
Università di Bergamo

Dipartimento di Ingegneria (Dalmine)

OPTIMISATION OF TUNED MASS DAMPER DEVICES

TOWARDS STRUCTURAL VIBRATION REDUCTION:

THEORETICAL SETTINGS AND NUMERICAL ANALYSES

Jonathan SALVI

Tesi di Dottorato in Meccatronica, Informazione,

Tecnologie Innovative e Metodi Matematici

XXVI Ciclo - Febbraio 2014





Optimisation of Tuned Mass Damper devices towards structural

vibration reduction: theoretical settings and numerical analyses

Jonathan SALVI

Tesi di Dottorato in Meccatronica, Informazione,

Tecnologie Innovative e Metodi Matematici

Abstract

The present doctoral thesis concerns theoretical concepts and numerical studies on

the optimisation of Tuned Mass Damper (TMD) devices towards the control and

reduction of structural dynamic responses, with specific reference to the context of

civil and seismic engineering. The fundamental background of the optimisation of

the TMD parameters, also called tuning, is presented first in its main features, based

on reference to the mainstream literature, and in the assessing the relevance of the

structural properties and of the role of the characteristics of the external excitation.

A comprehensive analysis on the tuning of passive TMDs as applied to a single-

degree-of-freedom primary structure subjected to benchmark ideal excitations is

carried out, focusing on a range of structural parameters typical of real engineering

applications. Then, the outcomes have been interpolated through nonlinear least

squares and optimum tuning formulas of the TMD parameters have been outlined

for each excitation case, based on ad hoc polynomial fitting models. Comparisons

with main references from the literature are provided.

The optimisation of TMD devices has been also investigated for the mitigation

of the transient response, with main focus on the impulse excitation. Initially,

a throughout optimisation of the passive device is derived, with consideration of

different excitation cases, objective functions and structural parameters. Then, the

control device has been upgraded to a hybrid TMD by means of the addition of an

active controller, with the main task of reducing as well the peak response. Different

feedback control strategies have been evaluated, from the points of view of: stability,

device performance and amount of supplied control force.



An important part of this research deals with the concept of optimum seismic

tuning of TMDs, with real earthquake input directly involved within the tuning

process. This feature represents an innovative way of investigating the TMD perfor-

mance, since the control device is theoretically optimised on each specific structure

and seismic event. The proposed tuning procedure is presented in detail and applied

to a significant selection of structures and earthquake input signals. The so obtained

optimum TMD parameters are first depicted and compared to those obtainable from

reference tuning formulas from the literature. A wide set of results concerning the

performance of the TMD is presented, considering different kinematic and energy

response indexes, in order to trace down general trends on the effectiveness of the

TMD in reducing the seismic response. A further and important stage of this study

deals with a crossed comparison involving the TMD performance and relevant in-

dexes such as the modal parameters, the frequency amplitude of the seismic signal

and the response spectra, so that to inspect possible connections between the effi-

ciency of the control device and the characteristics of the structural and the dynamic

context.

The studies and related outcomes presented in this thesis shall represent a con-

tribution to the development and improvement of Tuned Mass Damper devices in

terms of optimum performance, towards the control of a wide range of structures.

Therefore, the presented thesis work, though connoted by a main theoretical charac-

ter, may display different crucial implications in practical engineering applications.

Keywords: Tuned Mass Damper (TMD), Optimisation, Harmonic Loading, White

Noise Loading, Impulse Loading, Transient Response, Seismic Tuning, Earthquake

Excitation.



Contents

1 Introduction 1

1.1 Motivations and contributions of the doctoral thesis . . . . . . . . . . 1

1.2 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 General framework on the tuning of TMDs 5

2.1 TMD devices for structural control . . . . . . . . . . . . . . . . . . . 5

2.2 Passive TMDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Tuning for ideal dynamic loading . . . . . . . . . . . . . . . . 8

2.2.2 Passive TMDs for seismic applications . . . . . . . . . . . . . 10

2.3 Active TMDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Hybrid TMDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Semi-active TMDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Passive TMDs for benchmark ideal excitations 15

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Structural and dynamic context . . . . . . . . . . . . . . . . . . . . . 16

3.3 Tuning process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 Preliminary analysis on the objective functions . . . . . . . . . 19

3.3.2 Main features on the optimisation methodology . . . . . . . . 20

3.4 Tuning formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.1 Fitting process . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.2 Fitting models . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.3 Frequency ratio . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.4 TMD damping ratio . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.5 Considerations on the fitting results . . . . . . . . . . . . . . . 30

i



3.5 Comparisons to the tuning literature . . . . . . . . . . . . . . . . . . 31

4 Optimum passive and hybrid TMDs for impulse loading 37

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Passive TMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 SDOF primary structure . . . . . . . . . . . . . . . . . . . . . 38

4.2.2 Structural system with TMD . . . . . . . . . . . . . . . . . . 40

4.2.3 Tuning process . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.4 Optimum TMD parameters for impulse loading . . . . . . . . 48

4.2.5 Time response reduction . . . . . . . . . . . . . . . . . . . . . 50

4.3 Hybrid TMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.1 Feedback closed loop control statement . . . . . . . . . . . . . 52

4.3.2 Adopted control laws . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.3 Dynamic response . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.4 BIBO stability analysis . . . . . . . . . . . . . . . . . . . . . . 55

4.3.5 Optimum feedback control for the hybrid TMD . . . . . . . . 58

4.3.6 Optimum control gains and hybrid TMD performance . . . . . 60

4.3.7 General closing considerations on the assumed control laws . . 65

5 Optimum TMDs for earthquake excitation 67

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Analysis of the primary structures . . . . . . . . . . . . . . . . . . . . 69

5.2.1 Statement of the main features . . . . . . . . . . . . . . . . . 69

5.2.2 Dynamic analysis . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.3 Modal analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Seismic input signals . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3.1 General issues . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3.2 Signal processing . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.3 Seismic signals . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.4 Response spectra . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4 Seismic tuning method . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4.1 Statement of the tuning procedure . . . . . . . . . . . . . . . 112

ii



5.4.2 Analysis of the objective function . . . . . . . . . . . . . . . . 114

5.4.3 Optimisation method . . . . . . . . . . . . . . . . . . . . . . . 116

5.5 Optimum TMD parameters . . . . . . . . . . . . . . . . . . . . . . . 121

5.6 Seismic response reduction . . . . . . . . . . . . . . . . . . . . . . . . 140

5.7 Analysis of the numerical results: TMD performance and structural

characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.7.1 TMD performance at assumed earthquake . . . . . . . . . . . 160

5.7.2 Comparison based on modal analysis . . . . . . . . . . . . . . 171

6 Conclusions 211

iii



iv



List of Figures

2.1 Vertical TMDs installed under the footpath of the Millennium Bridge,

London, UK, 2001 (Source: Internet, http://www.gerbusa.com). . . . 6

2.2 TMD placed into the steel arms of the Burj Al Arab hotel in Dubai,

UAE, 1999 (Source: Internet, http://www.gerbusa.com). . . . . . . . 7

2.3 The 660 t Tuned Mass Damper placed between the 87th and the

92th floor of the Taipei 101 skyscraper, Taipei, Taiwan, 2003 (Source:

Internet, https://buildcivil.wordpress.com). . . . . . . . . . . . . . . . 8

3.1 Structural parameters and absolute (relative to the ground) dynamic

degrees of freedom of a 2DOF mechanical system composed of a

SDOF primary structure (S) equipped with an added TMD (T ), sub-

jected to: (a) point force, (b) base acceleration. . . . . . . . . . . . . 17

3.2 Optimum region of the objective function for the considered four load-

ing cases, for µ = 0.02, ζ
S
= 0.05. . . . . . . . . . . . . . . . . . . . . 19

3.3 Frequency response of the primary structure as a function of the ex-

citation frequency ratio g and of the mass ratio µ (here reported for

the harmonic force on the primary structure). . . . . . . . . . . . . . 21

3.4 Frequency response of the primary structure as a function of the ex-

citation frequency ratio g and of the primary structure damping ratio

ζ
S
(here reported for the harmonic force on the primary structure). . 22

3.5 Optimum frequency ratio f opt from the numerical optimisation pro-

cess for the four loadings. . . . . . . . . . . . . . . . . . . . . . . . . 24

3.6 Optimum TMD damping ratio ζopt
T

from the numerical optimisation

process for the four loadings. . . . . . . . . . . . . . . . . . . . . . . . 24

v



3.7 Optimum frequency ratio f opt in the case of undamped primary struc-

ture (ζ
S
= 0) for the considered four loading cases, compared to re-

sults from the PFM proposal (Table 3.6) and from tuning formulas

in the literature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.8 Optimum TMD damping ratio ζopt
T

in the case of undamped primary

structure (ζ
S

= 0) for the considered four loading cases, compared to

results from the PFM proposal (Table 3.10) and from tuning formulas

in the literature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.9 Optimum frequency ratio f opt in the case of damped primary struc-

ture (ζ
S
= 0.05) for the considered four loading cases, compared to

results from the PFM proposal (Table 3.6) and from tuning formulas

in the literature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.10 Optimum TMD damping ratio ζopt
T

in the case of damped primary

structure (ζ
S

= 0.05) for the considered four loading cases, com-

pared to results from the PFM proposal (Table 3.10) and from tuning

formulas in the literature. . . . . . . . . . . . . . . . . . . . . . . . . 34

3.11 Maximum response displacement of the primary structure in the case

of undamped primary structure (ζ
S
= 0) for the considered four load-

ing cases, compared to results from the PFM proposal (Tables 3.6

and 3.10) and from tuning formulas in the literature. . . . . . . . . . 35

3.12 Maximum response displacement of the primary structure in the case

of damped primary structure (ζ
S

= 0.05) for the considered four

loading cases, compared to results from the PFM proposal (Tables 3.6

and 3.10) and from tuning formulas in the literature. . . . . . . . . . 35

4.1 Structural parameters and absolute dynamic degrees of freedom of the

SDOF primary structure (S), subjected to generic base displacement

x
g
(t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Structural parameters and absolute dynamic degrees of freedom of a

2DOF mechanical system comprised of a SDOF primary structure (S)

equipped with an added passive TMD (T), subjected to generic base

displacement x
g
(t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

vi



4.3 Optimum TMD parameters at variable µ for different values of ζ
S
:

(a) frequency ratio f ; (b) TMD damping ratio ζ
T
. . . . . . . . . . . . 48

4.4 Optimum TMD parameters at variable µ, with ζ
S
= 0.02, for different

dynamic excitations: (a) frequency ratio f ; (b) TMD damping ratio

ζ
T
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5 (a) Percentage reduction of the H2 norm of the displacement of the

primary structure at variable µ for different values of ζ
S
and (b) dis-

placement time history with ζ
S
= 0.02. . . . . . . . . . . . . . . . . . 51

4.6 Structural parameters and absolute dynamic degrees of freedom of a

2DOF mechanical system, subjected to base displacement, comprising

a SDOF primary structure (S), equipped with an added hybrid TMD

(T), apt to supply a control force f
c
(t). . . . . . . . . . . . . . . . . . 53

4.7 BIBO stability region for (a),(b) Control Law 1 and (c),(d) Control

Law 2, for mass ratio µ = 0.02 and different values of primary struc-

ture damping ratio ζ
S
. . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.8 Objective function peak displacement of the primary structure for

(a),(b) Control Law 1 and (c),(d) Control Law 2, as a function of the

control gains, for µ = 0.02 and different values of primary structure

damping ratio ζ
S
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.9 Time history of (a),(c) the primary structure displacement x
S
(t) and

(b),(d) the TMD displacement x
T
(t), for Control Law 1, with and

without TMD, for µ = 0.02 and different values of ζ
S
(ζ

S
= 0.02 in

(a),(b), ζ
S
= 0.05 in (c),(d)). . . . . . . . . . . . . . . . . . . . . . . . 64

4.10 Time history of (a),(c) the primary structure displacement x
S
(t) and

(b),(d) the TMD displacement x
T
(t), for Control Law 2, with and

without TMD, for µ = 0.02 and different values of ζ
S
(ζ

S
= 0.02 in

(a),(b), ζ
S
= 0.05 in (c),(d)). . . . . . . . . . . . . . . . . . . . . . . . 64

5.1 Structural parameters and absolute (relative to the ground) dynamic

degrees of freedom of the general structural system, subjected to seis-

mic base acceleration, comprising of a MDOF primary structure (S),

equipped with a passive TMD added on top (T). . . . . . . . . . . . . 70

vii



5.2 Butterworth filter adopted for the processing of Tohoku 2011 seismic

input signals (Sendai and Tsukidate stations). . . . . . . . . . . . . . 85

5.3 Long Beach 1933 earthquake, ground acceleration. . . . . . . . . . . . 88

5.4 El Centro 1934 earthquake, ground acceleration. . . . . . . . . . . . . 88

5.5 Imperial Valley 1940 earthquake, ground acceleration. . . . . . . . . . 88

5.6 Kern County 1952 earthquake, ground acceleration. . . . . . . . . . . 89

5.7 Borrego Mountain 1968 earthquake, ground acceleration. . . . . . . . 89

5.8 San Fernando 1971 earthquake, ground acceleration. . . . . . . . . . . 89

5.9 Imperial Valley 1979 earthquake, ground acceleration. . . . . . . . . . 90

5.10 Chile 1985 earthquake, ground acceleration. . . . . . . . . . . . . . . 90

5.11 Loma Prieta 1989 earthquake, ground acceleration. . . . . . . . . . . 90

5.12 Northridge 1994 earthquake, ground acceleration. . . . . . . . . . . . 91

5.13 Kobe 1995 earthquake (Takarazuka station), ground acceleration. . . 91

5.14 Kobe 1995 earthquake (Takatori station), ground acceleration. . . . . 91

5.15 L’Aquila 2009 earthquake, ground acceleration. . . . . . . . . . . . . 92

5.16 Chile 2010 earthquake (Concepcion San Pedro station), ground ac-

celeration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.17 Chile 2010 earthquake (Angol Station), ground acceleration. . . . . . 92

5.18 New Zealand 2010 earthquake, ground acceleration. . . . . . . . . . . 93

5.19 Tohoku 2011 earthquake (Tsukidate station), ground acceleration. . . 93

5.20 Tohoku 2011 earthquake (Sendai station), ground acceleration. . . . . 93

5.21 Long Beach 1933 earthquake, response spectra. . . . . . . . . . . . . 94

5.22 El Centro 1934 earthquake, response spectra. . . . . . . . . . . . . . . 95

5.23 Imperial Valley 1940 earthquake, response spectra. . . . . . . . . . . 96

5.24 Kern County 1952 earthquake, response spectra. . . . . . . . . . . . . 97

5.25 Borrego Mountain 1968 earthquake, response spectra. . . . . . . . . . 98

5.26 San Fernando 1971 earthquake, response spectra. . . . . . . . . . . . 99

5.27 Imperial Valley 1979 earthquake, response spectra. . . . . . . . . . . 100

5.28 Chile 1985 earthquake, response spectra. . . . . . . . . . . . . . . . . 101

5.29 Loma Prieta 1989 earthquake, response spectra. . . . . . . . . . . . . 102

5.30 Northridge 1994 earthquake, response spectra. . . . . . . . . . . . . . 103

viii



5.31 Kobe 1995 earthquake (Takarazuka station), response spectra. . . . . 104

5.32 Kobe 1995 earthquake (Takatori station), response spectra. . . . . . . 105

5.33 L’Aquila 2009 earthquake, response spectra. . . . . . . . . . . . . . . 106

5.34 Chile 2010 earthquake (Concepcion San Pedro station), response spec-

tra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.35 Chile 2010 earthquake (Angol Station), response spectra. . . . . . . . 108

5.36 New Zealand 2010 earthquake, response spectra. . . . . . . . . . . . . 109

5.37 Tohoku 2011 earthquake (Tsukidate station), response spectra. . . . . 110

5.38 Tohoku 2011 earthquake (Sendai station), response spectra. . . . . . 111

5.39 Global minimum regions related to different primary structures and

earthquakes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.40 Flowchart of the proposed numerical algorithm. . . . . . . . . . . . . 120

5.41 Percentage reduction [%] of xRMS
S,n

for the considered primary struc-

tures, subjected to the Long Beach 1933 earthquake. . . . . . . . . . 162

5.42 Percentage reduction [%] of xRMS
S,n

for the considered primary struc-

tures subjected to the El Centro 1934 earthquake. . . . . . . . . . . . 162

5.43 Percentage reduction [%] of xRMS
S,n

for the considered primary struc-

tures subjected to the Imperial Valley 1940 earthquake. . . . . . . . . 163

5.44 Percentage reduction [%] of xRMS
S,n

for the considered primary struc-

tures subjected to the Kern County 1952 earthquake. . . . . . . . . . 163

5.45 Percentage reduction [%] of xRMS
S,n

for the considered primary struc-

tures subjected to the Borrego Mountain 1968 earthquake. . . . . . . 164

5.46 Percentage reduction [%] of xRMS
S,n

for the considered primary struc-

tures subjected to the San Fernando 1971 earthquake. . . . . . . . . . 164

5.47 Percentage reduction [%] of xRMS
S,n

for the considered primary struc-

tures subjected to the Imperial Valley 1979 earthquake. . . . . . . . . 165

5.48 Percentage reduction [%] of xRMS
S,n

for the considered primary struc-

tures subjected to the Chile 1985 earthquake. . . . . . . . . . . . . . 165

5.49 Percentage reduction [%] of xRMS
S,n

for the considered primary struc-

tures subjected to the Loma Prieta 1989 earthquake. . . . . . . . . . 166

ix



5.50 Percentage reduction [%] of xRMS
S,n

for the considered primary struc-

tures subjected to the Northridge 1994 earthquake. . . . . . . . . . . 166

5.51 Percentage reduction [%] of xRMS
S,n

for the considered primary struc-

tures subjected to the Kobe 1995 earthquake (Takarazuka station). . 167

5.52 Percentage reduction [%] of xRMS
S,n

for the considered primary struc-

tures subjected to the Kobe 1995 earthquake (Takatori station). . . . 167

5.53 Percentage reduction [%] of xRMS
S,n

for the considered primary struc-

tures subjected to the L’Aquila 2009 earthquake. . . . . . . . . . . . 168

5.54 Percentage reduction [%] of xRMS
S,n

for the considered primary struc-

tures subjected to the Chile 2010 earthquake (Angol station). . . . . 168

5.55 Percentage reduction [%] of xRMS
S,n

for the considered primary struc-

tures subjected to the Chile 2010 earthquake (Concepcion San Pedro

station). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.56 Percentage reduction [%] of xRMS
S,n

for the considered primary struc-

tures subjected to the New Zealand 2010 earthquake. . . . . . . . . . 169

5.57 Percentage reduction [%] of xRMS
S,n

for the considered primary struc-

tures subjected to the Tohoku 2011 earthquake (Tsukidate station). . 170

5.58 Percentage reduction [%] of xRMS
S,n

for the considered primary struc-

tures subjected to the Tohoku 2011 earthquake (Sendai station). . . . 170

x



List of Tables

3.1 Objective functions for Harmonic loading in terms of displacement of

the primary structure [126]. . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Objective functions for White Noise loading in terms of displacement

of the primary structure [126]. . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Optimum tuning formulas from the literature for undamped primary

structures
(

ζ
S
= 0

)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Main characteristics of the optimisation procedure. . . . . . . . . . . 23

3.5 Optimum coefficients for the fitting model of frequency ratio f opt in

Eq. (3.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6 Tuning formulas for the Proposed Fitting Model of frequency ratio f opt. 27

3.7 Optimum coefficients for the fitting model of frequency ratio f opt in

Eq. (3.6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.8 Tuning formulas for the Literature-based Fitting Model of frequency

ratio f opt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.9 Optimum coefficients for the fitting model of TMD damping ratio ζopt
T

in Eq. (3.7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.10 Tuning formulas for the Proposed Fitting Model of TMD damping

ratio ζopt
T

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.11 Optimum coefficients for the fitting model of TMD damping ratio ζopt
T

in Eq. (3.8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.12 Tuning formulas for the Literature-based Fitting Model of TMD damp-

ing ratio ζopt
T

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Characteristics of the optimisation process. . . . . . . . . . . . . . . . 46

xi



4.2 Tuning formulas for the optimum TMD parameters as outlined in

Chapter 3 for different dynamic excitations. . . . . . . . . . . . . . . 50

4.3 Percent reduction of H
∞

and H2 norm of the primary structure dis-

placement x
S
(t) as a function of different values of the mass ratio µ

and the primary structure damping ratio ζ
S
. . . . . . . . . . . . . . . 51

4.4 Optimum control gains and response reduction (µ = 0.02). . . . . . . 61

5.1 Modal parameters for the structure with n
S
= 1, m

S,i
= 100 t. . . . . 76

5.2 Modal parameters for the structure with n
S
= 2, m

S,i
= 100 t. . . . . 76

5.3 Modal parameters for the structure with n
S
= 3, m

S,i
= 100 t. . . . . 76

5.4 Modal parameters for the structure with n
S
= 5, m

S,i
= 100 t. . . . . 76

5.5 Modal parameters for the structure with n
S
= 10, m

S,i
= 100 t. . . . 76

5.6 Modal parameters for the structure with n
S
= 15, m

S,i
= 100 t. . . . 77

5.7 Modal parameters for the structure with n
S
= 25, m

S,i
= 100 t. . . . 77

5.8 Modal parameters for the structure with n
S
= 40, m

S,i
= 100 t. . . . 78

5.9 Modal parameters for the structure with n
S
= 1, m

S,i
= 150 t. . . . . 79

5.10 Modal parameters for the structure with n
S
= 2, m

S,i
= 150 t. . . . . 79

5.11 Modal parameters for the structure with n
S
= 3, m

S,i
= 150 t. . . . . 79

5.12 Modal parameters for the structure with n
S
= 5, m

S,i
= 150 t. . . . . 79

5.13 Modal parameters for the structure with n
S
= 10, m

S,i
= 150 t. . . . 79

5.14 Modal parameters for the structure with n
S
= 15, m

S,i
= 150 t. . . . 80

5.15 Modal parameters for the structure with n
S
= 25, m

S,i
= 150 t. . . . 80

5.16 Modal parameters for the structure with n
S
= 40, m

S,i
= 150 t. . . . 81

5.17 Main characteristics of the strong motions considered in the present

study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.18 Optimum TMD parameters for different values of mass ratio µ, for

the structure with n
S
= 1, m

S,i
= 100 t. . . . . . . . . . . . . . . . . . 124

5.19 Optimum TMD parameters for different values of mass ratio µ, for

the structure with n
S
= 1, m

S,i
= 150 t. . . . . . . . . . . . . . . . . . 125

5.20 Optimum TMD parameters for different values of mass ratio µ, for

the structure with n
S
= 2, m

S,i
= 100 t. . . . . . . . . . . . . . . . . . 126

xii



5.21 Optimum TMD parameters for different values of mass ratio µ, for

the structure with n
S
= 2, m

S,i
= 150 t. . . . . . . . . . . . . . . . . . 127

5.22 Optimum TMD parameters for different values of mass ratio µ, for

the structure with n
S
= 3, m

S,i
= 100 t. . . . . . . . . . . . . . . . . . 128

5.23 Optimum TMD parameters for different values of mass ratio µ, for

the structure with n
S
= 3, m

S,i
= 150 t. . . . . . . . . . . . . . . . . . 129

5.24 Optimum TMD parameters for different values of mass ratio µ, for

the structure with n
S
= 5, m

S,i
= 100 t. . . . . . . . . . . . . . . . . . 130

5.25 Optimum TMD parameters for different values of mass ratio µ, for

the structure with n
S
= 5, m

S,i
= 150 t. . . . . . . . . . . . . . . . . . 131

5.26 Optimum TMD parameters for different values of mass ratio µ, for

the structure with n
S
= 10, m

S,i
= 100 t. . . . . . . . . . . . . . . . . 132

5.27 Optimum TMD parameters for different values of mass ratio µ, for

the structure with n
S
= 10, m

S,i
= 150 t. . . . . . . . . . . . . . . . . 133

5.28 Optimum TMD parameters for different values of mass ratio µ, for

the structure with n
S
= 15, m

S,i
= 100 t. . . . . . . . . . . . . . . . . 134

5.29 Optimum TMD parameters for different values of mass ratio µ, for

the structure with n
S
= 15, m

S,i
= 150 t. . . . . . . . . . . . . . . . . 135

5.30 Optimum TMD parameters for different values of mass ratio µ, for

the structure with n
S
= 25, m

S,i
= 100 t. . . . . . . . . . . . . . . . . 136

5.31 Optimum TMD parameters for different values of mass ratio µ, for

the structure with n
S
= 25, m

S,i
= 150 t. . . . . . . . . . . . . . . . . 137

5.32 Optimum TMD parameters for different values of mass ratio µ, for

the structure with n
S
= 40, m

S,i
= 100 t. . . . . . . . . . . . . . . . . 138

5.33 Optimum TMD parameters for different values of mass ratio µ, for

the structure with n
S
= 40, m

S,i
= 150 t. . . . . . . . . . . . . . . . . 139

5.34 Percentage reduction [%] of the primary structure seismic response

obtained with the proposed TMD tuning method, for the primary

structure with n
S
= 1, m

S,i
= 100 t (in brackets the results ob-

tained with Den Hartog tuning formulas [26]: f(µ = 0.02) = 0.980392,

ζ
T
(µ = 0.02) = 0.0857493). . . . . . . . . . . . . . . . . . . . . . . . 144

xiii



5.35 Percentage reduction [%] of the primary structure seismic response

obtained with the proposed TMD tuning method, for the primary

structure with n
S
= 1, m

S,i
= 150 t (in brackets the results ob-

tained with Den Hartog tuning formulas [26]: f(µ= 0.02) = 0.980392,

ζ
T
(µ = 0.02) = 0.0857493). . . . . . . . . . . . . . . . . . . . . . . . 145

5.36 Percentage reduction [%] of the primary structure seismic response

obtained with the proposed TMD tuning method, for the primary

structure with n
S
= 2, m

S,i
= 100 t (in brackets the results ob-

tained with Den Hartog tuning formulas [26]: f(µ= 0.02) = 0.980392,

ζ
T
(µ = 0.02) = 0.0857493). . . . . . . . . . . . . . . . . . . . . . . . 146

5.37 Percentage reduction [%] of the primary structure seismic response

obtained with the proposed TMD tuning method, for the primary

structure with n
S
= 2, m

S,i
= 150 t (in brackets the results ob-

tained with Den Hartog tuning formulas [26]: f(µ= 0.02) = 0.980392,

ζ
T
(µ = 0.02) = 0.0857493). . . . . . . . . . . . . . . . . . . . . . . . 147

5.38 Percentage reduction [%] of the primary structure seismic response

obtained with the proposed TMD tuning method, for the primary

structure with n
S
= 3, m

S,i
= 100 t (in brackets the results ob-

tained with Den Hartog tuning formulas [26]: f(µ= 0.02) = 0.980392,

ζ
T
(µ = 0.02) = 0.0857493). . . . . . . . . . . . . . . . . . . . . . . . 148

5.39 Percentage reduction [%] of the primary structure seismic response

obtained with the proposed TMD tuning method, for the primary

structure with n
S
= 3, m

S,i
= 150 t (in brackets the results ob-

tained with Den Hartog tuning formulas [26]: f(µ= 0.02) = 0.980392,

ζ
T
(µ = 0.02) = 0.0857493). . . . . . . . . . . . . . . . . . . . . . . . 149

5.40 Percentage reduction [%] of the primary structure seismic response

obtained with the proposed TMD tuning method, for the primary

structure with n
S
= 5, m

S,i
= 100 t (in brackets the results ob-

tained with Den Hartog tuning formulas [26]: f(µ= 0.02) = 0.980392,

ζ
T
(µ = 0.02) = 0.0857493). . . . . . . . . . . . . . . . . . . . . . . . 150

xiv



5.41 Percentage reduction [%] of the primary structure seismic response

obtained with the proposed TMD tuning method, for the primary

structure with n
S
= 5, m

S,i
= 150 t (in brackets the results ob-

tained with Den Hartog tuning formulas [26]: f(µ = 0.02) = 0.980392,

ζ
T
(µ = 0.02) = 0.0857493). . . . . . . . . . . . . . . . . . . . . . . . 151

5.42 Percentage reduction [%] of the primary structure seismic response

obtained with the proposed TMD tuning method, for the primary

structure with n
S
= 10, m

S,i
= 100 t (in brackets the results ob-

tained with Den Hartog tuning formulas [26]: f(µ = 0.02) = 0.980392,

ζ
T
(µ = 0.02) = 0.0857493). . . . . . . . . . . . . . . . . . . . . . . . 152

5.43 Percentage reduction [%] of the primary structure seismic response

obtained with the proposed TMD tuning method, for the primary

structure with n
S
= 10, m

S,i
= 150 t (in brackets the results ob-

tained with Den Hartog tuning formulas [26]: f(µ = 0.02) = 0.980392,

ζ
T
(µ = 0.02) = 0.0857493). . . . . . . . . . . . . . . . . . . . . . . . 153

5.44 Percentage reduction [%] of the primary structure seismic response

obtained with the proposed TMD tuning method, for the primary

structure with n
S
= 15, m

S,i
= 100 t (in brackets the results ob-

tained with Den Hartog tuning formulas [26]: f(µ = 0.02) = 0.980392,

ζ
T
(µ = 0.02) = 0.0857493). . . . . . . . . . . . . . . . . . . . . . . . 154

5.45 Percentage reduction [%] of the primary structure seismic response

obtained with the proposed TMD tuning method, for the primary

structure with n
S
= 15, m

S,i
= 150 t (in brackets the results ob-

tained with Den Hartog tuning formulas [26]: f(µ = 0.02) = 0.980392,

ζ
T
(µ = 0.02) = 0.0857493). . . . . . . . . . . . . . . . . . . . . . . . 155

5.46 Percentage reduction [%] of the primary structure seismic response

obtained with the proposed TMD tuning method, for the primary

structure with n
S
= 25, m

S,i
= 100 t (in brackets the results ob-

tained with Den Hartog tuning formulas [26]: f(µ = 0.02) = 0.980392,

ζ
T
(µ = 0.02) = 0.0857493). . . . . . . . . . . . . . . . . . . . . . . . 156

xv



5.47 Percentage reduction [%] of the primary structure seismic response

obtained with the proposed TMD tuning method, for the primary

structure with n
S
= 25, m

S,i
= 150 t (in brackets the results ob-

tained with Den Hartog tuning formulas [26]: f(µ= 0.02) = 0.980392,

ζ
T
(µ = 0.02) = 0.0857493). . . . . . . . . . . . . . . . . . . . . . . . 157

5.48 Percentage reduction [%] of the primary structure seismic response

obtained with the proposed TMD tuning method, for the primary

structure with n
S
= 40, m

S,i
= 100 t (in brackets the results ob-

tained with Den Hartog tuning formulas [26]: f(µ= 0.02) = 0.980392,

ζ
T
(µ = 0.02) = 0.0857493). . . . . . . . . . . . . . . . . . . . . . . . 158

5.49 Percentage reduction [%] of the primary structure seismic response

obtained with the proposed TMD tuning method, for the primary

structure with n
S
= 40, m

S,i
= 150 t (in brackets the results ob-

tained with Den Hartog tuning formulas [26]: f(µ= 0.02) = 0.980392,

ζ
T
(µ = 0.02) = 0.0857493). . . . . . . . . . . . . . . . . . . . . . . . 159

5.50 Comparison of modal parameters for the main modes of vibration

before and after the insertion of the optimum TMD, for all the con-

sidered primary structures subjected to the Long Beach 1933 earth-

quake, with µ = 0.02, ζ
S
= 0.05. . . . . . . . . . . . . . . . . . . . . . 174

5.51 Comparison of modal parameters for the main modes of vibration be-

fore and after the insertion of the optimum TMD, for all the consid-

ered primary structures subjected to the El Centro 1934 earthquake,

with µ = 0.02, ζ
S
= 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . 176

5.52 Comparison of modal parameters for the main modes of vibration be-

fore and after the insertion of the optimum TMD, for all the consid-

ered primary structures subjected to the Imperial Valley 1940 earth-

quake, with µ = 0.02, ζ
S
= 0.05. . . . . . . . . . . . . . . . . . . . . . 178

5.53 Comparison of modal parameters for the main modes of vibration

before and after the insertion of the optimum TMD, for all the con-

sidered primary structures subjected to the Kern County 1952 earth-

quake, with µ = 0.02, ζ
S
= 0.05. . . . . . . . . . . . . . . . . . . . . . 180

xvi



5.54 Comparison of modal parameters for the main modes of vibration

before and after the insertion of the optimum TMD, for all the con-

sidered primary structures subjected to the Borrego Mountain 1968

earthquake, with µ = 0.02, ζ
S
= 0.05. . . . . . . . . . . . . . . . . . . 182

5.55 Comparison of modal parameters for the main modes of vibration

before and after the insertion of the optimum TMD, for all the con-

sidered primary structures subjected to the San Fernando 1971 earth-

quake, with µ = 0.02, ζ
S
= 0.05. . . . . . . . . . . . . . . . . . . . . . 184

5.56 Comparison of modal parameters for the main modes of vibration be-

fore and after the insertion of the optimum TMD, for all the consid-

ered primary structures subjected to the Imperial Valley 1979 earth-

quake, with µ = 0.02, ζ
S
= 0.05. . . . . . . . . . . . . . . . . . . . . . 186

5.57 Comparison of modal parameters for the main modes of vibration

before and after the insertion of the optimum TMD, for all the con-

sidered primary structures subjected to the Chile 1985 earthquake,

with µ = 0.02, ζ
S
= 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . 188

5.58 Comparison of modal parameters for the main modes of vibration

before and after the insertion of the optimum TMD, for all the con-

sidered primary structures subjected to the Loma Prieta 1989 earth-

quake, with µ = 0.02, ζ
S
= 0.05. . . . . . . . . . . . . . . . . . . . . . 190

5.59 Comparison of modal parameters for the main modes of vibration be-

fore and after the insertion of the optimum TMD, for all the consid-

ered primary structures subjected to the Northridge 1994 earthquake,

with µ = 0.02, ζ
S
= 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . 192

5.60 Comparison of modal parameters for the main modes of vibration

before and after the insertion of the optimum TMD, for all the con-

sidered primary structures subjected to the Kobe 1995 earthquake

(Takarazuka station), with µ = 0.02, ζ
S
= 0.05. . . . . . . . . . . . . 194

xvii



5.61 Comparison of modal parameters for the main modes of vibration

before and after the insertion of the optimum TMD, for all the con-

sidered primary structures subjected to the Kobe 1995 earthquake

(Takatori station), with µ = 0.02, ζ
S
= 0.05. . . . . . . . . . . . . . . 196

5.62 Comparison of modal parameters for the main modes of vibration be-

fore and after the insertion of the optimum TMD, for all the consid-

ered primary structures subjected to the L’Aquila 2009 earthquake,

with µ = 0.02, ζ
S
= 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . 198

5.63 Comparison of modal parameters for the main modes of vibration

before and after the insertion of the optimum TMD, for all the con-

sidered primary structures subjected to the Chile 2010 earthquake

(Angol station), with µ = 0.02, ζ
S
= 0.05. . . . . . . . . . . . . . . . 200

5.64 Comparison of modal parameters for the main modes of vibration

before and after the insertion of the optimum TMD, for all the con-

sidered primary structures subjected to the Chile 2010 earthquake

(Concepcion San Pedro station), with µ = 0.02, ζ
S
= 0.05. . . . . . . 202

5.65 Comparison of modal parameters for the main modes of vibration

before and after the insertion of the optimum TMD, for all the con-

sidered primary structures subjected to the New Zealand 2010 earth-

quake, with µ = 0.02, ζ
S
= 0.05. . . . . . . . . . . . . . . . . . . . . . 204

5.66 Comparison of modal parameters for the main modes of vibration

before and after the insertion of the optimum TMD, for all the con-

sidered primary structures subjected to the Tohoku 2011 earthquake

(Tsukidate station), with µ = 0.02, ζ
S
= 0.05. . . . . . . . . . . . . . 206

5.67 Comparison of modal parameters for the main modes of vibration

before and after the insertion of the optimum TMD, for all the con-

sidered primary structures subjected to the Tohoku 2011 earthquake

(Sendai station), with µ = 0.02, ζ
S
= 0.05. . . . . . . . . . . . . . . . 208

xviii



Acknowledgements

First of all, I would deeply like to thank my doctorate supervisor, Prof. Egidio Rizzi,

from both the professional and personal points of view. From the beginning of this

experience, he supported me in all my activities, pointed me out the optimal way

for my research and always gave the highest value and consideration to my work,

which thanks to him has reached, I believe, a level of excellence.

A special acknowledgement goes to the Committees of the MITIMM Doctoral

School of the University of Bergamo, Department of Engineering, for the opportunity

that they gave me with this Doctoral position, also supported with a ministerial

Doctoral Grant, for both the selection and final defense processes. Moreover, they

provided me a nice, optimal context where to develop my research. In particular,

many thanks are addressed to the Head of the Doctoral Committee, Prof. Riccardo

Riva, which provided constant assistance during all the Doctorate path, and allowed

my attendance to several International Conferences, where I had the valuable chance

to give visibility to different scientific publications, outcomes of the research project.

During the doctoral studies, my research stay of about six months at the Insti-

tute of Sound and Vibration Research (ISVR), University of Southampton (UK),

doubtlessly represented to me a fundamental stage. In this sense, I would like to

acknowledge a research grant for Visiting Student within the Project “FYRE - Fos-

tering Young REsearchers” provided by Fondazione Cariplo at the University of

Bergamo. Further, it is my willing to thank my local scientific supervisors, Dr. Neil

Ferguson and Dr. Emiliano Rustighi, which first made possible this experience and

successively contributed to the development of a part of my research project. In

Southampton I also had the chance to meet many people and colleagues, make

friends, with which I shared not only professional efforts but also plenty of amazing

and unforgettable moments, that I will always hold dear.

Special thanks go to all my friends in Italy that, even if in different contexts,

gave me all the good things that the research by itself could not give, and therefore

made my life complete, happy and peaceful.

xix



Finally, the greatest thanks go to my family, that always believed in me and

supported me unconditionally, and understood the meaning of this research path,

with the strong expectations of a nice, brilliant future.

xx



Nomenclature

Latin letters Description Units

C Structural system damping matrix Ns/m

c
S
, C

S
Primary structure damping coefficient, damping

matrix

Ns/m

c
T

TMD damping coefficient Ns/m

D Dissipation power W

f Frequency Hz

f TMD frequency ratio -

f
c

Controller force N

F Excitation amplitude N

E Young’s modulus Pa

E Elastic energy J

g Excitation frequency ratio -

g
a

Acceleration control gain kg

g
d

Displacement control gain N/m

g
v

Velocity control gain Ns/m

H , H Receptance coefficient, receptance matrix m/N

I Inertia moment m4

J Objective function -

K Structural system stiffness matrix N/m

k
S
, K

S
Primary structure stiffness coefficient, stiffness

matrix

N/m

k
T

TMD stiffness coefficient N/m

M Structural system mass matrix kg

m
S
, M

S
Primary structure mass coefficient, mass matrix kg

m
T

TMD mass coefficient kg

s Laplace variable -

t Time s

T Period s

Continued on the next page

xxi



Continued from the previous page

Latin letters Description Units

T Kinetic energy J

x
g

Ground displacement coordinate m

x
S

Primary structure displacement coordinate m

x
T

TMD displacement coordinate m

Z, Z Impedance coefficient, impedance matrix N/m

Greek letters Description Units

β Rayleigh damping model coefficient -

δ Dirac’s delta function -

Φ Eigenvector -

ζ
S

Primary structure damping ratio -

ζ
T

TMD damping ratio -

µ Mass ratio -

ω Excitation angular frequency rad/s

ω
S

Primary structure angular frequency rad/s

ω
T

TMD angular frequency rad/s

Abbreviations Description Units

MDOF Multi-Degree-Of-Freedom -

PGA Peak Ground Acceleration -

SDOF Single-Degree-of-Freedom -

Sd Displacement Response Spectrum m

Spa Pseudo-acceleration Response Spectrum m/s2

Spv Pseudo-velocity Response Spectrum m/s

TMD Tuned Mass Damper -

xxii



Chapter 1

Introduction

1.1 Motivations and contributions of the doctoral

thesis

The present doctoral dissertation mainly presents and outlines appropriate proce-

dures and methods devoted to the optimum tuning of the parameters of Tuned Mass

Damper (TMD) devices for the reduction of the dynamic response of structural sys-

tems, with consideration of different loading conditions, representing suitable models

or records of real dynamic excitations.

