 7). As it is shown in the next subsections, there is no single AS equilibrium points

in this system, although there is an AS equilibrium set (i.e., X 1
s ).

As stated in Definition 7, in Appendix 7, the AS of X 1
s requires both, attractivity and ǫ − δ stability,

which are stated in the next two subsections, respectively. Then, in Subsection 3.3 the AS theorem is

formally stated.
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3.1. Attractivity of set X 1
s in X

Before proceeding with the formal theorems of the atractivity of X 1
s , let us consider the following key

property of system (2.1) concerning the atractivity of Xs.

Property 1 (Atractivity of Xs). Consider system (2.1) constrained by the positive set X, at some arbitrary

time t0, with U(t0) > 0, I(t0) ≥ 0 and V (t0) > 0 (i.e., x(t0) = (U(t0), I(t0), V (t0)) ∈ X ). Then,

U∞ := limt→∞ U(t) is a constant value smaller than U(t0), I∞ := limt→∞ I(t) = 0 and V∞ :=
limt→∞ V (t) = 0, which means that x(t) = (U(t), I(t), V (t)) tends to some state in Xs.

Proof: Since U̇(t) ≤ 0 for all t ≥ 0 and all (U(t0), I(t0), V (t0)) ∈ X , by (2.1a) U(t) is a decreasing

function (no oscillation can occur). Since U(t0) > 0 and V (t0) > 0, then U∞ = limt→∞ U(t) is a constant

value in [0, U(t0)). Given that U(t) converges to a finite fixed value, then U̇(t) = 0 as t → ∞, by (2.1a).

This implies, by the same equation (2.1a), that U(t)V (t) = 0 as t → ∞, and so, from equation (2.1b), that

İ(t) = −δI(t) as t → ∞, whose solution asymptotically goes to zero. Then, I∞ = limt→∞ I(t) = 0.

Finally, by equation (2.1c)), V̇ (t) = −δV (t) as t → ∞, whose solution asymptotically goes to zero. Then

V∞ = limt→∞ V (t) = 0, which completes the proof. �

Property 1 states that Xs is an attractive set for system (2.1), in X , but not the smallest attractive set.

Now, conditions are given to show that the smallest attractive set is given by X 1
s .

Theorem 3.1 (Atractivity of X 1
s ). Consider system (2.1) constrained by the positive set X. Then, the set

X 1
s defined in (2.8) is the smallest attractive set in X . Furthermore, X 2

s , defined in (2.9), is not attractive.

Proof: The proof is divided into two parts. First it is proved that X 1
s is an attractive set, and then, that it is

the smallest one.

Attractivity of X 1
s : The attractivity of Xs in X is already proved in Property 1. So, to prove the attrac-

tivity of X 1
s in X (and to show that X 2

s is not attractive) it remains to demostrate that U∞ ∈ [0,Uc). From

system (2.1), by replacing (2.1a) in (2.1b), it follows that İ(t) = βU(t)V (t) − δI(t) = −U̇(t) − δI(t),
which implies that

I(t) = (−
1

δ
)(İ(t) + U̇(t)). (3.1)

From (2.1c) it follows that

V (t) =
1

c
(pI(t)− V̇ (t)). (3.2)

Then, replacing (3.1) in (3.2), we have

V (t) = [p(−
1

δ
)(İ(t) + U̇(t))− V̇ (t)]

1

c
. (3.3)

Finally, by substituting (3.3) in (2.1a), and multiplying by 1/U(t) both sides of the equation (without loss

of generality we assume that U(t) 6= 0), it follows that

1

U(t)
U̇(t) =

βp

cδ
U̇(t) +

βp

cδ
İ(t) +

β

c
V̇ (t). (3.4)

This latter equation can be integrated, for general initial conditions U0, I0 and V0, as follows:

ln(
U(t)

U0
) =

βp

cδ
(U(t)− U0) +

βp

cδ
(I(t) − I0) +

β

c
(V (t)− V0). (3.5)

Now, by defining U∞ := limt→∞ U(t), I∞ := limt→∞ I(t), V∞ := limt→∞ V (t), and recalling from

Property 1 that I∞ = V∞ = 0, the latter equation for t → ∞, reads

ln(
U∞

U0
) =

βp

cδ
(U∞ − U0) +

βp

cδ
(I∞ − I0) +

β

c
(V∞ − V0)

=
βp

cδ
U∞ −R0 −

βp

cδ
I0 −

β

c
V0
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=
βp

cδ
U∞ −R0 +K0, (3.6)

where R0 := βp

cδ
U0 (as it was defined in (2.5)) and

K0 := −
β

c
(
p

δ
I0 + V0). (3.7)

Note that R0 is a function of U0 while K0 is a function of I0 and V0, and, furthermore, R0 > 0 and K0 < 0
for every x0 = (U0, I0, V0) ∈ X . Then, after some manipulation, (3.6) reads

