
NMPC Strategy for a Quadrotor UAV in a 3D Unknown Environment

Iuro B. P. Nascimento1, Antonio Ferramosca2, Luciano C. A. Pimenta1,3 and Guilherme V. Raffo1,3

Abstract— This work presents a Nonlinear Model Predictive
Control strategy for a quadrotor UAV with obstacle avoidance
capability in a 3D unknown environment with static obstacles.
The system aims to reach the target in minimum time while
avoiding obstacles and also to take into account the energy of
states and inputs. Sensor information is processed to detect
the obstacles and obtain the inequality constraints of an
obstacle-free zone. Numerical results are presented to attest
the performance of the system.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have received enor-
mous attention from academy and industry. Many applica-
tions are carried out with UAVs, such as search and rescue,
cartography, inspections of power lines, aerial photogra-
phy, and others. These applications demand many different
schemes of control, path planning, and obstacle avoidance in
order to complete their tasks.

In some applications, the environment is known a priori.
Consequently, the trajectory planning can be computed of-
fline, requiring a control strategy capable of tracking it. In
the literature, many algorithms can be found that perform
the planning task, for instance, sampling algorithms as prob-
abilistic roadmaps (PRM) [1], rapidly-exploring random trees
(RRT) [2], among others. Sampling algorithms may have
a high computational cost due to their probabilistic nature.
However, they only need to be executed once and offline.

In other applications, the environment is unknown, which
means that the location of possible obstacles and their shape
are not known a priori. In this case, path planning would be
performed at every change of the environment, what could
lead to computational costly algorithms. Some approaches
recompute only part of the path when the environment
changes, as D∗[3]. They are more computationally efficient

*This work was in part supported by the project INCT (National
Institute of Science and Technology) under the grant CNPq (Brazilian
National Research Council) 465755/2014-3, FAPESP, Brazil 2014/50851-
0. This work was also partially supported by the Coordenação de Aper-
feiçoamento de Pessoal de Nível Superior (CAPES), Brazil (Finance
Code 88887.136349/2017-00), CNPq, Brazil (grant numbers 426392/2016-
7, 313568/2017-0, 311063/2017-9), FAPEMIG, Brazil (grant number APQ-
03090-17), and the Agencia Nacional de Promoción Científica y Tecnologica
(ANPCyT), Argentina (grant number PICT-2016-0283).

1I. B. P. Nascimento, L. C. A. Pimenta and G. V. Raffo are
in the Graduate Program in Electrical Engineering, Federal Univer-
sity of Minas Gerais (UFMG), CEP 31270-901, Belo Horizonte, Mi-
nas Gerais, Brasil. (iuro@ufmg.br, lucpim@cpdee.ufmg.br,
raffo@ufmg.br)

2A. Ferramosca is with CONICET - UTN Facul-
tad Regional Reconquista, Santa Fe 3560, Argentina.
(ferramosca@santafe-conicet.gov.ar)

3 L. C. A. Pimenta and G. V. Raffo are also with the Department
of Electronic Engineering, UFMG, and are members of the INCT for
Cooperative Autonomous Systems Applied to Security and Environment.

if compared to recomputing the entire path, but they are
designed for incremental changes in the environment.

An alternative approach is the Model Predictive Control
(MPC), which combines an optimal path planning and op-
timal control design into an unified optimization problem.
MPC delivers an optimal control law by minimizing specified
performance index constrained by the dynamical model of
the system, obstacles and the limits of the system inputs.

There are many algorithms in the literature using the
MPC framework for obstacle avoidance. In [4], a linear
MPC is used to track a reference trajectory of a UAV,
where depending on the risk of collision, a new optimal
control problem (OCP) is solved with an extra cost to
penalize the proximity with obstacles In [5], a robust MPC
for UAVs performs obstacle avoidance by generating linear
constraints in the XY plane by geometric calculations. In
[6], zonotopic approximations of hyperplane arrangements
[7] of an obstacle-free area in 2D environments are used as
constraints of a linear MPC.