The proposed optimum device is tested, through numerical trials, by investigat-

ing the actual TMD performance in reducing the dynamic response of benchmark

structures. The outcomes of this research work finally aim at providing useful in-

dications towards the best design of TMDs for practical applications, especially in

the field of structural, civil and earthquake engineering.

In particular, the present thesis outlines the following main contributions within

the related research field of TMDs optimisation:

• A unified approach for the optimum design of Tuned Mass Dampers for dif-

ferent loading conditions, which is a context that may easily occur in real

structures and systems.

• A comprehensive investigation on the potential role and relevance of the control

device in mitigating the dynamic response.
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1.2. Structure of the thesis

• A strong attempt in clarifying the actual effectiveness of TMDs in the field of

seismic engineering, through an ad hoc formulated optimisation procedure.

1.2 Structure of the thesis

The thesis is composed of several main parts, related to the specific treated research

topics, as briefly presented as follows.

Present Chapter 1 assembles a brief introduction on the main general contents

of the thesis and their meaning within the present research field.

Chapter 2 provides a general part where the main features of the different ty-

pologies of TMDs are presented, with reference to the mainstream literature and a

brief recall to their engineering applications. Moreover, the specific device compo-

nents and their related issues of optimal design are outlined in the main characters.

Chapter 3 concerns the optimum tuning of TMDs for the case of benchmark

ideal excitations, with the task of achieving a unified tuning of TMDs based on

a common polynomial model. In particular, a structural system composed of a

damped SDOF primary structure and a TMD added on top is supposed to be

subjected to either harmonic or white noise loading, acting either as point force on

the primary structure or as base acceleration. The optimum TMD parameters have

been evaluated for a range of structural parameters consistent with potential real

engineering applications.

The ensemble of the so obtained results has been fitted through nonlinear least

squares interpolation, in order to outline suitable and effective analytical tuning

formulas, which could be close to optimum conditions and sufficiently simple in view

of practical design of TMDs. In particular, the tuning formulas developed through

the adoption of a proposed original fitting model has been compared to those based

on literature tuning formulas referred to a special case, i.e. for undamped primary

structure.

Finally, an investigation on the TMD optimum parameters and global perfor-

mance has been outlined, with a comparison to the outcomes of main reference

tuning formulas.
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Chapter 1. Introduction

Chapter 4 deals with the optimisation of passive and hybrid TMDs for the reduc-

tion of the transient response, specifically in the case of impulsive excitation, which

appears to be a framework not deeply explored yet for these control devices. First,

the passive TMD added on top of a SDOF primary structure is tuned, considering

as dynamic excitation involved within the optimisation process a unit impulse act-

ing as base displacement, which could be a suitable model for real sudden dynamic

loading.

Then, the control device is upgraded as a hybrid TMD, following the addition of

an active feedback closed loop controller, which is supposed to be able to improve

the performance of the device, through a properly designed control force. In this

sense, a specific investigation on different possible control laws has been carried

out, with particular focus on the stability analysis and the features concerning the

optimisation process of the control gains.

A final comparison in terms of efficiency of the control device and required sup-

plied force is presented and the related implications are discussed.

Chapter 5 is dedicated to a comprehensive analysis on an innovative optimisa-

tion procedure, that is the seismic tuning of TMD, which involves the seismic input

signal as directly included into the optimisation process. Hence, the optimised TMD

is expected to represent the optimum tuning, at least for the selected index of dy-

namic response assumed as objective function. In this way, it is possible to establish

a sort of reference for the considered case, and to outline a study on the highest

potential effectiveness of TMDs in reducing the seismic response.

Due to several uncertainties related to some features of such a framework, most of

all the uniqueness of the seismic event, in order to develop an exhaustive analysis, a

wide range of buildings and of earthquakes has been considered within the analyses.

Specifically, 16 shear-type frame buildings, with number of floors ranging from 1

to 40, assumed as primary structures and 18 earthquakes, for a total of 288 cases,

have been studied, with an assumed value of the primary structure damping ratio

ζ
S
= 0.05, which is quite high (in terms of challenging the TMD effectiveness) and

truly representative of possible buildings and civil structures. In particular, the

primary structures are characterised by different number of floors and floor masses,

3



1.2. Structure of the thesis

in order to explore the influence of the variability of the structural parameters in

terms of optimum TMD parameters and related efficiency of the TMD device.

On the other hand, the various real earthquake events exhibit different charac-

teristics in terms of duration, magnitude, frequency content, spectrum, which are

factors that could easily produce important consequences on the dynamic behaviour

of the structural system.

The so conceived study gave rise to many set of results, at different stages. First,

the optimum TMD parameters obtained with the proposed tuning method are pre-

sented for different values of the mass ratio µ, discussed and compared to those

obtained from reference tuning formulas from the literature. Then, comprehen-

sive outcomes concerning the TMD performance in reducing the structural seismic

response are presented, with consideration of several response indexes, so that to

provide a comprehensive representation of the effect of the addition of the TMD

for the different cases. A complementary analysis has then outlined, concerning the

crossed comparison between the response reduction and several indexes related to

modal parameters, frequency content of the seismic signal and response spectra, in

order to investigate possible connections that link the TMD performance and the

structural and dynamic context, with the task of outlining preliminary guidelines

towards potential design and massive use of these device in earthquake engineering.

Chapter 6 summaries the salient contributions and remarks related to the

present research work and outlines possible future research scenarios.

4



Chapter 2

General framework on the tuning

of TMDs

2.1 TMD devices for structural control

Tuned Mass Dampers are doubtlessly one of the most studied and adopted control

devices, used in different engineering fields, since these devices allow for efficiently

counteract the dynamic effect of a wide range of possible dynamic excitations, such

as wind, earthquake, vibrations due to service conditions (e.g. human-induced vi-

brations [27] or machinery activities).

For these reasons, with reference to the civil engineering context, in many cases

TMDs have been implemented as optimal solutions for the reduction and the control

of the dynamic response of towers [18, 51, 62, 75, 108], skyscrapers [29, 61, 103, 105],

chimneys [59], bridges [97], pedestrian footbridges [24, 88, 113, 118], offshore plat-

forms [66] (see e.g. Figs. 2.1–2.3).

One of the first structures where a TMD was installed is the Sydney Tower

(also called Centerpoint Tower, Sidney, Australia, 1971), which is a 309 m-high

office building, topped with a water tank with a volume of 162000 liters that, being

provided with hydraulic shock absorbers, serves not only as building water and

fire protection supply, but also as a Tuned Liquid Damper (TLD); moreover, a

secondary added mass of 40 t allows for the increase of structural damping [51,102].

Two blocks of 300 t of weight represent the TMD added to the John Hancock Tower
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(Boston, USA, 1975), which exhibit a first modal mass of 47000 t, moving in phase

for the lateral response control and out of phase for the torsional control [102].

The Canadian National Tower (Toronto, Canada, 1976) displays a total height of

553 m, whose 102 m are the extension of the antenna located on top of the tower,

where two ring-shaped TMDs of 9 t/m weight were inserted at 488 m and 503 m

of height, respectively [21, 51]. The TMD installed at the 63rd floor of the Citicorp

Center (New York, USA, 1977) is represented by a mass of 373 t, which represents

approximately the 2% of the mass of the first vibration mode. Besides the mass, the

TMD device is composed of linear gas springs, pressure balance supporting system,

control actuator, power supply and electronic control. Several tests displayed that

the addition of the TMD allowed for an increase of the structural damping ratio from

1% to 4%, leading to an abatement of the building acceleration of about 50% [102].

Figure 2.1: Vertical TMDs installed under the footpath of the Millennium Bridge, London,

UK, 2001 (Source: Internet, http://www.gerbusa.com).

The TMD placed into the 340 m-high Nanjing Tower (China, 1998), composed of

1% of the first modal mass, which corresponds to 60 t, with a damping ratio of 7%,

was proved to reduce the displacement due to wind loading of about 30% [18]. One
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Chapter 2. General framework on the tuning of TMDs

of the most recent examples of this control device is represented by the well known

pendulum-type TMD installed into the 508 m-high skyscraper Taipei 101 (Taipei,

Taiwan, 2003), placed between the 88th and the 92th floor and mainly composed

of 41 layered steel plates (see Fig. 2.3), for a total mass of 660 t; the so conceived

TMD allows for an abatement of the wind oscillations of about 30%–40%.

Figure 2.2: TMD placed into the steel arms of the Burj Al Arab hotel in Dubai, UAE, 1999

(Source: Internet, http://www.gerbusa.com).

Also, in the context of mechanical engineering, the Tuned Mass Damper found

numerous applications for the control not only of automotive systems (vehicles,

shock absorbers), but also of a broad range of various systems and contexts, such

as machineries [89], turbines, telescopes [99], etc.

Although the concept of the original TMD seems to have been introduced more

than one century ago by the patent of Frahm [32], a large number of studies on

Tuned Mass Dampers are currently under development, concerning the investigation

of different points of view and features related to this device, including an but not

limited to the methodology of the optimal tuning, the proper adjustment to the
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different contexts of application, the development of new typologies of TMD. In

this sense, in the following, just the main versions of this devices will be briefly

introduced, with consideration of their salient features. In general, the present

dissertation will mainly focus on the passive and the hybrid TMD.

Figure 2.3: The 660 t Tuned Mass Damper placed between the 87th and the 92th

floor of the Taipei 101 skyscraper, Taipei, Taiwan, 2003 (Source: Internet,

https://buildcivil.wordpress.com).

2.2 Passive TMDs

2.2.1 Tuning for ideal dynamic loading

The passive Tuned Mass Damper (TMD) is a device usually composed of an ad-

ditional (or secondary) mass, a spring and a damper (also briefly defined mass-

spring-dashpot system) attached to a primary system in order to reduce its struc-
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Chapter 2. General framework on the tuning of TMDs

tural dynamic response [102]. The most important principle of the TMD device is

represented by the tuning of its mechanical free parameters so that to match the

characteristics of the vibration mode of the primary structure to be controlled.

The original Tuned Mass Damper concept could likely be dated back to the

patent of Frahm [32], concerning an undamped TMD applied to mechanical systems

in order to reduce the vibrations induced by external actions, e.g. for the rolling of

ships produced by sea waves.

Ormondroyd and Den Hartog [76], Brock [15] and Den Hartog [26] further deep-

ened and codified the study on this device, by providing a systematic framework and

introducing the so called Fixed-Point Theory, based on the case of a damped TMD

added to an undamped SDOF primary structure subjected to harmonic force. Such

theory leads to a tuning based on the same height of the frequency response peaks

of the structural system, where both TMD parameters have been determined ana-

lytically, but while the so called frequency ratio can be evaluated exactly [76]; the

TMD damping ratio is obtained approximately as the average value between those

achieved for the two peaks [15]. This method immediately became the fundamental

way of TMD tuning, on which almost all subsequent theories have been based.

Afterwards, many contributions have considered the optimum tuning for damped

main structures [12,33,35,60,65,127], despite higher difficulties in treating the gov-

erning dynamical equations [7, 11]. The studies of Warburton and Ayorinde [10,

124–126] have reported progress in connection to the tuning proposed by Den Har-

tog with respect to harmonic and stationary random excitations. A comprehensive

comparison has revealed at that stage that even for moderately damped structures

(ζ
S
< 5%) Den Hartog tuning formulas guarantee an adequate structural response

decrease. In a large number of works which focused on this topic, the adoption of

numerical optimisation approaches has been proposed as a suitable way to achieve

optimum tuning. Among those, one of the first examples is probably represented by

that of Ioi and Ikeda [41], where optimum TMD tuning formulas have been pointed

out, as a result of an optimisation process developed with a Newton’s method.

Within subsequent studies which shared a similar modus operandi, of great inter-

est appear those of Randall, Halsted and Taylor [84], which obtained the optimum
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2.2. Passive TMDs

TMD parameters in the form of graphical representations, of Tsai and Lin [116,117],

where design formulas for the loading cases of harmonic force and base acceleration

are provided, and of Rana and Soong [83], based on a Minimax algorithm, where

the resulting optimum TMD parameters have been condensed in design abaci. Fur-

thermore, Asami et al. [7] provided tuning formulas for several loading cases, by

analytical approaches, while Leung and Zhang [53] have presented a numerical tun-

ing procedure based on a Particle Swarm Optimisation method.

A different stream of research considered instead a TMD tuning independent

of the dynamic excitation, based on control techniques, such as the optimum pole

placement, which method was introduced for TMDs by Thompson [110, 111] and

recently rediscovered by Bisegna and Caruso [14].

2.2.2 Passive TMDs for seismic applications

A context of study of the passive Tuned Mass Damper, of great relevance within

civil engineering applications, is the optimal tuning in the case of seismic excitation.

In this sense, one of most important stream of research is mainly represented

by the work of Villaverde and Newmark [120], Villaverde [119] and Villaverde and

Koyama [121] which considered a TMD tuning independent of the dynamic excita-

tion, but based instead on the modal analysis of the primary structure, i.e. focused

on inherent properties of the primary structure only. Such theory has been further

deepened by Sadek et al. [90], and later adopted by Miranda [67, 68].

On the other hand, a large number of studies focused instead on the TMD tuning

with consideration of the seismic event [36], even if in different ways, as it will be

depicted in the following for the most representative works. Wong and Chee [129]

assessed a remarkable capability of TMDs in the seismic energy dissipation, mostly

in the case of long-period structures; Marano et al. [63] approached the TMD tuning

problem by means of a stochastic optimisation procedure; Paredes et al. [79] per-

formed several tests on six-storey buildings with two earthquake records, whereby

the TMD tuning was based on Villaverde’s equations [121], by finding out that the

TMD effectiveness, which appears to be related to the earthquake frequency con-

tent, is not that apparent. However, despite the bulk of studies on the best tuning of
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TMD parameters, the seismic assessment still appears to be an open research topic.

Above all, there also emerge different conflicting opinions on the real effectiveness

of TMD devices in the case of seismic excitation, see e.g. [45, 90, 98, 107].

Furthermore, a series of recent works considered the given earthquake input as

directly embedded within the tuning process. The main differences among these

studies concerned the adopted optimisation algorithm and the modeling of the seis-

mic input. Some significant works, where the seismic analysis has been developed

in the frequency domain and the earthquake record has been modeled through the

Kanai-Tajimi formula [44], are that of Hoang et al. [38,39], where the TMD tuning

was carried out within a numerical optimisation based on the Davidon-Fletcher-

Powell algorithm, that of Lee et al. [52], where the Golden Section method was used

in the optimisation process, and that of Leung et al. [54], where the seismic input

was modeled as a non-stationary process and TMD tuning was carried out within a

Particle Swarm Optimisation algorithm.

Farshidianfar et al. [28, 100] considered a forty-storey frame building subjected

to a given earthquake, with seismic analysis carried out in the time domain and

TMD parameters optimised through an Ant Colony Optimisation method [100] or

a Bee Colony Optimisation algorithm [28]. Adam et al. [2,114,115] have dealt with

an investigation on two different tuning approaches, one based on literature tuning

formulas [39,126] and on the assumption of simulating the earthquake as a stationary

white noise excitation, and the other which considers the actual earthquake record in

the frequency domain and recovers, as optimal TMD parameters, the median of those

obtained for each seismic input; the so obtained results pointed out: (a) a negligible

difference between the two adopted approaches, for the considered structures and

seismic records; (b) a remarkable effectiveness of TMDs in earthquake applications.

Bekdas and Nigdeli [13] proposed a tuning in the frequency domain based on a

Harmony Search algorithm, assuming a harmonic load in the optimisation process,

which has been further tested with a seismic loading. Mohebbi and Joghataie [69]

considered an eight-storey frame building subjected to an earthquake modeled as

white noise excitation in the time domain, with a TMD tuned by a Distributed

Genetic Algorithm (DGA) optimisation.
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2.3. Active TMDs

2.3 Active TMDs

During the last decades, active Tuned Mass Damper devices, also known as active

Mass Drivers [4,73], have arisen in the field of structural control as complementary

or alternative with respect to passive TMDs. Active TMDs are mainly composed of

an active controller and a small resonant mass, this latter usually quite lower than

1% of the primary structure mass.

The required amount of control force in active devices is usually generated by

electrohydraulic or electromechanical actuators ruled by control strategies based on

feedback information from the structural response and feedforward data from the

dynamic excitation [40, 101, 131]. The recorded measurements from response and

excitation are managed ad hoc and monitored by a controller which, by means of a

selected control algorithm, determines the control signal almost in real time (besides

time delays usually occurring in real systems), then providing it to the actuator.

The operativity of active Tuned Mass Dampers is mainly based on the sup-

plied control force, and therefore such devices require a considerable amount of

power, i.e. on the order of tens of kilowatts for small structures and even of sev-

eral megawatts for large structures. The main effect obtained from active TMDs

seems to be a significant increase of damping, with a less remarkable change in the

structural stiffness.

The most important research issue related to active control devices concerns the

investigation on the optimal control strategy [17, 48, 71]. In this sense, the base

for the development of a theoretical control law is usually composed of the entire

kinematic response of the primary structure, i.e. displacement, velocity and accel-

eration [40, 51, 101]. Then, such design choice is realised through the appropriate

placement of sensors and transducers. In other studies, less response indexes have

been assumed for the definition of the control law, namely either displacement or ve-

locity or acceleration feedback closed loop controllers are alternatively investigated.

In general, for active TMDs, a sort of multitasking research may take place,

since the goal is not only the abatement of the dynamic response of the primary

structure, but also the limitation of the supplied control force plays a central role

within the optimisation process. Such position of the problem allows for a handling
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management of the multi-objective needs within the optimisation process described

above.

2.4 Hybrid TMDs

The hybrid Tuned Mass Damper is ideally a combination of the passive TMD and

the active TMD presented before. In particular, the main capability of this control

device is basically committed to the passive TMD, with the further contribution

of an additional active controller [9]. As a consequence of this configuration, the

hybrid TMD remains substantially a narrowband control device, but its performance

results to be improved by the active controller, which is able to immediately supply

a control force, in order to respond to possible sudden changes within the dynamic

context [96].

Since the main part of the device performance is delegated to the passive compo-

nent, the amount of supplied control force turns out to be far less from that required

by a fully active TMD [103, 105]. This feature, together with the intrinsic robust-

ness of the passive device, which is operative also in case of failure of the external

power source and therefore is able to guarantee a basic level of response reduction,

leads to prefer the assumption of this typology of control device in many full-scale

civil engineering applications, with respect to either the passive or the active TMD

alone [105].

The optimal design of this control device is mainly composed of a two-stage op-

timisation problem, where the first stage concerns the optimal tuning of the passive

TMD, while the second phase involves the optimisation of the behaviour of the

active controller. In this sense, as explained previously for the active TMD, the

investigation on the most appropriate control law doubtlessly covers the main part

of the study on the optimum configuration of the hybrid TMD.

2.5 Semi-active TMDs

The semi-active TMD is mainly composed of a passive TMD and an added active

controller, which is able to change the mechanical parameters of the global control
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device, so as to extend their operating range and adapt the performance of the TMD

to possible modifications of the structural conditions and dynamic response [1,46,82].

The semi-active TMDs are usually conceived as either stiffness–variable or damping–

variable devices. The former group is involved in a proper change of the operative

frequency, while the latter deals with special damping components, such as elec-

trorheological or magnetorheological dampers, whose behaviour is ruled by an elec-

tric or a magnetic field, respectively [46].

The main positive feature of semi-active TMDs lies into the very small amount

of supplied energy for the variation of the parameters, which characteristic has

contributed to the noticeable diffusion of this control solution in the last decades,

and in many engineering application cases where it led to prefer this device with

respect to the active TMDs. Moreover, the small contribution of the control force

usually does not jeopardise the stability of the system (at least intended in the

Bounded Input-Bounded Output sense) [40].
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Chapter 3

Passive TMDs for benchmark

ideal excitations

3.1 Introduction

The optimum tuning of TMD parameters is often developed by basing the procedure

on a specific excitation, which is supposed to represent a suitable model of a real

dynamic loading. From the main literature focused on this topic, it appears that the

tuning parameters may change according to the applied dynamic loading. Most of

all, in the presence of structural damping (ζ
S
6= 0), tuning formulas and relevant es-

timates may take quite elaborate forms (see e.g. [7,8,72]), leading to the assumption

of numerical methods for the accomplishment of the TMD tuning process.

In this sense, the present chapter deals with a comprehensive TMD tuning in the

case of ideal dynamic loading and damped primary structure. The study outlined

in the following has been developed in two main phases.

First, a wide range numerical tuning based on a nonlinear gradient-based opti-

misation algorithm has been pursued. In particular, the tuning has been developed

for a TMD added to a SDOF primary structure, subjected to a Harmonic or White

Noise loading, applied as both input Force or base Acceleration on the primary

structure, for a total of four loading cases (HF, HA, WNF, WNA, as described be-

low). In the present tuning approach, the optimisation variables are taken as the

frequency ratio f and the TMD damping ratio ζ
T
, as a function of two free given
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parameters, i.e. mass ratio µ and damping ratio of the primary structure ζ
S
, both

fixed a priori within a wide range of values, including those suitable for engineering

applications.

Second, an interpolation process is attempted for all the four cases, where the

optimum TMD parameters have been fitted with proper unifying analytical mod-

els, calibrated through nonlinear least squares, in order to obtain final compact

TMD tuning formulas, in view of possible practical use. Such final output has been

compared to that from the relevant literature, in terms of both optimum TMD

parameters and achieved dynamic response reduction of the primary structure.

3.2 Structural and dynamic context

The structural system assumed as benchmark in this study is composed of a SDOF

primary structure and a TMD added on it (Fig. 3.1), subjected to either point force

on the primary structure F (t) or base acceleration ẍ
g
(t). The primary structure

is characterised by a mass m
S
, a constant linear elastic stiffness k

S
and a linear

viscous damping coefficient c
S
. The natural frequency ω

S
and damping ratio ζ

S
of

the primary structure are defined as usual, i.e. respectively:

ω
S
=

√

k
S

m
S

, ζ
S
=

c
S

2
√

k
S
m

S

. (3.1)

Conversely, the parameters of the TMD device are an added secondary mass m
T
,

a constant stiffness k
T
of an added elastic spring and a damping TMD coefficient c

T

of an added viscous damper. As above, the TMD natural frequency ω
T
and damping

ratio ζ
T
are respectively:

ω
T
=

√

k
T

m
T

, ζ
T
=

c
T

2
√

k
T
m

T

. (3.2)

The main free TMD parameters, useful to achieve the most appropriate tuning,

are defined in terms of mass ratio µ, tuning frequency ratio f and TMD damping

ratio ζ
T
itself, as:

µ =
m

T

m
S

, f =
ω

T

ω
S

=

√

1

µ

k
T

k
S

. (3.3)
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F (t)

(a)

ẍ
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(t)

(b)
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x
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(t)

x
T
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Figure 3.1: Structural parameters and absolute (relative to the ground) dynamic degrees of free-

dom of a 2DOF mechanical system composed of a SDOF primary structure (S)

equipped with an added TMD (T ), subjected to: (a) point force, (b) base acceler-

ation.

The tuning concept is based on the minimisation of a given dynamic response in-

dex, which basically depends on both the structural system and the applied dynamic

loading. In this sense, four dynamic loading cases have been considered (Fig. 3.1):

1. Harmonic force on the primary structure (HF);

2. Harmonic base acceleration (HA);

3. White noise force on the primary structure (WNF);

4. White noise base acceleration (WNA).

The corresponding response indexes, in terms of displacement of the main struc-

ture x
S
, which are taken as objective functions in the optimisation process, are

reported in Tables 3.1–3.2 below [23, 26, 126]. Such dimensionless frequency re-

sponse functions are in the form of dynamic amplification factors R for the case

of harmonic loading (with excitation frequency ω, frequency ratio g = ω/ω
S
, force

amplitude F or acceleration magnitude ẍ
g
) [126] and in the form of mean square

response indices N for the case of stationary gaussian white noise loading (with

constant power spectral density of the loading S0 and variance of the displacement

structural response σx
S
) [126].
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Table 3.1: Objective functions for Harmonic loading in terms of displacement of the primary

structure [126].

Harmonic Force (HF) R
F
=

∣

∣

∣

∣

x
S

F/k
S

∣

∣

∣

∣

=

√

A2

F
+B2

F

C2 +D2

Harmonic Acceleration (HA) R
A
=

∣

∣

∣

∣

x
S

ẍ
g
/ω2

S

∣

∣

∣

∣

=

√

A2

A
+B2

A

C2 +D2

A
F
= f2 − g2 , B

F
= 2 g ζ

T
f , A

A
= f2(1 + µ)− g2 , B

A
= 2 g ζ

T
f(1 + µ)

C = (f2 − g2)(1 − g2)− µf2g2 − 4 ζ
S
ζ
T
fg2 , D = 2 ζ

T
fg[1− g2(1 + µ)] + 2 ζ

S
g(f2 − g2)

Table 3.2: Objective functions for White Noise loading in terms of displacement of the primary

structure [126].

White Noise Force (WNF) N
F
=

σ2
x
S

2πS
0,F

ω
S
/k2

S

=
1

4

IF
L

White Noise Acceleration (WNA) N
A
=

σ2
x
S

2πS
0,A

/ω3

S

=
1

4

IA
L

IF = f4[ζ
T
(1 + µ)2] + f3[ζ

S
µ+ 4ζ

S
ζ2
T
(1 + µ)] + f2[−ζ

T
(2 + µ) + 4ζ2

S
ζ
T
+ 4ζ3

T
(1 + µ)]

+ f(4ζ
S
ζ2
T
) + ζ

T

IA = f4[ζ
T
(1 + µ)4] + f3[ζ

S
µ(1 + µ)2 + 4ζ

S
ζ2
T
(1 + µ)3] + f2[−ζ

T
(2− µ)(1 + µ)2+

+ 4ζ2
S
ζ
T
(1 + µ)2 + 4ζ3

T
(1 + µ)3] + f [ζ

S
µ2 + 4ζ

S
ζ2
T
(1 + µ)2] + ζ

T

L = f4[ζ
S
ζ
T
(1 + µ)2] + f3[ζ2

S
µ+ 4ζ2

S
ζ2
T
(1 + µ)] + f2[−2ζ

S
ζ
T
+ 4ζ3

S
ζ
T
+ 4ζ

S
ζ3
T
(1 + µ)]

+ f(ζ2
T
µ+ 4ζ2

S
ζ2
T
) + ζ

S
ζ
T

18



Chapter 3. Passive TMDs for benchmark ideal excitations

3.3 Tuning process

3.3.1 Preliminary analysis on the objective functions

Before that the optimisation process could take place, it is suitable to develop a

preliminary investigation on the characteristics of the selected objective functions,

for the different loading cases. In particular, the response index assumed as objective

function has been evaluated nearby the attended optimum region, i.e. where it is

expected to take the smallest values. An extract of the outcomes of this study is

reported in Fig. 4.8, where the response indexes reported in Tables 3.1–3.2 have been

evaluated in the case of µ = 0.02, ζ
S
= 0.05, leading to the following considerations,

which however hold as well for generic values of the structural parameters.
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(d) White Noise Acceleration

Figure 3.2: Optimum region of the objective function for the considered four loading cases, for

µ = 0.02, ζ
S
= 0.05.

The main feature, quite positive in view of the TMD tuning, is the presence

of a clear region with a global minimum of the considered function, that allows,

in principle, for a robust optimisation process. Indeed, these regions of minimum
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denote a quite convex shape of the objective function, and therefore it is expected

that the optimisation algorithm could easily find the optimum values of the TMD

parameters, corresponding to the smallest amplitude of the response index.

In general, as expected the location of the global minimum is close to the coor-

dinate f = 1, i.e. to resonance conditions, and with a TMD damping ratio about

ζ
T
= 0.05, but with some differences between the loading cases. In this sense, the

objective function related to harmonic excitations (HF, HA) exhibits a quite narrow

shape as a function of f and lengthened along ζ
T
, which gives more relevance to the

precision of the detection of the optimum value of the frequency ratio. On the other

hand, the region of minimum of the response indexes for the white noise loading

cases (WNF, WNA) display an almost equal width in all the directions, i.e. it looks

quite convex with respect to both TMD parameters.

Besides these specific considerations, from this investigation one could point out

that the tuning process for the considered loading cases turns out to be well posed,

and therefore it should be possible to provide suitable optimum TMD parameters.

This is indeed the case, as shown in the sequel.

3.3.2 Main features on the optimisation methodology

The optimisation process has been carried out for each dynamic loading case, through

a nonlinear gradient-based algorithm, and developed within a MATLAB environ-

ment [109]. In this sense, different nonlinear numerical methods have been prelim-

inary tested, so that to assess their ability in finding the global minimum of the

objective function and therefore to assume the most suitable algorithm for the tun-

ing purposes. In particular, Interior Point, Trust Region and Sequential Quadratic

Programming methods have been analysed in their performance, finding that all of

them could easily detect the optimum region, for all the considered objective func-

tions, proving once again the well posedness of the present tuning problem. The final

choice of a Minimax optimisation method is mainly due to its wide and successful

use in the TMD tuning literature [83, 84, 116, 117] and to its proved effectiveness in

the present previous experiences [87, 91, 92].

The goal of the Minimax algorithm is that of minimising the worst case, in terms
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of maximum values, of a set of multivariable functions, given an initial estimate,

possibly limited by lower and upper bounds on the optimisation variables. Within

the present context, the Minimax problem may be stated as follows:

min
p

max
J

J(p) , l
b
≤ p ≤ u

b
, (3.4)

where p is the vector of the tuning variables, J(p) is the objective function, l
b
and

u
b
are the lower and upper bound vectors of the tuning variables.

Here, the task of the numerical algorithm consists in the minimisation of the

maximum value of the previously reported response functions (Tables 3.1–3.2), which

obviously depend, given the fixed primary structure parameters, on the free TMD

parameters. In this sense, it is worth noting that the Minimax principle turns

out quite reliable to state and to solve the optimisation problem related to the

minimisation of the frequency peak response for the cases of harmonic loading, as

displayed in Figs. 3.3–3.4.
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Figure 3.3: Frequency response of the primary structure as a function of the excitation frequency

ratio g and of the mass ratio µ (here reported for the harmonic force on the primary

structure).

Although in principle the method would allow for the optimisation of all three

TMD parameters µ, f , ζ
T
, the following typical modus operandi has been adopted,

i.e. for a given fixed mass ratio µ and a primary structure damping ratio ζ
S
, the

algorithm seeks the optimal frequency ratio f opt and TMD damping ratio ζopt
T

, lead-
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Figure 3.4: Frequency response of the primary structure as a function of the excitation frequency

ratio g and of the primary structure damping ratio ζ
S
(here reported for the harmonic

force on the primary structure).

ing to best tuning. Thus, f and ζ
T
are here the two assumed free variables of the

optimisation process, listed in (2 × 1) vector p.

To start the optimisation process, it is necessary to initialise the values of the two

variable parameters f and ζ
T
. This has been done, for each loading case, by means

of well known tuning formulas from the literature [26, 126], referring to the case of

undamped primary structures (ζ
S
= 0), gathered in Table 3.3 below.

Table 3.3: Optimum tuning formulas from the literature for undamped primary structures
(

ζ
S
= 0

)

.

Loading Author [ref.] f opt ζopt
T

Harmonic Force Den Hartog [26]
1

1 + µ

√

3

8

µ

1 + µ

Harmonic Acceleration Warburton [126]
1

1 + µ

√

2− µ

2

√

3µ

4(1 + µ)(2− µ)

White Noise Force Warburton [126]
1

1 + µ

√

2 + µ

2

√

µ(4 + 3µ)

8(1 + µ)(2 + µ)

White Noise Acceleration Warburton [126]
1

1 + µ

√

2− µ

2

√

µ(4− µ)

8(1 + µ)(2− µ)
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Chapter 3. Passive TMDs for benchmark ideal excitations

All the characteristic parameters of the optimisation process have been listed

in Table 3.4 (in MATLAB vector notation). These values turn out to assure a

good compromise between convergence characteristics and achieved accuracy. Other

given external constraints are the maximum number of iterations and the maximum

number of function evaluations, both fixed at 300. Actually, from the numerical tests

it has been noticed that the optimisation process converges promptly and smoothly,

much earlier than reaching such bounds.

Table 3.4: Main characteristics of the optimisation procedure.

Tuning variables p = [f ; ζ
T
]

Lower bounds l
b
= [0.85; 10−3]

Upper bounds u
b
= [1.05; 0.3]

Mass ratio µ = [0.0025 : 0.0025 : 0.1]

Primary structure damping ratio ζ
S
= [0 : 0.0025 : 0.05, 0.055 : 0.005 : 0.1]

Harmonic loading frequency ratio g = [0 : 0.0005 : 2]

Tolerance on variable parameter 10−6

Tolerance on constraint violation 10−6

Tolerance on objective function 10−6

The tuning results obtained from the numerical optimisation process for the four

considered loading cases (HF, HA, WNF, WNA) are displayed by surface plots

in Figs. 3.5–3.6, respectively in terms of optimal frequency ratio f opt and TMD

damping ratio ζopt
T

. Line sections drawn out from the surface maps in Figs. 3.5–3.6

will be presented later for further quantitative analysis (Section 3.5).

From the obtained tuning plots in Figs. 3.5–3.6, the following basic considerations

arise (to be noted for the subsequent interpolation process). First, from Fig. 3.5 on

f opt, three main trends of f opt may be mainly observed, out of the four loading cases.

The higher values of f opt belong to the case of White Noise Force (WNF), while lower

values of f opt are recovered in the case of Harmonic Force (HF) and lowest tight

values are obtained for Harmonic and White Noise Accelerations (HA, WNA), which

display an almost similar trend along both µ and ζ
S
directions. At the same time,

from WNF to WNA cases, it appears that f opt becomes more variable with respect
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Figure 3.5: Optimum frequency ratio fopt from the numerical optimisation process for the four

loadings.
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Figure 3.6: Optimum TMD damping ratio ζopt
T

from the numerical optimisation process for the

four loadings.

to structural damping ratio ζ
S
. Particularly, for the WNF case, the variability on

ζ
S
appears almost negligible; for the HF case just a bit more visible and almost

bilinear; for HA and WNA cases more apparent and with increasing nonlinearity.

Also, the outcomes for HF (reference case in Den Hartog’s analysis [26] of undamped

structures, ζ
S
= 0) are almost halfway to those from WNF and HA/WNA.

The context represented by the optimal TMD damping ratio ζopt
T

in Fig. 3.6 is

quite different, as clearly pointed out in the surface plot. Two main trends are
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Chapter 3. Passive TMDs for benchmark ideal excitations

actually displayed, which separate the cases of Harmonic and White Noise loadings

(both for point Force and base Acceleration). The common and important feature

of these two trends is the quite negligible variation of ζopt
T

as a function of structural

damping ratio ζ
S
. This holds true especially for White Noise loading.

In short, from a visual comparison between the two series of plots in Figs. 3.5–

3.6, it should be said that trends sort out as follows: by point of load application

(Force vs. Acceleration) for f opt; by type of loading (Harmonic vs. White Noise) for

ζopt
T

. Results on both f opt and ζopt
T

recall strongly those obtainable for the case of

undamped primary structures (ζ
S
= 0), as reported by the tuning formulas listed in

Table 3.3.

3.4 Tuning formulas

3.4.1 Fitting process

The obtained optimal TMD parameters f opt, ζopt
T

have been post-processed through

a proper interpolation method, seeking the best match of the achieved results to

possible unifying analytical fitting proposals that may be elaborated as described

in the following. Direct 2D surface fittings on both variables µ and ζ
S
have been

attempted. The numerical interpolation method relies on nonlinear least squares

estimates based on the minimisation of the sum of the residuals between optimal and

fitting values [109]. The fitting model coefficients have been evaluated iteratively.

First, a starting estimate of the model coefficients is attempted. The so obtained

fitting is assessed, and its Jacobian evaluated. Then, the model coefficients are ad-

justed by an optimisation algorithm based on a Trust Region method, by improving

the achieved interpolation until appropriate convergence criteria are met.

Once a best fitting is obtained with a proposed model, its reliability may be

assessed by various error indices, such as the Summed Square of Error (SSE) or

the Root Mean Square of Error (RMSE), and accuracy indices, such as the R-

square correlation between optimal and fitting values [109]. This last index has

been reported in the results that follow. In general, the closer the R-square index to

1 is, the smaller and nearer to zero the error indices are, and the better the fitting
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3.4. Tuning formulas

estimate is considered.

3.4.2 Fitting models

The following contents stand as selected outcomes of a wider study, where different

analytical fitting models have been considered and assessed, within the task of seek-

ing a model apt to match the best compromise among appropriate representation

of optimum results and simpleness of the tuning formulas. Specifically, two fitting

models are presented here, for each optimised TMD parameter f opt and ζopt
T

.

The first model, which outlines the present main proposal (validated also in fol-

lowing Section 3.5), will be denoted as Proposed Fitting Model (PFM). This model

does not explicitly refer to the tuning formulas for the case of undamped primary

structures (Table 3.3). It just refers to polynomial expressions in the variables µ, ζ
S
.

Conversely, the second model, denoted as Literature-based Fitting Model (LFM),

follows a similar approach but basically relies on the tuning formulas in Table 3.3,

which may be recovered exactly as particular cases for ζ
S
= 0.

3.4.3 Frequency ratio

The fitting model for frequency ratio f̃ opt and related tuning formulas are intro-

duced and discussed in detail in this section. Based on the direct inspection of the

surface plots in Fig. 3.5, it considers first a fitting model expressed by a polynomial

expansion in the variables µ, ζ
S
, generalising a bilinear dependency, endowed with

proper exponents e, f , g, h accounting for possible nonlinearity and with additional

coefficients a, b, c, d ruling the importance of each term:

f̃ opt = a− b µe − c µf ζg
S
− d ζh

S
. (3.5)

The signs appearing in Eq. (3.5) have been assigned by taking into account results

obtained from the tuning procedure itself. Indeed, it may be noticed from Fig. 3.5

that the values assumed by f opt are largest for small values of mass ratio µ, and

decrease at increasing values of both free variables µ, ζ
S
. A first estimate of the

model coefficients, for the four different loading cases (HF, HA, WNF, WNA), has

been reported in Table 3.5, whose results lead to the following considerations. For
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Chapter 3. Passive TMDs for benchmark ideal excitations

all the loading cases, parameter a takes, as expected, values near 1 (meaning that

a Tuned Mass Damper characterised by a small mass and attached to a lightly-

damped main structure should be resonant with the structure itself). Coefficients e

and g are also near 1, while coefficient f approaches 1/2. The remaining coefficients

are quite different for each loading case but, as a general observation, it may be

pointed out that very similar values have been obtained for the cases of Harmonic

Acceleration and White Noise Acceleration, while Harmonic Force and White Noise

Force cases follow different trends.

Table 3.5: Optimum coefficients for the fitting model of frequency ratio fopt in Eq. (3.5).

Loading a b c d e f g h R-square

HF 1.003 0.7365 0.9475 0.8791 0.8959 0.4214 0.9794 1.936 1.0000

HA 1.003 0.9272 1.696 1.229 0.8977 0.4223 1.004 2.014 1.0000

WNF 1.002 0.5610 0.3969 0.01145 0.9018 0.5057 1.033 0.7986 1.0000

WNA 1.004 0.9219 1.787 1.659 0.8948 0.4307 0.9872 1.926 1.0000

These outcomes lead, after further refinements, to the final tuning formulas for

f opt of the Proposed Fitting Model reported in Table 3.6, based on square-root

dependencies, which display an important feature: with quite a simple model and

slight changes of the coefficients among the different loading cases, it is possible

to achieve a good general fitting in terms of f opt. Also, the fittings for the two

acceleration loading cases are unified and actually set the same.

Table 3.6: Tuning formulas for the Proposed Fitting Model of frequency ratio fopt.

Loading f̃ opt R-square

Harmonic Force 1−√
3µ

(

1

2

√
µ+ ζ

S

)

0.9916

Harmonic Acceleration 1−√
3µ

(

2

3

√
µ+

3

2
ζ
S

)

0.9947

White Noise Force 1−√
3µ

(

2

5

√
µ+

1

4
ζ
S

)

0.9974

White Noise Acceleration 1−√
3µ

(

2

3

√
µ+

3

2
ζ
S

)

0.9924

Based on such an experience, fitting formulas may be further refined by taking

into account, as basis, the tuning formulas for undamped structures (ζ
S
= 0) listed
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3.4. Tuning formulas

in Table 3.3. This allows to recover them exactly, when structural damping ratio ζ
S

is set to zero. Namely, by combining formulas in Table 3.3 and fittings originated

from the analytical model in Eq. (3.5), one may re-state the fitting as:

f̃ opt = f opt

ref(ζ
S
=0)

·
(

a− b µe − c µf ζg
S
− d ζh

S

)

. (3.6)

Best fitting on this further interpolation model leads then to results presented in

Tables 3.7–3.8 below, which are homologous to those derived earlier (Tables 3.5–

3.6). The final Literature-based Fitting Model tuning proposal in Table 3.8 unifies

again cases HA and WNA.