−
βp

cδ
U∞e−

βp
cδ

U∞ = −
βp

cδ
U0e

−R0eK0 = −R0e
−R0eK0 . (3.8)

Now, by denoting z = z(R0,K0) := −R0e
−R0eK0 and y := −βp

cδ
U∞, the latter equation can be written

as

W (z) = y, (3.9)

or, the same,

W (−R0e
−R0eK0) = −

βp

cδ
U∞, (3.10)

where W (·) is a Lambert function. Figure 1 shows the graph of such a function, where it can be seen that

it has two branches, denoted as Wp and Wm. However, W (·) = Wp(·) in this case, since Wm → −∞
for z → 0−, which has not biological sense (note that U∞ is a finite value in [0, U0)). Besides, function

−1/e < z(R0,K0) ≤ 0 for R0 > 0 and K0 < 0 (Figure 2 shows a plot of function z(R0,K0) for negative

values of K0 and positive values of R0), and function Wp maps (−1/e, 0] into (−1, 0], which implies that

1 > −W (z(R0,K0)) ≥ 0, (3.11)

for R0 > 0 and K0 < 0. This way, by (3.10), it follows that

U∞ = −
cδ

βp
W (−R0e

−R0eK0)

= −UcW (−R0e
−R0eK0)

∈ [0,Uc), (3.12)

which completes the proof.

X 1
s is the smallest attractive set: It is clear, from the previous analysis, that any initial state x0 =

(U0, I0, V0) in X converges to a state x∞ = (U∞, 0, 0) with U∞ ∈ [0,Uc). This means that every state

xs ∈ X 2
s is not attractive in X and so, neither the whole set X 2

s . Let us consider now a state xs ∈
X 1

s and an arbitrary small ball of radius ǫ > 0, w.r.t. X , around it, Bǫ(xs) ∈ X . Take two arbitrary

initial states x0,1 = (U0,1, I0,1, V0,1) and x0,2 = (U0,2, I0,2, V0,2) in Bǫ(xs), such that U0,1 6= U0,2 and

V0,1 6= V0,2. These two states converge, according to equation (3.11), to x∞,1 = (U∞,1, 0, 0) and x∞,2 =
(U∞,2, 0, 0), respectively. Given that function z(R,K) is monotone (injective) in R0 (and so in U0) and

W (z) is monotone (injective) in z, then U∞,1 6= U∞,2. This means that, although both initial states

converge to some state in X 1
s , they necessarily converge to different points. Therefore neither single states

xs ∈ X 1
s nor subsets of X 1

s are attractive in X . So, X 1
s is the smallest attractive set and the proof is

concluded. �

Remark 3. Note that X 1
s and X 2

s are in the closure of the open set X , which is not in X . In other words,

what Theorem 3.1 shows is that any initial state in X converges to a point onto the boundary of X that does

not belong to X . Furthermore note that, an initial state of the form (U0, 0, 0), U0 > Uc, (i.e., a state in

X 2
s ) cannot be attracted by any set since it is - by definition - an equilibrium state (every state in X 2

s will

remains unmodified). This is the reason why it is not possible to consider the attractivity of X 2
s in X .

7



-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

z

-6

-5

-4

-3

-2

-1

0

1

W
(z

)

Lambert function W(z)

W
p

W
m

(-1/e,-1)

Figure 1: Lambert function. W (z) has two branches, denoted as Wp (in blue) and Wm (in red). Both branches are

defined for z ∈ [−1/e, 0]: however limz→0− Wp = 0 while limx→0− Wm = −∞, which means that only the branch
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Figure 2: Function z(R0,K0), for R0 ≥ 0 and K0 ≤ 0.
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Figure 3: Every point in X 1

s is ǫ− δ stable but not attractive. Initial states x0 starting arbitrarily close to xs remains (for

all t ≥ 0) arbitrarily close to xs, but does not converges to xs. As a consequence, set X 1

s is AS but the points inside it

are not.

3.2. Local ǫ− δ stability of X 1
s

The next theorem states the formal Lyapunov (or ǫ− δ) stability of the equilibrium set X 1
s .

Theorem 3.2. Consider system (2.1) constrained by the positive set X. Then, the equilibrium set X 1
s defined

in (2.8) is locally ǫ− δ stable.

Proof: Let us consider a particular equilbrium point xs := (Us, 0, 0), with Us ∈ [0,Uc) (i.e., xs ∈ X 1
s ).

