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Abstract: The human cerebral cortex is asymmetrically organized with hemispheric lateralization
pervading nearly all neural systems of the brain. Whether the lack of normal visual development
affects hemispheric specialization subserving the deployment of visuospatial attention asymmetries is
controversial. In principle, indeed, the lack of early visual experience may affect the lateralization of
spatial functions, and the blind may rely on a different sensory input compared to the sighted. In this
review article, we thus present a current state-of-the-art synthesis of empirical evidence concerning
the effects of visual deprivation on the lateralization of various spatial processes (i.e., including line
bisection, mirror symmetry, and localization tasks). Overall, the evidence reviewed indicates that
spatial processes are supported by a right hemispheric network in the blind, hence, analogously to
the sighted. Such a right-hemisphere dominance, however, seems more accentuated in the blind
as compared to the sighted as indexed by the greater leftward bias shown in different spatial tasks.
This is possibly the result of the more pronounced involvement of the right parietal cortex during
spatial tasks in blind individuals compared to the sighted, as well as of the additional recruitment
of the right occipital cortex, which would reflect the cross-modal plastic phenomena that largely
characterize the blind brain.
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1. Introduction

At first glance, the brain appears to be a symmetrical structure; however, a closer inspection
reveals lateralized changes from the subcellular and neurochemical to gross anatomical levels [1].
These laterality patterns are not limited to the level of the brain but pervade as well in traits of
human overt behavior such as handedness (the most frequently observed and studied behavioral
asymmetry [2]) and spatial asymmetries as measured by line bisection tasks. Lateralization phenomena
in the context of the line bisection task have been ascribed to genetic variation with dopaminergic
system genes [3,4] or the allelic variation in genes affecting corpus callosum structure [5] associated with
the direction (left versus right) and the magnitude of spatial orienting bias. However, investigating the
role of environmental factors [6], recent research has suggested that epigenetic regulation contributes to
the development of hemispheric asymmetries subserving spatial processing in line bisection tasks [7].
This may indicate that the bias in the line bisection task is likely influenced by multiple genetic,
epigenetic, and environmental factors.

Within this theoretical framework, the study of visual deprivation represents a unique model to
investigate lateralization phenomena, as experiential factors are clearly different compared to typical
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development. For instance, whereas blind and sighted individuals are exposed to language (a typical
left-lateralized function in the brain [8]) to similar degrees, their spatial abilities (typically recruiting
more the right hemisphere [9]) develop based on haptic and auditory input. In principle, the lack of
early visual experience may thus affect the lateralization of spatial functions, which in the blind rely on
a different sensory input compared to the sighted. Compensatory phenomena occurring at the brain
and behavioral levels following visual deprivation have been extensively studied (for reviews see
References [10–12]). However, how blindness affects the level of hemispheric asymmetry and laterality
patterns in spatial processing is an issue that has not reached definite conclusions.

This review focuses on available evidence associated with lateralization patterns in spatial processes
in the blind. Spatial functions are characterized in sighted individuals by specific lateralization patterns
at the neural level that, at times, are reflected by asymmetric behavioral profiles. Here, we review
evidence on behavioral and brain asymmetries consistently observed in the blind in spatial processing
both at the perceptual level (i.e., auditory and tactile) and at the attentional and representational level
(i.e., orienting spatial attention in physical or mental space as in case of the mental number line).
In particular, we begin by reviewing the effects of visual experience on spatial asymmetries in bisection
tasks and then discuss the available evidence on spatial laterality patterns as gathered from mirror
symmetry and localization tasks (Table 1 reports the key studies reviewed and their relative sample
sizes). In our review, in analogy with the classification adopted by most previous works, congenital
(i.e., usually defined as those individuals blind from birth) and early (i.e., usually defined as those
individuals who become blind during early postnatal life, generally around 2 or 3 years of age) blind
participants will be treated as a single group.

