
UNIVERSITY OF BERGAMO

School of Doctoral Studies

Doctoral Degree in Engineering and Applied Sciences

XXXIV° Cycle

SSD: ING-INF/05

Methods and technologies for the secure collection,

sanitization, processing and release of data

Advisor

Prof. Stefano Paraboschi

Doctoral Thesis

Dario FACCHINETTI

Student ID 1029668

Academic year 2020/2021

Abstract

The last decade has seen a significant increase in usage of cloud services. This

trend is not only related to the low cost and high availability of cloud providers,

but also to the ease of use of the service and the reliability over time. Digital

devices become rapidly obsolete and are subject to failures, hence outsourcing

data permits to reduce the risks linked to data loss.

Albeit there are advantages in uploading data to the cloud, there are also

several security and privacy challenges. The experience gained by the Re-

search and Industry communities attest that it is not enough to just change

the visibility of data by applying a cryptographic transformation, to ensure an

adequate level of protection. A cloud-oriented architecture has a wide attack

surface, hence it is necessary to pay attention to the whole data lifecycle, from

data collection and sanitization, to storage and processing, and finally the re-

lease. This doctoral thesis analyzes each of these stages, proposing solutions

that push forward the current state of the art.

The first part of the thesis deals with the collection of data, in particular in

the mobile scenario. The mobile environment is especially relevant as smart-

phones are devices with limited storage, that are connected to the network,

and with the ability to sense and log confidential data and Personal Identifi-

able Information. To access this information, an application must be granted

the proper permission. Yet, all the components running inside the applica-

tion (either trusted or included from third-parties) share the same execution

environment, thus have the same visibility and access constraints. This is a

limitation of the current mobile Operating Systems. Focusing on the Android,

which is open source and available to researchers, we propose a set of mod-

ifications to achieve internal application compartmentalization leveraging the

Mandatory Access Control (MAC) layer. With this approach, the developer

can add a policy module to the application to confine each component, effec-

tively restricting access to the application internal storage, to services, and to

isolate vulnerability prone components.

After the data are collected, a user or a company may apply to it sanitiza-

tion before being uploaded to the cloud or being released to a consumer. Data

sanitization (or anonymization) is a process by which data are irreversibly al-

tered so that a subject (referenced within the data) cannot be identified, given

a certain security parameter, while the data remain practically useful. The

second part of the thesis presents an approach based on k-anonymity and

`-diversity to apply data sanitization over large collections of sensors data.

The approach described can be applied in parallel in a distributed environment

and is characterized by a limited information loss.

The third part of the thesis investigates the storage and processing stages.

In this scenario, the cloud provider is typically considered honest-but-curious,

which assumes that it will always comply with the requests issued by the user,

but may abuse the access to the information provided. Hence, the goal is to

support the execution of queries over outsourced data with a guarantee that

the cloud provider does not have access to the data content. Unfortunately, the

simple use of deterministic encryption does not offer a real protection against

a curious provider, as the encrypted data maintain the same distribution of the

original data. The approach presented in this thesis is applicable to relational

data, and enables the execution of queries involving evaluation of equality and

range conditions over attributes. The data is saved encrypted to the server

into equally large blocks containing a fixed number of tuples. The blocks

are managed by the server as single atomic units, and accessed through an

encrypted multidimensional index also stored by the server. By doing this,

the cloud provider is unable to identify the single items stored within each

block. Local maps are saved by the client to search the index efficiently. The

approach proposed provides perfect indistinguishability to an attacker with

access to the stored data. This is achieved applying probabilistic encryption to

the blocks storing the data, and by destroying (i.e., flattening) the frequencies

of the encrypted index. The index is built as an evolution of the partitioning

technique presented in the second part of the thesis to sanitize the dataset.

The last part of the thesis addresses the data release stage. The goal is

to provide a solution that can be used to schedule the release of chunks or

partitions of data at a future point in time. Due to the confidential nature

of data, we cannot rely on any honesty assumption. Hence, we move to a

decentralized environment in which the parties (i.e., the network nodes) are

mutually distrusting. In this setting, we model the parties as rational (or rather

driven by pure economic interest), and propose a solution that is only based

on economic incentives and penalties.

All the technologies detailed in this thesis have been released under open

source licenses and can be readily integrated with real systems.

2

3

Contents

Abstract 1

1 Introduction 15
1.1 Document structure . 19

1.2 Publications . 23

2 Data collection 25
2.1 Introduction . 26

2.2 Android security for apps . 27

2.3 Motivation . 30

2.4 Policy language . 34

2.5 Policy configuration . 39

2.6 Implementation . 44

2.7 Experimental results . 51

2.8 Related work . 56

2.9 Conclusions . 58

3 Data sanitization 59
3.1 Introduction . 60

3.2 Distributed anonymization . 62

3.3 Experimental results . 64

3.4 Conclusions . 66

4 Data storage & processing 69
4.1 Introduction . 70

4.2 Basic concepts and problem statement 71

4.3 Partitioning . 73

CONTENTS CONTENTS

4.4 Indexing . 82

4.5 Query translation . 84

4.6 Implementation . 88

4.7 Experimental results . 92

4.8 Related work . 102

4.9 Conclusions . 105

5 Data release 107
5.1 Introduction . 108

5.2 Background . 110

5.3 The ITYT protocol . 111

5.4 Economic model . 118

5.5 Implementation . 122

5.6 Discussion . 126

5.7 Experimental results . 128

5.8 Related work . 130

5.9 Conclusions . 132

6 Conclusions 133
6.1 Future Work . 134

Acknowledgments 137

Bibliography 139

A Seapp documentation 157
A.1 Use case 1 . 158

A.2 Use case 2 . 159

A.3 Use case 3 . 161

A.4 Policy module . 163

B Sds documentation 167
B.1 Requirements . 167

B.2 Deployment . 168

B.3 Usage . 168

B.4 Results . 170

4

CONTENTS CONTENTS

C Secidx documentation 173
C.1 Artifact . 173
C.2 Proofs . 179

D Ityt documentation 181
D.1 Model . 181
D.2 Contract . 182
D.3 sMPC . 183

5

7

List of Figures

2.1 Evolution of the MAC policy in Android. Before 4.3, MAC was not
used. Starting with 4.3, MAC protects system components. Since 9,
categories offer rigid MAC protection for apps. Our proposal offers
flexible MAC protection to apps. 28

2.2 Security Enhanced App . 31

2.3 SEApp policy structure . 42

2.4 Installation process . 46

2.5 Application launch . 48

2.6 File relabeling . 49

2.7 Installation time overhead for apps with different complexity 51

2.8 Cumulative install time overhead when installing the top 100 free apps
on Google Play Store with our policies 53

2.9 Install time overhead for the three policy sizes 54

3.1 An example of a dataset (a), its spatial representation and partitioning
(b), and a 3-anonymous and 2-diverse version (c), considering quasi-
identifier Age and Country and sensitive attribute TopSpeed 60

3.2 Architecture and working of the distributed anonymization system . . . 63

3.3 Execution time of the centralized version and distributed version vary-
ing the number of workers . 65

4.1 Plaintext relation (a), and its encrypted and indexed version (b) 72

4.2 Graphical representation of the cuts performed by procedure Cut over
the relation in Figure 4.1(a) . 77

4.3 Algorithm for computing a k-flat partition 78

4.4 Algorithm for cutting a k-flat partition 79

4.5 Algorithm for checking the validity of a cut 80

LIST OF FIGURES LIST OF FIGURES

4.6 Examples of partitions for different cases of the Check procedure, k=10 81

4.7 Spatial representation of the running example and corresponding MAP . 82

4.8 Physical representation of the relation in Figure 4.1(a) 84

4.9 Information stored at the client-side for representing functions mapAge/id.mapAge
(a)-(c) and mapState/id.mapState (b)-(d) 86

4.10 Server-side representations: (a) Relational DBMS with GIDs, (b) Re-
lational DBMS with Tokens, (c) Key-value store with GIDs, and (d)
Key-value store with Tokens. 91

4.11 Map size for each sample of usa2019 93

4.12 Average execution time of queries on WAGP column with a 10 ms latency. 95

4.13 Average execution time of queries on both OCCP and WAGP columns
with a 10 ms latency. 97

4.14 Execution time and performance ratio of queries on WAGP column with
the addition of latency. 99

4.15 Average global execution time and performance ratios of queries on
both OCCP and WAGP columns with the addition of latency. 100

4.16 Overhead in the number of tuples downloaded with queries on the
WAGP column. 101

4.17 Overhead in the number of tuples downloaded with queries on both
OCCP and WAGP columns. 101

4.18 Execution time and performance ratio of queries on WAGP column with
a latency of 10 ms and, varying K and bandwidth. 103

4.19 Execution time and performance ratio of queries on both OCCP and
WAGP columns with a latency of 10 ms and, varying K and bandwidth. 104

5.1 Protocol initialization algorithm (executed by the owner). 115

5.2 Shareholder commitment algorithm 116

5.3 Share whistleblow algorithm . 116

5.4 Secret whistleblow algorithm . 117

5.5 Share disclose algorithm . 117

5.6 Reward withdraw algorithm . 118

5.7 Ityt constraints representation . 121

8

LIST OF FIGURES LIST OF FIGURES

5.8 State machine representing the valid state transitions of the ITYT pro-
tocol. Each transition name maps to an action (an Ethereum smart con-
tract function) that can be invoked by participants to update the state.
Square brackets state additional conditions that must be met to consider
the transition valid . 123

5.9 Avoid the exposition of S before sc activation 125
5.10 sMPC protocol time and memory consumption: (a) Single-phase vs

two-phase sMPC execution, (b) Two-phase time consumption, (c) Two-
phase memory consumption . 130

A.1 MainActivity . 157
A.2 Use case 1 views . 159
A.3 Use case 1 logcat . 159
A.4 Use case 2 views . 160
A.5 UC2 exploit . 160
A.6 Use case 2 logcat - SELinux denial . 161
A.7 Use case 2 logcat - Activity termination 161
A.8 Use case 3 views . 162
A.9 Use case 3 logcat - SELinux denial . 162

C.1 Differences between an initial dataset and its 25-flat representation . . . 176
C.2 Example of construction of the encrypted index, the client-side maps,

and the encrypted k-flat relation . 177
C.3 Dataset upload to the storage provider 178
C.4 Translation and resolution of a runtime query 178
C.5 Theoretical versus experimental token collision probability varying the

number of tokens and their size . 179

D.1 Solving the model from command line using the Z3 solver 182
D.2 Simulation of the decentralized protocol using Brownie 183
D.3 Single-phase protocol execution for N = 2 185

9

11

List of Tables

2.1 Application policy module CIL syntax 35
2.2 SEApp macros to grant permissions to local types 39
2.3 Policy size . 54
2.4 Cold and warm start performance for activities and services 55
2.5 File creation performance . 56

3.1 DP and GCP information loss with 100% and 0.01% sampling 66

4.1 Relative size of the client-side maps given the size of the initial dataset . 93

5.1 Sample configurations (economic amounts are expressed as ratio of V) . 122
5.2 Gas cost for each smart contract function with k = 2 128

B.1 Docker containers and URLs associated 168

D.1 Parameters and economic amounts constrained by the solver 182
D.2 List of targets available . 184
D.3 Variables to customize the sMPC experiment 185

To my family

15

Chapter 1

Introduction

The outsourcing of data to cloud providers is a growing trend. There are many
facilitating factors for that, including the low cost and high reliability over time.
Moreover, after the data have been uploaded to the cloud, they are immediately
available to a number of different devices, with almost no need for setup.

Despite there are clear advantages in uploading data to the cloud, there are also
several security and privacy challenges. Compared to a traditional client-server ar-
chitecture, in which all resources are internal to an organization and the security
perimeter well defined, a cloud-oriented architecture has a wider attack surface,
hence a greater risk of data breach or exposure. Unfortunately, the simple addition
of a protection layer to data, for example with the application of a generic cryp-
tographic transformation, is not enough to ensure an adequate level of protection.
Attention must be payed to the collection of data and to its sanitization, storage and
processing must be carried out by trusted parties, and data release planned in ad-
vance. Thereby, a cloud-oriented architecture relies on more complex policies and
on an extensive collection of tools to support the whole data lifecycle. This thesis
aims to provide techniques to support each of these stages.

The first part of the thesis deals with the collection of data, in particular in the
mobile scenario. The mobile environment is especially relevant, as smartphones
are devices constantly connected to the network, with the ability to log confidential
data, and limited processing and storage capabilities. Advancements in this area
have an impact on a broad spectrum of users, with a potential that goes even beyond
the data collection process.

CHAPTER 1. INTRODUCTION

Currently, the access to cloud services is mostly achieved via applications (or
simply apps). Modern mobile Operating Systems (e.g., Android) isolate apps
from each other and from the system, implementing a dedicated sandbox for each
app [137]. To be able to access confidential information such as the location, or to
execute privileged operations as connecting to the network, the app must be granted
the proper permissions [91]. However, all the components and processes running
inside the application sandbox share the same execution environment, to which the
permissions are assigned. This is a limitation that could compromise the confiden-
tiality of data even before they are shared or outsourced. Two examples of threat
are the presence of internal vulnerabilities (e.g., unprotected broadcast receivers),
and the use of (untrusted) third-party libraries. The goal is therefore to reduce the
exposure of confidential data to internal app components, and introduce further con-
tainment measures targeting third-party libraries.

Focusing on Android, which is open source and available to researchers, in
Chapter 2 we propose a set of modifications to achieve internal app compartmen-
talization leveraging the Mandatory Access Control (MAC) layer. To benefit from
the additional security functions, a developer can simply load inside the application
archive a dedicated policy module. The policy module is written in a Common In-
termediate Language (CIL) [131] dialect, and allows the developer to regulate the
permissions associated with the components in a declarative way. Each component
can be confined to a dedicated SELinux domain [168], effectively restricting its ac-
cess to the internal storage, restricting the list of system services it can interact with,
and finally denying to the component the access to the network.

After the data are collected in a safe environment, a user or a company may
apply to it sanitization before being uploaded to the cloud or being released to a
consumer. Data sanitization (or anonymization) is a process by which data are irre-
versibly altered so that a subject (referenced within the data) cannot be identified,
given a certain security parameter, while the data remain practically useful. There
are many approaches to apply sanitization to data, in this thesis we focus on the tech-
niques based on generalization and suppression. Generalization involves replacing
a value with a less specific but semantically consistent one [163], while suppression
involves removing a datum from a data collection. These operations are usually
applied in sequence until a dataset satisfies a minimum privacy requirement. One of
the most famous privacy requirements is the concept of k-anonymity [65], that was

16

CHAPTER 1. INTRODUCTION

introduced to address the risk of re-identification of sanitized data through publicly
available linkage datasets. To satisfy k-anonymity, a dataset is transformed by the
application of multidimensional partitioning algorithms as Mondrian [121]. Mon-
drian identifies the partitions with a top-down recursive approach. Once the parti-
tions are identified, generalization is applied to the them. The process is inevitably
associated with a loss of information, which can be quantified with metrics like the
Normalized and Global Certainty penalties, and the Discernability Penalty [188].

Data sanitization is a time and resource consuming task. In Chapter 3 of this
thesis we propose an approach based on Mondrian to sanitize large collections
of sensors data. The approach also ensures that the sanitized dataset satisfies the
`-diversity requirement [130], an extension of k-anonymity which reduces the gran-
ularity of data representation. The proposed approach is scalable, and it permits to
apply sanitization in parallel, using an arbitrary number of nodes, without compro-
mising the quality (i.e., the opposite to information loss) of the anonymized dataset.

The third part of the thesis investigates the storage and processing stages. Mod-
ern cloud providers offer state of the art security when it comes to data protec-
tion. This gives guarantees against external attackers that want to gain access
to the data outsourced by a customer. The cloud provider is instead considered
honest-but-curious, which assumes that it will always comply with the requests is-
sued by the data owner, but may abuse the access to the information provided. Just
to give an example, the provider may be interested in understanding which are the
users the outsourced data refers to. Hence, the goal of the client is to support the
execution of queries over outsourced data with a guarantee that the cloud provider
does not have access to the data content.

The solution typically used to try to solve this problem is to apply an additional
protection layer to the data. When choosing the encryption scheme to be used to
transform the data, three key aspects must be considered: i) the encrypted data must
not leak information due to its distribution, ii) the provider must be able to carry out
computations over the encrypted data without requiring access to a secret decryption
key, and iii) the client should be able to access the data obfuscating the access pat-
tern. These are non-trivial requirements to be satisfied. Traditional cryptosystems
do not handle requirements i and ii, only Semi or Fully Homomorphic Encryption
schemes (FHE) [99] accommodates for that. Despite recent advancements in the
field, for example with the availability of libraries such as Microsoft SEAL [139],

17

CHAPTER 1. INTRODUCTION

the cost of FHE, in terms of loss of performance and memory consumption, may
not suit all applications. An alternative way to prevent the cloud storage provider to
access the data content is the use of Oblivious Random Access Memory (ORAM)
protocols [75, 171]. ORAM protocols accommodate for requirements i and iii, but
assume the computation to be executed in a safe environment (either at the client or
inside a Trusted Execution Environment) after the data of interest are pulled from
the memory. Yet, even in this case, the associated overhead may be too high [40].

The approach presented in Chapter 4 is applicable to relational data, and enables
the execution of queries involving evaluation of equality and range conditions over
attributes. The approach addresses requirements i and ii, and provides partial pro-
tection on requirement iii. In particular, the data is saved encrypted to the server into
equally large blocks containing a fixed set of tuples. The blocks are managed by the
server as single atomic units, and accessed through an encrypted multidimensional
index also stored by the server. By doing this, the cloud provider is unable to iden-
tify the single items stored within each block (more details in the chapter). Local
maps are saved by the client to search the index efficiently. The approach proposed
provides perfect indistinguishability to an attacker with access to the stored data
(requirement i). This is achieved applying probabilistic encryption to the blocks
storing the data, and by destroying (i.e., flattening) the frequencies of the encrypted
index. The approach relies on both the client and (partially) the server to resolve
the query (requirement ii). The index was built as an evolution of the partitioning
technique used to sanitize the dataset presented in part two of the thesis.

The last part of the thesis explores the data release stage. In this scenario, we
want to provide a solution to schedule the release of a secret data to a future point
in time. Conversely to the idea envisioned by May in 1993 [136], we want to avoid
the use of a cryptographic puzzle, as it requires a receiving party to run a decryption
procedure for a long time. Furthermore, we want to ensure there is no need for the
data owner for the disclosure to happen, and there is no dependency on a trusted
party (or service).

The idea presented in Chapter 5 is to use the Blockchain to witness the elapse
of time, and to split the secret data among a group of users who have to cooperate
to recover the secret information using a pre-defined protocol. We program the
protocol with a Smart Contract [172], and to ensure the parties cooperate as intended
we develop a set of economic incentives and penalty. As we move to a decentralized

18

CHAPTER 1. INTRODUCTION 1.1. DOCUMENT STRUCTURE

environment in which the parties (i.e., the network nodes) are mutually distrusting,
the honest-but-curious assumption is refuted. The parties are instead modeled as
rational, or rather driven by pure economic interest. This permits to analyze the
protocol as an extended form game whose outcome can be determined based on
participants’ expected utility.

1.1 Document structure

This thesis is organized in six chapters.

Chapter 1 illustrates the structure of the document and the publications that set the
basis for this thesis.

Chapter 2 describes SEApp [160], a set of modifications to the AOSP to extend
the Mandatory Access Control layer to Android apps. SEApp leverages SELinux to
restrict access to the internal storage, restrict access to services, and isolate vulnera-
bility prone components. This is achieved executing components on dedicated pro-
cesses. A dedicated app policy module (written in CIL) regulates the permissions
associated with each process. The security measures introduced by SEApp facili-
tate the isolation of third-party components running inside an application. This is of
particular importance in the development of secure frontends collecting confidential
user information.
The chapter is organized as follows.

• Section 2.1 presents the scenario and discusses the background.

• Section 2.2 introduces the techniques currently enforcing access control in
Android.

• Section 2.3 presents the motivation for the introduction in Android of dedi-
cated components. A set of use cases is used to showcase the security mea-
sures introduced by SEApp.

• Section 2.4 details the SEApp policy module, the policy module language and
the policy constraints.

• Section 2.5 illustrates the SELinux and SEAndroid policy configuration files.

19

1.1. DOCUMENT STRUCTURE CHAPTER 1. INTRODUCTION

• Section 2.6 discusses the changes introduced by SEApp and our implementa-
tion.

• Section 2.7 presents the experimental evaluation, in which we measure both
the installation time and runtime overhead introduced by SEApp.

• Section 2.8 discusses the major differences between SEApp and other litera-
ture proposals.

• Section 2.9 concludes the chapter.

Chapter 3 describes a scalable and distributed approach to sanitize large collec-
tions of sensors data [83]. This chapter also illustrates how sanitization can be
applied in parallel with limited information loss. The availability of such a tool is
crucial for the outsourcing and the release of data. An open source artifact based on
the content of this chapter was implemented [80]. The artifact was awarded as the
Best Artifact at IEEE PerCom 2021.

The chapter is organized as follows.

• Section 3.1 presents the scenario and discusses the background.

• Section 3.2 discusses the architecture of the sanitization tool and the sanitiza-
tion algorithm.

• Section 3.3 illustrates the experimental evaluation. To demonstrate the scal-
ability of our approach a centralized version (i.e., a portable, single core ver-
sion) of the sanitization tool was developed. Information loss in instead mea-
sured by the Discernability Penalty and the Global Certainty Penalty.

• Section 2.9 concludes the chapter.

Chapter 4 describes SecIdx [81, 82], an approach to support point and range
queries on outsourced encrypted data. Data are stored by the server into equally
large blocks, which are indexed by a multidimensional encrypted stucture also
stored by the server. Local maps are saved by the client to search the index effi-
ciently. Perfect indistinguishability of the information outsourced to the server is

20

CHAPTER 1. INTRODUCTION 1.1. DOCUMENT STRUCTURE

guaranteed by the use of non-deterministic encryption for the blocks, and by flat-
tening the distribution of the values in the encrypted index. Runtime query resolu-
tion involves a translation strategy based on the local maps, that permits to pull the
blocks of interest from the server to the client efficiently. An in-memory DB is used
by the client to filter spurious tuples.

The chapter is organized as follows.

• Section 4.1 introduces the rationale of the approach.

• Section 4.2 presents the basic concepts and formulates the problem statement.

• Section 4.3 details the partitioning algorithm used by the multidimensional
index to organize the data into fixed sized partitions.

• Section 4.4 illustrates the construction of the encrypted index and the client-
side maps.

• Section 4.5 explains runtime query translation.

• Section 4.6 details our implementation, separating operations into preprocess-
ing and runtime.

• Section 4.7 presents an extensive experimental evaluation in which we com-
pare the performance of relational and non-relational backends, under dif-
ferent configurations. The experimental evaluation demonstrates the limited
performance overhead associated with our approach.

• Section 4.8 discusses the major differences between SecIdx and other litera-
ture proposals.

• Section 4.9 concludes the chapter.

Chapter 5 presents ITYT [43], a novel approach of implementing time-locked se-
crets. ITYT is a primitive that can be used to schedule the release of chunks or
partitions of data. The approach proposed in the chapter permits to avoid the use of
trusted third-parties and cryptographic puzzles. Instead, it uses threshold cryptog-
raphy to split the data among a group of peers, which have to cooperate to recover
the secret data using a pre-defined protocol programmed as a smart contract. The

21

1.1. DOCUMENT STRUCTURE CHAPTER 1. INTRODUCTION

blockchain is used to witness the elapse of time, and secure Multi-Party Computa-
tion to avoid any single point of trust.
The chapter is organized as follows.

• Section 5.1 illustrates the scenario.

• Section 5.2 describes the background.

• Section 5.3 presents an overview of the ITYT protocol introducing the pre-
liminary definitions, the roles of the participants, and the main functions.

• Section 5.4 provides an economic model to push rational participants to co-
operate as intended, strictly adhering the protocol.

• Section 5.5 illustrates how to implement ITYT leveraging existing frame-
works.

• Section 5.6 discusses how ITYT ensures the methods to report misbehavior
are not bypassable, how denial of service (DOS) can be mitigated, and how
deadlocks can be prevented.

• Section 5.7 presents our experimental evaluation.

• Section 5.8 discusses other proposals to enable time-locked secrets from lit-
erature.

• Section 5.9 concludes the chapter.

Chapter 6 draws the conclusions of the thesis and discusses future work.

22

CHAPTER 1. INTRODUCTION 1.2. PUBLICATIONS

1.2 Publications

This section lists some of the publications produced during the Ph.D. course that set
the basis for this thesis.

Papers in proceedings of international conferences

• Matthew Rossi, Dario Facchinetti, Enrico Bacis, Marco Rosa, and Stefano
Paraboschi. “SEApp: Bringing Mandatory Access Control to Android
Apps.”. 30th USENIX Security Symposium (USENIX Security 21), pp. 3613-
3630. 2021.

• Sabrina De Capitani di Vimercati, Dario Facchinetti, Sara Foresti, Gian-
luca Oldani, Stefano Paraboschi, Matthew Rossi, and Pierangela Samarati.
“Scalable distributed data anonymization”. IEEE International Confer-

ence on Pervasive Computing and Communications Workshops and other Af-

filiated Events (PerCom Workshops), pp. 401-403. IEEE, 2021.

• Sabrina De Capitani di Vimercati, Dario Facchinetti, Sara Foresti, Gian-
luca Oldani, Stefano Paraboschi, Matthew Rossi, and Pierangela Samarati.
“Artifact: Scalable distributed data anonymization”. IEEE International

Conference on Pervasive Computing and Communications Workshops and

other Affiliated Events (PerCom Workshops), pp. 450-451. IEEE, 2021.

• Enrico Bacis, Sabrina De Capitani di Vimercati, Dario Facchinetti, Sara
Foresti, Giovanni Livraga, Stefano Paraboschi, Marco Rosa, and Pierangela
Samarati. “Multi-provider secure processing of sensors data”. 2019

IEEE International Conference on Pervasive Computing and Communica-

tions Workshops (PerCom Workshops), pp. 349-351. IEEE, 2019.

• Sabrina De Capitani di Vimercati, Dario Facchinetti, Sara Foresti, Gian-
luca Oldani, Stefano Paraboschi, Matthew Rossi, and Pierangela Samarati.
“Multi-dimensional indexes for point and range queries on outsourced
encrypted data”. To appear in In 2021 IEEE global communications confer-

ence (GLOBECOM). IEEE, 2021.

23

1.2. PUBLICATIONS CHAPTER 1. INTRODUCTION

• Sabrina De Capitani di Vimercati, Dario Facchinetti, Sara Foresti, Gianluca
Oldani, Stefano Paraboschi, Matthew Rossi, and Pierangela Samarati. “k-flat
Secure Indexing for Encrypted Databases”. Under submission.

• Enrico Bacis, Dario Facchinetti, Marco Guarnieri, Marco Rosa, Matthew
Rossi, Stefano Paraboschi. “I Told You Tomorrow: Practical Time-Locked
Secrets using Smart Contracts”. In Proceedings of the 16th International

Conference on Availability, Reliability and Security (ARES), pp. 1-10. 2021.

24

25

Chapter 2

Data collection
SEApp: restricting access to in-app confidential data

The first part of this thesis investigates the collection of data, in particular in the
mobile environment. The mobile environment is especially relevant, as smartphones
are devices with access to a huge amount of personal and confidential information.

Operating Systems (OS) play a strategic role in protecting access to confidential
information. Whenever an application (or simply app) tries to access a resource
deemed sensitive, the OS intervenes making sure the app is acting on behalf of the
user. Should the user grant the proper permission, then the request is authorized.

The OS has great success in restricting access to confidential information. How-
ever, access granularity is only at app level. This is a limitation of the current mobile
operating systems. Focusing on Android which is open source, we identified three
major weaknesses: i) all app components have full access to the internal storage, ii)

third-party libraries may abuse the privileges granted by the user to the whole app,
and iii) vulnerability prone components are not easy to isolate.

This chapter presents an approach to overcome these limitations, giving devel-
opers the power to define ad-hoc Mandatory Access Control policies for their apps,
supporting the internal compartmentalization of app components. This guarantees
stronger protection of the data collected by the app as, for example, third-party
components included in the app can be prevented to access to them. Also, it per-
mits to implement a finer control on the information accessible to the app from the

2.1. INTRODUCTION CHAPTER 2. DATA COLLECTION

system services, selectively restricting inter-process communication on an internal
compartment basis.

The approach is a natural evolution of the security mechanisms already available
in Android, and the results of this part of the thesis have a potential that is even
more general than the data collection phase. However, its realization requires to
consider that the security of system components must be maintained, the solution
must be usable by developers, and the performance impact should be limited. This
proposal meets these three requirements. The proposal is supported by an open-
source implementation, which has also passed the 30th Usenix Security Symposium

artifact evaluation process.

2.1 Introduction

Security in operating systems has greatly evolved and has been able to address many
of the threats originating by an extensive and varied collection of adversaries.

The mitigation of security threats is particularly important for mobile operating

systems, due to their wide deployment and the confidential information they hold.

Both Android and iOS have seen significant investments toward the realization
of advanced security techniques, which have led to a great increase in the level of
protection offered to users [137]. The strength of security and the value of protected
resources is testified, for instance, by the payouts associated with working exploits
in markets like Zerodium [190], where the payouts for mobile operating systems
are the highest1.

A peculiar threat that characterizes mobile operating systems is the need to bal-
ance on one side the high sensitivity of the information, and on the other hand the
need for users to install into the system a large number of applications (called sim-
ply apps in this domain) often produced by unknown developers, which may hide
malicious functions. A first level of protection is offered, both in iOS and Android,
by a preliminary screening of apps before they are made available on the platform
market [9] or installed to a device, but this approach cannot provide a strong guar-
antee. Security mechanisms internal to the operating system are needed in order

1At the time of writing, US$2.5M and US$2M are paid for a zero click solution able to subvert
the security of Androd and iOS, respectively.

26

CHAPTER 2. DATA COLLECTION 2.2. ANDROID SECURITY FOR APPS

to constrain the apps to only operate within the boundaries specified by the device
owner at installation time.

The approach used in the design of mobile operating systems considers as the
first requirement the protection of system resources. Focusing on Android, which is
open source and more accessible to researchers, we notice a significant evolution in
its internal security architecture. This architecture is quite rich and consists of many
security measures [91, 137]. In this environment, we specifically look at the role of
SELinux. SELinux implements the Mandatory Access Control (MAC) mechanism,
which relies on a system-level policy to declare the operations that a process can
execute over a resource based on the security labels associated with them. Com-
pared to classical Discretionary Access Control (DAC), still used in Android in an
extensive way, MAC is more rigid and provides stronger guarantees against un-
wanted behaviors. When SELinux was introduced into Android 4.3 in 2013 (see
Figure 2.1), it used a limited set of system domains and it was mainly aimed at sep-
arating system resources from user apps. In the next releases, the configuration of
SELinux has progressively become more complex, with a growing set of domains
isolating different services and resources, so that a bug or vulnerability in some
system component does not lead to a direct compromise of the whole system.

The introduction of SELinux into Android has been a clear success. Unfor-
tunately, the stronger protection benefits do not extend to regular apps which are
assigned with a single domain named untrusted app. Since Android 9, isola-
tion of apps has increased with the use of categories, which guarantees that distinct
apps operate on separate security contexts. Our proposal, SEApp, builds upon the
observation that giving app developers the ability to apply MAC to the internal
structure of the app would provide more robust protection against other apps and
internal vulnerabilities.

2.2 Android security for apps

One of the major requirements considered in the design of mobile operating systems
is the need to constrain the ability of apps to manipulate the execution environment.
Apps may hide functions that are meant to gain system privileges or capture valu-
able information from other apps. Compared to classical desktop operating sys-
tems, there is greater reliance on the use of apps to access resources or get services,

27

2.2. ANDROID SECURITY FOR APPS CHAPTER 2. DATA COLLECTION

Before
Android 4.3

Android 4.3 -
Android 8

Since
Android 9

Our
Proposal

system servicessystem servicessystem servicessystem services

 app app app app app app app app1 2 1 2 1 2 1 2

Figure 2.1: Evolution of the MAC policy in Android. Before 4.3, MAC was not
used. Starting with 4.3, MAC protects system components. Since 9, categories
offer rigid MAC protection for apps. Our proposal offers flexible MAC protection
to apps.

with more attention paid to limit the ability of apps to operate in the system. Ad-
vancements in this context can have an impact on how security for applications is
managed in other domains [5].

The basic principle adopted to manage the threat introduced by apps is the de-
sign of a sandbox, a restricted environment for app execution, where anomalous
actions by the app are not able to access resources beyond what has been authorized
at app installation time. The sandbox can be considered a realization of the “least
privilege” security principle.

The construction of the app sandbox is based on three access control mecha-
nisms: Android permissions [21,91,92], Discretionary Access Control (DAC) [62],
and Mandatory Access Control (MAC) [165]; each of them roughly aligning with
how users, developers, and the platform grant consent, respectively.

Android permissions restrict access to sensitive data and services. In file
AndroidManifest.xml [23], each app statically lists the Android permissions
needed to fully operate. Not all of them may be granted; depending on the threat
they pose from a security and privacy standpoint, they may be granted as part of the
installation procedure, or prompted to the user when the app needs them.

28

CHAPTER 2. DATA COLLECTION 2.2. ANDROID SECURITY FOR APPS

DAC restricts access to resources based on user and group identity. By assigning
each application a unique UNIX user ID (UID) and a dedicated directory, Android
isolates apps from each other and from the system. However, UID sandboxing has
a number of shortcomings. As an example, processes running as root are not sub-
ject to these restrictions. For this reason, when such a process is misbehaving, for
instance due to a bug, it can access private app data files. DAC discretionality itself
is a problem. Indeed, as apps and system processes could override safe defaults,
they are more susceptible to dangerous behavior, such as leaking files or data across
security boundaries via IPC or fork/exec. Despite its deficiencies, UID sandbox-
ing is still the primary enforcement mechanism that separates apps from each other,
establishing the foundation upon which further sandbox restrictions have been built.

MAC dictates which actions are allowed based on the security policy defined by
the system. Specifically, only actions explicitly granted by the policy are permitted.
To decide whether to permit or deny an action, a set of policy rules concerning the
security contexts (i.e., collections of security labels that classify resources) of the
involved parties is evaluated.

In Android, MAC is implemented using SEAndroid, a set of kernel modifi-
cations part of the Linux Security Module (LSM) framework [186]. Since its
first introduction with the Security Enhanced Android (SEAndroid) project [168],
SELinux has been extensively applied to protect system components. Initially, it
was used to assert the security model requirements during compatibility testing,
then its usage grew further at each release. In the current version Android 11,
SELinux is also used to isolate the rendering of untrusted web content (by the
isolated app domain), to restrict ioctl system calls [116], thus limiting the
reachability of potential kernel vulnerabilities, and to support multi-user separation
and app sandboxing with SELinux categories. This last aspect permits to enforce
app separation both at DAC and MAC. Android dynamically assigns categories to
apps during app installation, so that: (i) an app running on behalf of a user cannot
read or write files created by the same app on behalf of another user (since Android
6 [16]); and, (ii) an app cannot read or write files created by another app (since
Android 9 [18]). Before Android 9, this separation was only enforced at DAC level.
This overlap of security measures is of extreme relevance to the enforcement of the
Android Security Model and our proposal moves in the same direction. To bypass
these protections, a process should be granted root permissions, DAC OVERRIDE

29

2.3. MOTIVATION CHAPTER 2. DATA COLLECTION

or DAC READ SEARCH, and run as SELinux mlstrustedsubject; only a few
critical system services run in this configuration.

Android restricts the SELinux implementation to the policy enforcement, ignor-
ing most policy management functions. The motivation is that the system policy
only changes between releases, therefore support to runtime changes is not needed.

2.3 Motivation

As discussed above, SELinux and the MAC support have been a crucial factor in
the realization of a secure design and the construction of a robust app sandbox. A
limitation of the current design is that this is the only way that apps can benefit from
MAC support. There is currently no option to let the app developer control the use of
the MAC level, as only platform, vendor, ODM and OEM developers are allowed to
introduce new policy segments [31]. Our solution overcomes this limitation, giving
the application developer the power to specify new SELinux types and associated
permissions.

Use cases

We envision several scenarios that justify the use of SEApp. Many of them have
been previously considered by researchers as motivations for the introduction in
Android of dedicated components [46, 84, 113].

