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Abstract
In the last decades flow simulations have become a routine practice in many
industrial fields for the aerodynamic and noise prediction. Moreover, the ever
increasing interest in simulating off-design operating conditions promoted the
development of high-fidelity simulation tools to overcome the modeling and
accuracy limits of standard industrial codes in predicting turbulent separated
flows. The discontinuous Galerkin (DG) method is well suited for this class of
simulations, but today DG-based CFD and CAA (Computational AeroAcous-
tics) solvers cannot yet reach the computational efficiency of well-established
commercial codes. As a consequence, the present paper aims at exploiting some
attractive strategies, such as the adaptation of the elemental polynomial degree
(p-adaptation) and of the degree of exactness of quadrature rules, to enhance
the computational efficiency of an implicit DG platform for CFD and CAA sim-
ulations. Moreover, a sponge layer non-reflecting boundary treatment has been
also implemented for CAA. The predicting capabilities of the method have been
assessed on classical CAA and CFD test cases. The proposed adaptive strategy
guarantees a significant reduction (≈50%) of the computational effort for both
CFD and CAA simulations, compared to uniform-order discretizations, while
not spoiling the high accuracy requested to an high-fidelity simulation tool.
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1 INTRODUCTION

In many industrial fields standard second-order accurate codes are not able to satisfy the growing need for high-fidelity
flow simulations. In this context higher-order methods, such as the discontinuous Galerkin (DG) methods,1-6 can present
a viable solution. DG methods, compared to industrial codes, can provide a greater accuracy, but are still too compu-
tational demanding for a routine use.7 However, the industrial interest for these methods has been strongly promoting
research efforts to increase their efficiency.8-12 Previous works contributed to the development of efficient high-order
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numerical methods for steady and unsteady flow problems involving adaptation of the spatial discretization by varying
the order of the polynomial approximation throughout the domain, for example, References 13-17, by performing mesh
adaptation, for example, References 18-22, or both, for example, References 23,24.

In this article, a p-adaptation strategy has been developed to increase the computational efficiency of a DG solver25

for both Computational AeroAcoustics (CAA) and Computational Fluid Dynamics (CFD) simulations, for example,
scale-resolving simulations performed according to the implicit large eddy simulation (ILES) approach. In the ILES,4,5,25-31

the unfiltered Navier–Stokes equations are solved and the numerical dissipation introduced by the discretization plays
the role of an explicit subgrid-scale (SGS) model that dissipates the smallest scale eddies.

The proposed order-adaptive strategy locally varies the polynomial degree of the solution representation within each
element according to an error estimator, thus reducing the CPU time and memory usage, while not spoiling the spectral
resolution required by CFD and CAA computations. CFD and CAA simulations are here based on the same set of gov-
erning equations, that is, the Navier–Stokes equations, but focusing on different features of the flow field. In fact, we are
mainly interested in loads distributions and total pressure losses for the CFD applications, while we seek to accurately
solve the acoustics perturbations over the domain for the CAA applications.

The idea behind this work is to use, as far as possible, the same framework for both applications to significantly
reduce the efforts in code development and maintenance. To this end, we opted for the same error estimator, regard-
less of the type of application, which combines two contributions: (i) the solution jumps at grid cells interfaces;32,33 (ii)
the decay rate of the modal coefficients of the polynomial expansion.34 This coupling guarantees a proper behavior both
for high- and low-degree polynomial approximations. Despite not targeting any specific output quantity, the strategy
performed reasonably well in the solution of both compressible and incompressible turbulent flows.35-37 Although we
formally rely on the same estimator, its value is calculated from two different solution statistics, computed at runtime,
depending on whether we are interested in CFD or CAA aspects. In particular, for the turbulent flows proper of most
of the CFD applications we use the time-averaged solution, while the estimator is computed from the root-mean-square
(r.m.s.) of the solution for the CAA cases. To further optimize the computational effort, the degree of exactness for
the quadrature rules is adapted over the mesh to avoid the possible over integration of straight-sided elements, while
online load-balancing is applied to handle the degrees of freedom imbalance on each partition due to the adaptation
algorithm.

When dealing with CAA, and, in general, with high-fidelity flow simulations, the use of a non-reflecting boundary
treatment is mandatory for the correct prediction of some quantities and distributions, for example, the sound directiv-
ity. Supported by the results of Colombo and Crivellini,38 we opted for an absorbing sponge layer approach and extended
its implementation to a p-adaptive framework. The accuracy and efficiency of the adaptive strategies have been assessed
on classical CAA test cases, such as the flow around a circular cylinder at Reynolds number ReD = 100 with Mach num-
bers M∞ = {0.15, 0.5},38 and on the ILES of the flow: (i) around a circular cylinder at ReD = 3900 and (ii) around a
Selig-Donovan 7003 (SD7003) airfoil at ReC = 60,000 and angles of attack 𝛼 = {4◦, 8◦}.

The article is organized as follows. Section 2 introduces the DG spatial discretization and the implicit time integra-
tion of the governing equations. Section 3 briefly discusses the method implementation with particular attention to the
definition of the orthonormal hierarchical polynomial basis functions, the algorithm used to adapt the degree of exact-
ness for quadrature rules, the p-adaptation strategies and the load balancing algorithm. In Section 4 the results from the
testcases are presented. Finally, the conclusions are given in Section 5.

2 THE NUMERICAL METHOD

In this section we briefly describe the spatial and temporal discretization used by the DG code MIGALE (see Refer-
ences 5,39 for a more complete description).

2.1 The DG discretization of the Navier–Stokes equations

The complete set of the Navier–Stokes equations for compressible flows can be written as
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where 𝜌 is the fluid density, E and H are the total energy and enthalpy, respectively. The pressure p, the stress tensor 𝜏ij
and the heat flux vector qj are given by
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where 𝛾 = Cp∕Cv is the ratio of gas specific heats, Pr is the molecular Prandtl number, h is the enthalpy and

Sij =
1
2
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)
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is the strain-rate tensor.
In compact form the set of governing equations can be written, for d dimensions and m = 2 + d variables, as

P(w)𝜕w
𝜕t

+ ∇ ⋅ Fc(w) + ∇ ⋅ Fv(w,∇w) = 0, (6)

where w = [p,T,ui=1,… ,d] ∈ Rm is the unknown solution vector, Fc,Fv ∈ Rm ⊗ Rd are the convective and viscous flux
functions, and P(w) ∈ Rm ⊗ Rm is a transformation matrix. Notice that, when using the set of conservative variables, that
is, w = wc = [𝜌, 𝜌ui, 𝜌E]T , P reduces to the identity matrix I. For reading convenience we will also refer to the velocity
vector as u = [u1,u2,u3] = [ux,uy,uz].

By multiplying Equation (6) by an arbitrary smooth test function v = {v1, … , vm}, and integrating by parts, we obtain
the weak formulation

∫Ω
v ⋅

(
P(w)𝜕w

𝜕t

)
dx − ∫Ω

∇v ∶ F(w,∇w)dx + ∫
𝜕Ω

v ⊗ n ∶ F(w,∇w)d𝜎 = 0, (7)

where F is the sum of the convective and viscous flux functions and n is the unit vector normal to the boundary.
Following the idea to define discrete polynomial spaces in physical coordinates, an approximation based on the

space

P
k
d(h)

def
=

{
vh ∈ L2(Ω) | vh|K ∈ P

k
d(K), ∀K ∈ h

}
, (8)

is considered, where k is a non-negative integer and P
k
d(K)denotes the restriction of the polynomial functions of d variables

and maximum degree k to the cell K, part of the computational mesh h = {K} of the flow domain Ω ∈ Rd. For the sake
of presenting the discretization, we define the set h of the mesh faces h

def
=  i

h ∪ b
h , where b

h collects the faces located
on the boundary of Ωh and for each F ∈  i

h there exist two elements K+,K− ∈ h such that F ∈ 𝜕K+ ∩ 𝜕K−. Moreover,
for all F ∈ b

h , nF denotes the unit outward normal to Ωh, whereas, for all F ∈  i
h, n−

F and n+
F are unit outward normals

pointing to K+ and K−, respectively.
To discretize Equation (7) we replace the solution w and the test function v with a finite element approximation wh

and a discrete test function vh, respectively, where wh and vh belong to the space Vh
def
= [Pk

d(h)]m. As we deal with adap-
tive computations, the polynomial space will be denoted as P

km→kM
d , where km and kM are the minimum and maximum

polynomial degree over the discretization, respectively. The symbol kK denotes the polynomial degree local to any ele-
ment K ∈ h. For each mesh cell an orthonormal and hierarchical basis Φk