In [8], a Nonlinear MPC (NMPC) strategy is used for
an Autonomous Ground Vehicle (AGV) navigating in 2D
environments with obstacles represented as polygons, based
on computational geometry algorithms, to obtain linear con-
straints. Since the OCP is nonlinear and non-convex, a local
optimum solution is inevitable and dependent on the initial
guess. [8] also explores more possible paths in order to
search for better local minima solutions of the OCP.

This work proposes an NMPC strategy for a UAV in a
3D unknown environment. Differently from [8], we model
obstacles as polyhedra and use boolean polyhedral operations
to obtain an obstacle-free zone in a 3D scenario. A convex
decomposition of polyhedra is performed to obtain tractable
constraints and explore possible paths that can lead to local
minima with a smaller cost. While [8] uses a cost function
that is tailored to a specific AGV, we use a general quadratic
cost that could be used with other systems.

This work is organized as follows. Section II shows
the quadrotor UAV model. In Section III, we describe the
control strategy. Section IV presents the OCP formulation,
describing the generation of obstacles constraints and the
OCP formulation. Section V presents numerical simulation
results, and Section VI concludes the work.

II. QUADROTOR UAV MATHEMATICAL MODEL

The dynamic equations of the quadrotor UAV are obtained
from [9] and are given by

M(q)q̈ +C(q, q̇)q̇ + g(q) = f(q) = Bu(q)u, (1)

where q = [ξT ηT ]
T
, q̇ =

[
ξ̇T η̇T

]T
, with ξ =[

x y z
]T

being the position of the quadrotor body frame



origin w.r.t. the inertial frame I , η =
[
φ θ ψ

]T
its

orientation, where φ, θ, and ψ are the angles of the rotation
of the body frame B w.r.t. I expressed in B. The vectors q
and q̇ are the generalized coordinates and their time deriva-
tives, respectively. Thrust forces generated by the propellers
compose the input vector u =

[
f1 f2 f3 f4

]T
, and

M(q) is the inertia matrix, derived from the kinetic energy
of the quadrotor. C(q, q̇) is the Coriolis and centrifugal
forces matrix, which is derived from the inertia matrix
using the Christoffel symbols of the first kind, and the g(q)
vector is composed of terms generated by the gravity force
[10]. Assuming the state vector x =

[
qT q̇T

]T
, the state

equation is

ẋ =

[
q̇
q̈

]
=

[
q̇

M(q)−1(−C(q, q̇)q̇ − g(q) + f(q))

]
. (2)

The equations are derived assuming the frame B with the
origin at the quadrotor center of rotation. The input coupling
matrix Bu(q) transforms the input signals represented in B

to I , where Bu(q) = RrwBa, Rrw =

[
RT

B 0
0 W T

η

]T
,

and

Ba(q) =


− sin(αT ) 0 sin(αT ) 0

0 − sin(αT ) 0 sin(αT )
cos(αT ) cos(αT ) cos(αT ) cos(αT )

0 l cos(αT ) 0 −l cos(αT )
−l cos(αT ) 0 l cos(αT ) 0
kτ
b

cos(αT ) − kτ
b

cos(αT ) kτ
b

cos(αT ) − kτ
b

cos(αT )

.
The rotation matrix RB represents the rotation from B

to I . The angle αT is the inclination of the rotors towards
to the origin of B, the constant kτ is a drag constant, the
constant b is the thrust constant, assuming fi = b Ω2

i with
Ωi being the angular velocities of the propellers. The matrix
Wη is the Euler matrix, and the constant l is the distance
from a rotor to the origin of B.

III. CONTROL STRATEGY

A. Problem

Consider a UAV in an unknown environment. The problem
consists of moving the UAV to a target pose as fast as
possible. The environment may contain static obstacles with
location, size, and shape not known a priori.

B. Control Scheme

The control strategy consists of two main tasks:
• generate the obstacle constraints;
• formulate and solve optimal control problems (OCPs).
The system schematic is illustrated in Fig. 1.