Then a Lyapunov function candidate is given by (similar to one used in [36] for chronic infections)

J(x) := U − Us − Us ln(
U

Us

) + I +
δ

p
V. (3.13)

This function is continuous in X, is positive for all nonegative x 6= xs and J(xs) = 0. Function J evaluated

at the solutions of system (2.1) reads:

J̇(x(t)) =
∂J

∂x
ẋ(t) =

[

dJ

dU

dJ

dI

dJ

dV

]





−βU(t)V (t)
βU(t)V (t)− δI(t)

pI(t)− cV (t)





=

[

(1−
Us

U(t)
) 1

δ

p

]





−βU(t)V (t)
βU(t)V (t)− δI(t)

pI(t)− cV (t)





= (−βU(t)V (t) + UsβV (t)) + (βU(t)V (t)− δI(t)) + (δI(t)−
δc

p
V (t))

= UsβV (t)−
δc

p
V (t) = V (t)(Usβ −

δc

p
). (3.14)

Now, given Us ∈ [0,Uc), with Uc = δc
βp

, it follows that J̇(x(t)) ≤ 0 for every x ∈ X (note that it is not

true that J̇(x(t)) < 0 for x 6= xs, as shown next, in Remark 4). Then, J is a Lyapunov function for system

(2.1), which means that each xs ∈ X 1
s is ǫ − δ stable. Therefore, it is easy to see that the equilibrium set

X 1
s as a whole is also ǫ− δ stable, which completes the proof. �

Remark 4. Note that, in the latter proof, it is not true that J̇(x(t)) < 0 for every nonegative x 6= xs. If for

instance, the function J̇(x(t)) is evaluated at x̂s = (Û , 0, 0), with Û /∈ Us, we have that J̇(x̂s(t)) = 0. In

fact, J̇(x(t)) is null along the whole U axis, given that this axis is an equilibrium set. This means that the

(individual) states in X 1
s are ǫ − δ stable, but not attractive.

A schematic plot of such a behavior can be seen in Figure 3.
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Remark 5. A similar behavior can be seen in system ẋ = Ax, when A = [0 − 1; 0 − 1 ], or the 2-state

Kermack-McKendrick epidemic model [37, 38]: Ṡ = βSI , İ = βSI − δI , being S the susceptible and I
the infected individual. In this latter model, R0 := (δ/β)S0 and (the critical value for S is) Sc = δ/β. The

AS set is given by all the states of the form xs := (Ss, 0), with Ss ∈ [0, Sc). Furthermore, for this system,

the maximum of I occurs when S = Sc.

3.3. Asymptotic stability of X 1
s

In the next Theorem, based on the previous results concerning the attractivity and ǫ− δ stability of X 1
s ,

the asymptotic stability is formally stated.

Theorem 3.3. Consider system (2.1) constrained by the positive set X. Then, the set X 1
s defined in (2.8) is

smallest asymptotically stable (AS) equilibrium set, with a domain of attraction given by X .

Proof: The proof follows from Theorems 3.1, which states that X 1
s is the smallest attractive in X , and 3.2,

which states the local ǫ− δ stability of X 1
s . �

A critical consequence of the latter Theorem is that no equilibrium point in Xs (neither in X 1
s , nor

in X 2
s ) can be used as setpoint in a control strategy design. The effect of antivirals (pharmocodynamic),

for instance, is just to reduce the virus infectivity (by reducing the infection rate β) or the production of

infectious virions (by reducing the replication rate p) [20]. So, the previous stability analysis is still valid

for controlled system, since only a modification of some of the parameters defining Uc is done. In such a

context, only a controller able to consider the whole set X 1
s as a target (a set-based control strategy, as zone

MPC [39, 40]) will be fully successful in controlling system (2.1).

4. Characterization for different initial conditions

In this section some further properties of system (2.1) concerning its dynamic are stated, based on the

initial conditions at the infection time t = 0. The objective is to fully characterize the states behavior in

a qualitative way, including the times at which the virus and the infected cells reach their peaks. First,

Property 2 states some characteristics of U∞ for different initial conditions. Then, Theorem 4.1 states a

general relationship between the peak times of V and I and the time at which U reaches its critical value

Uc.

Property 2. Consider system (2.1), constrained by the positive set X, at the beginning of the infection, i.e.,

U(0) = U0 > 0, I(0) = 0 and V (0) = V0 > 0 (i.e., x(0) = (U(0), I(0), V (0)) ∈ X ). Consider also that

V0 is small enough. Then,

i. U∞ → 0 when U0 → ∞ or U0 → 0.

ii. U∞ → Uc when U0 → Uc.

iii. 0 < U∞(U0,1, I0, V0) < U∞(U0,2, I0, V0) < Uc, for initial conditions U0,1 < U0,2 < Uc.

iv. 0 < U∞(U0,2, I0, V0) < U∞(U0,1, I0, V0) < Uc, for initial conditions Uc < U0,1 < U0,2.