K =
{
𝜙K

i

}
, where i ∈ {1, … ,NK

dof }, is obtained
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by applying the modified Gram-Schmidt (MGS) orthogonalization algorithm to a set of monomials defined in a reference
frame centered in the element barycenter and aligned with the principal axes of inertia of the element.39 Details on the
implementation of shape functions will be given in Section 3.1. Each component j = 1, … ,m of the numerical solution
wh over each element K can be expressed, in terms of the elements of the global vector W of unknown degrees of free-
dom, as wK

h,j = 𝜙K
l W K

j,l where WK is the local part of the global vector storing the degrees of freedom of the element K and

the repeated index l implies summation over the range l = 1, … ,NK
dof = card(PkK

d ). As a function wh ∈ P
k
d(h) is double

valued over a mesh face we introduce the jump [[wh]]
def
= wh|K+n+

F + wh|K−n−
F and the average {wh}

def
= (wh|K+ + wh|K−)∕2

trace operators. These operators act componentwise when applied to a vector.
Then, the DG discretization of the Navier–Stokes equations consists in seeking, for j = 1, … ,m, the elements of W

such that

∑
K∈h

∫K
𝜙iPj,k (wh)𝜙l

dWk,l

dt
dx

−
∑

K∈h
∫K

𝜕𝜙i

𝜕xn
Fj,n (wh,∇hwh + r ([[wh]])) dx

+
∑

F∈h
∫F

[[𝜙i]]n F̂j,n
(
w±

h , (∇hwh + 𝜂FrF ([[wh]]))±
)

dx = 0, (9)

for i = 1, … ,NK
dof , where repeated indices imply summation over the ranges k = 1, … ,m, l = 1, … ,NK

dof and n =
1, … , d.

The space discretization of the second-order terms uses the BR2 scheme,40 where the viscous numerical flux is given
by

F̂v
(
w±

h , (∇hwh + 𝜂FrF ([[wh]]))±
)
= {Fv (wh,∇hwh + 𝜂FrF ([[wh]]))} , (10)

r and rF are the global and local lifting operators, respectively, and 𝜂F is the stability parameter defined according to
Reference 41. The convective numerical flux is computed as a Godunov flux using the exact Riemann solver of Gottlieb
and Groth.42

2.2 Implicit time integration

Numerical integration of Equation (9) by means of suitable Gauss quadrature rules leads to a system of nonlinear ODEs
that can be written as

MP(W)dW
dt

+ R(W) = 0, (11)

where R(W) is the vector of residuals and MP(W) is the global block diagonal matrix arising from the discretiza-
tion of the first integral in Equation (9). For sets of variables different than wc, the transformation matrix P couples
the degrees of freedom of the variables wh within each block of MP. The high-order accurate time integration per-
formed here is the multi-stage linearly implicit (Rosenbrock-type) Runge–Kutta scheme. This class of schemes requires
the solution of a linear system at each stage, while the Jacobian matrix needs to be assembled only once per time
step

Wn+1 = Wn +
s∑

j=1
mjYj, (12)

(
I

𝛾Δt
+ J̃

)n

Yi = −R̃

(
Wn +

i−1∑
j=1

aijYj

)
+

i−1∑
j=1

cij

Δt
Yj, i = 1, … , s, (13)

where, omitting the dependence on W for notational convenience,
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J = 𝜕R
𝜕W

, R̃ = M−1
P R, J̃ = 𝜕R̃

𝜕W
= M−1

P

(
J − 𝜕MP

𝜕W
R̃
)
, (14)

and mi, aij, cij are real coefficients. In this work the three stages, third-order (ROS3P) scheme of Lang and Verwer43 was
used; an extended review of several Rosenbrock schemes as well as their coefficients are reported in References 44,45.
The Jacobian matrix J is computed analytically and a preconditioned GMRES method is used to solve Equation (12) at
each stage. The code relies on PETSc46 for the linear solvers and to manage data parallelism.

3 INGREDIENTS FOR AN EFFICIENT p-adaptive IMPLEMENTATION

In this section we list the basics building blocks used for an efficient implementation of the p-adaptive capabilities in the
compressible version of the DG code MIGALE.

3.1 Efficient evaluation of the basis functions

Basis functions must be used so many times during operators assembly that their efficient evaluation is mandatory to avoid
the reduction of the overall solver performance. In this work a set of orthonormal and hierarchical basis functions has
been adopted, built according to Reference 39 by means of the modified Gram-Schmidt (MGS) algorithm. In particular,
a set of orthonormal basis functions, Φk

K =
{
𝜙K

i

}
with i ∈

{
1, ...,NK

dof

}
is obtained by applying the MGS procedure to

an initial set of monomials, Φ̂k
K =

{
�̂�

K
i

}
with i ∈

{
1, ...,NK

dof

}
, defined in a reference frame relocated in the element

barycenter and aligned with the principal axes of inertia of K.
The basis functions can be evaluated according to three possible strategies:

• Full storing (|PreShape|): the basis functions and, if needed, their derivatives are evaluated at each Gauss point during
pre-processing and stored in memory.

• Pre-computed orthonormalization coefficients (|PreCoef|): the MGS coefficients are evaluated and stored during
pre-processing for each element, while the monomials are evaluated and orthonormalized on-the-fly, using the
pre-computed coefficients.

• On-the-fly evaluation (|OTF|): both the monomials and the orthonormalization coefficients are computed on-the-fly
during assembly.

As shown in Reference 35 for a prototype problem, the computational time increases from the |PreShape| to |OTF|,
due to a larger amount of operations performed at runtime, while memory increases from |OTF| to |PreShape|. Although
the three strategies are all implemented in our solver, we only use the |PreShape| or the |PreCoef| approaches for real
life computations, depending on the choice to optimize the computational time or the allocated memory. We remark
that the |PreShape| strategy is particularly suited when using matrix-free implementations of the GMRES iterative linear
solver, where the spatially discretized operator, that is, the residual function, needs to be evaluated at each linear system
iteration, see Reference 37.

3.2 A p-adaptation strategy for the CAA and CFD

A p-adaptation strategy aims at varying the polynomial degree of the solution over the mesh, and the local lack/excess of
spatial resolution is adjusted according to some error estimator. CFD and CAA simulations are here based on the same
set of governing equations, that is, the Navier–Stokes equations, but different features of the flow field are considered.
While we are mainly interested in force distributions and total pressure losses for the CFD applications here considered,
we seek to accurately solve the acoustics perturbations over the domain for the CAA applications. However, the main
idea behind this work is to rely on, as far as possible, the same framework for both applications to significantly reduce the
efforts in code development and maintenance. To this end, we opted for the same error estimator, regardless of the type
of application, which combines two contributions: (i) the solution jumps at grid cells interfaces;32,33 (ii) the decay rate of
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the modal coefficients of the polynomial expansion.34 Although we formally rely on the same estimator, this is calculated
from two different solution statistics, computed at runtime, depending on whether we are interested in CFD or CAA
aspects. In particular, for the CFD applications we compute the estimator from the time-averaged solution, while for the
CAA cases the estimator is computed from the root-mean-square (r.m.s.) of the solution. For the sake of compactness we
will refer to these strategies as p-CFD and p-CAA, respectively.