Table 1. The key studies reviewed, divided for the different spatial laterality tasks (i.e., physical and
numerical bisection, mirror symmetry, and localization tasks), along with the number of sighted and
blind participants involved.

Author Year Blind Participants Control Participants

Pseudoneglect (line bisection)
Bradshaw et al. [13] 1986 10 24
Cattaneo et al. [14] 2018 11 25
Cattaneo, Fantino, Tinti et al. [15] 2011 17 18
Sampaio et al. [16] 1995 20 20

Pseudoneglect (numerical bisection)
Cattaneo, Fantino, Silvanto et al. [17] 2011 18 10
Cattaneo, Fantino, Tinti et al. [18] 2010 17 23
Rinaldi et al. [19] 2015 16 16

Mirror symmetry
Bauer et al. [20] 2015 8 7
Cattaneo, Fantino, Silvanto et al. [21] 2010 16 26
Cattaneo et al. [22] 2013 12 12

Localization tasks
Collignon et al. [23] 2009 6 0
Vercillo et al. [24] 2017 8 8

2. Pseudoneglect

An overwhelming body of evidence suggests that spatial attention functions are largely lateralized
to the right hemisphere (e.g., [25,26]). One of the most prominent manifestations of such hemispheric
asymmetry comes from the investigation of lateralized behavior in line bisection tasks, where
participants are asked to manually estimate the midpoint of a horizontal visual line. In these tasks,
neurotypical individuals exhibit a slight but consistent leftward bisection error; a bias known as
pseudoneglect (for a review see Reference [27]), which is thought to depend on the dominant role played
by the right hemisphere in orienting spatial attention resources [28–31]. Interestingly, although being
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susceptible to different types of experimental manipulations (such as line length, cueing, and the
location of space where the lines appear), pseudoneglect has been shown to occur in both the visual
and haptic modalities [32,33].

A critical question is whether such a leftward bias is driven by normal visual development and
experience. Available findings suggest that this is not the case, since early blind individuals also
show pseudoneglect in the way they represent space. For instance, in an early study by Bradshaw
and colleagues [13], participants had to adjust the extremities of a rod protruding from a copper
tube. These investigators found that most of the early blind adults overestimated the left side of
space, resembling the pattern of performance displayed by sighted individuals. These findings were
replicated more recently in a haptic line bisection paradigm, where participants were asked to estimate
the midpoint of a horizontal rod with a leftward bias consistently reported in blind individuals
(Figure 1) [14,15]. Interestingly, the magnitude of pseudoneglect was even larger in blind than in
blindfolded sighted participants [14,15]. The authors go on further to suggest that this observed
bias may depend on the intense spatial training experienced by blind individuals (e.g., high level of
independent mobility) that may have contributed to this lateralization of function in the control of
spatial attention (see also Reference [34]).
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Figure 1. Behavioral tasks used to assess spatial asymmetries. A typical task probing the presence
of spatial asymmetries in spatial processing is the haptic line bisection task in which participants are
asked to indicate the midpoint of a horizontal rod. Various studies indicate that blind individuals
generally show a leftward bias when bisecting the horizontal rod as sighted individuals do. Symmetry
detection may be also informative about laterality patterns following visual deprivation. In this
case, participants are asked to haptically explore a 2D matrix and must remember the position of
target cells, which may be arranged in a symmetrical (i.e., either on the horizontal or vertical axis) or
non-symmetrical configuration. Whereas sighted individuals show a clear advantage for symmetry
detection along the vertical axis as compared to the horizontal one, no such a difference is observed in
early blind individuals.
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With the aim of understanding whether and how the lack of visual input from only one eye affects
the typical pattern of hemispheric asymmetry in the control of spatial attention, a recent study tested
twelve monocular blind individuals (eight left-eye blind with functioning right eye, and four right-eye
blind with functioning left eye) with a visual and a haptic line bisection task [35]. Results showed
that when participants were asked to visually bisect lines, monocular blind subjects displayed an
overall tendency to bisect toward the direction of the functioning eye, possibly reflecting a preferential
activation of the contralateral hemisphere of the functioning eye [36]. However, this pattern did not
reach statistical significance (note that the sample size was quite small, thus limiting the statistical
power of the study). Interestingly though, monocular blind participants showed a consistent leftward
bisection bias in the haptic modality (i.e., with no visual input available), in line with prior studies with
normally sighted and blind participants [15]. These data indicate that the effects on spatial attention
related to monocular blindness may only pertain to the visual modality.