NMPCCG
Mechanical

System

Embedded System

Inputs

Internal States
Obstacle Information

Fig. 1. System Schematic.

The constraint generation (CG) task obtains the constraints
to maintain the UAV’s position in a safe region, which is
called the obstacle-free region. The NMPC task formulates
an optimal control problem (OCP) with constraints. The

Fig. 2. The range sphere of the
sensor in blue and the superscribed
polyhedron in pink.

Fig. 3. The main polyhedron in
pink, the five numbered subregions,
the range sphere in blue, and the
obstacle in red.

OCP solution will provide an optimal trajectory and inputs
satisfying constraints, such as the safe region constraints, the
mathematical model, state and input limits, and others. By
satisfying these constraints, the generated optimal trajectory
is feasible since it is free of a collision. These tasks will be
described in detail in the next sections.

C. Obstacle Constraint Generation

The CG task generates constraints to maintain the optimal
trajectory in a safe region. The safe region is obtained by
processing sensor data. A camera or laser sensor is used to
obtain the relative positions of obstacles.

In order to obtain the constraints, both the sensor field of
view and the obstacles are modeled as polyhedra. The sensor
has a range R, which is the maximum distance from the UAV
such that the sensor is able to detect obstacles. A sphere of
radius R represents the sensor field of view. This sphere is
approximated as a cuboid polyhedron, as shown in Fig. 3.
The entire sensor field of view is contained inside this main
polyhedron. This is a conservative approximation; however,
the trajectory terminal position is constrained to be near the
sphere surface.

The CG task performs three main processing subtasks
on the sensor data. The first task adds a safety margin to
the obstacles. In the sequence, these polyhedra are removed
from the main polyhedron, creating a safe region. Finally,
the safe region is decomposed into convex subregions. Each
subregion will have its constraints derived from the half-
space representation of the polyhedron. These tasks are
described as follows:

1) Safety Margin: The obstacles are expanded to create
a safety margin. The safety margin is added to allow the
UAV safely pass near the inflated obstacles. Increasing the
obstacles by the UAV size allows us to consider it as a point
in the optimal control problem. Thus, the safety margin D is
the sum of the largest robot dimension, the maximum error
of measurement, and the maximum error of approximation
of obstacles as polyhedra. A Minkowski sum of a polyhedron
with a sphere of radius D gives the offset polyhedron with
its boundaries inflated by D. Since this operation would not
return a polyhedron, a Minkowski sum of the polyhedron
with a cube with side 2D is used as an approximation.

2) Safe region: The safe region is obtained by removing
the obstacles polyhedra from the main polyhedron. Fig. 3



shows an example of a safe region with one obstacle inside
the main polyhedron.

The creation of the safe region is accomplished by using
a regularized set difference operation on the polyhedra since
a set difference of two polyhedra would have as a result
an open set or a polyhedron without some of its boundaries.
The regularized set difference will contain all the polyhedron
boundaries. Besides, this operator is defined as the closure of
the interior of the normal set difference between 2 polyhedra.

In order to obtain the set difference, we represent the
polyhedra as Nef Polyhedra and use the data structures and
algorithms from [11]. A Nef polyhedron is defined by [12]
as

Definition 1. [12] A Nef Polyhedron in Rn is a point set
P ⊂ Rn generated from a finite number of half-spaces using
set complement and intersection operations.

The algorithm stores cells for facets, vertices, edges, and
volumes with information about the intersection between
them. Labels may be used to mark various features of
cells. Binary labels with on/off values indicate if the cell
is contained in a polyhedron or not. This information allows
the intersection and complement operations. Other operations
on sets can be reduced to these operations.

3) Subregion Decomposition: The safe region is usually
non-convex, and a function to describe this region is hard to
be obtained. The safe region may present other problems:

• The formulated OCP may have many possible valid
local minimum solutions that will not be explored by
the solver.