The r.m.s. of the solution is here stored in terms of coefficients of the polynomial basis. In a modal context, this implies
a L2-projection of the r.m.s. on a finite element space. However, to collect this statistic at runtime we would need to
actually project and store the squared solution components. This would imply the use of a much larger polynomial space,
that is, P

2k
d (K) ∀K ∈ h, with a substantial impact on the CPU time and memory usage. Supported by some numerical

experiments and considering that this statistic takes only part into the evaluation of the error estimator, we decided to
project the r.m.s. on the same polynomial space of the solution, that is, P

k
d(K) ∀K ∈ h, with significant computational

savings.
The jump indicator is calculated as the maximum normalized pressure (mean or r.m.s) difference at the interfaces of

the element K

𝜂JMP
K = max

if
max

j

||||||||
(

p
(

xj
)
− p

(
xj
)+)

if(
p
(

xj
)
+ p

(
xj
)+)

if

||||||||
, (15)

where p(xj) is the pressure value at the j th surface quadrature point xj on the if th element’s interface and computed
with the degrees of freedom of the solution belonging to the cell K, while p(xj)+ is the pressure value at the same location
but computed with the degrees of freedom belonging to the cell sharing the face if with K. Our numerical experiments
revealed that this indicator, probably due to its stencil, marks for adaptation large regions of the domain, especially when
dealing with low-order solutions.

The spectral decay indicator (SDI) correlates the amplitudes of highest modes of the solution to the amplitude of the
total modes, and is defined as

𝜂SDI
K =

∫K (pK − p̃K)2dx
∫K (pK)2dx

, (16)

pK(x) =
NK

dof∑
l=1

Wp,l𝜙
K
l (x), p̃K(x) =

LK
dof∑

l=1
Wp,l𝜙

K
l (x), (17)

where Wp,l are the coefficients of the modal expansion related to the pressure (mean or r.m.s) variable, NK
dof the number

of degrees of freedom associated to the local polynomial degree kK , and LK
dof the number of degrees of freedom associated

to the polynomial degree kK − 1.
Unlike the jump indicator, the SDI does not involve in its definition the solution on the neighboring cells. Moreover,

while the jump indicator can be computed for any polynomial degree, the SDI definition is not suited for piece-wise
constant approximations, that is, kK = 0.

The error estimator, inspired by Gassner et al.,33 has been implemented by combining the two indicators as

𝜂TOT
K = 𝜂SDI

K + 1
max (1, kK)

𝜂JMP
K , ∀K ∈ h, (18)

where, according to its definition and our numerical experiments, 𝜂SDI
K is set to 0 for kK = {0, 1}. Before the coupling, both

indicators 𝜂JMP and 𝜂SDI are normalized over the domain according to their maximum and minimum values.
The adaptation process is triggered by a simple indicator, trg, defined as the norm of the relative increment, computed

at each time step, of the vector of the degrees of freedom of the runtime time-averaged solution W.
The pseudo code for the p-adaptation strategy is reported in the Algorithm 1, where 𝓁 is the index denoting the 𝓁 th

adaptive cycle. The user-defined parameters for the process are:

• kini, the value for the uniform initialization of the polynomial degree over the mesh;
• nadp, the maximum number of adaptation cycles;
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• toltrg, a threshold tolerance for the activation of the adaptation process;
• adp, the minimum number of time steps, icyc, between two adaptation cycles;
• kmax, the maximum allowable polynomial degree;
• kK , the polynomial degree on element K;
• r, the percentage of elements with the higher estimated error that are marked for refinement at each adaptation cycle;
• c, the percentage of elements with the lower estimated error that are marked for coarsening at each adaptation cycle;
• POSK , the position of the element K in an array numbered from zero and sorted in increasing order according to the

estimator 𝜂TOT
K value;

• Ncyc, the total number of time steps.

Algorithm 1. p-adaptation algorithm

1: 𝓁 = 0
2: jcyc = 1
3: kK = kini ∀K ∈ h
4: for icyc = 1 → Ncyc do
5: advance the solution in time
6: evaluate the runtime time-averaged solution, W
7: compute trg: the relative increment of W
8: if (jcyc ≥ adp and trg ≤ toltrg and 𝓁 ≤ nadp) then
9: 𝓁 ← 𝓁 + 1

10: if (𝓁 = 1 and kini = 0) then
11: for K ∈ h do
12: kK ← 1
13: end for
14: else
15: compute and normalize the estimators 𝜂TOT

K ∀K ∈ h
16: for K ∈ h do
17: if POSK ≥ (1 − r)card(h) then
18: kK ← min(kK + 1, kmax)
19: else if POSK<(c)card(h) then
20: kK ← max(kK − 1, 1)
21: end if
22: end for
23: balance the load among processors via re-partitioning
24: end if
25: L2 projection of the solution on the new polynomial space
26: jcyc = 0
27: end if
28: jcyc ← jcyc + 1
29: end for

The algorithm has been written in a general form, as we consider both refining and coarsening. However, all simu-
lations performed in this articles use very coarse meshes, where polynomial degree coarsening is not necessary, that is,
c = 0. As suggested by numerical experiments, the following initialization strategy has been adopted to optimize the
effectiveness and the computational efficiency of the algorithm: the computations start from a piece-wise free-stream
solution ( kini = 0) and the polynomial degree is increased uniformly to kK = 1,∀K ∈ h, during the first adaptation cycle
( 𝓁 = 1).
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F I G U R E 1 Quadrature reduction—Distribution of the number of volume quadrature points for the tolq = 10−2 (left) and tolq = 10−8

(right) case on the NACA0018 airfoil mesh, P6 approximation [Colour figure can be viewed at wileyonlinelibrary.com]

3.3 Adaptation of the degree of exactness for quadrature rules

Many approaches for the generation of meshes with curved edges rely on the agglomeration of underlying fine lin-
ear meshes and can produce grids accommodating both curved- and straight-sided cells. Following this approach,
the linear elements within the mesh are often not known a priori from the grid format and cells can be marked as
curved although they are (almost) straight-sided. As the number of points needed for an accurate integration drastically
increases when dealing with high-order approximations of the solution especially on curved cells, the over-integration of
straight-sided elements should be avoided when an efficient implementation of a DG method is pursued. Code MIGALE
implements an adaptive procedure to identify the curved elements by using a simple measure for the quadrature error,
defined as 𝜀i,K = |m∗

ii − mex
ii |∕|mex

ii |, where m∗
ii and mex

ii are the value of the i th diagonal entry of the local mass matrix
(mii = ∫K∈h

𝜙i(x)𝜙i(x) dx, where i = 1, … ,NK
dof ) computed with a “reduced” and an “exact” quadrature rule, respec-

tively. We use the term “exact” when the quadrature formula has a degree of exactness equal to 2kK + km, where 2k
represents the shape-shape product within the mass matrix and km the polynomial degree of the possibly nonlinear
mapping from the reference element, where quadrature points are defined, for example, a unit square, to the mesh face
or cell. According to a user-defined tolerance tolq, an integration rule with the minimum degree of exactness that sat-
isfy maxi∈1,… ,NK

dof
𝜀i,K ≤ tolq∀K ∈ h is used on elements (and faces) with significant computational time savings. The

quadrature rules adaptation process is performed only once during pre-processing and after each adaptation step of the
solution.

A proof of concept for the present algorithm is reported below. The error for the L2-projection of a given polynomial
function with respect to its analytical definition is compared for the “exact” and “reduced” cases when varying the tolq
value. For this test we selected a mesh representative of an external aerodynamics case, that is, the tessellation of a cylin-
drical domain, with farfield located at R = 5, surrounding a NACA0018 wing. The computational grid was generated by
extruding a two-dimensional mesh built with the high-order version of an in-house hybrid meshing tool based on the
advancing-Delaunay strategy.47 This coarse mesh is made of 2590 hybrid elements, hexahedra in the boundary layer and
prism outside. The mesh generator produces, by design, “real” curved elements only inside the boundary layer while in
the rest of the domain high-order points are simply added on straight edges. Figure 1 shows the distribution of the quadra-
ture points number over the mesh, when using the tolerance tolq = 10−2 and tolq = 10−8, and a uniform polynomial degree
k = 6.

It is worth noting that quadrature rules with the highest degree of exactness are only used in the boundary
layer region, where curved elements are created by the mesh generation process. The polynomial function f (x, y, z) =
(x3y3z3)∕R2 was used to assess the error on the integrals computation due the adaptive reduction of the number of
the quadrature points. Table 1 reports the total number of quadrature points for the volume integral and the inte-
gral error for different tolerance values tolq, where ||err||L2 is calculated with respect to a distribution with an exact
quadrature.