Taken together, these findings suggest that the right-hemispheric dominance for spatial processing
develops even in the absence of early visual experience. Interestingly, pseudoneglect was also reported
in early blind children aged 7–11, despite the fact that in this study, sighted children did not display a
leftward bias [16]. In the study by Sampaio and colleagues [16], the experimenter placed the child’s
index finger at one of the two ends of the rod and asked them to run their finger along the wooden
rod as many times as they wanted and then to stop at the place they estimated to be the midpoint.
The presence of a leftward bias in blind children reported in this study [16] may suggest that the
lack of visual experience can even anticipate or strengthen hemispheric lateralization for spatial
processing during development. Yet, such findings should be corroborated by further empirical works,
especially because pesudoneglect has been reported in more recent studies involving children of this
age. These studies indeed indicate that pseudoneglect emerges gradually over developmental time,
as indexed by both the visual line bisection [37] and cancellation [38] tasks. Such a gradual shift as a
function of age has been interpreted as a sign of literacy acquisition (i.e., reading and writing habits,
which are oriented from left-to-right in Western countries; [38]). New studies are thus needed to
substantiate the possibility that blind children show a more pronounced leftward bias in the haptic
bisection task.

At the neural level, visuospatial attention orienting (as measured by line bisection task performance)
in sighted individuals is mediated by a right fronto-parietal network, with a key role played by the
posterior parietal cortex [31,39–41]. Although no study has directly measured brain responses in blind
participants whilst performing a bisection task, it is likely that the blind would also show a preferential
activation in their right fronto-parietal network. Indeed, a right fronto-parietal activation has been
reported in the blind in tasks implicated with spatial processing, such as spatial imagery (e.g., angle
discrimination), auditory and haptic localization [42–46].

Biases in spatial attention do not only pertain to the horizontal space, but also to the vertical
and radial planes. Neurologically healthy participants typically err away from their body in radial
bisection tasks [47–49], and in the upward direction along the vertical axis [50]. Although the role of
hemispheric asymmetry in the control of spatial attention in the vertical and radial planes is not fully
established [30,51], it is worth mentioning that early blind participants did not show consistent spatial
biases in haptic radial and vertical bisection tasks, except for biases driven by the final movement
direction [15].

Behavioral asymmetries in the sighted, similar to the perceptual ones observed for the line bisection
task in both visual and tactile domains, have been reported as well for visuospatial representations held
in long-term memory [52–55]. This fascinating phenomenon, known as representational pseudoneglect [55],
has been documented for both remembered spatial information (i.e., not perceptually available) and
purely abstract information such as numbers. For instance, adult individuals (in Western cultures that
read left-to-right) typically represent numerical information along a mental number line, with smaller
numbers associated with the left side of the space and larger numbers with the right side of the
space [56]. The task typically used to explore whether representational pseudoneglect also occurs
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for the mental number line is the bisection of numerical intervals [57,58]. In this task, participants
are presented with two numbers and are asked to identify the midpoint of the numerical interval
(i.e., a “gut” response is required, without explicit calculation). In analogy with pseudoneglect for
physical lines, neurotypical individuals generally display a leftward bias, thus erring in the direction
of the lower number in the pair [57–59].