Proof: If I0 = 0 and V0 ≈ 0 then K0 ≈ 0. Therefore W (−R0e
K0−R0) ≈ W (−R0e

−R0), and U∞ ≈
−UcW (−R0e

−R0) by (3.10).

i. W (−R0e
−R0) → 0 when −R0e

−R0 → 0, which means that either R0 → 0 or R0 → ∞. This

implies that U0 → 0 or U0 → ∞, respectively.

ii. W (−R0e
−R0) → −1 when −R0e

−R0 → −1/e, which is true if R0 → 1 or, the same, when

U0 → Uc.

iii. Function z(R0) = R0e
−R0 is strictly decreasing for R0 ∈ (0, 1) (note that R01 :=

cδU0,1

βp
and

R02 :=
cδU0,2

βp
are in (0, 1), since they are smaller than Uc), while −Wp(·) is strictly decreasing

in (−1/e, 0). So, 0 < −Wp(−R01e
−R01) < −Wp(−R02e

−R02) < 1, which implies that 0 <
U∞(U0,1, I0, V0) < U∞(U0,2, I0, V0) < Uc.

10
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Figure 4: According to equation (3.10), U∞(U0) is plotted for different values of V0. All parameters are equal to 1 for

simplicity, which means that Uc = 1.

iv. Function z(R0) = R0e
−R0 is strictly increasing for R0 ∈ (1,∞), while −Wp(·) is strictly de-

creasing in (−1/e, 0). So, 0 < −Wp(−R02e
−R02) < −Wp(−R01e

−R01) < 1, which implies that

0<U∞(U0,2, I0, V0) < U∞(U0,1, I0, V0) < Uc. Figure 4 shows U∞ as a function of U0, taking V0 as

a parameter. �

Figure 5 shows a phase portrait of system (2.1), where all parameters are equal to 1 for simplicity, which

means that Uc = 1.

Theorem 4.1 (Virus behavior from the infection time). Consider system (2.1), constrained by the positive

set X, at the beginning of the infection, i.e., U(0) = U0 > 0, I(0) = 0 and V (0) = V0 > 0 (i.e.,

x(0) = (U(0), I(0), V (0)) ∈ X ). If the virus spreads (according to Definition 1), then there exist positive

times ťV , t̂I , tc and t̂V , such that ťV < t̂I < tc < t̂V , where ťV and t̂V are the times at which V (t) reaches

a local minimum and a local maximum, respectively, t̂I is the time at which I(t) reaches a local maximum,

and tc is the time at which U(t) reaches Uc. Furthermore, V̇ (t) < 0 for all t > t̂V .

Proof: If I(0) = 0 then RV (0) < 1, and Theorem 4.1 is a particular case of Theorem 9.1 (ii).

Next, a Remark concerning a particularity of Theorem 4.1 is introduced, that may help to approximately

determine the global maximum of the virus load.

Remark 6. Consider the hypothesis of Theorem 4.1. Then, it can be shown that for V0 → 0, t̂V → tc
from the right, and t̂I → tc from the left, meaning that the peaks of V and I tends to occurs simultaneously

at time tc. This fact can be seen in Table 2, when data coming from real patients are used to identify the

model.

A main consequence of Theorem 4.1 and Remark 6 is that it guaranties that the virus will monotonically

go to zero only after U is below Uc. That is, any action devoted to steers V to zero before tc may be

counterproductive, since slowing down V implies to soften the decreasing behavior of U , delaying time

tc, and maintaining V large for a longer time. This critical fact has a direct effect in a potential controlled

system, when parameters p or β are scaled down by antiviral treatments. Assuming that R0 remains greater

than 1, any attempt to steer V to zero before U has taken values below Uc may be unsuccessful, if U is not

controlled first.
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Figure 5: Phase portrait of system (2.1), with unitary parameters. Empty circles represent the initial state, while solid

circles represent final states. Note that only the initial states with U0 > Uc = 1 corresponds to scenarios with R0 > 1.

5. Particularization of the model with patient data

In this section, the parameters of model (2.1) will be associated to data from 9 patients with COVID-19

- labeled as A,B,C,D,E,F,G,H and I - reported in [41]. Here, we consider work in [17], where different

models for in-host SARS-CoV-2 were proposed and identified to fit the virus load data collected in [41].

The initial number of target cells U0 is estimated approximately 107 cells [17]. I0 is assumed to be 0
while V0 is determined by interpolation considering an incubation period of 7 days (note, that V0 ranges

from 0.02 to 5.01 copies/mL which is below the detectable level of about 100 copies/mL). Moreover, the

onset of the symptoms is assumed to occurs 4 to 7 days after the infection time (day 0, Figure 6 and 7).

Since the viral load is measured in logarithmic scale, the parameter fitting was performed minimizing

the root mean square (RMS) difference on logarithmic scale between the model predictive output (V̂i) and

the experimental measurements (Vi), employing the Differential Evolution (DE) algorithm proposed in

[17, 20]. The parameters and the initial conditions (U0, I0 and V0, with t0 = 0 the infection time) of each

patient are collected in Table 1.