In this section, we give a tour of SEApp capabilities using a showcase app2.
The architecture of the showcase app is shown in Figure 2.2. Our description is
based on three use cases: fine-granularity in access to files, fine-granularity in ac-
cess to services, and isolation of vulnerability prone components. Each of the use
cases emphasizes the intra-app security features introduced by SEApp. A dedicated
description, along with policy files that show concretely how to enforce these use
cases, appears in the Appendix A; we provide there a technical demonstration of
how SEApp can provide protection against a number of common security problems
in Android apps [103] that were implemented in the showcase app.

2The showcase app is available in the SEApp repository along with the set of modifications to
the AOSP.

30

CHAPTER 2. DATA COLLECTION 2.3. MOTIVATION

libmedia.so

/data/data/SEApp/files

confidential/

Activity Activity
:core_logic :adlibrary

Activity

ads_cache/

Service
:media

Service

Kernel API
 DAC + MAC

ads_d → ads_t
core_logic_d → confidential_t

media_d → media_t

u
se
rs
p
ac
e

fi
le
sy
st
em

ke
rn
el

Service API
Permissions

Binder module

camera
service

location
service

SEApp System Server

Network1 2

3

Figure 2.2: Security Enhanced App

Fine-granularity in access to files

Android apps can collect data from multiple sources, and the system provides many
options to store it. The default one is Internal Storage: a filesystem region, located
at /data/data/packageName, reserved to each package. Its content is avail-
able to all app’s internal components and inaccessible to any other app. Since data
can be extremely sensitive, the developer may be interested in restricting its visibil-
ity to only some internal components, labeling sensitive and non-sensitive data with
distinct SELinux types (use case 1). Yet, in the current Android security model, apps
do not have the option to assign distinct MAC labels to different resources, as all in-
ternal files are labeled app data file. SEApp allows the developer to introduce
dedicated types, and to organize the app’s structure with a separation between com-
ponents managing non-sensitive data and those requiring access to sensitive data.
The sensitive components will be associated with a more stringent MAC domain.
Figure 2.2 shows an example in which the confidential files are made accessible to
:core logic processes and inaccessible to any other process.

In Appendix A.1 we give a demonstration of how confidential files are made
inaccessible to non-confidential components in the presence of a path traversal vul-
nerability.

31

2.3. MOTIVATION CHAPTER 2. DATA COLLECTION

Fine-granularity in access to services

Often developers introduce into their applications code coming from external
sources, which they do not fully trust [79,93,146]. For instance, a common need of
app developers is to get revenue from their apps and a simple approach is to include
an Ad delivery library within the app. The library is a relatively complex piece of
code, with local computation necessities and the need to manage a dialogue with
remote servers. The app developer is clearly interested in supporting the execution
of the library, but may want to have guarantees that the library cannot abuse the
access privileges granted by the user to the whole application sandbox (use case 2).
A common concern is preventing access to system services such as location. These
requirements can be managed by SEApp with the definition of a separate MAC do-
main for the library. The process managing the delivery of Ads will be associated
with this domain, which will provide only the necessary privileges to access the
dedicated resources needed for the library execution. SELinux will then guarantee
the confinement of the library, preventing access to the location service even if the
ACCESS FINE LOCATION permission is granted to the app. Figure 2.2 shows
an example in which the :adlibrary process is granted access to the network but is
prevented from accessing location service.

In Appendix A.2 we give a demonstration of how the showcase app can support
the execution of the Unity Ads [179] framework with a dedicated SELinux domain.
We also describe in detail how SEApp prevents a malicious component, which was
deliberately injected by us into the library process, to capture the device location.

Isolation of vulnerability prone components

App developers often have to consider that the input provided to the app can come
from untrusted sources. A typical example is the rendering of complex Javascript
code performed by WebView. The solution currently offered by Android is to ex-
ecute these potentially dangerous actions within a sandbox using isolatedprocess,
i.e., a special process that is isolated from the rest of the system and has no permis-
sions of its own [13]. It runs under a dedicated UID and SELinux domain, and it
can only interact with a restricted number of services [15].

A common need of app developers is to take advantage of complex media or
processing libraries, components that are not considered malicious, but due to their

32

CHAPTER 2. DATA COLLECTION 2.3. MOTIVATION

size and complexity are more likely to have security bugs. The developer is then
interested in isolating these potentially vulnerable components (use case 3). Isolat-

edprocess offers a high protection level in Android, however, its use imposes several
restrictions on the developers. For instance, isolatedprocess cannot perform many
of the core Android IPC functions, and the only way to interact with it is through
the bound service API [14]. Also, isolatedprocess can only access already open app
files received over Binder. Another shortcoming is that each invocation of an isolat-

edprocess requires the creation of a new process. If a series of requests are made by
the app, the performance impact can be significant. SEApp offers an easier way to
do this compared to isolatedprocess, as it permits to assign a domain to the process
in which the component is executed, and then configure the required permissions
at MAC level. In terms of performance, the management of multiple requests does
not require the system to activate a new process with a new UID and a dedicated
SELinux category. Figure 2.2 shows how to confine the :media component.

In Appendix A.3 we give a demonstration of how the showcase app can sup-
port the execution of media components relying on a native library in a dedicated
process. We also describe how the developer can leverage SEApp to prevent the
code of the library from the execution of unwanted or unintended operations, like
opening a network connection.

Modular app compartmentalization

The motivations presented above become more frequent as apps increase their size
and complexity, and several important apps see a continuous increase in these pa-
rameters. For instance, Facebook Messenger version 285 contains more than 500
components and WhatsApp Messenger version 2.20 more than 300. This increase in
size and the need to manage it is testified by the development of App Bundles [11],
Android’s new, official publishing format that offers a more efficient way to build
and release modular applications.

In these large and modular apps, developers find it difficult to fully control which
components of an app are using sensitive data3. The availability of a solution such as
SEApp can greatly reduce such risk. A better compartmentalization can reduce the
impact of internal vulnerabilities in modular apps, since each module can be asso-

3The topic was explicitly considered in [38], an interview with Android’s VP of Engineering.

33

2.4. POLICY LANGUAGE CHAPTER 2. DATA COLLECTION

ciated with a dedicated policy fragment. From a security and software engineering
standpoint, SEApp permits to separate the activities of security policy maintenance
and development of new features.

Compatibility with Android design

Looking at the evolution of Android, it is clear that our proposal is consistent with
the evolution of the operating system and the desire of its designers to let app devel-
opers have access to an extensive and flexible collection of security tools. The major
obstacles, as perceived by OS developers, on offering to app developers the use of
MAC services are: weakening of the protection of system components; performance
impact; usability by app developers. The work we did solves these concerns: our
approach guarantees that app policies do not have an impact on the system policy
(Section 2.4); the app policy can be specified declaratively and attention has been
paid to let developers adopt the approach in a convenient way (Section 2.5); and,
experiments demonstrate the acceptable performance impact, with a quite limited
overhead at app installation time, and a negligible runtime impact (Section 2.7).

Compatibility with other proposals

As presented in Section 2.3, SEApp by itself provides protection against a broad
spectrum of attacks (see Appendix A), but its merit does not end there. As mul-
tiple literature proposals (e.g., [48, 113, 187]) build upon process isolation and use
it to accomplish separation of privileges at the application layer, SEApp could be
used as building block to enforce such restrictions at the MAC layer too, enabling
defense in depth. Moreover, SEApp could also work in conjunction with other so-
lutions that work at MAC level such as FlaskDroid [56], to benefit of its Userspace
Object Managers (USOMs) coverage of the Android system services and provide
finer granularity in access to services.

2.4 Policy language

To support the use cases presented in Section 2.3, we want the developer to have
control of the SELinux security context of subjects and objects related to her secu-
rity enhanced app. To each of them is assigned a type (also called domain when it

34

CHAPTER 2. DATA COLLECTION 2.4. POLICY LANGUAGE

labels processes). As types directly relate to groups of permissions, the evaluation
of security contexts is the foundation of each security decision. Since apps may
offer many complex functions, the policy language has to provide the flexibility of
defining multiple domains with distinct privileges so that the app, according to the
task it has to do, may switch to the least privileged domain needed to accomplish
the job.

Policy module syntax
blockStmt → (block blockId cilStmt∗)
cilStmt → typeStmt | typeAttrStmt | typeAttrSetStmt | typeBoundsStmt | type-

TransStmt | macroStmt | allowStmt
typeStmt → (type typeId)
typeAttrStmt → (typeattribute typeAttrId)
typeAttrSetStmt → (typeattributeset typeAttrId (〈typeId | typaAttrId〉+))
typeBoundsStmt → (typebounds parentTypeId childTypeId)
typeTransStmt → (typetransition sourceTypeId targetTypeId classId

[objectName] defaultTypeId)
macroStmt → (call macroId (typeId))
allowStmt → (allow 〈sourceTypeId | sourceTypeAttrId〉 〈targetTypeId | target-

TypeAttrId | self〉 classPermissionId+)

Table 2.1: Application policy module CIL syntax

The app policy is specified in a module, provided by the app to describe its
own types. The policy module is processed at app installation time by a component
of the system, called SEApp Policy Parser, responsible to verify that the policy is
correct and does not introduce vulnerabilities into the system. The addition of a
policy module is managed by combining the new module with the platform policy
and the previous installed ones, producing after policy compilation a single binary
representation of the global policy.

In this section, we provide a description of the SEApp policy language and the
restrictions each module is subject to. Policy configuration is detailed in Section 2.5,
while policy compilation and runtime support are discussed in Section 2.6.

Choice of policy language

SEAndroid supports two languages for policies, Type Enforcement (TE) [177] and
Common Intermediate Language (CIL) [131]. TE was the language available in the
early implementations of SELinux, while CIL was later introduced to offer an easy

35

2.4. POLICY LANGUAGE CHAPTER 2. DATA COLLECTION

to parse syntax that avoids the pervasive use of general purpose macro processors
(e.g., M4 [95]). Another aspect that differentiates them is that, in Android, TE
representations are internally converted into CIL before being compiled into the
SELinux binary policy. To avoid the additional translation step being performed at
each policy module installation, we decided to use CIL over TE.

Definition of types and type-attributes

CIL offers a multitude of commands to define a policy, but only a subset has been
selected for the definition of an app policy module. This was done to control the
impact of the policy module on the system and it may, as a side effect, facilitate the
work of the app developer writing the policy.

The syntax is described in Table 2.1. To declare a type, the type statement can
be used. This permits to declare the types involved in an access vector (AV) rule,
which grants to a source type a list of permissible actions over a target type. AV
rules are defined through the allow statement.

When writing a policy, there is frequently the need to assign the same set
of authorizations to multiple types. To avoid the repetition of multiple allow

declarations, it is convenient to refer to multiple types using a single entity, the
type-attribute. Using the typeattributeset statement we associate with a
typeattribute a set of types and type-attributes. Each type-attribute essentially
represents the set of types that is produced by the (possibly multi-step) expansion
of its definition. The semantics is that each of the types that directly or indirectly
(using type-attributes) appears as the source of an allow rule will be authorized to
operate with the specified permission on each of the types directly or indirectly
appearing as the target. This improves the conciseness and readability of the policy.

After defining the domains with the least group of permissions necessary to
fulfill the task, the developer can also configure the domain transitions using the
typetransition statement. By doing so, it is possible to ensure that important
native processes run in dedicated domains with limited privileges, leading to intra-
app compartmentalization.

36

CHAPTER 2. DATA COLLECTION 2.4. POLICY LANGUAGE

Policy constraints

The introduction of dedicated modules for apps raises the need to carefully consider
the integration of apps and system policies. The first requirement is that an app
policy must not change the system policy and can only have an impact on processes
and resources associated with the app itself. To preserve the overall consistency
of the SELinux policy, each policy module must respect some constraints. Since
Android supports the side-loading of apps [10], we cannot rely on app markets
to verify app policies. Therefore, the enforcement of constraints is done on the
device, by both the SEApp Policy Parser and the SELinux environment. If any of
these components raises an exception, during the verification or compilation of the
policy, app installation is stopped.

To ensure that policy modules do not interfere with the system policy and among
each other, a first necessity is that policy modules are wrapped in a unique names-
pace obtained from the package name. This is done through the block CIL state-
ment, which prevents the definition of the same SELinux type twice, as the resulting
global identifier is formed by the concatenation of the namespace and the local type
identifier. Also, the use of a namespace specific for the policy module permits to dis-
criminate between local types or type-attributes TA (namespace equal to the current
app package name), types or type-attributes of other modules TA′ 6=A (namespace
equal to some other app package), and system types or type-attributes TS (system
namespace). At installation time, the SEApp Policy Parser determines the origin of
each type, with an explicit prohibition for policies to refer to types or type-attributes
defined by other policy modules, while use of system types or type-attributes is sub-
ject to restrictions.

With regard to the allow statement, a dedicated analysis is performed by the
SEApp Policy Parser. For each rule, the global origin of source and target types
is determined. We refer to system origin S, when the type is directly or indirectly
associated with a system type in the expansion of its definition, while to local origin
A otherwise. Based on the origin of source and target of each rule, there are four
cases. The case AllowSS, i.e., a permission with system origin both as source and
target, is prohibited, as it represents a direct platform policy modification. The case
AllowAA is always permitted, as it only defines access privileges internal to the app
module. The cases AllowAS and AllowSA are more delicate.

37

2.4. POLICY LANGUAGE CHAPTER 2. DATA COLLECTION

An AllowAS originates when a local type needs to be granted a permission on a
system type. A concrete example is shown in Section 2.3, where the :media process
needs access to the camera service. The case cannot be decided locally by
the SEApp Policy Parser, therefore it is delegated to the SELinux decision engine
during policy enforcement. This crucial postponed restriction depends on the con-
straint that all app types have to appear in a typebounds statement [45], which
limits the bounded type to have at most the access privileges of the bounding type.
As Android 11 assigns to generic third-party apps the untrusted app domain,
this is the candidate we use to bound the app types. If the AllowAS rule gives to
the local type more privileges than those associated with untrusted app, and at
runtime these privileges are used, the SELinux decision engine identifies the policy
violation and prohibits the action.

AllowSA rules are the key to regulate how system components access internal
types. To be compliant with Android, the local types introduced by the app policy
module must ensure interoperability with system services crucial to the app lifecy-
cle. As an example Zygote [36], the native service which spawns and configures new
app processes, can only execute processes labeled with the type-attribute domain,
which is assigned by default to untrusted app. However, giving app develop-
ers the freedom to directly define AllowSA rules would lead to two major issues:
(i) the rules would depend on system policy internals, leading to a solution with
limited abstraction and modularity; (ii) explicit AllowSA rules could lead to viola-
tions of the security assumptions of a system service, with the risk of introducing
vulnerabilities (e.g., leading to a confused deputy attack [55]). For these reasons
we prohibit their explicit use. To limit system types to only those already dealing
with untrusted content and simplifying the policy, we rely on CIL macros, a set of
function-like statements that, when invoked by the SEApp policy module, produce
a predefined list of policy statements. This approach permits to retain control on the
rules produced, ensuring no violation of the default system policy. Also, it makes
the work of the developer easier, by abstracting away system policy internal details.
To preserve the interoperability with system services, third-party app functionality
has been broken down into the CIL macros listed in Table 2.2. This list has been
identified looking at the internal structure of the untrusted app domain. With
this design philosophy, the developer can grant a basic set of permissions to a type

38

CHAPTER 2. DATA COLLECTION 2.5. POLICY CONFIGURATION

Macro Usage
md appdomain to label app domains
md netdomain to access network
md bluetoothdomain to access bluetooth
md untrusteddomain to get full untrusted app permissions
mt appdatafile to label app files

Table 2.2: SEApp macros to grant permissions to local types

(by calling one or more macros), and then add to it fine-grained authorizations with
AllowAS rules.

With regard to the typeattributeset statement, the SEApp Policy Parser
uses a verification strategy similar to the one used for allow rules. First, the global
origin of the type-attribute and of the set expression of types and type-attributes
is determined. All statements that directly or indirectly relate to system types are
blocked. This avoids implicit permission propagation from system and local types.

Similarly, for the typetransition statement, the SEApp Policy Parser ver-
ifies the origin of the types involved, with a prohibition for all the statements that
relate to system types, as they may lead to an escalation of privileges.

2.5 Policy configuration

In this section, we explore the structure of application policy modules. Before de-
scribing the content of SEApp configuration files, we give a short description of
how SEAndroid defines the security contexts of processes, files and system ser-
vices. There are strong similarities between the structure of system and app poli-
cies. Indeed, we designed our solution as a natural extension of the approach used
to protect the system. Also, our design maintains full backward compatibility. De-
velopers who are not interested in taking advantage of MAC capabilities do not have
to change their apps.

SEAndroid policy structure

Compared to a traditional Linux implementation, Android expands the set of
configuration files where SELinux [25] security contexts are described, because
a wider set of entities is supported. SEAndroid complements the common

39

2.5. POLICY CONFIGURATION CHAPTER 2. DATA COLLECTION

SELinux files (i.e., file contexts and genfs contexts) with 4 additional
ones: property contexts, service contexts, seapp contexts and
mac permissions.xml. Also, the implementation of the SELinux library (lib-

selinux) [178] has been modified introducing new functions (to assign domains to
app processes and types to their dedicated directory). We concisely describe the
role of SEAndroid context files.

Processes

With reference to app processes, Android assigns the security context based on
the class the app falls in. The specification of the classes and their security labels
are defined in the seapp contexts policy file. Most classes state two security
contexts: one for the process (domain property) and the other one for the app dedi-
cated directory (type property). A number of input selectors determine the associ-
ation of an app with a class. Among these, seinfo filters on the tag associated with
the X.509 certificate used by the developer to sign the app. The mapping between
the certificate and the seinfo tag is achieved by the mac permissions.xml

configuration file. Since the enumeration of all third-party app certificates is not
possible a priori, all third-party apps are labeled with the untrusted app do-
main by default.

Files

SELinux splits the configuration of security contexts of files between file contexts

and genfs contexts, with the former used with filesystems that support ex-
tended file attributes (e.g., /data), while the latter with the ones that do not (e.g.,
/proc). To apply file contexts updates, two approaches are available: either
rebuild the filesystem image, or run restorecon operation on the file or directory to
be relabeled (this is the default method used by permissioned system processes).
Conversely, to apply genfs contexts changes, a reboot of the device or a se-
quence of filesystem un-mount and mount operations has to be performed.

Services

Unlike what happens for system processes, a system service requires the assignment
of a security context to both its processes and its Binder [24], to be fully compliant

40

CHAPTER 2. DATA COLLECTION 2.5. POLICY CONFIGURATION

with SEAndroid. The Binder is the lightweight inter-process communication prim-
itive bridging access to a service. Its retrieval is enabled by the servicemanager,
a process started during device boot-up to keep track of all the services available
on the device. Based on the labels specified in the service contexts file, it
is then possible to control which processes can register (add) and lookup (find) a
Binder reference for the service, and therefore connect to it. However, since Binder

handles resemble tokens with almost unconstrained delegation, denying a process
to get the Binder through the servicemanager does not prevent the process from
obtaining it by other means (e.g., by abusing other processes that already hold it).
Furthermore, preventing a process from obtaining a Binder reference prevents the
process from using any functionality exposed by the service.

SEApp policy structure

Developers interested in taking advantage of our approach to improve the security
of their apps are required to load the policy into their Android Package (APK). A
predefined directory, policy, at the root of the archive, is where the SEApp-aware
package installer will be looking for the policy module (see Figure 2.3). Inside this
directory, the installer looks for four files (which we refer to as local), that outline a
policy structure similar to the one of the system. Specifically, the developer is able
to operate at two different levels: (i) the actual definition of the app policy logic us-
ing the policy language described in Section 2.4 (in the local file sepolicy.cil),
and (ii) the configuration of the security context for each process (in the local files
seapp contexts and mac permissions.xml) and for each file directory (in
the local file file contexts).

Processes

SEApp permits to assign a SELinux domain to each process of the security en-
hanced app. To do this, the developer lists in the local seapp contexts a set of
entries that determine the security context to use for its processes. For each entry,
we restrict the list of valid input selectors to user, seinfo and name: user is a
selector based upon the type of UID; seinfo matches the app seinfo tag contained
in the local mac permissions.xml configuration file; name matches either a
prefix or the whole process name. The conjunction of these selectors determines

41

2.5. POLICY CONFIGURATION CHAPTER 2. DATA COLLECTION

.apk
AndroidManifest.xml
META-INF/
classes.dex
classes2.dex
policy

file_contexts
mac_permissions.xml
seapp_contexts
sepolicy.cil

res/
resources.args

SEApp modificationStock OS

Figure 2.3: SEApp policy structure

a class of processes, to which the context specified by domain is assigned. To
avoid privilege escalation, the only permitted domains are the ones the app defines
within its policy module and untrusted app. As a process may fall into multi-
ple classes, the most selective one, with respect to the input selector, is chosen. An
example of valid local seapp contexts entries is shown in Listing 2.1, which
shows the assignment of the unclassified and secret domains to the :unclassified and
:secret processes, respectively.

In Android, developers have to focus on components rather than processes. Nor-
mally, all components of an application run in a single process. However, it is possi-
ble to change this default behavior setting the android:process attribute of the
respective component inside the AndroidManifest.xml, thus declaring what
is usually called a remote component. Furthermore, with the specification of an
android:process consistent with the local seapp contexts configuration,
we support the assignment of distinct domains to app components. To execute the
component, the developer is only required to create the proper Intent object [28],
as she would have already done on stock Android for remote components. The
assignment to the process of the correct domain is handled by the system. This
design choice allows us to support Android activities, services, broadcast receivers
and content providers, while avoiding changes to the PackageParser [152], as there
are no modifications to the manifest schema.

42

CHAPTER 2. DATA COLLECTION 2.5. POLICY CONFIGURATION

Files

The developer states the SELinux security contexts of internal files in the lo-
cal file contexts. Each of its entries presents three syntactic elements,
pathname regexp, file type and security context: pathname re-
gexp defines the directory the entry is referred to (it can be a specific path
or a regular expression); file type describes the class of filesystem resource
(i.e., directory, file, etc.); security context is the security context used to
label the resource. The admissible entries are those confined to the app dedi-
cated directory and using types defined by the app policy module, with the ex-
ception of app data file. Due to the regexp support, a path may suit more
entries, in which case the most specific one is used. Examples of valid local
file contexts entries are shown in Listing 2.2: the first line describes the de-
fault label for app files, second and third line respectively specify the label for files
in directories dir/unclassified and dir/secret.

In SELinux, the security context of a file is inherited from the parent folder,
even though file contexts might state otherwise. Since, for our approach, it is
essential that files are labeled as expected by the developer, we decided to enforce
file relabeling at creation. Therefore, a new native service has been added to the
system (see Section 2.6). We then offer to the developer an alternative implemen-
tation of class java.io.File, named android.os.File, which sets file and
directory context upon its creation, transparently handling the call to our service.

System services

To support any third-party app, the untrusted app domain grants to a pro-
cess the permissions to access all system services an app could require in the
AndroidManifest.xml. As an example, in Android 11, the untrusted ap-
p all.te platform policy file [35] permits to a process labeled with untrusted-
app to access audioserver, camera, location, mediaserver, nfc ser-

vices and many more.

To prevent certain components of the app from holding the privilege to bind to
unnecessary system services, the developer defines a domain with a subset of the
untrusted app privileges (in the local sepolicy.cil file), and then she en-
sures the components are executed in the process labeled with it. Listing 2.3 shows

43

2.6. IMPLEMENTATION CHAPTER 2. DATA COLLECTION

an example in which the cameraserver service is made accessible to the secret

process.

1 user=_app seinfo=cert_id domain=package_name.unclassified name=

package.name:unclassified

2 user=_app seinfo=cert_id domain=package_name.secret name=package

.name:secret

Listing 2.1: seapp contexts example

1 .* u:object_r:app_data_file:s0

2 dir/unclassified u:object_r:package_name.unclassified_file:s0

3 dir/secret u:object_r:package_name.secret_file:s0

Listing 2.2: file contexts example

1 (block package_name

2 (type secret)

3 (call md_appdomain (secret))

4 (typebounds untrusted_app secret)

5 (allow secret cameraserver_service (service_manager (find)))

...)

Listing 2.3: Granting cameraserver access to secret domain

2.6 Implementation

In this section, we describe the main changes introduced in Android by SEApp.
We first analyze the modifications required to manage policy modules, both during
device boot and at app installation. We then describe how the runtime support was
realized.

Policy compilation

Boot procedure

Since the introduction of Project Treble [17], policy files are split among multiple
partitions, one for each device maintainer (i.e., platform, SoC vendor, ODM, and
OEM). This feature facilitates updates to new versions of Android, separating the
Android OS Framework from the device-specific low-level software written by the

44

CHAPTER 2. DATA COLLECTION 2.6. IMPLEMENTATION

chip manufacturers. Yet, each time a partition policy (i.e., a segment) changes, an
on-device compilation is required.

The init process divides its operations in three stages [26]: (i) first stage (early
mount), (ii) SELinux setup, and (iii) second stage (init.rc). The first stage mounts
the essential partitions (i.e., /dev, /proc, /sys and /sys/fs/selinux),
alongside some other partitions specified as early mounted (since Android 10 us-
ing an fstab file in the first stage ramdisk, in Android 9 and lower adding fstab
entries using device tree overlays). Once the required partitions are mounted, init

enters the SELinux setup. As the name suggests, this is the stage where init loads
the SELinux policy. As the /data partition, where policy modules are stored, is
not yet mounted, it is not yet possible to integrate them with the policy of the sys-
tem. Then, as last operation of the SELinux setup stage, init re-executes itself to
transition from the initial kernel domain to the init domain, entering the second
stage. As the second stage starts, init parses the init.rc files and performs the
builtin functions listed there, among them mounting the /data partition. Now, the
policy modules are available, and we can produce with secilc [33] (the SELinux CIL
compiler) the binary policy consisting of the integration among the system policy,
the SEApp macros and the app policy modules. To trigger the build and reload of
the policy, we implemented a new builtin function, and modified the init.rc to
call this function right after /data is mounted. The policy is considered immedi-
ately after the /data partition is available and this ensures that the policy modules
are loaded far before an application starts, making the policy not bypassable.

Even though most Android devices supporting Android 10 were released
with Treble support and, therefore, execute their SELinux setup stage on the
sepolicy.cil fragments scattered among multiple partitions, init still supports
the use of a legacy monolithic binary policy. For compatibility towards devices us-
ing a monolithic binary policy, additional changes are required, as SEApp needs the
system policy written in CIL to be compiled alongside with app modules. To this
end, we modified the Android build process to push the sepolicy.cil files onto
the device even for non-Treble devices. New entries in the device tree were added
to make the policy segments available during init SELinux setup stage [29].

As previously mentioned, we decided to store the policy modules in the /data
partition; even if this choice required us to adapt the boot procedure of the device,
it smoothly integrates SEApp with the current Android design. In fact, the /data

45

2.6. IMPLEMENTATION CHAPTER 2. DATA COLLECTION

partition is one of the few writable partitions, it is dedicated to hold the APK the
user installs, as well as their dedicated data directories and, therefore, it represents
the best option to contain also the app policy modules. Moreover, whenever a user
performs a factory reset, Android automatically wipes the /data partition, remov-
ing the customization the user made to the device configuration, including the apps.
By placing the app policy modules and the apps into the same partition, a factory
reset removes the policy modules as well.

 /data/selinux/packageName
 file_contexts
 mac_permissions.xml
 seapp_contexts
 sepolicy.cil

.apk

policy write
2

installd secilcexec
4

10101
11001
00100

system
policy

fragments
+

SEApp
macros

sys/selinux/load

3 call

read

8 write 6 write

binary
policy

read
5

+

7

SEApp modificationStock OS

PackageManagerService

PolicyModuleValidator
read
1

SEAppPolicyParser

Figure 2.4: Installation process

App installation

As introduced in Section 2.5, the developer willing to define its own policy module
is expected to load it in the app package. At app installation, the PackageMan-

agerService [30] inspects the APK to identify whether or not the current installa-
tion involves a policy module, by looking for the policy directory at the root
of the archive. When the app has a policy module attached to it (see Figure 2.4),
the PackageManagerService extracts it (1) and uses our PolicyModuleValidator to
verify the respect of all the constraints on sepolicy.cil (through the SEApp-

PolicyParser, Section 2.4) and on the configuration files (Section 2.5). In case
of a violation of the constraints, the app installation stops. Otherwise, the policy
module is stored within /data/selinux, in a dedicated directory identified by
the package name (2). Then, the PackageManagerService invokes installd [27]

46

CHAPTER 2. DATA COLLECTION 2.6. IMPLEMENTATION

through the Installer to trigger the policy compilation with an exec call to the se-

cilc program (3 , 4). Secilc reads the system sepolicy.cil fragments, the
SEApp macros and the sepolicy.cil fragments of the app policy modules in
the /data/selinux directory (5), and builds the binary policy (6). When the
secilc execution returns and no compilation errors have been raised, the binary pol-
icy is then read by installd (7) and loaded with selinux android load policy, which
writes the sys/selinux/load file (8).

To load the policy files after init, the implementation of SELinux in Android
has been slightly modified. In particular, we modified the policy loading function
within libselinux (function selinux android load policy), and changed the system
policy to allow installd to load the app policy module.

As for the policy configuration files, some changes were introduced to load the
application file contexts, seapp contexts and mac permissions.xml.
SELinuxMMAC [34], i.e., the class responsible for loading the appropriate mac pe-
rmissions.xml file and assigning seinfo values to apks, was modified to
load the new mac permissions.xml specified within the app policy module.
The loading of file contexts and seapp contexts was configured to treat
system and app configuration files apart. So, SEApp-enhanced applications will
load exclusively their configuration files, whereas the loading of system’s and other
apps’ configuration files is not needed since their use is prohibited. System ser-
vices and daemons, instead, load the base system configurations once, and then
load the app policy module specific configuration files as they are needed. An ex-
ample of this are Zygote and restorecon services, which need to retrieve at runtime
seapp contexts and file contexts, respectively (see Section 2.6).

Our implementation also supports the uninstallation of SEApp apps. The regular
uninstallation process is extended with a step where the global policy is recompiled,
in order to remove the impact of old modules on the overall binary policy. With ref-
erence to application updates, the native installd runs with the necessary permission
to remove and apply new file types based on the content of the file contexts.

Runtime support

In addition to the steps described above, other aspects have to be considered in order
to extend SELinux support at the application layer.

47

2.6. IMPLEMENTATION CHAPTER 2. DATA COLLECTION

ActivityManagerService

1. StartActivity
 (Intent)

Zygote

2. Process.start()

Initialization
set GID

setup seccomp filter
set UID read

set SELinux context
/data/selinux/packageName/

seapp_contexts

Activity Thread

packageName:process

looper.loop()

App class

New Activity3. fork()

4. BIND

5. LAUNCH

SEApp modification
Stock OS

Figure 2.5: Application launch

Processes

Android application design is based on components. Each of them lives inside a
process, and can be seen as an entry point through which the system or the user can
enter the app.

To activate a component, an asynchronous message called intent, containing
both the reference to the target component and parameters needed for its execution,
has to be created. The intent is then routed by the system to the ActivityManag-

erService [19] via Binder IPC. Before delivering the intent request to the target
component, the ActivityManagerService checks if the process in which the target
component should be executed is already running; if not, the native service called
Zygote [36] is executed. Its role is to spawn and correctly setup the new applica-
tion process. To achieve this, it first replicates itself by performing a fork, then,
using the input provided by the ActivityManagerService (namely, package name,
seinfo, android:process, etc.), it starts configuring the process GID, the
seccomp filter, the UID and finally the SELinux security context. We adapted
the final configuration step, forcing Zygote to set the security context based on
the seapp contexts located at /data/selinux/packageName (i.e., the
one provided by the developer for her app). Process name is used to assign the
proper context to the process when it starts, before the logic of the process kicks
in. In case the developer did not specify a domain, then Zygote uses the system
seapp contexts as fallback. After the correct labeling, the ActivityManager-

48

CHAPTER 2. DATA COLLECTION 2.6. IMPLEMENTATION

Android RunTime

java.io.Fileandroid.os.File

/data/data/packageName
ap

pl
ic

at
io

n
sy

st
em ServiceManager restorecon /data/selinux/packageName

 file_contexts

file2

Activity
Activity

Activity Service
ServiceService

1

2 3 4 6

B
A

init

5

file1

SEApp modification
confidential_file
app_data_file

Figure 2.6: File relabeling

Service finishes the configuration by binding the application class, launching the
component, and finally delivering the intent message. Figure 2.5 details the pro-
cess.

This implementation design offers several benefits, including backward compat-
ibility, support for all components, and ease of use. Indeed, a developer who wants
to use our solution only has to configure some files; changes in the application code
are reduced to a minimum, thus facilitating the introduction of SELinux in already
existing apps.

In our study we have also explored other design alternatives, in which the de-
veloper could explicitly state a domain transition in the code, wherever she needs
it. Although this category of solutions would give the developers more control
over domain transitions, it also has some drawbacks. First, the developer would be
expected to enforce the isolation among source and target domains managing the
multi-threaded scenario, and second, this design implies granting too many permis-
sions to the app (e.g., dyntransition, setcurrent and read/write access to
selinuxfs). Moreover, such solution would introduce a new Android API, that
would be quite delicate and, if not used correctly, it might be difficult to control.

49

2.6. IMPLEMENTATION CHAPTER 2. DATA COLLECTION

Files

Android applications aiming to create a file can use the java.io.File abstrac-
tion. Each file creation request that is generated is captured by the Android Runtime
(ART) [22], and then converted into the appropriate syscall. The result is the cre-
ation of the target file, to which a security context inherited from the parent directory
is assigned (see flow A , B of Figure 2.6). Since Android 9, the separation between
files of different apps is enforced at MAC level (a unique context based on UID and
SELinux category is assigned); however, all the files stored in the same app folder
are labeled with the app data file type.

To make the most out of SELinux, SEApp complements Android with the im-
plementation of a new service, which we called restorecon (to recall the SELinux
restorecon.c tool). The restorecon service is spawned by init at boot, and works
in its own SELinux domain. Its role is to create and label files as specified by the
developer in the local file contexts. To ease development, we implemented
the new android.os.File abstraction, which exposes an interface equal to
that of java.io.File, and transparently handles the call to our service. Fig-
ure 2.6 details the new control flow. A component running in a SEApp-enhanced
process (highlighted in green in Figure 2.6) invokes android.os.file, and
triggers a new file creation request (1). The new API first interacts with the Ser-

viceManager (2) to get a handle of the restorecon service (3), then it interacts
with the service using the AIDL [12] interface we defined for it, informing the re-

storecon of the target path (4). The restorecon service verifies whether the caller
is the legitimate owner of the path, it reads the file contexts file located at
/data/selinux/packageName (5), and finally it creates the target file en-
forcing the correct labeling (6).

We also investigated three other implementation approaches: (i) change of the
default security context inheritance behavior for the ext4 filesystem, (ii) execution
of the SELinux restorecon operation by the app, once the file is successfully created,
and (iii) use of restorecond [32]. The first option would change the default behavior
system-wide. As it might cause compatibility issues, we decided not to choose it.
The second option is not ideal from a security standpoint, as it requires to grant
the application too many permissions (e.g., relabelfrom, relabelto, as well
as read/write access to selinuxfs to check the validity of the SELinux context).
The third option refers to the use of restorecond, a system daemon that watches

50

CHAPTER 2. DATA COLLECTION 2.7. EXPERIMENTAL RESULTS

(inodes of) a configurable list of files and checks that they are labeled as stated in
the system file contexts. Although it may realize the control, restorecond

was meant for a few system files, therefore its performance would hardly scale,
especially considering that SEApp needs to manage all files created by SEApp-
aware apps. Another major issue is that this approach is exposed to race conditions,
because there is a delay between file creation and its relabeling.

installation order (from Google Play)

0

5

10

15

20

25

30

in
st

al
la

ti
on

ti
m

e
[s

]

basic apps

policy overhead

normal installation

(a)
installation order (from Google Play)

0

5

10

15

20

25

30

in
st

al
la

ti
on

ti
m

e
[s

]

ordinary apps

policy overhead

normal installation

(b)

installation order (from Google Play)

0

5

10

15

20

25

30

in
st

al
la

ti
on

ti
m

e
[s

]

huge apps

policy overhead

normal installation

(c)

Figure 2.7: Installation time overhead for apps with different complexity

2.7 Experimental results

We now present a performance evaluation of SEApp. The experiments have been
conducted on both Android 9 and 10, each with Linux kernel v4.9. However, all the
measurements shown refer to Android 10 (release android-10.0.0 r41). The device
used to run the tests is a Google Pixel 3 (blueline), in which the four gold cores
frequency was set to 2.8 GHz, while the four silver ones were disabled. The change

51

2.7. EXPERIMENTAL RESULTS CHAPTER 2. DATA COLLECTION

in CPU configuration has been performed to reduce the variability of measures. The
confidence intervals provided have an associated confidence level of 99%.