These results suggested to use tolq = 10−10, which allows reducing significantly the number of Gauss points without
spoiling the integral accuracy. Examples of DNS computations for incompressible flows that benefit of this adaptation
strategy are reported in Reference 37.

http://wileyonlinelibrary.com
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T A B L E 1 Quadrature reduction—L2-projection test on a the NACA0018 wing mesh

tolq #points ||err||L2

10−2 1.01 ⋅ 106 3.37 ⋅ 10−10

10−4 1.18 ⋅ 106 1.35 ⋅ 10−12

10−6 1.38 ⋅ 106 1.44 ⋅ 10−14

10−10 1.79 ⋅ 106 1.48 ⋅ 10−14

10−16 1.27 ⋅ 107 1.17 ⋅ 10−14

Note: Total number of the volume quadrature points and the integral error for different tolq values. ||err||L2 is calculated with respect to a distribution with an
exact quadrature.

3.4 Load balancing

After each adaptation cycle, an imbalance of the computational load among the processes is induced, requiring a tech-
nique to evenly re-distribute the effort over the processes. To this purpose, an online balanced re-partitioning of the
computational mesh is performed by exploiting the ability of the Metis library48 to enforce multiple constraints on a
weighted graph. In the graph, weights are associated to the vertices and corresponds to the cells of the computational grid.
The values of weights are properly set to balance the computational cost of (i) the residual and the Jacobian assembly, (ii)
the matrix-vector product of GMRES, (iii) the local number of quadrature points resulting from the adaptive algorithm
of Section 3.3. The parallel efficiency of the proposed p-adaptive framework (up to 2178 cores) and the details on the
definition of the weights can be found in Reference 49.

3.5 Non-reflecting sponge-layer

When dealing with CAA, and, in general, with high-fidelity flow simulations, the use of a non-reflecting boundary treat-
ment is mandatory for the correct prediction of some quantities and distributions, for example, the sound directivity.
Supported by the results of Colombo and Crivellini,38 we opted for an absorbing sponge layer approach and extended its
implementation to a p-adaptive context. The good performance of this simple numerical approach will be demonstrated
in Section 4.1. The non-reflecting treatment consists in explicitly adding to Equation (9) the term

−
∑

K∈h
∫K

𝜙i𝜎
(

wc,j − wr
c,j

)
dx, (19)

where wc,j and wr
c,j are the components of the vector of the conservative variables and the reference state computed from

the runtime time-averaged solution, respectively. The sponge layer profile 𝜎 is defined as 𝜎 = 𝜎0[(Δ − d)∕Δ]2 where Δ
is the layer width, d the distance from the free-stream boundary, 𝜎0 the maximum value. Moreover, the strength of the
sponge-layer St is an integral measure of 𝜎 and can be related to a sponge target-damping parameter 𝜂target measured in
decibels (dB). All the details on this reflection-absorbing method and its parameters are presented in References 38,50.
Finally, as this damping term only depends on elemental unknowns without coupling with neighbor elements, we remark
that the implicit implementation of the method is strongly simplified.

4 NUMERICAL RESULTS

The simulations for all the testcases have been initialized by computing, in sequence, uniform P0 and P1 solutions. After
initialization, the adaptation process was activated with c = 0, that is, disabling coarsening, and r = 0.2 to refine the
20% of elements with the highest estimated error values. An adaptation cycle is triggered according to the tolerance
toltrg = 0.02 and a minimum number of time-steps between two adaptation cycles adp corresponding to 5 Tc, where Tc
is a reference convective time defined according to the freestream velocity u∞ and the reference length (D or C). The
maximum allowable polynomial degree was kmax = 5 for the cylinders test cases and kmax = 3 for the SD7003 airfoil.
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Span-wise periodicity is assumed for all testcases. With the exception of the CFD cylinder testcase, we remark that we did
not increased the mesh density in the wake region, as we aim at automatically refining this region by placing higher-order
cells.

The computations have been integrated in time with the ROS3-3 scheme of Lang et al.43 and performed using 15 KNL
nodes, with 68 CPUs each, on the MARCONI A2 HPC system provided by CINECA, the Italian Supercomputing Center.

4.1 CAA test cases

The accuracy and efficiency of the proposed adaptation strategies have been assessed on a canonical CAA test case, that is,
the flow around a circular cylinder at Reynolds number ReD = 100 and two different Mach numbers, that is, M∞ = 0.15
and M∞ = 0.5. These testcases deal with the prediction of the noise generated by the vortex shedding behind the cylinder.
The flow problem was also used to demonstrate the reliability of a sponge layer non-reflecting treatment extended to a
high-order p-adaptive discretization. Colombo and Crivellini38 performed a parametric study to assess the performance of
this technique in case of uniform-order discretizations. The results indicated that a theoretically exponential damping for
waves travelling within the layer can be achieved by properly setting the sponge width. This section will demonstrate that
also in a p-adaptive framework, where a discretization coarsening could be naturally considered as an attempt to damp
oscillations, the use of a non-reflecting boundary treatment is mandatory for the correct prediction of those quantities, like
sound directivity, which would be spoiled by the boundary reflections. Finally, in this section the effects of the time-step,
which is defined as a fraction f of the convective time, that is, Δt = f (D∕uref) (with D the circular cylinder diameter), and
of the CAA and CFD error indicators on the computed results are investigated. To compare the error indicators, the lack of
symmetry for the r.m.s. of pressure fluctuations is considered, and it is defined as errr.m.s = 1∕n

∑n
i
|||p′

rms,i|y>0 − p′
rms,i|y<0

|||.
4.1.1 Flow past a circular cylinder, ReD = 100, M∞ = 0.15

The first CAA case is the laminar flow around the circular cylinder at M∞ = 0.15 and ReD = 100. This regime is char-
acterized by an alternate vortex shedding behind the cylinder. As acoustic pulses radiate from the body, an appropriate
non-reflecting treatment for boundary conditions is needed to correctly predict the sound dipole.

A hybrid unstructured mesh with a circular farfield boundary located at 40D from the cylinder center with 10,206
quadratic prismatic and hexahedral elements has been used. The two dimensional section of the mesh is made of 5103 ele-
ments, as in Reference 38, but it was extruded with two layer in the spanwise direction with periodic boundary conditions.
The mesh and the near wall detail are shown in Figure 2. All simulations have been advanced in time with a time-step
equals to a fraction f = 0.1628 of the convective time. The sponge layer has been used with 𝜂target = 40 and Δ = 20D, as
suggested in Reference 38. In fact, the adopted 𝜂target value reduces the incident sound waves by a factor 100 that can be

F I G U R E 2 Laminar flow past a circular cylinder M∞ = 0.15 —The computational mesh consists of 10, 206 triangular and quadrilateral
elements with quadratic edges with a circular farfield boundary located at 40D
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considered appropriate for a practical use. After achieving a periodic behavior of the force coefficients, time-averaged and
r.m.s. statistics have been computed on a period ∼ 35fL∕uref, where L = 2 × 40D is the domain extension.

Simulations have been performed with uniform polynomial degree discretizations, DG-P3 (2.04 ⋅ 105 DoFs) and DG-P4

(3.57 ⋅ 105 DoFs), and with both the p-CFD and p-CAA adaptation strategies. The total number of adaptation cycles per-
formed during each computation was set to nadp = 6 to reach a comparable number of DoFs per equation at the end of the
process, that is, 1.24 ⋅ 105 and 1.33 ⋅ 105 DoFs for p-CFD and p-CAA, respectively. Both error estimation strategies, that is,
based on the time-averaged pressure or the r.m.s. of the pressure fluctuation, were able to refine the discretization in the
shear layer and in the wake regions. However, high-order polynomial cells are differently distributed over the domain,
as shown in Figure 3A,C. In particular, we observed that p-CAA places high-order cells even upstream of the cylinder,
differently from p-CFD. Moreover, Figure 3B,D show the base-ten logarithm of the r.m.s. pressure fluctuations contour
for p-CAA and p-CFD strategies. The former allows to predict a smoother distribution of the r.m.s, while the latter show
some oscillations in the wake and upstream of the cylinder.