Blind individuals seem to represent numbers as sighted individuals do; that is, in the form of a
left-to-right oriented mental number line [19,60,61], a representation that is likely to engage a similar
parietal network in both the blind and the sighted as shown by electrophysiological evidence [62].
Critically, blind individuals display a consistent leftward bias when performing an auditory numerical
bisection task, with the magnitude of this bias being comparable to that shown in sighted controls [61].
In this task, participants are typically presented aurally with pairs of numbers (e.g., “117–166”) and
have to judge and orally report the numerical midpoint of the number pair immediately after the
presentation of each auditory stimulus without explicit calculation (i.e., a time limit is generally
imposed in order to prevent participants from calculating the middle value). The fact that both
groups display a similar leftward bias in numerical bisection tasks supports the view of a hemispheric
asymmetry in the control of spatial attention in blind individuals that extends to mental representations
(i.e., beyond physical space). Accordingly, the mental representation of numbers has been found
to interact with the representation of physical space in the blind as it does in sighted participants.
For instance, in both sighted and blind participants, listening to small numbers during haptic line
bisection increases pseudoneglect [18]; furthermore, tapping hand movements in either the left or right
peripersonal space while bisecting numerical intervals modulates the leftward bisection numerical bias
to a similar extent in both right-handed blind and sighted individuals, with this effect also depending
on the hand used to tap [19].

Although the mechanisms responsible for the orientation of attention in external space are likely
to be distinct from those operating along the mental number line [63], the experimental evidence
reviewed above suggests that the right-hemispheric dominance in processing of both physical and
representational (abstract) space develops even in the absence of any visual input.

3. Mirror Symmetry

Insights on lateralization patterns in spatial processing following visual loss may also come from
recent studies that focused on mirror symmetry detection. Symmetry is ubiquitous, characterizing
both natural organisms and human constructions including art. Accordingly, mirror symmetry is
detected effortlessly and very rapidly (i.e., in a few tens of milliseconds) by the human visual system,
especially when symmetry is along the vertical plane, which is considered the most salient axis also
because of the lateral position of the eyes (for a review see Reference [64]). Interestingly, symmetry acts
as a grouping principle of perceptual organization, even when it is haptically perceived (i.e., without
any available visual input), both in sighted and blind individuals [65]. However, the vertical axis
of symmetry does not seem to be more salient than other axes in early blind individuals, a finding
suggesting that the vertical axis salience may depend on normal exposure to vertical symmetry in the
visual world [21,22,66]. For instance, in a study by Cattaneo and colleagues [21] blind and sighted
participants were presented with a short-term memory task in which they had to memorize and
retrieve a series of target cells on a 2D matrix that had to be explored in the haptic modality. Crucially,
target cells could either form a symmetric spatial configuration (i.e., along the vertical or the horizontal
axis) or be arranged in a random, non-symmetrical layout (see Figure 1). The results showed that while
sighted participants exhibited a better memory recall for the vertical configurations as compared to
the horizontal ones, no such difference characterized the performance of early blind individuals thus
suggesting that visual experience does play a crucial role in symmetry detection [21].

At the neural level, early functional magnetic resonance imaging (fMRI) studies in sighted
individuals have shown that extrastriate visual regions including the lateral occipital (LO) cortex are
bilaterally activated during visual symmetry detection [67,68]. Yet, more recent studies employing
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non-invasive brain stimulation have indicated that symmetry detection may recruit more areas in
the right hemisphere; in particular, the right LO cortex, further extending to the right occipital face
area (OFA), a key area in face processing [69–71]. Indeed, one of the factors contributing to such
a hemispheric asymmetry for symmetry detection may be represented by the right-hemispheric
dominance in face processing (with symmetry being a critical cue in face detection [72]). The study
of visual deprivation represents an interesting opportunity to corroborate this hypothesis. In fact,
if hemispheric asymmetries in mirror symmetry detection are mainly driven by the right-lateralized
network for face processing; we may expect no such a lateralized pattern in the early blind given that
they do not have extensive visual experience with faces.