App installation

The introduction of dedicated app policies implies further steps to be executed at
app installation time, as each SEApp module has to be validated, compiled, and
loaded. To evaluate the impact on performance, we wrote dedicated tests to stress
the installation procedure with multiple application samples.

To build representative samples of a typical consumer scenario, we first down-
loaded the 150 most popular free apps from Google Play (retrieved in October
2020) [104]. The apps were subsequently divided into three buckets: basic, ordi-

nary and huge apps, according to the weighted normalized average of the .apk size,
the number of Android activities and the number of services. Based on the bucket,
each app was equipped with one of the following policy configurations: (i) basic,
1 domain and 1 type per policy module, (ii) ordinary, 10 domains and 25 types,
and (iii) huge, 20 domains and 100 types. The rationale is that larger apps can gain
considerable benefit from the use of a large policy. The basic configuration mimics
how third-party apps are currently handled, but with some key improvements, as it
permits to define the subset of services the domain can use, and it permits to enforce
app isolation, not only based on MAC category, but also through the specification of
its own type. The ordinary and huge policy configurations are meant to take full ad-
vantage of intra-app isolation and flexibility via the definition of multiple domains.
Each test was repeated five times, measuring the time each package took to install.
The measurements were done with the *nix date utility.
Test I. To measure the overhead caused by the presence of the policy module, we
performed on device installation of each of the previously described app buckets
(basic, ordinary and huge) via Android Debug Bridge (adb) [20].

The results of Test I are illustrated in Figure 2.7. In detail, it shows in blue
(i.e., the lower part of the bar) the time required by the system to install the current
package without the dedicated policy module, while in orange (i.e., the top of the
bar) the overhead caused by the presence of the policy module. The data report that
a limited overhead is associated with apps with huge policies, at most 3.59± 0.04s,
while basic and ordinary policy configurations exhibit a negligible slowdown, never
exceeding 1.22± 0.02s.

52

CHAPTER 2. DATA COLLECTION 2.7. EXPERIMENTAL RESULTS

1 20 40 60 80 100

installed apps

0

200

400

600

800

1000

1200

cu
m

ul
at

iv
e

in
st

al
la

ti
on

ti
m

e
[s

]

policy overhead

normal installation

Figure 2.8: Cumulative install time overhead when installing the top 100 free apps
on Google Play Store with our policies

Test II. To evaluate the overall impact of SEApp in a typical consumer scenario,
we performed a test evaluating cumulative installations. At first, we repeated the
installation of the top 100 apps on Google Play Store with the same policy con-
figuration as in Test I (see Figure 2.8). In this case, we measured an overhead of
20.98± 1, 31% on total installation time.

As explained in Section 2.6, each time a new application is installed, all policy
fragments stored in the device have to be recompiled to produce the new binary
policy. The installation time overhead then grows with the increase in the number of
installed policy modules. To further analyze this aspect, we repeated the installation
of the top 100 free apps adding to all the packages in three separate experiments the
same basic, ordinary, and huge policy configurations. The experimental results
illustrated in Figure 2.9, show that only the use of huge policy modules introduces
a non-negligible overhead (45.35± 2.44% on total installation time). However, this
policy configuration simulates an edge case, as we do not expect to find 100 of
them in a real scenario. To give a comparison, the huge policy declares 100 types;
public/file.te, i.e., the file used to define all the file types of the system,
declares 314 types in Android 10.

In Table 2.3 we report the sizes of the overall policies for the three scenarios
considered in this experiment. We report the number of MAC types, the number of
produced AV rules, and the overall size in KBytes of the binary policy.

53

2.7. EXPERIMENTAL RESULTS CHAPTER 2. DATA COLLECTION

policy #types #avrules KB
system 1536 29228 596
system + 100 basic 1836 47028 867
system + 100 ordinary 6036 213228 3512
system + 100 huge 15536 417228 7064

Table 2.3: Policy size

1 20 40 60 80 100

installed apps

0%

20%

40%

60%

80%

100%

ov
er

he
ad

huge policy

ordinary policy

basic policy

Figure 2.9: Install time overhead for the three policy sizes

Runtime performance

We now evaluate the runtime overhead for an app taking full advantage of SEApp.
We focus on the creation of processes and files, as they are the entities directly af-
fected by the changes made in the implementation. The data shown refer to the
creation time of each resource. The measurements have been acquired via Sys-

tem.nanoTime and have been repeated 100 times for each test. Also, all outliers
diverging more than 3 standard deviations from the mean have been suppressed.

Processes

As discussed in Section 2.6, in SEApp the creation of a process is originated from
the request of execution of an Android component. Thus, the slowdown occurs
between the request for the component and the execution of the method onCreate,
which is the time interval subject to measurement. Our evaluation is limited to activ-
ities and services, as these are the components most used by developers. Our anal-
ysis showed identical behavior for broadcast receivers and content providers, the

54

CHAPTER 2. DATA COLLECTION 2.7. EXPERIMENTAL RESULTS

other two components supporting the android:process attribute in the mani-
fest.

Separate test cases have been identified based on the type of process that sup-
ports the component. We refer to Local, Remote, Isolated or SEApp components
when we run components respectively in the current process, in another process,
in another process with the isolated app domain (using the isolatedprocess we
described in Section 2.3), or in a package specific domain (declared in the app pol-
icy module). Furthermore, we cover cold and warm start scenarios. The cold start
corresponds to the first time the application brings up the component, and the warm

start to the subsequent times the app reuses a previously instantiated one.

Cold start (ms) Warm start (ms)

Component Stock OS SEApp Stock OS SEApp
µ σ µ σ µ σ µ σ

LocalActivity 39.102 1.094 38.689 0.980 21.052 6.046 18.685 5.001
RemoteActivity 123.468 3.176 124.649 3.526 15.722 2.682 15.933 3.256
SEApp Activity - - 127.356 3.542 - - 15.188 2.394
LocalService 19.164 1.444 18.835 1.392 1.399 0.208 1.328 0.208
RemoteService 105.467 2.800 106.935 2.565 2.617 0.879 2.676 0.593
IsolatedService 103.923 2.425 104.260 3.727 - - - -
SEApp Service - - 106.925 3.774 - - 2.528 0.675

Table 2.4: Cold and warm start performance for activities and services

The results shown in Table 2.4 demonstrate that the performance of a stock
version of the OS and SEApp are equivalent. Also, we observe that apps willing
to benefit of the intra-app isolation feature get from the use of SEApp the same
performance they would get from the use of remote components. Our approach
also proves to outperform the IsolatedService, as the isolatedprocess option forces
the creation of a new process every time an IsolatedService that was previously
unBind-ed is activated. This introduces a slowdown of 102± 1ms compared to the
SEAppService warm start, which instead benefits from the system caching mecha-
nism.

Files

Alongside the usual creation method, SEApp introduces in Android the pos-
sibility of creating files with a security domain defined by the app dedicated

55

2.8. RELATED WORK CHAPTER 2. DATA COLLECTION

file contexts. Table 2.5 shows the time required to create a file, for each
of the methods discussed. We observe no overhead on direct file creation, but the
overall execution time becomes larger due to the invocation, as described in Section
2.6, of the restorecon service, which requires approximately 374±30µs. This over-
head only occurs at file creation and every subsequent operation on the file does not
exhibit any performance degradation.

File creation
Test µ (µs) σ (µs)
Stock OS 57.077 5.174
SEApp 60.696 6.782
SEApp +

431.472 109.494
restorecon

Table 2.5: File creation performance

2.8 Related work

In traditional desktop operating systems significant effort has been spent in
retrofitting legacy code for authorization policy enforcement leveraging MAC. An
approach is to place reference monitor calls to mediate sensitive access locations
through the use of static and dynamic analysis [97, 140]. An evolution of this solu-
tion is the multi-layer reference monitor [110], in which the MAC policy is enforced
at different levels (e.g., application, OS, Virtual Machine Manager). Another ap-
proach is to identify integrity-violating permissions through the use of information-
flow analysis [167].

Android’s open source nature and popularity made it the target of careful secu-
rity investigations (e.g., [5, 89, 90, 94]) and several proposals aiming at strengthen
its security properties. In the following we discuss the ones that try to address app
isolation and modularity, underlining the key differences with our methodology.

Our approach presents similarities with Secure Application INTeraction (Saint)

proposed by Ongtang et al. in [142], in which the authors also try to address the
issue of allowing developers to define policies that can be verified at both installa-
tion time and runtime, to better specify the permissions for each component of their
app. However, since the paper has been published in 2010, Saint could not leverage
SEAndroid [168], which was introduced later, thus the authors had to define their

56

CHAPTER 2. DATA COLLECTION 2.8. RELATED WORK

own Android security middleware, which would not fit into the current Android
architecture [137].

FlaskDroid [56] defines a versatile middleware and kernel layer policy lan-
guage. It is based on Userspace Object Managers (USOMs), which control access
to services, intents and data stored in Content Providers. However, FlaskDroid does
not focus on intra-app compartmentalization, a central aspect in our proposal.

ASM [109] and ASF [47] promote the need for a programmable interface that
could serve as a flexible ecosystem for different security solutions. The generality
of these solutions, however, requires to introduce several changes to the current
Android security model.

AppPolicyModules [44] is another proposal that allows app developers to create
dedicated policy modules. The authors focus more on how apps could use SEAn-
droid to better protect their resources from the system and from other apps, paying
limited attention to internal compartmentalization.

DroidCap [76] is a recent contribution proposed by Dawoud and Bugiel, in
which the authors propose to replace Android’s UID-based ambient authority
(DAC) with per-process Binder object capabilities. The proposal is interesting as
it permits to achieve security compartmentalization between different app compo-
nents. To introduce capability-based access control on files, DroidCap had to in-
tegrate Capsicum for Linux [102] in Android. Overall, DroidCap is a nicely engi-
neered solution, which shares similar objectives with ours, and the two could work
in parallel as they do not interfere with each other. However, as our proposal relies
on SELinux and SEAndroid, which are already part of the Android security frame-
work, our architecture appears to be more aligned with the natural evolution of the
Android ecosystem.

Boxify [48] is a virtualization environment for Android apps, which could be
used to achieve a higher level of privacy and better control over app permissions.
The authors also describe how their solution could be used to compartmentalize Ads
libraries to reduce the risk of sensible information leakage. Yet, since the virtual-
ization environment acts as a mediator between the applications and the system, it
extends the set of trusted components the app has to rely on.

AFrame [187] and CompARTist [113] propose to compartmentalize third-party
libs from their host app using a separate process with a dedicated UID. In AFrame

the Android Manifest is modified with the introduction of library ad-hoc permis-

57

2.9. CONCLUSIONS CHAPTER 2. DATA COLLECTION

sions, while CompARTist uses compile time app rewriting. Both proposals do not
extend the protection at the MAC level.

To summarize, the main differences that characterize our proposal are: (i) we
propose a natural extension of the role of SELinux to apps leveraging what is al-
ready used to protect the system itself, thus minimizing the impact on it, and (ii) we
empower the developers while limiting the amount of changes an application must
undergo in order to take advantage of our solution.

2.9 Conclusions

This chapter proposed an extension to the current MAC solution (SELinux) already
available in Android. Developers can use SELinux to define domains that are inter-
nal to their apps, in such a way that it is possible to leverage the modules that are
already providing protection to the system. By mapping SELinux domains to ac-
tivities and services, developers can limit the impact that a vulnerability has on the
app processes and files. We described in the chapter the changes that we introduced
into Android, and our experimental evaluation shows that the overhead introduced
by our proposal is compatible with the additional security guarantees.

Availability

The implementation source and artifacts produced for the evaluation of our propos-
als are freely available at this URL: https://github.com/matthewrossi/
seapp

The work in this chapter was supported in part by the EC within the H2020
Program under projects MOSAICrOWN, and by the 2015 Google Faculty Research
Award Program.

58

https://github.com/matthewrossi/seapp
https://github.com/matthewrossi/seapp

59

Chapter 3

Data sanitization
SDS: scalable distributed data sanitization

IEEE International Conference on Pervasive

Computing and Communications

ARTIFACT CERTIFIED

IEEE International Conference on Pervasive

Computing and Communications

RESULT CERTIFIED

Data sanitization (or anonymization) follows to the collection. Sanitization irre-
versibly alters the data so that a subject (referenced within it) cannot be identified,
given a certain security parameter, while data remain practically useful. While san-
itization is known to be a computationally demanding process, we aim at providing
a solution for enabling a distributed anonymization over large collections of data.

There are many techniques to sanitize a dataset. Examples are k-anonymity [65],
`-diversity [130], and Differential Privacy [68]. In this chapter, we focus on the ones
that apply sanitization through generalization and suppression. Before replacing
the datum with a less precise but semantically consistent version, these approaches
cluster the data records into partitions based on their values. Intuitively, grouping
similar values into the same partition permits to reduce the information loss in-
duced by the generalization process. Our idea is that the same intuition can be used
to identify an initial number of partitions, each subsequently sanitized by a dedi-
cated network node. As this approach avoids data shuffling between the nodes, we
expect a more predictable reduction in the total sanitization time when the number
of nodes increases, with a limited degradation of the dataset produced in terms of
quality (i.e., information loss).

We implement our solution as a multi-container application deployed with
Docker. The experimental evaluation confirms that the approach is scalable with
limited impact on information loss, even when the initial set of partitions is deter-
mined based on a sample of the dataset. The open source solution implementing
this approach was awarded as the Best Artifact at IEEE PerCom 2021.

3.1. INTRODUCTION CHAPTER 3. DATA SANITIZATION

3.1 Introduction

Almost every object we use in our everyday life already is or is going to be smart,
and equipped with sensors that constantly collect information about ourselves and
the environment where we live (e.g., smart cars monitor the position of the car,
engine configuration, tire pressure, etc.) [42]. Such data are valuable and may need
to be shared with others (e.g., to design better solutions for autonomous driving)
without, however, violating the privacy of the individuals to whom they refer.

Guaranteeing privacy in datasets containing possible identifying and sensitive
information requires not only refraining from publishing explicit identities, but also
obfuscating data that can leak (disclose or reduce uncertainty of) such identities
as well as their association with sensitive information. k-anonymity [65, 163], ex-
tended with `-diversity [130], offers such protection. k-anonymity requires gener-
alizing values of the quasi-identifier attributes (i.e., attributes that leak information
on respondent’s identities exploiting linkage with external sources) to ensure each
quasi-identifier combination of values to appear at least k times. `-diversity con-
siders each sensitive attribute in such operation so to ensure each combination of
quasi-identifier values to be associated with at least ` different values of the sensi-
tive attribute (see Figure 3.1(c)).

Age Country TopSpeed
25 Italy 132
25 Italy 132
30 France 128
42 Italy 110
50 France 115
43 Canada 115
38 USA 126
38 USA 127
38 USA 140

Age Country TopSpeed
[25-30] Europe 132
[25-30] Europe 132
[25-30] Europe 128
[42-50] World 110
[42-50] World 115
[42-50] World 115

38 USA 126
38 USA 127
38 USA 140

(a) (b) (c)

Figure 3.1: An example of a dataset (a), its spatial representation and partitioning
(b), and a 3-anonymous and 2-diverse version (c), considering quasi-identifier Age
and Country and sensitive attribute TopSpeed

While simple to express, k-anonymity and `-diversity are far from simple to
enforce, given the need to balance privacy (in terms of the desired k and `) and
utility (in terms of information loss due to generalization). Also, the computa-
tion of an optimal solution requires evaluating (based on the dataset content) which

60

CHAPTER 3. DATA SANITIZATION 3.1. INTRODUCTION

quasi-identifying attributes generalize and how, and hence demands complete vis-
ibility of the whole dataset for operating the generalization steps. Hence, exist-
ing solutions implicitly assume to operate in a centralized environment. Such an
assumption clearly does not fit pervasive systems where the amount of data col-
lected is huge (there are widely circulating estimates that a smart car will upload
to the cloud 25GB per hour). While scalable distributed architectures can help in
performing computation on such large datasets, their use in computing an optimal
k-anonymous solution requires careful design. In fact, a simple distribution of the
load among workers would affect either the quality of the solution or the scalability
of the computation (requiring expensive synchronization and data exchange among
workers [41]).

In this chapter, we detail our scalable, efficient, and effective approach for
the distributed enforcement of k-anonymity and `-diversity requirements on large
datasets. The solution is based on an adaptation of Mondrian [121], revised to
operate without requiring knowledge of the complete dataset. Mondrian is a mul-
tidimensional algorithm that has established itself as an efficient and effective ap-
proach for achieving k-anonymity. Mondrian leverages a spatial representation of
the data, mapping each quasi-identifier attribute to a dimension and each combina-
tion of values of the quasi-identifier attributes as a point in such a space. Mondrian
then recursively cuts the tuples in each partition (the whole dataset at the first step)
based on their values (lower/higher than the median) for a quasi-identifying attribute
chosen at each cut. The algorithm terminates when any further cut would generate
sub-partitions with less than k tuples, at which point values of the quasi-identifier
attributes in a partition are substituted with their generalization. Figure 3.1(b) shows
the spatial representation and partitioning of the dataset in Figure 3.1(a), where the
number associated with each data point is the number of tuples with such values for
the quasi-identifier in the dataset.

We have extended Mondrian designing a solution for partitioning data for dis-
tribution to workers without requiring knowledge of the whole dataset. We have
implemented such an approach providing parallel execution on a dynamically cho-
sen number of workers. The design of our partitioning approach aims at limiting the
need for workers to exchange data, by splitting the dataset into as many partitions as
the number of workers, which can independently run a revised version of Mondrian

61

3.2. DISTRIBUTED ANONYMIZATIONCHAPTER 3. DATA SANITIZATION

on their portion of the data. The experimental evaluation shows that our solution
provides scalability, while not affecting the quality of the computed solution.

3.2 Distributed anonymization

This section illustrates the architecture and working of our open source system
(available at this link), supporting the distributed anonymization of large datasets.

Architecture

Figure 3.2 illustrates the architecture of our system, which includes two clusters:
an Hadoop Distributed File System (HDFS) cluster, a well known and widely used
solution for data storage and management, and a Spark cluster for data processing.
Data are split in smaller blocks stored at datanodes. A namenode in the HDFS
cluster manages the data stored at the datanodes and the access requests to them.
For data processing, we have opted for Spark because it is a widely used engine for
big data analytics that is fully compatible with the HDFS cluster. Among the nodes
in the Spark cluster, one acts as Spark Cluster Manager and coordinates the work
of the other nodes in the cluster, acting as workers.

The distributed SPARK anonymization application has been developed in
Python to leverage the Pandas framework, which can be conveniently used for man-
aging large data collections. The application is associated with a Spark Driver. The
Spark Driver, which runs on the Spark Cluster Manager, is responsible for con-
verting the application into a set of jobs that are then divided into smaller execution
units, called tasks. The tasks are allocated to workers by the Spark Cluster Manager.

Distributed anonymization algorithm

The application operates in three steps (Figure 3.2): pre-processing, which parti-
tions the dataset and distributes tasks to workers; anonymization, which anonymizes
the dataset; wrap-up, which computes the information loss and collects other infor-
mation related to the anonymization process.

Pre-processing. The first problem addressed consists in deciding how the dataset
can be partitioned by the Spark Driver among the n available workers, in such a
way that each worker can independently apply the anonymization algorithm on the

62

https://github.com/mosaicrown/mondrian

CHAPTER 3. DATA SANITIZATION3.2. DISTRIBUTED ANONYMIZATION

HDFS Spark cluster

Namenode

Datanodes

...

Cluster Manager

Driver

Workers

n
1

n
1Indexes

0, 2, 5, ...

Partitions

TopSpeed
132
...

140

Country
Italy

USA
...

Age
25
...

0

m

...

38

TopSpeed
132
...

128

Country
Italy

France
...

Age
25
...
30

TopSpeed
132
...

128

Country
Europe

Europe
...

[25 - 30]

Age
[25 - 30]

...

Figure 3.2: Architecture and working of the distributed anonymization system

portion of data assigned to it, without incurring in too much information loss. We
first observe that, while a random partitioning of the dataset would work, it may
increase the information loss. We therefore apply a strategy similar to the strategy
used by the original Mondrian for creating sub-partitions: we first select an attribute
of the quasi-identifier on which to partition the dataset and then create n partitions
(one for each worker) depending on the values of the selected attribute. The attribute
can be selected by applying different metrics (the tool supports maximum entropy,
minimum entropy, and maximum span) that, however, require to have the dataset
in main memory to determine the distribution of the quasi-identifying attributes’
values. To overcome this problem, we operate on a sample of the dataset (whose
size is a configuration parameter of the tool) that fits into the main memory of the
Spark Driver. Based on the randomly extracted sample, the Spark Driver determines
the most suitable attribute, and partitions the tuples in the dataset according to the
n-quantiles. We note that, as confirmed by the experimental results (Section 3.3),
operating on a sample of tuples for performing the first partitioning of the dataset
does not affect the quality of the solution.

Anonymization. The Spark Cluster Manager assigns the task of anonymizing each
partition determined in the pre-processing step to a worker, depending on different
factors (e.g., the workload, the datanode where data are stored). To make the sys-
tem scalable, our implementation forces each partition to be assigned to a different
worker. Each worker then downloads from the HDFS datanodes its portion of the

63

3.3. EXPERIMENTAL RESULTS CHAPTER 3. DATA SANITIZATION

dataset, and runs a revised version of Mondrian, without the need of interacting with
the other workers. Our revised version of Mondrian differs from the original one
in two aspects: 1) the attribute selected for partitioning is determined by applying
the same metric used in the pre-processing step; 2) the partitioning is performed
considering both the k-anonymity and `-diversity requirements. When the parti-
tions cannot be further divided without violating k-anonymity nor `-diversity, the
tuples in each partitions are generalized. Our tool implements different generaliza-
tion strategies, suited for different kinds of data (e.g., ranges for numeric attributes,
user-defined generalization hierarchies for categorical attributes). Before storing
the anonymized portion of dataset back at the datanodes, each worker computes the
information loss on its portion of the dataset and sends the result to the Spark Driver
(see next step).

Wrap-up. To assess the quality of the anonymized dataset, the Spark Driver com-
putes the information loss produced by our distributed anonymization algorithm.
To this end, the Spark Driver combines the values of the information loss received
from the workers. Such a combination is done depending on the information loss
metric adopted. The tool supports two of the most common metrics, that are, the
Discernibility Penalty (DP) and the Global Certainty Penalty (GCP) [188].

3.3 Experimental results

To assess the scalability of the approach and its limited impact on information loss,
we have tested it over the IPUMS USA dataset [162], which has become a de-
facto benchmark for anonymization solutions. The dataset includes 500,000 tuples.
We assume the quasi-identifier to include attributes State FIP Code, Age,
Education Number, Occupation, and the sensitive attribute to be Income.
We have simulated a distributed environment using a single server through Docker
containers. Each node in the architecture in Figure 3.2 runs in a different Docker
container. The server is a 12 cores (24 threads) AMD Ryzen 3900X CPU, with 64
GB RAM and 2 TB SSD, running Ubuntu 20.04 LTS, Apache Spark 3.0.1, Hadoop
3.2.1, and Pandas 1.1.3. The distributed algorithm operates over workers equipped
with 2GB of RAM and 1 CPU thread each. The centralized algorithm is single core,
with no limitation on the use of the RAM.

64

CHAPTER 3. DATA SANITIZATION 3.3. EXPERIMENTAL RESULTS

	0

	100

	200

	300

	400

	500

	600

	700

	800

	900

	2 	3 	4 	5 	6 	7 	8 	9 	10 	11 	12 	13 	14 	15 	16 	17 	18 	19 	20

Ti
m
e	
[s
]

Number	of	workers

Centralized	Mondrian
Spark-based	Mondrian

Figure 3.3: Execution time of the centralized version and distributed version varying
the number of workers

The experiments aim at comparing 1) the execution time and 2) the information
loss of our distributed approach with those of the centralized version of Mondrian.

Execution time. Figure 3.3 illustrates the execution time (in seconds) for comput-
ing a 3-anonymous and 2-diverse version of the IPUMS USA dataset. The figure
shows the execution time of our distributed (Spark-based) Mondrian varying the
number of workers between 2 and 20. The execution time of the distributed Mon-
drian decreases, as expected, when the number of workers grows with a saving with
respect to the execution time of the centralized Mondrian that ranges from 46% to
85% when using more than 3 workers. This confirms the scalability of our dis-
tributed approach. It is interesting to note that the centralized Mondrian is more
efficient than the distributed one when the number of workers is low (2 or 3 in our
experiments). This is due to the constant initialization time paid by the distributed
implementation for setting distribution and interoperation among workers, and by
the different libraries used by the centralized implementation (NumPy) and by the
distributed implementation (Spark APIs).

Information loss. We first observe that the information loss caused by distribution
can be impacted by: 1) the number of workers (and hence of partitions), and 2) the
size of the sample used to partition the dataset. Table 3.1 illustrates the average
information loss (and its variance) obtained in 5 runs of the centralized and dis-

65

3.4. CONCLUSIONS CHAPTER 3. DATA SANITIZATION

100% 0.01% sampling
(centralized) 5 workers 10 workers 20 workers

DP 1.24e7 1.23e7 (±4e5) 1.26e7 (±4e5) 1.33e7 (±1e5)
GCP 6.44 6.47 (±0.08) 6.49 (±0.07) 6.46 (±0.10)

Table 3.1: DP and GCP information loss with 100% and 0.01% sampling

tributed (with 5, 10, and 20 workers) Mondrian for computing a 5-anonymous and
2-diverse version of the IPUMS USA dataset, assuming 0.01% and 100% sampling.
In the table, 100% sampling corresponds to the centralized Mondrian, hence in our
experiments the information loss is substantially not affected by distribution.

The results we obtained confirm that, as expected, information loss grows with
the number of workers (i.e., values in DP and GCP lines in Figure 3.1 grow when
moving from left to right), but the impact is negligible. Also, the results show that
sampling has a very limited impact on information loss (i.e., values obtained with
0.01% sampling are slightly higher than the values obtained with 100% sampling).
For instance, GCP increases of less than 2% when passing from the centralized
version with 100% sampling to the distributed version with 20 workers and 0.01%

sampling. DP has a similar trend.

We can then conclude that parallelization provides high scalability at a limited
cost in terms of information loss.

3.4 Conclusions

This chapter proposed a distributed version of Mondrian that provides scalability
without affecting information loss and leveraging an arbitrary number of indepen-
dent workers.

Appendix B details the working of our distributed Spark anonymization appli-
cation. Parameter settings, work distribution, and anonymization results are conve-
niently controllable via a web interface. The interface enables setting the parameters
for privacy (i.e., k and `) and distribution (i.e., number of workers) and provides a
visual representation of the system working, as well as of the privacy and utility
guarantees for different information loss metrics.

66

CHAPTER 3. DATA SANITIZATION 3.4. CONCLUSIONS

Availability

The implementation source of our proposals is freely available at this URL:
https://github.com/mosaicrown/mondrian

The work in this chapter was supported in part by the EC within the H2020 Pro-
gram under projects MOSAICrOWN and MARSAL, by the Italian Ministry of Re-
search within the PRIN program under project HOPE, and by JPMorgan Chase &
Co under project “k-anonymity for AR/VR and IoT/5G”.

67

https://github.com/mosaicrown/mondrian

69

Chapter 4

Data storage & processing
SecIdx: k-flat encrypted indexes for encrypted databases

In this chapter, we bring into focus the storage and processing stage. The goal is
to enable provider-side evaluation of queries with guarantees that an honest-but-

curious storage provider cannot access to the data content.
In this scenario, we concentrate on relational data and provide an approach that

supports the evaluation of point and range conditions on multiple attributes. The ap-
proach we propose involves packing the tuples into blocks, which are subsequently
stored to the cloud provider. To guarantee that the cloud provider cannot access to
the data inside the blocks, a probabilistic encryption layer is applied. Blocks are
indistinguishable for the cloud provider, and access to them is performed via a set
of indexes. Protection against inferences from indexes is guaranteed by clustering
tuples in blocks that are then mapped to the same index values, so to ensure col-
lisions for individual attributes as well as their combinations. To produce such a
clustering, while at the same time ensuring efficient query execution, we provide a
spatial-based tuple partitioning algorithm. Query translation and processing require
the client to store a compact map. The map is used to search the indexes efficiently.

To validate our approach, we conduct a series of experiments evaluating the
query response time and client-storage requirements. The experiments confirm the
effectiveness associated with our approach. The degradation of query response
time, compared to a configuration where the data are stored in plaintext on a re-
mote database, is very low, especially when the network link bridging the client and
server is affected by at least 10 ms latency, and has a transmission rate of 100 Mbps.

4.1. INTRODUCTION CHAPTER 4. DATA STORAGE & PROCESSING

4.1 Introduction

A lot of research has been dedicated in the past twenty years to the investigation of
how cloud service providers can support the management of data with a guarantee
that the cloud provider does not have access to the data content. The model that
is often used in this scenario is the honest-but-curious [164] server, which assumes
that the cloud provider correctly executes all the data access and manipulation op-
erations issued by the customer, but may abuse the fact that it observes the data to
have access to the customer information.

The classical solution to this threat is represented by the use of encryption, so
that the control of the physical representation of the data does not give access to
the information content, as long as the cloud provider does not have access to the
encryption key. Unfortunately, a simple use of encryption may not offer real pro-
tection against the curious cloud provider. When direct deterministic encryption
is applied, the encrypted data maintain the same distribution of the original data,
and this allows an adversary to reconstruct the original values by comparing the
distribution to that of known public data (e.g., first names, last names, zip codes).

The research and industry communities have dedicated significant effort to solve
this problem, considering different lines of investigations. Possible approaches in-
clude: i) the use of searchable encryption (e.g., [51, 52, 147]), supporting the eval-
uation of conditions on encrypted data; ii) the use of trusted hardware components
(e.g., Intel SGX [114]) and Oblivious Random Access Memory (ORAM) [75, 171]
protocols at the server, offering a trusted execution environment residing at, but
not accessible by, the server; iii) the use of Fully Homomorphic Encryption (FHE)
schemes [96, 99, 139]. All these approaches represent valid alternatives, but in gen-
eral, they suffer from a significant overhead (e.g., [40]), making them still not ap-
plicable in many practical scenarios.

The approach described in this chapter specifically targets relational data. To
support the evalution of conditions, we propose the association with the encrypted
data of metadata working as indexes. However, indexes may suffer from a pos-
sible exposure to inferences, as they might leak information on the values behind
them. The vulnerability of indexes typically resides in the frequencies of their oc-
currences, which can bear relationship with the plaintext values. Frequencies of
both individual attributes values as well as combinations of them can be exposed

70

CHAPTER 4. DATA STORAGE & PROCESSING 4.1. BASIC CONCEPTS

to inference. We address these problems proposing a multidimensional index that
guarantees perfect indistinguishability to an adversary with access to the data. This
means that all the values of the attributes in the index (and their combinations) will
appear in the index with the same number of occurences. To offer protection against
an attacker monitoring the access to the data content, we cluster tuples into equally
large unintelligible blocks (or groups) so that tuples referenced by the same index
value are indistinguishable from one another (so are queries over them).

The consequence for such a protection is that tuples can only be retrieved by the
client with the granularity of blocks. It is therefore important to carefully group tu-
ples for indexing so to limit the degradation in query response time. While this can
be trivial when only one attribute is to be indexed, it is far from being so (it is an NP-
hard problem) when multiple attributes need to be indexed. The approach for index
construction employs a spatial-based representation of tuples to be outsourced and
an algorithm performing recursive cuts on such space, resulting in a partitioning
of tuples for indexing. As confirmed by the experimental results detailed in Sec-
tion 4.7, the proposal provides for effective and efficient query evaluation, enjoying
limited overhead and limited storage requirements at the client side.

4.2 Basic concepts and problem statement

The work proposed in this chapter is framed in the context of relational database
systems. We illustrate our approach with reference to the outsourcing of a relation
r over schema R(a1, . . . , am), with each attribute aj defined over a domain d(aj),
j = 1, . . . ,m. Since our assumption is a honest-but-curious server, clearly tuples
need to be encrypted for storage, the idea is to specify indexes over attributes and
evaluate conditions on queries over such indexes. The problem is the definition of
privacy-preserving indexes for enabling execution of queries involving evaluation
of conditions over attributes, considering equality (i.e., =) conditions as well as
range (i.e., >,≥, <,≤) conditions. As a running example, we consider the problem
of outsourcing the relation in Figure 4.1(a), where queries may need to evaluate
condition over attributes State (with domain the two-letter codes for states within
the USA), and Age. A query we want to support is, for instance, “SELECT Name,
Age FROM r WHERE State= Ca ∧ Age>38”, aimed at retrieving name and age
of people older than 38 living in California.

71

4.2. BASIC CONCEPTS CHAPTER 4. DATA STORAGE & PROCESSING

Name Age State
t1 Abe 34 Ne
t2 Bud 34 Tx
t3 Coy 40 Ne
t4 Doc 34 Wy
t5 Edd 37 Ca
t6 Fox 40 Ak
t7 Gus 43 Ca
t8 Hae 46 Ca
t9 Isa 49 Oh
t10 Jim 55 Wy
t11 Ken 46 Mi
t12 Luc 52 Tx

(a)

iAge iState enctuple
ε α t1
ε α t2
ε α t3
ζ β t4
ζ β t5
ζ β t6
η γ t7
η γ t8
η γ t9
θ δ t10
θ δ t11
θ δ t12

(b)

Figure 4.1: Plaintext relation (a), and its encrypted and indexed version (b)

Indexing the relation for external outsourcing while protecting confidentiality
of its content means providing some coding for the attributes on which conditions
need to be supported, so to enable evaluation of conditions while not exposing actual
values to the storing server. Indexing must however be done carefully to ensure it
does not leak information. For instance, while the coding protects actual value,
a one-to-one correspondence between plaintext values and indexes clearly makes
indexes exposed to frequency-based attacks (e.g.,, in our example, California is
the only state with three occurrences and a one-to-one indexing would maintain
such a property). Also, an order-preserving index to support range queries would
maintain the order of values in the indexing, hence again leaking information which
can enable reconstructing the values behind the indexes. Hence, indexes should not
leak, in their values, any order.

Frequency-based attacks can be counteracted by destroying the frequency-based
correlation between values and indexes. The extreme case for this is a 1-to-many
correspondence (hence mapping different occurrences of the same value to multiple
indexes) with no index values appearing more than once (e.g., the three occurrences
of California would be mapped to three different indexes). While destroying fre-
quencies in the index, such an approach would clearly introduce a significant over-
head in query execution. An alternative approach to confuse frequencies is through
collision, mapping different plaintext values to the same index, but the presence of
high-occurring values would however still be exposed. A solution to the problem

72

CHAPTER 4. DATA STORAGE & PROCESSING 4.3. PARTITIONING

above is to provide indexing while ensuring a complete flat occurrence of index
values through both multiple index values for the same plaintext as well as colli-
sion, which is through a many-to-many correspondence between plaintext values
and indexes. To provide effective protection, not only individual attributes, but also
any combination of them, should enjoy a flat profile. Besides providing protec-
tion against static inference attacks, that can no longer exploit frequencies of index
values or combination thereof, such a flattening provides protection also against dy-
namic observations from the storage provider, since tuples with the same index are
indistinguishable from one another. The level of protection to dynamic observations
is directly proportional to the number of tuples referenced by the same combination
of index values. Figure 4.1(b) shows an example of such an indexing for the relation
in Figure 4.1(a), where index values are represented with Greek letters, and the en-
crypted tuples are represented with a gray background. Indexes and combinations
thereof enjoy a completely flat occurrences and therefore no static inference can be
made of the values behind them. The challenge is producing a flattened index over
multiple attributes.

4.3 Partitioning

Our approach for the construction of index values is based on a partitioning of the
tuples in the original relation into groups with fixed cardinality. All tuples in the
same group are then associated with the same combination of index values. The
number of tuples that must be included in each group, denoted k, is a parameter that
can be arbitrarily set. A larger k provides more protection against dynamic obser-
vations, but also increases the potential query execution overhead (see Section 4.7).

The first step of our approach is the clustering of tuples in groups of the same
size, k. Since the cardinality of the relation may not necessarily be a multiple of
k, we need to account for the remainders, which we accommodate by allowing
clusters to include at most one tuple more than the k requested (as needed to fully
cover the sets of tuples to be partitioned). Our definition of k-flat partition captures
the partitioning of tuples, to produce a maximal flattening of groups with cardinality
k as follows.