• Most modern nonlinear programming (NLP) solvers
work more efficiently with all constraints, along with
the objective function being twice differentiable, and a
safe region usually has edges and corners, which are
not twice differentiable. These NLPs can work with
numerical derivatives, but the higher numerical errors
often make the solver have a slow convergence or not
converge.

To deal with these problems, we decompose the safe
region into convex polyhedra subregions. These polyhedra
will form sets of constraints, one set per polyhedron or
subregion. For each subregion, the hyperplane equations of
the half-space representation are used as the constraints.
These constraints are linear and twice differentiable as in
equation Aiξj − di ≤ 0, where ξj =

[
xj yj zj

]T
is jth

position in the discretized trajectory, Ai is an M × 3 matrix
of constraints of the subregion i, di and 0 are M×1 column
vectors, M is the number of hyperplanes in the polyhedron,
and i = 1, 2 . . . N with N subregions.

In order to decompose the safe region into convex polyhe-
dra, the algorithm proposed in [13] is used. In a polyhedron,
each edge is only shared by two facets. Non-convex poly-
hedra will have edges where the inner angles with respect
to the polyhedron are reflex, or greater than 180o, called
notches. In each notch gi with facets Ti and Si, we cut the
polyhedron in two with a facet Ri that shares the notch gi as
one of their line segments and forms angles with the facets Ti

and Ri that are not reflex. After each cut, we form two new
polyhedra by splitting the polyhedron in Ri. After all notches
have been cut, all remaining polyhedra will be convex since
all reflex angles have been divided. Fig. 3 shows the safe
region decomposed into subregions.

In order to find free paths for the robot, all possible
openings are considered as a possible solution. Openings are
areas where the sensor detects no obstacle. They are obstacle-
free and are possible exits from the safe region. Subregions
1, 3, and 4 of Fig. 4 have openings. For each opening, a path
through the subregions is obtained from the current pose to
the subregion opening. In order to decide which subregion
should be traversed to reach the opening, a graph is created
where each subregion is a node, and each edge (a graph’s
edge) represents the adjacency between subregions. Adjacent
subregions share at least part of a plane. A path can be
obtained using the Dijkstra shortest path algorithm [14].

This procedure can be better visualized with the output
of a planar sensor, but the same can be executed with a 3D
sensor output. As an example, Fig. 4 shows a safe region
decomposed into convex 2D polyhedra.

2

3

4

1

Sensor position

Obstacle

Obstacle

Opening

Opening

Opening

Fig. 4. 2D sensor output decomposed into four numbered subregions.

The start subregion is number 1, which also has an
opening. Subregions 3 and 4 also have openings. Fig. 5
shows the adjacency graph.

4

3

21

Fig. 5. Adjacency graph of subregions.

In this case, using a weight of 1 for each edge in the
graph, the best possible paths to each opening will be: 1;
1 → 2 → 4; and 1 → 2 → 3. In order to get more direct
paths, we estimate the distance to be traversed in each path
to use as weights for the graph edges. For each subregion,
one reference point is chosen. For each subregion, a convex
combination of its vertices is used as a reference point. Using
the initial point and the reference points as nodes, the weights
for each edge are the distances between each node point.

D. Nonlinear MPC Strategy

Using the subregion information, a multi-phase OCP is
formulated. A multi-phase OCP consists of dividing the
trajectory into segments, where the dynamical equations
and constraints may be different in each segment. In some



problems, systems change along the trajectory, as the stages
of spaceship launch. In other problems a different set of
constraints may be needed at each phase. This formulation
allows the use of different state constraints in each segment.
For each path, the trajectory is divided into N segments,
one per subregion that the trajectory has to go through
to an opening. Each segment is subject to its respective
subregion constraints. Additional constraints are used to
ensure continuity of the solution at the transition of one phase
to the next.

In order to determine the constraints for each phase, a
graph search determines the subregion path from the initial
subregion to each opening. For each opening, its constraints
are used to formulate one OCP. Since each path can be
processed independently, each OCP is formulated and solved
in parallel. The solution with the smaller cost is chosen.