Table 3.7: Optimum coefficients for the fitting model of frequency ratio fopt in Eq. (3.6).

Loading a b c d e f g h R-square

HF 1.0000 0.003704 1.229 1.181 9.662 0.4632 0.9916 2.106 1.0000

HA 1.0000 0.2065 2.262 1.260 3.516 0.4989 1.003 1.987 1.0000

WNF 1.0000 0.006310 0.3795 0.1529 9.208 0.4439 0.9875 4.370 1.0000

WNA 1.0000 10.0000 2.456 1.780 5.687 0.5041 0.9943 1.947 1.0000

Table 3.8: Tuning formulas for the Literature-based Fitting Model of frequency ratio fopt.

Loading f̃ opt R-square

Harmonic Force
1

1 + µ

(

1−
√

3µ ζ
S

)

0.9969

Harmonic Acceleration
1

1 + µ

√

2− µ

2

(

1− 3

2

√

3µ ζ
S

)

0.9988

White Noise Force
1

1 + µ

√

2 + µ

2

(

1− 1

4

√

3µ ζ
S

)

0.9998

White Noise Acceleration
1

1 + µ

√

2− µ

2

(

1− 3

2

√

3µ ζ
S

)

0.9943

3.4.4 TMD damping ratio

Easier interpretation is achieved for possible analytical fittings ζ̃opt
T

of the optimal

TMD damping ratio ζopt
T

, which are approached again in two ways. Following what

stated above for f̃ opt in Eq. (3.5), a similar fitting model is attempted:

ζ̃opt
T

= a + b µe + c µf ζg
S
+ d ζh

S
, (3.7)
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Chapter 3. Passive TMDs for benchmark ideal excitations

where the signs take into account the trends in Fig. 3.6. Table 3.9 reports the results

of a first estimate of the model coefficients, which leads to the following observations.

First, for all the loading cases, parameter a takes values near 0 (meaning that

an optimal TMD should be lightly damped for small µ, ζ
S
), while coefficient e

approaches 1/2; parameter b results slightly lower than 3/5 and 1/2, respectively

for Harmonic and White Noise loadings; the values assumed by coefficients c, d, f ,

g, h seem to point out that the contribution of ζ
S
may be negligible overall.

Table 3.9: Optimum coefficients for the fitting model of TMD damping ratio ζopt
T

in Eq. (3.7).

Loading a b c d e f g h R-square

HF −0.01166 0.539 0.01705 0.1024 0.4371 0.202 1.045 0.9029 1.0000

HA −0.001 0.5734 0.2994 0.001005 0.4795 0.1832 0.9973 10 1.0000

WNF −0.005521 0.4534 0.03684 0.08062 0.4572 4.999 5.818 8.749 1.0000

WNA −0.005614 0.4548 0.1584 0.001293 0.4579 1.245 1.485 9.587 1.0000

Table 3.10 reports the final obtained PFM tuning formulas for TMD damping ra-

tio ζopt
T

, based on square-root dependencies on µ similar to those for f̃ opt, according

to the following considerations. First, ζopt
T

is weakly influenced by structural damp-

ing ratio ζ
S
, basically just by mass ratio µ, especially for the case of White Noise

loading. Instead, a slight dependence on ζ
S
is displayed in the case of Harmonic

loading. Second, the reported tuning formulas are quite simple and display at the

same time high accuracy in the considered ranges. Third, the four loading cases are

unified by two common formulas, differing just by a single coefficient (besides for

an additional term related to ζ
S
) and coupled in two by the type of acting loading

(Harmonic vs. White Noise).

Table 3.10: Tuning formulas for the Proposed Fitting Model of TMD damping ratio ζopt
T

.

Loading ζ̃opt
T

R-square

Harmonic Force
3

5

√
µ+

1

6
ζ
S

0.9947

Harmonic Acceleration
3

5

√
µ+

1

6
ζ
S

0.9987

White Noise Force
1

2

√
µ 0.9920

White Noise Acceleration
1

2

√
µ 0.9928
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Also for TMD damping ratio ζopt
T

, a literature-based model may be further pro-

vided, as reported in Eq. (3.8) below, whose optimal coefficients and final obtained

tuning formulas are respectively gathered in Tables 3.11–3.12, respectively:

ζ̃opt
T

= ζopt
T, ref(ζ

S
=0)

·
(

a + b µe + c µf ζg
S
+ d ζh

S

)

. (3.8)

Such LFM tuning formulas in Table 3.12 confirm the quite independence of ζopt
T

on ζ
S
(in fact, just a slight contribution occurs in the case of Harmonic loading).

Therefore, the formulas valid for the undamped case have proved to provide good

predictions also for the case of damped primary structures.

Table 3.11: Optimum coefficients for the fitting model of TMD damping ratio ζopt
T

in Eq. (3.8).

Loading a b c d e f g h R-square

HF 1.002 0.2549 0.1614 0.6359 10 8.196 8.12 0.8518 0.9988

HA 0.9972 0.2419 0.3477 1.079 9.344 5.298 7.73 0.9602 0.9987

WNF 1.000 0.006248 0.02605 0.1006 1.808 7.893 7.901 8.833 1.0000

WNA 1.000 0.001 1.140 1.339 1.757 1.457 1.238 4.560 1.0000

Table 3.12: Tuning formulas for the Literature-based Fitting Model of TMD damping ratio ζopt
T

.

Loading ζ̃opt
T

R-square

Harmonic Force

√

3

8

µ

1 + µ
(1 + ζ

S
) 0.9985

Harmonic Acceleration

√

3µ

4(1 + µ)(2− µ)
(1 + ζ

S
) 0.9981

White Noise Force

√

µ(4 + 3µ)

8(1 + µ)(2 + µ)
1.0000

White Noise Acceleration

√

µ(4− µ)

8(1 + µ)(2− µ)
1.0000

3.4.5 Considerations on the fitting results

Globally, for both PFM and LFM fitting models the tuning proposals are charac-

terised by a good matching of the results from numerical optimisation, together

with quite a low level of complexity. Also, a unified way of tuning is foreseen, by

switching from the various loading cases through changes of few coefficients. Main
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results are condensed in Tables 3.6 (f̃ opt) and 3.10 (ζ̃opt
T

) for the PFM proposal and

in Tables 3.8 (f̃ opt) and 3.12 (ζ̃opt
T

) for the LFM proposal.

Particularly, the PFM proposal clearly shows that the optimal TMD parameters

are matched by quite simple relations. On the other hand, the LFM proposal allows

to match, with a simple additional term, the optimum results with good accuracy,

referring also to the case of damped primary structures. The remarks pointed out

above are valid specifically for TMD damping ratio ζopt
T

, with optimum values that

can be obtained by very simple formulas. Moreover, an interesting consideration

arises for ζ̃opt
T

from the PFM tuning formulas for the cases of White Noise loadings

(Table 3.10), since they confirm those obtained, with a different approach, by Krenk

and Høgsberg [50].

Specifically, identical fittings are proposed, in couples, for f̃ opt in HA and WNA

cases, and for ζ̃opt
T

in HF and HA cases and in WNF and WNA cases. Thus, while for

f̃ opt, formulas rather group for the point of application of the loading action (Force

vs. Acceleration), for ζ̃opt
T

they rather group for the type of loading (Harmonic vs.

White Noise), see trends in Figs. 3.5–3.6.

Obviously, validity and accuracy of the various tunings are attached to the as-

sumed range of free variables (0 < µ ≤ 0.1 , 0 ≤ ζ
S
≤ 0.1). However, for different

ranges of µ and ζ
S
, it would be possible to adjust the calibration coefficients, within

the same proposed fitting models, by keeping reasonable levels of accuracy in the

achieved predictions.

3.5 Comparisons to the tuning literature

In this section, the Proposed Fitting Model (Table 3.6 for f̃ opt, Table 3.10 for ζ̃opt
T

),

has been inspected and validated through a series of line plots, reported in the

following. They concern both the optimum TMD parameters f opt, ζopt
T

and the opti-

mised response functions of the primary structure (Tables 3.1–3.2), as a function of

mass ratio µ. Two cases have been reported here, i.e. those of undamped (ζ
S
= 0)

and damped (ζ
S
= 0.05) primary structures. The literature formulas adopted for

comparison purpose are those in Table 3.3, for the case of undamped primary struc-
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3.5. Comparisons to the tuning literature

tures, or come from additional literature works [7, 11, 41, 50, 53, 90, 116, 117], for the

case of damped main structures. Results are reported in following Figs. 3.7–3.12.

First, the case of undamped primary structures (ζ
S
= 0) is considered and rep-

resented in Figs. 3.7, 3.8 and 3.11, respectively for optimum frequency ratio f opt,

TMD damping ratio ζopt
T

and corresponding structural response indices R, N . De-

spite that the tuning formulas from the literature display clear nonlinear trends on

f opt, Fig. 3.7 shows that the trends of frequency ratio f opt may be considered almost

linear, at least in the considered range of µ. This remark supports the validity of the

proposed fitting formulas (Table 3.6), which reduce to linear functions in the case of

undamped main structures. Except for the fitting case of HF loading, which shows

little discrepancy with respect to classical Den Hartog’s formula f opt = 1/(1 + µ),

all the other fitting cases point out a good agreement between the proposed and the

corresponding literature formulas (Fig. 3.7). For TMD damping ratio ζopt
T

(Fig. 3.8),

a similar situation may be noticed. A general correspondence with output from lit-

erature formulas is achieved, particularly for the case of HA, where an accurate

matching is recovered. Also, Fig. 3.11 shows a very good agreement among all rep-

resented trends and supports a high effectiveness of the proposed TMD in reducing

the primary structure response.

From Figs. 3.9, 3.10 and 3.12, representative of the case of a damped primary

structure (ζ
S
= 0.05), important considerations may be noted. First, a higher spread

of the various trends is generally obtained, with respect to those of the undamped

case, most of all for frequency ratio f opt. In this sense, the proposed tuning seems

to imply lower trends, except for the WNF case. On the other hand, the proposed

TMD damping ratio ζopt
T

appears to take almost the same values as those from most

of the literature formulas, except for the case of Sadek et al. [90] formula, which leads

(intentionally) to quite higher values of ζopt
T

. Finally, important observations arise

from frequency response functions R, N in Fig. 3.12, depicting the achieved optimum

response of the damped structure. Indeed, it may be noted that the proposed tuning

formulas enable to achieve the most effective Tuned Mass Damper, for all the four

considered loading cases.
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Figure 3.7: Optimum frequency ratio fopt in the case of undamped primary structure (ζ
S
= 0)

for the considered four loading cases, compared to results from the PFM proposal

(Table 3.6) and from tuning formulas in the literature.
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Figure 3.8: Optimum TMD damping ratio ζopt
T

in the case of undamped primary structure

(ζ
S

= 0) for the considered four loading cases, compared to results from the PFM

proposal (Table 3.10) and from tuning formulas in the literature.
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Figure 3.9: Optimum frequency ratio fopt in the case of damped primary structure (ζ
S
= 0.05)

for the considered four loading cases, compared to results from the PFM proposal

(Table 3.6) and from tuning formulas in the literature.
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Figure 3.10: Optimum TMD damping ratio ζopt
T

in the case of damped primary structure

(ζ
S

= 0.05) for the considered four loading cases, compared to results from the

PFM proposal (Table 3.10) and from tuning formulas in the literature.
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Figure 3.11: Maximum response displacement of the primary structure in the case of undamped

primary structure (ζ
S
= 0) for the considered four loading cases, compared to results

from the PFM proposal (Tables 3.6 and 3.10) and from tuning formulas in the

literature.
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Figure 3.12: Maximum response displacement of the primary structure in the case of damped

primary structure (ζ
S
= 0.05) for the considered four loading cases, compared to

results from the PFM proposal (Tables 3.6 and 3.10) and from tuning formulas in

the literature.
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Chapter 4

Optimum passive and hybrid

TMDs for impulse loading

4.1 Introduction

Structural systems can be easily subjected to a wide range of harmful dynamical

actions of a different nature, especially from the point of view of duration and in-

tensity. Within this context, the reduction and the control of the dynamic response

due to impulse loading is doubtlessly an important research topic, mostly for its po-

tential contribution in several engineering applications, such as those in earthquake

engineering and in the automotive field.

In this sense, the passive Tuned Mass Damper is generally considered as not

significantly effective in reducing the structural response [1]. However, it appears

from the literature that this field has not been thoroughly investigated yet.

The contents presented in this chapter deepen this framework and deal with the

study of the optimal tuning of a Tuned Mass Damper when the structural system

is subjected to shock excitation. A structural system composed of a damped SDOF

primary structure and a TMD added on it, and subjected to unit impulse acting as

base displacement has been considered.

First, the structural context and the related dynamic response are explained in

detail, then the numerical optimisation of the passive Tuned Mass Damper is devel-

oped, showing the potential application benefits. The hybrid configuration of the
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4.2. Passive TMD

TMD is further considered, by the introduction of a feedback closed loop controller

between the primary structure and the TMD, in order to investigate the possible

improvement in terms of efficiency in reducing the dynamic response of the primary

structure with respect to the case of a passive TMD. The optimisation process has

been studied in detail, and a comprehensive overview of the obtained results, in

terms of optimum parameters of the Tuned Mass Damper and the corresponding

obtained reduction of the dynamic response, have been presented, together with first

significant remarks for the design of TMDs within the considered framework.

4.2 Passive TMD

4.2.1 SDOF primary structure

A SDOF system is considered, initially at rest and subjected to unit impulse exci-

tation in t = 0, which may be ideally defined by a Dirac delta function δ(t) [81,85]:

δ(t) =











∞ , t = 0

0 , elsewhere

,

∫ +∞

−∞

δ(t)dt = 1 . (4.1)

Particularly, such impulsive excitation has been considered acting here as base dis-

placement x
g
(t) (Fig. 4.1):

x
g
(t) = X

g
δ(t) , (4.2)

where X
g
= 0.01 m denotes the assumed constant amplitude of the excitation.

x
g
(t)

m
S

c
S

k
S

x
S
(t)

Figure 4.1: Structural parameters and absolute dynamic degrees of freedom of the SDOF primary

structure (S), subjected to generic base displacement x
g
(t).

The mechanical parameters of such system are: the mass m
S
, the constant stiff-

ness k
S
and the viscous damping coefficient c

S
. The natural angular frequency ω

S
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Chapter 4. Optimum passive and hybrid TMDs for impulse loading

and damping ratio ζ
S
are classically defined as follows:

ω
S
=

√

k
S

m
S

, ζ
S
=

c
S

c
S,cr

=
c
S

2
√

k
S
m

S

=
c
S

2ω
S
m

S

. (4.3)

The dynamic behaviour of this structure is ruled by the following equation of

motion:

m
S
ẍ

S
(t) + c

S
ẋ

S
(t) + k

S
x

S
(t) = c

S
X

g
δ̇(t) + k

S
X

g
δ(t) . (4.4)

The time response of the primary structure is obtained through a pair of Laplace

Transforms [85]. First, Eq. (4.4) is transformed in the Laplace variable s, with

homogeneous conditions, consistently with the hypothesis of system initially at rest:

[s2m
S
+ sc

S
+ k

S
]X

S
(s) = sc

S
X

g
+ k

S
X

g
(4.5)

or, written in symbolic form:

Z
S
(s)X

S
(s) = F

S
(s) , (4.6)

where Z
S
(s) is the system impedance, X

S
(s) is the degree of freedom and F

S
(s) is

the transform of dynamic excitation. Thus, the transform of the dynamic response

of the primary structure, in terms of displacement as a function of s can be expressed

as:

X
S
(s) = Z

S
(s)−1F

S
(s) = H

S
(s)F

S
(s) , (4.7)

whereH
S
(s) = Z

S
(s)−1 is the receptance (or transfer function) of the system. Hence,

one obtains:

X
S
(s) =

sc
S
+ k

S

s2m
S
+ sc

S
+ k

S

. (4.8)

The inverse Laplace transform of this relation provides, after some algebra, the fol-

lowing analytical expression of the time displacement of the SDOF primary struc-

ture:

x
S
(t) =

1

m
S

√

4m
S
k

S
− c2

S

e
−

c
S

2m
S

t
·

·
[

(2m
S
k

S
− c2

S
) sin

(

√

4m
S
k

S
− c2

S

2m
S

t

)

+

+ c
S

√

4m
S
k

S
− c2

S
cos

(

√

4m
S
k

S
− c2

S

2m
S

t

)]

.

(4.9)
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The first derivative of Eq. (4.9) takes the form:

ẋ
S
(t) =

1

m2
S

√

4m
S
k

S
− c2

S

e
−

c
S

2m
S

t
[

c
S
(c2

S
− 3m

S
k

S
) sin

(

√

4m
S
k

S
− c2

S

2m
S

t

)

+

+ (m
S
k

S
− c2

S
)
√

4m
S
k

S
− c2

S
cos

(

√

4m
S
k

S
− c2

S

2m
S

t

)]

.

(4.10)

By setting this derivative equal to zero, such stationary condition marks the peak

time t̄:

t̄ =
2m

S
√

4m
S
k

S
− c2

S

arctan

(

(c2
S
−m

S
k

S
)
√

4m
S
k

S
− c2

S

c3
S
− 3m

S
c
S
k

S

)

. (4.11)

The substitution of Eq. (4.11) into Eq. (4.9) provides the expression of the peak

displacement:

‖x
S
(t)‖

∞
=

1

m
S

√

4m
S
k

S
− c2

S

e
−

c
S

2m
S

t̄
·

·
[

(2m
S
k

S
− c2

S
) sin

(

√

4m
S
k

S
− c2

S

2m
S

t̄

)

+

+ c
S

√

4m
S
k

S
− c2

S
cos

(

√

4m
S
k

S
− c2

S

2m
S

t̄

)]

=

=

√

k
S

m
S

√

(c2
S
− 3m

S
k

S
)2

3m
S
k

S
− c2

S

·

· e
−

c
S

√

4m
S
k

S
− c2

S

arctan

(

(c2
S
−m

S
k

S
)
√

4m
S
k

S
− c2

S

c
S
(c2

S
− 3m

S
k

S
)

)

,

(4.12)

which will play an important role in the following tuning process, since the magni-

tude of the peak displacement is one of the main objectives within the control of

the transient system response.

4.2.2 Structural system with TMD

The structural system composed of the SDOF primary structure and of a passive

TMD added on it, assumed as benchmark model in the present study, is represented

in Fig. 4.2.
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Similarly to the primary structure, the TMD parameters are the mass m
T
, the

constant stiffness k
T
and the viscous damping coefficient c

T
, while the relevant nat-

ural angular frequency ω
T
and damping ratio ζ

T
are consistently defined as follows:

ω
T
=

√

k
T

m
T

, ζ
T
=

c
T

c2,cr
=

c
T

2
√

k
T
m

T

=
c
T

2ω
T
m

T

. (4.13)

x
g
(t)

m
S

m
T

c
S

k
S

c
T

k
T

x
S
(t)

x
T
(t)

Figure 4.2: Structural parameters and absolute dynamic degrees of freedom of a 2DOF mechanical

system comprised of a SDOF primary structure (S) equipped with an added passive

TMD (T), subjected to generic base displacement x
g
(t).

Further two parameters are introduced for the tuning purposes, i.e. the mass ratio

µ and the frequency ratio f :

µ =
m

T

m
S

, f =
ω

T

ω
S

. (4.14)

The equations of motion of the considered 2DOF linear structural system can be

stated in matrix form as follows:

Mẍ(t) +Cẋ(t) +Kx(t) = F(t) , (4.15)

where:

M =





m
S

0

0 m
T



 , C =





c
S
+ c

T
−c

T

−c
T

c
T



 , K =





k
S
+ k

T
−k

T

−k
T

k
T



 (4.16)

denote the structural matrices relevant to mass, viscous damping and elastic stiff-

ness, respectively. The vectors:

x(t) =





x
S
(t)

x
T
(t)



 , ẋ(t) =





ẋ
S
(t)

ẋ
T
(t)



 , ẍ(t) =





ẍ
S
(t)

ẍ
T
(t)



 (4.17)
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represent the dynamic response of the structural system, in terms of displacements,

velocities and accelerations, respectively.

The vector F(t), which represents the dynamic excitation, for the case of unit

impulse base displacement takes the form:

F(t) =





c
S
ẋ

g
(t) + k

S
x

g
(t)

0



 =





c
S
X

g
δ̇(t) + k

S
X

g
δ(t)

0



 . (4.18)

The equations of motion can be rewritten also in terms of relative coordinates

w
i
= x

i
− x

g
[85]:

Mẅ(t) +Cẇ(t) +Kw(t) = F(t) , (4.19)

where:

w(t) =





w
S
(t)

w
T
(t)



 , ẇ(t) =





ẇ
S
(t)

ẇ
T
(t)



 , ẅ(t) =





ẅ
S
(t)

ẅ
T
(t)



 , (4.20)

and the relative excitation vector takes the following form:

F(t) = −





m
S

m
T



 ẍ
g
(t) = −





m
S

m
T



X
g
δ̈(t) . (4.21)

As for the SDOF system, the response of the considered structural system in the

time domain is obtained by a pair of Laplace transforms [85]. Firstly, the equations

of motion are Laplace transformed:




Z
SS
(s) Z

ST
(s)

Z
TS
(s) Z

TT
(s)









X
S
(s)

X
T
(s)



 =





F
S
(s)

F
T
(s)



 , (4.22)

or, in compact form:

Z(s)X(s) = F(s) , (4.23)

where Z(s) is the impedance matrix, X(s) is the degrees of freedom vector and

F(s) is the excitation vector. In particular, the impedance matrix Z(s) takes the

following form:

Z(s) =





Z
SS
(s) Z

ST
(s)

Z
TS
(s) Z

TT
(s)



 =

=





s2m
S
+ s(c

S
+ c

T
) + (k

S
+ k

T
) −s c

T
− k

T

−s c
T
− k

T
s2m

T
+ s c

T
+ k

T



 ,

(4.24)
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and the force vector:




F
S
(s)

F
T
(s)



 =





s c
S
X

g
+ k

S
X

g

0



 . (4.25)

Then, the dynamic response of the structural system in terms of displacement as

a function of s can be obtained by just an algebraic manipulation of Eq. (4.23):

X(s) = Z(s)−1F(s) = H(s)F(s) , (4.26)

where H(s) = Z(s)−1 is the receptance matrix of the system:

H(s) =





H
SS
(s) H

ST
(s)

H
TS
(s) H

TT
(s)



 =

=
1

D(s)





s2m
T
+ s c

T
+ k

T
s c

T
+ k

T

s c
T
+ k

T
s2m

S
+ s(c

S
+ c

T
) + (k

S
+ k

T
)



 ,

(4.27)

where:

D(s) =det(Z(s)) =

= s4(m
S
m

T
) + s3(c

S
m

T
+ c

T
m

S
+ c

T
m

T
)+

+s2(c
S
c
T
+ k

T
m

S
+ k

S
m

T
+ k

T
m

T
)+

+s(c
S
k

T
+ c

T
k

S
) + k

S
k

T
.

(4.28)

Hence, one obtains:

X
S
(s) = H

SS
(s)F

S
(s) +H

ST
(s)F

T
(s) =

N
S
(s)

D(s)
,

X
T
(s) = H

TS
(s)F

S
(s) +H

TT
(s)F

T
(s) =

N
T
(s)

D(s)
,

(4.29)

where:

N
S
(s) = s2

(

m
T
F

S
(s)
)

+ s
(

c
T
F

S
(s) + c

T
F

T
(s)
)

+ k
T
F

S
(s) + k

T
F

T
(s) ,

N
T
(s) = s2

(

m
S
F

T
(s)
)

+ s
(

c
T
F

S
(s) + c

S
F

T
(s) + c

T
F

T
(s)
)

+ k
T
F

S
(s)+

+ k
S
F

T
(s) + k

T
F

T
(s) .

(4.30)

Finally, the transfer function relevant to the i-th degree of freedom can suitably be

expressed in the following simplified form, based on a partial fraction expansion [74]:

X
i
(s) = G

p

N
∑

n=1

R
n

s− p
n

, (4.31)
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where G
p
is a constant gain factor, and the time-invariant amplitude of the input

signal R
n
is a n-th constant called residue and p

n
is the n-th root of the denominator

D(s), also called pole of the system. Hence, the total number of poles N corresponds

to the degree of the denominator D(s), which is of the fourth order here. Such an

expression for the transfer function is quite useful in view of the inverse Laplace

transform, which returns the response in the time domain:

x
i
(t) = G

p

N
∑

n=1

R
n
e pn t . (4.32)

Despite that it could be possible, in principle, to derive the analytical expres-

sions for the residues, even for a relatively simple system as that assumed in this

study, such analytical expressions take quite complex and lengthy forms. Hence, the

residues will always be evaluated numerically here.

At the same time, the poles could be evaluated analytically if the degree of

the denominator is lower than five (Abel-Ruffini theorem), as it is for the case of

the transfer function involved in this study (fourth order denominator). However,

such analytical expressions are not strictly necessary for the present study, thus the

evaluation of the poles will be carried out numerically as well here.

4.2.3 Tuning process

In this section, the optimum tuning process of the free parameters of the Tuned Mass

Damper is explored. In order to develop a first investigation and to outline a general

method for the optimum design of the TMD for the cases of pulse loading, here the

optimisation aims only at reducing the dynamic response in terms of the primary

structure displacement. Thus, some additional features, such as the limitation of the

stroke of the TMD (which may display significant relevance in practical cases), will

not be considered, although it could be possible to implement it in further actions

of the optimisation process, through appropriate bounds on the tuning variables.

The present TMD tuning process can be interpreted and managed as a classical

optimisation procedure, where the objective (or cost) function is assumed to be

a quantity representative of the dynamic response, either in the time or in the

frequency domain, which is supposed to be minimised [87, 91–93], as previously
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explained in Chapter 3:

min
p

J(p) , lb ≤ p ≤ ub , (4.33)

where p, J(p), lb and ub represent the optimisation variables, the objective function,

the lower and the upper bounds on the optimisation variables, respectively. In the

present context, following the usual approach in the literature [7, 11, 26, 41, 50, 53,

83,84,126], only the frequency ratio f and the TMD damping ratio ζ
T
are taken as

optimisation variables, while the mass ratio µ is assumed to be given from scratch

(two-variables optimisation).

This approach is motivated by two main reasons. First, the amount of added mass

which composes the Tuned Mass Damper is limited by a matter of practical design,

i.e. excessive masses of the device could be counterproductive in terms of suitability

and safety of the primary structure. The second issue, which is instead related to

rather theoretical aspects, is pointed out by the optimisation process itself. Indeed,

several previous trials [87, 91–95] have shown that, in case of free mass ratio, this

parameter tends to reach the upper limit that has been set, leading to a lower TMD

damping ratio, so that to transfer the dynamic response entirely to the TMD. In

this sense, a suitable upper limit to design guidelines could be established within

the optimisation process, which will likely correspond to the assumed value of µ in

the optimisation process.

The characteristics of the considered objective function play a fundamental role

for the real effectiveness of the optimisation process. Above all, despite that a

relatively simple system has been assumed here, namely a 2DOF structure, the

analytical expressions of its dynamic response take quickly a complex form, which

lead to consider a numerical optimisation method as a suitable mean to develop the

tuning process.

Another important issue, within the tuning process, as inspected in Chapter 3, re-

gards the choice of the optimisation algorithm. In this sense, despite that a large se-

ries of modern algorithms could assure high optimisation performances (see e.g. [53]),

a classical numerical method looks sufficient for the solution of the present tun-

ing problem. Indeed, the computational time required by the optimisation process

has been noted to be quite short, probably because of the simplicity of the struc-
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tural system and the deterministic nature of the dynamic excitation. In particular,

a classical nonlinear gradient-based optimisation algorithm available within MAT-

LAB [109] has been adopted, which is based on Sequential Quadratic Programming

(SQP). Further details on this framework are provided in [92].

All the parameters involved in the optimization process have been gathered in

Table 4.1 below. The ranges of values of the mass ratio µ and the TMD damping

ratio ζ
T
have been chosen so as to be similar to those typically appearing in engi-

neering applications, while the values assumed for the tolerances and the maximum

value of iterations and function evaluation were able to ensure both fast convergence

and high level of accuracy.

Table 4.1: Characteristics of the optimisation process.

Tuning variables p = [f ; ζ
T
]

Lower bounds l
b
= [10−3; 10−3]

Upper bounds u
b
= [5; 1]

Mass ratio µ = [0.0025 : 0.0025 : 0.1]

Primary structure damping ratio ζ
S
= [0, 0.01, 0.02, 0.03, 0.05]

Tolerance on variable parameter 10−6

Tolerance on constraint violation 10−6

Tolerance on objective function 10−6

Max. number of iterations 50

Max. number of function evaluation 300

In order to find out the best objective function for the tuning process, a prelim-

inary investigation has been carried out on several objective functions, which are

norms of the time response of the primary structure. Such investigation regarded

both the type of norms considered and the response quantity. The H
i
norm can be

defined as follows [133]:

‖x‖
i
:=

(

N
∑

n=1

|x
n
|i
)

1
i

, 1 < i < ∞ , (4.34)

where N is the total number of time samples of variable x in the assumed time

interval. The norms H1 , H2 and H
∞

have been considered. The former two allow to
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optimise the dynamic response all along the time window, while the latter is devoted

only to the peak response:

‖x‖1 :=

N
∑

n=1

|x
n
| , ‖x‖2 :=

√

√

√

√

N
∑

n=1

|x
n
|2 , ‖x‖

∞
:= max

1≤n≤N
|x

n
| . (4.35)

The response quantities assumed as possible alternative objective functions within

this preliminary optimisation session are displacement, velocity and acceleration

of the primary structure x
S
(t), ẋ

S
(t), ẍ

S
(t) and the kinetic energy of the primary

structure T
S
(t):

T
S
(t) =

1

2
m

S
ẋ2

S
(t) . (4.36)

The numerical trials have been developed by assuming the following values of the

structural parameters for the primary structure:

m
S
= 100 kg, k

S
= 10000 N/m , (4.37)

leading to:

ω
S
= 10 rad/s , f

S
=

ω
S

2π
= 1.592 Hz , T

S
=

1

f
S

= 0.6283 s , (4.38)

while the damping coefficient of the primary structure c1 will take different values,

so as to explore the influence of such parameter on the results. In case of different

structural parameters, the general trends and guidelines presented here would still

remain reliable for practical design of TMD devices.

The results obtained from the trials provided the following indications. In gen-

eral, the assumption of a H
∞

response quantity leads to undesired results, since the

frequency ratio f takes values corresponding to the upper bound, while the TMD

damping ratio ζ
T
displays abnormal decreasing trends, and the dynamic response

appears not to take appreciable advantage from the presence of the so conceived

TMD. In fact, the peak response is just a little reduced, while the overall response

appears to be even increased. The H1 norm presents some problems as well. In-

deed, despite that a good performance of the TMD is obtained, the optimal TMD

parameters exhibit irregular trends. Actually, the norm which rendered the best

results is the H2 norm of the considered response quantities, because of the regular
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trends of the optimal TMD parameters and the remarkable efficiency in reducing

the overall dynamic response. Hence, the H2 norm has been assumed as reference

norm within the final optimisation process. However, for all the considered norms,

the peak of the primary structure displacement has not been affected significantly,

i.e. it has been obtained less than a 3% reduction. The same problem affects as well

velocity and acceleration of the primary structure, since they are characterised by a

behaviour quite similar to that of the displacement.

The primary structure displacement x
S
(t) has been assumed as final objective

function in the present study, because in general its reduction represents the most

important design goal. However, all the other considered response quantities still

cover a role of valid alternative objective functions, with slight preference of kine-

matic indexes instead of kinetic energy.

4.2.4 Optimum TMD parameters for impulse loading

The optimum TMD parameters obtained by following the tuning methodology have

been represented in Fig. 4.3. The main trends of the optimal TMD parameters

substantially provide a decreasing f and an increasing ζ
T
at increasing µ. In general,

the optimum f opt slightly decreases at increasing primary structure damping ratio ζ
S
,

while ζopt
T

exhibits a general high level of insensitivity with respect to this parameter.
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Figure 4.3: Optimum TMD parameters at variable µ for different values of ζ
S
: (a) frequency

ratio f ; (b) TMD damping ratio ζ
T
.

A comparison of the presented optimum parameters with respect to those obtain-
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Chapter 4. Optimum passive and hybrid TMDs for impulse loading

able in case of different excitations is proposed. In particular, the tuning formulas

for the cases of harmonic and white noise excitations, applied either as force on

the primary structure or base acceleration, taken from the previous Chapter 3, and

reported in Table 4.2, have been considered for this analysis.

The relevant results are represented by Fig. 4.4, and will be discussed in the

following. First, the main trends are confirmed, i.e. for all the loading cases the

frequency ratio f opt decreases and the TMD damping ratio ζopt
T

increases at increas-

ing mass ratio µ. The trends of f opt are a bit different from each other, and in

this sense the trend related to impulse loading is placed halfway with respect to the

others, quite similarly to the values of f opt for the case of excitations applied as base

acceleration (both harmonic and white noise loadings). However, this fact appears

not to be related to the present unit impulse applied as base displacement, since,

from further tests, almost the same parameters have been obtained also in case of

unit impulse force on the primary structure.
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Figure 4.4: Optimum TMD parameters at variable µ, with ζ
S

= 0.02, for different dynamic

excitations: (a) frequency ratio f ; (b) TMD damping ratio ζ
T
.

On the other hand, the different trends of ζ
T
look narrower, with two main streams

defined by harmonic and white noise excitations respectively [93]. In this context,

the parameters obtained for the case of unit impulse base displacement follow very

closely the trend outlined for the white noise excitations. In general, the results

discussed above seem to support the concept of a sort of unified tuning, i.e. a tuning

of TMD parameters that could reasonably approximate the optimum tuning of the

three different excitation cases.
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Table 4.2: Tuning formulas for the optimum TMD parameters as outlined in Chapter 3 for dif-

ferent dynamic excitations.

Dynamic loading f opt ζopt
T

Harmonic Force 1−√
3µ

(

1

2

√
µ+ ζ

S

)

3

5

√
µ+

1

6
ζ
S

Harmonic Acceleration 1−√
3µ

(

2

3

√
µ+

3

2
ζ
S

)

3

5

√
µ+

1

6
ζ
S

White Noise Force 1−√
3µ

(

2

5

√
µ+

1

4
ζ
S

)

1

2

√
µ

White Noise Acceleration 1−√
3µ

(

2

3

√
µ+

3

2
ζ
S

)

1

2

√
µ

4.2.5 Time response reduction

The effectiveness of the proposed TMD, in terms of reduction of the primary struc-

ture time response x
S
(t), is the subject of the present section, where the unit impulse

base displacement is still considered as the dynamic excitation.

In Table 4.3, the percentage numerical magnitude of response reduction, in terms

of ‖x
S
(t)‖

∞
and ‖x

S
(t)‖2 , for ζS

= [0, 0.02, 0.05] and µ = [0.02, 0.05, 0.1], have been

gathered. One may observe that the peak response abatement is very small, also

for significant values (from the engineering applications point of view) of µ, and

it exhibits high insensitivity with respect to ζ
S
. On the other hand, the overall

response decrease is characterised by remarkable values, especially for low values

of µ and ζ
S
, and it results to be quite sensitive on these structural parameters,

i.e. ∆‖x
S
(t)‖2 increases at increasing µ and decreasing ζ

S
.

These considerations on the overall response reduction are confirmed in Fig. 4.5a.

The percentage reduction of the H2 norm of the primary structure displacement,

adopted here as suitable TMD performance index, shows similar trend shapes as a

function of µ, for all the different values of ζ
S
, but the values are quite different,

i.e. one may note that the lower ζ
S
, the higher the response reduction. As a further

investigation, the optimisation has been carried out also for the case of base dis-

placement written in terms of relative coordinates (i.e. the case of base acceleration,
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Table 4.3: Percent reduction of H
∞

and H
2
norm of the primary structure displacement x

S
(t) as

a function of different values of the mass ratio µ and the primary structure damping

ratio ζ
S
.

ζ
S

µ ∆‖x
S
(t)‖

∞
[%] ∆‖x

S
(t)‖2 [%]

0

0.02 0.94 62.54

0.05 2.37 70.25

0.10 4.67 75.05

0.02

0.02 0.91 36.85

0.05 2.30 46.68

0.10 4.53 53.76

0.05

0.02 0.87 19.00

0.05 2.20 27.84

0.10 4.34 35.23

represented by Eqs. (4.19)–(4.21)), which, as expected, gave the same results of the

first formulation.
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Figure 4.5: (a) Percentage reduction of the H
2
norm of the displacement of the primary struc-

ture at variable µ for different values of ζ
S
and (b) displacement time history with

ζ
S
= 0.02.

From Fig. 4.5b, it can be observed that the increase in mass ratio turns out in a

remarkable increase of TMD efficiency, especially after the very beginning of the dy-

namic response (i.e. the first two/three peaks of oscillation). Further investigations

pointed out that such a fact is more evident for lower values of ζ
S
. However, the
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amplitude of the primary structure displacement x
S
(t) tends to zero after more or

less the same duration time (e.g. 6–8 seconds for the considered primary structure),

independently of the assumed magnitude of µ. Despite the general considerable

efficiency of the TMD, the maximum response, which in case of impulsive loading

for a system initially at rest occurs at the first peak of the dynamic response, seems

not to be affected by the insertion of a passive TMD.

4.3 Hybrid TMD

4.3.1 Feedback closed loop control statement

From the results presented in the previous section, the passive Tuned Mass Damper

appears not to be effective in reducing significantly also the peak displacement,

which occurs during the early dynamic response for the case of impulsive loading.

Such a fact is likely due to the intrinsic inertial behaviour of the TMD, which usually

needs a few seconds to affect visibly the dynamic response of the primary structure.

It is therefore meaningful to attempt upgrading such a control device from the

previously analysed merely passive version, to a hybrid form, by the introduction

of a feedback closed loop controller, apt to supply an external relative control force

f
c
(t) (Fig. 4.6). In this sense, the improvement expected from the introduction

of the active controller is represented by its capacity to contribute to the response

mitigation just after the beginning of the excitation. Such behaviour should allow to

achieve further significant benefits with respect to the case of a passive TMD. Indeed,

it is worth noting, in view of the following contents, that the active controller has

been added after the addition and the tuning of the passive Tuned Mass Damper,

in order to guarantee a minimum threshold value of response reduction. Thus,

the further introduction of the controller is motivated only by the possibility of

additional response reduction in terms of peak response.

4.3.2 Adopted control laws

The control force is taken as a linear combination of terms of the dynamic response

of the structural system, where the constant coefficient values of the combination

52



Chapter 4. Optimum passive and hybrid TMDs for impulse loading
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f
c
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Figure 4.6: Structural parameters and absolute dynamic degrees of freedom of a 2DOF mechanical

system, subjected to base displacement, comprising a SDOF primary structure (S),

equipped with an added hybrid TMD (T), apt to supply a control force f
c
(t).

are called gains. Such a structural system is represented in Fig. 4.6 and its dynamic

behaviour is described by the following equations of motion, in terms of the absolute

degrees of freedom x
S
(t) and x

T
(t):

Mẍ(t) +Cẋ(t) +Kx(t) = F(t) +Df
c
(t) , (4.39)

where

D =





−1

1



 (4.40)

defines the location vector for the control force f
c
(t). Different control strategies

have been analysed, in order to discover which one would correspond to the best

choice for the considered structural context. Two main final ones based on two gain

parameters are extensively analysed in the following.