Definition 4.3.1 (k-flat partition). Let r be a relation. A k-flat partition of r, denoted

P, is a partition P = {G1, . . . , Gp} of tuples in r such that:

73

4.3. PARTITIONING CHAPTER 4. DATA STORAGE & PROCESSING

1. ∀G ∈ P, k ≤ card(G) ≤ k + 1;

2. p = bcard(r)/kc.

In Definition 4.3.1, the first condition expresses the requirement on the cardinal-
ity of the groups (allowing groups to have either k or k + 1 tuples, this latter being
needed to accommodate remainders), and the second condition dictates the number
of groups to be the maximum among those that satisfy condition 1, or - equivalently
- the number of groups with k + 1 tuples to be minimum. By dictating the number
of groups in the partition, condition 2 forces exactly h = card(r) mod k of the
groups to have k + 1 tuples, while all the others will have k tuples. In other words,
the condition rules out from consideration partitions which do not enjoy maximum
flattening, or rather that have a number of groups of cardinality k + 1 larger than
the number of remainders to be accommodated. For instance, assume card(r)=231
and k=10. Condition 2 would accept only a partition composed of 23 groups (one
of which composed of 11 tuples, all others being of 10 tuples) ruling out of consid-
eration partitions composed of 22 groups (eleven of which composed of 11 tuples)
or 21 groups (all with 11 tuples), which - although satisfying condition 1 - do not
maximize the required flattening of k = 10.

Clearly, for a relation r to have a k-flat partition, the number of remainders to
be accommodated (i.e., the extra tuples to allocate to groups) must be not greater
than the number of groups composing the partition. For instance, trivially, no k-flat
partition for k = 10 can exist for a relation with 23 tuples. In other words, with
h = card(r) mod k and p = bcard(r)/kc, it must be that h ≤ p, which is also
a sufficient condition for a k-flat partitioning to exist, as stated by the following
theorem.

Theorem 1 (Existence of a k-flat partition). Let r be a relation such that card(r)≥k.

A k-flat partitionP of r exists iff h ≤ p, with h=(card(r) mod k) and p=bcard(r)/kc.

Proof. See Appendix C.2

Given a relation r and an integer k, we say that r is valid wrt the k-flat parti-
tioning problem if a k-flat solution exists for r. This is captured by the following
definition.

Definition 4.3.2 (Validity). Relation r is said to be k-valid for k-flat partition iff

h ≤ p, with h=(card(r) mod k) and p=bcard(r)/kc.

74

CHAPTER 4. DATA STORAGE & PROCESSING 4.3. PARTITIONING

While the observation in Theorem 1 may seem a non issue for the problem
to be solved, where the cardinality of r is extremely large and k very small, it is
an important aspect to take into account in the partitioning process, which, if not
done properly, may easily degenerate. Our approach to compute a k-flat partition
is via a process recursively cutting a relation in two groups at each step, until a
k-flat partition is reached. To ensure that our recursive process terminates with the
computation of a k-flat partition, we force the cut at each step to produce only k-
valid relations and to not increase the number of groups with cardinality higher than
k. We then introduce the notion of cut validity as follows.

Definition 4.3.3 (Cut validity). Let r be a relation and k be an integer. A cut (rl,rr),

partitioning r in two groups, is valid iff both rl and rr are valid (Definition 4.3.2)

and h = hl + hr, with h=(card(r) mod k), hl=(card(rl) mod k), and hr=(card(rr)

mod k)

Intuitively, a cut is valid if the two relations resulting from it are k-valid, that is,
a k-flat partition exists for them, and the total number of groups of cardinality k+1

is not increased by the cut. For instance, consider a relation composed of 233 tuples.
A cut partitioning it in two relations of 23 and 200 tuples, respectively, is not valid
due to the non validity of the first relation (which cannot have a 10-flat solution).
Also, a cut partitioning it in two relations of 117 and 116 tuples, respectively, is not
valid since, their k-flat solutions, having respectively seven and six groups of 11
tuples, cannot represent a k-flat solution for the original relation.

Since our problem is to group tuples for index construction, it is important not
only to partition tuples as a k-flat partition to ensure flat indexing, but also to have
indexes that perform well with respect to query execution. In general, a partitioning
maintaining same or close values within the same group as much as possible be-
haves better, meaning it introduces less performance overhead in query execution,
than an approach scattering such values in different groups. However, as already
noticed, with multiple attributes involved, the problem is far from being trivial.

In the next sections we first describe how we take into consideration the values
within tuples so to provide a partitioning performing well for query execution, and
then we describe its tweaking to enforce partitioning to ensure k-flatness.

75

4.3. PARTITIONING CHAPTER 4. DATA STORAGE & PROCESSING

Recursive partitioning

Our approach to partitioning is based - at a very high level - on an algorithm simi-
lar to the one used by the Mondrian anonymization algorithm [122], while bearing
some important differences. The similarity is the representation of the dataset in a
multidimensional space and the enforcement of partitioning through recursive cuts.
The differences, to accommodate the fact that we need to cluster tuples to pro-
duce flat indexing performing well for query evaluation (in contrast to cluster tuples
for semantically meaningful generalizations), are mainly in the way cuts are deter-
mined, and the forcing on groups to provide flattening as per Definition 4.3.1. Our
partitioning process works then in a multidimensional space, with one dimension
for each attribute to be indexed, and where each tuple is the point in such a space
where its coordinate values meet. The space appearing at the top in Figure 4.2 is
the multidimensional representation of attributes State and Age for the tuples in
Figure 4.1(a). We distinguish attributes to be indexed in two categories:

• continuous attributes (e.g., Age in Figure 4.1(a)), characterized by a total
order relationship on their domain hence supporting range conditions;

• nominal attributes (e.g., State in Figure 4.1(a)), which do not have an order
in their domain and thus supporting equality conditions only.

While the spatial representation conveys an order of values along a dimension,
we maintain such an order fixed, and corresponding to the order dictated by the do-
main, only for continuous attributes, so that partitioning will cluster together same
or close values. By contrast, we adjust the order in our spatial representation of
nominal attributes as best suited for the process, as we elaborate next.

The partitioning process works cutting at each step the tuples along one dimen-
sion (attribute) in the space and recursively calling itself on each of the two produced
subspaces. At each iteration, the dimension along which a cut is to be performed
is chosen to be an attribute that enjoys the highest support (i.e., number of distinct
values). If the attribute is a continuous attribute, the cut divides the tuples in two
groups depending on their value wrt the median: values lower than or equal to the
median in one group and values higher than the median in the other group. Should
the median correspond to the maximum value for the attribute in the relation, the
values equal to the median will be put in the second group (which would otherwise

76

CHAPTER 4. DATA STORAGE & PROCESSING 4.3. PARTITIONING

34 37 40 43 46 49 52 55

Oh
Mi
Ak
Tx
Wy
Ne
Ca

34 37 43 46 49 52 5540

34 37 40 34 37 40 43 46 49 52 55 43 46 49 52 55

Age <= 41.5 Age > 41.5

State
IN

{Ne,Tx}

State
IN

{Ak,Ca,Wy}

State
IN

{Ca,Oh}

State
IN

{Mi,Tx,Wy}

Ak
Ca
Wy
Tx
Ne

Tx
Mi
Wy
Oh
Ca

Tx
Ne

Ak
Ca
Wy

Oh
Ca

Tx
Mi
Wy

Figure 4.2: Graphical representation of the cuts performed by procedure Cut over
the relation in Figure 4.1(a)

be empty) instead than the first one. If the attribute is a nominal attribute, the cut
divides the tuples in two groups with a bin packing strategy, considering values of
the attribute in decreasing order of their occurrences and placing tuples that have
the value under consideration in the group that is smaller. Figure 4.2 illustrates the
working of the partitioning process for our running example. The first cut oper-
ates on attribute Age (whose support is 8), splitting tuples in two groups, the left
group has the tuples with age lower than or equal to the median (which is 41.5) and
the right group has the tuples with age higher than the median. On each of the two
spaces, the subsequent cut operates on attribute State, diving tuples in two groups
with a bin packing strategy, considering state values in decreasing order of occur-
rences and placing tuples with such values in the group that is smaller. In the figure,
the order of values in the state dimension has been rearranged (starting from the
origin, they always appear in decreasing order of occurrences), to better graphically
represent the cut. The resulting groups, reported at the bottom of Figure 4.2, have
all cardinality of 3, and hence no further cut needs to be performed (as k is equal to
3 in the running example).

77

4.3. PARTITIONING CHAPTER 4. DATA STORAGE & PROCESSING

INPUT: (r, k) /* relation r to partition; global variable k */
OUTPUT: P /* k-flat partition P */
PARTITION(r)
1: if card(r) ≤ k + 1 then P := P ∪ {r}
2: elseif support(r) = 1 then /* all tuples over A are equal */
3: p := bcard(r)/kc
4: h := card(r) mod k
5: Let {G1, . . . , Gp} be a partition of r in h groups of k+1 tuples
6: and p−h groups of k tuples
7: P := P ∪ {G1} ∪ . . . ∪ {Gp}
8: else
9: Choose a ∈ A s.t. support(r[a]) is maximum

10: (rl, rr) := cut(r,a)
11: partition(rl)
12: partition(rr)

Figure 4.3: Algorithm for computing a k-flat partition

Computing a k-flat solution

Our approach to compute a k-flat solution comprises three procedures: Partition,
Cut, and Check. These are illustrated in Figures 4.3, 4.4 and 4.5 respectively.

Partition. Procedure Partition (Figure 4.3) performs the partitioning recur-
sively calling itself and calling procedure Cut for performing the described cutting
process, eventually determining the sets P composing the groups of the k-flat par-
tition. When called, Partition(r) first evaluates the cardinality of r (line 1). If such
a cardinality is no greater than k + 1 (meaning it is either k or k + 1), no further
cut needs to be performed and r is added to P. Else, if all the tuples in r have the
same values (line 2), it simply splits the tuples in bcard(r)/kc groups each contain-
ing either k or k + 1 tuples (as per Definition 4.3.1). Otherwise (line 8) it picks
an attribute a with the highest number of distinct values and calls procedure Cut to
split the tuples in the relation along a’s dimension, then recursively calling itself on
the two partitions returned.

Cut. Called with a relation r and attribute a as parameters, procedure Cut
(Figure 4.4) partitions the tuples in r based on the values of a, enforcing the process
described in Section 4.3 depending on whether a is continuous (line 1) or nominal
(line 10). After producing the two partitions rl and rr, it calls procedure Check,

78

CHAPTER 4. DATA STORAGE & PROCESSING 4.3. PARTITIONING

CUT(r,a) /* cut relation r over attribute a and produces two valid relations rl and rr */
1: if a is continuous then
2: med := median(r[a]) /* compute the median of a */
3: if med = max(r[a]) then
4: rl := {t∈r | t[a]<med}; rr := {t∈r | t[a]≥med}
5: else rl := {t∈r | t[a]≤med}; rr := {t∈r | t[a]>med}
6: m := check(r,rl.rr)
7: case m of /* move |m| tuples to produce two valid relations rl and rr */
8: > 0: Move m tuples with values for a closest to med from rl to rr
9: < 0: Move |m| tuples with values for a closest to med from rr to rl
10: else /* a is nominal */
11: ∀v ∈ r[a], cv := count(r[a]=v) /* count cv to be priority of v */
12: Let Q be a max priority queue with the distinct values in r[a]
13: rl := ∅; rr := ∅
14: while NOTEMPTY(Q)
15: v := POP(Q)
16: if card(rl) < card(rr) then rl := rl ∪ {t∈r | t[a] = v}
17: else rr := rr ∪ {t∈r | t[a] = v}
18: m := check(r,rl.rr)
19: case m of /* move |m| tuples to produce two valid relations rl and rr */
20: > 0: Move m tuples with the minimum count from rl to rr
21: < 0: Move |m| tuples with the minimum count from rr to rl
21: return rl,rr

Figure 4.4: Algorithm for cutting a k-flat partition

which checks if the cut is valid (if m > 0) or viceversa (if m < 0) to make the
cut valid (it returns 0 if the cut is already valid). To maintain the quality of the
computed cut, tuples to be moved from one partition to the other are those close to
the median (if the cut was on a continuous attribute), or those with lower number of
occurrences (if the cut was on a nominal attribute).

Check. Procedure Check (Figure 4.5) checks the validity of a computed cut
and, in case the cut is not valid, returns the number of tuples to be moved from a
partition to the other to make the cut valid while minimizing the number of tuples
to be moved. The sign (+ or −) of the returned number indicates the direction of
the movement: a positive number indicates that tuples need to be moved from rl

to rr, while a negative number indicates that tuples need to be moved from rr to
rl. Procedure Check, called with the original relation r and the partitions rl and rr

79

4.3. PARTITIONING CHAPTER 4. DATA STORAGE & PROCESSING

CHECK(r,rl.rr) /* r: original relation; rl,rr: left,right partition of r */
1: p := bcard(r)/kc; h := card(r) mod k
2: pl := bcard(rl)/kc; hl := card(rl) mod k
3: pr := bcard(rr)/kc; hr := card(rr) mod k
4: if (hl ≤ pl) ∧ (hr ≤ pr) ∧ (hl+hr=h) then return 0
5: if pl < 1 then mrl := [(k−hl) + max(0,h−(p−1))]; return −mrl

6: if pr < 1 then mlr := [(k−hr) + max(0,h−(p−1))]; return mlr

7: if hl ≤ h then /* hl+hr=h */
8: if hl > pl then /* rl is not valid */
9: mlr := hl − pl
10: if pr = 1 then return mlr

11: else mrl := k−hl + max(0, h−(pr−1))
12: else /* rr is not valid */
13: mrl := hr − pr
14: if pl = 1 then return −mrl

15: else mlr := k−hr + max(0, h−(pl−1))
16: else /* hl+hr>h */
17: mlr := hl − min(pl,h)
18: mrl := hr − min(pr,h)
19: if mlr < mrl then return mlr else return −mrl

Figure 4.5: Algorithm for checking the validity of a cut

resulting from the cut as parameters works as follows. First, it computes the number
of groups (p, pl, pr, resp.) and remainders (h, hl, hr, resp.) for each of them. (Note
that, as per modulo theory, h = (hl + hr) mod k and hl ≤ h ⇔ hr ≤ h.) It then
considers the different cases that can occur. In their illustration, we point to their
occurrences in the examples of Figure 4.6. First, it consider the particular cases,
when the cut is already valid or one of the two relations does not have a sufficient
number of tuples to form a group (i.e., it has less than k tuples). If the cut is valid
(line 4, Figure 4.6(a)) then no tuple needs to be moved and 0 is returned. If the
left relation does not have cardinality sufficient to form a group, that is, pl = 0

(line 5), it returns the number of tuples to be moved to it to reach cardinality k and
ensure validity of the cut. This is k−hl, if the number of original remainder h to be
accommodated is no higher than the number of groups (p−1) remaining in the right
partition (e.g., Figure 4.6(a)); it is k − hl + 1, otherwise (e.g., Figure 4.6(b)). Note
that k−hl+1 comes from the formula in line 5 due to the fact that, since r is valid,
h cannot be greater than p. If the right relation does not have cardinality sufficient

80

CHAPTER 4. DATA STORAGE & PROCESSING 4.3. PARTITIONING

Figure 4.6: Examples of partitions for different cases of the Check procedure, k=10

to form a group, that is, pr = 0 (line 6), the number of tuples to be moved from rl is
computed analogously. If none of the cases above occur (i.e., the cut is not valid and
both partitions have at least a group), the algorithm proceeds considering each of
the conditions that can make the cut not valid, and computes the minimum number
of tuples to be moved from rl to rr (mlr) or from rr to rl (mrl) to make the cut valid.
If no extra remainders have been generated, that is hl + hr = h (line 7), then either
hl>pl or hr>pr. If hl>pl (line 8), the number mlr of tuples to move from rl to rr
to make rl valid is hl−pl (line 9). If rr has only one group, this is the only possible
move, which is then returned (line 10, Figure 4.6(c)). Else (line 11, Figure 4.6(d)),
the alternative move mrl of tuples to move from rr to rl is computed as k−hl +
max(0, h−(pr−1)). Here, k−hl is the number of tuples for the cardinality of rl to
become multiple of k and h−(pr−1) the possible extra tuples to be assigned to it
since otherwise rr would not be valid. The case where hr>pr (line 12), is treated
analogously (lines 13-15). If condition in line 7 evaluated false, then (line 16) extra
remainders have been generated, that is, hl+hr>h. The procedure then determines
the (minimum) number of tuples to be moved from rl to rr or viceversa to make
the cut valid. Note that, in this case, pl + pr = p − 1, and rl and rr might be
valid or not. The number mlr of tuples to be moved from rl to rr is hl − min(pl,h)
(line 17, Figure 4.6)(e)). Intuitively, this is due to extra remainders generated with
respect to the original h in rl and/or remainders that cannot be accommodated in
rl (if hl > pl). The number mrl of tuples to be moved from rr to rl is computed
analogously (line 18, Figure 4.6)(f)). With the possible moves for the different cases
computed, the procedures returns then the value among mlr and mrl that is lower,
changing sign (−) if mrl is to be returned to signal the direction of the movement.

81

4.4. INDEXING CHAPTER 4. DATA STORAGE & PROCESSING

4.4 Indexing

At the end of the partitioning process, each group in the k-flat partition contains (k
or k+1) tuples, that must be mapped to the same combination of index values. For
instance, Figure 4.7(a) shows, in the multidimensional spatial representation, the
four groups (G1, G2, G3, G4) resulting from the partitioning process in Figure 4.3.

34 37 40 43 46 49 52 55
Ne
Tx
Mi
Wy
Ak
Ca
Oh

G1

G2

G3

G4

MAP

Gid Age State
g1 [34,40] NeTx
g2 [34,40] AkCaWy
g3 [43,49] CaOh
g4 [46,55] MiTxWy

(a) (b)

Figure 4.7: Spatial representation of the running example and corresponding MAP

To define indexes to associate with encrypted tuples in groups supporting evalu-
ation of conditions, we first introduce the coverage of an attribute in a group as the
set of values of the attribute covered by the group.

Definition 4.4.1 (Coverage). Let P be a k-flat partition of a relation r, a ∈ A be

an attribute to be indexed, and and G be a group in P. The coverage of a in G,

denoted G[a], is defined as:

• G[a]=[vl,vu], with vl=min{t[a] | t∈G} and vu=max{t[a] | t∈G}, if a is a

continuous attribute;

• G[a]={t[a] | t∈G}, if a is a nominal attribute.

The set of groups, together with their coverage for the different attributes to be
indexed represents the MAP of the partition, which we formally define as follows.

Definition 4.4.2 (Map). Let r be a relation, A = {a1, . . . , an} be a set of indexed

attributes, andP={G1, . . . , Gp} be a k-flat partition of r. The MAP ofP is the set of

p tuples of the form 〈Gi[gid],Gi[a1],. . . ,Gi[an]〉 such that Gi[gid] is the identifier

of partition Gi∈P, and ∀aj ∈ A, Gi[aj] is the coverage of aj in Gi, i = 1, . . . , p.

82

CHAPTER 4. DATA STORAGE & PROCESSING 4.4. INDEXING

In the following, we use notation MAP[a] as a shorthand for the multiset⋃p
i=1Gi[a] and MAP[gid] to denote the set of all gid of the groups in P. For

instance, Figure 4.7(b) show the MAP related to our running example. Here,
MAP[Age] = 〈[34,40], [34,40], [43,49], [46,55]〉, and MAP[gid]= 〈g1, g2, g3, g4〉.

Before outsourcing relation r, the tuples in r must be encrypted. Since our
indexing approach associates the same combination of index values to all tuples
belonging to the same group in P, meaning that queries are supported at the level
of a single group and not at the level of a single tuple, it is natural to physically
store all tuples belonging to the same partition as a single encrypted block (see
Section 4.6 for a description of the encryption process). Each encrypted block is
then associated with a unique combination of index values, meaning that different
encrypted blocks have different index values. Intuitively, this implies that for each
indexed attribute a∈A and for each group G∈P, G[a] will be mapped to the same
index values. Since we want index values for different groups to be different, the
generation of indexes must be done through a set of different indexing functions,
one for each attribute on which we can define an index, such that they satisfy the
following definition.

Definition 4.4.3 (Map indexing). Let MAP be a map over a k-flat partition P of

relation r, and A be a set of indexed attributes. A map indexing over MAP is a set

F={ιpid, ιa1 , . . . , ιan} of functions such that:

1. ∀x ∈ {A ∪ gid}, ιx:MAP[x]→ Ix;

2. ∀x, y ∈ {A ∪ gid}, x 6= y ⇒ Ix 6= Iy;

3. ∀x ∈ {A ∪ gid} and ∀c, c′ ∈Map[x], ιx(c)6=ιx(c′).

According to this definition, we have to define an index function for each index
attribute a in A and for the gid attribute (condition 1). To guarantee that different
groups in P are associated with different index values for all attributes of interest,
the index functions must be defined over different co-domains (condition 2), and the
same coverage of an attribute a in different groups must be associated with different
index values (condition 3).

Two different strategies can be adopted for generating index values with index
functions that satisfy Definition 4.4.3: gid-based strategy and value-based strategy.

83

4.4. TRANSLATION CHAPTER 4. DATA STORAGE & PROCESSING

With a gid-based strategy, we need only a single index function over attribute
gid. In this case, each group in P is associated with a unique index value. The
association between each group Gi and the value gi must be stored by the client.

The value-based execution strategy is more complex, as we need to ensure that
condition 3 is valid for different occurences of the same coverage of an attribute
a. Even in this case, we associate to each occurence a unique index value, but
we refer to it as a token. The peculiarity of tokens is that, contrary to the gid-
based strategy, the association between each token value and coverage occurence
must not be memorized by the client. In Section 4.6, we described how the client
can deterministically retrieve all the tokens at runtime starting from a seed and the
number of coverage occurences.

Figure 4.8 illustrates the encrypted and indexed relation corresponding to the
relation in Figure 4.1(a).

GidiAge iStateencblock
g1 ε α t1t2t3
g2 ζ β t4t5t6
g3 η γ t7t8t9
g4 θ δ t10t11t12

Figure 4.8: Physical representation of the relation in Figure 4.1(a)

4.5 Query translation

In the previous section, we have shown how an encrypted and indexed relation is
created through a gid-based or a value-based indexing function. We now describe
how a query formulated over the original plaintext relation can be translated into
a query over the encrypted and index relation by transforming the conditions ap-
pearing in the original query into conditions on indexes. To this purpose, a client
first maps the plaintext values into the corresponding index values, and then, after
having computed this mapping, rewrites the original conditions into conditions that
operate over the index values previously determined.

84

CHAPTER 4. DATA STORAGE & PROCESSING 4.5. TRANSLATION

Mapping

The mapping of plaintext values into the corresponding index values depends on the
indexing function used in the creation of the encrypted and indexed relation. Given
a plaintext value v, called target value, for attribute a, the client identifies the groups
containing the tuples associated with the target value for attribute a, and determines
the index values associated with these groups. Intuitively, the target partitions are
those for which value v is included in the coverage of a, and the corresponding index
values are determined considering their coverages or gids, depending on whether the
client has used a value-based or a gid-based approach, respectively. Formally, the
coverages or gids are determined though the following mapping functions.

Definition 4.5.1 (Mapping functions). Let MAP be a map over a k-flat partition P
of relation r, and a∈A be an indexed attribute. A mapping function for attribute a

is a function:

• mapa : d(a)→2MAP[a] such that ∀v ∈ d(a), mapa(v) = 〈c∈MAP[a] | v∈c〉
(value-based);

• id.mapa : d(a)→2MAP[gid] such that ∀v ∈ d(a), id.mapa(v) = {id∈MAP[gid]

| v∈Gid[a]} (gid-based);

According to this definition, the client uses two different mapping functions.
Function mapa for attribute a is used when the indexes have been generated through
a value-based approach. The function maps a value v in the domain of a to the mul-
tiset of coverages that include it. For instance, consider the relation in Figure 4.1(a)
and suppose that we are interested in retrieving all people of 39 years old. Accord-
ing to the MAP in Figure 4.9(b), mapAge(39) = 〈[34,40]〉, meaning that the target
tuples can be included in the groups with coverage [34,40] for attribute Age. Func-
tion id.mapa for attribute a is used when the indexes have been generated through
a gid-based approach. The function maps a value v in the domain of a to the set
of gids of the groups whose coverages of a include v. For instance, with respect
to the previous example, id.mapAge(39) = {g1, g2}. Note that whenever mapa(v)
(id.mapa(v), resp.) returns the empty set, we can immediately conclude that rela-
tion r does not have any tuple with value v for attribute a. The information that a
client has to store to implement these mapping functions is therefore the informa-

85

4.5. TRANSLATION CHAPTER 4. DATA STORAGE & PROCESSING

mapAge
[34,40]
[43,49]
[46,55]

(a)

mapState
Ak AkCaWy
Ca AkCaWy, CaOh
Oh CaOh
Mi MiTxWy
Ne NeTx
Tx MiTxWy, NeTx

Wy AkCaWy, MiTxWy
(b)

Coverage Gid
[34,40] {g1,g2}
[43,49] {g3}
[46,55] {g4}

(c)

Coverage Gid
AkCaWy {g2}
CaOh {g3}
MiTxWy {g4}
NeTx {g1}

(d)

Figure 4.9: Information stored at the client-side for representing functions
mapAge/id.mapAge (a)-(c) and mapState/id.mapState (b)-(d)

tion that allows the efficient retrieval of all the coverages including the target value
and their gids.

The index values corresponding to the target groups are generated by the client
through the application of the same index function adopted for producing the en-
crypted and indexed relation. More precisely, let Ia(v) be the set of index values
associated with v ∈ d(a). Formally, Ia(v) is defined as:

• Ia(v)=
⋃

c∈mapa (v)
ιa(c) (value-based) or

• Ia(v)=
⋃

id∈id .mapa (v)
ιgid(id) (gid-based).

For instance, with respect to the previous example, we have that Ia(39) is equal to
the token representations {ε, ζ}, with a value-based approach, and Ia(39) is equal
to {g1, g2}, with a gid-based approach and assuming, for simplicitly and without
loss of generality, that the gids are also used as index values.

Map structures

To efficiently perform search operations over the map during query translation, we
support different structures for the creation of maps.

For continuous attributes, a first solution consists in representing the support of
MAP[a] as a list of elements [vl, vu] ordered with respect to the lower limit vl or
the upper limit vu, depending on whether we also aim at efficiently supporting con-
ditions of the form a ≤ v or a ≥ v, respectively. In fact, for efficiently evaluating
a condition a ≤ v, the coverages including v are those sequentially accessed until

86

CHAPTER 4. DATA STORAGE & PROCESSING 4.5. TRANSLATION

a coverage with the lower limit greater that v is found. Analogously, for efficiently
evaluating a condition a ≥ v, the coverages including v are the coverages that fol-
low those sequentially accessed and with an upper limit that is lower that v. Note
that if both types of conditions need to be efficiently supported, two copies of the
ranges ordered as described can also be maintained. For instance, in Figure 4.9(a)
three coverages are ordered in increasing order with respect to both their lower and
upper limit.

An alternative solution for continuous attributes consists in using an interval

tree, that is a balanced binary tree where each node stores at least one of the cover-
ages to be represented. Being a balanced binary tree, the interval tree ensures that
searches have a logarithmic cost in the number of coverages represented in the tree.
Moreover, an interval tree is far more efficient compared to the solution based on
two ordered lists for the evaluation of conditions of the form vl ≤ a ≤ vr, as it
doesn’t rely on a sequence of two sequential scans followed by an intersection to
determine the resulting list of coverages (details in Section 4.6).

For each nominal attribute a ∈ A instead, the client has to store, for each ac-
tual value v in the domain d(a) of attribute a, the coverages including it. At the
logical level, this information can be seen as a set of entries of the form {(v,{c}) |
c ∈ Map[a] and v ∈ c}. Then , like for continuos attributes, the client stores the
association between the coverages and their gids. For instance, Figures 4.9(b)-(d)
illustrate the logical representation of the information stored at the client for imple-
menting the map functions for attribute State. Figure 4.9(b) shows seven rows,
one for each of the distinct values of attribute State appearing in the twelve tuples
of the original relation in Figure 4.1(a). Figure 4.9(d) shows the correspondence
between the coverages in Figure 4.9(b) and their gids.

Like for continuous attributes, we have implemented different solutions for rep-
resenting the mapping function of nominal attributes. The first solution consists
in using a bitmap, with a row for each nominal value and a column for each set
in the support of MAP[a]. If a value vi is included in the j-th coverage, the entry
(i, j) of the bitmap is set to 1; 0, otherwise. Bitmaps can efficiently identify, for
each value, the coverages including it. Another solution consists in using a roaring

bitmap, which is a compressed representation of a bitmap. This representation is
particularly convenient when bitmaps are sparse, meaning that several entries are 0

87

4.6. IMPLEMENTATION CHAPTER 4. DATA STORAGE & PROCESSING

(which may happen frequently in our scenario since coverages are small compared
to the size of the attribute domain).

4.6 Implementation

In the previous sections we have presented our proposal from a high level perspec-
tive. In this section, we detail our open-source implementation. Operations have
been separated into preprocessing and runtime. Preprocessing operations involve
transforming the initial dataset into a k-flat relation, encrypting it, and sending it to
the storage provider. Runtime operation are instead associated with the translation
and resolution of queries.

Preprocessing

Preprocessing is organized into four steps: 1) construction of the k-flat relation, 2)
construction of the maps, 3) dataset wrapping, and 4) dataset outsourcing.

Construction of the k-flat relation. The construction of the k-flat relation is per-
formed by a distributed application leveraging Apache Spark [37], and deployed
with Docker [85]. The app is implemented in Python and starts on the master node.
The master node cooperates with a configurable number of workers (each of them
running in a dedicated container). This permits to efficiently execute the k-flat in-
dexing algorithm on large datasets. Tuple shuffling is reduced to a minimun, as
each of the workers processes a dedicated chunk of the initial relation. To speedup
the Spark app we rely on Pandas [144], an open source data analysis library, and
Arrow [175], a cross-language development platform for in-memory analytics pro-
viding a language-independent columnar memory format. To automatically build,
install and run the application we instead leveraged Docker Compose [86].

A set of composable Python utilities implements steps 2, 3 and 4. The user can
customize each intermediate step through a json file. Several options are available
to the user. As example, the user can select the map to use to index each attribute
a, and whether to use a gid-based (group-id map) or a value based (token map)
indexing strategy. Moreover, the user can select the type of server-side backend.
We elaborate more on this in the description of step 4.

88

CHAPTER 4. DATA STORAGE & PROCESSING 4.6. IMPLEMENTATION

Construction of maps. Starting from the k-flat relation, the client builds the
local maps. For continuous attributes, range and interval-tree [57] maps are avail-
able; while for nominal attributes, set, bitmaps and roaring-bitmaps [173] maps can
be used. The maps are characterized by different storage cost and runtime perfor-
mance. For instance, our implementation of the range map occupies approximately
a third of the space occupied by the interval-tree map, but the interval tree map is
far more efficient when a closed range query is evaluated. Given N the number of
ranges in the map, and M the number of ranges in the interval requested by a query,
the range map needs O(N) memory to retrieve the M ranges in the result, while
the interval-tree map needs only O(M). The maps are then completed storing the
group-ids or the token seeds. As last operation in the construction of maps, the lo-
cal maps are made persistent. Pickle [154] is used to serialize the maps to different
bytestrings, then the bytestrings are encrypted, and finally transferred to file.

Dataset Wrapping. After the maps have been produced, the initial relation is
prepared to be outsourced to the storage provider. For each attribute in the index, a
group-id and/or a token is retrieved. Group-ids (the gids, e.g., g1) are simply looked-
up in the maps, while tokens (e.g., {ζ, ε}) are derived starting from the seed. The
seed is expanded to 16 bytes and used as input to the AES symmetric encryption
cipher configured in Cipher Block Chaining (CBC) mode. A 16 bytes salt (unique
per-attribute), is used as Initialization Vector, and a robust key derivation function
(Argon2id [4]) is used to retrieve the 16 bytes key. Multiple tokens can be produced
at each encryption round, as each of them is extracted truncating the output of the
cipher. The process is deterministic, and associated with a collision probability that
can be approximated with the birthday-paradox, and that can be reduced increasing
the length of the tokens (i.e., each token can be seen as a fixed length bit sequence,
and compactly stored as an unsigned integer).
Immediately after the group-ids or tokens are retrieved, the initial relation is trans-
formed into a dataframe. The records in the dataframe have the following schema:
(gid, i1, ..., im, b) where gid is the group-id, i1, ..., im is the sequence of index val-
ues represented with tokens (if requested by the user), and b is the list of plaintext
tuples in the group.
Each block b is then replaced with B, the unintelligible physical representation
of the block. Encryption is applied according to the following procedure. b

is serialized into a binary object using Pickle, it is padded so that the blocks

89

4.6. IMPLEMENTATION CHAPTER 4. DATA STORAGE & PROCESSING

are physically indistinguishable in length, and after that it is encrypted through
a non-deterministic Authenticated Encryption cipher. To encrypt the blocks we
used XSalsa20-Poly1305, an Authenticated Encryption cipher implemented by
Libsodium [126]. The use of a Message Authentication Code (Poly1305 [69])
permits to verify the integrity and authenticity of the blocks, as any attempt to tam-
per with a block (or a portion of it) is detected with decryption. Again, the 32 bytes
key used by the cipher is derived using the Argon2id key derivation function. A
unique 24 bytes high-entropy nonce is used for each block. Please notice that, since
the blocks have been wrapped with a PRF (XSalsa20 [70]), and that they are indis-
tinguishable in length, an adversary with a copy of the storage of the cloud provider
learns nothing on the relation between blocks and index values (e.g., the attacker
cannot infer which of the blocks are likely to be related to an index value).
Since tokens can be pre-computed, and group-ids are read-only, indexing and wrap-
ping are executed in parallel up to the number of cores available to the client. This
is achieved using the multiprocessing [153] Python library.

Dataset Outsourcing. We provide a separate container for the server. Based
on the backend selected by the user, a container running PostgreSQL [176] or Re-
dis [157] will be automatically deployed using Docker Compose. Hence, the in-
dexed relation is outsourced to the server. Based on the setup selected by the client
(i.e., the backend type and the group-ids or token based maps) there are four setup
alternatives (or simply configurations):

• PostgreSQL with group-ids, the server stores a relation with the following
schema (gid, B);

• Redis with group-ids, the server stores a hash set with gid as the key and B
as the value;

• PostgreSQL with tokens, the server stores a relation with the following
schema (i1, ..., im, B);

• Redis with tokens, the server stores a primary hash set with gid as the key and
B as the value, and a set of m secondary hash sets (i.e., auxiliary indexes),
each with Ii as the key and gid as the value.

A representation of the information stored on the server based on the configuration
selected by the user is illustrated in Figure 4.10.

90

CHAPTER 4. DATA STORAGE & PROCESSING 4.6. IMPLEMENTATION

gid B

1 t1,t2,t3
2 t4,t5,t6
3 t7,t5,t6
4 t10,t11,t12

(a)

iState iAge B

α ε t1,t2,t3
β ζ t4,t5,t6
γ η t7,t8,t9
δ θ t10,t11,t12

(b)
gid B

1 t1,t2,t3
2 t4,t5,t6
3 t7,t5,t6
4 t10,t11,t12

(c)

gid B —iAgegid—iStategid

1 t1,t2,t3 α 1 ε 1
2 t4,t5,t6 β 2 ζ 2
3 t7,t5,t6 γ 3 η 3
4 t10,t11,t12 δ 4 θ 4

(d)

Figure 4.10: Server-side representations: (a) Relational DBMS with GIDs, (b) Re-
lational DBMS with Tokens, (c) Key-value store with GIDs, and (d) Key-value store
with Tokens.

Runtime

At runtime, the user deploys the container running the server and starts our client
application, providing the master key as an input. The master key is used to decrypt
and load the local maps from storage to memory. Immediately after that, an empty
SQLite [169] in-memory database is initialized. At this point, the local environment
is setup, and the user can submit queries to the client application.

Upon receiving a query, the client uses sqlparse [3] to parse it. Maps are used to
translate each point or range value for all the attributes in the predicate list. Based
on the setup and on the type of query (i.e., single or multi-column), the client can
use different server execution strategies. With PostgreSQL, the query is simply
rewritten and sent to the server using SQLAlchemy [49]; with Redis, the server is
queried with Redis-py [138] in two ways:

1. group-id maps: the client queues a sequence of get operations to a pipeline,
which is then run on the server only once;

2. token maps: the client submits to a server-side Lua script (registered during
deployment) a hashmap mapping the attributes and tokens targeted by the
query. The script first performs multiple lookups in the secondary hash sets

91

4.6. RESULTS CHAPTER 4. DATA STORAGE & PROCESSING

to determine the targeted gids, then it looks up the gids in the primary hash
set and returns the blocks to the client.