IV. OPTIMAL CONTROL PROBLEM FORMULATION

In order to use the MPC framework, a multi-phase con-
strained OCP is formulated as follows

minimize
x,u,T1,...,TN

J (3)

subject to
∀i=1,...,N

ẋ(i)(t) = V
(
x(i)(t),u(i)(t)

)
(4)

x
(i)
min(t) ≤ x

(i)(t) ≤ x(i)
max(t) (5)

u
(i)
min(t) ≤ u

(i)(t) ≤ u(i)
max(t) (6)

G
(
x(i)(t)

)
≤ 0 (7)

x(i)(Ti−1) = x
(i−1)(Ti−1) (8)

t ∈ [Ti−1, Ti], Ti−1 < Ti (9)

subject to F
[
x(N)(TN ),x(0)(T0)

]
≤ 0 (10)

T0 = 0, TN = Tp (11)

where (3) is the cost functional, with one cost per each of
the N phases, and a terminal cost. Equations (4) to (9) are
the per phase constraint equations. Equations (10) and (11)
are constraints to enforce on all phases. (4) are the nonlinear
dynamical equations of the UAV, with one set of equations
(2) per phase. Equations (5) and (6) are bounds to the states
and inputs. Equation (7) is the position constraint to avoid
obstacles. To maintain continuity between phases, equations
(8) are imposed to ensure a continuous transition. Equation
(9) is necessary to enforce the phase instants of times to be
monotonically increasing. Equation (10) imposes the initial
state to be the current state of the system and imposes a
terminal region on the final state. Finally, equation (11) sets
the initial time to 0 and the final time of the last phase TN
to be equal to the time horizon Tp. The following sections
describe in more detail the cost function and constraints.

A. Cost Function
The multi-phase cost function of equation (3) is given by

J =wtTp +
∥∥∥x(N)(Tp)−xgoal

∥∥∥2
P

(12)

+

N∑
i=1

[∫ Ti

Ti−1

(∥∥∥x(i)(t)−xgoal
∥∥∥2
Q
+
∥∥∥u(i)(t)−ueq

∥∥∥2
R

)
dt

]
.

There is one cost per phase, where it is penalized the
energy of states that are far from the final target states
(xgoal) and the energy of inputs that are far from the
equilibrium inputs (ueq). The cost of the energy of inputs has
two purposes: to avoid or minimize the chance of multiple
solutions and to avoid a solution with aggressive inputs. In
order to obtain a shorter final time, a cost is used to penalize
TP with weight wt.

The weighting matrices Q and R can be chosen accord-
ing to the desired performance. The matrix P is obtained
by solving the algebraic Ricatti equation ATP + PA −
PBR−1BTP + Q = 0, where A and B are the linear
state-space representation matrices of the linearized system
of equations (2).

B. Path Constraints

Equation (7) represents the path constraints, which are the
subregion constraints. Each subregion constraint is given by
Ãixi − bi ≤ 0, where Ã =

[
Ai 0M×9

]
.

C. State Continuity

In order to ensure that the solution will be continuous
between phases, the dynamical equation (4) of phase i − 1
requires that its final state be equal to the initial state of
phase i, as stated in (8).

D. Terminal Constraints
In order to ensure that the terminal state is close to the

border of the sensor field of view, the following constraints
are added

Rsensor − δ ≤
∥∥∥ξ(N)(TN )− ξ(1)(T0)

∥∥∥ ≤ Rsensor, (13)

where ξ(i)(t) =
[
x(i)(t) y(i)(t) z(i)(t)

]T
, Rsensor is the

sensor range, and δ is a small value to define the terminal
region near to the end of the sensor field of view.

When the target position is within the sensor range, the
following inequalities are used as terminal constraints.

ξgoal − σ ≤ ξ(N)(TP ) ≤ ξgoal + σ, (14)

where σ is a constant that indicates the distance from the
goal position in the x, y, and z direction that will be in
the terminal region. This terminal region constrains the last
position ξ(N)(TP ) into a cube with edge size of 2σ and with
the goal on its center.