A first control strategy, which for the sake of simplicity will be reported as “Con-

trol Law 1” (CL1), is merely based on the kinematic response of the primary struc-

ture, and starts from often adopted references in the literature [40, 103]:

f
c
(t) = g

a
ẍ

S
(t) + g

v
ẋ

S
(t) + g

d
x

S
(t) , (4.41)

where g
a
, g

v
and g

d
are three gain constants related to acceleration, velocity and

displacement of the primary structure, respectively. Preliminary optimisation tests
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developed in the present setting have pointed out that the acceleration gain g
a

appears to play a negligible role within the global amount of supplied control force

(g
a
= 0). Hence, the final representation of CL1 is considered in the following

two-gains simplified version:

f
c
(t) = fCL1

c
(t) = g

v
ẋ

S
(t) + g

d
x

S
(t) . (4.42)

The second control strategy alternatively proposed in this study, which will be

labelled “Control Law 2” (CL2), is based on the acceleration of the primary structure

ẍ
S
(t) and the relative velocity between the primary structure and the Tuned Mass

Damper ẋ
S
(t)− ẋ

T
(t):

f
c
(t) = fCL2

c
(t) = g

a
ẍ

S
(t) + g

v

(

ẋ
S
(t)− ẋ

T
(t)
)

, (4.43)

where g
a
, g

v
are two gain constants related to the acceleration of the primary struc-

ture and the relative velocity, respectively. The introduction of this latter control

law is motivated by the aim of controlling both the motion of the primary structure

and the relative motion between structure and TMD, which under particular con-

ditions could inadvertently amplify the motion of the primary structure instead of

reducing it.

4.3.3 Dynamic response

By firstly considering CL1, the Laplace transform of Eq. (4.42) for a system initially

at rest takes the form:

FCL1
c

(s) = s g
v
X

S
(s) + g

d
X

S
(s) . (4.44)

The substitution of Eq. (4.44) into the transformed of Eq. (4.39), by considering

Eqs. (4.23)–(4.26), gives the following impedance and receptance matrices:

Z
CL1

(s) =

[

s2m
S
+ s(c

S
+ c

T
+ g

v
) + k

S
+ k

T
+ g

d
−s c

T
− k

T

−s(c
T
+ g

v
)− k

T
− g

d
s2m

T
+ s c

T
+ k

T

]

, (4.45)

H
CL1

(s) =

=
1

det(Z
CL1

(s))





s2m
T
+ s c

T
+ k

T
s(c

T
+ g

v
) + k

T
+ g

d

s c
T
+ k

T
s2m

S
+ s(c

S
+ c

T
+ g

v
) + k

S
+ k

T
+ g

d



 .
(4.46)
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Similarly, the Laplace transform of CL2, described in Eq. (4.43), for a system

initially at rest, is the following:

FCL2
c

(s) = s2g
a
X

S
(s) + s g

v

(

X
S
(s)−X

T
(s)
)

. (4.47)

As before, the substitution of Eq. (4.47) into the transformed of Eq. (4.39), by con-

sidering Eqs. (4.23)–(4.26), gives the following impedance and receptance matrices:

Z
CL2

(s) =

[

s2(m
S
+ g

a
) + s(c

S
+ c

T
+ g

v
) + k

S
+ k

T
−s(c

T
+ g

v
)− k

T

−s2g
a
− s(c

T
+ g

v
)− k

T
s2m

T
+ s(c

T
+ g

v
) + k

T

]

, (4.48)

H
CL2

(s) =

=
1

det(Z
CL2(s))





s2m
T
+ s(c

T
+ g

v
) + k

T
s2g

a
+ s(c

T
+ g

v
) + k

T

s(c
T
+ g

v
) + k

T
s2(m

S
+ g

a
) + s(c

S
+ c

T
+ g

v
) + k

S
+ k

T



 .

(4.49)

4.3.4 BIBO stability analysis

In this section, a preliminary stability analysis has been developed, so as to firmly

establish the bounds (which will be further considered in the optimisation process)

on the values that the control gains of the different feedback control laws may assume

in order to ensure a priori a limited magnitude of the dynamic response in time for

a given bounded input signal.

This principle is represented by the so called Bounded-Input-Bounded-Output

(BIBO) stability, which requires, as necessary and sufficient condition for the sta-

bility of the motion of the system, negative real parts of the closed loop poles [34],

which for the considered structural system are the roots of the following character-

istic equation:

D(s) = 0 , (4.50)

where D(s) is the denominator of the transfer function, obtained as determinant of

the impedance matrix Z(s). Such condition, in practical terms, ensures the decay

of the amplitude of the vibration modes of the structural systems.
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In this sense, for Control Law 1, Eqs. (4.42), (4.44), the related characteristic

equation becomes:

D
CL1

(s) = det(Z
CL1

(s)) =

=s4m
S
m

T
+ s3(c

S
m

T
+ c

T
m

S
+ c

T
m

T
+ g

v
m

T
)+

+s2(c
S
c
T
+ k

T
m

S
+ k

S
m

T
+ k

T
m

T
+ g

d
m

T
)+

+s(c
S
k

T
+ c

T
k

S
) + k

S
k

T
= 0 .

(4.51)

Similarly, for Control Law 2, Eqs. (4.43), (4.47), the following characteristic equa-

tion is obtained:

D
CL2

(s) = det(Z
CL2

(s)) =

=s4(m
S
m

T
+ g

a
m

T
) + s3

(

c
S
m

T
+ c

T
m

S
+ c

T
m

T
+

+g
v
(m

S
+m

T
)
)

+ s2(c
S
c
T
+ k

T
m

S
+ k

S
m

T
+ k

T
m

T
+ g

v
c
S
)+

+s(c
S
k

T
+ c

T
k

S
+ g

v
k

S
) + k

S
k

T
= 0 .

(4.52)

In order to satisfy the stability criterion described above, for each control strategy

and set of given values of the gains, the sign of the less negative (or more positive)

real part of the closed loop poles of the system has been investigated, in order

to establish a sort of stability threshold for the system. The primary structure

described in the previous section has been assumed again for this study. In this

sense, it is important to confirm that possible changes in the structural parameters

should not affect the theoretical principles outlined within the present investigation.

The results of the analysis described above are represented in Fig. 4.7, where

the stability regions are shown, for both considered control laws, as a function of

the two control gains, for µ = 0.02 and ζ
S
= [0.02,0.05]. Such range of values can

be considered as a suitable reference, and sufficient to outline important guidelines

about the stability of the system.

The outcomes relevant to CL1 will be discussed first. From Figs. 4.7a–4.7b it can

be noted that, as a general consideration, the stability region is outlined by positive

values of g
d
, while an increase in the value of g

v
tends to narrow this area. It appears

that the minimum values of the control gains assuring the stability of the system

are of the same order of magnitude of that of the primary structure parameters c
S
,

k
S
(for g

v
, g

d
, respectively). Moreover, a brief comparison between Fig. 4.7a and
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Fig. 4.7b points out that the higher the primary structure damping ratio, the wider

the stability region.
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Figure 4.7: BIBO stability region for (a),(b) Control Law 1 and (c),(d) Control Law 2, for mass

ratio µ = 0.02 and different values of primary structure damping ratio ζ
S
.

The results related to CL2, reported in Figs. 4.7c–4.7d, exhibit a sharper con-

tour of the stability region. This fact basically means that for a stable motion it

is necessary to assume a positive value of g
v
, while the acceptable range of values

of acceleration gain g
a
is limited to negative values for g

v
= 0 and becomes larger,

extended to positive values of g
a
at increasing g

v
. Also, for CL2 a sort of stability

threshold corresponding to g
a
= −m

S
can be established, which apparently rep-

resents a constant outcome, independent of the assumed control law. A possible

physical interpretation of such a result can be the following: for g
a
< −m

S
one

obtains a sort of second virtual primary system, which moves in the opposite direc-

tion with respect to the main one. Such mass magnitudes, the real and the virtual

one, and most of all their interaction, may easily create dynamic instability within

the global system. However, these conditions are likely far from real applications,

since an inertial force of the same magnitude of that of the primary structure is not
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feasible, especially in the case of buildings and, in general, for large systems. As

found previously for CL1, by observing Figs. 4.7c–4.7d also for CL2 the amplitude

of the stability region increases at increasing ζ
S
.

4.3.5 Optimum feedback control for the hybrid TMD

The stability analysis developed and discussed in Section 4.3.4 has provided im-

portant guidelines towards the optimisation process of the control gains, especially

concerning the bounds on the range of values that such gains may assume. As a

further step before the optimisation of the control gains, a preliminary analysis of

the objective function for both control laws will be presented first, in order to better

define the context and, most important, to check if the present optimisation problem

is well posed.

The objective function considered for this study is the peak displacement of the

primary structure x
S
(t):

J(v) = ‖x
S
(t)‖∞ , (4.53)

where v is the vector of the control gains, which play the role of optimisation vari-

ables. The minimisation of the peak displacement is motivated by the fact that the

passive Tuned Mass Damper has already been tuned by considering the H2 norm,

namely the overall response of the primary structure, and it turned out actually

unable to reduce appreciably the peak of response as well. This is, in the end, one

main motivation in the addition of the active controller to the existing system with

optimum passive TMD.

A significant extract of the results of this investigation have been reported in

Fig. 4.8, leading to the following considerations. First, Control Law 1 is characterised

by the velocity gain g
v
and the displacement gain g

d
, which play here the role of

optimisation variables:

v
CL1

= [g
v
; g

d
] . (4.54)

In this sense, Figs. 4.8a–4.8b represent the shape of the objective function for CL1,

which basically takes smaller values for higher velocity gain g
v
, whilst less sensitivity
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is obtained for the acceleration gain g
a
, since an actual minimum point is recovered

for values almost twice the stiffness of the primary structure k
S
, but such a minimum

area tends to be enlarged at increasing g
v
.

From these features and previous stability analysis, the values of the bounds on

the two control gains have been assumed as follows:

0 < g
v
< 50 Ns/m , 10000 N/m < g

d
< 25000 N/m , (4.55)

In particular, the upper bound on g
v
has been assumed in order to limit the motion

of the TMD, which may lead to large magnitude for higher values of the control

gain. This fact could be physically explained by a motion of the TMD progressively

joined to that of the primary structure, which for high values of g
v
may lead to

system instability.

CL2 is based instead on the acceleration gain g
a
and the velocity gain g

v
, which

play here the role of optimisation variables:

v
CL2

= [g
a
; g

v
] . (4.56)

The results in Figs. 4.8c–4.8d display an objective function characterised by a clear

minimum area corresponding to a value of g
v
about one third of the primary struc-

ture damping coefficient c
S
and a value of g

a
slightly lower than the threshold value,

obtained from the stability analysis, g
a
= −m

S
. In general, the presence of a well

defined minimum area may lead already to consider this control law as better than

the previous one, at least from the point of view of the optimisation process, which

should therefore result better posed.

Finally, the plots and previous stability analysis suggest the following lower and

upper bounds for the two control gains:

−95 kg < g
a
< −75 kg , 20 Ns/m < g

v
< 45 Ns/m . (4.57)

The parameters and bounds adopted within the optimisation process have been

shown in Table 4.1. The lower and the upper bounds on the values that the gains

may assume will be successively specified for each control law, for their influence

within the amount of the supplied control force.
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Figure 4.8: Objective function peak displacement of the primary structure for (a),(b) Control

Law 1 and (c),(d) Control Law 2, as a function of the control gains, for µ = 0.02

and different values of primary structure damping ratio ζ
S
.

The validity of the optimisation outcomes presented in the following sections, and

the subsequent achieved dynamic response, will be evaluated also with respect to

the results previously obtained with the passive TMD only, so as to point out the

further benefit coming from the addition of the active controller.

4.3.6 Optimum control gains and hybrid TMD performance

The numerical results of the optimisation process on the control gains, for the consid-

ered case, have been summarised in Table 4.4, where the structural parameters, the

optimum values of the control gains and the relevant percentage response reduction

are reported.

The optimum control gains for CL1 exhibit a value corresponding to the upper

value for g
v
and a value of g

a
increasing at increasing ζ

S
. In particular, the results on

g
v
make necessary the assumption of an upper limit for this gain, based on further
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Table 4.4: Optimum control gains and response reduction (µ = 0.02).

Control Law CL1 CL2

Primary structure damping ratio ζ
S

0.02 0.05 0.02 0.05

Control g
d
[N/m] (CL1), g

a
[kg] (CL2) 18387.7 19128.7 −94.2662 −85.8264

gains g
v
[Ns/m] 50 50 28.2240 30.0005

∆‖x
S
(t)‖

∞
39.66 38.98 28.09 24.25

∆‖x
S
(t)‖2 52.40 35.29 70.52 54.12

Response ∆‖x
S
(t)‖

∞
−∆‖x

S
(t)‖p

∞

38.76 38.11 27.17 23.37

reduction [%] ∆‖x
S
(t)‖2 −∆‖x

S
(t)‖p

2
15.55 16.29 33.67 35.12

∆‖x
T
(t)‖

∞
50.90 41.82 77.39 71.91

∆‖x
T
(t)‖

2
63.35 58.65 89.05 85.81

Control ‖f
c
(t)‖

∞
1.07723 1.08793 34.3592 7.84583

force [kN] ‖f
c
(t)‖

2
30.7000 27.8247 53.1595 17.5010

features, besides the minimisation of the primary structure response. On the other

hand, for CL2 a decreasing g
a
and an increasing g

v
at increasing ζ

S
have been

obtained, consistently with the preliminary analysis outlined before. Such values

of the optimum gain could lead to the physical meaning that the active controller

attempts to counteract the inertial force of the primary mass in the largest possible

way, by trying to create a sort of “virtual” mass and, at the same time, it supplies a

further quantity of damping between the passive TMD and the primary structure, so

as to reduce the movement of the control device, which under particular conditions

could amplify the response of the primary structure, instead of reducing it.

The peak response of the primary structure, i.e. the H
∞

norm of x
S
(t), has been

reduced significantly, i.e. of about 39% for CL1 and 24–28% for CL2, with a per-

formance in general a bit lower for larger inherent damping, especially in the case

of CL2. This is perhaps the most important outcome of the present analysis, since

it strongly supports the introduction of the hybrid TMD for the purposes of the

present control problem, i.e. the abatement of the peak response also.

Remarkable results have been obtained also in terms of reduction of the H
2
dis-

placement, which in general decreases at increasing ζ
S
, especially for CL2. The
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difference in these indexes between the passive and the hybrid Tuned Mass Damper

exhibits a general improvement in device performance. Most of all, the reduction of

the peak displacement appears to get greater improvement from the introduction of

the active controller. On the other hand, the overall response, represented by the H2

norm, is reduced by a smaller amount. This is likely due to the previous beneficial

effective optimisation already achieved with the passive TMD, based on this index.

An important consequence and benefit due to the hybrid TMD is the large re-

duction of the TMD stroke, considered as either H
∞

or H
2
norms. This fact is a

very interesting and additional consequence of the optimisation process, even if the

objective function has been established by neglecting the minimisation of the TMD

response, and it could play an important role in view of practical applications.

The peak supplied force appears to be almost constant for each value of ζ
S
for

CL1, while it takes values quite different for CL2. On the other hand, the overall

control force magnitude takes similar values for CL1, while it remarkably decreases

for increasing ζ
S
. These results reflect the time history of the control forces, whose

amount is more distributed in time for CL1 and almost all concentrated at the

beginning of the response for CL2. The contribution of a larger inherent damping

is noticeable in reducing the required amount of control force in the case of CL2.

The dynamic responses of the different cases in the time domain, in terms of

displacement of the primary structure and of the TMD, have been presented in

Figs. 4.9–4.10. For CL1 (Fig. 4.9), the most noticeable fact is the almost equal

shape of the dynamic response in the case of hybrid TMD. Indeed, it exhibits a

sort of “double peak” at the very beginning of response, characterised by a constant

amplitude, and the rest of response shows an oscillating behaviour, of higher period

with respect to that of the passive system. Such results explain the numerical

outcomes discussed above, since the amplitude of the peak response remains almost

the same for the different cases, while the overall response decreases for increasing

values of ζ
S
. As a consequence, the reduction in the peak response is a sort of

constant result, while any further reduction of the overall response is smaller at

higher ζ
S
.

The time histories for CL2 are presented in Fig. 4.10. The dynamic response of
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the hybrid TMD is characterised by a first peak in the response, followed by a rapid

decrease in the oscillations, which end after about 2 seconds. In terms of the settling

time this is a much more efficient behaviour with respect to the one obtained with

CL1, which leads to an oscillating primary structure for several seconds after the

excitation. A further consideration regards the constant shape, from the point of

view of the amplitude, of the minimised dynamic response. This was also found for

the previous tests with CL1.
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Figure 4.9: Time history of (a),(c) the primary structure displacement x
S
(t) and (b),(d) the

TMD displacement x
T
(t), for Control Law 1, with and without TMD, for µ = 0.02

and different values of ζ
S
(ζ

S
= 0.02 in (a),(b), ζ

S
= 0.05 in (c),(d)).

0 2 4 6 8 10
-0.1

-0.05

0

0.05

0.1

t [s]

x
S
(t

)
[m

]

 

 

No TMD
Passive TMD
Hybrid TMD

(a) µ = 0.02, ζ
S
= 0.02.

0 2 4 6 8 10
-0.4

-0.2

0

0.2

0.4

t [s]

x
T
(t

)
[m

]

 

 

Passive TMD
Hybrid TMD

(b) µ = 0.02, ζ
S
= 0.02.

0 2 4 6 8 10
-0.1

-0.05

0

0.05

0.1

t [s]

x
S
(t

)
[m

]

 

 

No TMD
Passive TMD
Hybrid TMD

(c) µ = 0.02, ζ
S
= 0.05.

0 2 4 6 8 10
-0.4

-0.2

0

0.2

0.4

t [s]

x
T
(t

)
[m

]

 

 

Passive TMD
Hybrid TMD

(d) µ = 0.02, ζ
S
= 0.05.

Figure 4.10: Time history of (a),(c) the primary structure displacement x
S
(t) and (b),(d) the

TMD displacement x
T
(t), for Control Law 2, with and without TMD, for µ = 0.02

and different values of ζ
S
(ζ

S
= 0.02 in (a),(b), ζ

S
= 0.05 in (c),(d)).
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4.3.7 General closing considerations on the assumed control

laws

The results obtained from the previous sections allow the following general remarks

and considerations to be outlined, with the aim of establishing the best control

strategy among the control laws analysed for the present structural context.

The dynamic behaviour obtained by assuming the first control law (CL1), typi-

cally quoted in the literature, is characterised by two peaks of significant amplitude

at the very beginning of the response time history, which could seriously jeopardise

the resistance of the structure. Moreover, during the remaining dynamic response,

the oscillating response exhibits non-negligible magnitudes.

On the other hand, the second control law (CL2) leads, in terms of dynamic

response, to a unique initial peak, and then the remaining time history shows a

response characterised by a rapid decay. Such difference detected from the dynamic

responses achieved by the two control laws points out the higher performance ob-

tainable in the case of the newly proposed CL2, since the primary structure would

be less stressed at all points in time. A further element in supporting this preference

also comes from the numerical results, given in Tables 4.4. In general, the percentage

reduction in the dynamic response, for both primary structure and TMD, is only

slightly lower in case of CL2 than in case of CL1. Also, this performance is reached

through an amount of supplied control force required by CL2 that is higher (more or

less one quarter) with respect to CL1. Additionally, the issues on stability analysis

in Section 4.3.4 and plots of the objective function in Fig. 4.8 display strong favour

for the newly proposed CL2. Hence, by considering all these qualitative and quan-

titative features, CL2 overall shows as the best choice for the hybrid TMD under

investigation here.
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Chapter 5

Optimum TMDs for earthquake

excitation

5.1 Introduction

As introduced in Chapter 2, the actual role of TMDs in earthquake engineering, in-

cluding the tuning method and the potential performance in reducing the structural

seismic response, represents a wide open research topic. In this context, the effec-

tiveness of TMDs is usually measured by assuming the seismic signal in post-tuning

trials, while the optimisation of the TMD parameters is carried out by means of

tuning formulas provided for ideal excitations, such as those of harmonic or white

noise loading [2].

In recent years, just a few studies considered the seismic signal as input within the

tuning process, focusing therefore on the TMD optimisation for a specific earthquake

event [28,91,92,100]. However, an exhaustive study on this framework still appears

to be lacking in the present literature. Moreover, from a general point of view, the

actual level of benefit due to the addition of a TMD for the purposes of seismic

response abatement seems to be an issue still under wide debate [64].

The contents presented in the present chapter insert themselves into this line

of research in TMD tuning and explore the efficiency of the proposed optimisation

method through numerical tests on several frame buildings, characterised by dif-

ferent structural parameters, so that to carry out as well a first investigation on
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the variability of the optimum TMD parameters and on the device effectiveness in

reducing the earthquake response. The main novelty aspect of the optimum tuning

procedure proposed here is the systematic application of a nonlinear optimisation

algorithm on specific cases of frame structures and of seismic events, so that the

obtained TMD parameters turn out optimum for each considered case.

The proposed selection of structures and earthquakes is composed of 16 shear-

type frame buildings, mainly partitioned in 8 typologies based on the number of

floors and 2 floor masses, which play the role of primary structures, and 18 seismic

signals (horizontal ground acceleration), which exhibit diversified features. This set

of (2 × 8) × 18 = 288 cases should allow for the analysis of a wide range of different

situations, especially in terms of the interaction between the structural and the

seismic loading parameters. Also, a quite high structural damping (relevant to the

first mode of vibration) has been assumed for all the structures, namely ζ
S,I

= 0.05,

in order to test the TMD within an unfavourable but real structural context, and

therefore point out a minimum level of response abatement, i.e. a sort of lower

performance threshold. Indeed, in case of lower structural damping, quite greater

benefit should be expected.

The outcomes of the present study are exposed in the form of plots, tables and

bar charts, first concerning the optimum TMD parameters, evaluated for all the 288

considered cases and for 6 different values of mass ratio (1728 cases in total). Then,

for a selected value of mass ratio, namely µ = 0.02, the seismic response reduction

has been evaluated through several kinematic and energy response indexes, in order

to outline a general overview of the TMD performance. Finally, a comprehensive

analysis of the structural systems, concerning modal and response parameters, be-

fore and after the TMD insertion, has been presented, conceived as a complementary

instrument aimed at the investigation on possible connections between the TMD per-

formance and the structural properties, in order to provide significant explanations

on the behaviour of the control device in earthquake engineering.
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5.2 Analysis of the primary structures

5.2.1 Statement of the main features

In the present study, in order to explore the influence of the structural context

in the tuning process and in the efficiency of the added Tuned Mass Damper in

the seismic engineering context, different primary structures have been considered,

represented by 2 × 8 = 16 shear-type frame buildings, i.e. structures with horizontal

dynamic degrees of freedom only, characterised by different structural parameters,

specifically 8 typologies based on the number of floors and 2 floor masses (assumed

equal for each floor of the structure), and supposed to be subjected to different

seismic ground accelerations ẍ
g
(t). A schematic representation of this framework is

displayed in Fig. 5.1.

The selected primary structures, which inter alia include both SDOF and MDOF

buildings, are supposed to be described by perfectly/linear elastic behaviour, and

constant stiffness and damping along the structure. More features could be varied in

this study, but the task of this investigation suggests to clarify first the role of these

main characteristics on the behaviour of the structure and the inserted TMD, before

introducing further variables. The free structural parameters presented above have

been chosen as follows:

• Number of storeys, 8 typologies: n
s
= [1, 2, 3, 5, 10, 15, 25, 40];

• Floor mass, 2 values: m
S,i

= 100000 kg = 100 t; m
S,i

= 150000 kg = 150 t;

Besides that, the following constant structural parameters, useful for outlining

the dynamic behaviour, have been adopted:

• Squared section columns l
c
= 0.6 m;

• Inertia moment J
c
= l4

c
/12 = 6.75× 10−4 m4;

• Column height h
c
= 3 m;

• Number of columns n
c
= 2;

• Young’s modulus E =3× 104 MPa;
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As conceived in this study, the Tuned Mass Damper is a single passive device

placed on top of the primary structure, where the maximum dynamic response is

expected to occur, since the overall vibration shape is found to be almost totally

governed by the first mode of vibration, as it will be clearer in the following of the

study.

However, the placement of the TMD on the top of the frame turns out to be any-

way a suitable solution, also in view of practical applications for seismic retrofitting,

and it allows to emulate efficiently the optimal structural configuration.
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Figure 5.1: Structural parameters and absolute (relative to the ground) dynamic degrees of free-

dom of the general structural system, subjected to seismic base acceleration, com-

prising of a MDOF primary structure (S), equipped with a passive TMD added on

top (T).
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5.2.2 Dynamic analysis

The equations of motion of a linear MDOF shear-type primary structure with

n storeys (Fig. 5.1), which rule its dynamic behaviour, subjected to a generic seismic

base excitation ẍ
g
(t), can be written as follows:

M
S
ẍ

S
(t) +C

S
ẋ

S
(t) +K

S
x

S
(t) = −M

S
r ẍ

g
(t) (5.1)

where the (x× n) matrices

M
S
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(5.2)

are the diagonal mass matrix with floor masses m
S,i
, the tridiagonal damping matrix

composed of the damping coefficients c
S,i

and the tridiagonal stiffness matrix based

on the floor stiffness coefficients k
S,i
, respectively, where the index i denotes the i-th

floor. The kinematic response of the primary structure is represented in terms of

the (n× 1) vectors:

x
S
(t) =

















x
S,1

x
S,2

...

x
S,n

















, ẋ
S
(t) =

















ẋ
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ẋ
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ẋ
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, ẍ
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ẍ
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ẍ
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, (5.3)
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namely displacement x
S
(t), velocity ẋ

S
(t) and acceleration ẍ

S
(t) vectors. The base

seismic acceleration ẍ
g
(t) is allocated to the frame structure by inertia effects, as

proportional to the discrete masses, through the (n × 1) rigid body translational

motion vector r with unit components:

r =

















1

1
...

1

















. (5.4)

As often reported in the literature, see e.g. Villaverde and Koyama [121] and

Sadek et al. [90], classical Rayleigh damping is assumed here, by taking the (n× n)

damping matrix C
S
as simply proportional to the stiffness matrix K

S
, with:

C
S
= βK

S
, β =

2 ζ
S,I

ω
S,I

, (5.5)

where ζ
S,I

and ω
S,I

are respectively the given structural damping ratio and com-

puted proper angular frequency of the primary structure referred to its first mode

of vibration.

The seismic response of the MDOF structures may be evaluated also in terms

of energy indicators, represented here by elastic energy E
S
(t), kinetic energy T

S
(t)

and dissipation power D
S
(t) of the primary structure, which are defined as follows:

E
S
(t) =

1

2
xT

S
(t)K

S
x

S
(t) ,

T
S
(t) =

1

2
ẋT

S
(t)M

S
ẋ

S
(t) ,

D
S
(t) =

1

2
ẋT

S
(t)C

S
ẋ

S
(t) .

(5.6)

In the case of a MDOF primary structure equipped with a TMD added on top of

the last storey, equations of motion (5.1) are slightly modified by an added equation

and transform into the following (n+ 1) equations:

Mẍ(t) +Cẋ(t) +Kx(t) = −Mr ẍ
g
(t). (5.7)

In Eq. (5.7), system matrixes M, C, K are based respectively on M
S
, C

S
, K

S
in

Eqs. (5.1)–(5.2), with appropriate insertion of the TMD parameters m
T
, c

T
and
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k
T
, correspondingly to the location of the TMD on the top floor of the primary

structure:

M =
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(5.8)

Similarly, for vectors x(t), ẋ(t), ẍ(t) in Eq. (5.7), indicating the kinematic response of

the structure+TMD system, the kinematic response of the TMD (respectively x
T
(t),

ẋ
T
(t) and ẍ

T
(t)) is included at the bottom of the structural vector components:

x(t) =























x
S,1

x
S,2

...

x
S,n

x
T























, ẋ(t) =























ẋ
S,1

ẋ
S,2
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ẋ
S,n

ẋ
T























, ẍ(t) =























ẍ
S,1

ẍ
S,2

...

ẍ
S,n

ẍ
T























. (5.9)
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5.2.3 Modal analysis

In Tables 5.1–5.14, the modal parameters of the considered primary structures with-

out TMD have been listed, in terms of modal frequencies ω
S,i
, f

S,i
, modal periods

T
S,i

and effective modal masses M
me,S,i

. In particular, these latter turn out quite

useful in order to establish the hierarchy of the vibration modes and, in general, the

relevance within the overall dynamic response. The effective modal mass related to

the i-th mode of vibration is defined as follows [20]:

M
me,S,i

= Γ
S,i
Λ

S,i
=

Λ2
S,i

M
m,S,i

, (5.10)

where:

Γ
S,i

=
Λ

S,i

M
m,S,i

(5.11)

represents the i-th modal participation factor, being:

M
m,S,i

= ΦT

S,i
M

S
Φ

S,i
(5.12)

the modal masses and Φ
S,i

is the i-th mode shape of the primary structure, nor-

malised so that to have a unit component at the level of the top storey.

Due to the intrinsic regularity of the structures (regular distribution of mass and

stiffness), the outcomes point out general trends, discussed in the following. As a

first note, for the two different floor masses, besides an expected shift of frequencies

and periods, the same trends of the modal parameters are displayed.

In this sense, at increasing number of floors, the frequency of the first vibration

mode tends to decrease and, viceversa, the period to increase, with values character-

istic of those in real structures and, most important, corresponding to the interval

of acceleration response spectrum where the seismic actions sort the greatest effect,

as it will be displayed in a later moment.

The effective modal mass related to the first mode of vibration decreases at in-

creasing number of storeys; however, even for the highest number of floors (n
S
= 40),

the first mode exhibits more than 80% of the total mass, with small contribution

of the second mode and an almost negligible role played by the third mode. More-

over, as general indication, the modes higher than the fourth involve less than 1%
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of the effective modal mass. Finally, for all the considered primary structures the

first mode appears to be the dominant and the most representative of the global

dynamic response.
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Table 5.1: Modal parameters for the structure with n
S
= 1, m

S,i
= 100 t.

Mode ωS,i [rad/s] fS,i [Hz] TS,i [s] Mm,S,i [×103 kg] Mme,S,i [×103 kg] Mme,S,i [%]

I 53.6656 8.54115 0.11708 100 100 100.00

Table 5.2: Modal parameters for the structure with n
S
= 2, m

S,i
= 100 t.

Mode ω
S,i

[rad/s] f
S,i

[Hz] T
S,i

[s] M
m,S,i

[×103 kg] M
me,S,i

[×103 kg] M
me,S,i

[%]

I 33.1672 5.27872 0.18944 138.197 189.443 94.72

II 86.8328 13.8199 0.0723596 361.803 10.5573 5.28

Table 5.3: Modal parameters for the structure with n
S
= 3, m

S,i
= 100 t.

Mode ωS,i [rad/s] fS,i [Hz] TS,i [s] Mm,S,i [×103 kg] Mme,S,i [×103 kg] Mme,S,i [%]

I 23.8835 3.80117 0.263077 184.117 274.224 91.41

II 66.9199 10.6506 0.0938911 286.294 22.4631 7.49

III 96.7021 15.3906 0.0649746 929.59 3.31306 1.10

Table 5.4: Modal parameters for the structure with n
S
= 5, m

S,i
= 100 t.

Mode ω
S,i

[rad/s] f
S,i

[Hz] T
S,i

[s] M
m,S,i

[×103 kg] M
me,S,i

[×103 kg] M
me,S,i

[%]

I 15.2748 2.43106 0.411342 280.685 439.765 87.95

II 44.587 7.09624 0.14092 332.354 43.5887 8.72

III 70.287 11.1865 0.0893932 481.478 12.1078 2.42

IV 90.2928 14.3705 0.0695868 940.838 3.75466 0.75

V 102.984 16.3903 0.0610115 3464.64 0.783787 0.16

Table 5.5: Modal parameters for the structure with n
S
= 10, m

S,i
= 100 t.

Mode ω
S,i

[rad/s] f
S,i

[Hz] T
S,i

[s] M
m,S,i

[×103 kg] M
me,S,i

[×103 kg] M
me,S,i

[%]

I 8.02088 1.27656 0.783354 527.948 847.925 84.79

II 23.8835 3.80117 0.263077 552.35 91.4079 9.14

III 39.2125 6.24087 0.160234 605.868 30.9147 3.09

IV 53.6656 8.54115 0.11708 700 14.2857 1.43

V 66.9199 10.6506 0.0938911 858.881 7.4877 0.75

VI 78.6794 12.5222 0.0798581 1134.8 4.09968 0.41

VII 88.6813 14.1141 0.0708513 1654.43 2.2135 0.22

VIII 96.7021 15.3906 0.0649746 2788.77 1.10435 0.11

IX 102.563 16.3234 0.0612618 6042.78 0.453081 0.05

X 106.132 16.8915 0.0592014 23634.2 0.108182 0.01
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Table 5.6: Modal parameters for the structure with n
S
= 15, m

S,i
= 100 t.

Mode ωS,i [rad/s] fS,i [Hz] TS,i [s] Mm,S,i [×103 kg] Mme,S,i [×103 kg] Mme,S,i [%]

I 5.43624 0.865204 1.1558 776.993 1254.23 83.62

II 16.2529 2.58673 0.386588 793.188 137.453 9.16

III 26.9029 4.28172 0.233551 826.955 48.1187 3.21

IV 37.2767 5.93277 0.168555 881.304 23.5175 1.57

V 47.2681 7.52295 0.132927 961.475 13.4066 0.89

VI 56.7744 9.03592 0.110669 1076.09 8.30305 0.55

VII 65.6981 10.4562 0.0956372 1239.35 5.38383 0.36

VIII 73.9477 11.7691 0.084968 1475.28 3.57001 0.24

IX 81.4385 12.9613 0.0771525 1826.6 2.37734 0.16

X 88.0936 14.0205 0.071324 2374.77 1.56272 0.10

XI 93.8447 14.9359 0.066953 3290.62 0.993791 0.07

XII 98.6329 15.6979 0.0637027 4983.39 0.594051 0.04

XIII 102.409 16.2989 0.0613539 8647.79 0.317549 0.02

XIV 105.134 16.7326 0.0597635 19125.8 0.136234 0.01

XV 106.781 16.9947 0.058842 75720.3 0.0333576 0.00

Table 5.7: Modal parameters for the structure with n
S
= 25, m

S,i
= 100 t.

Mode ω
S,i

[rad/s] f
S,i

[Hz] T
S,i

[s] M
m,S,i

[×103 kg] M
me,S,i

[×103 kg] M
me,S,i

[%]

I 3.30527 0.52605 1.90096 1276.21 2065.65 82.63

II 9.90328 1.57616 0.634455 1285.95 228.355 9.13

III 16.4637 2.62028 0.381638 1305.72 81.374 3.25

IV 22.9617 3.65447 0.273638 1336.15 40.8816 1.64

V 29.3726 4.67479 0.213913 1378.22 24.2209 0.97

VI 35.6721 5.67738 0.176137 1433.32 15.7903 0.63

VII 41.8362 6.65844 0.150185 1503.42 10.9448 0.44

VIII 47.8417 7.61424 0.131333 1591.13 7.90814 0.32

IX 53.6656 8.54115 0.11708 1700 5.88235 0.24

X 59.286 9.43566 0.105981 1834.82 4.46576 0.18

XI 64.6815 10.2944 0.0971403 2002.1 3.43832 0.14

XII 69.8317 11.1141 0.0899761 2210.87 2.67131 0.11

XIII 74.7169 11.8916 0.0840932 2473.82 2.08539 0.08

XIV 79.3188 12.624 0.0792144 2809.2 1.62951 0.07

XV 83.6197 13.3085 0.07514 3244 1.26968 0.05

XVI 87.6034 13.9425 0.071723 3819.39 0.982552 0.04

XVII 91.2549 14.5237 0.0688531 4600.72 0.751718 0.03

XVIII 94.5602 15.0497 0.0664464 5696.61 0.565406 0.02

XIX 97.5067 15.5187 0.0644385 7298.61 0.415034 0.02

XX 100.083 15.9288 0.0627795 9770.45 0.294275 0.01

XXI 102.28 16.2784 0.0614309 13873.5 0.198436 0.01

XXII 104.09 16.5664 0.0603633 21430.8 0.124034 0.00

XXIII 105.504 16.7914 0.0595541 37762.2 0.0685171 0.00

XXIV 106.518 16.9528 0.0589872 84428.5 0.0300649 0.00

XXV 107.128 17.0499 0.0586514 336434 0.00745914 0.00
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Table 5.8: Modal parameters for the structure with n
S
= 40, m

S,i
= 100 t.

Mode ωS,i [rad/s] fS,i [Hz] TS,i [s] Mm,S,i [×103 kg] Mme,S,i [×103 kg] Mme,S,i [%]

I 2.0813 0.331249 3.01888 2025.76 3281.98 82.05

II 6.24076 0.993247 1.0068 2031.87 363.933 9.10

III 10.3908 1.65375 0.604685 2044.16 130.49 3.26

IV 14.5253 2.31177 0.432569 2062.78 66.1745 1.65

V 18.6379 2.96631 0.337119 2087.96 39.7079 0.99

VI 22.7224 3.61639 0.276519 2120.02 26.3114 0.66

VII 26.7728 4.26103 0.234685 2159.36 18.6071 0.47

VIII 30.783 4.89926 0.204112 2206.5 13.7743 0.34

IX 34.7468 5.53012 0.180828 2262.07 10.5452 0.26

X 38.6583 6.15266 0.162531 2326.86 8.28202 0.21

XI 42.5117 6.76595 0.147799 2401.79 6.63498 0.17

XII 46.3012 7.36907 0.135702 2488 5.39954 0.13

XIII 50.021 7.9611 0.125611 2586.86 4.44954 0.11

XIV 53.6656 8.54115 0.11708 2700 3.7037 0.09

XV 57.2295 9.10836 0.109789 2829.43 3.10781 0.08

XVI 60.7073 9.66187 0.1035 2977.55 2.62453 0.07

XVII 64.0938 10.2008 0.0980311 3147.33 2.2275 0.06

XVIII 67.3839 10.7245 0.0932447 3342.4 1.89768 0.05

XIX 70.5726 11.232 0.0890315 3567.24 1.62102 0.04

XX 73.6552 11.7226 0.0853054 3827.45 1.387 0.03

XXI 76.627 12.1956 0.081997 4130.09 1.1876 0.03

XXII 79.4835 12.6502 0.0790502 4484.11 1.01663 0.03

XXIII 82.2205 13.0858 0.0764187 4901.06 0.869245 0.02

XXIV 84.8338 13.5017 0.0740646 5395.98 0.741624 0.02

XXV 87.3196 13.8973 0.0719562 5988.77 0.630713 0.02

XXVI 89.674 14.2721 0.070067 6706.18 0.534053 0.01

XXVII 91.8935 14.6253 0.0683747 7584.89 0.449649 0.01

XXVIII 93.9748 14.9565 0.0668603 8676.17 0.375873 0.01

XXIX 95.9147 15.2653 0.065508 10053.6 0.311387 0.01

XXX 97.7104 15.5511 0.0643042 11825.6 0.255088 0.01

XXXI 99.3591 15.8135 0.0632371 14157.4 0.20606 0.01

XXXII 100.858 16.0521 0.0622971 17311 0.163549 0.00

XXXIII 102.206 16.2666 0.0614757 21721.9 0.126924 0.00

XXXIV 103.4 16.4566 0.0607659 28157.6 0.0956658 0.00

XXXV 104.438 16.6218 0.0601618 38075.6 0.069347 0.00

XXXVI 105.319 16.7621 0.0596584 54526.3 0.0476178 0.00

XXXVII 106.042 16.8771 0.0592517 84813 0.0301976 0.00

XXXVIII 106.606 16.9668 0.0589386 150250 0.0168663 0.00

XXXIX 107.009 17.0309 0.0587167 337215 0.00745846 0.00

XL 107.251 17.0695 0.0585842 1346830 0.001859 0.00
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Table 5.9: Modal parameters for the structure with n
S
= 1, m

S,i
= 150 t.

Mode ωS,i [rad/s] fS,i [Hz] TS,i [s] Mm,S,i [×103 kg] Mme,S,i [×103 kg] Mme,S,i [%]

I 43.8178 6.97382 0.143393 150 150 100.00

Table 5.10: Modal parameters for the structure with n
S
= 2, m

S,i
= 150 t.

Mode ω
S,i

[rad/s] f
S,i

[Hz] T
S,i

[s] M
m,S,i

[×103 kg] M
me,S,i

[×103 kg] M
me,S,i

[%]

I 27.0809 4.31006 0.232015 207.295 284.164 94.72

II 70.8987 11.2839 0.088622 542.705 15.8359 5.28

Table 5.11: Modal parameters for the structure with n
S
= 3, m

S,i
= 150 t.