In both cases (i.e., PostgreSQL and Redis), predicate intersection on the same at-
tribute is solved at client-side, to reduce the data exchanged between client and
server. When group-id maps are used, the intersection is evaluated on the client-
side even when the query is on multiple attributes.

After the blocks are pulled from the server, the are decrypted (integrity and
authenticity are verified by the cipher suite) and the padding removed. Then, the
plaintext memory is de-serialized using Pickle (thus obtaining a list of tuples), and
written to the SQLite in-memory DB with SQLAlchemy. Finally, spurious tuples
are filtered executing the initial query on the SQLite instance.

4.7 Experimental results

The architecture proposed considers as critical resources the amount of storage used
by the client to save the maps, and the performance impact that affects query exe-
cution due to the clustering of tuples. This section investigates these two aspects.
Appendix C details how to use our open source solution to fully reproduce the ex-
perimental results presented.

Storage

The solution proposed permits to outsource an encrypted and indexed version of
a relation to a storage provider. The ability to query the relation is untouched, as
long as the client stores the maps locally. Hence, a first aspect to investigate is the
resulting saving in storage.

The size of the maps is affected by three factors: i) the relation used, ii) the
indexing strategy, and iii) the number of tuples in each block k. The nature of
the relation (i.e., the number of tuples, the attributes, the value distribution of the
attributes, and whether each attribute is continuous or nominal) cannot be changed,
while we provide alternatives for ii) and iii).

With regard to ii), the indexing strategy, we described two alternatives:

1. the gid-based strategy, in which the mapping between each coverage and the
related list of gids is materialized inside the map;

92

CHAPTER 4. DATA STORAGE & PROCESSING 4.7. RESULTS

2. the value-based strategy, in which the map materializes only the starting seed
and the number of token occurrences, for each coverage.

To evaluate the size of client-side maps we indexed three datasets extensively used
in literature: the usa2018 [180], the usa2019 [181] and the transactions [117]
dataset. The datasets collect 0.5M, 3.5M and 30M tuples, respectively. The num-
ber of tuples in the block k was set to 25. As we can see from the results shown
in Table 4.1, our approach permits to limit client-side storage to 4.51%, 2.05% and
1.40% respectively of the original dataset size. Savings in storage further increase if
we consider that, compared to a client-only solution, the client is no longer required
to store locally additional resources as the DBMS installation files, the metadata,
and the auxiliary DBMS indexes. We also observe that runtime token generation
produces significant storage saving compared to the materialization of gids.

Dataset Size k Tokens Group-ids
usa2018 12 MB 25 4.51% 6.66%
usa2019 65 MB 25 2.10% 3.60%

transactions 1.5 GB 25 1.40% 2.10%

Table 4.1: Relative size of the client-side maps given the size of the initial dataset

We then conducted some experiments varying the number of tuples in each
block k, to evaluate case iii). The results are shown in Figure 4.11. We observe
significant reductions in the size of the maps as k increases. However, the optimal
value of k is obtained by considering the trade-off between storage requirements
and runtime performance. We elaborate more on this in Section 4.7, showing how
much the value of k affects query execution time.

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70

By
te

s p
er

 tu
pl

e

0.5 1.0 1.5 2.0 2.5 3.0
Millions of tuples in the dataset

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50

In
de

x
siz

e
(%

 o
f p

la
in

te
xt

) b=100 b=75 b=50 b=25

Figure 4.11: Map size for each sample of usa2019

93

4.7. RESULTS CHAPTER 4. DATA STORAGE & PROCESSING

Runtime

For users a crucial aspect in the adoption of the proposed approach is its perfor-
mance. The clustering of tuples inevitably leads to an increase in the size of the
results returned by a query. This increase does not directly map to a corresponding
increase in query response time. Many elements come into play and experiments
will show that in most cases the impact is limited; in some configurations we even
see an improvement compared to a classical configuration where the data are stored
in plaintext on a remote database.

Taking into account the two approaches to create the maps and index the rela-
tion (one with gids, and the second with tokens), and the two backend alternatives
(PostgresSQL and Redis), we get four configurations. The aim of the runtime exper-
iments is to evaluate the performance of each of them. The performance is always
compared with the one of the baseline, which is a lightweight configuration used
to execute the queries over the plaintext dataset. In this case, the server runs an
instance of PostgreSQL, where the dataset is stored as a table. The client directly
submits the query to the server (withouth performing any rewriting), the server ex-
ecutes the query, and the result is sent back to the client. No security protection is
available when using the baseline.

We conducted several tests. Each test performs in sequence a sample of queries
over the dataset. The dataset used is the usa2019. The queries used to build the
sample are randomly extracted from a pool that globally contains 5,000 queries.
The pool groups queries with the same selectivity, i.e., the fraction of tuples in the
dataset that are part of the query result. In the experiments we consider queries with
a selectivity of 10% of the dataset or less.

Single-column queries

In the first experiment we measure the performance of queries over a single column
(WAGP). Network latency between the client and the server is set to 10 ms, and
the transmission rate to 1 Gbps. The experiment is repeated 5 times (i.e., the 4
setups + the baseline), and for k equal to 10, 25, 50, 75, 100. The results are
shown in Figure 4.12. We use the same color and marker for each setup across
all experiments; a dashed line always represents the baseline. Each point in the
plot represents the average execution time of the queries in the sample; standard

94

CHAPTER 4. DATA STORAGE & PROCESSING 4.7. RESULTS

10 25 50 75 100
Size of the buckets

0.0

0.1

0.2

0.3

0.4

Ti
m

e
(s

)

baseline
Redis with tokens
PostgreSQL with tokens

Redis with group-ids
PostgreSQL with group-ids

(a) Global execution time of point queries

10 25 50 75 100
Size of the buckets

0.00

0.02

0.04

0.06

0.08

0.10

Ti
m

e
(s

)

baseline
Redis with tokens
PostgreSQL with tokens

Redis with group-ids
PostgreSQL with group-ids

(b) Server-side execution time of point queries

10 25 50 75 100
Size of the buckets

0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e
(s

)

baseline
Redis with tokens
PostgreSQL with tokens

Redis with group-ids
PostgreSQL with group-ids

(c) Global execution time of range queries

10 25 50 75 100
Size of the buckets

0.0

0.1

0.2

0.3

0.4

Ti
m

e
(s

)

baseline
Redis with tokens
PostgreSQL with tokens

Redis with group-ids
PostgreSQL with group-ids

(d) Server-side execution time of range queries

Figure 4.12: Average execution time of queries on WAGP column with a 10 ms
latency.

deviation is not shown, because in most cases it is smaller than the size of each
marker. In the left column (cases a and c) we show the global execution time,
while in the right column (cases b and d) we show the server-side execution time.
The global execution time measures the time required to get the result of the query
(the SQL query is submitted to the client-side query executor, the query is parsed,
index values are retrieved from the maps, the query is rewritten with gids or with
the tokens, the query is submitted to the server, the query is executed on the server
to retrieve the blocks, the blocks are sent to the client, block encryption is removed,
plaintext tuples are serialized into a SQLite DB, and finally spurious tuples are

95

4.7. RESULTS CHAPTER 4. DATA STORAGE & PROCESSING

filtered by re-submitting the initial query); the server-side execution time measures
only the time required by the server to run the query and then retrieve the blocks,
i.e., the time from when the (rewritten) query is sent to the server until the result is
received.

Several properties can be deduced from the analysis of the results in Figure 4.12.
The most important one is that the global execution time (for each of the four setups)
is comparable to (and sometimes smaller than) the baseline. Looking at cases 4.12b
and 4.12d, which show the comparison between the server-side execution time of
the various setup alternatives, we can see that the server execution times are aligned
or well below the baseline for all the setups. On the other hand, if we compare cases
b and d against a and c, we see that the server-side execution time of the baseline
covers approximately the whole global execution time (as it should be expected,
as the client in the baseline has no further processing to do). For the other setups,
rewriting, decryption and the filtering of spurious tuples occupy most of the global
time, leading those setups to offer in general a (slight) decrease in performance
compared to the baseline.

Another aspect is that the setups with gids are consistenly faster than the ones
using tokens. This is shown by the delta between on one side the blue-circle and
green-triangle curves, and on the other side the orange-triangle and the red-diamond
ones. The difference in speed between the setups relying on the tokens and the ones
using gids decreases when the size of the blocks increases, as larger blocks imply a
smaller number of tokens.

We also observe that the global and server-side execution time decreases with
larger blocks. With k = 100 we see most of the times the minimal execution time (a
larger value of k corresponds to a smaller size of local maps), however large values
of k increase the bandwidth requirements (more details about this in the following).

Lastly, we notice that point queries exhibit lower query processing times com-
pared to the range ones, but this is justified by the larger size of the query results
of range queries. The main focus of our analysis will be the comparison with the
execution time of the baseline, rather than the absolute times.

Multi-column queries

In the second series of experiments we measure the performance of multi-column
queries (selecion predicates on attributes OCCP and WAGP, a nominal and a contin-

96

CHAPTER 4. DATA STORAGE & PROCESSING 4.7. RESULTS

10 25 50 75 100
Size of the buckets

0.0

0.1

0.2

0.3

0.4

0.5

Ti
m

e
(s

)

baseline
Redis with tokens
PostgreSQL with tokens

Redis with group-ids
PostgreSQL with group-ids

(a) Global execution time of point queries

10 25 50 75 100
Size of the buckets

0.00

0.02

0.04

0.06

0.08

Ti
m

e
(s

)

baseline
Redis with tokens
PostgreSQL with tokens

Redis with group-ids
PostgreSQL with group-ids

(b) Server-side execution time of point queries

10 25 50 75 100
Size of the buckets

0.0

0.5

1.0

1.5

2.0

Ti
m

e
(s

)

baseline
Redis with tokens
PostgreSQL with tokens

Redis with group-ids
PostgreSQL with group-ids

(c) Global execution time of range queries

10 25 50 75 100
Size of the buckets

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m

e
(s

)

baseline
Redis with tokens
PostgreSQL with tokens

Redis with group-ids
PostgreSQL with group-ids

(d) Server-side execution time of range queries

Figure 4.13: Average execution time of queries on both OCCP and WAGP columns
with a 10 ms latency.

uous). Again, the network latency between client and server is set to 10 ms, and
the transmission rate to 1 Gbps (as in the previous experiment). We observe two
distinct trends.

With point queries we observe significant improvements compared to the re-
sults shown for single-column point queries. This can be clearly seen comparing
Figure 4.12a-b and Figure 4.13a-b. In both cases, the server-side execution time has
identical behavior, but the global time is much smaller. There are two factors that
cause this performance improvement: i) a smaller number of tokens is generated,
and ii) the amount of data transmitted is lower. Factor (i) is proved by the difference

97

4.7. RESULTS CHAPTER 4. DATA STORAGE & PROCESSING

between the setups using gids and those with token maps. Factor (ii) is proved by
the fact that server-side execution time dominates the global time for setups that use
the group-ids map (this means that the time required to transfer the data between the
client and the server is negligible compared to the server-side query execution time).
This confirms that our approach is particularly effective for highly selective queries,
like the queries considered in this experiment (the queries combine predicates over
the two columns with a logical AND).

With regard to multi-column range queries, we observe similar performance
between the baseline and the setups using group-ids maps (Figure 4.13c), while we
notice a slight deterioration of performance when tokens are generated (overhead is
approximately 2 for k ≥ 75). Comparing Figure 4.13c and Figure 4.13d we notice
that all the four setups spend a non negligible amount of time to delete spurious
tuples (we will evaluate bandwidth degradation in the following).

Impact of latency

In most data outsourcing scenarios latency is a crucial parameter, with a direct im-
pact on performance and usability. Geographical distance between client and server
inevitably causes relatively high latency in the dialogue. To quantitatively measure
the impact of latency, we repeated the previous tests (in this case the single-column
query execution) varying the latency. The latency values used to conduct our ex-
periments are 25, 50, 75, and 100 ms, corresponding to round-trip-times (RTTs)
equal to twice the latency.1 The transmission rate in these experiments is 1 Gbps.
These latency values have been selected to mimic a variety of configurations, with
the server located in the same geographic region or farther from the client. Group
size k was instead set to 50. The experimental results are shown in Figure 4.14,
which also depicts the results in terms of the ratio between the execution time of
each setup and that of the baseline.

We observe that for both point and range queries, the performance ratio im-
proves with the increase of latency. This is clearly expected when the ratio is
greater than 1, as the addition of latency can be expected to create an additional
fixed cost for all the setups and this reduces the impact of the overhead introduced
by client-side processing. The experiments also show an improvement for config-

1The delay is set using tc [174], a utility bundled with iproute2 [115] that permits to control
the Kernel packet scheduler.

98

CHAPTER 4. DATA STORAGE & PROCESSING 4.7. RESULTS

25 50 75 100
Latency (ms)

0.0

0.2

0.4

0.6

0.8

Ti
m

e
(s

)

baseline
Redis with tokens
PostgreSQL with tokens

Redis with group-ids
PostgreSQL with group-ids

(a) Execution time of point queries

25 50 75 100
Latency (ms)

0.0

0.5

1.0

1.5

2.0

Pe
rfo

rm
an

ce
 ra

tio

baseline
Redis with tokens
PostgreSQL with tokens

Redis with group-ids
PostgreSQL with group-ids

(b) Performance ratio of point queries

25 50 75 100
Latency (ms)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Ti
m

e
(s

)

baseline
Redis with tokens
PostgreSQL with tokens

Redis with group-ids
PostgreSQL with group-ids

(c) Execution time of range queries

25 50 75 100
Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pe
rfo

rm
an

ce
 ra

tio

baseline
Redis with tokens
PostgreSQL with tokens

Redis with group-ids
PostgreSQL with group-ids

(d) Performance ratio of range queries

Figure 4.14: Execution time and performance ratio of queries on WAGP column
with the addition of latency.

urations using Redis, with an increase in execution time that directly grows with
the increase in latency, whereas all the configurations using PostgreSQL (including
the baseline) exhibit a large impact of latency. This derives from the protocol used
to access PostgreSQL in the server. Overall, the experiments demonstrate that the
approach is particularly interesting when there is relatively high latency.

Similar behavior is exhibited by the same experiment run on multi-column
queries, shown in Figure 4.15. In all these experiments we see that the performance
ratio improves with the increase of latency, especially for the setups with Redis and
the use of gids.

99

4.7. RESULTS CHAPTER 4. DATA STORAGE & PROCESSING

25 50 75 100
Latency (ms)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ti
m

e
(s

)

baseline
Redis with tokens
PostgreSQL with tokens

Redis with group-ids
PostgreSQL with group-ids

(a) Execution time of point queries

25 50 75 100
Latency (ms)

0.0

0.5

1.0

1.5

2.0

Pe
rfo

rm
an

ce
 ra

tio

baseline
Redis with tokens
PostgreSQL with tokens

Redis with group-ids
PostgreSQL with group-ids

(b) Performance ratio of point queries

25 50 75 100
Latency (ms)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Ti
m

e
(s

)

baseline
Redis with tokens
PostgreSQL with tokens

Redis with group-ids
PostgreSQL with group-ids

(c) Execution time of range queries

25 50 75 100
Latency (ms)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pe
rfo

rm
an

ce
 ra

tio

baseline
Redis with tokens
PostgreSQL with tokens

Redis with group-ids
PostgreSQL with group-ids

(d) Performance ratio of range queries

Figure 4.15: Average global execution time and performance ratios of queries on
both OCCP and WAGP columns with the addition of latency.

Data overhead

A natural consequence of using groups of tuples as an atomic entity in the dialogue
between client and server is an increase in the amount of data returned in query
execution. In Figure 4.16 we report the overhead introduced by the execution of the
query workload, for point and range queries, when executing queries on the single
column WAGP. Figure 4.17 reports the same measure for the multi-column queries
considered before, on attributes OCCP and WAGP. As shown by the experiments,
the data overhead is significant. This proves to have a limited impact on high-

100

CHAPTER 4. DATA STORAGE & PROCESSING 4.7. RESULTS

10 25 50 75 100
Size of the buckets

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Ra
tio

 o
f t

he
 #

Tu
pl

es
 d

ow
nl

oa
de

d

baseline
Redis with tokens
PostgreSQL with tokens

Redis with group-ids
PostgreSQL with group-ids

(a) Size of punctual queries

10 25 50 75 100
Size of the buckets

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ra
tio

 o
f t

he
 #

Tu
pl

es
 d

ow
nl

oa
de

d

baseline
Redis with tokens
PostgreSQL with tokens

Redis with group-ids
PostgreSQL with group-ids

(b) Size of range queries

Figure 4.16: Overhead in the number of tuples downloaded with queries on the
WAGP column.

10 25 50 75 100
Size of the buckets

0

20

40

60

80

100

Ra
tio

 o
f t

he
 #

Tu
pl

es
 d

ow
nl

oa
de

d

baseline
Redis with tokens
PostgreSQL with tokens

Redis with group-ids
PostgreSQL with group-ids

(a) Size of punctual queries

10 25 50 75 100
Size of the buckets

0

1

2

3

4

5

6

Ra
tio

 o
f t

he
 #

Tu
pl

es
 d

ow
nl

oa
de

d

baseline
Redis with tokens
PostgreSQL with tokens

Redis with group-ids
PostgreSQL with group-ids

(b) Size of range queries

Figure 4.17: Overhead in the number of tuples downloaded with queries on both
OCCP and WAGP columns.

bandwidth (1 Gbps) configurations like those used in the previous experiments, but
it may have an economic and performance impact depending on the scenario where
the technique is used. Many cloud providers monitor and make customers pay for
the data they transfer outside of the cloud infrastructure. We expect that in some
cases the security requirements are going to be the major need and the additional
data transfer cost can be considered negligible. In scenarios where instead this data

101

4.8. RELATED WORK CHAPTER 4. DATA STORAGE & PROCESSING

transfer cost is critical, the approach proposed in the paper meets some obstacles and
it can only be used with relatively small k values. This overhead is significant only
for point queries, which return a compact result. For range queries the overhead is
a lot smaller, thanks to the organization of the groups in a way that keeps together
tuples with similar values of the attributes.

With respect to the impact on performance of the increase in data transfer, we
run a dedicated set of experiments reducing the bandwidth between client and
server. Figure 4.18 and Figure 4.19, respectively for single-column and multi-
column queries, report the execution times for configurations with varying values
of k and bandwidth of 1 Mbps, 10 Mbps, 100 Mbps and 1 Gbps. The evolution of
network technology is making available in most scenarios communication channels
with bandwidth above 100 Mbits, but there are domains where limited bandwidth
may still be a concern. The experiments confirm that on broadband network con-
nections, the impact of the increased data transfer is limited, whereas for limited
channels (around 1 Mbps) the size of the transferred data becomes the factor domi-
nating the performance.

4.8 Related work

Several research efforts have addressed the problem of supporting queries on
outsourced encrypted data through the definition of indexing techniques (e.g.,
[74, 106, 111, 112]). The definition of efficient solutions that are robust against in-
ferences often depends on the specific queries to be supported (e.g., [182]). While
sharing with our approach the goal of supporting queries over encrypted data, these
solutions operate on a single attribute. Our approach instead is based on a multi-
dimensional interpretation of the dataset that allows the definition of indexes over
multiple attributes. The problem of indexing multidimensional datasets has been
already considered and resulted in the definition of multidimensional indexes for
supporting queries with conditions on multiple attributes (e.g., [184]). These solu-
tions, however, differ from our since they define a single index for the whole set of
attributes considered. Our approach instead defines an index with a component for
each attribute.

Another approach to support the execution of queries over encrypted data in-
volves the use of Searchable Symmetric (SSE) [53, 78, 148] and Order Preserving

102

CHAPTER 4. DATA STORAGE & PROCESSING 4.8. RELATED WORK

1 10 100 1000
Bandwidth (Mbit)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ti
m

e
(s

)

baseline
K=10

K=25
K=50

K=75 K=100

(a) Execution time of point queries

1 10 100 1000
Bandwidth (Mbit)

0

1

2

3

4

5

6

Pe
rfo

rm
an

ce
 ra

tio

baseline
K=10

K=25
K=50

K=75 K=100

(b) Performance ratio of point queries

1 10 100 1000
Bandwidth (Mbit)

0

10

20

30

40

Ti
m

e
(s

)

baseline
K=10

K=25
K=50

K=75 K=100

(c) Execution time of range queries

1 10 100 1000
Bandwidth (Mbit)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pe
rfo

rm
an

ce
 ra

tio

baseline
K=10

K=25
K=50

K=75 K=100

(d) Performance ratio of range queries

Figure 4.18: Execution time and performance ratio of queries on WAGP column
with a latency of 10 ms and, varying K and bandwidth.

(OPE) [51, 150] Encryption. SSE is a form of deterministic encryption that permits
to outsource data to a cloud storage provider, while maintaining the ability to se-
lectively search over it. OPE is again a kind of deterministic encryption, but that
preserves the numerical ordering of the plaintext data. Although these techniques
bear some advantages (e.g., OPE enables the execution of functions like MIN, MAX,
COUNT directly on encrypted data with a relatively low overhead), they must be
applied with care due to the inevitable information leakage.

103

4.8. RELATED WORK CHAPTER 4. DATA STORAGE & PROCESSING

1 10 100 1000
Bandwidth (Mbit)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Ti
m

e
(s

)

baseline
K=10

K=25
K=50

K=75 K=100

(a) Execution time of point queries

1 10 100 1000
Bandwidth (Mbit)

0.0

0.5

1.0

1.5

2.0

2.5

Pe
rfo

rm
an

ce
 ra

tio

baseline
K=10

K=25
K=50

K=75 K=100

(b) Performance ratio of point queries

1 10 100 1000
Bandwidth (Mbit)

0

2

4

6

8

10

12

14

Ti
m

e
(s

)

baseline
K=10

K=25
K=50

K=75 K=100

(c) Execution time of range queries

1 10 100 1000
Bandwidth (Mbit)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pe
rfo

rm
an

ce
 ra

tio

baseline
K=10

K=25
K=50

K=75 K=100

(d) Performance ratio of range queries

Figure 4.19: Execution time and performance ratio of queries on both OCCP and
WAGP columns with a latency of 10 ms and, varying K and bandwidth.

A recent solution that permits to perform computations on encrypted data with-
out first decrypting it is represented by Fully Homomorphic Encryption (FHE) [99,
139] schemes. The resulting computations are left in an encrypted form which,
when decrypted, results in an identical output to the one produced performing the
proper operation on the unencrypted data. Fully homomorphic encryption schemes
are a promising solution. However, they result in an overhead too large to be con-
sidered practical in many scenarios. This does not impact only the processing time,
but also the size of the encrypted data compared to the plaintext values. An increase
in the size of data may be inconvenient if the user pays for the bandwidth consumed.

104

CHAPTER 4. DATA STORAGE & PROCESSING 4.9. CONCLUSIONS

To completely revoke access to the data content to the cloud storage provider,
researchers have also proposed to use Oblivious RAMs (ORAM) [100, 101, 143].
The schemes developed through this technique (e.g., [40, 61, 75, 171]) ensure op-
timal security guarantees, as the cloud provider no longer has the ability to access
to the data, nor to monitor the access pattern. Unfortunately, the ability to answer
queries depends on the availability of a safe environment, that could reside at but is
not accessible by the cloud provider (e.g., Intel SGX [114]), or reside at the client.
Despite the strong security guarantees, these solutions are characterized by a signif-
icant overhead.

Lastly, with regard to the relational database world, one notable implementation
is CryptDB [151]. In CryptDB the data is wrapped applying multiple encryption
layers (deterministic, order preserving, symmetric searchable, and finally proba-
bilistic), an approach commonly referred to as onion encryption. Depending on
the relational operator or the function to be executed on the data, each of the lay-
ers can be removed. A proxy is instead used to translate the queries so that they
are compatible with the encrypted data, and the result of the queries is decrypted at
client side. Despite this solution is characterized by a limited overhead, the proposal
suffers from the drawbacks associated with the previous approaches (e.g., informa-
tion leakage, the need to share decryption keys between the client and the server to
remove some of the layers).

4.9 Conclusions

This chapter addressed the problem of outsourcing encrypted data to external
providers and defining indexes over the data for enabling query execution. The mul-
tidimensional technique used to construct the index guarantees protection against
inferences, while providing efficient query execution, with support for both point
and range conditions. Our experimental evaluation on publicly available datasets
confirms the the effectiveness of the approach.

Further details on the open source solution described in this chapter can be found
in Appendix C, which details the command line user interface and how to fully
reproduce the results shown in the chapter.

105

4.9. CONCLUSIONS CHAPTER 4. DATA STORAGE & PROCESSING

Availability

The implementation source of our proposals is freely available at this URL:
https://github.com/unibg-seclab/secure index

The work in this chapter was supported in part by the EC within the H2020
Program under projects MOSAICrOWN and MARSAL, by the Italian Ministry of
Research within the PRIN program under project HOPE, and by JPMorgan Chase
& Co under project “k-anonymity for AR/VR and IoT/5G”.

106

https://github.com/unibg-seclab/secure_index

107

Chapter 5

Data Release
ITYT: scheduling the release of data at a future time

In the last part of this thesis we investigate the data release stage. In particular, we
aim at providing a method to confidentially schedule the release of data to a future
point in time. This primitive is commonly referred to as a Time-Lock in literature.

The solution typically adopted to implement a Time-Lock (or simply, TL) in-
volves the use of cryptography. The data to be released (i.e., the secret) are often
concealed into a cryptographic puzzle by a sender (i.e., the owner). The puzzle is
then handed to a receiver, which needs to find a solution to recover the secret. Solv-
ing the puzzle requires to run a decryption procedure for a very long time. However,
as resolution time is affected by many factors, puzzles may not suit all scenarios.

To overcome this limitation we propose a novel way of implementing a TL. The
basic idea is to split the secret data into shares, each handed to a different user (i.e.,
a decentralized network node). After the disclosure time set by the owner, the users
cooperate according to a predefined protocol to recover the secret. The outcome of
the protocol (as any attempt to tamper it) can be verified by a smart contract, which
relies on the blockchain to measure the elapse of time. Security no longer follows
from the trust for a single third-party, nor on any honesty assumption, but from the
behavior of the users, whom are simply assumed to be rational.

To evaluate the approach we implement a prototype on top of the Ethereum
blockchain. The prototype leverages secure computation protocols to avoid any sin-
gle point of trust. Resiliency to attacks is analyzed with the help of economic game
theory, in the context of rational adversaries. The experimental results demonstrate
the low cost and limited resource consumption associated with this approach.

5.1. INTRODUCTION CHAPTER 5. DATA RELEASE

5.1 Introduction

Many real-world scenarios require disclosing a secret at a specific future point in
time. For instance, this happens when we vote for elections or when we dispose
our inheritance by will. In these circumstances we typically entrust a notary to keep
a secret private until a future time, and then to publish it so that we are no longer
needed for disclosure to happen. This however requires that the owner of the secret
completely entrusts a single third-party (i.e., the notary).

Early proposals bound the recovery of the secret to the recovery of a key [156],
which was split among a number of peers, distributing trust among many parties
instead of entrusting a single one.

To completely remove the dependence on one or more trusted third-parties,
cryptographers have been working on timed-release cryptography [136] proposing
schemes that effectively replace notaries with Time-Locks (TL). Time-Lock puz-

zles [50, 132, 159] bind the recovery of the secret to the solution of a cryptographic
puzzle. In this setting, a sending party (i.e., the secret’s owner) can encrypt the se-
cret so that the receiving party is required to perform multiple decryptions to recover
it. Given the assumption that each decryption round takes the same amount of time,
and that the number of rounds can be tuned by the sender during the encryption
process, it is possible to protect a secret for arbitrarily long periods of time.

The first puzzle proposed by Rivest et al. [159] uses a trapdoor function so
that anyone willing to recover the secret had to undergo a computing effort that
was orders of magnitude larger compared to the one of the sending party. Also,
since the authors imposed the decryption process to be executed in an inherently
sequential order, their approach is the first example of a Proof of Sequential Work

(PoSW) [66, 133].

An alternative to trapdoor functions is using weak hash-chains [54], by requiring
anyone willing to obtain the secret to brute-force a chain of weak hashes. The use
of a chain, rather than a single stronger hash, permits to reduce the variance of the
decryption runtime. However, the decryption process remains parallelizable and,
thus, the estimated disclosure time far less reliable. These approaches are often
classified as Proof of Work (PoW) [88] algorithms.

Cryptographic puzzles avoid the need for a trusted party, yet two aspects make
them impractical. First, the sending party has to make assumptions on future com-

108

CHAPTER 5. DATA RELEASE 5.1. INTRODUCTION

puting power. This is far from trivial. As an example, Rivest’s LCS35 time cap-
sule [158], released in 1999 with an estimated decryption time of 35 years, was
opened in 2019 after a decryption process of only 2 months on dedicated hard-
ware [67]. Second, TL puzzles require the receiving party to run the decryption
procedure for a long time, which poses a question about economic incentives.

The development of blockchains gives us new opportunities to implement time-
locks. Indeed, a blockchain intrinsically defines the concept of time, which was one
of the main reasons that led to the creation of cryptographic puzzles. It can also
be used to persistently disclose secrets, as it is designed to resist modification of
its data. However, the blockchain alone is not enough to deploy a TL because it
does not offer any mechanism to keep information confidential. Recent proposals
address the problem of dealing with secret data on public blockchains [1, 120] by
splitting information among multiple users who have to cooperate to recover the
secret information using a pre-defined protocol. The protocol is often programmed
as a smart contract [172], which permits to verify the correctness of its outcome
and to detect any undefined behavior. Although this approach could resemble the
early implementations of timed-release cryptography, the security no longer follows
from a single strong trust assumption (i.e., the trust to the notary or to a certification
authority) but from the behavior of the users that take part to the protocol. If the
users cooperate as intended, the outcome of the protocol will be successful, the
secret will be recovered, and the TL function achieved as a consequence. To ensure
that users cooperate as intended, several proposals (e.g., [125, 129]) reward them
with economic incentives. This permits to analyze the protocols as extended form
games whose outcome can be determined based on participants’ expected utility.

In this chapter, we propose I Told You Tomorrow (ITYT), a practical and generic
framework to implement time-locks using smart contracts that is based neither on
trust assumptions nor on cryptographic puzzles. The basic idea of our approach is
to first split a secret into shares using threshold cryptography (using Shamir’s Se-
cret Sharing [166]), and assign them to users so that no one can recover the secret
unless k-of-n shares are available. To ensure the TL behavior, we rely on economic
incentives and penalties enforced by a smart contract. The contract rewards users
for revealing their share only after the disclosure time and penalizes any other mis-
behavior. As rewards and penalties are associated with the correct management of
the shares, ITYT leverages secure Multi-Party Computation (sMPC) [189], which

109

5.2. BACKGROUND CHAPTER 5. DATA RELEASE

ensures confidentiality and avoids the need for trusted users (including the owner of
the secret).

Here we summarize our main contributions. We define a protocol that deploys
Time-Locked secrets on the blockchain by leveraging an economic model in which
every user (or coalition of them) has an expected negative payoff associated with
possible misbehavior. We address the problems that arise when combining secure
Multi-Party Computation and protocols based on economic incentives and penal-
ties (e.g., use secure Multi-Party Computation protocols to break the protocol by-
passing the smart contract’s hashlocks). We implemented the protocol based on
the Ethereum blockchain [185] and the FRESCO secure Multi-Party Computation
framework [71], characterized by low overhead and limited cost of execution. Fi-
nally, we compare ITYT with other existing solutions, discussing the key advan-
tages associated with our approach.

5.2 Background

We describe here a few concepts that are used in the design of the protocol.

Threshold cryptography Threshold cryptography [166] enables the owner of a
secret to share it among a group of users. In a k-of-n threshold scheme, n shares of
the secret are created and distributed among the parties. To reconstruct the secret,
at least k different shares have to be combined. Hence, the advantages of threshold
cryptography are (i) distribution of trust, and (ii) fault tolerance.

Secure Multi-Party Computation A secure Multi-Party Computation (sMPC)
protocol [183,189] is a cryptographic protocol that allows multiple parties to jointly
compute a function over their inputs while keeping them private. Current sMPC
frameworks can execute binary or modular arithmetic algorithms computed among
several parties (even with dishonest majority) by leveraging semi-homomorphic en-

cryption [72, 119] and oblivious transfer [118, 155].

Smart contracts A blockchain is an append-only list of blocks linked together
via cryptographic properties. The blocks are non-mutable and keep a permanent
history of transactions. Smart contracts [172] are programming frameworks built

110

CHAPTER 5. DATA RELEASE 5.3. THE ITYT PROTOCOL

on top of blockchains. A smart contract permits to program tamper-proof protocols
whose outcome is verifiable by the whole network. We rely on smart contracts to
pay incentives, trigger penalties, and enforce the correct execution of our scheme
without relying on a trusted party. Specifically, our approach makes use of the time

and hash primitives, to conditionally execute actions based on time and submitted
data (e.g., reward users participating in a successful execution of the protocol at
protocol termination time).

Rational adversaries A malicious adversary [108] is someone who is willing to
perform any action to attack a protocol. A rational adversary [105], instead, sub-
verts the protocol only if it is economically convenient. Modeling the participants
as rational enables the use of game theory concepts to analyze cryptographic proto-
cols [8, 39, 58]. ITYT models each participant as rational.

5.3 The ITYT protocol

In this section, we overview the ITYT protocol, introducing the preliminary defini-
tions, the roles of the participants, and the main functions.

ITYT is an instance of the TL abstraction: a mechanism that keeps a secret S
private until its disclosure time td and publishes it afterward. ITYT implements TL
by splitting the secret, provided by the owner, among several users named share-

holders (each obtaining a share h), so that none of them can recover S before the
disclosure time. To ensure that (i) each user keeps its share secret until td, and (ii)
each user publicly discloses its share immediately after td, ITYT introduces a set of
economic incentives and penalties. Thus, the TL function is achieved as a conse-
quence of the rational economic behavior of the involved parties (see Section 5.4).

Definitions

Principals

We denote by U the set of users that take part in an instance of ITYT. Additionally,
we denote by SC the set of the smart contract identifiers. We then denote by P the
set of principals consisting of U ∪ SC.

111

5.3. THE ITYT PROTOCOL CHAPTER 5. DATA RELEASE

Wallets

Each principal p ∈ P is associated with a wallet wlt(p), accessible only by p, that
can be used to receive or issue payments.

Protocol parameters

In the following table we report the definition of all the parameters that characterize
an instance of ITYT.
S secret
V economic value assigned to the secret
n number of shareholders
k number of shares needed to reconstruct S
hi share of the secret issued to the i-th shareholder
td disclosure time
tterm termination time
FO fee deposited by the owner to use the service
BH bid deposited by the shareholder to get a share
RH reward paid to the shareholder in case of success
Wh reward paid when whistleblowing a share
WS reward paid when whistleblowing the secret

Smart contract state

The ITYT smart contract keeps track of the protocol status through the following
data structures.

[shares] array of shares submitted to the contract
CS commitment of the secret (i.e., its hash)
[Ch] array of share commitments
state global state of the protocol
[states] array of states for each share
num pending count of the pending shares
num disclosed count of the disclosed shares

112

CHAPTER 5. DATA RELEASE 5.3. THE ITYT PROTOCOL

Primitives

We now define the primitives used by the smart contract.

• time(): returns the current time as witnessed by the blockchain (generally
defined in terms of block height).

• hash(d): returns the result of the application of a chosen cryptographic
hash function over the data d.

• pay(p1, p2, v): transfers the amount v from wlt(p1) to wlt(p2).

• initialize sc([params]): instantiates an ITYT smart contract, and de-
ploys it to the blockchain. The primitive is executed by the owner and returns
the smart contract identifier sc ∈ SC.

• generate shares(S, [users]): generates shares h1, . . . , hn and securely
distributes them to the parties. The primitive guarantees that (i) the i-th share-
holder is the only principal who learns the share hi, and (ii) the owner learns
only the commitment hash(hi), for each share. We discuss in Section 5.5
how our prototype implements this primitive by leveraging sMPC and secret
sharing.

Roles

In ITYT, each user u ∈ U plays one of the following roles: owner, shareholder,
and whistleblower.

Owner.