Table 1: Target limited cell model parameter values for different patients with COVID-19 [17].

Patient β δ p c
A 9.98× 10−8 0.61 9.3 2.3

B 1.77× 10−7 14.11 20.2 0.8

C 8.89× 10−7 79.51 134.4 0.4

D 3.15× 10−8 45.51 620.2 2.0

E 5.61× 10−8 7.51 96.4 5.0

F 1.41× 10−8 37.61 995.0 0.6

G 1.77× 10−8 8.21 338.4 5.0

H 1.58× 10−8 21.11 927.8 1.8

I 4.46× 10−9 4.21 994.6 4.3

According to the system analysis developed in previous sections, some relevant dynamical values are

shown in Table 2. Constant α(0) (defined in Theorem 9.1) is small than 10× 10−4 for all the patients, so it

is not taken into account for the study.
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Table 2: Characterization Parameters of patients with COVID-19.

Patient Uc U∞ R0 K0 t̂I tc t̂V Vmax

A 1.51× 106 1.36× 104 6.61 −2.17× 10−7 10.16 10.24 10.58 1.73× 107

B 3.15× 106 4.88× 105 3.18 −6.87× 10−8 11.54 12.26 12.32 4.35× 106

C 2.66× 105 4.81× 10−10 37.57 −6.89× 10−7 1.43 1.67 1.69 1.47× 107

D 4.65× 106 1.67× 106 2.15 −4.89× 10−9 9.04 9.42 9.44 2.33× 107

E 6.94× 106 4.58× 106 1.44 −3.48× 10−9 15.02 15.16 15.24 4.03× 106

F 1.61× 106 2.03× 104 6.21 −7.28× 10−9 7.12 7.76 7.78 1.42× 108

G 6.84× 106 4.43× 106 1.46 −1.1× 10−9 14.80 14.92 15.00 1.44× 107

H 2.59× 106 2.3× 105 3.86 −2.72× 10−9 5.16 5.44 5.48 1.577× 108

I 4.08× 106 1.14× 106 2.45 −3.21× 10−10 9.28 9.38 9.50 2.60× 108

Figures 6 and 7 shows the evolution of V and U for all patients. As expected, the states converges to

X 1
s , although significantly different behavior can be observed for the different patients. From Figure 7 it

can be seen that the healthy cells final value U∞ is reduced in cases of patients with large values of R0,

in spite all patients have the same initial U0. This can be explained from the fact that W (R0e
−R0eK0) is

monotonically decreasing for R0 > 1 (see Figures 1 and 2), and therefore, 0 < U∞(R01) < U∞(R02) for

R01 > R02 > 1. Note that the healthy cells of patient C converges to U∞ equals to 4.810× 10−10 [cell],
which can be explained by the fact that this patient has a reproduction number (R0) of 37.57, which is

5.2 times above the cohort mean value of 7.21. Figure 6 and Table 2 show that the viral load of patient C

reaches the peak at 1.69 days post infection (dpi) (40.56 hours post infection, hpi).

Furthermore, from Figure 6, it can be seen that for all the cases the viral load spreads (i.e.: the virus

presents a peak) although RV (0) < 0 for all patients (i.e., I0 = 0). This can be justified since U0 ≫ Uc

and, therefore, R0 will be greater than 1 + α(0) for all patients (note that, α(0) < 10× 10−4). Moreover,

from Table 2, we can corroborate that t̂I > tc > t̂V which is in accordance to what is stated in Theorem

4.1.

Concerning the immune response, this model makes the assumption that it is constant and independent

on viral load as well as infected cells. Furthermore, neither innate or adaptive response are modeled,

being the viral load dynamic mainly limited by target cells availability. Since recent studies have shown a

dysfunctional immune response (i.e.: lymphogenia, desregulated secretion of pro-inflammatory cytokines,

excessive infiltration of monocytes, macrophages and T cells, among others) [33, 42], this effect should

be added in the proposed model, in order to have a more reliable representation (and, eventually, a more

realistic control objective). In addition, a more reliable standard to measure the severity of disease could be

related with the viral spreadability as well as the deregulated inflammatory response.

6. Conclusions

In this work a full dynamical characterization of a COVID-19 in-the-host target-cell model is performed.

Opposite to what happens in other similar models, it is shown that there exists a minimal non-punctual

stable equilbrium set depending only on the system parameters. Furthermore, it is shown that there exists a

parameter-depending threshold for the susceptible cells that fully characterizes the virus and infected cells

qualitative behavior. Simulations performed with real-patient data demonstrate the potential utility of such

system dynamic characterization to tailor the the most valuable pipeline drugs against SARS-CoV-2.