Mode ωS,i [rad/s] fS,i [Hz] TS,i [s] Mm,S,i [×103 kg] Mme,S,i [×103 kg] Mme,S,i [%]

I 19.5008 3.10364 0.322202 276.175 411.336 91.41

II 54.6399 8.69621 0.114993 429.44 33.6946 7.49

III 78.957 12.5664 0.0795774 1394.38 4.96959 1.10

Table 5.12: Modal parameters for the structure with n
S
= 5, m

S,i
= 150 t.

Mode ω
S,i

[rad/s] f
S,i

[Hz] T
S,i

[s] M
m,S,i

[×103 kg] M
me,S,i

[×103 kg] M
me,S,i

[%]

I 12.4718 1.98496 0.503789 421.027 659.648 87.95

II 36.4051 5.79406 0.172591 498.531 65.3831 8.72

III 57.3891 9.13376 0.109484 722.218 18.1617 2.42

IV 73.7238 11.7335 0.085226 1411.26 5.632 0.75

V 84.0858 13.3827 0.0747235 5196.97 1.17568 0.16

Table 5.13: Modal parameters for the structure with n
S
= 10, m

S,i
= 150 t.

Mode ω
S,i

[rad/s] f
S,i

[Hz] T
S,i

[s] M
m,S,i

[×103 kg] M
me,S,i

[×103 kg] M
me,S,i

[%]

I 6.54902 1.04231 0.959409 791.923 1271.89 84.79

II 19.5008 3.10364 0.322202 828.525 137.112 9.14

III 32.0169 5.09565 0.196246 908.801 46.3721 3.09

IV 43.8178 6.97382 0.143393 1050 21.4286 1.43

V 54.6399 8.69621 0.114993 1288.32 11.2315 0.75

VI 64.2414 10.2243 0.0978058 1702.21 6.14952 0.41

VII 72.4079 11.5241 0.0867748 2481.65 3.32025 0.22

VIII 78.957 12.5664 0.0795774 4183.15 1.65653 0.11

IX 83.7422 13.328 0.0750301 9064.16 0.679622 0.05

X 86.6568 13.7919 0.0725066 35451.3 0.162273 0.01
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Table 5.14: Modal parameters for the structure with n
S
= 15, m

S,i
= 150 t.

Mode ωS,i [rad/s] fS,i [Hz] TS,i [s] Mm,S,i [×103 kg] Mme,S,i [×103 kg] Mme,S,i [%]

I 4.43867 0.706436 1.41556 1165.49 1881.35 83.62

II 13.2705 2.11206 0.473471 1189.78 206.179 9.16

III 21.9661 3.49601 0.28604 1240.43 72.1781 3.21

IV 30.4363 4.84409 0.206437 1321.96 35.2763 1.57

V 38.5942 6.14246 0.162801 1442.21 20.1099 0.89

VI 46.3561 7.3778 0.135542 1614.14 12.4546 0.55

VII 53.6423 8.53743 0.117131 1859.03 8.07575 0.36

VIII 60.378 9.60946 0.104064 2212.92 5.35501 0.24

IX 66.4942 10.5829 0.0944922 2739.9 3.566 0.16

X 71.9281 11.4477 0.0873537 3562.16 2.34409 0.10

XI 76.6239 12.1951 0.0820003 4935.93 1.49069 0.07

XII 80.5334 12.8173 0.0780196 7475.09 0.891077 0.04

XIII 83.6166 13.308 0.0751428 12971.7 0.476324 0.02

XIV 85.8417 13.6621 0.073195 28688.8 0.20435 0.01

XV 87.186 13.8761 0.0720665 113581 0.0500365 0.00

Table 5.15: Modal parameters for the structure with n
S
= 25, m

S,i
= 150 t.

Mode ω
S,i

[rad/s] f
S,i

[Hz] T
S,i

[s] M
m,S,i

[×103 kg] M
me,S,i

[×103 kg] M
me,S,i

[%]

I 2.69874 0.429518 2.32819 1914.32 3098.47 82.63

II 8.08599 1.28693 0.777046 1928.92 342.533 9.13

III 13.4426 2.13945 0.467409 1958.58 122.061 3.25

IV 18.7482 2.98386 0.335136 2004.23 61.3224 1.64

V 23.9826 3.81695 0.261989 2067.32 36.3314 0.97

VI 29.1261 4.63557 0.215723 2149.99 23.6855 0.63

VII 34.1591 5.43659 0.183939 2255.13 16.4172 0.44

VIII 39.0626 6.217 0.160849 2386.69 11.8622 0.32

IX 43.8178 6.97382 0.143393 2550 8.82353 0.24

X 48.4068 7.70419 0.1298 2752.22 6.69864 0.18

XI 52.8123 8.40533 0.118972 3003.15 5.15748 0.14

XII 57.0173 9.07459 0.110198 3316.31 4.00696 0.11

XIII 61.0061 9.70943 0.102993 3710.73 3.12808 0.08

XIV 64.7635 10.3074 0.0970174 4213.8 2.44427 0.07

XV 68.2752 10.8663 0.0920273 4866 1.90452 0.05

XVI 71.5279 11.384 0.0878424 5729.09 1.47383 0.04

XVII 74.5093 11.8585 0.0843275 6901.07 1.12758 0.03

XVIII 77.208 12.288 0.0813799 8544.91 0.848108 0.02

XIX 79.6139 12.6709 0.0789207 10947.9 0.62255 0.02

XX 81.7178 13.0058 0.0768888 14655.7 0.441413 0.01

XXI 83.5117 13.2913 0.0752372 20810.3 0.297653 0.01

XXII 84.9887 13.5264 0.0739296 32146.2 0.186051 0.00

XXIII 86.1434 13.7102 0.0729386 56643.4 0.102776 0.00

XXIV 86.9714 13.8419 0.0722443 126643 0.0450973 0.00

XXV 87.4694 13.9212 0.071833 504651 0.0111887 0.00
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Table 5.16: Modal parameters for the structure with n
S
= 40, m

S,i
= 150 t.

Mode ωS,i [rad/s] fS,i [Hz] TS,i [s] Mm,S,i [×103 kg] Mme,S,i [×103 kg] Mme,S,i [%]

I 1.69937 0.270463 3.69736 3038.64 4922.98 82.05

II 5.09556 0.810983 1.23307 3047.8 545.9 9.10

III 8.48408 1.35028 0.740585 3066.24 195.735 3.26

IV 11.8598 1.88755 0.529787 3094.17 99.2618 1.65

V 15.2178 2.42198 0.412885 3131.94 59.5619 0.99

VI 18.5528 2.95277 0.338665 3180.02 39.467 0.66

VII 21.8599 3.47912 0.287429 3239.04 27.9107 0.47

VIII 25.1342 4.00023 0.249986 3309.75 20.6614 0.34

IX 28.3706 4.51532 0.221468 3393.11 15.8179 0.26

X 31.5644 5.02363 0.199059 3490.29 12.423 0.21

XI 34.7107 5.52438 0.181016 3602.69 9.95247 0.17

XII 37.8048 6.01682 0.166201 3732 8.09932 0.13

XIII 40.842 6.50021 0.153841 3880.28 6.6743 0.11

XIV 43.8178 6.97382 0.143393 4050 5.55556 0.09

XV 46.7277 7.43694 0.134464 4244.14 4.66171 0.08

XVI 49.5673 7.88888 0.126761 4466.33 3.93679 0.07

XVII 52.3324 8.32895 0.120063 4721 3.34125 0.06

XVIII 55.0187 8.7565 0.114201 5013.6 2.84651 0.05

XIX 57.6223 9.17087 0.109041 5350.86 2.43153 0.04

XX 60.1392 9.57145 0.104477 5741.18 2.0805 0.03

XXI 62.5657 9.95764 0.100425 6195.13 1.7814 0.03

XXII 64.898 10.3288 0.0968163 6726.17 1.52494 0.03

XXIII 67.1328 10.6845 0.0935934 7351.59 1.30387 0.02

XXIV 69.2665 11.0241 0.0907102 8093.97 1.11244 0.02

XXV 71.2961 11.3471 0.088128 8983.15 0.94607 0.02

XXVI 73.2185 11.6531 0.0858142 10059.3 0.801079 0.01

XXVII 75.0307 11.9415 0.0837415 11377.3 0.674474 0.01

XXVIII 76.7301 12.212 0.0818869 13014.3 0.56381 0.01

XXIX 78.314 12.4641 0.0802306 15080.4 0.467081 0.01

XXX 79.7802 12.6974 0.0787562 17738.3 0.382631 0.01

XXXI 81.1264 12.9117 0.0774493 21236 0.309091 0.01

XXXII 82.3505 13.1065 0.0762981 25966.5 0.245323 0.00

XXXIII 83.4508 13.2816 0.0752921 32582.8 0.190385 0.00

XXXIV 84.4256 13.4368 0.0744228 42236.5 0.143499 0.00

XXXV 85.2734 13.5717 0.0736828 57113.4 0.10402 0.00

XXXVI 85.9929 13.6862 0.0730663 81789.5 0.0714268 0.00

XXXVII 86.5831 13.7801 0.0725683 127219 0.0452964 0.00

XXXVIII 87.043 13.8533 0.0721848 225375 0.0252994 0.00

XXXIX 87.3721 13.9057 0.071913 505822 0.0111877 0.00

XL 87.5697 13.9372 0.0717507 2020250 0.00278851 0.00

81



5.3. Seismic input signals

5.3 Seismic input signals

5.3.1 General issues

In this section, the main characteristics of the seismic input signals assumed in these

trials, listed in following Table 5.17, are presented in detail. The 18 earthquake

signals considered for the present analysis cover a wide time window within the last

two centuries, from the earthquake of Long Beach, California, USA on 1933 to the

recent very strong motion of Tohoku, Japan, 2011. Moreover, several signals that

are adopted here have been already assumed in different literature works on the

tuning of TMDs [45, 79, 119, 121].

Some of the selected signals concern the same earthquake event recorded at dif-

ferent stations. This choice is motivated by the differences that hold between these

signals, from the points of view of the intensity and the distribution of the peaks of

ground acceleration, even if such accelerograms state the same earthquake event.

For each earthquake event, the accelerograms have been selected by assuming

as main criterion the adoption of the time history with the highest PGA, with the

expectation that this index could be related to the highest signal intensity, and

therefore could represent the strongest record of the earthquake event.

The proposed selection concerns seismic input signals characterised by quite dif-

ferent values of several parameters apt to thoroughly state the signal in time domain,

at least for the purposes of the present investigation. In particular, such parameters

are:

• Magnitude M, 5.8<M<9.0;

• Peak Ground Acceleration PGA, 0.142 g<PGA<2.612 g (g = 9.8066 m/s2);

• Frequency content f (or period content T);

• Maximum Pseudo-acceleration response spectrum Smax
pa and relevant period

T(Smax
pa );

• Duration and shape of the time history;

• Epicentral distance and fault depth.
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The motivation of such variability is the investigation on the influence of the different

quantities on the optimum tuning and related performance of the TMDs.

The seismic input signals have been represented in Figs. 5.3–5.38 in terms of:

(a) Time history of ground acceleration ẍ
g
(t);

(b) Fourier spectrum (frequency amplitude) FAS(f);

(c) Displacement response spectrum Sd(T);

(d) Pseudo-velocity response spectrum Spv(T);

(d) Pseudo-acceleration response spectrum Spa(T).

The list above points out two response spectra, related to the response in terms

of displacement (Sd(T)), velocity (Spv(T)) and acceleration (Spa(T)). In this sense,

it could be possible to gather, by means of a comprehensive plot, namely the

Displacement-Velocity-Acceleration (D-V-A) spectrum [20, 25] the whole informa-

tion about the response spectra. However, the separated representation displayed

here has been assumed for the sake of comprehension, since it allows for an immedi-

ate reading of the seismic characteristics, as confronted to the structural parameters.

5.3.2 Signal processing

In general, the accelerograms could originally exhibit some intervals where the am-

plitude of the acceleration displays negligible values. Most of these parts are rep-

resented by pre-events, i.e. the very beginning of the signal record previous to the

earthquake event, where the signal is usually almost equal to zero. Within a pre-

liminary stage, these intervals turn out quite useful, especially during the signal

processing, as it will be clear in the following. Other intervals of the accelerogram of

small amplitude are usually those at the end of the record, when the seismic event

already took place. In view of the seismic tuning, these intervals, where present,

have been removed so that to reduce the computational time required by the opti-

misation procedure. This measure is in principle allowed with consideration of the

purposes of the present study, since preliminary tests strongly proved that it does

not affect significantly the tuning results.
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Among the signal features, in Table 5.17 the status of the original signal is also

indicated, i.e. if either it has been preliminary processed after the record or if it

could be affected by disturbances. In this sense, it is possible to note that all the

displayed signals have been provided as already processed, except for those related

to the Tohoku 2011 earthquake, which therefore have been processed here.

In the present context, the main motivation of the signal processing concerns

the correction of the potential misplacement of the optimum region due to possible

disturbances of the earthquake signal, which could therefore affect the goodness of

the tuning results and the related TMD performance.

The signal processing procedure adopted has been based on the following steps [109]:

1. Removal of the accelerogram baseline, assumed in principle as the average

value of the whole signal. However, when in the presence of a pre-event,

the evaluation of the mean acceleration has been narrowed down just on this

interval of the accelerogram.

2. Application of a Butterworth filter, which is the most adopted for seismic

signal processing, thoroughly stated by the following parameters:

• Filter order n
Bf
;

• Passband cutoff frequencies vector ω
P
= [ω

P,l
; ω

P,u
];

• Stopband cutoff frequencies vector ω
S
= [ω

S,l
; ω

S,u
];

• Ripple in the passband R
P
;

• Attenuation in the stopband R
S
.

In particular, for the case of the Tohoku 2011 earthquake signals, due to very

similar characteristics of the T2011T and the T2011S records, especially from the

point of view of the frequency content, it has been possible to provide a filter valid

for the processing of both signals, based on the following parameters:

• n
Bf

= 7;

• ω
P
= [0.4 ; 44] Hz;

• ω
S
= [0.1 ; 50] Hz;
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• R
P
= 3 dB;

• R
S
= 10 dB.

The adopted Butterworth filter, represented in Fig. 5.2, allowed to take off effi-

ciently the original noise in the input signal at both low and high frequencies, for

the considered accelerograms. Among these parameters, ω
P
and ω

S
have been cho-

sen from a preliminary inspection of the recorded signal, whose sample frequency is

100 Hz, and which exhibits low frequency noise at about 0.005 Hz. R
P
and R

S
have

been assumed so as to ensure minimum conditions of stability of the filter, which has

been found to be jeopardised especially at low frequencies, i.e. nearby the threshold

between the low-stop and the low-pass values. Finally, the filter order n
Bf

has been

evaluated through proper built-in functions buttord and butter in MATLAB [109],

which is based on the four parameters and vectors introduced previously.
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Figure 5.2: Butterworth filter adopted for the processing of Tohoku 2011 seismic input signals

(Sendai and Tsukidate stations).

The filter in Fig. 5.2 displays the following main features. First, as mainly re-

quired, the filter exhibits unit amplitude along the passband and zero amplitude

along the stopband. In general, the shape reflects that usually obtainable for this

typology of filter, i.e. quite steep at the transition of bands for the low frequencies

interval and instead quite smooth at the transition of bands for the high frequen-
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cies, due to the polynomial statement of the Butterworth filter. In particular, for

the low frequencies high precision is required for the determination of the pass and

the stop frequencies, since even slight changes could lead to a misuse of the filter.

On the other hand, the tolerance appears to be larger for the assumption of the high

stop and pass frequencies, since the transition of the bands occurs along a moderate

interval of frequencies.

Besides a visual inspection, useful to assess the presence of clear inconsistencies,

the validation of the goodness of the processed signal is based on the following

assessment:

1. Double integration of the processed time history of the ground acceleration,

so that to obtain the time history of ground velocity and displacement;

2. Double time derivation of the displacement time history, so that to get back

the accelerogram;

3. Qualitative and quantitative comparisons between the former and the latter

acceleration time history.

In this sense, the processed signal has been considered reliably representing the

actual seismic record if a tolerance on the whole time window has been fulfilled,

quantitatively fixed in an overall difference between the two signal amplitudes equal

to 5%:

|ẍP
g
− ẍP,d

g
|

|ẍP
g
| < 5% (5.13)

where ẍP
g
and ẍP,d

g
denote the merely processed and the derived processed seismic

ground acceleration, respectively.
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Table 5.17: Main characteristics of the strong motions considered in the present study.

Earthquake (Code) St., Comp. (P/R) M Duration [s] Epicentre [km] Fault [km] PGA [g] Smax
pa [g] T(Smax

pa ) [s]

Long Beach, 10/03/1933 (L1933) Long Beach, N-S (P) 6.4 30 19.2 - 0.216 0.669 0.188

El Centro, 30/12/1934 (E1934) El Centro, S90W (P) 6.5 60 65.6 - 0.052 0.639 0.256

Imperial Valley, 18/05/1940 (I1940) El Centro, S00E (P) 6.9 50 16.9 - 0.359 0.907 0.253

Kern County, 21/07/1952 (K1952) Taft, S69E (P) 7.5 50 46.4 - 0.196 0.582 0.440

Borrego Mountain, 08/04/1968 (B1968) El Centro, S00W (P) 6.5 80 70.0 - 0.142 0.286 0.266

San Fernando, 09/02/1971 (S1971) Pacoima Dam, S16E (P) 6.6 20 6.7 - 1.251 2.993 0.387

Imperial Valley, 15/10/1979 (I1979) El Centro, N-S (P) 6.6 40 27.2 - 0.337 1.753 0.226

Chile, 03/03/1985 (C1985) San Isidro, 0 (P) 7.8 100 - - 0.721 3.456 0.337

Loma Prieta, 17/10/1989 (L1989) Watsonville, 0 (P) 7.0 30 18.1 - 0.801 2.693 0.329

Northridge, 17/01/1994 (N1994) Tarzana, 90 (P) 6.4 30 5.5 0.4 1.927 4.994 0.333

Kobe, 17/01/1995 (K1995TZ) Takarazuka, 90 (P) 7.0 20 - - 0.694 2.506 0.471

Kobe, 17/01/1995 (K1995TK) Takatori, 90 (P) 7.0 40 - - 0.616 2.348 0.187

L’Aquila, 06/04/2009 (A2009) V. Aterno (C. Valle), W-E (P) 5.8 20 4.9 3.8 0.676 1.803 0.111

Chile, 27/02/2010 (C2010A) Angol, N-S (P) 8.8 200 209.3 65.6 0.928 3.720 0.175

Chile, 27/02/2010 (C2010C) Concepcion San Pedro, 7 (P) 8.8 160 109.1 36.2 0.651 2.260 0.196

New Zealand, 03/09/2010 (N2010) Greendale, N55W (P) 7.0 40 6.9 3.5 0.772 1.490 0.504

Tohoku, 11/03/2011 (T2011T) Tsukidate-MYG004, N-S (R) 9.0 180 125.9 75.1 2.612 13.02 0.237

Tohoku, 11/03/2011 (T2011S) Sendai-MYG013, N-S (R) 9.0 180 126.1 71.8 1.402 2.562 0.660
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5.3.3 Seismic signals
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(a) Accelerogram.
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(b) Fourier amplitude spectrum.

Figure 5.3: Long Beach 1933 earthquake, ground acceleration.
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10
-2

10
-1

10
0

10
1

10
210

-4

10
-3

10
-2

10
-1

10
0

10
1

f [Hz]

F
A

S
[m

/
s]

(b) Fourier amplitude spectrum.

Figure 5.4: El Centro 1934 earthquake, ground acceleration.
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(b) Fourier amplitude spectrum.

Figure 5.5: Imperial Valley 1940 earthquake, ground acceleration.
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(b) Fourier amplitude spectrum.

Figure 5.6: Kern County 1952 earthquake, ground acceleration.
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(b) Fourier amplitude spectrum.

Figure 5.7: Borrego Mountain 1968 earthquake, ground acceleration.
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Figure 5.8: San Fernando 1971 earthquake, ground acceleration.
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(b) Fourier amplitude spectrum.

Figure 5.9: Imperial Valley 1979 earthquake, ground acceleration.
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(b) Fourier amplitude spectrum.

Figure 5.10: Chile 1985 earthquake, ground acceleration.
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(b) Fourier amplitude spectrum.

Figure 5.11: Loma Prieta 1989 earthquake, ground acceleration.
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Figure 5.12: Northridge 1994 earthquake, ground acceleration.
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(b) Fourier amplitude spectrum.

Figure 5.13: Kobe 1995 earthquake (Takarazuka station), ground acceleration.
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Figure 5.14: Kobe 1995 earthquake (Takatori station), ground acceleration.
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(b) Fourier amplitude spectrum.

Figure 5.15: L’Aquila 2009 earthquake, ground acceleration.
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(b) Fourier amplitude spectrum.

Figure 5.16: Chile 2010 earthquake (Concepcion San Pedro station), ground acceleration.
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Figure 5.17: Chile 2010 earthquake (Angol Station), ground acceleration.
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Figure 5.18: New Zealand 2010 earthquake, ground acceleration.
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(b) Fourier amplitude spectrum.

Figure 5.19: Tohoku 2011 earthquake (Tsukidate station), ground acceleration.
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Figure 5.20: Tohoku 2011 earthquake (Sendai station), ground acceleration.
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5.3.4 Response spectra
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(b) Pseudo-velocity response spectrum.
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(c) Pseudo-acceleration response spectrum.

Figure 5.21: Long Beach 1933 earthquake, response spectra.

94



Chapter 5. Optimum TMDs for earthquake excitation

0 1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12

T [s]

S
d

[m
]

(a) Displacement response spectrum.

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

T [s]

S
p
v

[m
/
s]

(b) Pseudo-velocity response spectrum.
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Figure 5.22: El Centro 1934 earthquake, response spectra.
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(c) Pseudo-acceleration response spectrum.

Figure 5.23: Imperial Valley 1940 earthquake, response spectra.
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(c) Pseudo-acceleration response spectrum.

Figure 5.24: Kern County 1952 earthquake, response spectra.
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Figure 5.25: Borrego Mountain 1968 earthquake, response spectra.
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(c) Pseudo-acceleration response spectrum.

Figure 5.26: San Fernando 1971 earthquake, response spectra.
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(c) Pseudo-acceleration response spectrum.

Figure 5.27: Imperial Valley 1979 earthquake, response spectra.
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(c) Pseudo-acceleration response spectrum.

Figure 5.28: Chile 1985 earthquake, response spectra.
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(c) Pseudo-acceleration response spectrum.

Figure 5.29: Loma Prieta 1989 earthquake, response spectra.
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(c) Pseudo-acceleration response spectrum.

Figure 5.30: Northridge 1994 earthquake, response spectra.
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(c) Pseudo-acceleration response spectrum.

Figure 5.31: Kobe 1995 earthquake (Takarazuka station), response spectra.
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(c) Pseudo-acceleration response spectrum.

Figure 5.32: Kobe 1995 earthquake (Takatori station), response spectra.
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Figure 5.33: L’Aquila 2009 earthquake, response spectra.
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(c) Pseudo-acceleration response spectrum.

Figure 5.34: Chile 2010 earthquake (Concepcion San Pedro station), response spectra.
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(c) Pseudo-acceleration response spectrum.

Figure 5.35: Chile 2010 earthquake (Angol Station), response spectra.
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(c) Pseudo-acceleration response spectrum.

Figure 5.36: New Zealand 2010 earthquake, response spectra.
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Figure 5.37: Tohoku 2011 earthquake (Tsukidate station), response spectra.
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Figure 5.38: Tohoku 2011 earthquake (Sendai station), response spectra.
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5.4 Seismic tuning method

5.4.1 Statement of the tuning procedure

The proposed seismic tuning method is presented and explained in detail in this

section. In principle, it shares some important features with the tuning methods

previously described in Chapters 3–4. However, for the present purpose of the

TMD seismic optimisation, new fundamental features will be introduced within the

tuning process. In this sense, the innovative character of this tuning methodology

concerns the embedding of the specific seismic input signal within the optimisation

process, with the aim of achieving the optimum TMD parameters for the given case

of structure and of earthquake event. This concept is certainly mainly endowed of a

theoretical character but shall have also important implications in view of practical

applications in the earthquake engineering context.

In this study, the target priority is the assessment of the TMD effectiveness

in reducing the primary structure response, which therefore will play a main role

within the tuning process. Hence, different suitable objectives, such as for instance

the limitation of the stroke of the TMD (which may display significant relevance in

practical cases), will be left to further investigations. However, the proposed method

consists of a general procedure, which could easily allow for achieving optimum

results also along different and multiple tuning indexes.

As pointed out in Section 5.2.3, the dynamic response of all the considered pri-

mary structures is substantially represented by the first mode of vibration, which

therefore will be assumed as the reference objective within the tuning process.

Specifically, the single passive TMD is tuned so as to reduce the amplitude of the

response of the first mode of vibration, occurring at the top storey for the considered

buildings. Further analyses with a larger number of control devices could reliably

consider at least the second mode of vibration within the optimisation process.

Hence, considering the first mode of vibration only, as compared to Eq. (3.3), in

the case of a MDOF primary structure, the mass ratio and the tuning frequency

ratio are defined as follows:

µ =
m

T

M
m,S,I

, f =
ω

T

ω
S,I

, (5.14)
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where ω
S,I

is the first mode angular frequency of the primary structure, as displayed

in Eq. (5.5). The TMD damping ratio is still defined as in Eq. (3.2).

As described for previous tuning problems presented in Chapters 3–4, the tuning

process mainly concerns an optimisation process that aims at minimising a selected

response quantity of the primary structure:

min
p

J(p) , l
b
≤ p ≤ u

b
, (5.15)

where p, J(p), l
b
and u

b
represent the optimisation variables, the objective function,

and the lower and the upper bounds on the optimisation variables, respectively.

Again, the optimisation process will consider as free variables the frequency ratio f

and the TMD damping ratio ζ
T
, the mass ratio µ being instead fixed a priori.

This approach is motivated by two main reasons. First, the amount of added mass

which composes the Tuned Mass Damper may be limited by a matter of practical

design, i.e. excessive masses of the device could be counterproductive in terms of

suitability and safety of the primary structure. The second issue, which is instead

related to rather theoretical aspects, is pointed out by the optimisation process itself.

Indeed, several previous trials [87, 91–93] have shown that, in case of a free mass

ratio, this parameter tends to reach the upper limit that has been set, leading to a

lower TMD damping ratio, so that to transfer the dynamic response entirely to the

TMD. In this sense, a suitable upper limit to design guidelines could be established

within the optimisation process.

The choice of the optimisation algorithm is, in principle, an important fea-

ture within the tuning process, especially when the excitation is non-deterministic,

i.e. not modeled by analytical relationships, such as for the seismic input signals

considered here. In this sense, despite that a large series of modern algorithms

could ensure high optimisation performances (see e.g. [53, 106]), a classical numeri-

cal method shall look effective and sufficient for the solution of the present tuning

problem. In particular, a nonlinear gradient-based optimisation algorithm available

within MATLAB [109] has been adopted, based on Sequential Quadratic Program-

ming (SQP). Further details on this framework are provided in Chapters 3–4.

In view of the analysis developed in the following, it is necessary to recall the

113



5.4. Seismic tuning method

relationship of the H
i
norm, which can be defined as follows [133]:

‖x‖
i
:=

(

N
∑

n=1

|x
n
|i
)

1
i

, 1 < i < ∞ , (5.16)

where N is the total number of time samples of variable x in the assumed time

window. In particular, for the present study the H2 and H
∞

norms have been

considered. The former is actually the Euclidian norm and concerns the whole time

history, while the latter represents the peak response:

‖x‖
2
:=

√

√

√

√

N
∑

n=1

|x
n
|2 , ‖x‖

∞
:= max

1≤n≤N
|x

n
| . (5.17)

5.4.2 Analysis of the objective function

The single objective function that is finally adopted in all the numerical tests that

will be presented in the next section is the RMS displacement of the top storey of

the frame structure:

J(p) = xRMS

S,n
=

‖x‖2

N
, (5.18)

which reflects the choice of a H
2
approach, just normalised to the number of samples.

The motivations of such a choice are the following. First of all, the considered

structures display the common property of showing a dominant first bending mode

of vibration; therefore, the maximum displacement is expected to occur at the level of

the top storey. Second, the choice of a RMS indicator assures better efficiency within

the optimisation process. Indeed, in preliminary trials, where different response

indicators, in type (maximum value vs. RMS average, global vs. local, kinematic

index vs. energy value) and location (different floors) have been investigated, it has

been experienced that, in case of a seismic excitation, an average response quantity,

rather than a maximum value, turns out a better objective function towards TMD

tuning. This feature has been also spotted within the study presented in Chapter 4

and in several past researches [91, 92, 94]. Particularly, the present optimisation

converges easily and consistently (conversely, the assumption of a maximum value

as objective function may bring to convergence complications in some cases).

Moreover, following this choice, one can obtain a higher reduction of the global

seismic response of the structure. In other words, a RMS estimate seems to set a
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reliable and efficient objective function for the global response of the structure in

the entire time window of analysis. Besides the RMS displacement of the primary

structure (at the top floor), it has been observed that RMS velocity and RMS

acceleration (at the top floor) are also very suitable objective functions and even at

almost the same computational cost.

Further experience gained in handling RMS objective functions has been reported

in [91], where also the RMS average of the kinetic energy of the primary structure,

as defined in Eq. (5.6), has been considered. It has been demonstrated that this

choice could lead to a quite efficient TMD, but implies a higher computational cost,

especially in case of primary structures with many degrees of freedom.

As seen in Chapters 3–4, a preliminary inspection of the objective function,

nearby the expected minimum region, turn out useful in order to understand not

only if the optimisation problem is well posed but also the sensitivity of the optimum

point with respect to the optimisation variables. Hence, such an investigation has

been proposed also for this study. Indeed, Fig. 5.39, which represents a meaningful

extract of the outcomes of a wider analysis, displays the assumed objective function,

reported in Eq. (5.18) (i.e. the RMS displacement of the top storey), for different

cases of primary structure and seismic input signals, nearby the optimum region in

the space (plane) of the free TMD parameters.

Such study turns out helpful in order to understand if the optimisation process

is numerically well posed, and in particular if it is possible to locate the values

of the free TMD parameters that correspond to a global minimum. For classical

deterministic excitations this task results quite easy to be achieved, while in the case

of seismic input the uncertainties related to the intrinsic nature of the earthquake

signal may produce unexpected complications within the optimisation process. As

proof of this expectation, the plots in Fig. 5.39 display quite different situations.

The minimum region could be represented by an almost circular area, but it could

also take a lengthened or irregular shape. Moreover, the parameters nearby the

minimum point could assume values far from those usually achieved in case of ideal

excitations (see e.g. Chapters 3–4). This issue mainly concerns the frequency ratio

f opt while the TMD damping ratio ζopt
T

appears to be less sensitive to different input
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Figure 5.39: Global minimum regions related to different primary structures and earthquakes.

conditions.

Hence, the preliminary investigation on the objective function outlined above

suggests, within the tuning stage, to adopt quite lack bounds for the optimisation

variables, so that to adapt the tuning process to this wide range of cases.

5.4.3 Optimisation method

In order to start the optimisation process, it is necessary to initialise the values of

the two variable parameters f and ζ
T
. In this sense, the initial evaluation of the

free parameters has been based on the tuning formulas by Den Hartog [26], which

provide general good initial estimates of the TMD parameters [91, 95]:

f =
1

1 + µ
, ζ

T
=

√

3µ

8(1 + µ)
. (5.19)

The lower and upper bound vectors on the two parameters f and ζ
T
are also
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taken as follows:

lb = [0.45; 0.005], ub = [1.5; 0.5], (5.20)

which represent quite wide intervals for the optimisation variables.

Besides the aforementioned bounds, as operated in Chapters 3–4 and in previous

works [91–95] in the implemented algorithm various tolerances have been set for the

different quantities involved in the optimisation process. In the present context, the

tolerances adopted in the numerical algorithm have been taken as follows:

• Tolerance on the variable parameters: 10−6;

• Tolerance on the constraint violations: 10−6;

• Tolerance on the objective function: 10−6.

These values assure a good compromise between obtained convergence and achieved

accuracy. Other given external constraints are the maximum number of iterations

and the maximum number of function evaluations, fixed at 200 and 500 instances,

respectively.

The dynamic response of the structural system is computed in the time domain,

by direct integration of the equations of motion through the (unconditionally stable)

implicit Newmark average acceleration method, with the following usual integration

parameters, see e.g. [20] (and typical Newmark’s equations in Step 3 below):

α =
1

4
, β =

1

2
. (5.21)

The Newmark time integration method is implemented through a standard numer-

ical procedure composed of several steps, which are briefly resumed as follows (see

e.g. [20]):

Step 1: appropriate choice of the time step. The integration method assumed here

is unconditionally stable, therefore the time step selection is not limited by

stability requirements. However, to reach good accuracy, the time interval

should be assumed quite small. Hence, the recording sample of the seismic

signal has been considered in principle.
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Step 2: setting of the initial conditions on the vectors of initial displacement and

velocity of the structural system. It has been assumed that the system is

initially at rest (homogeneous initial conditions):

x0 = 0 , ẋ0 = 0 . (5.22)

Then, the initial acceleration vector is obtained from equations of motion (5.7)

as follows:

ẍ
0
= M−1(F0 −Cẋ

0
−Kx

0
) , (5.23)

where F0 is the value of the external force vector F at t = t0 = 0. Thus, in

the seismic case:

F(t) = −Mr ẍ
g
(t) , F0 = F(t0) = −Mr ẍ

g
(t0) . (5.24)

Step 3: evaluation of displacements, velocities and accelerations at each generic

time instant t
i+1

, starting with i = 0:

x
i+1

=

(

1

α∆t2
M+

1

β∆t
C+K

)−1

·

·
{

F
i+1

+M

[

1

α∆t2
x

i
+

1

α∆t
ẋ

i
+

(

1

2α
− 1

)

ẍ
i

]

+

+C

[

β
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)
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(5.26)

ẋ
i+1

= ẋ
i
+
[

(1− β)ẍ
i
+ β ẍ

i+1

]

∆t . (5.27)

Step 4: repetition of Steps 1-3 until the end of the time window of analysis.

The Newmark time solver has been linked to the optimisation process in a closed-

loop algorithm that allows for best tuning at given seismic input. A synoptical

flowchart of the tuning algorithm is sketched in Fig. 5.40 and can be briefly resumed

as follows.
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Chapter 5. Optimum TMDs for earthquake excitation

First, a preliminary analysis is carried out (initialisation): the primary structure

parameters are defined, by operating a modal analysis of the main structure and

the starting values of the TMD tuning parameters are set, as defined above. A first

time integration of the equations of motion gives the initial seismic response. The

optimisation process is then started. The optimisation algorithm takes control of the

iterative procedure by varying the TMD parameters within the chosen admissible

bounds and calls iteratively the Newmark time solver to update the system response

and to relate it to the previous one. Once all set tolerances on both TMD parameters

and response indexes assumed as objective functions are fulfilled, the final optimum

TMD parameters are obtained and the corresponding seismic response is recorded.

The iterative loops may continue only until when the maximum number of iterations

is not exceeded (Fig. 5.40).
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Figure 5.40: Flowchart of the proposed numerical algorithm.
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Chapter 5. Optimum TMDs for earthquake excitation

5.5 Optimum TMD parameters

The optimum TMD parameters, obtained by means of the tuning methodology

presented previously, for all the considered primary structures and seismic input

signals, have been gathered in Tables 5.18–5.29 and will be discussed in this section.

In particular, for the present study, the optimum TMD parameters have been

evaluated for a fixed primary structure damping ratio ζ
S,I

= 0.05 and for the follow-

ing mass ratios µ:

µ = [0.01, 0.02, 0.03, 0.05, 0.07, 0.10] , (5.28)

which are representative of possible engineering applications and, at the same time,

allow for reading possible trends. In this sense, in Tables 5.18–5.33 the optimum

reference TMD parameters obtained with Den Hartog tuning formulas [26] have

been also reported, which have been also assumed for the evaluation of the starting

point of the optimisation process, as pointed out in Eq. (5.19). Such additional

results have been reported so that to provide an useful reference with respect to the

outcomes achieved with the proposed tuning method.

The results related to the optimum frequency ratio f opt are discussed first. This

parameter displays, as a basic trend, a decreasing value at increasing mass ratio µ,

which is a situation that usually occurs for the frequency ratio, independently on

the dynamic excitation.

In particular, f opt generally takes values from about 0.9-1 at µ = 0.01 to about

0.7-0.8 at µ = 0.10, reflecting the trend for f opt obtainable for ideal deterministic

loading (see e.g. Chapter 3), as for instance pointed out also by the values coming

from Den Hartog’s tuning. Within this general statement, several differences can be

noted from the range of considered cases, mainly due to the large variability of the

whole set of considered cases. In detail, four main trends are recovered, by reading

the results at increasing mass ratio, i.e. starting from µ = 0.01, either relatively high

or low f opt have been obtained, that then decrease either steeply or smoothly.

In some cases, f opt takes values larger than 1, which is usually recognised as

a sort of threshold value by all the tuning methods in the literature; when this

situation occurs, the parameter could tend to assume almost constant values, with
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5.5. Optimum TMD parameters

marked insensitivity with respect to the mass ratio µ. However, such trend appears

to occur also for other cases, specifically when f opt settles down to at about 0.8–0.9,

which fact denotes an almost fixed location of the minimum region of the objective

function.

Other cases display a sudden change of the value of f opt for neighbouring values of

µ, which fact denotes a sort of ‘knee’ on the parameter trend. It is remarkable that,

in general, the particular cases of values and trends of the optimum frequency ratio

f opt stated above are recovered, especially for the primary structures characterised

by the shortest periods, i.e. the stiffer ones, while the buildings with larger periods

appear to provide more regular trends.

As previously recovered for the frequency ratio f opt, also the optimum TMD

damping ratio ζopt
T

displays a general trend, i.e. the value increases at increasing

mass ratio µ. In this sense, also ζopt
T

confirms the typical behaviour obtainable for

ideal deterministic loading, such as harmonic or white noise excitations, as confirmed

by the numerical values coming from Den Hartog tuning formulas.

In particular, the values assumed by ζopt
T

are from about 0.01-0.09 at µ = 0.01 to

about 0.10-0.30 at µ = 0.10. A noticeable variability of ζopt
T

can be easily recognised,

even if the trends exhibit higher regularity with respect to those related to the

optimum frequency ratio f opt.

The parameter takes quite low values for small mass ratios, which fact denotes a

quite lightly damped TMD, whose effect on the dynamic response of the structural

system is therefore demanded to the resonance condition of the control device with

respect to the primary structure, which is represented by a frequency ratio close

to 1.

As explained before, at increasing µ, ζopt
T

increases as well, but it generally reaches

values slightly lower than 0.2. In some cases, ζopt
T

takes almost constant values,

independently on the value of µ, corresponding to the cases where also the optimum

frequency ratio shows negligible changes. This feature indicates a sort of fixed

location of the optimum region, and highlights the fact that an optimum TMD for

the considered context could be characterised by parameters slightly different than

those predictable by known tuning formulas.
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Chapter 5. Optimum TMDs for earthquake excitation

Finally, as recovered before for f opt, the cases where ζopt
T

displays usual values and

trends are mainly concentrated in correspondence of the primary structures with the

shortest periods, especially for n
s
= 1, m

S,i
= 100 t.