An owner O delegates the disclosure of a secret S to a time-lock at disclosure
time td. The owner O configures and deploys the TL providing all the required
parameters. In particular, O sets (i) the total number n of shares h of S, (ii) the
number k of shares needed to recover S, (iii) the disclosure time td, and (iv) all the
bids and the rewards that define the instance.

113

5.3. THE ITYT PROTOCOL CHAPTER 5. DATA RELEASE

Shareholder.

A shareholderH is entrusted by the owner O to keep a share h of the secret S con-
fidential until td, and to publicly disclose it afterward. In exchange for her service,
H receives a reward RH paid by the smart contract whenever the following two
conditions hold: (i) her share h is disclosed only after td, and (ii) the secret S is not
revealed before td.

Whistleblower.

A whistleblowerW reports user misbehavior in return for payment. WheneverW
captures a share h or the secret S before td, W can submit it to the contract and
receive a reward.

Setup

In the early stage of ITYT, the owner initializes and deploys a smart contract sc on
the blockchain using the initialize sc() primitive. Along with the protocol
parameters, she writes to the sc the identifiers of all the shareholders, which the
owner has selected beforehand1, that will take part in the TL instance. She also
deposits to the contract the amount FO, a fee that will be used to pay the rewards at
protocol termination time tterm.

After the contract is deployed, the owner and the shareholders jointly execute
the generate shares() primitive. As a result, the owner gets the hash of
the secret and the hash of each share (i.e., the commitments), while each share-
holder H gets her share along with the hash of the secret. The owner submits to
the sc contract the commitments (Algorithm 5.1). Then, each shareholder reads
the contract and checks whether her commitment matches what received from
generate shares(). If so, she agrees and deposits her bidBH (Algorithm 5.2).

As soon as each shareholder has committed, the TL is activated (i.e., the global
state is set to LOCKED). If any party refuses to commit, the funds already deposited
are returned to their proprietaries and the instance setup aborts (as discussed in
Section 5.5).

1 How to randomly choose competing players in adversarial settings such as blockchains has
been addressed in many literature works (e.g., [87, 141])

114

CHAPTER 5. DATA RELEASE 5.3. THE ITYT PROTOCOL

The reader may have noticed that in this setup, the secret shares are exposed to
the shareholders prior to the activation of the TL (i.e., the shares are distributed be-
fore the state is set to LOCKED). In Section 5.5 we show how to overcome this issue
using a key instead of the actual secret. We also point out that the verification of
protocol parameters (especially the economic ones) can be done by the shareholders
at commit time, as their values are publicly available in the contract.

[params] protocol parameters of the ITYT instance
S secret
O user identifier of the owner
[H1, . . . ,Hn] list of shareholder identifiers

1: procedure INIT([params],S,O, [H1, . . . ,Hn])
2: sc← initialize sc([params]) /* Create sc */
3: pay(O, sc, sc.FO) /* Transfer owner’s fee to sc */
4: Ch ← generate shares(S, [O,H1, . . . ,Hn])
5: sc.CS ← hash(S) /* Set secret commitment */
6: sc.state← PENDING
7: for i← 1, n do /* Set share commitments */
8: sc.Ch[i]← Ch[i]
9: sc.states[i]← PENDING

10: end for
11: sc.num pending ← n
12: sc.num disclosed← 0
13: return sc /* The smart contract identifier */
14: end procedure

Figure 5.1: Protocol initialization algorithm (executed by the owner).

Actions

When the TL is active, the actions performed by users determine the status of
the protocol. Each action is perfomed executing a smart contract function whose
effects are public. Four actions are available to users: WhistleblowShare,
WhistleblowSecret, Disclose, and Withdraw, with the last two reserved
to shareholders.

WhistleblowShare: This action (Algorithm 5.3) enables the whistleblower
W to report the misbehavior of a single shareholder. WheneverW obtains a share
hi, she submits it to collect a reward. If the commitment sc.Ch[i] matches, the share

115

5.3. THE ITYT PROTOCOL CHAPTER 5. DATA RELEASE

sc smart contract identifier
Hi user identifier of the i-th shareholder
precondition: Hi checks that hash(hi) = sc.Ch[i]

1: procedure PARTICIPATE(sc,Hi)
2: if sc.state = PENDING and sc.states[i] = PENDING then
3: pay(Hi, sc, sc.BH)
4: sc.states[i]← BID
5: sc.num pending − = 1
6: if sc.num pending = 0 then
7: sc.state← LOCKED
8: end if
9: end if

10: end procedure
Figure 5.2: Shareholder commitment algorithm

sc smart contract identifier
hi the i-th share to be whistleblown

1: procedure WHISTLEBLOWSHARE(sc, hi)
2: if sc.state = LOCKED and time() < sc.td then
3: if sc.states[i] = BID and hash(hi) = sc.Ch[i] then
4: sc.shares [i]← hi
5: sc.states[i]← WHISTLEBLOWN
6: sc.num disclosed + = 1
7: if sc.num disclosed = sc.k then
8: sc.state← FAILED
9: end if

10: pay(sc, caller, sc.Wh)
11: end if
12: end if
13: end procedure

Figure 5.3: Share whistleblow algorithm

whistleblow reward Wh is paid to the whistleblower and the shareholder Hi loses
her reward RH. Additionally, if the number of whistleblown shares equals k, then
the TL is marked as FAILED (i.e., no further actions allowed).

WhistleblowSecret: This action (Algorithm 5.4) enables the whistle-
blower W to prove the possession of the secret ahead of the disclosure time td,
thereby reporting the misbehavior of a group of at least k shareholders. In detail,

116

CHAPTER 5. DATA RELEASE 5.3. THE ITYT PROTOCOL

W submits the secret S ′ to the contract. If the commitment sc.CS matches, then
the TL is marked as FAILED and the secret whistleblow reward WS is paid to the
whistleblower. Moreover, all the shareholders lose their bid, and the remaining
smart contract funds are destroyed.

sc smart contract identifier
S the secret to be whistleblown

1: procedure WHISTLEBLOWSECRET(sc,S)
2: if sc.state = LOCKED and time() < sc.td then
3: if hash(S) = sc.CS then
4: sc.state← FAILED
5: pay(sc, caller, sc.WS)
6: end if
7: end if
8: end procedure

Figure 5.4: Secret whistleblow algorithm

sc smart contract identifier
hi the i-th share

1: procedure DISCLOSE(sc, hi)
2: if time() ≥ sc.td and time() < sc.tterm then
3: if sc.state = LOCKED and sc.states[i] = BID then
4: if hash(hi) = sc.Ch[i] then
5: sc.shares [i]← hi
6: sc.num disclosed + = 1
7: sc.states[i]← DISCLOSED
8: end if
9: end if

10: end if
11: end procedure

Figure 5.5: Share disclose algorithm

Disclose. After the disclosure time td, each shareholder Hi is required to
publicly reveal its share hi to enable the retrieval of the secret. The submission is
successful if (i) the TL was not previously marked as FAILED, and (ii) hash(hi)
matches the commitment sc.Ch[i], otherwise submission fails (as shown in Algo-
rithm 5.5).

117

5.4. ECONOMIC MODEL CHAPTER 5. DATA RELEASE

sc smart contract identifier
hi the i-th share

1: procedure WITHDRAW(sc, hi)
2: if time() ≥ sc.tterm and sc.num disclosed ≥ sc.k then
3: if sc.states[i] = DISCLOSED then
4: sc.states[i]← WITHDRAWN
5: pay(sc, caller, RH)
6: end if
7: end if
8: end procedure

Figure 5.6: Reward withdraw algorithm

Withdraw. Conditionally to the outcome of the TL instance, and immedi-
ately after the termination time tterm, the shareholders are authorized to claim their
rewards. Rewards are paid to all shareholders that correctly completed the disclo-
sure procedure. Algorithm 5.6 illustrates how shareholders can request to withdraw
their reward.

5.4 Economic model

ITYT models each participant as rational. The interest of the involved parties in
the secret is represented by an economic value V associated with it. The use of
an economic value permits to analyze the behavior of the parties involved in the
protocol, under the assumption that each wants to maximize her reward. In this
section we illustrate how to constrain the economic parameters to push rational
actors to strictly adhere to the protocol, hence achieving the desired TL function.
Since the participants could form alliances, we focus on the behavior of groups of
users, considering a generic coalitionM of users that team up to recover the secret
ahead of disclosure time.

We provide a description of the structure, the strategy and the collective payoff
users can gain as members ofM. To ensure that breaking the TL is not profitable,
we develop a set of constraints guaranteeing that the attack cost is greater than the
maximimun achievable payoff. To this end, we focus on the best attack scenario,
that is, the one in which a coalition ideally completes its entire strategy, maximizing
the payoff, with no interference by other groups of users.

118

CHAPTER 5. DATA RELEASE 5.4. ECONOMIC MODEL

Single-user constraints. Before going into details, we set some constraints to
discourage misbehavior of single users. As the shareholder takes part to the protocol
to get a payoff, her expected reward RH has to be greater than the bid BH paid
to get the share. Moreover, the reward Wh paid to a share whistleblower has to
be lower than BH, as each shareholder is expected to keep her share confidential
before td. Then, to incentivize each shareholder to report misbehavior, WS has
to be greater than RH. Furthermore, since the owner is a priori able to perform
the WhistleblowSecret action, the owner’s fee to get the service FO must
be greater than the secret whistleblow bonus WS (since the owner is considered
rational). Inequality 5.1 captures, in a single expression, all the considerations made
so far.

Wh < BH < RH < WS < FO (5.1)

In the following, we address how a coalition of shareholders could try to break
the TL behavior based on when the recostruction of the secret is performed. For the
sake of clarity, Section 5.4 does not take into account the WhistleblowShare
action, which is discussed separately in Section 5.4. Finally, Section 5.4 addresses
how to constrain the fee paid by the owner.

Prevent the reconstruction of the secret

Rational shareholders will consider if it is worth breaking the TL ahead of td or
not. To perform a successful attack, a shareholder has to team up with other k − 1

shareholders to recover S. In such an event, the coalitionMwould earn the most by
monetizing S and then by performing the WhistleblowSecret action, getting
an expected payoff of V +WS .2 The alternative, i.e.,M does not break the TL and
submits the k shares after td, would lead to an expected payoff equal to the sum of
the rewards. To make the second alternative more advantageous, we could require:
k · RH > V +WS . Yet, in order to earn the rewards, the coalitionM should wait
until termination time, whereas V +WS could be collected earlier. For this reason,
we use a stricter formulation of the constraint based on the cost already paid byM
to participate in the protocol:

k ·BH > V +WS (5.2)
2The coalitionM could setup an additional external contract with the buyer to be sure to gain

both V and WS .

119

5.4. ECONOMIC MODEL CHAPTER 5. DATA RELEASE

Constraint (5.2) addresses secrecy (time t < td), however, when the disclosure
time expires, the constraints are used to promote the release of the secret. However,
a coalition of n−k+1 shareholders could wait for k−1 others to submit the shares
and then lead the TL instance to a stall by refusing to submit their own shares. To
prevent them from waiting for a buyer of S and distribute the collective payoff, we
introduce the constraint:

(n− k + 1) ·RH > V (5.3)

Here the contribution of the term WS disappears, as the role of whistleblower is no
longer admissible after td. Inequality 5.3 promotes the disclosure of the shares, as
shareholders are rewarded only in case the TL terminates successfully (i.e., at least
k shares have been submitted succesfully before termination time tterm).

Impact of share whistleblowing action

The WhistleblowShare action increases the number of available strategies. In-
deed, a coalition could maximize the payoff by submitting to the contract some of
the share it holds before performing the WhistleblowSecret action. However,
as share whistleblowing implies writing to the blockchain, the public event may
trigger strategies of other participants. Thus, the extra revenue Wer = jo ·Wh can
be gained, where jo stands for the optimal number of shares to be submitted that do
not enable other coalitions’ strategies. To address this case, we formulate a stricter
version of Inequality (5.2):

k ·BH > V +WS +Wer (5.4)

The optimal number of shares a coalition M could submit before incurring into
penalties or favor other participants, is function of the economic amounts BH, V
and WS , and parameters n and k. There are two cases: (a) multiple coalitions
are able to recover the secret, and (b) independently from the ratio between the
economic amounts there is only one coalition holding at least k shares.

In the first case (a), when i shares have been whistleblown by coalition M,
a quiescent coalition M′ formed by k − i shareholders would gain the ability to
recover the secret having paid only (k − i) · BH to get its shares. Therefore, the
coalitionM performing the submissions needs to determine the optimal number of
shares jo to be whistleblown so thatM′ does not end up having a positive payoff.

120

CHAPTER 5. DATA RELEASE 5.4. ECONOMIC MODEL

To compute itM can solve:

joa = max
i
{i|(k − i) ·BH > V +WS , i ∈ 1, . . . , k − 1}

In the second case (b), the k-shareholders coalitionM is the only one able to
recover the secret, since k > bn/2c. This condition holds until 2k − n − 1 shares
are submitted to the contract. Note this number of submissions could be smaller
compared to the one identified in case (a). So,M can compute jo by:

job = max {2k − n− 1; joa}

In both cases, under the assumption of rational agents, the coalition M can
submit jo shares while still being sure that no other smaller coalition will break the
TL. Inequality (5.4) ensures this strategy is associated with a negative payoff.
A graphical representation of the constraints is shown in Figure 5.7.

Inequality
 3

In
eq

ua
lit

y
2

n >
k

Legend

Avoid collusion
before

Avoid collusion
after

No secret
sharing possible

Valid ITYT
instances

Figure 5.7: Ityt constraints representation

Rewards and bonuses

Now that we have introduced how to constrain the amounts to prevent misbehav-
ior, we discuss some additional requirements to consider an instance of the ITYT
protocol well-formed.

121

5.5. IMPLEMENTATION CHAPTER 5. DATA RELEASE

In the typical scenario, rational users will strictly adhere to the protocol. To
accommodate for this case, the fee paid by the owner has to be enough to remunerate
the shareholders:

FO ≥ n · (RH −BH) (5.5)

In case of failure (i.e., the secret has been recovered before td), at least k − 1

shares and the secret have been submitted to the contract. To ensure the smart
contract has enough currency to pay the whistleblower bonuses, we impose the
following constraint:

FO + n ·BH ≥ (k − 1) ·Wh +WS (5.6)

In case less than k − 1 shares are submitted to the contract before disclosure time,
inequalities (5.5-5.6) still hold, since BH > Wh.

The constraints (5.1-5.6) must all hold for any well-formed ITYT instance. They
determine the acceptance area for the economic amounts. The owner may desire to
minimize the fee FO, while the shareholders may desire to maximize the profit
RH−BH. In Table 5.1 we show three sample configurations obtained by constraint
programming. We highlight that the fee paid by the owner is less than the value of
the secret, which is a desirable property.

V k n Wh BH RH WS FO

1 10 20 0.0031 0.1122 0.1153 0.1184 0.1216
1 15 30 0.0013 0.0717 0.0730 0.0743 0.0756
1 20 50 0.0006 0.0527 0.0533 0.0538 0.0544

Table 5.1: Sample configurations (economic amounts are expressed as ratio of V)

5.5 Implementation

In this section, we illustrate how to implement ITYT leveraging existing frame-
works. Specifically, Section 5.5 details the ITYT smart contract, while Section 5.5
explains how to use sMPC to implement the share generation primitive.

Smart contract implementation

We designed ITYT as a finite state machine (FSM) within an Ethereum smart con-
tract whose functions match the actions available to users. If successful, each action

122

CHAPTER 5. DATA RELEASE 5.5. IMPLEMENTATION

[now > Tterm]INPI
pre

initialized

I
init

initialize_sc *
initialized

E

participate

startMPC *
[bidders==n] PCfinalizeMPC *

pre
committed

enforce *
[commits==n]

expired

expire
[now > T1]

expire
[now > T2] expire

[now > T3]

LOCKED

locksetup

FAILED

withdraw

WhistleblowSecret

commit loadSecret *

withdraw

* → [msg.sender==owner]

WhistleblowShare

activation

(Alg3) (Alg4)

(Alg6)

[] →condition

() →reference to algorithm

[now < Td] [now < Td]

Legend

(Alg1 + Alg2)

share generation

terminate
[now > Td]

disclose

(Alg5)
[now < Tterm]

 END

termination

Figure 5.8: State machine representing the valid state transitions of the ITYT proto-
col. Each transition name maps to an action (an Ethereum smart contract function)
that can be invoked by participants to update the state. Square brackets state addi-
tional conditions that must be met to consider the transition valid

entails a write to the blockchain and possibly a change of the global state. The FSM
state regulates the actions available to users. Additionally, some actions are re-
served to the owner. Figure 5.8 depicts a simplified version of the state machine
that shows only valid transitions. It can be divided into five macro phases: (i)
setup, in which the owner has to deploy the contract and the shareholders sub-
scribe to it; (ii) share generation, that involves off-chain operations (i.e., not
directly performed by smart contract functions) to confidentially split the secret;
(iii) activation, in which the shareholders attest they have received their shares
and give their go-ahead; (iv) lock, in which the shareholders keep the shares con-
fidential; and (v) termination, where the secret is finally disclosed.

Setup Initially, the owner deploys a smart contract instance of ITYT to the
Ethereum blockchain [185]. Then, she calls the contract initialization primitive,
transfers FO to the contract, and specifies all the parameters as detailed in Sec-
tion 5.3. This advances the global state to PRE INITIALIZED. Afterwards, each
shareholder subscribes to the contract by depositing the proper amount of Ether that
corresponds to the bid BH and invoking the contract function participate, as
part of Algorithm 5.2. After all the shareholders have deposited the bid, the owner
executes the startMPC function, which advances the state to INITIALIZED.

Share generation At this point, owner and shareholders cooperate to generate
the shares. Since the economic penalties have not been activated yet, a random

123

5.5. IMPLEMENTATION CHAPTER 5. DATA RELEASE

key K is used in place of the secret. From the shareholder’s perspective there is
no difference, as rewards and penalties are now associated with the management of
K, but from the owner perspective, the use of K avoids the exposure of S until TL
activation (see Figure 5.9). Only after that, the owner will write to the contract an
encrypted version (i.e., the ciphertext) of the secret, CT = EncK (S). The share
generation primitive returns to the owner the commitment of the key CK, along
with the commitments of all the shares {C1, ..., Cn}; while each shareholder gets
her share hi and the commitment of the key. Further details on the sMPC primitive
are reported in Section 5.5.

Activation The owner calls the function finalizeMPC and updates the contract
with the output received from the shares generation primitive, turning the global
state to PRE COMMITTED. Each shareholder verifies the share commitment value
written to the contract, if it matches the one obtained from the sMPC (i.e., the
owner did not tamper it), then she invokes the commit function. After all the
participants have given their go-ahead, the owner executes enforce, activating
the TL (i.e., LOCKED state). The economic incentives and penalties are activated as
a consequence.

Lock Before disclosure time td, it is only possible to: (i) whistleblow a share,
and (ii) whistleblow the key K. To whistleblow a single share, a user can call
WhistleblowShare submitting h′ (Algorithm 5.3). If the commitment matches,
then Wh is immediately paid to the whistleblower. The whistleblow of a share is
permitted only k times, as the k-th submission leads to the global state FAILED.
To whistleblow the key, a user can call the WhistleblowSecret function sub-
mitting K′ (Algorithm 5.4). If its commitment matches CK, then WS is paid to the
whistleblower, and the protocol is marked as FAILED. When the protocol fails, the
remaining amount is no longer withdrawable.

Termination If protocol is not marked as FAILED at time td, the shareholders
can invoke the disclosure function to submit their share (Algorithm 5.5). The
disclosure is successful if the share matches the corresponding commitment and it
was not published before. The reward can be withdrawn by each shareholder that
correctly disclosed her share after the protocol has terminated successfully. To claim

124

CHAPTER 5. DATA RELEASE 5.5. IMPLEMENTATION

collusion would leak .

sMPC execution window smart contract configuration smart contract activated

Figure 5.9: Avoid the exposition of S before sc activation

the reward, the user can call the function withdraw (Algorithm 5.6). We remark
that there is no need to materialize K in the contract, as all the valid shares will be
permanently accessible. Anyone can recover K just by assembling the shares (e.g.,
using Lagrange’s interpolation in the case of secret sharing).

Share generation and distribution

In this section, we describe how to implement the generate shares function
by using secure Multi-Party Computation frameworks.

In the sMPC setting, each party joins the protocol as a network host. Each
ITYT user is then provided with a virtual machine containing an application able
to communicate via network following a pre-defined protocol. The application is
implemented using FRESCO [7, 71], a FRamework for Efficient and Secure COm-
putation that aims to ease the development of prototypes based on secure computa-
tion. FRESCO offers several secure computation techniques, referred to as suites.
Depending on the model of computation, each of them is classified into binary or
arithmetic. The arithmetic suites permit to efficiently perform additions and multi-
plications on values that are defined over a finite field, a desirable feature for pro-
tocols like ITYT that rely on Secret Sharing. SPDZ [73] is the arithmetic suite we
selected. In addition to high performance, SPDZ also ensures protection against
active adversaries that can deviate in arbitrary ways. This grants ITYT the ability
to securely open (i.e., release) partial results of the computation only to some of

125

5.6. DISCUSSION CHAPTER 5. DATA RELEASE

the parties executing the sMPC protocol, enabling us to send each share only to the
legitimate shareholder. To further increase performance, MASCOT [118] was used
as SPDZ pre-processing strategy.

To execute the share generation primitive, owner and shareholders start the
sMPC application. The owner inputs the random 128 bits key K, together with
the total number of shareholders n, and the reconstruction threshold k. Each share-
holder, instead, submits only a random 128 bits seed. The sMPC selects k of the
n seeds received, using it as the a1, . . . , ak coefficients of the Shamir Secret Shar-
ing polynomial [166], while K is interpreted as a0. Then, the sMPC generates n
random x values of 128 bits and computes the associated y coordinates using the
Horner’s method, which permits to evaluate a polynomial of degree k with only
k multiplications and k additions. Each i-th share is built as the concatenation of
the xy coordinates hi = xi||yi. To compute the commitments of the key and the
shares, we used MiMC [6], a cryptographic primitive characterized by low multi-
plicative complexity implemented by FRESCO and compatible with SPDZ. Finally,
dedicated output is opened to the parties: the owner gets the commitment Ci of any
share generated, while each shareholder gets her share hi, the commitment of the
key CK, n and k.

5.6 Discussion

In this section, we discuss how ITYT ensures the methods to report misbehavior
are not bypassable, and how ITYT mitigates denial of service (DOS) and prevents
deadlocks.

Misbehavior detection

The economic penalties ITYT relies on are triggered when there is a user that is able
to prove someone else’s misbehavior, and this happens for example when a share
is released improperly. Up to now, we have considered secure Multi-Party Compu-
tation as a mean to securely deliver dedicated output to users that take part in the
ITYT protocol (i.e., to generate and distribute the shares confidentially). However,
sMPC can also be used to subvert the protocol, as it enables a group of parties to
jointly compute a function while keeping their input confidential. Indeed, a coalition

126

CHAPTER 5. DATA RELEASE 5.6. DISCUSSION

of shareholders could use it to recover the secret ahead of disclosure time without
leaking any share nor the key, thus bypassing smart contract commitments. This is
an interesting scenario as it applies to most protocols played by rational users that
involve rewards and penalties (e.g., [149]).

In our setting this happens when there is a coalition that is able to recover S
without releasingK, thus preventing anyone to perform the WhistleblowSecret
action. To do that, the coalition inputs to the sMPC protocol k shares along with
the ciphertext CT (which is publicly available as it is written to the contract by the
owner). Then, the protocol performs the reconstruction of the Shamir polynomial,
recovers K, and extracts the secret by S = DecK (CT), opening it to the parties as
the only result.

There are two alternatives to prevent this attack: (i) use an encryption scheme
vulnerable to the Known Plaintext Attack, and (ii) use an encryption scheme that
is practically incompatible with the sMPC setting. As an example of (i), with the
One-Time Pad, given two among {CT,S,K} the third is implied; then, a coalition
of shareholders cannot avoid to release K by recovering S. The drawback of using
OneTimePad is that |S| = |K| by construction. This limitation can be overcome by
selecting an encryption scheme that satisfies (ii).

DOS and deadlock prevention

A denial of service attack is performed by users that participate in multiple ITYT
instances and refuse to deposit their bids, to commit, or to correctly execute the
sMPC protocol. To mitigate these kinds of disruptions it is possible to introduce a
reputation system. However, this requires to discriminate with high accuracy be-
tween misbehaving users and users that follow the protocol as intended. Therefore,
we decided to include an additional step in the FSM setup phase, in which all par-
ticipants (including the owner) are required to pay an additional small service pawn
that will be returned only at activation time. It has been proven that the introduction
of a small fee to access a service can mitigate many DOS attacks [128, 134].

Any other misbehavior, malfunction, or network error could result in a failure to
meet the setup time threshold set by the owner. The deadlock, to which the protocol
leads to, can be managed introducing the final state EXPIRED (see Figure 5.8).
In this state, all the participants are allowed to withdraw their funds locked by the
contract, except for the small service pawn (as the TL was never activated).

127

5.7. EXPERIMENTAL RESULTS CHAPTER 5. DATA RELEASE

5.7 Experimental results

Our experimental analysis is organized into: (i) smart contract deployment and test-
ing, and (ii) simulation of sMPC network protocols. The tests have been executed
on a dual Intel Xeon E5 server with 256 GB memory and 512 GB SSD drive running
Ubuntu 20.04 LTS. The size of the shares was set to 256 bits.

Smart contract A preliminary version of the smart contract was built with
FSolidM [135], a tool that automatically generates Ethereum smart contracts code
from high-level Finite State Machine representations. To deploy, test, and debug the
contract generated, we relied on Brownie [107], a Python framework that allows us
to create wallets, inspect transactions and automatize tests. To provide such func-
tionalities, Brownie interacts with Ganache [2]: a personal Ethereum blockchain
used to facilitate development.

The experiments mainly focused on estimating the execution cost of each ITYT
instance. The cost is measured in gas, the unit that measures the amount of com-
putational effort required to execute specific operations on the Ethereum network.
Table 5.2 shows, depending on the number of participants, the gas required to run
each ITYT function.

Function
Gas

n = 2 n = 5 n = 10

participate 89545 90308 100207
startMPC 50399 50399 50399
finalizeMPC 122096 191666 307617
commit 56834 59597 69496
enforce 50425 50425 50425
loadSecret 51367 51367 51367
WhistleblowShare 125492 125676 125715
WhistleblowSecret 121587 121587 121587
terminate 29657 29657 29657
disclose 125492 125676 125715
withdraw 42634 48709 62451

Table 5.2: Gas cost for each smart contract function with k = 2

sMPC First, we implemented a sMPC protocol compliant with the description in
Section 5.5. We refer to this version as single-phase. Each party was provided with

128

CHAPTER 5. DATA RELEASE 5.7. EXPERIMENTAL RESULTS

a different application acting either as client or server, and the network communi-
cation round trip time (RTT) was set to 10 ms. As it is illustrated in Figure 5.10a,
strictly adhering to this protocol leads to a sudden performance degradation when
the number of shareholders increases. This is because computing the MiMC prim-
itive among several participants is highly affected by network latency (the parties
have to exchange several messages to carry out even simple operations in the sMPC
setting). To improve performance, we implemented a two-phase algorithm com-
posed by two sMPC protocols: Step 1 and Step 2.

Step 1. An n-to-n sMPC is jointly executed by all participants. The owner inputs the
random 128 bits keyK, together with n and k. Each shareholder submits only
a 128 bits seed. As detailed in Section 5.5, the sMPC selects the coefficients to
generate the Shamir polynomial and computes the shares. Finally, the output
is opened to the parties: the owner gets the polynomial coefficients of f (x),
while each shareholder gets her share hi, n and k.

Step 2. A 1-to-1 sMPC is computed between the owner and each i-th shareholder.
The owner inputs f (x), while the shareholder inputs her (xi; yi) coordinate.
If (xi; yi) belongs to f (x), commitments are produced. The owner gets the
commitment of the share Ci, while the shareholder gets the commitment of
the key CK.

The difference between the single-phase and the two-phase sMPC lies in the
evaluation of the MiMC primitive. Unlike the single-phase version, the two-phase
solution separates the generation of the shares from the production of commitments.
It follows that the first step can be carried out even in scenarios with several partici-
pants, as it is not computationally intensive, whereas the second step, which instead
is computationally intensive, is always performed among two users. The compari-
son between the two sMPC protocol variants is shown in Figure 5.10a. More details
about the two-phase execution time and memory consumption for each participant,
in case of polynomial of higher degree, are illustrated in Figures 5.10b and 5.10c,
respectively.

129

5.8. RELATED WORK CHAPTER 5. DATA RELEASE

2 3 4 5 6 7 8

n

10 1

10 2

T
im

e
[s

]

k=2 single-phase
k=3 single-phase
k=4 single-phase
k=2 two-phase
k=3 two-phase
k=4 two-phase

(a)

2 3 4 5 6 7 8

n

30

35

40

45

50

55

60

65

70

75

80

T
im

e
[s

]

k=2
k=3
k=4
k=5
k=6
k=7
k=8

(b)

2 3 4 5 6 7 8

n

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

R
A

M
 [G

B
]

k=2
k=3
k=4
k=5
k=6
k=7
k=8

(c)

Figure 5.10: sMPC protocol time and memory consumption: (a) Single-phase vs
two-phase sMPC execution, (b) Two-phase time consumption, (c) Two-phase mem-
ory consumption

5.8 Related work

The use of cryptography to solve the problem of unveiling private data at a specific
time in the future was first envisioned in 1993 by Timothy May [136]. Since then,
many researchers have proposed solutions to this problem. Based on the assump-
tions and technologies used, we can classify the proposals into four main categories.

Trust and Honesty — Chan et al. [60] and Cheon et al. [64] proposed single
point of trust schemes, in which the owner encrypts the secret using public-key
cryptograpyhy, and relies on a trusted time-server to release the private decryption
key in the future. Rabin et al. described Time-Lapse Cryptography [145, 156] that
overcomes the single point of trust assumption by splitting the single authority into

130

CHAPTER 5. DATA RELEASE 5.8. RELATED WORK

a group of users that have to cooperate to release the keys. Li et al. [124] proposed
a solution that relies on Distributed Hash Tables to route the secret among peers.
However, these proposals entail the peers to be honest as they do not consider the
possible economic benefits that the parties would obtain by colluding.

Time-Lock Puzzles — They require the recipient to solve an inherently sequen-
tial mathematical puzzle to prove the elapse of time. Starting from Rivest et al.
seminal work [159], many other puzzles have been proposed [50,66,132]. All these
techniques require to run the decryption procedure for a long time, and to make
assumptions on future computing power.

Smart Contracts — Similarly to our proposal, the third category leverages smart
contracts [172] to replace the trusted party. Kimono [59] and Keep Network [129]
rely on threshold cryptography to split the secret among participants that can earn
a remuneration by keeping their shares private until disclosure time. However, they
do not introduce security deposits, thus failing at preventing misbehavior. Li et al.
proposal [125] overcomes some of these limitations by modeling the protocol as
an extensive-form game with imperfect information [123]. Yet, as each peer is a
single point of failure, and as the owner has perfect information about the shares,
they require every participant to pay a security deposit that exceeds the value of the
secret, limiting the applicability of the protocol. Compared to our solution, all the
proposals in this category do not consider that coalitions of users can reconstruct
the secret ahead of disclosure time inside an sMPC protocol without exposing the
shares, thus effectively avoiding penalties and safeguarding remunerations.

Witness Encryption — This category of solutions leverages witness encryp-
tion [98], in which the sender can encrypt a message so that it can only be opened
by a recipient who knows a witness to an NP relation. Liu et al. [127] showed
how to construct a computational reference clock from large public computations,
such as those made by the Bitcoin network, and couple it with witness encryption
to achieve a TL encryption mechanism. Yet, this proposal relies on the availability
of a practical witness encryption scheme.

Other Contributions — Several recent proposals address the problem of dealing
with secret data on public blockchains. Enigma [191] and Hawk [120] leverage
sMPC to allow multiple actors to execute an algorithm on private inputs and store
the proof of correct execution on the blockchain. However, these proposals re-
quire the data holder to actively participate in the computation, thus they cannot

131

5.9. CONCLUSIONS CHAPTER 5. DATA RELEASE

be used to solve the problem of data disclosure at a future point in time. Proof of

Elapsed Time (PoET) is a network consensus algorithm often used in permissioned
blockchains, like Hyperledger Sawtooth [1, 63], that avoids wasting computational
resources by using a fair lottery system run inside a Trusted Execution Environment
(TEE), such as Intel SGX. Each participant runs an algorithm in the TEE that waits
for a random amount of time, thus proving the elapse of time without the need of
PoW. Even if this approach resembles ITYT, as it prevents cheating on the chosen
time, it is not able to store secret data. Another recent contribution, Bitcoin Light-

ning Network [149], shows how economic constraints enforced by TL primitives
can be successfully integrated with blockchains. Lightning Network can be used
to instantly exchange bitcoins among peers by using off-chain transactions while
effectively preventing misbehavior.

5.9 Conclusions

This chapter presented I Told You Tomorrow (ITYT), a practical framework
that leverages the rationality assumption to deploy Timed-Locked secrets on the
blockchain. In contrast to other Time-Lock mechanisms, ITYT does not rely on a
trusted third-party, neither it requires a receiving party to run a decryption algorithm
until disclosure time, nor it demands guessing about future computing power. The
implementation and experimental evaluation show the low cost and limited resource
consumption associaced with our approach.

Further details on the open source solution described in this chapter can be found
in Appendix D. There, we provide information on how to solve the economic model
presented in Section 5.4 by using constraint programming, how to test the imple-
mentation of the smart contract, and finally, how to run the generate shares

primitive between many parties using sMPC.

Availability

The implementation source of our proposals is freely available at this URL:
https://github.com/unibg-seclab/ityt

The work in this chapter was supported in part by the EC within the H2020
Program under project MOSAICrOWN.

132

https://github.com/unibg-seclab/ityt

133

Chapter 6

Conclusions and future work

In this thesis, we presented novel techniques to support the secure collection, sani-
tization, storage, processing and release of data.

With regard to the data collection stage, we proposed an approach to strengthen
the security of mobile applications. Thanks to the additional security functions
introduced in the Android Open Source Project, an application developer can com-
partmentalize the application to reduce access to confidential files, and to implement
the least privilege principle on a per-process basis. This also permits to reduce the
impact of a number of common app security vulnerabilities.

With reference to sanitization, we proposed an approach that enables the
anonymization of large collections of sensors data. Based on the needs of the user,
anonymization can be applied in parallel on a varying number of network nodes.
While a large number of nodes greatly reduces the total sanitization time, the exper-
imental evaluation reported very limited degradation on the quality of the results.

To support the storage and processing stages, we proposed an approach to exe-
cute point and range queries over encrypted data. The technique proposed ensures
perfect indistinguishability to an attacker that gains access to the data (i.e., an at-
tacker able to perfom a dump of the memory). It also offers protection against an
attacker able to monitor the access to the memory, in a measure directly proportional
to the parameter k, the number of records stored within the block. The experimental
analysis showed that our solution exhibits a low overhead (in terms of overall query
execution time) compared to the one that operates on plaintext data (which runs
without any confidentiality guarantee), when the network latency is greater than 10

6.1. FUTURE WORK CHAPTER 6. CONCLUSIONS

ms, and the transmission rate is at least 100 Mbps. This is a common situation when
the cloud service provider is located in the same regional area of the client.

Finally, we presented an approach to deploy Time-Locked secrets on the
blockchain and schedule the release of data. The proposal leverages an economic
model which ensures that breaking the TL is not profitable. This is used to push
rational actors to strictly adhere to the protocol, hence achieving the desired TL
fuction. Our proposal operates without the need for a Trusted Third-Party.

6.1 Future Work

We conclude the thesis with a discussion of the future work that can be done in the
four areas presented.

Data collection – Chapter 2 illustrated an approach to enable internal app compart-
mentalization. A potential obstacle to the adoption of SEApp is the usability
by app developers. Although the use of macros greatly simplifies the develop-
ment of the policy module, the sepolicy.cil file still needs to be written
by hand. The availability of an Android Studio plugin that derives the pol-
icy module from a set of pre-defined AndroidManifest.xml flags can
further facilitate the developer. The plugin could also be used to inspect the
policy module and enforce part of the checks executed by the PolicyModule-

Validator.

Data sanitization – Chapter 3 presented a scalable approach to apply sanitization
to large collections of sensors data. As a future work, we plan to extend
the set of criteria used to perform the cut and determine the partitions. With
the availability of new cut criteria we expect to have a slight performance
degradation but at the same time to reduce information loss.