The only fMRI evidence available regarding the neural correlates associated with symmetry
detection in the blind is the study by Bauer et al. [20]. Bauer et al. [20] required blind and sighted
individuals to detect tactile symmetrical patterns. No specific lateralization pattern emerged in the LO
cortex in either the blind or sighted participants; this is in agreement with prior neuroimaging evidence
in the sighted [67,68]. Yet, to gather causal evidence from the putative role of visual experience in
shaping hemispheric asymmetries in symmetry perception, future studies should explore the effect of
transient disruption of right versus left LO cortex activity in blind individuals through non-invasive
brain stimulation.

4. Localization Tasks

Consistent evidence from testing sighted individuals suggests that spatial processing
and navigation in the visual world recruits the right more than the left hemisphere [73].
Such right-hemispheric dominance has also been reported in sound and tactile localization. Indeed,
a large body of evidence suggests a right-hemispheric dominance for auditory spatial processing in
humans with a crucial role of right parietal areas [74,75]. Similarly, tactile localization relies on a
clearly asymmetric network, with the ability to localize objects in contact with the skin mediated by the
right temporo-parietal junction [76]. This then begs the question: what is the role of a normal visual
development in generating such hemispheric asymmetries? The lack of visual experience often leads
to superior ability in sound and tactile localization [77,78], raising questions whether these functions
are supported by more lateralized networks in the blind.

Blind individuals have been shown to have a three-dimensional spatial mapping of sound sources
with equal or better precision than sighted individuals [78]. Further, whereas sighted and late blind
individuals show severe impairments in localizing sounds monaurally [79], early blind individuals
are able to localize a sound source under both monaural and binaural testing conditions [44,78,80].
Yet, despite evidence of enhanced abilities of blind individuals in detecting auditory stimuli originating
from the periphery, this does not inform us thoroughly about any lateralization patterns following
visual deprivation.

Direct indication about relative spatial biases in sound localization comes from a study by Vercillo
and colleagues [24]. This study compared blind and sighted participants’ performance in a simple
pointing task with static or moving sounds along the horizontal plane as well as in a task with moving
sounds and head movements. Vercillo et al. [24] found that rotational head movements impaired
sound localization in blind but not in sighted individuals with a bias in the direction of head motion
in blind participants (suggesting a higher reliance in the blind on a body-centered reference frame).
Critically, whereas no bias was observed in sighted subjects in the static condition, the group of early
blind participants displayed a significant mislocalization toward the left. Such a dissociation resembles
the pattern observed in the tactile bisection task in which a larger leftward bias has been consistently
observed in blind subjects as compared to sighted controls [14,15].

In considering the leftward bias observed in blind (but not sighted) individuals for sound
localization, it is worth mentioning neuroimaging studies that reported a specific recruitment of the
right dorsal extrastriate occipital cortex during auditory spatial processing [46,81,82]. Accordingly,
TMS delivered to the right occipital cortex in blind individuals affected sound localization abilities,
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especially for sounds originating from the left hemispace [23]. On the contrary, TMS delivered over
the right intraparietal sulcus (rIPS) did not affect spatial processing of sounds in blind individuals,
whereas it did so in sighted participants [23,83], suggesting that spatial localization abilities may rely
also and possibly more on right-occipital than right-parietal regions in the blind. It is likely that the
further recruitment of right occipital regions (beyond the typical fronto-parietal network) during
spatial processing may contribute in the blind to strengthen a leftward bias in tasks tapping on spatial
processing such as line bisection or sound localization.

5. The Role of Sensorimotor Experience

Visuospatial asymmetries in healthy individuals have long been interpreted primarily in terms of
hemispheric activation [84,85]. According to the hemispheric activation hypothesis, the spatial nature of
the task (e.g., line bisection task or cancellation task) would induce a preferential activation of the right
hemisphere, leading in turn to an overestimation of the left hemispace and, thus, to the leftward bias
known as pseudoneglect. This interpretation is a consequence of the Kinsbourne’s activation–orientation
theory, which maintains that the attentional resources are located in the contralateral space of the most
activated hemisphere [86,87]. Accordingly, various neuroimaging studies have reported a specific
activation of the posterior parietal cortex during visuospatial tasks [39–41].