7. Appendix 1. Stability theory

In this section some basic definitions and results are given concerning the asymptotic stability of sets

and Lyapunov theory, in the context of non linear continuous-time systems. All the following definitions

are referred to system

ẋ(t) = f(x(t)), x(0) = x0, (7.1)

where x is the system state constrained to be in X ⊆ R
n, f is a Lipschitz continuous nonlinear function,

and φ(t;x) is the solution for time t and initial condition x.
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Figure 6: Virus time evolution for all patients. As it can be seen, very different behaviors are obtained. Vclear denotes a

values of 50 [copies/ml] under which the virus is considered cleared.

Definition 4 (Equilibrium set). Consider system 7.1 constrained by X. The set Xs ⊂ X is an equilibrium

set if each point x ∈ Xs is such that f(x) = 0 (this implying that φ(t;x) = x for all t ≥ 0).

Definition 5 (Attractivity of an equilibrium set). Consider system 7.1 constrained by X. A closed equilib-

rium set Xs ⊂ X is attractive in X ⊂ X if limt→∞ ‖φ(t;x)‖Xs
= 0 for all x ∈ X .

Any set containing an attractive set is attractive, so the significant attractive of a constrained system set

is given by the smallest one.

Definition 6 (ǫ − δ local stability of an equilibrium set). Consider system 7.1 constrained by X. A closed

equilibrium set Xs ⊂ X is ǫ − δ locally stable if for all ǫ > 0 it there exists δ > 0 such that in a given

boundary of Xs, ‖x‖Xs
< δ, it follows that ‖φ(t;x)‖Xs

< ǫ, for all t ≥ 0.

Definition 7 (Asymptotic stability (AS) of an equilibrium set). Consider system 7.1 constrained by X. A

closed equilibrium set Xs ∈ X is asymptotically stable (AS) in X ⊂ X if it is ǫ − δ locally stable and

attractive in X .

Theorem 7.1 (Lyapunov theorem). Consider system 7.1 constrained by X and an equilibrium state xs ∈
Xs ⊂ X. Let consider a function V (x) : Rn → R such that V (x) > 0 for x 6= xs, V (xs) = 0 and

V̇ (x(t)) ≤ 0, denoted as Lyapunov function. Then, the existence of such a function implies that xs ∈ Xs

is ǫ − δ locally stable. If in addition V̇ (x(t)) < 0 for all x 6= xs and V̇ (xs) = 0, then xs ∈ Xs is

asymptotically stable.

8. Appendix 2. Derivation of the basic reproduction number R0

The derivation of the basic reproduction number R0 will be given by means of the concept of next-

generation matrix [43]. Consider system (2.1) and assume that a healthy equilibrium exists, of the form

x0 = (U0, 0, 0), and it is stable in absence of disease. Of the complete state of system (2.1), x = (U, I, V ),
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Figure 7: Healthy cells time evolution for all patients. Pat C shows a very slow value of U∞ (practically zero), which

suggest that the selected value of U0 = 1.0e7 is too large.

only two states depend on infected cells, that is I and V . Let us rewrite the ODEs for this two states in the

form

İ(t) = FI(x) − GI(x)

V̇ (t) = FV (x)− GV (x)

where Fi(x), i = {I, V }, is the rate of appearance of new infections in compartment i, while Gi(x),
i = {I, V }, is the rate of other transitions between compartment i and the other infected compartments,

that is
FI(x) = βU(t)V (t) and GI(x) = δI(t)
FV (x) = 0 and GV (x) = −pI(t) + cV (t)

If we now define

F =











∂FI(x)

∂I

∂FI(x)

∂V

∂FV (x)

∂I

∂FV (x)

∂V











x=x0

=

[

0 βU0

0 0

]

and

G =











∂GI(x)

∂I

∂GI(x)

∂V

∂GV (x)
∂I

∂GV (x)

∂V











x=x0

=

[

δ 0
−p c

]

then matrix FG−1, represents the so-called next-generation matrix. Each (i, j) entry of such a matrix

represents the expected number of secondary infections in compartment i produced by an infected cell

introduced in compartment j. The spectral radius of this matrix, that is, the maximum absolute value of its

eigenvalues, defines the basic reproduction number R0.
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For the specific case of system (2.1), the next-generation matrix is given by

FG−1 =







βpU0

cδ

βU0

c

0 0







Therefore, the basic reproduction number R0 is given by

R0 =:
βpU0

cδ

Notice that R0 coincides with the entry (1, 1) of matrix FG−1, thus meaning that R0 represents the

expected number of secondary infections produced in compartment I by an infected cell originally in I .

9. Appendix 3. General virus characterization for the dynamic (2.1)

The next theorem characterizes all possible virus behavior, depending on the arbitrary initial conditions

and the parameters.