Data storage & processing – Chapter 4 detailed an approach to support the exe-
cution of point and range queries over encrypted data. As a future work, we
plan to implement a block rotation strategy to support the insertion, deletion
and update of records. The challenge is to keep the index balanced and the
client-side maps compact, without significantly increase the average number
of spurious tuples pulled from the server to solve a query.

134

CHAPTER 6. CONCLUSIONS 6.1. FUTURE WORK

Data release – Chapter 5 presented a novel way to implement Time-Locked se-
crets. As a future work, we plan to devise a strategy to increase the size of the
key. To do that, we are considering the use of homomorphic encryption for
the share generation primitive.

135

137

Acknowledgments

The research documented in this thesis was supervised by Prof. Stefano Paraboschi
(Università degli Studi di Bergamo).

I would like to thank Prof. Stefano Paraboschi for the counsel given during this
journey. A special thank goes to my former and present colleagues Enrico Bacis,
Marco Rosa, Matthew Rossi and Gianluca Oldani, with whom I had the opportunity
to grow by sharing this experience.

139

Bibliography

[1] Hyperledger Sawtooth. https://sawtooth.hyperledger.org,
2018.

[2] Ganache – personal blockchain for ethereum development. https://

github.com/trufflesuite/ganache, 2019.

[3] A. Albrecht. sqlparse. https://github.com/andialbrecht/

sqlparse, 2021.

[4] A. B. and D. Dinu and D. Khovratovich and S. Josefsson. The memory-
hard Argon2 password hash and proof-of-work function. https:

//datatracker.ietf.org/doc/draft-irtf-cfrg-argon2/,
2021.

[5] Y. Acar, M. Backes, S. Bugiel, S. Fahl, P. McDaniel, and M. Smith. SoK:
Lessons learned from Android security research for appified software plat-
forms. In IEEE S&P, 2016.

[6] M. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen. MiMC:
Efficient encryption and cryptographic hashing with minimal multiplicative
complexity. In ASIACRYPT, 2016.

[7] Alexandra Institute. FRESCO - a framework for efficient secure computa-
tion. https://github.com/aicis/fresco, 2019.

[8] J. Alwen, C. Cachin, O. Pereira, A. Sadeghi, B. Schoenmakers, A. Shelat,
and I. Visconti. Summary report on rational cryptographic protocols, 2007.

[9] Android. Google Play Protect. https://www.android.com/play-

protect/, 2021.

https://sawtooth.hyperledger.org
https://github.com/trufflesuite/ganache
https://github.com/trufflesuite/ganache
https://github.com/andialbrecht/sqlparse
https://github.com/andialbrecht/sqlparse
https://datatracker.ietf.org/doc/draft-irtf-cfrg-argon2/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-argon2/
https://github.com/aicis/fresco
https://www.android.com/play-protect/
https://www.android.com/play-protect/

BIBLIOGRAPHY BIBLIOGRAPHY

[10] Android Developers. adb install. https://developer.android.com/
studio/command-line/adb#move, 2021.

[11] Android Developers. Android App Bundles. https://

developer.android.com/platform/technology/app-

bundle, 2021.

[12] Android Developers. Android Interface Definition Language. https://

developer.android.com/guide/components/aidl, 2021.

[13] Android Developers. android:isolatedProcess. https:

//developer.android.com/guide/topics/manifest/

service-element#isolated, 2021.

[14] Android Developers. Bound services overview. https:

//developer.android.com/guide/components/bound-

services#Creating, 2021.

[15] Android Developers. isolated app.te. https://

android.googlesource.com/platform/system/sepolicy/

+/refs/heads/master/private/isolated app.te, 2021.

[16] Android Open Source Project. Enable per-user isolation for normal apps.
https://android.googlesource.com/platform/external/

sepolicy/+/a833763ba04147e840fd054b613f759395bada35,
2014.

[17] Android Open Source Project. SELinux for Android 8.0.
https://source.android.com/security/selinux/images/

SELinux Treble.pdf, 2017.

[18] Android Open Source Project. Android 9 release notes. https://

source.android.com/setup/start/p-release-notes#per-

app selinux sandbox, 2018.

[19] Android Open Source Project. ActivityManagerService. https:

//android.googlesource.com/platform/frameworks/

base/+/refs/heads/master/services/core/java/com/

android/server/am/ActivityManagerService.java, 2021.

140

https://developer.android.com/studio/command-line/adb#move
https://developer.android.com/studio/command-line/adb#move
https://developer.android.com/platform/technology/app-bundle
https://developer.android.com/platform/technology/app-bundle
https://developer.android.com/platform/technology/app-bundle
https://developer.android.com/guide/components/aidl
https://developer.android.com/guide/components/aidl
https://developer.android.com/guide/topics/manifest/service-element#isolated
https://developer.android.com/guide/topics/manifest/service-element#isolated
https://developer.android.com/guide/topics/manifest/service-element#isolated
https://developer.android.com/guide/components/bound-services#Creating
https://developer.android.com/guide/components/bound-services#Creating
https://developer.android.com/guide/components/bound-services#Creating
https://android.googlesource.com/platform/system/sepolicy/+/refs/heads/master/private/isolated_app.te
https://android.googlesource.com/platform/system/sepolicy/+/refs/heads/master/private/isolated_app.te
https://android.googlesource.com/platform/system/sepolicy/+/refs/heads/master/private/isolated_app.te
https://android.googlesource.com/platform/external/sepolicy/+/a833763ba04147e840fd054b613f759395bada35
https://android.googlesource.com/platform/external/sepolicy/+/a833763ba04147e840fd054b613f759395bada35
https://source.android.com/security/selinux/images/SELinux_Treble.pdf
https://source.android.com/security/selinux/images/SELinux_Treble.pdf
https://source.android.com/setup/start/p-release-notes#per-app_selinux_sandbox
https://source.android.com/setup/start/p-release-notes#per-app_selinux_sandbox
https://source.android.com/setup/start/p-release-notes#per-app_selinux_sandbox
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/am/ActivityManagerService.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/am/ActivityManagerService.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/am/ActivityManagerService.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/am/ActivityManagerService.java

BIBLIOGRAPHY BIBLIOGRAPHY

[20] Android Open Source Project. Android Debug Bridge (adb). https://

developer.android.com/studio/command-line/adb, 2021.

[21] Android Open Source Project. Android Permissions. https:

//developer.android.com/guide/topics/permissions/

overview, 2021.

[22] Android Open Source Project. Android Runtime. https://

developer.android.com/guide/platform#art, 2021.

[23] Android Open Source Project. App manifest overview. https:

//developer.android.com/guide/topics/manifest/

manifest-intro, 2021.

[24] Android Open Source Project. Binder. https://

developer.android.com/reference/android/os/Binder,
2021.

[25] Android Open Source Project. Implementing SELinux. https://

source.android.com/security/selinux/implement, 2021.

[26] Android Open Source Project. init. https://

android.googlesource.com/platform/system/core/+/

refs/heads/master/init/main.cpp, 2021.

[27] Android Open Source Project. installd. https://

android.googlesource.com/platform/frameworks/

native/+/refs/heads/master/cmds/installd/, 2021.

[28] Android Open Source Project. Intent and intent filters. https:

//developer.android.com/guide/components/intents-

filters, 2021.

[29] Android Open Source Project. Mounting partitions early. https:

//source.android.com/devices/architecture/kernel/

mounting-partitions-early, 2021.

[30] Android Open Source Project. PackageManagerService. https:

//android.googlesource.com/platform/frameworks/

141

https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/platform#art
https://developer.android.com/guide/platform#art
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/reference/android/os/Binder
https://developer.android.com/reference/android/os/Binder
https://source.android.com/security/selinux/implement
https://source.android.com/security/selinux/implement
https://android.googlesource.com/platform/system/core/+/refs/heads/master/init/main.cpp
https://android.googlesource.com/platform/system/core/+/refs/heads/master/init/main.cpp
https://android.googlesource.com/platform/system/core/+/refs/heads/master/init/main.cpp
https://android.googlesource.com/platform/frameworks/native/+/refs/heads/master/cmds/installd/
https://android.googlesource.com/platform/frameworks/native/+/refs/heads/master/cmds/installd/
https://android.googlesource.com/platform/frameworks/native/+/refs/heads/master/cmds/installd/
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/guide/components/intents-filters
https://source.android.com/devices/architecture/kernel/mounting-partitions-early
https://source.android.com/devices/architecture/kernel/mounting-partitions-early
https://source.android.com/devices/architecture/kernel/mounting-partitions-early
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/pm/PackageManagerService.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/pm/PackageManagerService.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/pm/PackageManagerService.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/pm/PackageManagerService.java

BIBLIOGRAPHY BIBLIOGRAPHY

base/+/refs/heads/master/services/core/java/com/

android/server/pm/PackageManagerService.java, 2021.

[31] Android Open Source Project. Policy compatibility. https:

//source.android.com/security/selinux/compatibility,
2021.

[32] Android Open Source Project. restorecond service. https://

android.googlesource.com/platform/external/selinux/

+/refs/heads/master/restorecond/restorecond.service,
2021.

[33] Android Open Source Project. secilc. https://

android.googlesource.com/platform/external/selinux/

+/refs/heads/master/secilc/, 2021.

[34] Android Open Source Project. SELinuxMMAC. https:

//android.googlesource.com/platform/frameworks/

base/+/refs/heads/master/services/core/java/com/

android/server/pm/SELinuxMMAC.java, 2021.

[35] Android Open Source Project. untrusted app all.te. https://

android.googlesource.com/platform/system/sepolicy/

+/refs/heads/master/private/untrusted app all.te,
2021.

[36] Android Open Source Project. Zygote. https://

android.googlesource.com/platform/frameworks/

base.git/+/master/core/java/com/android/internal/

os/Zygote.java, 2021.

[37] Apache Spark. Apache Spark. https://spark.apache.org/, 2021.

[38] Ars Technica. The Android 11 interview. https://arstechnica.com/
gadgets/2020/09/the-android-11-interview-googlers-

answer-our-burning-questions/, 2020.

[39] G. Asharov, R. Canetti, and C. Hazay. Toward a game theoretic view of
secure computation. IACR, 2011.

142

https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/pm/PackageManagerService.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/pm/PackageManagerService.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/pm/PackageManagerService.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/pm/PackageManagerService.java
https://source.android.com/security/selinux/compatibility
https://source.android.com/security/selinux/compatibility
https://android.googlesource.com/platform/external/selinux/+/refs/heads/master/restorecond/restorecond.service
https://android.googlesource.com/platform/external/selinux/+/refs/heads/master/restorecond/restorecond.service
https://android.googlesource.com/platform/external/selinux/+/refs/heads/master/restorecond/restorecond.service
https://android.googlesource.com/platform/external/selinux/+/refs/heads/master/secilc/
https://android.googlesource.com/platform/external/selinux/+/refs/heads/master/secilc/
https://android.googlesource.com/platform/external/selinux/+/refs/heads/master/secilc/
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/pm/SELinuxMMAC.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/pm/SELinuxMMAC.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/pm/SELinuxMMAC.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/pm/SELinuxMMAC.java
https://android.googlesource.com/platform/system/sepolicy/+/refs/heads/master/private/untrusted_app_all.te
https://android.googlesource.com/platform/system/sepolicy/+/refs/heads/master/private/untrusted_app_all.te
https://android.googlesource.com/platform/system/sepolicy/+/refs/heads/master/private/untrusted_app_all.te
https://android.googlesource.com/platform/frameworks/base.git/+/master/core/java/com/android/internal/os/Zygote.java
https://android.googlesource.com/platform/frameworks/base.git/+/master/core/java/com/android/internal/os/Zygote.java
https://android.googlesource.com/platform/frameworks/base.git/+/master/core/java/com/android/internal/os/Zygote.java
https://android.googlesource.com/platform/frameworks/base.git/+/master/core/java/com/android/internal/os/Zygote.java
https://spark.apache.org/
https://arstechnica.com/gadgets/2020/09/the-android-11-interview-googlers-answer-our-burning-questions/
https://arstechnica.com/gadgets/2020/09/the-android-11-interview-googlers-answer-our-burning-questions/
https://arstechnica.com/gadgets/2020/09/the-android-11-interview-googlers-answer-our-burning-questions/

BIBLIOGRAPHY BIBLIOGRAPHY

[40] G. Asharov, I. Komargodski, W. Lin, E. Peserico, and E. Shi. Optimal obliv-
ious parallel ram. IACR, 2020.

[41] F. Ashkouti, K. Khamforoosh, and A. Sheikhahmadi. DI-Mondrian: Dis-
tributed improved Mondrian for satisfaction of the `-diversity privacy model
using Apache Spark. Information Sciences, 2021.

[42] E. Bacis, S. D. C. di Vimercati, D. Facchinetti, S. Foresti, G. Livraga, S. Para-
boschi, M. Rosa, and P. Samarati. Multi-provider secure processing of sen-
sors data. In IEEE PerCom (PerCom Workshops), 2019.

[43] E. Bacis, D. Facchinetti, M. Guarnieri, M. Rosa, M. Rossi, and S. Paraboschi.
I told you tomorrow: Practical time-locked secrets using smart contracts. In
ARES, 2021.

[44] E. Bacis, S. Mutti, and S. Paraboschi. AppPolicyModules: Mandatory access
control for third-party apps. In ASIACCS, 2015.

[45] E. Bacis, S. Mutti, and S. Paraboschi. Policy specialization to support domain
isolation. In SafeConfig, 2015.

[46] M. Backes, S. Bugiel, and E. Derr. Reliable third-party library detection in
Android and its security applications. In CCS, 2016.

[47] M. Backes, S. Bugiel, S. Gerling, and P. von Styp-Rekowsky. Android se-
curity framework: Extensible multi-layered access control on Android. In
ACSAC, 2014.

[48] M. Backes, S. Bugiel, C. Hammer, O. Schranz, and P. V. Styp-Rekowsky.
Boxify: Full-fledged app sandboxing for stock Android. In USENIX Security,
2015.

[49] M. Bayer. SQLAlchemy. https://pypi.org/project/

SQLAlchemy/, 2021.

[50] N. Bitansky, S. Goldwasser, A. Jain, O. Paneth, V. Vaikuntanathan, and
B. Waters. Time-lock puzzles from randomized encodings. In ITCS, 2016.

143

https://pypi.org/project/SQLAlchemy/
https://pypi.org/project/SQLAlchemy/

BIBLIOGRAPHY BIBLIOGRAPHY

[51] A. Boldyreva, N. Chenette, Y. Lee, and A. O’neill. Order-preserving sym-
metric encryption. In International Conference on the Theory and Applica-

tions of Cryptographic Techniques, 2009.

[52] C. Bösch, P. Hartel, W. Jonker, and A. Peter. A survey of provably secure
searchable encryption. ACM Comput. Surv., 2015.

[53] C. Bösch, P. Hartel, W. Jonker, and A. Peter. A survey of provably secure
searchable encryption. ACM Comput. Surv., 2015.

[54] G. Branwen. Time-lock encryption. https://www.gwern.net/Self-
decrypting-files, 2018.

[55] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A. Sadeghi, and B. Shastry.
Towards taming privilege-escalation attacks on Android. In NDSS, 2012.

[56] S. Bugiel, S. Heuser, and A. Sadeghi. Flexible and fine-grained manda-
tory access control on Android for diverse security and privacy policies. In
USENIX Security, 2013.

[57] C. L. Halbert and K. Tretyakov. intervaltree. https://pypi.org/
project/intervaltree/, 2021.

[58] P. Caballero-Gil, C. Hernández-Goya, and C. Bruno-Castañeda. A rational
approach to cryptographic protocols. CoRR, 2010.

[59] F. M. Celebi, P. Fletcher-Hill, G. Kaemmer, and D. Que. Kimono time cap-
sule. https://kimono.network, 2018.

[60] A. Chan and I. Blake. Scalable, server-passive, user-anonymous timed re-
lease cryptography. In ICDCS, 2005.

[61] H. Chen, I. Chillotti, and L. Ren. Onion ring oram: Efficient constant band-
width oblivious ram from (leveled) tfhe. In Proc. of ACM SIGSAC Confer-

ence on Computer and Communications Security, 2019.

[62] H. Chen, N. Li, W. Enck, Y. Aafer, and X. Zhang. Analysis of SEAndroid
policies: Combining MAC and DAC in Android. In ACSAC, 2017.

144

https://www.gwern.net/Self-decrypting-files
https://www.gwern.net/Self-decrypting-files
https://pypi.org/project/intervaltree/
https://pypi.org/project/intervaltree/
https://kimono.network

BIBLIOGRAPHY BIBLIOGRAPHY

[63] L. Chen, L. Xu, N. Shah, Z. Gao, Y. Lu, and W. Shi. On security analysis of
Proof-of-Elapsed-Time (PoET). In SSS, 2017.

[64] J. Cheon, N. Hopper, Y. Kim, and I. Osipkov. Timed-release and key-
insulated public key encryption. In FC, 2006.

[65] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, and P. Samarati. k-
Anonymity. In Secure Data Management in Decentralized Systems. 2007.

[66] B. Cohen and K. Pietrzak. Simple proofs of sequential work. In EURO-

CRYPT, 2018.

[67] A. Conner-Simons. Programmers solve MIT’s 20-year-old cryptographic
puzzle. https://www.csail.mit.edu/news/programmers-

solve-mits-20-year-old-cryptographic-puzzle, 2019.

[68] D. Cynthia. Differential privacy. In International Colloquium on Automata,

Languages, and Programming, 2006.

[69] D. J. Bernstein. The poly1305-aes message-authentication code. In Interna-

tional workshop on fast software encryption, 2005.

[70] D. J. Bernstein. Extending the salsa20 nonce. In Workshop record of Sym-

metric Key Encryption Workshop, 2011.

[71] I. Damgård, K. Damgård, K. Nielsen, P. Nordholt, and T. Toft. Confidential
benchmarking based on multiparty computation. In FC, 2017.

[72] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. Smart. Prac-
tical covertly secure MPC for dishonest majority – or: Breaking the SPDZ
limits. In ESORICS, 2013.

[73] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. Smart. Practi-
cal covertly secure mpc for dishonest majority–or: breaking the spdz limits.
In ESORICS, 2013.

[74] E. Damiani, S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi, and
P. Samarati. Balancing confidentiality and efficiency in untrusted relational
DBMSs. In Proc. of ACM CCS, 2003.

145

https://www.csail.mit.edu/news/programmers-solve-mits-20-year-old-cryptographic-puzzle
https://www.csail.mit.edu/news/programmers-solve-mits-20-year-old-cryptographic-puzzle

BIBLIOGRAPHY BIBLIOGRAPHY

[75] J. Dautrich, E. Stefanov, and E. Shi. Burst ORAM: Minimizing ORAM
Response Times for Bursty Access Patterns. In USENIX, 2014.

[76] A. Dawoud and S. Bugiel. DroidCap: OS support for capability-based per-
missions in Android. In NDSS, 2019.

[77] S. De Capitani di Vimercati, D. Facchinetti, S. Foresti, G. Oldani, S. Para-
boschi, M. Rossi, and P. Samarati. Scalable distributed data anonymization.
In PerCom 2021, 2021.

[78] I. Demertzis, S. Papadopoulos, O. Papapetrou, A. Deligiannakis, and
M. Garofalakis. Practical private range search revisited. In Proc. of ACM

SIGMOD, 2016.

[79] S. Demetriou, W. Merrill, W. Yang, A. Zhang, and C. Gunter. Free for all!
Assessing user data exposure to advertising libraries on Android. In NDSS,
2016.

[80] S. D. C. di Vimercati, D. Facchinetti, S. Foresti, G. Oldani, S. Paraboschi,
M. Rossi, and P. Samarati. Artifact: Scalable distributed data anonymization.
In IEEE PerCom (PerCom Workshops), 2021.

[81] S. D. C. di Vimercati, D. Facchinetti, S. Foresti, G. Oldani, S. Paraboschi,
M. Rossi, and P. Samarati. k-flat secure indexing for encrypted databases. In
Under submission, 2021.

[82] S. D. C. di Vimercati, D. Facchinetti, S. Foresti, G. Oldani, S. Paraboschi,
M. Rossi, and P. Samarati. Multi-dimensional indexes for point and range
queries on outsourced encrypted data. In IEEE GlOBECOM, 2021.

[83] S. D. C. di Vimercati, D. Facchinetti, S. Foresti, G. Oldani, S. Paraboschi,
M. Rossi, and P. Samarati. Scalable distributed data anonymization. In IEEE

PerCom (PerCom Workshops), 2021.

[84] M. Diamantaris, E. Papadopoulos, E. Markatos, S. Ioannidis, and J. Polakis.
REAPER: Real-time app analysis for augmenting the Android permission
system. In CODASPY, 2019.

[85] Docker inc. Docker. https://www.docker.com/, 2021.

146

https://www.docker.com/

BIBLIOGRAPHY BIBLIOGRAPHY

[86] Docker inc. Docker-compose. https://docs.docker.com/

compose/, 2021.

[87] C. Dong, Y. Wang, A. Aldweesh, P. McCorry, and A. van Moorsel. Be-
trayal, distrust, and rationality: Smart counter-collusion contracts for verifi-
able cloud computing. In SIGSAC, 2017.

[88] C. Dwork and M. Naor. Pricing via processing or combatting junk mail. In
CRYPTO, 1993.

[89] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A study of Android
application security. In USENIX Security, 2011.

[90] W. Enck, M. Ongtang, and P. McDaniel. Understanding Android security.
IEEE S&P Magazine, 2009.

[91] A. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android Permissions
demystified. In CCS, 2011.

[92] A. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner. Android
Permissions: User attention, comprehension, and behavior. In SOUPS, 2012.

[93] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes, and
S. Fahl. Stack overflow considered harmful? The impact of copy paste on
Android application security. In IEEE S&P, 2017.

[94] Y. Fratantonio, A. Bianchi, W. Robertson, M. Egele, C. Kruegel, E. Kirda,
and G. Vigna. On the security and engineering implications of finer-grained
access controls for Android developers and users. In DIMVA, 2015.

[95] Free Software Foundation. GNU M4. https://www.gnu.org/

savannah-checkouts/gnu/m4/manual/m4-1.4.18/

index.html, 2016.

[96] G. Craig, and S. Halevi. Implementing gentry’s fully-homomorphic encryp-
tion scheme. 2011.

[97] V. Ganapathy, T. Jaeger, and S. Jha. Retrofitting legacy code for authorization
policy enforcement. In IEEE S&P, 2006.

147

https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://www.gnu.org/savannah-checkouts/gnu/m4/manual/m4-1.4.18/index.html
https://www.gnu.org/savannah-checkouts/gnu/m4/manual/m4-1.4.18/index.html
https://www.gnu.org/savannah-checkouts/gnu/m4/manual/m4-1.4.18/index.html

BIBLIOGRAPHY BIBLIOGRAPHY

[98] S. Garg, C. Gentry, A. Sahai, and B. Waters. Witness encryption and its
applications. In STOC, 2013.

[99] C. Gentry. Fully homomorphic encryption using ideal lattices. In ACM sym-

posium on Theory of computing, 2009.

[100] O. Goldreich. Towards a theory of software protection and simulation by
oblivious rams. In ACM symposium on Theory of computing, 1987.

[101] O. Goldreich and R. Ostrovsky. Software protection and simulation on obliv-
ious rams. J. ACM, 1996.

[102] Google. Capsicum object-capabilities on Linux. https://github.com/
google/capsicum-linux, 2017.

[103] Google Play Protect. Android app vulnerability classes: A whirl-
wind overview of common security and privacy problems in An-
droid apps. https://static.googleusercontent.com/

media/www.google.com/en//about/appsecurity/play-

rewards/Android app vulnerability classes.pdf, 2021.

[104] Google Play Store. Android top apps. https://play.google.com/

store/apps/top, 2021.

[105] A. Groce, J. Katz, A. Thiruvengadam, and V. Zikas. Byzantine agreement
with a rational adversary. In ICALP, 2012.

[106] H. Hacigümüş, B. Iyer, C. Li, and S. Mehrotra. Executing SQL over en-
crypted data in the database-service-provider model. In Proc. of ACM SIG-

MOD, 2002.

[107] B. Hauser. Introducing Brownie: A python framework for testing,
deploying and interacting with ethereum smart contracts. https:

//medium.com/hyperlink-technology/introducing-

brownie-a763859409ca, 2019.

[108] C. Hazay and Y. Lindell. A note on the relation between the definitions of
security for semi-honest and malicious adversaries, 2010.

148

https://github.com/google/capsicum-linux
https://github.com/google/capsicum-linux
https://static.googleusercontent.com/media/www.google.com/en//about/appsecurity/play-rewards/Android_app_vulnerability_classes.pdf
https://static.googleusercontent.com/media/www.google.com/en//about/appsecurity/play-rewards/Android_app_vulnerability_classes.pdf
https://static.googleusercontent.com/media/www.google.com/en//about/appsecurity/play-rewards/Android_app_vulnerability_classes.pdf
https://play.google.com/store/apps/top
https://play.google.com/store/apps/top
https://medium.com/hyperlink-technology/introducing-brownie-a763859409ca
https://medium.com/hyperlink-technology/introducing-brownie-a763859409ca
https://medium.com/hyperlink-technology/introducing-brownie-a763859409ca

BIBLIOGRAPHY BIBLIOGRAPHY

[109] S. Heuser, A. Nadkarni, W. Enck, and A. Sadeghi. ASM: A programmable
interface for extending Android security. In USENIX Security, 2014.

[110] R. Hicks, S. Rueda, D. King, T. Moyer, J. Schiffman, Y. Sreenivasan, P. Mc-
Daniel, and T. Jaeger. An architecture for enforcing end-to-end access control
over web applications. In SACMAT, 2010.

[111] B. Hore, S. Mehrotra, M. Canim, and M. Kantarcioglu. Secure multidimen-
sional range queries over outsourced data. The VLDB Journal, 2012.

[112] B. Hore, S. Mehrotra, and G. Tsudik. A privacy-preserving index for range
queries. In Proc. of Int. Conf. on Very large data bases-V. 30, 2004.

[113] J. Huang, O. Schranz, S. Bugiel, and M. Backes. The ART of app compart-
mentalization: Compiler-based library privilege separation on stock Android.
In CCS, 2017.

[114] Intel. Software Guard Extensions. https://software.intel.com/

content/www/us/en/develop/topics/software-guard-

extensions.html, 2021.

[115] iproute2. Ubuntu man pages. https://launchpad.net/ubuntu/
focal/+package/iproute2, 2021.

[116] J. Vander Stoep. ioctl command whitelisting in SELinux. http://

kernsec.org/files/lss2015/vanderstoep.pdf, 2015.

[117] Kaggle. Acquire Valued Shoppers Challenge,

transactions dataset. https://www.kaggle.com/c/

acquire-valued-shoppers-challenge/data?select=

transactions.csv.gz, 2014.

[118] M. Keller, E. Orsini, and P. Scholl. MASCOT: Faster malicious arithmetic
secure computation with oblivious transfer. In SIGSAC, 2016.

[119] M. Keller, V. Pastro, and D. Rotaru. Overdrive: making SPDZ great again.
In EUROCRYPT, 2018.

149

https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html
https://launchpad.net/ubuntu/focal/+package/iproute2
https://launchpad.net/ubuntu/focal/+package/iproute2
http://kernsec.org/files/lss2015/vanderstoep.pdf
http://kernsec.org/files/lss2015/vanderstoep.pdf
https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data?select=transactions.csv.gz
https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data?select=transactions.csv.gz
https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data?select=transactions.csv.gz

BIBLIOGRAPHY BIBLIOGRAPHY

[120] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. Hawk: The
blockchain model of cryptography and privacy-preserving smart contracts.
In IEEE S&P, 2016.

[121] K. LeFevre, D. DeWitt, and R. Ramakrishnan. Mondrian multidimensional
k-anonymity. In Proc. of ICDE, 2006.

[122] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Mondrian multidimensional
k-anonymity. In Proc. of ICDE, 2006.

[123] K. Leyton-Brown and Y. Shoham. Essentials of game theory: A concise
multidisciplinary introduction. Synthesis lectures on artificial intelligence

and machine learning, 2008.

[124] C. Li and B. Palanisamy. Timed-release of self-emerging data using dis-
tributed hash tables. In ICDCS, 2017.

[125] C. Li and B. Palanisamy. Decentralized release of self-emerging data using
smart contracts. In SRDS, 2018.

[126] Libsodium. Libsodium Library. https://github.com/jedisct1/

libsodium, 2021.

[127] J. Liu, T. Jager, S. Kakvi, and B. Warinschi. How to build time-lock encryp-
tion. Designs, Codes and Cryptography, 2018.

[128] G. Loukas and G. Öke. Protection against denial of service attacks: A survey.
The Computer Journal, 2010.

[129] M. Luongo and C. Pon. The Keep network: A privacy layer for public
blockchains. https://keep.network/whitepaper, 2019.

[130] A. Machanavajjhala, J. Gehrke, and D. Kifer. `-diversity: Privacy beyond
k-anonymity. In Proc. of ICDE, 2006.

[131] K. MacMillan, C. Case, J. Brindle, and C. Sellers. SELinux Common In-
termediate Language motivation and design. https://github.com/

SELinuxProject/cil/wiki, 2020.

150

https://github.com/jedisct1/libsodium
https://github.com/jedisct1/libsodium
https://keep.network/whitepaper
https://github.com/SELinuxProject/cil/wiki
https://github.com/SELinuxProject/cil/wiki

BIBLIOGRAPHY BIBLIOGRAPHY

[132] M. Mahmoody, T. Moran, and S. Vadhan. Time-lock puzzles in the random
oracle model. In CRYPTO, 2011.

[133] M. Mahmoody, T. Moran, and S. Vadhan. Publicly verifiable proofs of se-
quential work. In ITCS, 2013.

[134] D. Mankins, R. Krishnan, C. Boyd, J. Zao, and M. Frentz. Mitigating dis-
tributed denial of service attacks with dynamic resource pricing. In ACSAC,
2001.

[135] A. Mavridou and A. Laszka. Designing secure Ethereum smart contracts: A
finite state machine based approach. ArXiv, 2017.

[136] T. May. Timed-release crypto. http://cypherpunks.venona.com/

date/1993/02/msg00129.html, 1993.

[137] R. Mayrhofer, J. V. Stoep, C. Brubaker, and N. Kralevich. The Android
platform security model. arXiv, 2019.

[138] A. McCurdy. Redis-py. https://pypi.org/project/redis/, 2021.

[139] Microsoft. Microsoft SEAL, 2021. https://www.microsoft.com/en-
us/research/project/microsoft-seal.

[140] D. Muthukumaran, T. Jaeger, and V. Ganapathy. Leveraging “choice” to
automate authorization hook placement. In CCS, 2012.

[141] M. Nojoumian, A. Golchubian, L. Njilla, K. Kwiat, and C. Kamhoua. In-
centivizing blockchain miners to avoid dishonest mining strategies by a
reputation-based paradigm. In ICIC, 2019.

[142] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel. Semantically rich
application-centric security in Android. In ACSAC, 2009.

[143] R. Ostrovsky. Efficient computation on oblivious rams. In ACM Symposium

on Theory of Computing, 1990.

[144] pandas-dev. pandas. https://pandas.pydata.org/, 2021.

[145] D. Parkes, M. Rabin, S. Shieber, and C. Thorpe. Practical secrecy-preserving,
verifiably correct and trustworthy auctions. ECRA, 2008.

151

http://cypherpunks.venona.com/date/1993/02/msg00129.html
http://cypherpunks.venona.com/date/1993/02/msg00129.html
https://pypi.org/project/redis/
https://pandas.pydata.org/

BIBLIOGRAPHY BIBLIOGRAPHY

[146] P. Pearce, A. Felt, G. Nunez, and D. Wagner. AdDroid: Privilege separation
for applications and advertisers in Android. In ASIACCS, 2012.

[147] G. Poh, J. Chin, W. Yau, K. Choo, and M. Mohamad. Searchable symmetric
encryption: Designs and challenges. 2017.

[148] G. Poh, J. Chin, W. Yau, K. Choo, and M. Mohamad. Searchable symmetric
encryption: Designs and challenges. ACM CSUR, 2017.

[149] J. Poon and T. Dryja. The Bitcoin lightning network: Scalable off-
chain instant payments. https://www.bitcoinlightning.com/

wp-content/uploads/2018/03/lightning-network-

paper.pdf, 2016.

[150] A. P. Popa, F. H. Li, and N. Zeldovich. An ideal-security protocol for order-
preserving encoding. In 2013 IEEE Symposium on Security and Privacy,
2013.

[151] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan. CryptDB:
Protecting confidentiality with encrypted query processing. In Proc. of SOSP,
2011.

[152] A. O. S. Project. PackageParser. https://

android.googlesource.com/platform/frameworks/

base/+/master/core/java/android/content/pm/

PackageParser.java, 2021.

[153] Python Software Foundation. multiprocessing - Process-
based parallelism. https://docs.python.org/3/library/

multiprocessing.html, 2021.

[154] Python Software Foundation. pickle - Python object serialization.
https://docs.python.org/3/library/pickle.html, 2021.

[155] M. Rabin. How to exchange secrets with oblivious transfer. IACR, 2005.

[156] M. Rabin and C. Thorpe. Time-lapse cryptography. Technical report, 2006.

[157] Redis Ltd. Redis. https://redis.io/, 2021.

152

https://www.bitcoinlightning.com/wp-content/uploads/2018/03/lightning-network-paper.pdf
https://www.bitcoinlightning.com/wp-content/uploads/2018/03/lightning-network-paper.pdf
https://www.bitcoinlightning.com/wp-content/uploads/2018/03/lightning-network-paper.pdf
https://android.googlesource.com/platform/frameworks/base/+/master/core/java/android/content/pm/PackageParser.java
https://android.googlesource.com/platform/frameworks/base/+/master/core/java/android/content/pm/PackageParser.java
https://android.googlesource.com/platform/frameworks/base/+/master/core/java/android/content/pm/PackageParser.java
https://android.googlesource.com/platform/frameworks/base/+/master/core/java/android/content/pm/PackageParser.java
https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/pickle.html
https://redis.io/

BIBLIOGRAPHY BIBLIOGRAPHY

[158] R. Rivest. Description of the LCS35 time capsule crypto-puzzle.
https://people.csail.mit.edu/rivest/lcs35-puzzle-

description, 1999.

[159] R. Rivest, A. Shamir, and D. Wagner. Time-lock puzzles and timed-release
crypto. Technical report, 1996.

[160] M. Rossi, D. Facchinetti, E. Bacis, M. Rosa, and S. Paraboschi. Seapp:
Bringing mandatory access control to android apps. In 30th USENIX Security

Symposium (USENIX Security 21), 2021.

[161] S. Ruggles et al. IPUMS USA: Version 10.0 [dataset], 2020.
https://doi.org/10.18128/D010.V10.0.

[162] S. Ruggles, S. Flood, R. Goeken, J. Grover, E. Meyer, J. Pacas, and M. Sobek.
IPUMS USA: Version 10.0 [dataset], 2020.

[163] P. Samarati. Protecting respondents’ identities in microdata release. IEEE

TKDE, 2001.

[164] P. Samarati and S. De Capitani di Vimercati. Cloud security: Issues and
concerns. In Encyclopedia on cloud computing. 2016.

[165] R. Sandhu and P. Samarati. Authentication, access control, and audit. CSUR,
1996.

[166] A. Shamir. How to share a secret. Communications of the ACM, 1979.

[167] U. Shankar, T. Jaeger, and R. Sailer. Toward automated information-flow
integrity verification for security-critical applications. In NDSS, 2006.

[168] S. Smalley and R. Craig. Security Enhanced (SE) Android: Bringing flexible
MAC to Android. In NDSS, 2013.

[169] SQLite Consortium. SQLite. https://www.sqlite.org/

index.html, 2021.

[170] Statista. Most popular installed ad network software develop-
ment kits (SDKs) across Android apps worldwide as of Septem-
ber 2020. https://www.statista.com/statistics/1035623/

leading-mobile-app-ad-network-sdks-android/, 2020.

153

https://people.csail.mit.edu/rivest/lcs35-puzzle-description
https://people.csail.mit.edu/rivest/lcs35-puzzle-description
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://www.statista.com/statistics/1035623/leading-mobile-app-ad-network-sdks-android/
https://www.statista.com/statistics/1035623/leading-mobile-app-ad-network-sdks-android/

BIBLIOGRAPHY BIBLIOGRAPHY

[171] E. Stefanov, M. V. Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. Devadas.
Path ORAM: an extremely simple oblivious RAM protocol. In ACM Com-

puter & communications security, 2013.

[172] N. Szabo. Formalizing and securing relationships on public networks. First

Monday, 1997.