Figure 4 shows the pressure fluctuation p′
rms, measured in dB, as a function of the 𝜃 angle on a circle centered in

{x∕D, y∕D} = {0, 0} with radius r∕D = 30. Figure 4A shows the distribution computed by extending the solutions at
radius r∕D = 15, according to the inverse proportionality between pressure waves amplitude and the square root of the dis-
tance, while in Figure 4b the results are directly computed at r∕D = 30. All the computations are in reasonable agreement
with Desquesnes et al. 51 and Colombo et al. 38 The p -adaptive strategy exploits only∼ 65% of DoFs used for the uniform
P3 computation. Moreover, p-CAA approach provides smoother profiles than p-CFD, especially at stagnation point.

(A) (B)

(C) (D)

F I G U R E 3 Laminar flow past a circular cylinder M = 0.15 —Polynomial degree distribution and base-ten logarithm of r.m.s. pressure
fluctuations, 20 contour levels from −5 to −2, for p-CFD (1.24 ⋅ 105 DoFs) and p-CAA (1.32 ⋅ 105 DoFs), DG-P1→5 solution. (A) Polynomial
degree distribution, p-CFD; (B) base-ten logarithm of r.m.s. pressure fluctuations, p-CFD; (C) polynomial degree distribution, p-CAA; (D)
base-ten logarithm of r.m.s. pressure fluctuations, p-CAA [Colour figure can be viewed at wileyonlinelibrary.com]
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(A)

(B)

F I G U R E 4 Laminar flow past a circular cylinder M = 0.15 —Directivity plot of sound, spanwise-averaged pressure fluctuation p′
rms in

dB, located on a circle centered in {x∕D, y∕D} = {0, 0} with radius r∕D = 30. • Desquesnes et al., 51 − − − Colombo and Crivellini, 38

DG-P3 (2.04 ⋅ 105 DoFs), DG-P4 (3.57 ⋅ 105 DoFs), DG-P1→5 p-CFD (1.24 ⋅ 105 DoFs), DG-P1→5 p-CAA (1.33 ⋅ 105 DoFs). (A)
Distribution at r∕D = 30, extended from the adaptive computation at r∕D = 15 according to the inverse proportionality between pressure
waves amplitude and the square root of the distance (B) Distribution at r∕D = 30 from the adaptive computation [Colour figure can be
viewed at wileyonlinelibrary.com]

It is worth noting that the non-reflecting treatment was able to deliver a solution without pressure waves reflections,
and the adaptive algorithm marks for refinement also cells in the sponge layer region. Finally, the lack of symmetry
for the r.m.s. of pressure fluctuations, errr.m.s. (with n = 1000), is evaluated and tabulated in Table 2. The measure was
computed on circles centered in {x∕D, y∕D} = {0, 0} with radii r∕D = {10, 15, 20, 30}. The p-CAA algorithm delivers the
best solution in terms of symmetry (also with respect to p-CFD ) with a number of DoFs roughly one order of magnitude
lower than P3,4 computations.

T A B L E 2 Laminar flow past a circular cylinder M = 0.15—Evaluation of the non-symmetric behavior of the r.m.s. pressure
fluctuations, errr.m.s., for p-CFDand p-CAA, DG-P1→5, DG-P3, and DG-P4solutions on circles centered in {x∕D, y∕D} = {0, 0}with radii
r∕D = {10, 15, 20, 30}

DoFs r∕D = 10 r∕D = 15 r∕D = 20 r∕D = 30

p-CAA 132, 000 3.37e-7 2.98e-7 2.89e-7 2.06e-7

p-CFD 124, 000 1.12e-6 7.30e-7 5.87e-7 5.34e-7

DG - P
3 204, 000 1.76e-6 2.17e-6 2.80e-6 3.24e-6

DG - P
4 357, 000 1.61e-6 1.67e-6 1.63e-6 1.68e-6

http://wileyonlinelibrary.com
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4.1.2 Flow past a circular cylinder, ReD = 100, M∞ = 0.5

The flow around a circular cylinder at ReD = 100 and M∞ = 0.5 was computed to assess the influence of Mach number
on the combined performance of the non-reflecting sponge layer and the p-adaptive strategy.

The hybrid mesh is made of 13, 042 prismatic and hexahedral elements with quadratic edges and a circular farfield
boundary located at 35D. The two dimensional section of the mesh is made of 6521 elements and is the same used in
Reference 38 here extruded with two layer in the spanwise direction. The time-averaged and r.m.s. solutions have been
computed on a period ∼ 60fL∕uref. The sponge layer has been used with 𝜂target = 40 and Δ = 20D, as suggested in Refer-
ence 38. The total number of adaptation cycles performed has been set to nadp = 6 to guarantee a comparable number
of DoFs per equation at the end of the process, that is, 1.54 ⋅ 105 and 1.76 ⋅ 105 DoFs for p-CFD and p-CAA, respectively.
Simulations have been also performed with uniform DG - P3 elements discretization, resulting in 2.60 ⋅ 105 DoF, ∼59%
more DoF than the adaptive cases.

Figure 5 shows the polynomial degree distribution and the base-ten logarithm of r.m.s. pressure fluctuations contour
for both the p-CFD (Figure 5A,B) and p-CAA (Figure 5C,D). The polynomial degree distributions are quite different. In
particular, p-CAA algorithm uses high-order polynomial degree cells upstream of the cylinder to accurately capture the
interaction between waves of opposite sign, generated above and below the cylinder (see Figure 6). Both methods mark
for adaptation the wake, where strong perturbations characterized by a short wave length occur. However, this region is
ineffective in sound radiation and relative larger wave lengths, which are not constant for the Doppler effect, occur in the

(A) (B)

(C) (D)

F I G U R E 5 Laminar flow past a circular cylinder M = 0.5 —Polynomial degree distribution (left) and base-ten logarithm of r.m.s.
pressure fluctuations, 20 contour levels from − 4 to − 1, for p-CFD ( 1.54 ⋅ 105 DoF) and p-CAA (1.76 ⋅ 105 DoF), DG-P1→5 solution,
f = 0.1628. (A) Polynomial degree distribution, p-CFD; (B) base-ten logarithm of r.m.s. pressure fluctuations, p-CFD; (C) Polynomial degree
distribution, p-CAA (D) base-ten logarithm of r.m.s. pressure fluctuations, p-CAA [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 6 Laminar flow past a circular cylinder M = 0.5 —Pressure fluctuations, 32 contour levels from −0.02 to +0.02, p-CAA with
DG-P1→5 solution, f = 0.1628 [Colour figure can be viewed at wileyonlinelibrary.com]

rest of the domain. These perturbations are caused by the pressure fluctuations induced by vortex shedding, that is, the
problem is characterized by a dipole source, see Reference 52.

To assess the influence of the time-step on the adaptation strategy, the flow fields obtained with two different values
of f (f = 0.1628 and f = 0.0814) are compared in Figure 7. Notice that the final adapted polynomial degree distribution is
similar for both time-steps, as confirmed by the number of DoFs, 1.72 ⋅ 105 and 1.75 ⋅ 105 for f = 0.0814 and f = 0.1628,
respectively. As expected, also the r.m.s. pressure fluctuations contours are almost identical.

Figure 8 shows the pressure fluctuation p′
rms as a function of the 𝜃 angle on a circle centered in {x∕D, y∕D} = {0, 0}

with radius r∕D = 30 and a detail of the back of the cylinder. The uniform P3 simulation exhibits spurious oscillations
due to the lack of spatial accuracy far from the body, while adaptive results, especially the p-CAA algorithm, are in a
reasonable agreement with Colombo and Crivellini.38

In this section an alternative approach to the sponge layer to damp spurious oscillations incoming from the farfield
boundary is investigated. In fact, in an adaptive solver a straightforward and simple approach to damp oscillation can be
represented by the reduction of the local polynomial degree far from the body. However, this approach demonstrated not
to perform properly, as shown in Figure 9, where the polynomial degree is reduced to one in the region corresponding to
the sponge layer, but without using any damping term. Spurious oscillations can be observed, as for the solution without
the anti-reflecting treatment shown in Figure 10. For both cases, the adaptive algorithm refines the local polynomial
degree where non-physical oscillations occur. The results demonstrate that the p-CAA algorithm is better suited for CAA
flow problems than the p-CFD alternative and that a proper treatment for possible boundary reflections is mandatory also
in a p-adaptive context.