As a general consideration, the results provided here revealed different positive

features. First, and most important, it appears that the optimum TMD parameters

in the context of a seismic input can be obtained, and usually provide parameters

close to those obtainable for ideal excitations, which therefore allow for possible mod-

elling (curve fitting, see Chapter 3) and comparison with existing tuning formulas

from the literature.
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Table 5.18: Optimum TMD parameters for different values of mass ratio µ, for the structure with n
S
= 1, m

S,i
= 100 t.

fopt ζopt
T

Earthquake µ = 0.01 µ = 0.02 µ = 0.03 µ = 0.05 µ = 0.07 µ = 0.1 µ = 0.01 µ = 0.02 µ = 0.03 µ = 0.05 µ = 0.07 µ = 0.1

L1933 0.920645 0.919602 0.901429 0.814898 0.4500 0.4500 0.0217289 0.063985 0.103746 0.164666 0.395735 0.489788

E1934 0.937642 0.921427 0.895968 0.853111 0.810863 0.775014 0.036 0.0702549 0.0889263 0.121757 0.142362 0.166987

I1940 0.969452 0.941223 0.919395 0.879576 0.854648 0.787292 0.0387758 0.0580696 0.0720249 0.0945694 0.114642 0.152941

K1952 0.907136 0.897866 0.884004 0.778507 0.741537 0.689449 0.0642321 0.0871932 0.108546 0.151901 0.166043 0.206891

B1968 0.968161 0.973853 0.970871 0.729458 0.662631 0.621572 0.0211102 0.0484839 0.104511 0.10023 0.147736 0.159259

S1971 1.00677 1.00819 0.90839 0.869496 0.828352 0.782548 0.0329682 0.0510251 0.10885 0.122197 0.143294 0.161718

I1979 0.950637 0.898232 0.885651 0.869959 0.82076 0.4500 0.0264901 0.05355 0.0675506 0.106745 0.167365 0.305462

C1985 0.969058 0.873116 0.706758 0.697192 0.680746 0.4500 0.0665463 0.128006 0.0777076 0.107809 0.130602 0.419076

L1989 0.868738 0.874922 0.879692 0.88594 0.88164 0.4500 0.0181092 0.0406204 0.055992 0.0838671 0.136006 0.30581

N1994 0.969396 0.889538 0.868576 0.853652 0.837003 0.802753 0.0486096 0.071291 0.0673451 0.0823385 0.101579 0.140577

K1995TZ 1.01261 0.984304 0.839557 0.805728 0.745111 0.698109 0.0209108 0.0683007 0.124892 0.127195 0.158723 0.16594

K1995TK 1.09451 0.944079 0.91654 0.883265 0.84285 0.4500 0.0116056 0.166071 0.174435 0.193552 0.223684 0.440592

A2009 0.971906 0.970048 0.961454 0.93639 0.874562 0.822881 0.0317942 0.0488232 0.0659905 0.103356 0.134637 0.140363

C2010A 0.969939 0.949231 0.926814 0.4500 0.770772 0.803178 0.0430597 0.0830568 0.116371 0.130031 0.5000 0.5000

C2010C 0.915577 0.892536 0.839042 0.805899 0.776268 0.718548 0.0557557 0.0801069 0.0969567 0.109988 0.134493 0.174678

N2010 0.912196 0.911665 0.900951 0.791426 0.780403 0.756509 0.0429611 0.0640239 0.0915753 0.10791 0.119987 0.153299

T2011T 0.684597 0.68114 0.615442 0.586669 0.570523 0.542437 0.0227415 0.0433649 0.0708991 0.0822605 0.0918589 0.110844

T2011S 0.92923 0.91413 0.903775 0.872873 0.832452 0.788892 0.0453103 0.067916 0.0857511 0.119387 0.14204 0.163791

Den Hartog [26] 0.990099 0.980392 0.970874 0.952381 0.934579 0.909091 0.0609333 0.0857493 0.10451 0.133631 0.156629 0.184637

12
4



C
h
ap

ter
5.

O
p
tim

u
m

T
M
D
s
for

earth
q
u
ake

ex
citation

Table 5.19: Optimum TMD parameters for different values of mass ratio µ, for the structure with n
S
= 1, m

S,i
= 150 t.

fopt ζopt
T

Earthquake µ = 0.01 µ = 0.02 µ = 0.03 µ = 0.05 µ = 0.07 µ = 0.1 µ = 0.01 µ = 0.02 µ = 0.03 µ = 0.05 µ = 0.07 µ = 0.1

L1933 0.944376 0.931815 0.918674 0.675738 0.672516 0.664564 0.0373361 0.0582525 0.0820564 0.0737383 0.0873016 0.106583

E1934 0.927315 0.930755 0.928098 0.899874 0.870479 0.784569 0.0342316 0.0537435 0.0720244 0.109444 0.141431 0.213999

I1940 1.00134 0.89582 0.897198 0.89343 0.875025 0.79544 0.057711 0.0584853 0.0690086 0.0923933 0.126109 0.176615

K1952 0.90674 0.900727 0.898923 0.872635 0.834549 0.701541 0.0368268 0.0445301 0.0620276 0.101732 0.133523 0.186432

B1968 0.953192 0.920751 0.914141 0.900853 0.823111 0.782415 0.0343691 0.0477259 0.0538 0.0799846 0.114946 0.120939

S1971 0.945761 0.927698 0.919087 0.904717 0.893799 0.850202 0.045609 0.0665657 0.0813221 0.101614 0.119489 0.182163

I1979 0.887738 0.764146 0.756349 0.740332 0.668631 0.622637 0.0484407 0.0396287 0.0685317 0.110158 0.153763 0.165965

C1985 0.895799 0.89092 0.883632 0.868125 0.839018 0.796725 0.0371034 0.0500494 0.0602156 0.0804044 0.104894 0.128634

L1989 0.832497 0.646782 0.645857 0.644201 0.641268 0.623953 0.0150754 0.0183141 0.029203 0.0653777 0.1054 0.161588

N1994 1.01606 1.00846 0.955743 0.879004 0.828672 0.791747 0.0513081 0.073289 0.114767 0.150825 0.161106 0.168125

K1995TZ 1.0066 0.998278 0.905104 0.874784 0.858589 0.833091 0.0301535 0.0541064 0.0963932 0.0945386 0.105885 0.133336

K1995TK 0.966943 0.910584 0.877648 0.732261 0.684909 0.666135 0.0481307 0.0923891 0.109137 0.152499 0.135399 0.136034

A2009 0.974349 0.952656 0.944362 0.942843 0.919553 0.881102 0.0271275 0.0467152 0.0495036 0.0696121 0.100234 0.116361

C2010A 0.760755 0.762706 0.758034 0.727613 0.688383 0.658787 0.016273 0.0351274 0.0525413 0.0786478 0.093461 0.101423

C2010C 0.983062 0.958396 0.919213 0.890209 0.845189 0.754769 0.0342257 0.0668281 0.0849582 0.109502 0.146644 0.180485

N2010 0.959261 0.962511 0.960579 0.904483 0.869184 0.747981 0.014106 0.026906 0.0535571 0.100897 0.130248 0.16329

T2011T 0.964807 0.873175 0.860823 0.835717 0.796883 0.75345 0.0503305 0.0711582 0.0783013 0.100137 0.117246 0.130532

T2011S 0.957699 0.930198 0.918182 0.898036 0.861087 0.798855 0.0404706 0.0624786 0.0759954 0.106573 0.137496 0.172141

Den Hartog [26] 0.990099 0.980392 0.970874 0.952381 0.934579 0.909091 0.0609333 0.0857493 0.10451 0.133631 0.156629 0.184637
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Table 5.20: Optimum TMD parameters for different values of mass ratio µ, for the structure with n
S
= 2, m

S,i
= 100 t.

fopt ζopt
T

Earthquake µ = 0.01 µ = 0.02 µ = 0.03 µ = 0.05 µ = 0.07 µ = 0.1 µ = 0.01 µ = 0.02 µ = 0.03 µ = 0.05 µ = 0.07 µ = 0.1

L1933 0.936045 0.924999 0.918755 0.91506 0.910296 0.874035 0.0441677 0.0476501 0.0482942 0.0582415 0.074858 0.118124

E1934 0.962918 0.961652 0.953171 0.733522 0.71863 0.714195 0.0179851 0.03792 0.0855113 0.0905771 0.0676085 0.0851254

I1940 0.962743 0.957267 0.934943 0.888195 0.848152 0.769068 0.037163 0.050636 0.074576 0.105144 0.134717 0.163657

K1952 0.907359 0.874336 0.862425 0.840388 0.827736 0.80068 0.0497943 0.0618361 0.0761173 0.0849427 0.104072 0.122617

B1968 1.0039 0.985798 0.982803 0.980309 0.865394 0.766105 0.0467071 0.0528849 0.0559704 0.0910515 0.181663 0.1903

S1971 0.901629 0.905393 0.880486 0.860286 0.855998 0.844797 0.0119925 0.0254574 0.0484794 0.0554537 0.0684019 0.101231

I1979 1.03103 0.99979 0.98227 0.885002 0.866795 0.839412 0.0243734 0.0524753 0.0797021 0.114505 0.116352 0.139134

C1985 0.974551 0.951011 0.932214 0.897977 0.872871 0.8375 0.0499853 0.0665893 0.0837684 0.116246 0.142189 0.171876

L1989 0.947837 0.878732 0.875956 0.868358 0.856568 0.824897 0.0393993 0.0401101 0.0459384 0.0688454 0.0971193 0.146265

N1994 0.986197 0.988904 0.983399 0.955079 0.921165 0.885196 0.049575 0.0639999 0.0779419 0.108587 0.13396 0.164928

K1995TZ 0.912638 0.781942 0.781151 0.778574 0.775393 0.771673 0.0704111 0.0327684 0.044401 0.0599101 0.0703552 0.0822769

K1995TK 0.956914 0.914815 0.901429 0.896823 0.892812 0.879755 0.0350083 0.0545994 0.055661 0.0641976 0.0789307 0.107131

A2009 0.885034 0.884785 0.886475 0.893066 0.889999 0.877369 0.0402432 0.0734201 0.0893694 0.125476 0.138049 0.163969

C2010A 1.00331 0.978982 0.964171 0.930904 0.913177 0.893047 0.0495156 0.0714367 0.0872529 0.103617 0.110949 0.12538

C2010C 0.95631 0.948984 0.931297 0.888552 0.842324 0.791745 0.0337618 0.054228 0.0742132 0.103291 0.128646 0.141582

N2010 0.954188 0.943066 0.926784 0.908828 0.899783 0.861431 0.0161626 0.0417738 0.0565986 0.0757137 0.0933183 0.12984

T2011T 0.977063 0.957161 0.948097 0.925653 0.896587 0.854278 0.0456822 0.0593435 0.0728292 0.10188 0.123728 0.141295

T2011S 0.959449 0.95246 0.925345 0.872886 0.855211 0.847803 0.035875 0.0658335 0.0829759 0.102538 0.101893 0.122384

Den Hartog [26] 0.990099 0.980392 0.970874 0.952381 0.934579 0.909091 0.0609333 0.0857493 0.10451 0.133631 0.156629 0.184637
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Table 5.21: Optimum TMD parameters for different values of mass ratio µ, for the structure with n
S
= 2, m

S,i
= 150 t.

fopt ζopt
T

Earthquake µ = 0.01 µ = 0.02 µ = 0.03 µ = 0.05 µ = 0.07 µ = 0.1 µ = 0.01 µ = 0.02 µ = 0.03 µ = 0.05 µ = 0.07 µ = 0.1

L1933 0.901452 0.890873 0.890585 0.89098 0.892113 0.883075 0.0314232 0.0407267 0.0597757 0.0993126 0.126657 0.151156

E1934 0.974079 0.923641 0.90636 0.897959 0.895162 0.890303 0.0326214 0.0554749 0.0490657 0.0480867 0.0534057 0.0781185

I1940 0.912264 0.902748 0.896824 0.886421 0.876161 0.840542 0.0583334 0.0660358 0.074331 0.0872299 0.101848 0.134584

K1952 1.00895 1.00752 0.97166 0.934025 0.915808 0.886342 0.038072 0.0625792 0.0929927 0.108364 0.131394 0.163939

B1968 0.955916 0.925334 0.878806 0.870131 0.859425 0.849866 0.0383841 0.0567125 0.0522999 0.0592607 0.060273 0.0737211

S1971 1.03338 1.11226 0.946165 0.900795 0.890841 0.866478 0.0462572 0.0424954 0.145384 0.146758 0.159685 0.185755

I1979 1.04313 0.988337 0.957905 0.919819 0.875616 0.813115 0.027892 0.0844491 0.0946508 0.12414 0.145412 0.181543

C1985 0.984398 0.966721 0.956896 0.925784 0.621879 0.61239 0.0498141 0.071016 0.0932697 0.144332 0.0951802 0.1056

L1989 0.988649 0.966135 0.873904 0.776643 0.718331 0.677457 0.0823333 0.119308 0.155689 0.184369 0.185365 0.184284

N1994 0.953034 0.947195 0.94203 0.925115 0.686748 0.619732 0.0521654 0.0679715 0.0811501 0.131842 0.206582 0.193384

K1995TZ 0.980556 0.974957 0.969474 0.967162 0.970764 0.96939 0.0233427 0.0296916 0.0345565 0.0448952 0.0558765 0.0694825

K1995TK 0.937436 0.935642 0.918359 0.818279 0.740264 0.645255 0.0923179 0.12968 0.157705 0.212693 0.231169 0.256777

A2009 0.927148 0.914365 0.901674 0.875656 0.856981 0.823178 0.0690222 0.102014 0.124453 0.152172 0.176148 0.197268

C2010A 1.02346 0.925925 0.895227 0.877488 0.867647 0.858312 0.0568876 0.112165 0.108432 0.114717 0.120317 0.126032

C2010C 0.962533 0.940833 0.921418 0.900351 0.878827 0.845479 0.0484659 0.0632137 0.0765459 0.0925437 0.109081 0.128338

N2010 0.929702 0.920326 0.910991 0.903733 0.900581 0.887317 0.0319341 0.0647119 0.0786928 0.0970963 0.116187 0.14269

T2011T 0.967361 0.970357 0.964431 0.945539 0.934969 0.928246 0.0301782 0.0496452 0.065548 0.0867124 0.0992037 0.112915

T2011S 1.03172 1.02564 1.00329 0.952381 0.912472 0.864649 0.0319573 0.0584146 0.0906085 0.13363 0.161701 0.200398

Den Hartog [26] 0.990099 0.980392 0.970874 0.952381 0.934579 0.909091 0.0609333 0.0857493 0.10451 0.133631 0.156629 0.184637
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Table 5.22: Optimum TMD parameters for different values of mass ratio µ, for the structure with n
S
= 3, m

S,i
= 100 t.

fopt ζopt
T

Earthquake µ = 0.01 µ = 0.02 µ = 0.03 µ = 0.05 µ = 0.07 µ = 0.1 µ = 0.01 µ = 0.02 µ = 0.03 µ = 0.05 µ = 0.07 µ = 0.1

L1933 1.0326 1.03322 1.01769 0.981183 0.971374 0.909091 0.0282767 0.03677 0.0617914 0.0839545 0.104586 0.184638

E1934 1.00379 1.01488 1.0251 1.03877 0.997463 0.904191 0.02056 0.0396895 0.050824 0.073282 0.130263 0.177651

I1940 1.00085 0.998825 0.985806 0.941402 0.903043 0.881143 0.0305707 0.0458001 0.0678696 0.103243 0.116053 0.128561

K1952 0.997918 0.976814 0.941677 0.878209 0.807587 0.768186 0.0283732 0.072005 0.095519 0.148984 0.151926 0.176524

B1968 0.979348 0.977551 0.97709 0.979207 0.968682 0.92202 0.0308781 0.0461093 0.0560563 0.0675418 0.093885 0.163041

S1971 0.992249 0.999764 0.955403 0.891815 0.885569 0.879408 0.0129416 0.0317241 0.0817385 0.080935 0.0882088 0.127712

I1979 0.941744 0.938887 0.925727 0.850909 0.794728 0.767214 0.0504947 0.0668709 0.0864431 0.13038 0.129736 0.127664

C1985 0.747875 0.747662 0.744895 0.71635 0.708632 0.700576 0.00769063 0.0192911 0.0376593 0.0598778 0.0664692 0.0782639

L1989 0.938042 0.921173 0.843167 0.824079 0.79365 0.741125 0.0354656 0.0685068 0.0711385 0.084856 0.105952 0.099488

N1994 0.851605 0.759808 0.761446 0.737941 0.706909 0.681364 0.0239004 0.0580176 0.0895473 0.110509 0.118993 0.127788

K1995TZ 1.13656 1.13389 1.12948 1.12066 1.12224 1.00633 0.0154805 0.0214539 0.0280965 0.045361 0.0684132 0.384989

K1995TK 0.894448 0.896656 0.89385 0.831852 0.74829 0.685683 0.0171638 0.0458212 0.0691649 0.120423 0.142975 0.12913

A2009 0.943544 0.942004 0.93233 0.901352 0.877956 0.629543 0.0388362 0.0611746 0.0823328 0.111767 0.14217 0.177777

C2010A 0.975404 0.968326 0.963524 0.953062 0.944815 0.929996 0.032394 0.036912 0.0447132 0.0628601 0.0799272 0.104913

C2010C 0.988364 0.973994 0.959823 0.934914 0.915936 0.889073 0.0473447 0.0660256 0.0804314 0.101917 0.11748 0.142445

N2010 0.99723 1.01958 1.01719 0.989903 0.937749 0.894168 0.0429081 0.0501429 0.0614269 0.105738 0.147569 0.180039

T2011T 0.993258 1.02433 1.03817 1.04173 1.03715 1.02504 0.0429192 0.0656673 0.0679626 0.0783944 0.0947264 0.11931

T2011S 0.961334 0.888242 0.879117 0.868911 0.828609 0.714953 0.047172 0.0692412 0.0737112 0.109578 0.152547 0.198085

Den Hartog [26] 0.990099 0.980392 0.970874 0.952381 0.934579 0.909091 0.0609333 0.0857493 0.10451 0.133631 0.156629 0.184637
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Table 5.23: Optimum TMD parameters for different values of mass ratio µ, for the structure with n
S
= 3, m

S,i
= 150 t.

fopt ζopt
T

Earthquake µ = 0.01 µ = 0.02 µ = 0.03 µ = 0.05 µ = 0.07 µ = 0.1 µ = 0.01 µ = 0.02 µ = 0.03 µ = 0.05 µ = 0.07 µ = 0.1

L1933 0.929715 0.92483 0.926634 0.923253 0.854964 0.786954 0.0214275 0.0243864 0.0354892 0.0811157 0.127025 0.168278

E1934 0.992856 0.96832 0.945677 0.910091 0.86721 0.823824 0.0333618 0.0611859 0.0719463 0.101349 0.123056 0.13204

I1940 1.02455 1.01658 0.979269 0.911907 0.873986 0.798035 0.02935 0.0647684 0.100299 0.13959 0.16627 0.219069

K1952 0.975847 0.939392 0.927119 0.915861 0.898684 0.807738 0.0208407 0.0517189 0.0581288 0.0814127 0.108634 0.155992

B1968 0.923171 0.920158 0.909105 0.871323 0.754802 0.728672 0.0329953 0.0429075 0.0859506 0.118602 0.174166 0.225021

S1971 1.07765 0.835233 0.815707 0.796833 0.780929 0.761225 0.0162251 0.169414 0.158029 0.156267 0.156802 0.158438

I1979 0.944647 0.937588 0.934446 0.921052 0.912671 0.89742 0.0317417 0.0403184 0.0520125 0.0690222 0.0829566 0.106143

C1985 0.93603 0.938051 0.932179 0.906373 0.897216 0.88294 0.0273378 0.03786 0.0514654 0.0628977 0.0678505 0.081817

L1989 1.0136 0.982731 0.933772 0.919355 0.916226 0.906786 0.03376 0.0695636 0.0775525 0.0710474 0.0755133 0.0911379

N1994 0.936947 0.936424 0.914257 0.883441 0.86654 0.844201 0.0199274 0.0603153 0.0841694 0.098236 0.108121 0.120077

K1995TZ 0.900192 0.900483 0.90246 0.904046 0.871739 0.612254 0.0193847 0.0242242 0.030527 0.0558764 0.122532 0.0600416

K1995TK 0.962169 0.893564 0.855335 0.835574 0.831962 0.829726 0.0402085 0.0680281 0.0687901 0.0695136 0.0818924 0.100455

A2009 1.00568 0.798406 0.793404 0.783915 0.774029 0.756354 0.0395171 0.0343981 0.0478262 0.0690196 0.0856945 0.108628

C2010A 0.978593 0.962565 0.959017 0.949957 0.942365 0.948832 0.0507516 0.0801604 0.106106 0.139822 0.161842 0.185018

C2010C 0.964101 0.961833 0.954503 0.912475 0.884236 0.859382 0.0494053 0.0696554 0.0890868 0.121696 0.13811 0.156322

N2010 0.990262 0.892457 0.899332 0.905062 0.904451 0.613318 0.0609496 0.0464428 0.0600207 0.0725695 0.0985445 0.196116

T2011T 0.984736 0.976566 0.96782 0.95823 0.95888 0.961624 0.035369 0.05651 0.0748971 0.103702 0.135018 0.172898

T2011S 0.845723 0.852511 0.851564 0.838824 0.818304 0.781319 0.0278174 0.0532526 0.0801819 0.106182 0.127329 0.158856

Den Hartog [26] 0.990099 0.980392 0.970874 0.952381 0.934579 0.909091 0.0609333 0.0857493 0.10451 0.133631 0.156629 0.184637
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Table 5.24: Optimum TMD parameters for different values of mass ratio µ, for the structure with n
S
= 5, m

S,i
= 100 t.

fopt ζopt
T

Earthquake µ = 0.01 µ = 0.02 µ = 0.03 µ = 0.05 µ = 0.07 µ = 0.1 µ = 0.01 µ = 0.02 µ = 0.03 µ = 0.05 µ = 0.07 µ = 0.1

L1933 0.936088 0.895472 0.860192 0.849589 0.846733 0.838976 0.0628573 0.0840756 0.0785353 0.0730981 0.0743603 0.0917926

E1934 1.0016 1.00133 0.958768 0.922728 0.909315 0.849271 0.0308537 0.0591523 0.0906423 0.103583 0.121913 0.171623

I1940 0.882793 0.883718 0.882658 0.867682 0.832277 0.780189 0.0281339 0.0490221 0.0648403 0.0961327 0.123716 0.142381

K1952 0.936903 0.929417 0.918355 0.905244 0.895335 0.880541 0.0223279 0.0404525 0.0529785 0.0694209 0.0854278 0.111187

B1968 0.995674 0.986106 0.940729 0.891547 0.866563 0.848905 0.029638 0.0492624 0.0820735 0.0991101 0.105277 0.126939

S1971 0.960197 0.971755 0.976273 0.973211 0.952829 0.91543 0.0444295 0.0582123 0.0643304 0.0811749 0.102355 0.128765

I1979 0.968068 0.970793 0.974839 0.9866 0.983996 0.914771 0.0279861 0.0481524 0.0692794 0.109811 0.150886 0.212916

C1985 0.984462 1.00274 1.01736 1.02423 1.01843 0.996451 0.0404105 0.077468 0.0956376 0.123901 0.146584 0.172763

L1989 0.982111 0.986852 1.00761 1.0257 0.998851 0.945966 0.0592152 0.0984003 0.12729 0.151048 0.183532 0.221069

N1994 1.01158 0.947872 0.94707 0.953055 0.956564 0.945961 0.062405 0.0737448 0.0808911 0.0929711 0.103784 0.133931

K1995TZ 0.826967 0.81853 0.813495 0.805244 0.798498 0.791678 0.0296539 0.0359009 0.0404577 0.0466109 0.0510526 0.0601937

K1995TK 1.07174 1.08194 1.08366 1.01286 0.970881 0.942284 0.0240905 0.0376321 0.0589429 0.126373 0.144341 0.159591

A2009 1.04659 1.0329 1.02116 1.0033 0.940479 0.911574 0.0256241 0.0445918 0.0580381 0.0886591 0.121968 0.118164

C2010A 0.990529 0.933437 0.891758 0.840444 0.810374 0.781502 0.0880498 0.126264 0.152327 0.168815 0.178345 0.199114

C2010C 1.01367 1.01944 0.943465 0.888538 0.859556 0.833322 0.0433703 0.0723827 0.123189 0.135894 0.147151 0.15862

N2010 0.787404 0.788321 0.788398 0.788125 0.786212 0.77709 0.0130136 0.0199646 0.0250905 0.0341234 0.045696 0.0662215

T2011T 0.973564 0.957806 0.93323 0.907286 0.875443 0.85787 0.0233233 0.0518969 0.0694577 0.103441 0.124975 0.145259

T2011S 0.965951 0.94342 0.92832 0.886253 0.850702 0.8032 0.0507719 0.0754237 0.0972706 0.132138 0.157023 0.187354

Den Hartog [26] 0.990099 0.980392 0.970874 0.952381 0.934579 0.909091 0.0609333 0.0857493 0.10451 0.133631 0.156629 0.184637
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Table 5.25: Optimum TMD parameters for different values of mass ratio µ, for the structure with n
S
= 5, m

S,i
= 150 t.

fopt ζopt
T

Earthquake µ = 0.01 µ = 0.02 µ = 0.03 µ = 0.05 µ = 0.07 µ = 0.1 µ = 0.01 µ = 0.02 µ = 0.03 µ = 0.05 µ = 0.07 µ = 0.1

L1933 1.04006 1.04083 1.0404 0.997554 0.931129 0.90739 0.0206614 0.0344724 0.0551956 0.112812 0.127982 0.121911

E1934 0.922346 0.915993 0.918644 0.923557 0.919793 0.891537 0.0175086 0.0404522 0.0585739 0.082203 0.100817 0.134243

I1940 0.927219 0.90967 0.908197 0.90902 0.905883 0.874297 0.0472684 0.0647859 0.0805229 0.10418 0.122291 0.159636

K1952 0.994321 0.941161 0.939222 0.936744 0.926487 0.877974 0.0763531 0.0946926 0.108101 0.133537 0.159098 0.204835

B1968 1.02411 0.985798 0.973844 0.952164 0.77119 0.748089 0.0422624 0.0775703 0.0957797 0.138768 0.170545 0.142373

S1971 0.956334 0.964351 0.968233 0.974427 0.991407 1.02159 0.0270779 0.0402425 0.0471371 0.0689546 0.0912499 0.106216

I1979 0.953812 0.955626 0.949162 0.909228 0.785418 0.660378 0.0358901 0.0418168 0.0634394 0.112968 0.190529 0.145913

C1985 1.02204 1.02266 1.02781 1.03722 1.04445 1.02419 0.0227671 0.0427868 0.055385 0.087378 0.124464 0.18234

L1989 1.00506 0.970767 0.95971 0.953795 0.949323 0.917314 0.0358339 0.0614077 0.0677953 0.0828989 0.106651 0.174672

N1994 0.988316 0.860946 0.85203 0.837907 0.829202 0.822193 0.0378293 0.0536056 0.0625228 0.0844498 0.106934 0.132839

K1995TZ 1.00868 1.01045 1.01125 1.01248 1.00829 0.987351 0.0310335 0.0399083 0.0447915 0.0533502 0.0664745 0.0905701

K1995TK 0.946924 0.939347 0.915592 0.8963 0.883777 0.861616 0.0546089 0.087378 0.101348 0.113529 0.125798 0.146895

A2009 1.04552 1.02662 1.01365 0.939969 0.887625 0.846428 0.0189555 0.0482874 0.0797753 0.142035 0.157996 0.174066

C2010A 0.968494 0.970385 0.970299 0.943308 0.890994 0.860838 0.0328897 0.0442778 0.0577692 0.0954687 0.113894 0.11912

C2010C 0.983805 0.987522 0.983081 0.957253 0.917736 0.863799 0.0346022 0.0568964 0.0730441 0.102423 0.131186 0.148431

N2010 0.989715 0.992738 0.99257 0.98584 0.981125 0.978435 0.0229908 0.0276665 0.0347985 0.0548071 0.0688064 0.0970917

T2011T 0.996829 1.00029 1.00623 0.995388 0.971 0.910192 0.0268267 0.0473623 0.0629217 0.0961309 0.131726 0.178291

T2011S 0.980728 0.960377 0.935069 0.844291 0.812768 0.779919 0.0405246 0.0658049 0.0953523 0.121899 0.128886 0.144953

Den Hartog [26] 0.990099 0.980392 0.970874 0.952381 0.934579 0.909091 0.0609333 0.0857493 0.10451 0.133631 0.156629 0.184637
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Table 5.26: Optimum TMD parameters for different values of mass ratio µ, for the structure with n
S
= 10, m

S,i
= 100 t.

fopt ζopt
T

Earthquake µ = 0.01 µ = 0.02 µ = 0.03 µ = 0.05 µ = 0.07 µ = 0.1 µ = 0.01 µ = 0.02 µ = 0.03 µ = 0.05 µ = 0.07 µ = 0.1

L1933 0.906249 0.895409 0.881801 0.847534 0.766592 0.735626 0.0409942 0.061303 0.0738121 0.102575 0.115448 0.113243

E1934 1.11283 1.10553 1.08119 1.02908 0.990354 0.926245 0.0131042 0.0356198 0.0782872 0.133381 0.165488 0.221295

I1940 0.894596 0.891794 0.885057 0.86244 0.851632 0.842488 0.0203201 0.034549 0.0506207 0.0752768 0.0966221 0.129738

K1952 0.905533 0.904638 0.906591 0.906228 0.901712 0.889878 0.0283035 0.0434278 0.055648 0.0683702 0.0785874 0.102348

B1968 1.01628 1.09385 1.14453 1.15666 1.17173 0.981812 0.0478102 0.0962147 0.0810448 0.0911624 0.106313 0.357294

S1971 0.8573 0.85607 0.84981 0.752857 0.740244 0.728329 0.0214943 0.039444 0.0626208 0.0858553 0.0908107 0.101548

I1979 1.04149 1.04924 1.05578 1.053 0.987123 0.901601 0.0265978 0.0307926 0.0379572 0.0793615 0.142564 0.165085

C1985 0.94881 0.946746 0.943489 0.928029 0.911354 0.888041 0.0238648 0.0391356 0.0509529 0.0763105 0.0991254 0.132604

L1989 0.984916 1.15818 1.15245 1.14364 1.1324 1.12245 0.0422804 0.0240903 0.0276964 0.0307143 0.0356375 0.0397636

N1994 1.01288 1.01293 1.01053 0.991547 0.956712 0.924312 0.026811 0.0426578 0.0613068 0.0980227 0.129498 0.147582

K1995TZ 0.902713 0.895526 0.893043 0.886868 0.877791 0.862511 0.0333026 0.0575958 0.0801378 0.114973 0.142459 0.179506

K1995TK 0.991097 0.844689 0.844673 0.608323 0.601652 0.593348 0.0358841 0.0290847 0.0366261 0.0434556 0.0524928 0.0579114

A2009 1.03166 1.02472 1.02287 1.03363 1.04679 1.06338 0.0291143 0.0544367 0.0677882 0.0793569 0.0827553 0.100715

C2010A 1.0769 0.983372 0.945569 0.925312 0.91037 0.888129 0.0235578 0.109393 0.116811 0.124194 0.136095 0.154862

C2010C 0.865211 0.866279 0.864107 0.853295 0.842576 0.82928 0.025992 0.0622438 0.0753763 0.0920347 0.104435 0.118901

N2010 0.858006 0.853831 0.845813 0.809467 0.791969 0.772581 0.0186042 0.0333259 0.0565658 0.102707 0.129009 0.161018

T2011T 0.869402 0.857462 0.846291 0.823589 0.806539 0.789199 0.0532272 0.0690096 0.0815444 0.0976359 0.10913 0.126371

T2011S 1.01356 0.989804 0.966751 0.942303 0.879874 0.81258 0.0440041 0.0742129 0.0917754 0.122956 0.164128 0.168806

Den Hartog [26] 0.990099 0.980392 0.970874 0.952381 0.934579 0.909091 0.0609333 0.0857493 0.10451 0.133631 0.156629 0.184637
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Table 5.27: Optimum TMD parameters for different values of mass ratio µ, for the structure with n
S
= 10, m

S,i
= 150 t.

fopt ζopt
T

Earthquake µ = 0.01 µ = 0.02 µ = 0.03 µ = 0.05 µ = 0.07 µ = 0.1 µ = 0.01 µ = 0.02 µ = 0.03 µ = 0.05 µ = 0.07 µ = 0.1

L1933 0.910882 0.910057 0.907252 0.896619 0.882223 0.864213 0.0367583 0.0542833 0.0665753 0.0859395 0.0998442 0.112264

E1934 0.955831 0.931619 0.878312 0.867375 0.866852 0.866281 0.0229479 0.0565274 0.0639286 0.0684057 0.0769091 0.0872556

I1940 1.00962 1.05966 1.06201 0.978976 0.946192 0.899761 0.047773 0.0661894 0.0789285 0.138926 0.158608 0.182518

K1952 0.969098 1.00502 1.02018 0.993457 0.947336 0.927356 0.0856358 0.113414 0.119966 0.154821 0.176668 0.182966

B1968 0.936264 0.911842 0.736405 0.715186 0.512994 0.501807 0.0579527 0.096664 0.0806188 0.116951 0.106037 0.112411

S1971 0.91226 0.91315 0.91483 0.91429 0.909161 0.893909 0.0387563 0.0619153 0.0764475 0.0927566 0.104831 0.1243

I1979 1.00362 1.00163 0.99658 0.994116 0.956739 0.900288 0.0219393 0.0356813 0.0450819 0.0717355 0.122985 0.184427

C1985 0.942834 0.944286 0.933222 0.916711 0.91273 0.913095 0.0490954 0.0697308 0.0873049 0.107543 0.125754 0.148346

L1989 0.781795 0.78377 0.783234 0.772197 0.757376 0.744769 0.0120957 0.0250439 0.036763 0.0572589 0.0677983 0.0826599

N1994 1.03349 1.03859 1.05401 0.878286 0.83374 0.807201 0.0172798 0.0335468 0.0558588 0.190044 0.170853 0.172274

K1995TZ 0.979914 0.98394 0.959803 0.697946 0.658859 0.6383 0.0428403 0.0833355 0.124603 0.178877 0.152347 0.148107

K1995TK 1.06633 1.07181 0.755961 0.754492 0.753152 0.750019 0.0150571 0.0255139 0.0542767 0.0873912 0.099528 0.105286

A2009 0.933238 0.893544 0.871071 0.839567 0.823435 0.805591 0.0396952 0.0524771 0.0596613 0.0680732 0.0764246 0.098101

C2010A 0.956663 0.972041 0.974688 0.969644 0.957171 0.946457 0.049162 0.0680207 0.0792072 0.0999601 0.114249 0.127885

C2010C 1.03447 1.03705 1.02919 1.0111 1.00113 0.988175 0.0479169 0.0517494 0.0600772 0.0734259 0.0811074 0.103593

N2010 0.950458 0.964303 0.963557 0.950505 0.930548 0.795346 0.0593891 0.0829553 0.0935922 0.112691 0.139846 0.212214

T2011T 0.979131 0.983707 0.983361 0.970065 0.951091 0.915328 0.0438346 0.0571295 0.067188 0.0881692 0.107641 0.144378

T2011S 0.946446 0.939754 0.937238 0.935324 0.935331 0.932932 0.0298021 0.0328566 0.039071 0.0565723 0.0700536 0.0853793

Den Hartog [26] 0.990099 0.980392 0.970874 0.952381 0.934579 0.909091 0.0609333 0.0857493 0.10451 0.133631 0.156629 0.184637
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Table 5.28: Optimum TMD parameters for different values of mass ratio µ, for the structure with n
S
= 15, m

S,i
= 100 t.

fopt ζopt
T

Earthquake µ = 0.01 µ = 0.02 µ = 0.03 µ = 0.05 µ = 0.07 µ = 0.1 µ = 0.01 µ = 0.02 µ = 0.03 µ = 0.05 µ = 0.07 µ = 0.1

L1933 0.991207 1.00825 1.01341 1.00812 1.00725 1.01543 0.0476293 0.0682326 0.077574 0.0866273 0.0856158 0.0812205

E1934 1.03011 1.03622 1.03966 1.06126 1.05155 1.0227 0.0163672 0.0303364 0.0461453 0.0702796 0.0927188 0.114954

I1940 0.955671 0.956427 0.959495 0.957945 0.945325 0.922314 0.0352794 0.0496656 0.0609686 0.0776937 0.0961949 0.11997

K1952 1.03848 1.02594 0.983923 0.937233 0.901811 0.81816 0.0198126 0.0579781 0.0964896 0.126719 0.15913 0.220588

B1968 0.905063 0.908281 0.899771 0.862137 0.827761 0.703195 0.0208824 0.0390981 0.0565562 0.0925438 0.11572 0.134997

S1971 0.998088 0.997131 0.970663 0.894744 0.848896 0.805059 0.0681299 0.0965792 0.12618 0.16667 0.183328 0.19888

I1979 0.839627 0.836646 0.831907 0.820013 0.803952 0.783548 0.0390406 0.0533719 0.0605066 0.0706303 0.0780311 0.0800942

C1985 1.04217 1.04019 1.05017 1.0498 0.99446 0.895581 0.0335723 0.0586141 0.0714129 0.103929 0.174646 0.208327

L1989 0.962373 0.962785 0.953342 0.933767 0.926921 0.892879 0.0266667 0.0391376 0.0513278 0.0612468 0.0740529 0.0982027

N1994 1.00367 1.00098 0.969373 0.934103 0.925974 0.913731 0.0225535 0.0335262 0.0597873 0.0619153 0.0665882 0.095484

K1995TZ 0.889096 0.856 0.834576 0.811293 0.795166 0.776664 0.0442453 0.0598909 0.0660023 0.0753896 0.0822569 0.0903934

K1995TK 0.944935 0.945365 0.944374 0.935386 0.92571 0.921579 0.0328148 0.0422237 0.0478054 0.0546051 0.0531697 0.0483808

A2009 0.993702 0.995261 0.994434 0.980731 0.957835 0.932007 0.039588 0.0522935 0.0637576 0.0882782 0.106936 0.124066

C2010A 1.0092 0.961512 0.934956 0.908475 0.880149 0.846889 0.0769876 0.104512 0.118959 0.143832 0.164453 0.179934

C2010C 0.935225 0.926742 0.92265 0.915415 0.901671 0.879288 0.0348505 0.057642 0.0769075 0.111241 0.13755 0.161501

N2010 0.868051 0.869304 0.869249 0.861905 0.846923 0.824957 0.018787 0.0323114 0.0462229 0.0713633 0.0900963 0.105509

T2011T 0.91782 0.917658 0.9165 0.904473 0.890597 0.873908 0.0315917 0.0522838 0.066763 0.0927556 0.113188 0.141413

T2011S 1.14702 1.15986 1.15691 1.13855 1.05863 0.978439 0.024491 0.0368904 0.0469213 0.0850896 0.17571 0.228104

Den Hartog [26] 0.990099 0.980392 0.970874 0.952381 0.934579 0.909091 0.0609333 0.0857493 0.10451 0.133631 0.156629 0.184637
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Table 5.29: Optimum TMD parameters for different values of mass ratio µ, for the structure with n
S
= 15, m

S,i
= 150 t.

fopt ζopt
T

Earthquake µ = 0.01 µ = 0.02 µ = 0.03 µ = 0.05 µ = 0.07 µ = 0.1 µ = 0.01 µ = 0.02 µ = 0.03 µ = 0.05 µ = 0.07 µ = 0.1

L1933 0.874686 0.872473 0.852194 0.832261 0.83127 0.830477 0.013518 0.0258985 0.0413121 0.0551057 0.0871443 0.127865

E1934 0.888055 0.889552 0.890744 0.894885 0.892701 0.745435 0.010785 0.020692 0.0360991 0.0671024 0.0988801 0.152347

I1940 0.974474 0.95681 0.953487 0.938228 0.895583 0.823977 0.061904 0.0724227 0.0935233 0.14083 0.185086 0.217958

K1952 0.945927 0.861956 0.838356 0.824043 0.817536 0.809299 0.0584755 0.076565 0.0746268 0.0780745 0.0851592 0.0974257

B1968 0.978499 0.855863 0.857848 0.849707 0.820256 0.787717 0.0347719 0.0408889 0.0598284 0.0925698 0.117743 0.130328

S1971 0.973794 0.957739 0.941401 0.910879 0.884883 0.854169 0.0428002 0.0609743 0.0747642 0.0942826 0.10703 0.117877

I1979 1.01876 1.00663 0.995654 0.987823 0.988142 0.990028 0.0360354 0.0519338 0.0589639 0.0602324 0.0572288 0.054351

C1985 0.996828 0.986352 0.979809 0.972697 0.975694 0.931292 0.0340055 0.0381571 0.0420164 0.051335 0.074861 0.14667

L1989 0.97488 0.994976 1.00756 1.02082 1.03366 1.0365 0.00324059 0.0499929 0.068937 0.100506 0.117773 0.133864

N1994 0.885628 0.878199 0.875024 0.868137 0.852982 0.817364 0.0343654 0.061028 0.0873856 0.122991 0.147039 0.171825

K1995TZ 0.987623 0.980903 0.974954 0.964731 0.955859 0.943423 0.0361247 0.0537234 0.06368 0.0780635 0.0884118 0.101465

K1995TK 1.1682 1.16792 1.17022 1.17842 1.17669 1.05838 0.0160657 0.0265709 0.0370473 0.0543038 0.0811151 0.230316

A2009 0.984176 0.981079 0.977998 0.970375 0.9643 0.961917 0.0508024 0.0625469 0.0726236 0.0940152 0.113199 0.136004

C2010A 0.974714 0.971528 0.975655 0.984872 0.991874 0.987397 0.0210065 0.0462924 0.058701 0.0685593 0.0805557 0.127673

C2010C 0.986158 0.990611 0.998843 1.01395 1.02708 1.03756 0.0230656 0.0472883 0.0633417 0.0811572 0.0876313 0.0960437

N2010 1.07198 1.02321 1.01907 1.01739 1.01998 1.02827 0.0444565 0.0760691 0.0775298 0.0751652 0.0713327 0.0730199

T2011T 0.991474 0.957965 0.954468 0.940137 0.824729 0.771784 0.0609461 0.0805369 0.0995503 0.147276 0.195393 0.194129

T2011S 0.964349 0.92496 0.908189 0.900177 0.89507 0.886158 0.0586046 0.0777011 0.0803758 0.0862377 0.0931838 0.106415

Den Hartog [26] 0.990099 0.980392 0.970874 0.952381 0.934579 0.909091 0.0609333 0.0857493 0.10451 0.133631 0.156629 0.184637

135



5.
5.