V. RESULTS AND DISCUSSION

A. OCP Solution

At each sample time, the optimal control problem (OCP)
(3)-(11) is solved, and the first control signal is applied to
the system. In order to solve the OCP, it is used a direct
method called HP-adaptive pseudospectral [15], which is
used to transcribe the OCP to a nonlinear programming
(NLP) problem and then solve with a primal-dual interior-
point algorithm with a filter line search implemented in
IPOPT [16].

The HP-adaptive pseudospectral is a direct collocation
method that transcribes a continuous-time OCP into an NLP



problem by approximating states and controls with a variable
number of segments of a variable number of polynomial
degrees. In this method, the dynamical equations of the
system and virtual states are added as differential-algebraic
constraints evaluated at the Legendre-Gauss-Radau (LGR)
time points. In each segment, the states and controls are
sampled at the LGR points using the Lagrange polynomial.
The method adaptively changes the number of segments and
degrees of the polynomials in order to reach a user-specified
tolerance error in the middle of each two LGR points.

The resulting NLP is solved by the IPOPT, which handles
large scale non-convex problems with constraints. The basic
principle is to iteractively solve a barrier problem for a
fixed value of Lagrange multipliers µ and decreasing the
multiplier. Making µ converge to zero leads to the Karush-
Kuhn-Tucker (KKT) conditions of the original problem be
satisfied.

B. Results

Numerical results are obtained using Matlab R2018a and
Simulink software. The dynamical model is simulated in
Simulink, and the controller is implemented in Matlab using
the Casadi [17] toolbox for the formulation of the OCP and
for providing exact derivatives and Hessians by performing
algorithm differentiation.

Two algorithms of the CGAL (Computational Geometry
Algorithms Library) were used, the set difference [18] to re-
move all obstacles polyhedra from the main polyhedron, and
[19] to decompose the safe regions into convex subregions.

The quadrotor model parameters were obtained from [9]:
the mass m is 2.24 kg, the distance l from the center
of mass to the rotors is 0.332 m, the thrust coefficient
b is 9.5e−6 N s2, the drag coefficient κτ is 1.7e−7 N
m s2, the gravity acceleration g is 9.81 m/s2, the mo-
ments of inertia Ixx, Iyy, and Izz are 0.0363 Kg m2,
0.0363 Kg m2, and 0.0615 Kg m2, respectively. Also,
the NMPC was synthesized with the following parame-
ters: wt = 0.1, δ = 0.5, D = 2l + 0.1 + 0.0173,
Q = diag([0.0006 0.0006 0.0006 0.0001 0.0001 0.0001
0.0025 0.0025 0.0025 0.0006 0.0006 0.0006]), R =
diag([0.0006944 0.0006944 0.0006944 0.0006944]), and
The sensor range Rsensor is 30m. The matrices Q and
R are initially chosen according to the Bryson’s rule [20],
in which each weight is chosen as the inverse of the
square of the state or control being weighted. The matrix
P is obtained by solving an algebraic Ricatti equation. The
obstacle sensor error is 0.1 m, and the noise added to the
state measurement was a white noise with maximum vector
n = [0.01, 0.01, 0.01, 1.5 10−3, 1.5 10−3, 1.5 10−3,
5 10−3, 5 10−3, 5 10−3, 2 10−3, 2 10−3, 2 10−3]. The
input limits are from 0 to 12 N, φ and θ are limited between
±π/2, and ψ is limited to ±π

Fig. 6 to 8 show the simulation results. Fig. 6 illustrates
the trajectory of the UAV from the red circle (initial point
at ξ0 = [10 0 10] m) to the green one (target point at
ξgoal = [100 0 20] m), from which it can be observed
that the UAV successfully avoided the obstacles and reached

the terminal region. The terminal region parameter σ is set
equal to the l parameter of the quadrotor. The orientation
of the UAV throughout the trajectory is shown in Fig. 8.
In order to obtain the minimum time to reach the target in
agreement with the cost functional (12), the quadrotor UAV
performed aggressive maneuvers in some segments of the
trajectory, requiring the roll angle to reach approximately
its bound. This angular motion allowed the UAV to achieve
high linear velocities due to the projection of the thrust
forces towards the direction of the desired movement. Fig. 9
presents the applied control signals. Due to the minimum
time requirement, the optimal control inputs reached their
bounds at some periods in order to accomplish the task.