As for the M∞ = 0.15 case, a measure of the lack of symmetry of the r.m.s. of pressure fluctuations, errr.m.s. (with n =
18, 000), is evaluated on circles centered in {x∕D, y∕D} = {0, 0} with radii r∕D = {10, 20, 30} for p-CAA and p-CFD , after
six adaptation cycles and with f = 0.1628. Figure 11 shows the behavior of errr.m.s as a function of the DoFs (corresponding
to different values of nadp = {4, 5, 6}). The results are summarized in Table 3, where uniform P3 computations with the
same value of f are also reported. The p-CAA algorithm confirmed to deliver the overall best solution in terms of symmetry
with less DoFs than the uniform P3 computation. Moreover, Table 3 reports also the value of errr.m.s. with p-CAA for
different values of nadp, and of the fraction, f , of the convective time. Notice that already with nadp = 4, a lower lack
of symmetry with respect to DG-P3 is obtained at r∕D = {20, 30} with less than 50% of the DoFs. Also in this analysis
the influence of the time-step seems to be negligible. Finally, Table 4 reports a comparison between the most promising
approach for CAA, that is, the p-CAA, and the uniform P3 computation, which is taken as reference, both in terms of
required DoFs and computing time for different values of the adaptation cycles, nadp, and f = 0.1628. For all values of
nadp we can observe a saving both in terms of DoFs and computing time. In particular, the results with nadp = 4 show a
reduction of roughly the 60% of the required DoFs and computing time, but with higher symmetry with respect to the
uniform P3 computation at r∕D = {20, 30}.

http://wileyonlinelibrary.com
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(A) (B)

(D)(C)

F I G U R E 7 Laminar flow past a circular cylinder M = 0.5 —Polynomial degree distribution and base-ten logarithm of r.m.s. pressure
fluctuations, 20 contour levels from -4 to -1, for p-CAA with f = 0.0814 (1.72 ⋅ 105 DoFs) and f = 0.1628 (1.75 ⋅ 105 DoFs), DG - P1→5 solution,
nadp = 6. (A) Polynomial degree distribution, p-CAA, f = 0.0814; (B) base-ten logarithm of r.m.s. pressure fluctuations, p-CAA, f = 0.0814;
(C) Polynomial degree distribution, p-CAA, f = 0.1628; (D) base-ten logarithm of r.m.s. pressure fluctuations, p-CAA, f = 0.1628 [Colour
figure can be viewed at wileyonlinelibrary.com]

4.2 CFD test cases

The accuracy and efficiency of the p-CFD adaptive strategy have been assessed by computing the ILES of: i) the flow past
a circular cylinder at Reynolds number ReD = 3900; (ii) the flow around a SD7003 airfoil at Rec = 60, 000 and angles of
attack 𝛼 = {4◦, 8◦}.

4.2.1 Flow past a circular cylinder, M∞ = 0.1, ReD = 3900

The transitional flow around a circular cylinder at Mach number M∞ = 0.1 and ReD = 3900 is a very common flow
problem used as benchmark in the scientific community. This test case was also part of the suite of the International
Workshop on high-order methods.53

The simulations have been performed on two different meshes made of 44, 856 (mesh A) and 67, 466 (mesh B)
quadratic elements, hexahedra in the boundary layer and prism outside. Mesh A has been generated without wake refine-
ment, see Figure 12, to assess the performance of the adaptive strategy in recovering this lack of spatial resolution. A
periodic boundary condition over a width s = 2D is set in the spanwise direction to mimic an infinite domain discretized

http://wileyonlinelibrary.com
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F I G U R E 8 Laminar flow past a circular cylinder M = 0.5 —Plot of the sound directivity, pressure fluctuation p′
rms in dB, located on a

circle centered in {x∕D, y∕D} = {0, 0} and radius r∕D = 30. DG-P3 (2.60 ⋅ 105 DoFs), DG-P1→5 p-CFD (1.54 ⋅ 105 DoFs),
DG-P1→5 p-CAA (1.76 ⋅ 105 DoFs) [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 9 Laminar flow past a circular cylinder M = 0.5 —Polynomial degree distribution and base-ten logarithm of r.m.s. pressure
fluctuations, 20 contour levels from − 4 to − 1, (right) for p-CAA (1.72 ⋅ 105 DoFs), DG-P1→5 solution without anti-reflecting treatment and
using P1 elements only in the outer region [Colour figure can be viewed at wileyonlinelibrary.com]

by 14 elements. At the circular farfield, located at 50 D from the cylinder, characteristic-based boundary conditions are
imposed.

The maximum number of adaptation cycles has been set equal to nadp = 7 and to nadp = 6 for the mesh A and mesh
B, respectively. These values guarantee a comparable number of DoFs per equation at the end of the process, that is,
653, 679 and 681, 327 for mesh A and B, respectively. The final polynomial degree distribution has been used to compute
the average solution over 100 shedding cycles, see Figures 12 and 13. On both meshes the adaptive algorithm refines the
spatial discretization in the shear layer and wake regions of the domain. However, as expected, the high-order polynomials

http://wileyonlinelibrary.com
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F I G U R E 10 Laminar flow past a circular cylinder M = 0.5 —Polynomial degree distribution and base-ten logarithm of r.m.s. pressure
fluctuations, 20 contour levels from − 4 to − 1, (right) for p-CAA (1.58 ⋅ 105 DoFs), DG-P1→5 solution without using the sponge layer [Colour
figure can be viewed at wileyonlinelibrary.com]

F I G U R E 11 Laminar flow past a circular cylinder M = 0.5 —Evaluation of the non-symmetric behavior of the r.m.s. pressure
fluctuations, errr.m.s., for p-CAA and different nadp = 4, 5, 6 values and fractions f , that is, f = 0.0814 (left) and f = 0.1628 (right), of the
convective time, on circles centered in {x∕D, y∕D} = {0, 0} with radius r∕D = {10, 20, 30} [Colour figure can be viewed at
wileyonlinelibrary.com]

T A B L E 3 Laminar flow past a circular cylinder M = 0.5—Evaluation of the non-symmetric behavior of the r.m.s. pressure fluctuations,
errr.m.s., for p-CAA, p-CFD and DG-P3with different nadp, and fraction f of the convective time

Method nadp f DoFs r∕D = 10 r∕D = 20 r∕D = 30

p-CAA 4 0.0814 116,000 1.68e-05 1.61e-05 2.21e-05

p-CAA 5 0.0814 138,000 1.29e-05 1.30e-05 9.15e-06

p-CAA 6 0.0814 172,000 9.71e-06 9.89e-06 6.78e-06

p-CAA 4 0.1628 114,000 1.86e-5 1.50e-5 2.19e-5

p-CAA 5 0.1628 144,000 1.34e-5 1.36e-5 1.03e-5

p-CAA 6 0.1628 176,000 1.08e-5 1.11e-5 7.81e-6

p-CFD 6 0.1628 154,000 1.11e-5 2.19e-5 3.67e-5

DG-P3 - 0.1628 260,000 8.10e-6 1.85e-5 3.05e-5

http://wileyonlinelibrary.com
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T A B L E 4 Laminar flow past a circular cylinder M = 0.5—Computational time measured over 10 time-steps for p-CAAand different
nadpin comparison with uniform P

3 computation (taken as a reference), DG-P1→5 solution, f = 0.1628

Method nadp DoFs/DoFsr(%) Time/timer(%)

p-CAA 4 43.8 42.1

p-CAA 5 55.4 60.5

p-CAA 6 67.7 86.7

DG-P3 - 1 1

F I G U R E 12 Flow around a circular cylinder—Polynomial degree distribution over mesh A ( 6.53 ⋅ 105 DoFs), P1→5 solution [Colour
figure can be viewed at wileyonlinelibrary.com]

F I G U R E 13 Flow around a circular cylinder—Polynomial degree distribution over mesh B ( 6.81 ⋅ 105 DoFs), P1→5 solution [Colour
figure can be viewed at wileyonlinelibrary.com]

cells are placed differently on mesh A and mesh B. On mesh A (Figure 12), characterized by coarse cells in the wake
region, high-order polynomials are uniformly distributed in order to balance the initial lack of spatial resolution. On
mesh B (Figure 13) the error indicator localizes high-order elements more selectively in the wake region and shear layer,
consistently with the target overall number of degrees of freedom. Figure 14 shows the instantaneous Mach and pressure
coefficient contours for the two meshes.