O
p
ti
m
u
m

T
M
D

p
ar
am

et
er
s

Table 5.30: Optimum TMD parameters for different values of mass ratio µ, for the structure with n
S
= 25, m

S,i
= 100 t.

fopt ζopt
T

Earthquake µ = 0.01 µ = 0.02 µ = 0.03 µ = 0.05 µ = 0.07 µ = 0.1 µ = 0.01 µ = 0.02 µ = 0.03 µ = 0.05 µ = 0.07 µ = 0.1

L1933 0.939931 0.826521 0.809932 0.788371 0.769421 0.750173 0.013228 0.0694907 0.0813822 0.111088 0.13349 0.156097

E1934 0.981302 0.979245 0.97979 0.98145 0.930106 0.86475 0.0169047 0.0142654 0.0163538 0.0459779 0.105257 0.105194

I1940 1.03607 0.965417 0.951602 0.938609 0.927757 0.906233 0.0496347 0.0819431 0.0872295 0.0936078 0.104752 0.129363

K1952 1.10046 1.08635 1.0895 1.08783 0.997207 0.966748 0.0380121 0.0561919 0.0604806 0.089503 0.155915 0.155811

B1968 1.02718 0.988204 0.977137 0.964091 0.958075 0.934242 0.0242963 0.055978 0.0647198 0.0925466 0.117785 0.155492

S1971 1.03289 1.04145 1.04783 1.05563 1.05983 1.06316 0.032604 0.0507049 0.0600175 0.0744559 0.0859416 0.0997474

I1979 0.951371 0.80405 0.800335 0.791435 0.781766 0.771812 0.0429224 0.0351896 0.040157 0.0463662 0.0486892 0.0496231

C1985 1.06577 0.940815 0.927271 0.824088 0.786652 0.767792 0.0272665 0.106603 0.120613 0.161011 0.151897 0.149367

L1989 0.917268 0.915713 0.907578 0.857594 0.845574 0.846172 0.0169774 0.0302927 0.046487 0.0601355 0.0612919 0.0787564

N1994 0.998778 0.995999 0.991586 0.982221 0.978377 0.98168 0.0252577 0.0393052 0.0512659 0.0700855 0.0839443 0.0995443

K1995TZ 0.951956 0.930757 0.915035 0.8916 0.874088 0.854452 0.0367625 0.0645064 0.0799123 0.100421 0.116587 0.137053

K1995TK 0.86594 0.864846 0.863429 0.857214 0.847044 0.826076 0.0266625 0.0452862 0.0594914 0.0829134 0.102456 0.125102

A2009 0.968242 0.944308 0.917185 0.87648 0.849124 0.819571 0.026997 0.0560224 0.0739257 0.0951376 0.113081 0.135344

C2010A 1.00432 0.98958 0.988452 0.989581 0.979482 0.954934 0.0439532 0.0417818 0.0390831 0.0445278 0.0639232 0.0944417

C2010C 0.927535 0.924213 0.924274 0.923886 0.915395 0.885282 0.032239 0.0492752 0.0566544 0.0705245 0.0964311 0.145772

N2010 0.943001 0.928838 0.92388 0.91768 0.897741 0.840947 0.0596568 0.0581873 0.059447 0.0685906 0.0943401 0.121479

T2011T 1.04147 0.993899 0.991847 0.983552 0.971446 0.953448 0.0414243 0.0651747 0.0650069 0.0704125 0.0807776 0.0963509

T2011S 1.00363 0.985809 0.983494 0.974621 0.950174 0.89323 0.0437455 0.0648794 0.093102 0.143198 0.182617 0.22737

Den Hartog [26] 0.990099 0.980392 0.970874 0.952381 0.934579 0.909091 0.0609333 0.0857493 0.10451 0.133631 0.156629 0.184637
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Table 5.31: Optimum TMD parameters for different values of mass ratio µ, for the structure with n
S
= 25, m

S,i
= 150 t.

fopt ζopt
T

Earthquake µ = 0.01 µ = 0.02 µ = 0.03 µ = 0.05 µ = 0.07 µ = 0.1 µ = 0.01 µ = 0.02 µ = 0.03 µ = 0.05 µ = 0.07 µ = 0.1

L1933 0.992601 0.971582 0.950909 0.925062 0.911684 0.901492 0.0369583 0.0550948 0.0653114 0.0743308 0.078846 0.0897318

E1934 1.00307 0.995106 0.972244 0.909864 0.899448 0.890849 0.0162797 0.030268 0.0682883 0.0692808 0.0754957 0.10343

I1940 0.980614 0.961494 0.846162 0.822081 0.803338 0.782962 0.0468958 0.107142 0.111149 0.12362 0.135032 0.143763

K1952 1.06989 1.05555 1.05314 0.950323 0.873776 0.858049 0.0113524 0.029747 0.0443776 0.197227 0.185004 0.176457

B1968 0.962803 0.964775 0.959241 0.892566 0.871883 0.855935 0.0193724 0.0452373 0.0756322 0.110294 0.120942 0.137828

S1971 0.851341 0.838063 0.828773 0.814267 0.803128 0.790931 0.000154467 0.0229259 0.0396972 0.0671108 0.0881976 0.113152

I1979 0.999107 0.993928 0.989899 0.986314 0.986239 0.988889 0.0262931 0.0340141 0.03776 0.0409861 0.0431076 0.0484671

C1985 0.959379 0.956726 0.935969 0.913072 0.912946 0.915154 0.020013 0.0333983 0.0526062 0.0579159 0.0680727 0.0794637

L1989 1.00748 1.0227 1.07607 1.1078 0.794216 0.740031 0.0116191 0.0432962 0.0510072 0.044141 0.247586 0.218596

N1994 1.24854 0.933284 0.923502 0.917447 0.916884 0.920651 0.00683942 0.172167 0.184643 0.205571 0.221335 0.238792

K1995TZ 1.01101 1.00418 0.999314 0.991572 0.98379 0.969493 0.00545145 0.0415647 0.0626589 0.0873306 0.102454 0.120374

K1995TK 1.0702 1.0283 1.00805 0.98387 0.963951 0.934584 0.0367884 0.0747715 0.0886981 0.104804 0.117915 0.136347

A2009 0.985815 0.975983 0.968182 0.953441 0.933833 0.892733 0.0250419 0.053513 0.0700614 0.0946187 0.118618 0.150209

C2010A 0.956447 0.940572 0.893682 0.874538 0.864582 0.856626 0.0277925 0.0713449 0.0832118 0.0978947 0.118228 0.155032

C2010C 0.830731 0.835697 0.837682 0.834989 0.831277 0.827711 0.0139303 0.0298387 0.0428648 0.0709675 0.0976275 0.125624

N2010 0.943861 0.922716 0.916796 0.918836 0.923674 0.930191 0.0381597 0.0545801 0.0690579 0.0940344 0.107532 0.116855

T2011T 0.904013 0.89795 0.897711 0.895686 0.892415 0.870719 0.0142034 0.0581179 0.076601 0.105172 0.133669 0.182377

T2011S 0.934158 0.932302 0.927329 0.916209 0.899075 0.885927 0.0361291 0.0498266 0.0575147 0.0760728 0.0886161 0.10215

Den Hartog [26] 0.990099 0.980392 0.970874 0.952381 0.934579 0.909091 0.0609333 0.0857493 0.10451 0.133631 0.156629 0.184637
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Table 5.32: Optimum TMD parameters for different values of mass ratio µ, for the structure with n
S
= 40, m

S,i
= 100 t.

fopt ζopt
T

Earthquake µ = 0.01 µ = 0.02 µ = 0.03 µ = 0.05 µ = 0.07 µ = 0.1 µ = 0.01 µ = 0.02 µ = 0.03 µ = 0.05 µ = 0.07 µ = 0.1

L1933 0.907456 0.877317 0.848997 0.810085 0.786253 0.760725 0.0646236 0.103496 0.125606 0.151502 0.169615 0.190865

E1934 0.778468 0.778907 0.775693 0.765178 0.75943 0.753758 0.005000 0.0155729 0.0327488 0.0687502 0.105425 0.143176

I1940 0.972383 0.990345 1.00394 1.02402 1.03001 1.01767 0.0306529 0.048193 0.0546465 0.0539484 0.0539203 0.0650546

K1952 0.915292 0.868955 0.868513 0.869639 0.861433 0.839496 0.016938 0.0734992 0.107815 0.142807 0.159407 0.174512

B1968 1.10092 1.04321 1.02652 1.01252 1.00733 1.01085 0.0175373 0.0755945 0.084742 0.0931874 0.0966495 0.119384

S1971 1.04389 1.0465 1.05049 1.06018 1.0704 1.07952 0.005000 0.0346906 0.051548 0.0635448 0.0592716 0.0452765

I1979 0.907987 0.82141 0.822308 0.823108 0.823069 0.807642 0.0236191 0.0102298 0.0169544 0.0277208 0.0418395 0.0898808

C1985 0.836361 0.836333 0.835012 0.817537 0.793252 0.774814 0.0180947 0.0294891 0.0438122 0.0861832 0.117139 0.146799

L1989 1.00092 0.996509 0.987926 0.963269 0.9373 0.903634 0.005000 0.0313646 0.0478674 0.069359 0.0853942 0.112002

N1994 0.925581 0.907679 0.894529 0.87233 0.846285 0.796583 0.038575 0.0745779 0.0976237 0.133513 0.163735 0.198008

K1995TZ 1.0034 0.994111 0.983118 0.965621 0.951259 0.932789 0.005000 0.026436 0.0589001 0.102445 0.13245 0.165803

K1995TK 1.00393 1.0055 1.00751 1.01023 1.01016 1.00542 0.0326187 0.049696 0.0613227 0.0810168 0.097604 0.118998

A2009 0.992529 0.983696 0.976662 0.964326 0.950343 0.923915 0.005000 0.0269553 0.049837 0.0800729 0.102742 0.130523

C2010A 0.90041 0.90052 0.908295 0.918923 0.921443 0.776206 0.0226348 0.0596004 0.0912718 0.1215 0.145842 0.231786

C2010C 1.10614 1.09889 1.08734 1.06645 1.0212 0.881326 0.0231044 0.0471123 0.0673609 0.103945 0.170307 0.244243

N2010 0.934317 0.923111 0.914318 0.910091 0.914673 0.919755 0.005000 0.0237832 0.0462743 0.0921793 0.126919 0.163837

T2011T 0.927724 0.901184 0.890333 0.883083 0.874731 0.865693 0.0196207 0.0377875 0.0404993 0.0571701 0.0741921 0.09935

T2011S 1.00207 1.02095 1.01098 0.985343 0.957026 0.925375 0.0602234 0.0894362 0.114272 0.152309 0.178745 0.200684

Den Hartog [26] 0.990099 0.980392 0.970874 0.952381 0.934579 0.909091 0.0609333 0.0857493 0.10451 0.133631 0.156629 0.184637
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Table 5.33: Optimum TMD parameters for different values of mass ratio µ, for the structure with n
S
= 40, m

S,i
= 150 t.

fopt ζopt
T

Earthquake µ = 0.01 µ = 0.02 µ = 0.03 µ = 0.05 µ = 0.07 µ = 0.1 µ = 0.01 µ = 0.02 µ = 0.03 µ = 0.05 µ = 0.07 µ = 0.1

L1933 0.968639 0.955698 0.943906 0.921882 0.900292 0.870429 0.0141075 0.046404 0.0649798 0.0871767 0.102346 0.117867

E1934 0.968431 0.971989 0.970452 0.966795 0.971151 0.95564 0.0208149 0.0327772 0.0398574 0.0469736 0.0547529 0.0796828

I1940 1.2 0.919803 0.914788 0.915793 0.92265 0.942269 0.005000 0.189829 0.20924 0.243787 0.262991 0.273188

K1952 0.935066 0.950311 0.95616 0.965017 0.971438 0.908763 0.0284062 0.0468714 0.0539024 0.0763063 0.101242 0.158386

B1968 0.932132 0.874511 0.883022 0.852131 0.822138 0.810247 0.005000 0.005000 0.0214289 0.0735794 0.086459 0.108967

S1971 0.792956 0.777448 0.763319 0.721697 0.679013 0.641167 0.005000 0.005000 0.005000 0.0396067 0.0546014 0.0635663

I1979 1.02743 1.03415 1.0453 1.05568 0.979121 0.915848 0.0106039 0.0311838 0.0460101 0.0760374 0.134379 0.155227

C1985 1.0527 1.03084 0.994202 0.971066 0.96358 0.960881 0.0339416 0.0670524 0.0851934 0.0892792 0.0859522 0.0771376

L1989 0.954246 0.936382 0.926039 0.915903 0.911864 0.909256 0.032932 0.0585033 0.0710987 0.0843657 0.0949403 0.114003

N1994 0.94866 0.921999 0.904238 0.88197 0.868304 0.853532 0.0316015 0.0639964 0.0804922 0.0972512 0.106949 0.120303

K1995TZ 1.00798 0.995601 0.985217 0.967441 0.953475 0.936211 0.005000 0.005000 0.0104693 0.0581476 0.0910466 0.126568

K1995TK 1.00276 0.998614 0.99568 0.992932 0.988852 0.978554 0.0458443 0.0768521 0.104943 0.152677 0.187235 0.222538

A2009 0.982965 0.967124 0.957641 0.944549 0.935866 0.92713 0.005000 0.0205529 0.0499585 0.0879076 0.112609 0.137977

C2010A 0.859549 0.855924 0.854054 0.853093 0.852453 0.854516 0.0167843 0.0227172 0.0273247 0.0406807 0.0600535 0.0831297

C2010C 0.998288 0.999338 0.932562 0.904089 0.894394 0.889656 0.0170951 0.0392166 0.0743484 0.0706218 0.0732522 0.0833463

N2010 0.882752 0.829933 0.815204 0.790883 0.769232 0.74296 0.0812191 0.0866787 0.10118 0.126996 0.145178 0.163178

T2011T 1.06875 1.0801 1.07076 1.06137 1.00873 0.960681 0.0497093 0.0750689 0.0897698 0.109446 0.152191 0.163874

T2011S 1.00216 1.01173 1.01509 1.01583 1.01177 1.0095 0.0300267 0.0362881 0.0452568 0.0633858 0.0775938 0.0990347

Den Hartog [26] 0.990099 0.980392 0.970874 0.952381 0.934579 0.909091 0.0609333 0.0857493 0.10451 0.133631 0.156629 0.184637
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5.6. Seismic response reduction

5.6 Seismic response reduction

In this section the results of the tuning process for the range of primary structures

and earthquakes considered in this study, in terms of performance of the optimum

TMD, will be presented and discussed in detail, specifically for the case of µ = 0.02,

ζ
S,I

= 0.05, which are values that reflect potential contexts of application of the

control device.

In this sense, it is important to note that the levels of TMD performance have

been recovered for quite a high value of inherent structural damping. Remarkably

higher TMD effectiveness would be obtained for lower intrinsic damping.

The main outcomes of such a wide analysis have been condensed in Tables 5.34–

5.49, where the effect of the control device is detected through the percentage re-

duction of several response indexes, namely:

• Peak kinematic response of the primary structure top storey: ∆xmax
S,n

, ∆ẋmax
S,n

,

∆ẍmax
S,n

;

• RMS kinematic response of the primary structure top storey: ∆xRMS
S,n

, ∆ẋRMS
S,n

,

∆ẍRMS
S,n

;

• Peak and RMS primary structure kinetic energy: ∆Tmax
S

, ∆TRMS
S

.

The aim of this wide representation lies in the need of comprehension of the global

effectiveness of the Tuned Mass Damper in reducing the seismic response, even if

optimised just on a given response index. In this sense, it is somewhat expected

that a general benefit on the dynamic behaviour of the primary structure shall be

obtained, and that the assumed indexes should allow for a comprehensive effective

understanding of the actual situation after the addition of the control device. As

additional instrument of analysis, in Tables 5.34–5.49 the same values of percentage

reduction achieved through Den Hartog tuning formulas have been also reported,

in order to assess the further benefit coming from the specific seismic TMD op-

timisation with respect to the performance of the control device obtained with a

benchmark tuning method. Finally, for all the response reduction indexes, the aver-

age value (intended as mean value) has been evaluated, so that to provide a useful
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Chapter 5. Optimum TMDs for earthquake excitation

indication on the overall effectiveness of the optimum TMD for all the considered

seismic input signals, for an assumed primary structure.

At a glance, a general reduction of the primary structure response has been

obtained, with different levels of performance depending on the considered primary

structure and earthquake.

In general, the indexes related to the peak kinematic response exhibit a wide

variability, which is expressed not only within the performance for the different

seismic input signals, but also among the three indexes of a each earthquake case,

i.e. the reduction in terms of displacement, velocity and acceleration. The main

indication concerns a reduced peak response, even if with noticeable differences

between the different cases. Indeed, the percentage reduction of peak response can

take values from almost zero to up to 40%. Moreover, it appears that specific general

trend could not be outlined, especially for a considered primary structure. In this

sense, since in the present study the peak response has not been involved within

the TMD optimisation process, it is reasonable to conclude that the level of peak

response abatement is related only to the level of correspondence between the modal

parameters and the earthquake signal.

By observing the average values of the peak indexes of response, a higher reduc-

tion has been obtained for the primary structures with short and medium natural

periods, namely those with T
S,I

< 2 s, while long period primary structures as the

25- and 40-storeys ones exhibit smaller peak response decrease. The comparison

with the results achieved through Den Hartog tuning formulas turns out quite inter-

esting and useful, since such tuning method is focused on the reduction of the peak

displacement response (for harmonic loading). However, with reference to these re-

sults, it appears that the proposed TMD tuning, even if based on an overall response

abatement, provides better results with respect to those achieved with Den Hartog’s

method, for all the three indexes.

The percentage reduction of the RMS kinematic response displays as well large

variability of values, which at a glance would not allow to extract general trends.

However, these results witness in principle a remarkable response abatement, not

only referred to the RMS displacement assumed as objective function within the
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5.6. Seismic response reduction

optimisation process, but also by considering that significantly decreasing RMS ve-

locity and acceleration have been recovered. In general, the RMS kinematic re-

sponse reduction takes value from 5% to up to 40%, with a mean value of about

20%. Many subcases could be detected within this set of results: in some cases

the performance decreases from the displacement to the acceleration, in other cases,

viceversa, the acceleration appears to be the most reduced index, other cases again

display almost constant abatement for all the three quantities of response. Instead

of what previously recovered for the peak response, the average reduction of the

RMS displacement takes remarkable values for all the considered primary struc-

tures, included long-period buildings such as the 25- and 40-storey frame structures.

Same consideration holds for the RMS velocity. On the other hand, the average

RMS acceleration abatement seems to decrease starting from the 10-storey primary

structures, i.e. at increasing modal periods.

The parallel contest with the results achieved from Den Hartog benchmark tuning

again points out a general better performance obtainable with the proposed seismic

tuning method, for all the considered RMS indexes and cases. One could note

an interesting fact involving the average values, namely that for all the considered

primary structures the hierarchy of the response decrease, i.e. the magnitude of

the percentage values among the three quantities of response, is equal between peak

and RMS response. Such an issue points out remarkable implications about possible

connections between structural configuration and seismic response.

The reduction of the peak response in terms of kinetic energy of the primary

structure Tmax
S

mainly exhibits considerable values, even if in a situation of wide

variability, especially if considering the results related to each primary structure.

In this sense, the abatement varies between very small values (about 5%) and very

large decreases, such as peaks of about 70%, for some outstanding cases; an ap-

proximate mean value of reduction is about 20%. At a glance, one may note that

the effect of the TMD on the reduction of Tmax
S

is quite larger for the short- and

the medium-period structures than for the long-period buildings (25- and 40-storey

frame structures), as already observed for the peak kinematic response.

From an examination of the results for the RMS kinetic energy index TRMS
S

, less
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Chapter 5. Optimum TMDs for earthquake excitation

variability than for Tmax
S

is recovered. Such quantity has been decreased, in the best

cases, of about 60%, with an average value of nearby 30%, which is a better result

with respect to that obtained for the peak index Tmax
S

, except for the long-period

structures, again distinguished by a lower performance. As found before, for the

kinetic energy indexes the proposed method also provided a more efficient TMD,

with respect to that coming from benchmark tuning formulas.
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Table 5.34: Percentage reduction [%] of the primary structure seismic response obtained with the proposed TMD tuning method, for the primary struc-

ture with n
S

= 1, m
S,i

= 100 t (in brackets the results obtained with Den Hartog tuning formulas [26]: f(µ = 0.02) = 0.980392,

ζ
T
(µ = 0.02) = 0.0857493).

Earthquake fopt ζopt
T

∆xmax
S,n

∆ẋmax
S,n

∆ẍmax
S,n

∆xRMS
S,n

∆ẋRMS
S,n

∆ẍRMS
S,n

∆Tmax
S

∆TRMS
S

L1933 0.919713 0.0638899 5.05 (3.66) 9.10 (7.51) 5.63 (2.48) 2.58 (1.11) 9.52 (7.07) 11.82 (10.09) 17.38 (14.46) 13.93 (12.40)

E1934 0.921112 0.0703318 -14.24 (-11.98) 9.76 (9.54) 9.42 (14.09) 6.98 (5.76) 15.29 (13.76) 17.57 (16.81) 18.58 (18.17) 22.34 (21.74)

I1940 0.941225 0.0580685 23.02 (15.89) 22.43 (15.86) 28.38 (21.04) 14.70 (13.19) 24.39 (22.41) 26.55 (24.99) 39.82 (29.21) 47.14 (40.60)

K1952 0.89792 0.0870196 6.43 (-0.91) 11.56 (6.53) 9.04 (11.18) 3.25 (2.25) 10.04 (9.14) 12.75 (13.11) 21.79 (12.64) 20.52 (18.53)

B1968 0.974222 0.0500581 -9.40 (-9.07) 7.03 (7.87) 11.34 (11.10) 0.85 (0.68) 12.91 (11.84) 19.20 (17.61) 13.57 (15.11) 21.69 (19.68)

S1971 1.00819 0.0510264 16.02 (11.77) 19.94 (16.33) 24.28 (21.85) 10.88 (10.40) 19.43 (18.03) 22.77 (20.66) 35.91 (29.99) 34.57 (33.46)

I1979 0.898226 0.05352 3.24 (3.85) 5.36 (9.59) 9.29 (11.48) 4.27 (2.50) 14.73 (10.95) 18.84 (15.23) 10.43 (18.25) 18.92 (14.74)

C1985 0.869281 0.129671 6.25 (10.41) 9.53 (12.93) 12.89 (19.77) 1.36 (0.85) 7.10 (7.14) 10.36 (11.80) 18.16 (24.18) 12.86 (11.97)

L1989 0.874935 0.0405821 4.00 (-9.14) 4.75 (-14.48) 6.10 (-15.71) 2.61 (0.75) 9.93 (7.27) 13.48 (12.50) 9.28 (-31.06) 21.95 (-0.17)

N1994 0.889527 0.0712831 12.72 (10.77) 17.96 (13.67) 18.12 (16.90) 11.16 (9.16) 17.43 (16.10) 17.90 (18.12) 32.70 (25.47) 31.08 (28.36)

K1995TZ 0.984203 0.0684151 7.76 (7.72) 12.04 (10.77) 18.11 (16.36) 3.96 (3.90) 15.17 (14.76) 21.94 (21.15) 22.62 (20.38) 31.61 (29.40)

K1995TK 0.943665 0.164683 -2.83 (-2.46) -1.95 (-1.29) 5.78 (6.62) 0.05 (-0.45) 6.00 (5.03) 8.52 (7.82) -3.93 (-2.60) 7.85 (6.39)

A2009 0.970043 0.0488281 0.19 (4.48) -0.95 (4.27) 6.55 (8.71) 24.22 (22.35) 27.33 (25.43) 27.31 (25.75) -1.91 (8.35) 41.59 (40.91)

C2010A 0.949067 0.0828206 5.21 (4.93) 7.06 (7.59) 10.44 (10.89) 2.82 (2.64) 9.01 (8.80) 13.56 (13.55) 13.63 (14.60) 10.09 (8.85)

C2010C 0.892958 0.0798059 7.59 (4.20) 11.93 (8.58) 10.59 (7.91) 6.82 (4.63) 13.14 (10.95) 15.96 (14.99) 22.43 (16.42) 24.72 (20.63)

N2010 0.911654 0.0640074 3.22 (-0.20) 5.47 (-1.19) -2.22 (-7.96) 5.36 (3.90) 14.34 (12.23) 14.89 (13.93) 10.65 (-2.39) 20.55 (10.56)

T2011T 0.681163 0.0433526 6.98 (-1.52) 9.68 (-17.85) 9.31 (-21.04) 4.40 (-1.90) 6.51 (1.85) 7.04 (5.90) 18.42 (-38.87) 13.05 (-0.83)

T2011S 0.914064 0.0677918 -1.21 (-0.54) -3.03 (-3.32) -2.95 (-2.87) 7.57 (6.06) 15.52 (13.93) 15.77 (15.43) -6.16 (-6.76) 14.00 (10.60)

Average [%] reduction 4.44 (2.32) 8.76 (5.16) 10.56 (7.38) 6.32 (4.88) 13.77 (12.04) 16.46 (15.52) 16.30 (9.20) 22.69 (18.21)
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Table 5.35: Percentage reduction [%] of the primary structure seismic response obtained with the proposed TMD tuning method, for the primary struc-

ture with n
S

= 1, m
S,i

= 150 t (in brackets the results obtained with Den Hartog tuning formulas [26]: f(µ = 0.02) = 0.980392,

ζ
T
(µ = 0.02) = 0.0857493).

Earthquake fopt ζopt
T

∆xmax
S,n

∆ẋmax
S,n

∆ẍmax
S,n

∆xRMS
S,n

∆ẋRMS
S,n

∆ẍRMS
S,n

∆Tmax
S

∆TRMS
S

L1933 0.928751 0.0678157 1.81 (-2.19) 6.72 (3.10) 12.78 (12.87) 8.59 (6.89) 16.30 (13.95) 19.41 (17.39) 12.99 (6.09) 27.22 (18.28)

E1934 0.940918 0.0751522 1.63 (9.81) 5.41 (6.70) 16.75 (18.39) 10.41 (8.89) 17.87 (16.12) 20.15 (18.99) 10.53 (12.95) 31.83 (30.01)

I1940 0.896668 0.0670746 -0.02 (-1.45) 14.52 (17.81) 15.32 (22.93) 10.63 (8.40) 15.59 (14.52) 15.62 (16.56) 26.93 (32.44) 30.11 (33.41)

K1952 0.900373 0.0408651 28.52 (18.29) 24.13 (22.99) 19.93 (24.59) 12.53 (8.53) 19.89 (15.25) 21.66 (18.31) 42.44 (40.70) 41.74 (31.30)

B1968 0.980391 0.0857489 -1.89 (-1.89) 16.62 (16.62) 26.95 (26.95) 9.22 (9.22) 21.89 (21.89) 25.45 (25.45) 30.47 (30.47) 35.36 (35.36)

S1971 0.926297 0.0671687 9.40 (16.81) 16.50 (24.72) 4.31 (14.83) 13.30 (11.81) 18.19 (17.27) 18.63 (18.84) 30.28 (43.32) 30.03 (32.32)

I1979 0.900109 0.12465 -1.42 (-1.65) -0.34 (-0.89) 2.85 (2.29) 2.55 (0.91) 8.17 (6.21) 11.02 (9.90) -0.68 (-1.80) 7.69 (6.71)

C1985 0.892942 0.0530296 11.62 (7.42) 29.82 (14.28) 30.59 (17.80) 13.34 (8.29) 20.00 (14.70) 22.03 (18.40) 50.75 (26.52) 42.37 (29.40)

L1989 0.722396 0.127725 3.25 (-23.26) 8.57 (-15.23) 8.11 (-7.02) 1.05 (-5.57) 4.03 (-4.47) 5.10 (-1.86) 16.41 (-32.78) 9.11 (-22.96)

N1994 1.00766 0.0740443 6.67 (5.13) 12.39 (9.79) 16.40 (14.95) 10.29 (10.10) 16.61 (15.85) 18.62 (17.36) 23.24 (18.62) 32.49 (28.75)

K1995TZ 0.998208 0.0538141 17.30 (16.98) 27.99 (28.54) 35.68 (31.65) 11.87 (11.50) 22.60 (21.26) 27.73 (25.49) 48.15 (48.93) 44.52 (42.37)

K1995TK 0.948948 0.0866292 1.24 (0.21) 4.90 (3.25) 5.42 (4.18) 3.73 (3.43) 12.72 (12.36) 16.27 (16.27) 9.56 (6.39) 14.83 (14.61)

A2009 0.953816 0.0472419 31.66 (27.18) 32.72 (28.51) 30.09 (22.43) 28.72 (25.71) 30.39 (27.72) 28.29 (26.43) 54.74 (48.89) 56.38 (51.82)

C2010A 0.763433 0.0360203 15.62 (-1.08) 7.18 (-1.27) 0.42 (2.59) 8.62 (0.11) 10.54 (4.31) 10.71 (8.36) 13.85 (-2.56) 22.18 (5.51)

C2010C 0.963104 0.0667677 14.26 (10.76) 10.01 (7.19) 16.37 (12.88) 15.89 (15.27) 22.25 (21.51) 25.09 (24.46) 19.02 (13.86) 40.13 (38.85)

N2010 0.96174 0.0280278 18.63 (11.00) 24.25 (15.53) 26.55 (17.16) 18.66 (15.08) 31.35 (25.49) 31.59 (26.20) 42.62 (28.65) 46.95 (30.99)

T2011T 0.872123 0.0703578 18.10 (22.31) 28.08 (18.17) 27.37 (20.54) 15.09 (12.37) 17.47 (16.68) 18.47 (20.00) 48.27 (33.03) 35.69 (29.78)

T2011S 0.946026 0.0696897 6.90 (5.27) 8.10 (4.65) 10.66 (8.75) 11.28 (10.17) 19.92 (18.60) 20.57 (19.83) 15.55 (9.08) 29.88 (25.22)

Average [%] reduction 10.18 (6.65) 15.42 (11.36) 17.03 (14.93) 11.43 (8.95) 18.10 (15.51) 19.80 (18.13) 27.51 (20.16) 32.14 (25.65)
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Table 5.36: Percentage reduction [%] of the primary structure seismic response obtained with the proposed TMD tuning method, for the primary struc-

ture with n
S

= 2, m
S,i

= 100 t (in brackets the results obtained with Den Hartog tuning formulas [26]: f(µ = 0.02) = 0.980392,

ζ
T
(µ = 0.02) = 0.0857493).

Earthquake fopt ζopt
T

∆xmax
S,n

∆ẋmax
S,n

∆ẍmax
S,n

∆xRMS
S,n

∆ẋRMS
S,n

∆ẍRMS
S,n

∆Tmax
S

∆TRMS
S

L1933 0.924999 0.0476498 5.49 (4.49) 2.54 (3.46) 7.82 (8.96) 24.76 (20.03) 28.19 (24.34) 28.39 (26.11) 5.00 (7.05) 41.59 (36.58)

E1934 0.961652 0.0379202 9.62 (5.94) 11.41 (5.17) 18.82 (13.60) 15.00 (12.90) 21.61 (18.64) 24.50 (21.36) 21.79 (10.42) 36.50 (31.14)

I1940 0.957267 0.050636 9.60 (10.70) 6.34 (6.12) 5.31 (5.80) 17.36 (15.57) 23.28 (21.14) 24.08 (22.22) 13.83 (13.49) 36.14 (32.35)

K1952 0.874341 0.0618378 17.45 (18.96) 15.92 (12.50) 5.44 (2.92) 13.42 (9.46) 16.68 (14.03) 16.75 (16.26) 29.04 (24.17) 27.36 (25.43)

B1968 0.982152 0.0653077 1.88 (2.90) 12.66 (11.24) 7.43 (10.51) 12.13 (11.57) 22.95 (21.90) 24.64 (23.54) 23.67 (21.20) 35.86 (34.72)

S1971 0.905353 0.0255086 1.52 (0.36) 4.52 (-4.85) 14.66 (-2.73) 22.58 (5.29) 25.55 (7.85) 24.08 (9.14) 9.73 (-7.92) 41.72 (17.06)

I1979 0.99979 0.0524752 -3.40 (-4.54) -5.14 (-6.25) -0.66 (-2.21) 16.12 (15.31) 23.33 (21.51) 26.94 (24.27) -10.56 (-12.89) 25.84 (22.44)

C1985 0.951011 0.0665893 15.57 (16.02) 18.42 (19.20) 20.03 (21.12) 12.47 (11.87) 17.51 (17.13) 19.02 (19.13) 34.09 (35.73) 34.49 (35.11)

L1989 0.878732 0.0401101 -0.52 (6.52) 1.49 (9.40) 1.85 (7.72) 18.54 (13.15) 22.54 (17.83) 23.36 (20.35) 2.97 (17.73) 37.05 (34.63)

N1994 0.988904 0.0639999 3.45 (5.80) 16.28 (18.80) 15.61 (15.80) 16.28 (15.91) 21.23 (20.62) 21.60 (20.91) 32.30 (36.24) 32.57 (31.92)

K1995TZ 0.781938 0.0327414 4.99 (-6.15) 8.62 (-2.78) 5.68 (-3.67) 7.83 (4.12) 9.24 (8.80) 7.65 (11.17) 16.08 (-5.32) 20.83 (5.97)

K1995TK 0.914814 0.054598 20.83 (20.84) 22.98 (22.96) 21.00 (24.62) 17.62 (14.75) 25.02 (22.25) 25.62 (24.20) 40.37 (40.60) 39.44 (39.89)

A2009 0.884789 0.0734193 17.87 (9.44) 17.42 (7.11) 17.83 (12.43) 7.43 (4.16) 7.86 (6.07) 5.49 (5.42) 32.73 (16.31) 21.54 (14.74)

C2010A 0.978982 0.0714367 19.56 (19.03) 18.45 (17.79) 16.37 (16.57) 21.40 (21.17) 23.43 (23.19) 24.24 (24.04) 33.51 (32.46) 37.89 (37.41)

C2010C 0.948987 0.054228 27.55 (20.26) 24.12 (17.39) 16.87 (11.24) 20.28 (18.15) 23.83 (21.81) 24.66 (23.16) 41.79 (31.16) 45.13 (39.25)

N2010 0.943066 0.0417738 -12.00 (-12.73) 25.98 (14.25) 9.61 (-0.33) 21.45 (16.99) 29.26 (23.70) 28.02 (23.49) 45.35 (26.61) 49.30 (37.27)

T2011T 0.957161 0.0593435 -21.28 (-13.45) -1.35 (4.64) 11.72 (13.20) 23.62 (22.36) 24.20 (23.42) 23.46 (23.29) -1.42 (10.21) 34.95 (34.81)

T2011S 0.95246 0.0658335 -3.01 (-3.23) 15.40 (16.83) 17.84 (17.63) 12.85 (11.99) 19.86 (18.97) 20.36 (19.93) 26.81 (27.25) 29.87 (29.25)

Average [%] reduction 6.40 (5.62) 12.00 (9.61) 11.85 (9.62) 16.73 (13.60) 21.42 (18.51) 21.82 (19.89) 22.06 (18.03) 34.89 (30.00)

14
6



C
h
ap

ter
5.

O
p
tim

u
m

T
M
D
s
for

earth
q
u
ake

ex
citation

Table 5.37: Percentage reduction [%] of the primary structure seismic response obtained with the proposed TMD tuning method, for the primary struc-

ture with n
S

= 2, m
S,i

= 150 t (in brackets the results obtained with Den Hartog tuning formulas [26]: f(µ = 0.02) = 0.980392,

ζ
T
(µ = 0.02) = 0.0857493).

Earthquake fopt ζopt
T

∆xmax
S,n

∆ẋmax
S,n

∆ẍmax
S,n

∆xRMS
S,n

∆ẋRMS
S,n

∆ẍRMS
S,n

∆Tmax
S

∆TRMS
S

L1933 0.890873 0.0407271 3.74 (-13.96) 11.13 (-7.78) 24.32 (10.62) 14.48 (7.95) 14.42 (9.71) 11.64 (9.52) 18.15 (-19.89) 27.47 (9.12)

E1934 0.923641 0.0554748 18.00 (12.63) 18.98 (14.99) 11.46 (8.66) 27.01 (23.76) 29.80 (27.39) 30.38 (29.10) 36.34 (30.16) 47.70 (42.63)

I1940 0.902748 0.0660359 16.09 (7.90) 12.30 (2.86) 15.75 (7.35) 14.69 (12.08) 17.22 (16.12) 16.36 (17.15) 26.36 (9.68) 29.52 (23.64)

K1952 1.00752 0.0625796 16.55 (14.76) 9.52 (7.35) 7.90 (5.83) 18.41 (17.94) 22.86 (21.76) 24.10 (22.50) 18.25 (14.27) 34.93 (32.39)

B1968 0.925334 0.0567125 1.47 (-3.25) 13.60 (4.26) 25.35 (18.60) 17.17 (14.39) 26.27 (22.78) 26.90 (24.15) 26.39 (9.58) 39.10 (35.03)

S1971 1.1115 0.0437293 14.37 (1.59) 10.26 (-2.96) 17.93 (-2.06) 11.89 (10.51) 16.91 (13.11) 19.43 (13.32) 23.02 (-2.90) 28.57 (14.41)

I1979 0.988337 0.0844491 15.15 (14.92) 14.16 (13.82) 14.06 (13.72) 13.41 (13.38) 18.03 (17.83) 19.81 (19.44) 26.43 (25.82) 32.50 (31.97)

C1985 0.966721 0.0710159 9.28 (8.10) 11.78 (11.18) 22.15 (21.91) 10.03 (9.83) 14.93 (14.77) 17.28 (17.29) 22.27 (21.22) 28.01 (27.59)

L1989 0.966135 0.119308 14.95 (14.59) 13.49 (13.52) 12.72 (12.50) 7.56 (7.27) 10.81 (10.80) 12.58 (12.79) 25.36 (25.44) 22.05 (22.84)

N1994 0.947195 0.0679715 10.27 (13.84) 10.32 (14.72) 7.90 (12.43) 10.27 (9.55) 14.49 (14.01) 15.03 (15.08) 22.99 (30.47) 28.37 (30.44)

K1995TZ 0.974957 0.0296916 36.16 (24.05) 37.34 (24.77) 37.35 (25.10) 36.16 (30.37) 42.00 (35.32) 41.72 (35.48) 60.81 (43.61) 66.62 (52.46)

K1995TK 0.935642 0.129681 3.61 (3.96) 3.07 (3.50) 6.07 (6.90) 4.53 (3.95) 8.62 (8.29) 9.42 (9.49) 6.11 (6.93) 10.32 (10.38)

A2009 0.914413 0.101998 8.50 (7.52) 5.37 (4.75) 8.20 (8.68) 6.47 (5.64) 8.65 (8.49) 6.99 (7.47) 11.58 (10.51) 16.52 (15.75)

C2010A 0.925678 0.108814 22.56 (20.80) 23.03 (23.32) 17.23 (21.60) 13.62 (13.03) 13.78 (14.32) 12.91 (14.27) 40.63 (41.83) 24.59 (26.79)

C2010C 0.940833 0.0632137 24.30 (17.41) 26.12 (18.46) 18.35 (12.42) 21.19 (19.49) 22.85 (21.84) 22.31 (22.15) 42.77 (30.46) 39.27 (37.36)

N2010 0.920326 0.064712 -0.67 (10.58) 0.84 (15.56) 1.97 (15.33) 10.55 (8.42) 14.99 (13.27) 13.10 (12.75) 1.45 (28.26) 16.63 (22.48)

T2011T 0.970357 0.0496457 25.95 (21.56) 25.23 (21.66) 27.25 (24.55) 27.94 (25.94) 26.19 (24.73) 23.00 (22.21) 43.94 (38.55) 50.55 (44.75)

T2011S 1.02564 0.0584143 -1.00 (-1.07) 17.94 (9.65) 30.95 (25.82) 12.02 (11.26) 19.87 (18.02) 21.47 (18.91) 27.80 (22.05) 36.41 (31.66)

Average [%] reduction 13.29 (9.77) 14.69 (10.76) 17.05 (13.89) 15.41 (13.60) 19.04 (17.36) 19.13 (17.95) 26.70 (20.34) 32.17 (28.43)
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Table 5.38: Percentage reduction [%] of the primary structure seismic response obtained with the proposed TMD tuning method, for the primary struc-

ture with n
S

= 3, m
S,i

= 100 t (in brackets the results obtained with Den Hartog tuning formulas [26]: f(µ = 0.02) = 0.980392,

ζ
T
(µ = 0.02) = 0.0857493).