z
(m

)
x (m)

y (m) 0 150 200 250
10050

40

-20
-10

0
10
20
30
40
50
60
70

-40

Fig. 6. Trajectory performed by the quadrotor UAV while avoiding the
obstacle.

0 5 10 15 20
0

50
100
150
200
250
300

Time (s)

x
(m

)

0 5 10 15 20
0
5

10
15
20
25
30

Time (s)

y
(m

)

0 5 10 15 20
10
20
30
40
50

Time (s)

z
(m

)

0 5 10 15 20
-5
0
5

10
15
20
25
30

Time (s)

ẋ
(m

)

0 5 10 15 20
-5
0
5

10
15
20

Time (s)

ẏ
(m

)

0 5 10 15 20
-10
-5
0
5

10
15

Time (s)

ż
(m

)

Fig. 7. Position and velocities.

VI. CONCLUSION AND FUTURE WORKS

This work proposed a multi-phase NMPC strategy for a
quadrotor UAV in order to reach a target while avoiding
obstacles in a 3D unknown environment with static obstacles.
This task was required to be performed as fast as possible,
taking into account the minimum energy of states and
control inputs. Sensor information was used in the multi-
phase capability in order to obtain feasible trajectories. An
obstacle-free region was obtained from sensor information,
and obstacles were modeled as polyhedra. The obstacle-free
region was then divided into convex polyhedra to provide



0 5 10 15 20

-3
-2
-1
0
1
2
3

φ
(r

ad
)

Time (s)

0 5 10 15 20

θ
(r

ad
)

Time (s)

0 5 10 15 20

ψ
(r

ad
)

Time (s)

0 5 10 15 20
-10
-5
0
5

10

φ̇
(r

ad
/s

)

Time (s)

0 5 10 15 20
-10
-5
0
5

10

θ̇
(r

ad
/s

)

Time (s)

0 5 10 15 20
-10
-8
-6
-4
-2
0
2
4

ψ̇
(r

ad
/s

)

Time (s)

-3
-2
-1
0
1
2
3

-3
-2
-1
0
1
2
3

Fig. 8. Orientation and angular velocities.

0 5 10 15 20
-2
0
2
4
6
8

10
12

Time (s)

f
1

(N
)

0 5 10 15 20
-10

-5

0

5

10

15

Time (s)

f
2

(N
)

0 5 10 15 20
0

2

4

6

8

10

12

Time (s)

f
3

(N
)

0 5 10 15 20
0

5

10

15

20

Time (s)

f
4

(N
)

Fig. 9. Control signals - the applied thrusts.

constraints to the NMPC. Simulation results corroborated the
proposed NMPC approach successfully.

The simulations are computationally expensive since a
highly nonlinear and nonconvex optimization problem is
being solved with the addition of linear path constraints.
The partitions of the safe region are not optimum, and to the
best of our knowledge, there is no algorithm to partition a
nonconvex polyhedron into a minimum number of partitions.
In cluttered environments, the number of partitions can be
large, and the increased number of partitions may increase
the computational cost significantly. Thin subregions may
difficult the solver to find a feasible solution and decrease the
convergence rate of the mesh-refinement algorithm [15]. The
mesh-refinement algorithm can solve problems with regions
with these characteristics, however the segment in the thin
region has to start with a small number of collocated points.

Future works will deal with the implementation of a
hardware-in-the-loop simulation using a 3D simulator such
as Gazebo. In order to accomplish this goal, other approaches
to the optimization, and even parallelization of the code will
be considered.

REFERENCES

[1] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

[2] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Citeseer, 1998.