Despite the large consensus on a neurobiological basis of visuospatial asymmetry, recent evidence
has pointed to the possible role of experiential factors (and, specifically, of sensorimotor experience) in
modulating pseudoneglect. Over the past years, it has been repeatedly shown that cultural practices,
such as reading habits, broadly influence spatial processes at both perceptual and representational
levels. Critically, evidence for a cultural shaping of pseudoneglect-like biases is also not lacking.
That is, reading habits have been found to influence line bisection tasks with readers of left-to-right
oriented languages showing a leftward bias and readers of right-to-left oriented languages displaying an
opposite, rightward bias [88–90]. These cross-cultural differences indicate that visuospatial asymmetries
would reflect the tendency to scan information in the direction in which one reads. Because reading and
writing routines permeate our everyday life across the entire lifespan, such directional sensorimotor
practices would result in the allocation of more attentional resources in the hemispace in which one
starts to read and write. This is also supported by developmental evidence indicating that the leftward
bias in Western children emerges gradually over the school years with the formal introduction of
reading and writing practices [37,38]. Accordingly, an interaction between biological and cultural
(i.e., linked to sensorimotor experience) factors has been proposed to account for these findings with
sensorimotor practices, such as reading and writing habits, that can either reinforce or modulate the
leftward bias arising from the right hemisphere dominance in spatial processing [90].

The possibility that the lack of visual experience may strengthen the hemispheric lateralization
for spatial processing (i.e., as indexed by the more pronounced leftward bias reported in the blind in
bisection tasks) should be considered in the context of the several compensatory mechanisms that blind
individuals need to develop in order to cope with their visual deficit. Tactile and auditory information
are crucial for blind individuals to explore and represent the surrounding environment [10]. Hence,
blindness imposes great demands on other sensory systems to make compensatory adjustments in the
absence of sight. To account for the greater leftward bias showed by early blind individuals, we first
pinpoint that as a consequence of neuroplastic reorganization, parietal cortical areas would be greatly
implicated during tactile tasks (such as the line bisection task) and would be characterized by specific
functional networks with strengthened occipitoparietal connectivity, as indicated by previous studies
(e.g., [91]). Second, the greater demands on other sensory channels would be clearly reflected in the
reading system blind individuals have to learn starting from early infancy, that is, Braille reading.
In analogy with visual reading in Western countries, Braille reading proceeds from left-to-right.
Yet, in contrast to visual reading, Braille is a tactile system in which the reader has to haptically scan
specific patterns using the fingers. In fact, individuals who learn to read Braille must acquire the
capacity to extract spatial information from subtle tactile stimuli [92]. As such, Braille reading imposes
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a marked increase in afferent and efferent demands of spatial computations, leading in turn to striking
adaptive changes in the human brain [92]. Crucially, Braille reading has been shown to engage the
occipital cortex, with recruitment being greater for more proficient Braille readers (i.e., greater occipital
recruitment for earlier/longer visual deprivation compared to late blind participants) [93,94]. Such an
experience-driven plasticity can be observed even in sighted adults who learn Braille after a relatively
long training period (e.g., 9 months) with the activation of the occipitotemporal cortex modulated
by the individual’s proficiency (i.e., as indexed by Braille reading speed) [95]. In Braille readers,
the nature of the line bisection task (i.e., presented in the haptic modality) may therefore activate the
right occipital cortex and contribute to the more pronounced leftward bias observed as compared to
sighted individuals. Whether Braille practice is responsible for the asymmetrical hemispheric functions
subserving the enhanced leftward bias in the blind is an open question that deserves future study,
which should ideally compare the performance of Braille and non-Braille readers in spatial tasks.
A similar argumentation can apply as well for the leftward bias reported only in blind (and not sighted)
participants for sound localization.