Theorem 9.1 (Virus behavior from an arbitrary time). Consider system (2.1), constrained by the pos-

itive set X, at some arbitrary time t0, with U(t0) > 0, I(t0) ≥ 0 and V (t0) > 0 (i.e., x(t0) =

(U(t0), I(t0), V (t0)) ∈ X ). Let define R(t) := βpU(t)
δc

and RV (t) :=
pI(t)
cV (t) . Then,

i. if RV (t0) < 1 and R(t0) < 1 + α(t0), where α(t0) is a positive value, depending on I(t0), V (t0)
and the parameters, then, V̇ (t) < 0 for all t > t0 (i.e., V (t) is strictly decreasing for all t > t0 and,

so, the virus does not spread in the body host),

ii. if RV (t0) < 1 and the virus spreads in the body host (i.e. V (t) reaches a local maximum, at some

time t̂V > t0, before it goes to zero), then R(t0) > 1+α(t0). Even more, V (t) has a local minimum

at some time ťV > t0, with ťV < t̂V , and after the local maximum it is strictly decreasing, i.e.,

V̇ (t) < 0 for all t > t̂V . On the other hand, I(t) has only one local maximum at time t̂I , being

t0 < ťV < t̂I < tc < t̂V , where tc is the time when R reaches 1 from above (or, the same, when U(t)
reaches its critical value Uc).

iii. if RV (t0) > 1, then it there exists t̂V > t0 such that V̇ (t) > 0 for all t0 < t < t̂V , while V̇ (t) < 0
for all t > t̂V (i.e., V (t) has a global maximum at t̂V and then it is strictly decreasing for all t > t̂V ).

This means that the virus spreads in the host body.

Proof: First note that for positive parameters, equation (2.1.a) implies that U̇(t) < 0 for all t ≥ t0 and,

so, R(t) = U(t)βp
cδ

is strictly decreasing for all t ≥ t0. Given that R∞ := limt→∞ R(t) = U∞
βp
cδ

and

U∞ < Uc :=
cδ
βp

(see Theorem 3.1), then R∞ < 1. So, for R(t0) > 1, there exists only one time

tc > t0, (9.1)

at which R(tc) = 1, being R(t) > 1 for t0 < t < tc and R(t) < 1 for t > tc.

i. By hypothesis, RV (t0) = pI(t0)
cV (t0)

< 1, which implies that V̇ (t0) < 0 (V starts decreasing at t0).

On the other hand, by Lemma 1, V reaches a minimum or an inflection point at at time t∗V > t0 if

R(t∗V ) ≥ 1. But R(t) is strictly decreasing and, so, to reach 1 (at least) at t∗V > t0 it must be

R(t0) = 1 + α(t0), (9.2)

for some α(t0) > 0. However, by hypothesis it is R(t0) < 1 + α(t0), which implies that V̇ (t) < 0
for all t > t0. This concludes the proof.

ii. By hypothesis, RV (t0) < 1, which means that V̇ (t0) < 0, and V (t) reaches a local maximum at

some time t̂V > t0. Therefore, V (t) must reach a local minimum at some time t0 < ťV < t̂V . At

both, the local minimum and maximum it is V̇ (ťV ) = 0 and V̇ (t̂V ) = 0. Then, by Lemma 1 it is

R(ťV ) > 1 and R(t̂V ) < 1, respectively.
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Since R(t) is strictly decreasing for t > t0 and ťV > t0 (note that V̇ (t0) < 0 and V̇ (ťV ) = 0, so ťV
cannot be equal to t0.), then R(t0) > R(ťV ) > 1, which implies that R(t0) > 1 + α(t0) for some

α(t0) > 0. Furthermore, t0 < ťV < tc < t̂V (R crosses 1 at time tc between ťV and t̂V ) and, given

that R(t̂V ) < 1, V cannot reaches another local minimum after its local maximum. This implies that

V̇ (t) < 0 for t > t̂V .

From the minimum and maximum conditions of V , at times ťV and t̂V , they are V̇ (ťV ) = 0, V̈ (ťV ) >
0 and V̇ (t̂V ) = 0, V̈ (t̂V ) < 0, respectively. After some algebraic computation, it is easy to see that

İ(ťV ) > 0 and İ(t̂V ) < 0, which means that I(t) must reach a maximum at some time t̂I , fulfilling

ťV < t̂I < t̂V . Even more, it must be İ(t̂I) = 0, or

βU(t̂I)V (t̂I)− δI(t̂I) = 0. (9.3)

Given that V̇ (t) > 0 for ťV < t < t̂V (it goes from its minimum to its maximum), then by (2.1.a),

I(t̂I) >
c
p
V (t̂I). Replacing this later condition in (9.3), it follows that

(βU(t̂I)−
δc

p
)V (t̂I) > βU(t̂I)V (t̂I)− δI(t̂I) = 0, (9.4)

which implies that R(t̂I) =
βpU(t̂I )

δc
> 1 and, then, t̂I < tc. Therefore, t0 < ťV < t̂I < tc < t̂V ,

which concludes the proof.

iii. By hypothesis, RV (t0) = pI(t0)
cV (t0)

> 1, which implies V̇ (t0) = pI(t0) − cV (t0) > 0 (V starts

increasing at t0). Since V∞ = 0 (Theorem 3.1), then, there exists t̂V > t0 such that V (t̂V ) is a

maximum. According to Lemma 1, if V has a maximum at t̂V , then R(t̂V ) < 1.