[3] A. Stentz, “Optimal and efficient path planning for partially-known
environments,” in IEEE International Conference on Robotics and
Automation (ICRA), May 1994, pp. 3310–3317 vol.4.

[4] J. Marzat, S. Bertrand, A. Eudes, M. Sanfourche, and J. Moras,
“Reactive mpc for autonomous mav navigation in indoor cluttered
environments: Flight experiments,” IFAC-PapersOnLine, vol. 50, no. 1,
pp. 15 996–16 002, 2017.

[5] P. T. Jardine and S. N. Givigi, “A robust model-predictive guidance
system for autonomous vehicles in cluttered environments,” IEEE
Systems Journal, vol. 13, no. 2, pp. 2034–2045, 2018.

[6] D. Ioan, S. Olaru, S.-I. Niculescu, I. Prodan, and F. Stoican, “Navi-
gation in a multi-obstacle environment. from partition of the space to
a zonotopic-based mpc,” in 2019 18th European Control Conference
(ECC). IEEE, 2019, pp. 1772–1777.

[7] I. Prodan, F. Stoican, S. Olaru, and S.-I. Niculescu, “Enhancements
on the hyperplanes arrangements in mixed-integer programming tech-
niques,” Journal of Optimization Theory and Applications, vol. 154,
no. 2, pp. 549–572, 2012.

[8] J. Liu, P. Jayakumar, J. L. Stein, and T. Ersal, “Combined speed
and steering control in high-speed autonomous ground vehicles for
obstacle avoidance using model predictive control,” IEEE Transactions
on Vehicular Technology, vol. 66, no. 10, pp. 8746–8763, 2017.

[9] G. V. Raffo, “Robust control strategies for a quadrotor helicopter: an
underactuated mechanical system,” Ph.D. dissertation, Universidad de
Sevilla, 2011.

[10] M. W. Spong, S. Hutchinson, M. Vidyasagar, et al., Robot modeling
and control. Wiley New York, 2006, vol. 3.

[11] M. Granados, P. Hachenberger, S. Hert, L. Kettner, K. Mehlhorn, and
M. Seel, “Boolean operations on 3d selective nef complexes: Data
structure, algorithms, and implementation,” in European Symposium
on Algorithms. Springer, 2003, pp. 654–666.

[12] W. Nef, Beiträge zur Theorie der Polyeder: mit Anwendungen in der
Computergraphik. Herbert Lang, 1978, vol. 1.

[13] B. Chazelle, “Convex partitions of polyhedra: a lower bound and
worst-case optimal algorithm,” SIAM Journal on Computing, vol. 13,
no. 3, pp. 488–507, 1984.

[14] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[15] C. L. Darby, W. W. Hager, and A. V. Rao, “An hp-adaptive pseudospec-
tral method for solving optimal control problems,” Optimal Control
Applications and Methods, vol. 32, no. 4, pp. 476–502, 2011.

[16] A. Wächter and L. T. Biegler, “On the implementation of an
interior-point filter line-search algorithm for large-scale nonlinear
programming,” Mathematical Programming, vol. 106, no. 1, pp.
25–57, Mar 2006. [Online]. Available: https://doi.org/10.1007/s10107-
004-0559-y

[17] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi – A software framework for nonlinear optimization and
optimal control,” Mathematical Programming Computation, vol. 11,
no. 1, pp. 1–36, 2019.

[18] P. Hachenberger and L. Kettner, “3D boolean operations
on nef polyhedra,” in CGAL User and Reference
Manual. CGAL Editorial Board, 2018. [Online]. Available:
https://doc.cgal.org/4.13/Manual/packages.html#PkgNef3Summary

[19] P. Hachenberger, “Convex decomposition of polyhedra,” in CGAL
User and Reference Manual. CGAL Editorial Board, 2018. [Online].
Available: https://doc.cgal.org/4.13/Manual/packages.html

[20] A. E. Bryson, Applied Linear Optimal Control Hardback with CD-
ROM: Examples and Algorithms. Cambridge university press, 2002.