Figure 15 shows the spanwise- and time-averaged pressure coefficients cp and the non-dimensional wall vortic-
ity Ω∕2Re0.5 distribution on the cylinder, which compare favorably with experimental data from Norberg54 and other
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(A) (B)

F I G U R E 14 Flow around a circular cylinder—Instantaneous Mach number and pressure coefficient contours for (A) mesh A and (B)
mesh B, P1→5 solution [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 15 Flow around a circular cylinder—Spanwise and time-averaged pressure coefficients cp (left) and non-dimensional wall
vorticity Ω∕2Re0.5 (right) distribution on the cylinder, P1→5 solution (Ma et al. DNS ∼ 100 ⋅ 106 DoFs56) [Colour figure can be viewed at
wileyonlinelibrary.com]

numerical simulations.55,56 Thanks to the proposed p-adaptation strategy the computed distributions can be considered
almost mesh independent.

Figure 16 shows the averaged streamwise ux∕uref and crosswise uy∕uref velocity profiles at different locations in the
wake of the cylinder x∕D = {1.06, 1.54, 2.02}, while Figure 17 the streamwise ux∕uref velocity along the centerline in the
wake of the cylinder. The results have been compared with the experiments from Parnaudeau et al.57 and Ong et al.,58

and other numerical results.55,59,60 These quantities confirm a good matching between experimental and our numerical
results. Furthermore, comparing the results of grids A and B, an almost mesh independent behavior is shown with the
exception of the first station. At the first station, the polynomial distribution of the mesh A seems to guarantee a better
resolution.

Figure 18 extends the comparison to the spanwise- and time-averaged streamwise u′
xu′

x∕u2
ref and crosswise u′

yu′
y∕u2

ref
velocity fluctuations, showing a good agreement with the results from the literature. Finally, Figure 19 shows the contours
of the time-averaged x -component of the velocity fluctuation.

Table 5 compares the results for mesh A and B with the references in terms of the root-mean-square lift coeffi-
cient cL rms, the time-averaged drag coefficient cD, the Strouhal number St, the time-averaged separation angles 𝜃sep, the
time-averaged base suction coefficient −cp b, the time-averaged peak of the streamwise velocity in the wake −umin∕uref
and the time-averaged recirculation zone length Lr∕D. The time-averaged separation angle 𝜃sep is calculated from the
condition of vanishing wall-shear stress in the time-averaged field around the cylinder, while the time-averaged base suc-
tion coefficient −cp b as the time-averaged pressure coefficient on the cylinder’s surface at 𝜃 = 180◦. The time-averaged
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F I G U R E 16 Flow around a circular cylinder—Spanwise and time-averaged stream-wise ux∕uref and cross-wise uy∕uref velocity profiles
in the wake of the cylinder. • Parnaudeau et al. exp,57 Wissink and Rodi DNS ( ∼256 ⋅ 106 DoFs),60 Meyer et al. ILES ( 6.5 ⋅ 106

DoFs),59 DG − P1→5 mesh A, DG − P1→5 mesh B [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 17 Flow around a circular cylinder—Spanwise and time-averaged stream-wise velocity ux∕uref profile along the centerline
(y∕D = 0) in the wake of the cylinder (Meyer et al. ILES 6.5 ⋅ 106 DoF59) [Colour figure can be viewed at wileyonlinelibrary.com]

suction coefficient is strongly related to the drag coefficient. The time-averaged recirculation length Lr∕D corresponds
to the distance between the surface of the cylinder and the sign change of the time-averaged streamwise velocity pro-
file along the centerline in the wake of the cylinder. The Strouhal number is defined as St = fsheddingD∕uref, where
fshedding is the frequency of the vortex shedding instability. A comparison between the results obtained on meshes A
and B shows a good agreement; some differences can be appreciated only for cL rms and Lr∕D. The comparison of our
predicted results with available reference data, that is, the experimental measurements of Norberg54 and Parnaudeau
et al.,57 shows a good agreement for the Strouhal number, cD, cL rms, cp b, Lr∕D, and 𝜃sep. Only −umin∕uref is slightly under
estimated.
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F I G U R E 18 Flow around a circular cylinder—Spanwise and time-averaged stream-wise u′
xu′

x∕u2
ref and cross-wise u′

yu′
y∕u2

ref velocity
fluctuations profiles in the wake of the cylinder. • Parnaudeau et al. exp,57 Wissink and Rodi DNS ( ∼ 256 ⋅ 106 DoFs),60 Meyer et al.
ILES ( 6.5 ⋅ 106 DoFs),59 DG − P1→5 mesh A, DG − P1→5 mesh B [Colour figure can be viewed at wileyonlinelibrary.com]

4.2.2 Flow around the SD7003: M∞ = 0.2, ReC = 60,000, 𝛼 = {4◦, 8◦}

The transitional compressible flow around the Selig-Donovan 7003 (SD7003) airfoil with Mach number M∞ = 0.2, angles
of attack 𝛼 = {4◦, 8◦}, Reynolds number ReC = 60, 000 based on the chord profile, C, and free-stream conditions, and
zero free-stream turbulence intensity at farfield, is considered here. The main difficulty of this testcase is related to the
correct prediction of a laminar separation bubble, that is, a transitional shear layer followed by turbulent reattachment
due to the enhanced momentum transport. The low Mach number has been chosen to compare our solutions with the
incompressible numerical results presented in the literature63-70 and experimental data.71-73

The mesh has 160,512 hexahedral quadratic elements and a first cell height of Δn∕C = 1.45 ⋅ 10−4. A periodic bound-
ary condition over a width s = 0.2C is set in the spanwise direction to mimic an infinite span wing. At the circular farfield,
located at 100 C from the airfoil, a characteristic-based boundary condition is imposed. Computations with different
no-slip wall boundary conditions, adiabatic and fixed temperature Twall∕Tref = 1.002,63 were performed in order to eval-
uate their influence on the solution. As no significant differences were found for the wall distributions (pressure and
skin friction coefficients) and the first- and second-order statistics (the velocity and velocity fluctuations profile), only the
results for the adiabatic wall are here presented. During the simulation the adaptation was performed 6 times with a final
number of DoFs equal to 1, 613,452 and 1, 627,750 for 𝛼 = 4◦ and 𝛼 = 8◦, respectively (see Figures 20 and 21). Snapshots
of the instantaneous pressure coefficient and Mach number contours are reported in Figure 22.