[173] T. Cornebize. pyroaring. https://pypi.org/project/

pyroaring/, 2021.

[174] tc. Ubuntu man pages. https://manpages.ubuntu.com/

manpages/xenial/man8/tc.8.html, 2021.

[175] The Apache Software Foundation. Apache Arrow. https://

arrow.apache.org/, 2021.

[176] The PostgreSQL Global Development Group. PostgreSQL. https://

www.postgresql.org/, 2021.

[177] The SELinux Project. Type Enforcement. https://

selinuxproject.org/page/NB TE, 2015.

[178] The SELinux Project. libselinux. https://github.com/

SELinuxProject/selinux/tree/master/libselinux, 2021.

[179] Unity. Unity Ads. https://unity.com/solutions/unity-ads,
2021.

[180] U.S. Bureau of the Census. Public Use Microdata Sample.

Individual dataset of all US. 1-Year version

of ACS 2018. https://www2.census.gov/programs-

surveys/acs/data/pums/2018/1-Year, 2019.

[181] U.S. Bureau of the Census. Public Use Microdata Sample.

Individual dataset of all US. 1-Year version

of ACS 2019. https://www2.census.gov/programs-

surveys/acs/data/pums/2019/1-Year, 2019.

154

https://pypi.org/project/pyroaring/
https://pypi.org/project/pyroaring/
https://manpages.ubuntu.com/manpages/xenial/man8/tc.8.html
https://manpages.ubuntu.com/manpages/xenial/man8/tc.8.html
https://arrow.apache.org/
https://arrow.apache.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://selinuxproject.org/page/NB_TE
https://selinuxproject.org/page/NB_TE
https://github.com/SELinuxProject/selinux/tree/master/libselinux
https://github.com/SELinuxProject/selinux/tree/master/libselinux
https://unity.com/solutions/unity-ads
https://www2.census.gov/programs-surveys/acs/data/pums/2018/1-Year
https://www2.census.gov/programs-surveys/acs/data/pums/2018/1-Year
https://www2.census.gov/programs-surveys/acs/data/pums/2019/1-Year
https://www2.census.gov/programs-surveys/acs/data/pums/2019/1-Year

BIBLIOGRAPHY BIBLIOGRAPHY

[182] H. Van Tran, T. Allard, L. d’Orazio, and A. El Abbadi. FRESQUE: A scal-
able ingestion framework for secure range query processing on clouds. In
Proc. of EDBT, 2021.

[183] M. von Maltitz and G. Carle. A performance and resource consumption
assessment of secret sharing based secure multiparty computation. In Data

Privacy Management, Cryptocurrencies and Blockchain Technology, 2018.

[184] B. Wang, Y. Hou, M. Li, H. Wang, and H. Li. Maple: Scalable multi-
dimensional range search over encrypted cloud data with tree-based index.
In Proc. of ACM ASIACCS, 2014.

[185] G. Wood. Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper, 2014.

[186] C. Wright, C. Cowan, J. Morris, James, S. Smalley, and G. Kroah-Hartman.
Linux Security Module framework. In Ottawa Linux Symposium, 2002.

[187] Z. Xiao, A. Amit, and D. Wenliang. AFrame: Isolating advertisements from
mobile applications in Android. In ACSAC, 2013.

[188] J. Xu, W. Wang, J. Pei, X. Wang, B. Shi, and A.-C. Fu. Utility-based
anonymization for privacy preservation with less information loss. ACM

SIGKDD Explorations Newsletter, 2006.

[189] A. Yao. Protocols for secure computations. In SFCS, 1982.

[190] Zerodium. Zerodium - The leading exploit acquisition platform. https:

//zerodium.com, 2021.

[191] G. Zyskind, O. Nathan, and A. Pentland. Enigma: Decentralized computa-
tion platform with guaranteed privacy. arXiv, 2015.

155

https://zerodium.com
https://zerodium.com

157

Appendix A

SEApp documentation

Figure A.1: MainActivity

This chapter gives a technical demonstration of the
security measures introduced by SEApp. The de-
scription is based on the showcase app presented in
Section 2.3. We show that: (1) the showcase app
can operate without a policy module; in this mode,
its vulnerabilities can be exploited; (2) the show-
case app can also operate with the policy module
listed in Appendix A.4 and use the services offered
by SEApp; in this mode, the internal vulnerabilities
are no longer exploitable.

The showcase app has a minimal structure. Its
entry point is the MainActivity (Figure A.1), which
is associated with the core logic process. From
the MainActivity it is possible to send a star-

tActivity intent to one among UseCase1Activity,
UseCase2Activity and UseCase3Activity; the entry
points of use cases 1, 2 and 3, respectively. For each
entry point Zygote starts a dedicated process and, ac-
cording to the content of the seapp contexts (in Listing A.1), assigns its spe-
cific domain (user logic d to UC#1, ads d to UC#2, media d to UC#3). A
dedicated description of each use case follows.

A.1. USE CASE 1 APPENDIX A. SEAPP DOCUMENTATION

A.1 Use case 1

In this use case we demonstrate how an app could benefit from the fine-granularity
access to files. In particular, we show how the UseCase1Activity, suffering of a
path traversal vulnerability, cannot be exploited when the app is associated with a
properly configured policy module. According to the Google Play Protect report on
common application vulnerabilities [103], unsanitized path names that lead to path
traversal are a primary source of problems in applications.

UseCase1Activity is quite simple: it displays the content of a file given its rel-
ative path through an intent (Figure A.2a). While this may be fine when the intent
comes from trusted components, the activity supports also implicit intents coming
from untrusted sources. This makes the vulnerability easily exploitable by an at-
tacker targeting the confidential files written by the core logic components.

In our setup phase, we leverage MainActivity to create an internal directory
structure by using the android.os.File abstraction, which sets file and direc-
tory context upon its creation (see Section 2.6). Two directories are created: user/
and confidential/; inside both folders a file data is saved.

To test this use case, we first start UseCase1Activity, then we send an intent to
“confuse” UseCase1Activity into showing us the content of confidential/data.
This can be done via ADB with the command:
adb shell am start

-n com.example.showcaseapp/.UseCase1Activity

-a "com.example.showcaseapp.intent.action.SHOW"

--es "com.example.showcaseapp.intent.extra.PATH" "../confidential

/data"

When the policy module is not availableg, all app internal files are flagged with
app data file and every app component executes within the untrusted app

domain, which holds read access to app data file. As a consequence the vul-
nerability is successfully exploited and UseCase1Activity shows the content of the
confidential/data file (Figure A.2b).

Instead, when the policy module is available, the file confidential/data
is flagged with confidential t, as indicated in line 2 in file contexts

(see Listing A.2). Since no permission is granted on confidential t in the
sepolicy.cil to user logic d, any access to the file confidential/data
by UseCase1Activity is blocked by SELinux (Figure A.2c). The following de-

158

APPENDIX A. SEAPP DOCUMENTATION A.2. USE CASE 2

nial is written to the system log: denied search to user logic d domain on

confidential t type (Figure A.3). The confidential directory cannot
then be accessed despite the exploitation of the path traversal vulnerability.

(a) (b) (c)

Figure A.2: Use case 1 views

Figure A.3: Use case 1 logcat

A.2 Use case 2

In this use case we show how to confine an Ad library into an ad-hoc process, with
guarantees that it cannot abuse the access privileges granted to the whole application
sandbox by the user. To do that, we deliberately inject, in the same process the
library is executed, a malicious component (which is directly invoked by the library)
that tries to capture the location when the permission ACCESS FINE LOCATION

is granted to the app. The Ad library used is Unity Ads [179], which according
to [170] in 2020 was used by 11% of apps that show ads.

159

A.2. USE CASE 2 APPENDIX A. SEAPP DOCUMENTATION

(a) (b) (c)

Figure A.4: Use case 2 views

Figure A.5: UC2 exploit

In this case the library is invoked by Use-

Case2Activity (Figure A.4a), and according to line 3
of the seapp contexts, both the activity and the
components created by the library are executed by
Zygote in a process labeled with ads d. To inter-
act with the Ad library, UseCase2Activity instances
a UnityAdsListener. After the Ad initializa-
tion (including the registration of the listener) and
displaying the Ad to the user (Figures A.4b-c), the
Ad framework invokes the listener callback method
onUnityAdsFinish, which executes the malicious
routine captureLocation. The routine probes
the app permissions; if ACCESS FINE LOCATION

is granted to the app, the malicious component re-
trieves through the servicemanager a handle to the
LocationManager, and registers to it an asyn-
chronous listener to capture GPS location (Figure A.5).

160

APPENDIX A. SEAPP DOCUMENTATION A.3. USE CASE 3

We show that when the policy module is enforced by SEApp, the malicious
component cannot access the GPS coordinates. This is because the component is
executed in the same process of the library, which is labeled with ads d. If we look
at the sepolicy.cil (lines 43-50), ads d is not granted access to the SELinux
type location service, so the malicious routine cannot retrieve and therefore
connect to the location service. The following denial is written to the system log:
denied find on location service to the ads d domain (Figure A.6). As
a result, the malicious component is terminated by the ActivityTaskManager (Fig-
ure A.7).

The Ad library was included in the app as an .aar archive. To confine it,
no modification was necessary, only the use of AndroidManifest.xml and
sepolicy.cil was required.

Figure A.6: Use case 2 logcat - SELinux denial

Figure A.7: Use case 2 logcat - Activity termination

A.3 Use case 3

In this use case we show how to confine a set of components, which rely on a high
performance native library written in C to perform some task. Our goal is to demon-
strate that the context running the native library code is prevented to access the net-
work, even when the permissions INTERNET and ACCESS NETWORK STATE are
granted to the app sandbox.

The native library is invoked by UseCase3Activity (Figure A.8a), which, ac-
cording to line 4 in the seapp contexts, is executed in a process labeled with
media d by Zygote. The call to the library is performed via JNI. Its job is to con-
nect to the camera service and take a picture. Since the app is granted the CAMERA

161

A.3. USE CASE 3 APPENDIX A. SEAPP DOCUMENTATION

(a) (b) (c)

Figure A.8: Use case 3 views

permission, the native library code (legitimately, line 53 in the sepolicy.cil)
connects to the CameraManager.

Since the native library performs image processing, we do not want it to access
the network. However, the permissions INTERNET and ACCESS NETWORK STATE

are granted to the app, as they are required by the Ads framework. Thus,
when the policy module is not available, the native library can connect to the
ConnectivityManager and successfully bind the current process to the net-
work (Figure A.8b). Instead, when the policy module is enforced by SEApp, since
media dwas granted only the basic app permissions (line 11 in sepolicy.cil),
the connection to the network is forbidden (Figure A.8c). This happens because
binding a process to the network is associated with opening a network socket, an
operation not permitted by SELinux without the required permissions. The fol-
lowing denial is written to the system log: denied create on udp socket to

media d domain (Figure A.9).

Figure A.9: Use case 3 logcat - SELinux denial

162

APPENDIX A. SEAPP DOCUMENTATION A.4. POLICY MODULE

This use case, besides showing how SEApp confines a native library, also
demonstrates the power and simplicity of the macro, as adding the line (call

md netdomain (media d)) to the policy module grants to media d the
needed permissions to access the network. The application developer is thus not
required to know or understand the internal SELinux policy in order to leverage this
functionality.

The isolation properties introduced by SEApp applies also to other common
security problems presented in [103]. Just to mention one, SEApp can mitigate the
impact of incorrect sandboxing of a scripting language.

A.4 Showcase app policy module

Here are reported the showcase app policy module files.

1 user=_app seinfo=showcase_app domain=com_example_showcaseapp.

core_logic_d name=com.example.showcaseapp:core_logic levelFrom=

all

2 user=_app seinfo=showcase_app domain=com_example_showcaseapp.

user_logic_d name=com.example.showcaseapp:user_logic levelFrom=

all

3 user=_app seinfo=showcase_app domain=com_example_showcaseapp.

ads_d name=com.example.showcaseapp levelFrom=all

4 user=_app seinfo=showcase_app domain=com_example_showcaseapp.

media_d name=com.example.showcaseapp:media levelFrom=all

Listing A.1: showcase app seapp contexts

1 .* u:object_r:app_data_file:s0

2 files/confidential u:object_r:com_example_showcaseapp.

confidential_t:s0

3 files/ads_cache u:object_r:com_example_showcaseapp.ads_t:s0

Listing A.2: showcase app file contexts

1 <?xml version="1.0" encoding="iso-8859-1"?>

2 <policy><signer signature="SIGNATURE">

3 <package name="com.example.showcaseapp">

4 <seinfo value="showcase_app"/></package>

5 </signer></policy>

Listing A.3: showcase app mac permissions.xml

163

A.4. POLICY MODULE APPENDIX A. SEAPP DOCUMENTATION

1 (block com_example_showcaseapp

2 ; creation of domain types

3 (type core_logic_d)

4 (call md_untrusteddomain (core_logic_d))

5 (type user_logic_d)

6 (call md_appdomain (user_logic_d))

7 (type ads_d)

8 (call md_appdomain (ads_d))

9 (call md_netdomain (ads_d))

10 (type media_d)

11 (call md_appdomain (media_d))

12 (typeattribute domains)

13 (typeattributeset domains (core_logic_d user_logic_d ads_d

media_d))

14 ; creation of file types

15 (type confidential_t)

16 (call mt_appdatafile (confidential_t))

17 (type ads_t)

18 (call mt_appdatafile (ads_t))

19 ; bounding the domains and types

20 (typebounds untrusted_app core_logic_d)

21 (typebounds untrusted_app user_logic_d)

22 (typebounds untrusted_app ads_d)

23 (typebounds untrusted_app media_d)

24 (typebounds app_data_file confidential_t)

25 (typebounds app_data_file ads_t)

26 ; grant core_logic_d access to confidential files

27 (allow core_logic_d confidential_t (dir (search write add_name)))

28 (allow core_logic_d confidential_t (file (create getattr open

read write)))

29 ; grant ads_d access to ads_cache files

30 (allow ads_d ads_t(dir(search write add_name)))

31 (allow ads_d ads_t(file(create getattr open read write)))

32 ; minimum app_api_service subset

33 (allow domains activity_service (service_manager (find)))

34 (allow domains activity_task_service (service_manager (find)))

35 (allow domains ashmem_device_service (service_manager (find)))

36 (allow domains audio_service (service_manager (find)))

37 (allow domains surfaceflinger_service (service_manager (find)))

38 (allow domains gpu_service (service_manager (find)))

39 ; grant core_logic_d the needed permissions

164

APPENDIX A. SEAPP DOCUMENTATION A.4. POLICY MODULE

40 (allow core_logic_d restorecon_service (service_manager (find)))

41 (allow core_logic_d location_service (service_manager (find)))

42 ; grant ads_d access to unity3ads needed services

43 (allow ads_d radio_service (service_manager (find)))

44 (allow ads_d webviewupdate_service (service_manager (find)))

45 (allow ads_d autofill_service (service_manager (find)))

46 (allow ads_d clipboard_service (service_manager (find)))

47 (allow ads_d batterystats_service(service_manager (find)))

48 (allow ads_d batteryproperties_service (service_manager (find)))

49 (allow ads_d audioserver_service (service_manager (find)))

50 (allow ads_d mediaserver_service (service_manager (find)))

51 ; grant media_d the needed permissions

52 (allow media_d autofill_service (service_manager (find)))

53 (allow media_d cameraserver_service (service_manager (find))))

Listing A.4: showcase app sepolicy.cil

165

167

Appendix B

SDS documentation

This appendix details the artifact associated with the approach presented in Chap-
ter 3, and how to reproduce the experimental results.

B.1 Requirements

The deployment of the artifact requires a machine having a CPU with at least
one physical core and at least 2 GB of RAM for each worker. The install pro-
cedure was tested on Ubuntu 20.04 LTS, with the default packages installed:
make, git, zip, gzip, python3, python3-venv, gnuplot .
Install the required depencencies according to the following procedure:

• Install and set up docker and docker-compose
sudo apt install docker

sudo apt install docker-compose

• Add the current user to the docker group
sudo usermod -aG docker <USER>

• Reboot the system
• Check that the following commands run without root privileges
docker run hello-world; docker-compose -version

B.2. DEPLOYMENT APPENDIX B. SDS DOCUMENTATION

B.2 Deployment

To deploy the artifact execute the following steps.

1. Clone the repository
git clone --depth 1 \
--branch percom2021 artifact \
https://github.com/mosaicrown/mondrian.git

2. Verify that all the software requirements illustrated previously are installed
make

3. Pull and build a copy of the Docker images necessary to the artifact
make start

Table B.1 lists the docker containers started by the artifact.

Container URL
Hadoop Namenode http://localhost:9870
Hadoop Datanode http://localhost:9864

Spark History Server http://localhost:18080
Spark Cluster Manager http://localhost:8080

Table B.1: Docker containers and URLs associated

B.3 Usage

The artifact implements the centralized and the distributed version of the Mondrian
algorithm. The artifact is complemented with a web UI that can be deployed running
command make ui. The web UI is available at http://localhost:5000
and can be used to run customized experiments. This section details the use of the
artifact and the steps to reproduce the experimental results presented in [77].

The experiments in Chapter 3 used a sample from the IPUMS USA dataset [161].
The dataset is available at https://ipums.org/, together with a detailed guide
for its download. To extract the sample to anonymize please go to IPUMS web-
site https://usa.ipums.org/usa/ and click on “Get Data”. Then, se-
lect the attributes of interest (harmonized variables State FIP Code, Age,
Education Number, Occupation, and Income in our experiments) and add

168

http://localhost:9870
http://localhost:9864
http://localhost:18080
http://localhost:8080
http://localhost:5000
https://ipums.org/
https://usa.ipums.org/usa/

APPENDIX B. SDS DOCUMENTATION B.3. USAGE

them to the cart. For your convenience, you can use the direct links at https://
github.com/mosaicrown/mondrian#usa-2018-dataset (each variable
name is a link that redirects to the page at ipums.org that permits to add the vari-
able to the cart). Select the sample of interest (among USA samples, 2018 ACS in
our experiments) and create your data extract. To customize the sample size, set
parameter Persons (in the experiments Persons is set to 510, to obtain a dataset with
at least 500,000 tuples). Among the formats available for downloading the dataset,
select the csv format and save the downloaded gzip archive in the root folder of the
project, with name usa <extract number>.csv.gz.

The procedure to run the experiments has been automated and can be started
running command make artifact experiments from the root folder of the
project. The procedure operates as follows:

1. it cleans the test environment stopping every Docker container that is still
running and removing from HDFS the results produced by the previous runs;

2. it extracts the sample of IPUMS USA dataset to be anonymized from the
archive and copies it to the Spark Driver volume;

3. it runs the centralized and distributed version of the Mondrian algorithm (see
below), and measures the execution time and information loss, storing the
results with the following directory structure:
mondrian/

|-- percom artifact experiments/

|-- |-- results/

|-- |-- |-- runtime results <TIMESTAMP>/

|-- |-- |-- loss results <TIMESTAMP>/

4. it shuts down all the containers except the Spark History Server, which re-
mains available to keep track of the previous runs of the artifact.

Centralized version. The centralized version of Mondrian corresponds to the
baseline of the experimental results in Chapter 3. The execution of the algorithm
can be monitored through the messages showed on the terminal, which reports:

1. the schema and the first few tuples of the input dataset;

2. each decision taken by Mondrian to cut the dataset;

169

https://github.com/mosaicrown/mondrian#usa-2018-dataset
https://github.com/mosaicrown/mondrian#usa-2018-dataset

B.4. RESULTS APPENDIX B. SDS DOCUMENTATION

3. the schema and the first few tuples of the anonymized dataset;

4. a summary of the information loss measures and the execution time of the
algorithm.

The anonymized dataset is in folder local/anonymized.

Distributed version. Given a number n of workers available in the distributed
system, the artifact performs the following steps to execute the distributed version
of the Mondrian algorithm:

1. start all the Docker services, initialize HDFS, and submit to the Spark Driver

our Spark Application;

2. recover the dataset from HDFS and show its structure;

3. retrieve the n-quantiles of the best-scoring attribute of the dataset, showing
the score used to decide the optimal cut and the size of the partitions;

4. show the first few tuples of the dataset, complemented with a new attribute
containing the id of the quantile to which each tuple belongs and hence the
worker to which the tuple is assigned;

5. anonymize the dataset;

6. show the first few tuples of the anonymized dataset, with a summary of the
execution time.

The anonymized dataset is in folder distributed/anonymized.

B.4 Results

This section details the results presented in Chapter 3. To reproduce the results, the
artifact has to be deployed on a machine equipped with a CPU with 20 logical cores,
40 GB of RAM, and 15 GB of free disk space on an SSD.

Execution time. This experiment measured the execution time when computing
a 3-anonymous and 2-diverse version of a sample of the IPUMS USA dataset. The
results of the experiments are stored in folder runtime results <TIMESTAMP>.

170

APPENDIX B. SDS DOCUMENTATION B.4. RESULTS

First, the artifact runs the centralized version of the Mondrian algorithm. The re-
sults are saved in file centralized results.csv. Then, the artifact runs the distributed
(Spark-based) version of the Mondrian algorithm, varying the number of workers
from 2 to 20. The results are saved in file spark based results.csv. Besides gen-
erating the .csv files with the execution time of the centralized and distributed ver-
sions of the algorithm, the artifact plots these results generating file comparison.pdf.
Note that the absolute times obtained running our artifact may slightly differ from
the ones in Figure 3.3 of Chapter 3, due to the differences in the hardware of the
machine used.

bf Information loss. This experiment measured the information loss when com-
puting a 5-anonymous and 2-diverse version of a sample of the IPUMS USA
dataset. The results of the experiments are stored in folder loss results

<TIMESTAMP>. The artifact first runs the centralized version of the Mondrian
algorithm, storing the results in file centralized results.csv. Then, it runs the dis-
tributed version (with 5, 10, and 20 workers), using a sample including 0.01% of
the dataset to determine the most suitable attribute and compute the n-quantiles
(with n = 5, n = 10, and n = 20, respectively) for partitioning the dataset among
the workers. The results obtained from five runs of the distributed version of the
algorithm are stored in file spark based results.csv. The artifact also generates file
loss table.csv, which reports the average and the variance (in the form µ± σ) of
the results in file spark based results.csv. Note that, since the sample of IPUMS
USA dataset is randomly extracted at each download, it may be different from the
one used in our experiments and consequently the results might be slightly different
from the ones in Table 3.1 of Chapter 3. We expect the results to have a similar
trend, confirming the limited impact of sampling on information loss.

171

173

Appendix C

SecIdx documentation

This chapter provides further details on the implementation of SecIdx. It also gives
the proofs of the theorems reported in Chapter 4.

C.1 Artifact

SecIdx is a Python library implementing the approach detailed in Chapter 4. The
library provides several utilities. The utilities permits to: 1) build a k-flat relation,
2) construct the encrypted index with flat distribution and the client-side maps, and
3) translate and resolve queries at runtime. In the repository, the user can also find
a complete system showing how to leverage SecIdx to store encrypted databases on
PostgreSQL and Redis, and how to query them. The system is implemented as a
multi-container Docker application. A dedicated set of Makefile targets is used to
interact with it.

Requirements

To deploy the artifact we recommend a machine having a CPU with at least
one physical core and 2 GB of RAM for each container. The install pro-
cedure was tested on Ubuntu 20.04 LTS, with the default packages installed:
make, git, python3, python3-venv .

Install the required depencencies according to the following procedure:

C.1. ARTIFACT APPENDIX C. SECIDX DOCUMENTATION

• Install and set up docker and docker-compose
sudo apt install docker

sudo apt install docker-compose

• Add the current user to the docker group
sudo usermod -aG docker <USER>

• Reboot the system
• Check that the following commands run without root privileges
docker run hello-world; docker-compose -version

Submodules setup

To build the k-flat relation, SecIdx relies on an evolution of the approach presented
in Chapter 3. The artifact detailed in Appendix B is automatically imported as a
submodule of the SecIdx repository (i.e., the main module). By default, a git

clone of the main module doesn't fetch the additional material provided by the
submodules. Thus, after the main repository is cloned, the submodules must be
downloaded and configured properly. In the Makefile we provide a target named
submodule setup to automatically pull the submodule and checkout to a fixed
commit in its history. On top of that commit, a patch containing the changes intro-
duced to build the k-flat relation properly is applied. This is achieved with a second
target named apply patch, which is also provided in the Makefile.

Workflow

To enable the k-flat secure indexing of an encrypted dataset, the user is required to
perform four steps:

1. invoke the enhanced submodule to transform the original dataset into a k-flat
relation;

2. build the encrypted index and the client-side maps on top of the k-flat repre-
sentation;

3. wrap the k-flat representation with probabilistic encryption and enumerate the
blocks;

4. outsource the encrypted relation and the index to a cloud storage provider
(this is performed sending the relation to the proper container via network).

174

APPENDIX C. SECIDX DOCUMENTATION C.1. ARTIFACT

Upon sending a query to the backend, the client:

• parses the query converting it into an AST representation;

• uses the local maps to rewrite the query;

• sends the query to the server leveraging different execution strategies, based
on the current setup.

When receiving the response, the client:

1. decrypts the encrypted blocks pulled from the server, retrieving the original
plaintext rows;

2. streams the rows into a temporary table saved in a local SQLite instance;

3. filters spurious tuples by re-running the initial query using SQLite;

4. returns the results of the query to the user as if it was run against a plaintext
database.

Deployment and usage

Artifact deployment is automatically performed when one of the utilities provided
by the library is used. This means that, each time the user runs a Makefile target,
the local environment in which the library is deployed, is automatically installed (or
updated) by a number of Makefile prerequisites. This also applies to the containers;
if the container is not available locally, a prebuilt container image is immediately
downloaded from the network, customized installing the required dependencies,
and finally deployed with docker-compose, just before the test requested by the
user is performed. In the following, we demonstrate each of the steps described in
the workflow section.

Construction of the k-flat relation

A prerequisite to construct the k-flat relation is to configure the submodule as ex-
plained previously. Running the command make usa2018 from the terminal, the
pums 2018 dataset is downloaded from the census.gov website, unzipped and
transformed into a k-flat relation using the submodule. In detail, the tool builds

175

C.1. ARTIFACT APPENDIX C. SECIDX DOCUMENTATION

and installs the container images required to run the submodule, the containers are
started and the number of instances scaled with docker-compose, the index-
ing algorithm run, and finally the k-flat relation saved locally, in a csv format file.
Figure C.1 shows the differences between the k-flat and the original relation.

Figure C.1: Differences between an initial dataset and its 25-flat representation

Construction of the encrypted index and the client-side maps

After the k-flat relation has been computed, the user can start building the en-
crypted index, the client-side maps, and the encrypted k-flat relation. To demon-
strate this workflow, the user must run the preprocess target. The user can
customize its behavior editing the Makefile variables INPUT, OUTPUT, TYPE,
MAPPING, and ANONYMIZED. The TYPE variable is the most important one,
and allows the user to specify, for each column in the dataset, the structure to
use when creating the local maps, and whether to use tokens (i.e., the value-
based strategy). As an example, running the command make preprocess

TYPE=config/usa2018/runtime.json, runs a test on the default pums

2018 dataset, with runtime token generation, and the bitmap, range, roaring and
range maps for the columns STATEFIP, STATE, OCC, and INCTOT, respectively.
Figure C.2 shows the log of the test.

Outsourcing the relation to the storage provider

To conclude the preprocessing stages, the user has to upload the encrypted index
and the encrypted k-flat relation to the storage provider. This can be done with

176

APPENDIX C. SECIDX DOCUMENTATION C.1. ARTIFACT

Figure C.2: Example of construction of the encrypted index, the client-side maps,
and the encrypted k-flat relation

the upload target. The default backend alternative is PostgreSQL, to select Redis
instead, the user can run the upload kv target. If not available locally, the selected
backend alternative is immediately installed in a dedicated container. The container
is deployed and the data uploaded to it via network. Figure C.3 details the upload
to the containerized PostgreSQL DBMS.

Runtime tests

To demonstrate how the system works at runtime, the user can run the query target.
In this case a set of test queries is submitted to the client-side backend. The queries

177

C.1. ARTIFACT APPENDIX C. SECIDX DOCUMENTATION

Figure C.3: Dataset upload to the storage provider

are translated leveraging the local maps, and the blocks of interests are pulled from
the containerized server. Finally, the plaintext rows are extracted from the blocks,
the spurious tuples filtered by an in memory SQLite DB, and the result of the query
sent to the user. The process is detailed in Figure C.4.

Figure C.4: Translation and resolution of a runtime query

178

APPENDIX C. SECIDX DOCUMENTATION C.2. PROOFS

Reproducibility and visualization

The results reported in the experimental evaluation (Section 4.7) can be reproduced
running the command make test. Running the experiments takes a few days
on our hardware. However, the user can recreate all the figures shown in Chapter 4
starting from the data attached to the repository. This can be done running the make
visualization command. As an example, Figure C.5 compares the theoretical
and experimental token collision probability measured in our test.

101 103 105 107

Token frequency

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

1 Bytes - B-Day Paradox
2 Bytes - B-Day Paradox
3 Bytes - B-Day Paradox
4 Bytes - B-Day Paradox
1 Bytes - Experimental
2 Bytes - Experimental
3 Bytes - Experimental
4 Bytes - Experimental

Figure C.5: Theoretical versus experimental token collision probability varying the
number of tokens and their size

C.2 Proofs

Theorem 2 (Existence of a k-flat partition). Let r be a relation such that card(r)≥k.

A k-flat partitionP of r exists iff h ≤ p, with h=(card(r) mod k) and p=bcard(r)/kc.

Proof.

k-flat partition P =⇒ h ≤ p

By assumption, P={G1, . . . , Gp}, with p = bcard(r)/kc. Let nk+1 be the num-
ber of partitions in P with k+1 tuples. Then, 0≤nk+1≤p. By definition of k-flat
partition, card(r) = k·(p−nk+1)+(k+1)·nk+1 = k·p+nk+1. By the quotient remain-
der theorem, when we divide card(r) by k, there exists unique integers p, h s.t.
card(r)=k·p+h and 0 ≤ h < k. Then, nk+1=h.

179

C.2. PROOFS APPENDIX C. SECIDX DOCUMENTATION

k-flat partition P ⇐= h ≤ p.
Let card(r)=k·p+h. Tuples in r can be partitioned in p groups of k tuples each.
Then, since by assumption h ≤ p, each of the remaining h tuples can be inserted
into h of these p partitions, one tuple for each partition. In this way, by construction
we have a partition with p groups in total s.t. p−h groups have k tuples each, and h
groups have k+1 tuples each. The partition is then a k-flat partition of r.

180

181

Appendix D

ITYT documentation

This chapter provides further details on the implementation of ITYT. It also gives
some instructions to fully reproduce the results presented in the experimental eval-
uation (Section 5.7).

ITYT repository is structured into three directories:

• model, that provides the implementation of a Z3-based solver of the eco-
nomic model presented in Section 5.4;

• contract, that provides the implementation of the smart contract presented
in Section 5.5 (with some extensions) alongside with some scripts to facilitate
simulation with Brownie;

• smpc, that provides the implementation of three secure Multi-Party compu-
tation protocols based on FRESCO.

D.1 Model

This directory contains a Python script that can be used to find a solution to the
ITYT Economic Model. To this end, the script leverages Z3, a theorem prover
from Microsoft Research. To install the required dependencies and run the tool
just navigate the filesystem to the current directory and run the make command.
Custom input can be specified overriding the variables N, K and V. The process is
detailed in Figure D.1.

D.2. CONTRACT APPENDIX D. ITYT DOCUMENTATION

Figure D.1: Solving the model from command line using the Z3 solver

Table D.1 reports a list of mappings that bind each solver variable to the related
economic amount, as described in Chapter 5.

Solver ITYT Description
V V economic value assigned to the secret
N n number of shareholders
K k number or shares required to reconstruct the secret
Rh RH shareholder reward
Bh BH shareholder bid
Fo FO fee paid by the owner to get the service
Ws WS reward paid when whistleblowing the secret
Wh Wh reward paid when whistleblowing a share

Table D.1: Parameters and economic amounts constrained by the solver

D.2 Contract

This directory provides the implementation of a smart contract compatible with the
ITYT framework. The implementation relies on MiMC to produce the commit-
ments. To compile the smart contract with Solidity, a library implementing the
MiMC primitive needs to be included in the directory contracts as a file named
MiMC.sol. An example of such library implementation can be found at this link.

Dependencies

The following install procedure has been tested on Ubuntu 20.04.

• Install solc:
sudo snap install solc

182

https://gist.github.com/HarryR/80b5ff2ce13da12edafda6d21c780730#file-mimcp-sol

APPENDIX D. ITYT DOCUMENTATION D.3. SMPC

• Install ganache-cli:
sudo apt install nodejs

sudo apt install npm

sudo npm install -g ganache-cli

• Install Python dependencies and the required Solidity compiler:
python3 -m venv venv

source venv/bin/activate

pip install -r requirements

python -c ‘‘import solcx; solcx.install solc(‘v0.5.6’)’’

Test

To deploy, test, and debug the contract generated the tools uses Brownie, a Python
framework that allows to create wallets, inspect transactions and automatize tests.
Running brownie test the script test proto exec.py is executed. Based
on the (n, k) values specified, the script runs multiple smart contract simulations.
The -G option can be used to display the gas consumed by each call to function. A
simulation of the decentralized protocol is shown in Figure D.2.

Figure D.2: Simulation of the decentralized protocol using Brownie

D.3 sMPC

This directory provides the implementation of the secure Multi-Party Comupation
protocol designed in the ITYT framework. The protocol comes in two flavors:

183

D.3. SMPC APPENDIX D. ITYT DOCUMENTATION

• the single-phase version, which permits to compute the shares and the com-
mitments in a single round jointly executed by the Owner and the n Share-
holders;

• and the two-phase version, which separates the production of shares and com-
mitments in two steps (step 1 and step 2, respectively). Step 1 is jointly ex-
ecuted by the Owner and the n Shareholders, while step 2 is executed 1-to-1
by the Owner and each Shareholder.

Dependencies

On Ubuntu 20.04, the only prerequisite is the project management tool maven. It
can be installed running on the console: sudo apt install maven

Compile and run

The functions are exposed to the user as Make targets. Running each of the avail-
able targets (listed below), the additional libraries are automatically downloaded
by maven, the tool is compiled, installed and run. Here a brief description of the
execution workflow.

Each Party is represented by a server. To each server a dedicated port (starting
from 8080) is associated. The application, logfiles, and results related to each server
are stored in the dedicated folder server/serverX, where X stands for the iden-
tifier of the server (X=1 is always associated with the Owner). Please note that the
content under server can be wiped at each run (do not edit or create the directories
related to the server, they are automatically created at runtime).

Table D.2 lists the targets available.

Target Description
runSP Simulates the single-phase version of the protocol
runTPs1 Simulates the two-phase step 1 version of the protocol
runTPs2 Simulates the two-phase step 2 version of the protocol

Table D.2: List of targets available

Each simulation can be customized overriding the variables in the Makefile ac-
cordingly. Table D.3 details each variable.

184

APPENDIX D. ITYT DOCUMENTATION D.3. SMPC

target Description
N The nof users running the n-to-n protocol
K The degree of the polynomial + 1

ARGS Common input supplied to the mpc by multiple parties
ARGS[i] Input to the mpc supplied by the i-th party

Table D.3: Variables to customize the sMPC experiment

Figure D.3 shows the output received by parties 1 (i.e., the Owner) and 2 (i.e., the
first shareholder) executing the single-phase protocol version. The Owner gets the
commitment of the shares and of the key, while the shareholder gets her share and
the commitment of the key.

Figure D.3: Single-phase protocol execution for N = 2

185

	Abstract
	Introduction
	Document structure
	Publications

	Data collection
	Introduction
	Android security for apps
	Motivation
	Policy language
	Policy configuration
	Implementation
	Experimental results
	Related work
	Conclusions

	Data sanitization
	Introduction
	Distributed anonymization
	Experimental results
	Conclusions

	Data storage & processing
	Introduction
	Basic concepts and problem statement
	Partitioning
	Indexing
	Query translation
	Implementation
	Experimental results
	Related work
	Conclusions

	Data release
	Introduction
	Background
	The ITYT protocol
	Economic model
	Implementation
	Discussion
	Experimental results
	Related work
	Conclusions

	Conclusions
	Future Work

	Acknowledgments
	Bibliography
	Seapp documentation
	Use case 1
	Use case 2
	Use case 3
	Policy module

	Sds documentation
	Requirements
	Deployment
	Usage
	Results

	Secidx documentation
	Artifact
	Proofs

	Ityt documentation
	Model
	Contract
	sMPC