Sensorimotor experience may also be crucial in the lateralization of spatial processes that subserve
mirror symmetry detection. We have previously discussed the possible role of visual experience
(especially with faces) in determining the vertical symmetry advantage over the horizontal one in
sighted individuals. This possibility seems to be further supported by evidence from late blind
individuals. Indeed, while no advantage has been observed in early blind individuals, late blind
participants are significantly more accurate in remembering vertically compared to horizontally
symmetric configurations when presented in the frontal plane, in analogy with sighted participants [22].
The higher salience of vertically symmetric patterns in the late blind for the frontal presentation of
symmetrical configurations likely reflects a sort of visual “imprinting”. That is, previous experiences of
visual vertical symmetry were reinforced by the congruent external frame during frontal presentation,
resulting in the vertical symmetry advantage observed in late but not in early blind individuals.

6. Conclusions

Overall, the debate as to what extent visual experience contributes to a different development
of functional asymmetries subserving spatial processing has not reached definite conclusions.
Yet, available evidence indicates that the hemispheric dominance for spatial processing seems, overall,
largely unaffected by visual loss, as in both sighted and blind individuals’ spatial functions would
predominantly rely on the right hemisphere (see Figure 2). Beyond the common lateralization pattern,
spatial processes in the blind seem to be supported by a more extended cortical network in the right
hemisphere, which would be responsible for the more pronounced leftward bias in spatial tasks as
compared to the sighted. Despite right parietal activations in both the blind and sighted brain have
been consistently reported across a series of studies in spatial processing, parietal areas of the blind
brain would elaborate a larger amount of information during tactile tasks (such as the line bisection
task) as compared to the sighed (see Reference [91]). This, in addition to the cross-modal recruitment
of areas in the occipital cortex, may contribute to determining the larger leftward bias reported.

Because spatial processing in the blind relies on a different sensory input compared to the sighted
(i.e., where vision represents the primary sensory modality), the right hemisphere dominance for
spatial functions in the blind may appear surprising. Yet, several brain areas have been shown to
process information content independently of the sensory modality through which that information is
conveyed. Such an ability of the human brain to process and represent specific information content in
a more abstract manner, defined as supramodality, has been repeatedly reported in the blind (for a
review, see Reference [12]). Interestingly, recent studies on blind individuals indicate that also the
neural mechanisms subserving spatial perception and imagery are supramodal in nature (for a review,
see Reference [12]). Hence, regardless of the specific modality through which information would be
processed (i.e., whether visual, auditory or haptic), the right parietal cortex would play a crucial role
in orienting spatial attention resources. Accordingly, the superior parietal and intraparietal cortices
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appear to play a crucial role in spatial representation in both sighted and early blind individuals
and, thus, independently from visual experience [96]. Crucially, an influence of visual experience
on the lateralized brain network subserving spatial processing would be observed in the form of
cross-modal plastic phenomena [97,98]. Evidence from early blind individuals, indeed, indicates that
the occipital cortex is cross-modally recruited in the processing of non-visual information, such as
auditory, linguistic, and tactile stimuli [99,100]. In line with this evidence, the cross-modal recruitment
of the right occipital cortex may contribute, alongside with the involvement of the right parietal cortex,
in determining the greater behavioral lateralization (i.e., leftward bias) observed in different spatial
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localization tasks.

Finally, it is worth considering that despite blindness profoundly affects how an individual
interacts with the surrounding environment, there are many other experiential situations that can
affect the heterogeneous origins and manifestation of lateralization patterns. For instance, none of the
studies reviewed here has assessed possible additional variability due to the cross-cultural differences
in blind individuals (for recent views on how culture and genes co-shape human behavior and brain
see Reference [101]). This is particularly relevant, as many forms of spatial asymmetries have been
shown to rely on cultural habits. Future research should thus aim at addressing the possible interactive
effects of visual deprivation and cultural habits as well as handling the issue of laterality by means of a
quantitative, meta-analytic approach.
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