The performance of the proposed p-adaptation strategy is assessed by comparing the predicted results with reference
numerical results63-70 and experimental measurements by Selig et al.,71 Ol et al.72 and Hain et al.73 Table 6 summarizes
the comparison in terms of the integral load coefficients, and of the parameters of the laminar separation bubble, that is,
the separation and reattachment points coordinates, xs∕C and xr∕C, the separation bubble length and height, L∕C and
H∕C. The predicted results shows an early separation and a delayed reattachment of the laminar separation bubble with
respect to the experimental data. This discrepancy can be ascribed to the lower free-stream turbulence intensity. Only the
drag coefficient for the 𝛼 = 4◦ case seems to be quite different from the experimental value, but similar to other numerical
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(A) (B)

F I G U R E 19 Flow around a circular cylinder—Time-averaged x -component velocity ux∕uref and velocity fluctuations u′
x

2∕u2
ref for (A)

mesh A and (B) mesh B, P1→5 solution [Colour figure can be viewed at wileyonlinelibrary.com]

T A B L E 5 Flow around a circular cylinder—Comparison with the literature of the root-mean-square lift coefficient cL rms, the
time-averaged drag coefficient cD, the Strouhal number St, the time-averaged separation angles 𝜃sep, the time-averaged base suction
coefficient −cp b, the time-averaged peak of the streamwise velocity in the wake −umin∕uref and the time-averaged recirculation zone length
Lr∕D for mesh A and B, P

1→5 solution

Method cD cL rms St −cp b Lr∕D −umin∕uref 𝜽sep

Exp.61 0.99 - 0.22 - 1.19 0.24 86◦

Exp.54 0.98 0.04–0.15 - 0.84 - - -

Exp.58 - - 0.21 - - - -

DNS56 0.84 - 0.22 0.89 1.59 - -

Exp.57 - - 0.21 - 1.48 0.34 -

LES57 - - 0.21 - 1.56 0.28 -

DNS60 - - 0.22 - 1.588 0.33 87◦

LES62 1.04 - 0.2 0.94 1.35 0.37 88◦

LES Smag.
55 1.18 0.44 0.19 0.8 0.9 0.26 89◦

LES k−eq.
55 0.97 0.09 0.21 0.91 1.67 0.27 88◦

P
1→5 mesh A 0.98 0.15 0.21 0.87 1.46 0.25 88◦

P
1→5 mesh B 0.95 0.09 0.21 0.85 1.54 0.23 88◦

F I G U R E 20 Flow around a SD7003 airfoil—Polynomial degree distribution with near wall detail for the 𝛼 = 4◦ case ( 1.61 ⋅ 106 DoFs),
P1→3 solution [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 21 Flow around a SD7003 airfoil—Polynomial degree distribution with near wall detail for the 𝛼 = 8◦ case (1.63 ⋅ 106 DoFs),
P1→3 solution [Colour figure can be viewed at wileyonlinelibrary.com]

(A) (B)

F I G U R E 22 Flow around a SD7003 airfoil—Instantaneous pressure coefficient and Mach number contours for (A) 𝛼 = 4◦ and (B)
𝛼 = 8◦, P1→3 solution [Colour figure can be viewed at wileyonlinelibrary.com]

T A B L E 6 Flow around a SD7003 airfoil—Comparison of the laminar separation bubble dimensions and the aerodynamic loads for
𝛼 = 4◦(top) and 𝛼 = 8◦(bottom)

Method Tu (%) DoFs (106) xs∕C xr∕C L∕C H∕C cD cL

𝛼 = 4◦ Exp.72 0.1 - 0.30 0.62 0.53 0.028 - -

Exp.71 - - - - - - ≈0.016 ≈0.60

ILES DG- P
1→3 0 1.61 0.208 0.662 0.454 0.018 0.173 0.634

ILES-FD63 0 5.70 0.230 0.675 - 0.030 - -

ILES-FD65 0 54.37 0.207 0.649 0.442 0.017 0.021 0.599

ILES-DG67 - 10.94 0.209 0.654 - - 0.196 0.602

ILES-DG68 0 1.06 0.240 0.600 - - 0.220 0.603

𝛼 = 8◦ Exp. (TUBS73) 0.1 - 0.078 0.205 0.147 0.016 - -

Exp.71 - - - - - - ≈0.029 ≈0.92

ILES-DG- P
1→3 0 1.62 0.028 0.332 0.304 0.023 0.024 0.998

ILES-FD63 0 5.70 0.040 0.280 - 0.027 - -

ILES-FD65 0 54.37 0.031 0.303 0.272 0.020 0.044 0.917

ILES-DG66 - 4.55 0.030 0.336 - - 0.050 0.932

ILES-FD69 0 4.48 0.037 0.200 - - 0.034 0.968

ILES-FR70 - - 0.038 0.331 - - 0.042 0.949

Note: Tu is the freestream turbulence intensity, xs∕C and xr∕C are the separation and reattachment points coordinates, L∕C and H∕C the separation bubble
length and height, cD the drag coefficient and cL the lift coefficient.
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F I G U R E 23 Flow around a SD7003 airfoil—Spanwise- and time-averaged pressure cp (left) and skin friction cf (right) coefficients
distribution on the airfoil for 𝛼 = 4◦, P1→3 solution (Galbraith et al. 5.70 ⋅ 106 DoFs,63 Catalano et al. 8.63 ⋅ 106 DoFs,64 Garmann et al.
54.37 ⋅ 106 DoFs65) [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 24 Flow around a SD7003 airfoil—Spanwise- and time-averaged pressure cp (left) and skin friction cf (right) coefficients
distribution on the airfoil for 𝛼 = 8◦, P1→3 solution (Galbraith et al. 5.70 ⋅ 106 DoFs,63 Beck et al. 4.55 ⋅ 106 DoFs,66 Garmann et al. 54.37 ⋅ 106

DoFs65) [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 25 Flow around a SD7003 airfoil—Span-wise and time-averaged stream-wise velocity ux∕uref and velocity fluctuations
u′

xu′
x∕u2

ref profiles for 𝛼 = 4◦, DG − P1→3 solution (Garmann et al. 54.37 ⋅ 106 DoFs65) [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 26 Flow around a SD7003 airfoil—Span-wise and time-averaged stream-wise velocity ux∕uref and velocity fluctuations
u′

x
2∕u2

ref profiles for 𝛼 = 8◦, DG − P1→3 solution (Garmann et al. 54.37 ⋅ 106 DoFs,65 Beck et al. 4.55 ⋅ 106 DoFs66) [Colour figure can be viewed
at wileyonlinelibrary.com]

(A) (B)

F I G U R E 27 Flow around a SD7003 airfoil—Time-averaged x -component velocity ux∕uref and velocity fluctuations u′
x

2∕u2
ref (A) 𝛼 = 4◦

and (B) 𝛼 = 8◦, P1→3 solution [Colour figure can be viewed at wileyonlinelibrary.com]
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results. Only Garmann et al. shows a cD value comparable with experiments, but using a number of DoFs ≈ 33 times
higher with respect to our simulation. Although a general dispersion is observed in the published data, our results are
within a reasonable range, giving some confidence on the ability of adaptation in delivering good results with a significant
saving of DoFs.

Figures 23 and 24 show the spanwise- and time-averaged pressure and skin friction coefficients distribution for 𝛼 = 4◦

and 𝛼 = 8◦, respectively. As expected, some variability is observed in the published results but our P1→3 computations
compare well with the references. A reasonable agreement for the velocity and fluctuations profiles with the results of
Garmann et al.65 and Beck et al.66 is observed for both 𝛼 = 4◦ and 𝛼 = 8◦ cases, as shown in Figures 25 and 26, respectively.
Finally, Figure 27 shows the contours of the time-averaged x -component of the velocity fluctuation.

5 CONCLUSIONS

The article presents an implicit p -adaptive DG method designed for both CAA and CFD simulations. The solver takes
advantage of the same scalable computational framework, which uses a single simple definition for the error estimator
computed with different statistics, that is, the time-average or r.m.s. pressure distribution, whether the focus is on aerody-
namics loads and total pressure losses (CFD) or on the acoustics perturbations originated by flow unsteadiness (CAA). Our
implementation also exploits an adaptive selection for the quadrature rules degree-of-exactness to avoid over-integration
of straight-sided elements contributing to the overall efficiency of the method.

Numerical results on both CAA and CFD flow problems demonstrated the capability of the algorithm to deliver accu-
rate solutions, comparable or even better than uniform-order discretizations, with a significant reduction (≈ 50%) of the
computational effort. As expected, for CAA applications the use of a non-reflecting treatment at boundaries was manda-
tory. The present p-adaptive method was combined, without any ad-hoc tuning, with the simple sponge-layer approach
proposed in Reference 38 to damp the spurious reflection showing very good performance.

Future work will involve the development of advanced linear solvers designed to further reduce the memory footprint
and the solution time. Particular attention will be devoted to efficient matrix-free iterative solvers suited for the use in DG
discretizations of compressible flows in primitive variables.
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