On the other hand, for V (t) to reach a minimum after time t̂V , it must be R(t̂V ) > 1. But R(t) is

strictly decreasing for t > t0, which means that no further minimum exists after t̂V . This implies that

V̇ (t) < 0 for all t > t̂V , which concludes the proof. �

Lemma 1. Consider system (2.1), constrained by the positive set X, at some arbitrary time t0, with U(t0) >
0, I(t0) ≥ 0 and V (t0) > 0 (i.e., x(t0) = (U(t0), I(t0), V (t0)) ∈ X ). Then, (i) if V (t) reaches a local

minimum at time t∗V > t0, then R(t∗V ) > 1, (ii) if V (t) reaches a local maximum at time t∗V > t0, then

R(t∗V ) < 1, and (iii) if V (t) reaches an inflection point at time t∗V > t0 (a point in which V̇ = 0 and

V̈ = 0), then t∗V = tc, where tc is the (unique) time at which R reaches 1 (i.e., R(tc) = 1 or, the same,

U(tc) = Uc).

Proof: Any of the three hypothesis (V (t) reaches a local minimum, a local maximum or a inflection point)

implies that

V̇ (t∗V ) = pI(t∗V )− cV (t∗V ) = 0, (9.5)

which means that

I(t∗V ) = p/cI(t∗V ). (9.6)

Consider the critical case of an inflection point, i.e.,

V̈ (t∗V ) = pİ(t∗V )− cV̇ (t∗V ) = pİ(t∗V ) = 0. (9.7)

From (9.7) it is İ(t∗V ) = 0 which, by (2.1.b) at t∗V , is equivalent to

İ(t∗V ) = βU(t∗V )V (t∗V )− δI(t∗V ) = 0. (9.8)

Now, by (9.6), we have

(
βp

c
U(t∗V )− δ)I(t∗V ) = 0. (9.9)
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Given that I(t∗V ) > 0 (note that I(t) is positive for all t > 0), then βp
c
U(t∗V )− δ = 0, or

R(t∗V ) =
βp

cδ
U(t∗V ) = 1. (9.10)

This way if an inflection point does occurs at t∗V , then t∗V = tc, where tc is the time at which R = 1. This

proves item (iii).

Furthermore, if V reaches a local minimum at t∗V , then V̈ (t∗V ) > 0 (instead of V̈ (t∗V ) = 0, as it is in

(9.7), which by (9.6) implies that

R(t∗V ) =
βp

cδ
U(t∗V ) > 1. (9.11)

This proves item (i).

On the other hand, if V reaches a local maximum at t∗V , then V̈ (t∗V ) < 0 (instead of V̈ (t∗V ) = 0, as it is

in (9.7), which by (9.6) implies that

R(t∗V ) =
βp

cδ
U(t∗V ) < 1. (9.12)

This proves item (ii). �

Figure 8 shows schematic plots of cases i, ii and iii of Theorem 9.1. For the sake of simplicity, β = δ =
p = c = 1, which means that Uc = 1, while the initial time is selected to be zero, i.e., t0 = 0.

Figure 8, first column, illustrates case (i), in which RV (0) < 1 and R(0) < 1+α(0), beingα(0) = 0.43
(numerically computed). This simulation shows that even if R(0) > 1, but it is not greater than 1 + α(0),
the virus does not spread in the body host, i.e, it is strictly decreasing. Note that the maximum of RV does

not reach 1. Figure 8, second column, illustrates case (ii), in which RV (0) < 1 and R(0) > 1 + α(0),
being α(0) = 0.43. This simulation shows that for R(0) > 1 + α(0), the maximum of RV is greater than

1, and the period of time in which RV > 1 is precisely the period of time the virus increases and reach

a maximum (i.e., it spreads in the body host). As expected, V reaches a minimum first, then I reaches a

maximum, then R reaches 1 (at tc) and, finally, V reaches a maximum, before to strictly decrease to zero.

Figure 8, third column, shows case(iii), in which RV (0) > 1 and R(0) > 1 + α(0). As expected, the virus

spreads on the body host an it has only one global maximum.

Remark 7. The value of α is necessary to properly understand and characterize the system behavior

according to the initial conditions and parameters. Although it cannot be explicitly defined, it can be

computed numerically. Furthermore, it should be noted that for real patients data, this values use to be

small in comparison with R, given that β is small (see Table 2).
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