Earthquake fopt ζopt
T

∆xmax
S,n

∆ẋmax
S,n

∆ẍmax
S,n

∆xRMS
S,n

∆ẋRMS
S,n

∆ẍRMS
S,n

∆Tmax
S

∆TRMS
S

L1933 1.03322 0.03677 19.96 (14.22) 21.39 (13.77) 24.12 (15.72) 23.64 (20.41) 28.30 (23.54) 28.07 (22.68) 38.12 (25.50) 44.76 (34.30)

E1934 1.01488 0.0396895 36.12 (23.31) 37.20 (23.70) 42.94 (27.64) 31.16 (27.13) 33.51 (29.07) 32.89 (28.58) 60.21 (41.56) 57.18 (47.61)

I1940 0.998825 0.0458001 15.86 (12.66) 14.48 (11.24) 12.45 (9.48) 23.83 (22.12) 28.56 (26.11) 28.56 (25.90) 27.36 (21.67) 35.91 (31.20)

K1952 0.976814 0.072005 10.56 (11.63) 19.69 (20.86) 23.95 (21.76) 15.36 (15.20) 19.16 (18.93) 19.65 (19.46) 35.38 (37.27) 33.84 (33.28)

B1968 0.977551 0.0461093 30.98 (23.31) 45.23 (34.51) 41.17 (31.67) 22.36 (20.58) 30.89 (28.69) 29.82 (28.16) 70.02 (57.03) 56.24 (50.29)

S1971 0.999757 0.0316686 26.07 (20.50) 29.33 (24.64) 26.53 (20.40) 26.56 (23.99) 30.29 (26.97) 29.17 (25.86) 50.91 (43.95) 53.55 (45.91)

I1979 0.938887 0.0668709 5.18 (7.91) 8.35 (11.29) 5.32 (6.82) 14.10 (12.54) 17.22 (16.15) 17.45 (17.20) 15.13 (21.62) 23.60 (26.72)

C1985 0.74759 0.0192923 13.13 (-6.37) 12.21 (-7.56) 9.12 (0.75) 10.13 (0.64) 9.16 (4.47) 7.20 (7.61) 22.94 (-12.62) 17.01 (7.56)

L1989 0.921173 0.0685068 0.17 (7.19) 9.08 (18.17) 12.93 (14.82) 16.59 (13.46) 19.47 (16.71) 20.49 (18.48) 17.79 (33.34) 31.75 (30.40)

N1994 0.759808 0.0580176 4.16 (-3.47) 9.60 (-2.75) 1.70 (0.95) 6.57 (1.42) 7.09 (5.22) 6.03 (7.78) 21.79 (1.21) 16.39 (7.55)

K1995TZ 1.13389 0.0214539 20.21 (-1.01) 18.81 (-4.49) 19.42 (-5.10) 11.31 (3.03) 19.95 (5.82) 23.22 (6.13) 34.51 (-9.67) 37.17 (0.34)

K1995TK 0.896656 0.0458212 6.35 (3.77) 5.01 (3.18) 7.91 (6.74) 10.09 (5.02) 14.63 (9.84) 14.56 (11.94) 9.72 (6.41) 18.64 (10.04)

A2009 0.942004 0.0611746 11.50 (10.47) 9.54 (9.16) 7.57 (7.01) 12.83 (11.48) 16.44 (15.36) 13.88 (13.52) 18.75 (18.18) 25.96 (24.91)

C2010A 0.968326 0.036912 39.84 (37.84) 39.89 (36.86) 36.20 (33.47) 35.26 (30.76) 33.81 (29.93) 30.37 (27.41) 63.40 (60.31) 60.07 (51.79)

C2010C 0.973994 0.0660256 3.62 (8.45) -7.72 (-3.42) -21.40 (-18.58) 21.70 (21.24) 23.06 (22.70) 22.11 (21.96) -16.61 (-7.40) 36.04 (36.54)

N2010 1.01958 0.0501429 2.55 (4.76) -1.13 (4.46) 3.64 (7.52) 14.10 (13.00) 22.44 (20.20) 21.84 (19.26) -1.76 (9.04) 37.90 (35.36)

T2011T 1.02433 0.0656673 20.30 (18.35) 16.29 (14.57) 15.75 (13.37) 23.24 (21.95) 20.93 (19.26) 17.15 (15.41) 29.86 (26.85) 37.39 (32.52)

T2011S 0.888242 0.0692412 0.46 (-0.47) 16.13 (12.07) 10.36 (9.40) 9.21 (7.57) 14.11 (13.13) 13.94 (14.29) 30.95 (24.70) 24.78 (20.36)

Average [%] reduction 14.83 (10.73) 16.86 (12.24) 15.54 (11.32) 18.22 (15.09) 21.61 (18.45) 20.91 (18.42) 29.36 (22.16) 36.01 (29.26)
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Table 5.39: Percentage reduction [%] of the primary structure seismic response obtained with the proposed TMD tuning method, for the primary struc-

ture with n
S

= 3, m
S,i

= 150 t (in brackets the results obtained with Den Hartog tuning formulas [26]: f(µ = 0.02) = 0.980392,

ζ
T
(µ = 0.02) = 0.0857493).

Earthquake fopt ζopt
T

∆xmax
S,n

∆ẋmax
S,n

∆ẍmax
S,n

∆xRMS
S,n

∆ẋRMS
S,n

∆ẍRMS
S,n

∆Tmax
S

∆TRMS
S

L1933 0.92483 0.0243864 12.71 (14.62) 11.79 (13.71) 13.22 (11.07) 25.00 (15.96) 27.58 (18.55) 24.11 (17.23) 19.09 (25.39) 41.20 (31.33)

E1934 0.96832 0.0611859 12.26 (9.99) 16.37 (13.55) 12.82 (10.36) 22.03 (21.12) 24.23 (23.29) 23.35 (22.57) 30.27 (25.49) 41.69 (40.24)

I1940 1.01658 0.0647684 15.54 (13.84) 9.76 (8.46) 10.43 (9.08) 14.28 (13.80) 18.91 (17.79) 19.15 (17.64) 18.34 (15.97) 31.95 (27.53)

K1952 0.939392 0.0517189 36.23 (33.94) 37.45 (30.57) 35.69 (29.39) 25.44 (22.63) 27.83 (25.35) 27.00 (25.27) 60.45 (51.62) 51.24 (45.70)

B1968 0.920158 0.0429075 -1.69 (-5.98) 0.74 (3.73) 2.47 (8.91) 8.94 (6.40) 15.75 (12.50) 14.62 (12.56) 5.30 (10.24) 25.06 (19.92)

S1971 0.835233 0.169414 -0.55 (-7.32) 4.09 (-2.00) 4.98 (-2.78) 5.53 (3.90) 6.47 (7.04) 6.00 (8.18) 8.17 (-6.34) 7.83 (6.13)

I1979 0.937588 0.0403184 30.01 (12.71) 34.43 (16.71) 28.78 (11.18) 29.48 (24.25) 30.65 (26.26) 28.56 (25.60) 56.91 (31.00) 57.92 (38.86)

C1985 0.938051 0.03786 21.46 (15.78) 22.16 (17.64) 22.83 (18.27) 33.60 (26.08) 34.18 (27.66) 33.61 (28.44) 39.26 (32.26) 57.67 (47.32)

L1989 0.982731 0.0695636 19.19 (19.09) 23.00 (21.57) 19.22 (19.05) 23.99 (23.70) 25.65 (25.15) 25.99 (25.35) 41.38 (39.17) 43.42 (41.73)

N1994 0.936424 0.0603153 26.05 (23.48) 25.72 (21.20) 25.61 (25.05) 19.28 (16.02) 20.51 (18.16) 19.91 (18.81) 44.37 (40.88) 40.74 (38.86)

K1995TZ 0.900483 0.0242242 16.09 (0.95) 34.18 (15.01) 27.34 (8.91) 18.37 (6.87) 24.10 (10.85) 24.18 (12.43) 55.93 (29.83) 44.16 (19.49)

K1995TK 0.893564 0.0680281 12.75 (13.34) 10.49 (11.85) 8.17 (9.04) 16.68 (13.84) 19.77 (17.97) 19.15 (18.89) 21.80 (24.47) 29.90 (29.67)

A2009 0.798406 0.0343981 15.17 (3.85) 5.34 (0.06) -0.05 (1.94) 10.41 (4.64) 10.13 (8.86) 7.47 (10.23) 12.36 (3.50) 17.31 (11.43)

C2010A 0.962565 0.0801604 12.10 (11.83) 2.85 (2.66) 2.23 (2.09) 15.37 (15.26) 12.90 (13.04) 9.06 (9.33) 5.35 (5.04) 17.52 (17.77)

C2010C 0.961833 0.0696554 -0.64 (4.29) 12.54 (8.28) 14.54 (8.90) 17.14 (16.65) 17.76 (17.61) 15.68 (15.91) 23.49 (17.93) 31.59 (31.03)

N2010 0.892457 0.0464428 3.31 (9.70) 9.16 (16.41) 11.40 (17.43) 8.21 (6.13) 13.11 (12.16) 11.79 (12.96) 21.36 (33.83) 23.89 (28.25)

T2011T 0.976566 0.05651 19.11 (16.45) 15.66 (13.15) 12.17 (10.73) 19.33 (18.62) 14.22 (13.88) 7.98 (7.95) 31.20 (26.98) 27.00 (24.75)

T2011S 0.852511 0.0532526 4.15 (5.27) 6.98 (10.96) -2.56 (3.42) 9.25 (4.42) 11.58 (8.21) 10.57 (9.92) 12.25 (27.56) 14.45 (10.13)

Average [%] reduction 14.07 (10.88) 15.71 (12.42) 13.85 (11.22) 17.91 (14.46) 19.74 (16.91) 18.23 (16.63) 28.18 (24.16) 33.59 (28.34)
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Table 5.40: Percentage reduction [%] of the primary structure seismic response obtained with the proposed TMD tuning method, for the primary struc-

ture with n
S

= 5, m
S,i

= 100 t (in brackets the results obtained with Den Hartog tuning formulas [26]: f(µ = 0.02) = 0.980392,

ζ
T
(µ = 0.02) = 0.0857493).

Earthquake fopt ζopt
T

∆xmax
S,n

∆ẋmax
S,n

∆ẍmax
S,n

∆xRMS
S,n

∆ẋRMS
S,n

∆ẍRMS
S,n

∆Tmax
S

∆TRMS
S

L1933 0.895472 0.0840756 21.31 (19.07) 22.96 (12.38) 25.01 (25.32) 14.59 (12.38) 15.99 (15.44) 14.58 (15.62) 43.88 (28.40) 35.81 (30.51)

E1934 1.00133 0.0591523 18.03 (16.17) 18.47 (18.35) 11.92 (12.26) 21.83 (21.19) 23.76 (22.67) 22.44 (21.17) 33.03 (32.76) 38.16 (36.50)

I1940 0.883718 0.0490221 2.46 (-9.99) 5.15 (-3.00) -1.13 (-4.36) 14.16 (7.44) 15.24 (10.68) 13.46 (11.83) 9.89 (-0.72) 19.06 (2.96)

K1952 0.929417 0.0404525 33.13 (15.71) 31.61 (11.54) 39.00 (19.46) 28.16 (20.82) 28.07 (21.82) 24.91 (20.48) 55.36 (24.88) 54.35 (34.60)

B1968 0.986106 0.0492624 4.81 (4.24) 9.35 (8.02) 7.76 (7.20) 16.89 (16.05) 25.54 (23.89) 26.23 (24.32) 19.80 (17.49) 38.27 (34.73)

S1971 0.971755 0.0582123 16.30 (15.83) 15.59 (15.45) 15.52 (15.74) 24.40 (23.36) 24.72 (24.07) 22.29 (22.14) 27.60 (27.87) 35.29 (34.81)

I1979 0.970793 0.0481524 15.08 (9.85) 9.54 (5.46) 6.25 (3.80) 17.70 (16.54) 18.54 (17.76) 14.90 (14.77) 18.80 (11.04) 29.53 (23.55)

C1985 1.00274 0.077468 11.57 (11.37) 8.37 (8.20) 10.31 (9.88) 18.74 (18.47) 16.70 (16.26) 13.67 (13.18) 16.08 (15.72) 28.44 (27.45)

L1989 0.986852 0.0984003 16.58 (16.18) 16.65 (16.39) 16.70 (17.36) 12.19 (12.13) 11.09 (10.85) 8.69 (8.32) 29.67 (29.12) 28.51 (28.28)

N1994 0.947872 0.0737448 6.20 (8.56) 4.39 (8.09) 5.53 (8.73) 18.54 (17.97) 18.07 (18.36) 16.01 (17.02) 8.53 (15.67) 23.71 (25.37)

K1995TZ 0.81853 0.0359009 21.01 (8.67) 17.28 (5.46) 15.13 (12.43) 18.18 (4.64) 18.07 (7.78) 16.16 (9.92) 30.19 (13.44) 31.13 (7.11)

K1995TK 1.08194 0.0376321 19.09 (12.58) 11.00 (9.30) 16.36 (13.07) 17.41 (11.46) 23.13 (14.37) 23.47 (13.82) 19.58 (15.88) 41.47 (24.32)

A2009 1.0329 0.0445918 20.93 (20.46) 22.59 (21.98) 29.49 (25.01) 26.44 (22.83) 29.42 (24.23) 29.47 (23.35) 48.00 (43.63) 51.94 (46.01)

C2010A 0.933437 0.126264 10.43 (9.88) 0.84 (1.94) 4.76 (4.66) 7.63 (6.99) 6.35 (6.18) 3.38 (3.37) 1.42 (3.65) 11.05 (10.47)

C2010C 1.01944 0.0723827 17.42 (20.27) 18.19 (16.89) 8.18 (6.65) 15.07 (14.62) 17.04 (16.03) 15.36 (14.09) 38.44 (36.39) 34.68 (33.02)

N2010 0.788342 0.0199646 11.13 (9.45) 16.44 (1.95) 17.48 (9.71) 12.92 (0.80) 14.89 (4.28) 12.16 (6.22) 28.55 (12.50) 32.91 (12.96)

T2011T 0.957806 0.0518969 1.55 (-0.33) 5.76 (4.04) 0.62 (-0.28) 18.58 (17.11) 11.48 (10.75) 4.05 (3.88) 9.78 (6.35) 9.34 (7.35)

T2011S 0.94342 0.0754237 -1.54 (2.50) -3.15 (0.46) -4.22 (0.05) 14.36 (13.73) 17.59 (17.45) 17.67 (18.15) -6.58 (0.84) 27.99 (27.96)

Average [%] reduction 13.64 (10.58) 12.83 (9.05) 12.48 (10.37) 17.65 (14.36) 18.65 (15.72) 16.61 (14.54) 24.00 (18.61) 31.76 (24.89)

15
0



C
h
ap

ter
5.

O
p
tim

u
m

T
M
D
s
for

earth
q
u
ake

ex
citation

Table 5.41: Percentage reduction [%] of the primary structure seismic response obtained with the proposed TMD tuning method, for the primary struc-

ture with n
S

= 5, m
S,i

= 150 t (in brackets the results obtained with Den Hartog tuning formulas [26]: f(µ = 0.02) = 0.980392,

ζ
T
(µ = 0.02) = 0.0857493).

Earthquake fopt ζopt
T

∆xmax
S,n

∆ẋmax
S,n

∆ẍmax
S,n

∆xRMS
S,n

∆ẋRMS
S,n

∆ẍRMS
S,n

∆Tmax
S

∆TRMS
S

L1933 1.04083 0.0344724 8.02 (3.51) 12.45 (11.88) 15.49 (10.62) 28.28 (22.42) 31.10 (23.98) 28.98 (22.00) 23.86 (22.52) 40.22 (29.47)

E1934 0.915993 0.0404522 11.48 (9.33) 12.64 (12.39) 9.77 (9.36) 20.41 (12.67) 18.36 (13.10) 13.85 (11.45) 22.88 (23.29) 29.43 (24.52)

I1940 0.90967 0.0647859 5.82 (3.54) 8.31 (6.42) 11.02 (10.18) 16.85 (14.35) 16.98 (16.03) 14.82 (15.47) 16.30 (13.06) 23.13 (14.69)

K1952 0.941161 0.0946926 10.66 (7.55) 11.43 (9.90) 10.47 (8.00) 12.36 (11.84) 12.34 (12.44) 10.19 (10.74) 21.44 (18.75) 18.00 (17.12)

B1968 0.985798 0.0775703 0.81 (0.48) 9.67 (9.06) 6.03 (5.92) 11.38 (11.33) 17.65 (17.46) 18.21 (17.95) 17.06 (15.99) 28.69 (28.40)

S1971 0.964351 0.0402425 29.47 (22.43) 27.35 (19.28) 1.31 (0.73) 26.25 (23.25) 24.17 (22.21) 17.99 (17.28) 46.39 (34.48) 43.34 (34.82)

I1979 0.955626 0.0418168 -3.11 (-3.45) 6.03 (3.31) 2.52 (1.29) 16.02 (13.79) 19.62 (17.20) 16.69 (14.98) 11.13 (6.32) 27.74 (22.83)

C1985 1.02266 0.0427868 9.41 (7.77) 7.39 (5.97) 5.89 (4.92) 24.94 (21.56) 19.94 (17.26) 13.20 (11.53) 13.62 (11.27) 31.20 (26.90)

L1989 0.970767 0.0614077 27.89 (23.78) 22.59 (18.32) 12.20 (8.34) 21.56 (20.91) 19.77 (19.35) 14.21 (14.07) 42.94 (35.96) 38.52 (35.64)

N1994 0.860946 0.0536056 11.17 (9.97) 8.99 (8.06) 6.38 (7.93) 14.61 (10.25) 12.62 (10.99) 9.16 (9.54) 16.79 (15.65) 17.35 (19.41)

K1995TZ 1.01045 0.0399083 35.41 (25.46) 33.22 (23.48) 31.78 (23.58) 36.99 (32.23) 37.24 (32.13) 35.63 (30.58) 55.74 (41.51) 60.42 (48.79)

K1995TK 0.939347 0.087378 12.52 (9.43) 6.25 (1.90) 0.44 (0.70) 10.08 (9.66) 13.11 (13.23) 11.25 (11.89) 16.15 (8.31) 18.55 (15.77)

A2009 1.02662 0.0482874 6.40 (6.41) 2.62 (2.78) 7.58 (6.91) 18.10 (15.85) 20.21 (17.06) 18.95 (15.59) 5.07 (5.35) 21.41 (19.56)

C2010A 0.970385 0.0442778 18.01 (22.22) 19.57 (20.80) -4.75 (-2.54) 27.51 (25.05) 23.55 (21.74) 12.45 (11.74) 30.72 (30.47) 42.68 (39.82)

C2010C 0.987522 0.0568964 17.88 (23.55) 31.89 (31.43) 28.48 (24.93) 23.95 (23.01) 24.42 (23.40) 20.43 (19.63) 53.89 (55.97) 44.79 (43.78)

N2010 0.992738 0.0276665 22.79 (13.87) 25.61 (16.40) 30.75 (21.14) 38.35 (32.06) 42.63 (35.50) 41.44 (34.73) 47.10 (32.71) 63.07 (49.79)

T2011T 1.00029 0.0473623 3.30 (4.11) 1.70 (1.92) 0.46 (0.83) 22.59 (20.94) 13.79 (12.86) 4.02 (3.82) 3.14 (3.65) 13.81 (13.16)

T2011S 0.960377 0.0658049 9.54 (9.30) 11.57 (10.96) 6.09 (5.92) 17.21 (16.56) 20.62 (20.04) 21.16 (20.84) 20.82 (19.82) 29.16 (30.89)

Average [%] reduction 13.19 (11.07) 14.40 (11.90) 10.11 (8.26) 21.53 (18.76) 21.56 (19.22) 17.92 (16.32) 25.83 (21.95) 32.86 (28.63)
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Table 5.42: Percentage reduction [%] of the primary structure seismic response obtained with the proposed TMD tuning method, for the primary struc-

ture with n
S

= 10, m
S,i

= 100 t (in brackets the results obtained with Den Hartog tuning formulas [26]: f(µ = 0.02) = 0.980392,

ζ
T
(µ = 0.02) = 0.0857493).

Earthquake fopt ζopt
T

∆xmax
S,n

∆ẋmax
S,n

∆ẍmax
S,n

∆xRMS
S,n

∆ẋRMS
S,n

∆ẍRMS
S,n

∆Tmax
S

∆TRMS
S

L1933 0.895409 0.061303 9.55 (6.22) 3.90 (5.16) 0.33 (0.17) 14.66 (9.03) 16.08 (11.82) 13.26 (11.22) 7.65 (10.82) 24.34 (20.07)

E1934 1.10553 0.0356198 -2.11 (-0.77) 19.27 (19.90) 14.93 (12.74) 14.47 (11.60) 16.06 (10.91) 12.80 (7.54) 28.88 (29.45) 28.56 (20.55)

I1940 0.891794 0.034549 5.51 (5.84) 0.60 (1.15) 0.32 (1.12) 19.19 (7.51) 17.12 (8.55) 12.45 (7.67) 0.87 (2.06) 26.33 (12.37)

K1952 0.904638 0.0434278 28.09 (7.53) 20.85 (13.58) 23.22 (9.36) 21.62 (14.73) 19.56 (15.48) 14.16 (12.93) 38.30 (25.81) 41.76 (28.32)

B1968 1.09385 0.0962147 -0.52 (1.86) -1.32 (0.86) 6.52 (7.66) 5.20 (4.57) 10.00 (8.17) 9.95 (7.27) -1.56 (2.45) 19.18 (11.46)

S1971 0.85607 0.039444 0.64 (-2.94) 3.98 (-1.09) 7.50 (-1.63) 10.74 (-1.19) 11.46 (1.74) 7.19 (2.76) 8.42 (-1.23) 20.27 (0.61)

I1979 1.04924 0.0307926 27.02 (9.07) 30.26 (12.82) 31.81 (13.41) 30.58 (22.60) 32.84 (23.68) 30.46 (21.63) 55.51 (31.67) 56.42 (35.15)

C1985 0.946746 0.0391356 0.82 (0.64) -0.03 (0.25) 0.27 (0.50) 24.20 (19.91) 14.50 (12.48) 4.65 (4.22) -1.34 (-0.66) 23.21 (18.01)

L1989 1.15818 0.0240903 23.63 (18.30) 21.08 (8.66) 14.27 (9.63) 17.77 (11.35) 16.66 (8.29) 9.50 (3.72) 37.18 (15.75) 34.07 (14.76)

N1994 1.01293 0.0426578 12.25 (8.31) 12.67 (8.91) 8.16 (5.71) 25.31 (22.73) 21.19 (18.94) 12.13 (10.90) 23.17 (16.88) 31.22 (24.21)

K1995TZ 0.895526 0.0575958 6.41 (5.34) 7.57 (8.32) 6.17 (6.16) 9.51 (5.70) 8.48 (6.31) 4.91 (4.36) 15.57 (17.03) 13.30 (15.25)

K1995TK 0.844689 0.0290847 6.69 (3.75) 6.30 (1.69) 8.55 (5.22) 10.14 (2.37) 13.39 (6.75) 11.80 (8.60) 11.95 (3.90) 18.93 (10.30)

A2009 1.02472 0.0544367 6.76 (6.27) 3.71 (3.43) 3.34 (3.00) 24.62 (22.14) 22.66 (20.02) 16.11 (14.09) 6.97 (6.45) 20.51 (18.58)

C2010A 0.983372 0.109393 10.14 (7.24) 7.93 (5.56) -3.70 (-4.63) 12.25 (11.91) 10.19 (9.90) 4.08 (3.92) -7.29 (-10.87) 14.50 (13.48)

C2010C 0.866279 0.0622438 20.63 (1.57) 13.84 (-1.96) 14.15 (19.60) 13.32 (9.05) 11.51 (10.39) 7.42 (8.43) 22.10 (-1.43) 20.18 (10.83)

N2010 0.853831 0.0333259 7.11 (-0.69) 9.73 (5.05) 6.21 (-0.12) 10.29 (-0.84) 10.36 (1.32) 7.70 (2.50) 17.70 (8.97) 18.23 (3.53)

T2011T 0.857462 0.0690096 9.66 (8.23) 3.27 (4.24) 0.57 (1.90) 11.09 (7.04) 8.15 (6.82) 1.70 (1.73) 6.31 (9.39) 9.31 (8.50)

T2011S 0.989804 0.0742129 15.17 (14.43) 13.33 (12.92) 3.13 (3.24) 18.25 (18.12) 19.46 (19.14) 18.27 (17.86) 28.57 (27.89) 34.16 (33.18)

Average [%] reduction 10.41 (5.57) 9.83 (6.08) 8.10 (5.17) 16.29 (11.02) 15.54 (11.15) 11.03 (8.41) 16.61 (10.80) 25.25 (16.62)
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Table 5.43: Percentage reduction [%] of the primary structure seismic response obtained with the proposed TMD tuning method, for the primary struc-

ture with n
S

= 10, m
S,i

= 150 t (in brackets the results obtained with Den Hartog tuning formulas [26]: f(µ = 0.02) = 0.980392,

ζ
T
(µ = 0.02) = 0.0857493).

Earthquake fopt ζopt
T

∆xmax
S,n

∆ẋmax
S,n

∆ẍmax
S,n

∆xRMS
S,n

∆ẋRMS
S,n

∆ẍRMS
S,n

∆Tmax
S

∆TRMS
S

L1933 0.910057 0.0542833 15.95 (10.77) 13.66 (9.45) 13.75 (10.04) 20.80 (15.89) 20.01 (17.21) 16.34 (15.73) 25.46 (18.52) 34.61 (28.73)

E1934 0.931619 0.0565274 7.68 (7.38) 7.72 (7.20) 4.34 (4.77) 22.91 (19.43) 20.75 (18.27) 13.19 (12.12) 16.96 (17.95) 31.15 (29.30)

I1940 1.05966 0.0661894 21.30 (22.61) 18.68 (19.73) 22.54 (21.62) 17.93 (16.58) 18.81 (16.24) 16.06 (13.01) 36.68 (37.53) 31.73 (30.09)

K1952 1.00502 0.113414 3.01 (3.13) 16.04 (17.42) 7.45 (7.45) 10.47 (10.00) 10.54 (9.58) 7.56 (6.48) 30.30 (30.98) 17.84 (15.15)

B1968 0.911842 0.096664 2.48 (2.25) 3.17 (3.43) -4.64 (-8.47) 3.78 (2.76) 8.57 (7.64) 9.75 (9.41) 5.83 (6.47) 9.28 (6.23)

S1971 0.91315 0.0619153 3.55 (3.14) 11.12 (9.19) 14.51 (5.93) 17.86 (14.66) 17.54 (16.21) 13.52 (13.99) 20.81 (18.17) 31.78 (30.23)

I1979 1.00163 0.0356813 13.28 (12.61) 26.15 (22.07) 16.65 (10.38) 30.82 (26.94) 31.77 (27.58) 26.95 (23.45) 37.61 (35.82) 45.64 (37.07)

C1985 0.944286 0.0697308 6.95 (4.74) 8.57 (8.20) 0.97 (1.25) 14.82 (13.92) 7.60 (7.50) 1.69 (1.77) 17.01 (16.07) 16.74 (16.08)

L1989 0.78377 0.0250439 7.09 (7.44) 4.45 (4.57) -1.09 (-2.38) 11.28 (2.74) 6.79 (3.11) 1.74 (1.19) 9.13 (-5.35) 12.94 (0.58)

N1994 1.03859 0.0335468 7.63 (0.03) 13.29 (6.54) 0.44 (-1.67) 17.01 (12.70) 13.98 (10.65) 5.73 (4.50) 27.11 (13.61) 25.05 (14.56)

K1995TZ 0.98394 0.0833355 3.62 (3.60) 2.43 (2.41) 2.75 (2.73) 9.11 (9.11) 10.97 (10.94) 7.67 (7.63) 5.27 (5.22) 11.39 (11.33)

K1995TK 1.07181 0.0255139 5.08 (7.19) 7.05 (8.91) 8.77 (8.78) 7.02 (2.33) 13.65 (6.68) 18.18 (9.58) 16.97 (19.51) 24.64 (14.45)

A2009 0.893544 0.0524771 1.63 (1.66) 2.41 (2.98) -0.33 (0.29) 19.28 (13.24) 16.05 (12.11) 7.87 (6.45) 3.70 (4.87) 9.09 (8.46)

C2010A 0.972041 0.0680207 14.03 (12.86) 5.61 (4.55) 1.41 (1.15) 19.06 (18.74) 14.89 (14.88) 4.79 (4.88) 2.62 (5.83) 19.11 (19.59)

C2010C 1.03705 0.0517494 3.70 (6.97) 8.27 (7.49) -2.54 (-3.62) 25.99 (23.49) 25.38 (21.81) 19.57 (16.17) 15.15 (13.63) 40.01 (33.48)

N2010 0.964303 0.0829553 -6.72 (-7.16) -8.52 (-8.59) -5.44 (-5.28) 14.39 (14.26) 16.26 (16.47) 15.47 (16.00) -18.05 (-18.50) 15.54 (15.18)

T2011T 0.983707 0.0571295 13.91 (11.71) 13.48 (11.48) -0.78 (-0.73) 24.07 (23.09) 21.93 (21.10) 5.84 (5.67) 9.91 (8.63) 22.47 (21.36)

T2011S 0.939754 0.0328566 34.02 (23.57) 30.87 (27.54) 8.80 (7.17) 35.11 (27.66) 32.57 (26.87) 27.06 (23.47) 52.76 (47.34) 54.22 (45.93)

Average [%] reduction 8.79 (7.47) 10.25 (9.14) 4.86 (3.30) 17.87 (14.86) 17.12 (14.71) 12.17 (10.64) 17.51 (15.35) 25.18 (20.99)
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Table 5.44: Percentage reduction [%] of the primary structure seismic response obtained with the proposed TMD tuning method, for the primary struc-

ture with n
S

= 15, m
S,i

= 100 t (in brackets the results obtained with Den Hartog tuning formulas [26]: f(µ = 0.02) = 0.980392,

ζ
T
(µ = 0.02) = 0.0857493).

Earthquake fopt ζopt
T

∆xmax
S,n

∆ẋmax
S,n

∆ẍmax
S,n

∆xRMS
S,n

∆ẋRMS
S,n

∆ẍRMS
S,n

∆Tmax
S

∆TRMS
S

L1933 1.00825 0.0682327 20.58 (17.72) 17.89 (16.78) 6.10 (5.93) 22.61 (21.94) 21.73 (20.71) 17.23 (16.17) 32.90 (30.83) 34.65 (31.68)

E1934 1.03622 0.0303364 15.20 (13.19) 19.19 (13.01) 11.71 (9.04) 33.57 (25.71) 29.98 (22.99) 18.22 (14.24) 36.94 (26.03) 45.75 (36.16)

I1940 0.956427 0.0496657 15.83 (15.46) 9.17 (8.70) 1.81 (1.73) 25.43 (23.25) 22.75 (21.52) 15.45 (15.17) 17.19 (16.67) 31.04 (30.07)

K1952 1.02594 0.0579781 13.73 (14.03) -1.11 (-0.90) 0.33 (0.53) 15.28 (14.25) 16.39 (14.74) 10.84 (9.53) -2.14 (-1.65) 21.55 (21.01)

B1968 0.908281 0.0390982 3.21 (2.79) 8.88 (8.35) 5.10 (5.19) 20.03 (12.87) 24.36 (17.31) 24.70 (19.17) 16.61 (15.79) 26.61 (22.71)

S1971 0.997131 0.0965792 5.69 (5.97) 4.53 (4.65) 6.49 (6.56) 12.44 (12.26) 13.84 (13.42) 11.23 (10.69) 9.20 (9.27) 17.53 (17.68)

I1979 0.836646 0.0533721 3.31 (3.96) 4.85 (-0.37) 2.88 (4.33) 14.43 (7.29) 13.14 (9.74) 9.70 (9.54) 8.82 (8.64) 22.51 (13.59)

C1985 1.04019 0.0586145 16.67 (13.92) 1.55 (1.81) 1.16 (0.85) 15.88 (13.55) 9.47 (7.88) 1.88 (1.56) 3.60 (3.74) 15.13 (12.72)

L1989 0.962785 0.0391376 24.13 (20.29) 21.95 (17.93) 16.15 (16.39) 34.21 (29.40) 31.31 (27.37) 17.47 (15.70) 43.04 (38.53) 43.64 (37.73)

N1994 1.00098 0.0335262 13.68 (8.75) 10.26 (6.70) 2.44 (1.42) 32.44 (28.86) 29.22 (25.49) 13.94 (12.17) 21.69 (14.28) 41.81 (33.70)

K1995TZ 0.855999 0.0598906 7.04 (6.67) 4.18 (3.30) 3.45 (5.02) 16.05 (8.09) 15.93 (10.57) 11.04 (9.07) 8.48 (7.02) 19.00 (16.54)

K1995TK 0.945365 0.0422236 23.65 (16.61) 35.91 (27.02) 36.16 (28.89) 33.79 (28.17) 33.75 (29.33) 32.07 (29.12) 58.40 (47.77) 56.57 (48.70)

A2009 0.995261 0.0522925 1.99 (1.94) 0.76 (0.76) 1.06 (1.09) 27.21 (25.67) 24.03 (22.59) 12.84 (12.12) 1.27 (1.30) 24.48 (22.60)

C2010A 0.961498 0.10454 10.33 (10.55) 6.79 (6.20) 1.27 (1.28) 10.71 (10.53) 7.95 (7.99) 1.55 (1.57) 8.63 (8.76) 9.57 (8.98)

C2010C 0.926742 0.0576418 22.13 (16.57) 17.19 (12.75) -4.47 (-6.55) 17.12 (14.61) 13.17 (12.08) 6.35 (6.29) 35.56 (28.01) 27.28 (23.79)

N2010 0.869304 0.0323114 8.74 (8.80) 6.07 (6.29) 4.22 (3.73) 18.55 (6.23) 17.12 (8.41) 13.31 (8.90) 11.46 (12.36) 24.80 (25.56)

T2011T 0.917658 0.0522836 17.05 (12.62) 8.48 (-2.70) 5.39 (3.72) 17.60 (13.26) 14.16 (11.94) 2.14 (2.02) 23.77 (14.85) 16.66 (7.40)

T2011S 1.15983 0.0368739 9.93 (10.27) 8.84 (8.04) -2.03 (-2.90) 12.70 (7.05) 13.86 (6.02) 11.52 (3.91) 11.13 (8.75) 27.05 (10.54)

Average [%] reduction 12.94 (11.12) 10.30 (7.68) 5.51 (4.79) 21.11 (16.83) 19.57 (16.12) 12.86 (10.94) 19.25 (16.16) 28.09 (23.40)
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Table 5.45: Percentage reduction [%] of the primary structure seismic response obtained with the proposed TMD tuning method, for the primary struc-

ture with n
S

= 15, m
S,i

= 150 t (in brackets the results obtained with Den Hartog tuning formulas [26]: f(µ = 0.02) = 0.980392,

ζ
T
(µ = 0.02) = 0.0857493).

Earthquake fopt ζopt
T

∆xmax
S,n

∆ẋmax
S,n

∆ẍmax
S,n

∆xRMS
S,n

∆ẋRMS
S,n

∆ẍRMS
S,n

∆Tmax
S

∆TRMS
S

L1933 0.872473 0.0258985 11.38 (-0.22) 9.16 (6.22) 3.22 (3.21) 15.48 (-0.77) 11.66 (-0.05) 5.16 (0.02) 16.25 (12.58) 17.08 (4.82)

E1934 0.889552 0.020692 5.49 (-8.02) 5.51 (1.36) 1.05 (1.43) 15.69 (3.70) 10.74 (4.00) 3.30 (1.76) 17.37 (14.55) 11.37 (1.90)

I1940 0.95681 0.0724227 -9.53 (-10.19) 0.92 (0.84) 1.14 (1.18) 13.43 (13.07) 11.87 (11.89) 6.26 (6.46) -0.31 (-0.70) 11.64 (10.88)

K1952 0.861956 0.076565 7.77 (-0.90) 1.51 (1.39) -0.54 (-3.82) 14.40 (11.40) 13.55 (12.93) 8.38 (9.27) 2.70 (2.64) 15.99 (8.91)

B1968 0.855863 0.0408889 3.67 (4.21) 2.70 (3.50) 3.16 (5.33) 16.13 (13.61) 16.06 (16.59) 14.27 (17.57) 5.09 (7.37) 22.79 (23.43)

S1971 0.957739 0.0609743 5.53 (5.43) 4.63 (4.57) 18.54 (20.23) 24.04 (22.74) 24.32 (23.43) 19.82 (19.50) 8.58 (8.72) 27.42 (26.21)

I1979 1.00663 0.0519338 23.48 (19.84) 18.91 (16.20) 13.80 (11.37) 31.65 (29.44) 31.11 (28.40) 27.05 (24.39) 36.27 (31.76) 46.91 (42.17)

C1985 0.986352 0.0381571 22.67 (21.94) -0.25 (0.44) -0.06 (0.12) 29.07 (25.78) 20.23 (18.06) 3.92 (3.55) -0.92 (0.35) 21.76 (19.28)

L1989 0.994976 0.0499929 4.71 (5.98) -0.26 (0.75) 0.53 (0.45) 21.50 (20.33) 16.91 (16.27) 6.51 (6.46) -0.87 (1.17) 8.80 (10.14)

N1994 0.878199 0.061028 10.97 (11.00) 2.65 (1.76) 0.92 (0.12) 11.44 (6.52) 8.32 (6.23) 2.63 (2.51) 12.87 (11.33) 17.42 (18.19)

K1995TZ 0.980903 0.0537234 13.18 (11.82) 3.67 (3.56) 2.02 (1.83) 29.14 (27.65) 28.56 (27.21) 23.04 (22.17) 6.96 (6.85) 33.75 (31.61)

K1995TK 1.16792 0.0265709 20.17 (4.22) 24.38 (5.14) 16.16 (-4.46) 15.02 (4.87) 17.38 (4.75) 16.98 (3.72) 43.37 (7.92) 37.76 (9.84)

A2009 0.981079 0.0625469 2.86 (2.82) 1.02 (1.02) 0.72 (0.77) 20.33 (19.83) 15.74 (15.49) 5.92 (5.91) 1.54 (1.55) 10.78 (10.60)

C2010A 0.971528 0.0462924 25.63 (24.72) 0.63 (0.61) -2.37 (-1.75) 28.19 (25.97) 19.61 (18.48) 2.68 (2.61) 6.24 (6.19) 22.34 (22.67)

C2010C 0.990611 0.0472883 14.01 (21.53) 21.76 (18.67) 9.23 (10.40) 27.71 (25.88) 20.56 (19.50) 7.90 (7.67) 35.80 (30.95) 35.27 (33.76)

N2010 1.02321 0.0760691 10.21 (8.71) 4.13 (2.59) 2.85 (2.23) 18.72 (18.04) 19.38 (17.73) 17.29 (15.06) 7.87 (4.73) 31.72 (25.06)

T2011T 0.957965 0.0805369 -0.31 (2.28) 9.11 (10.54) -0.42 (-0.17) 13.49 (13.28) 11.94 (12.05) 1.45 (1.50) 1.74 (3.56) 9.75 (11.49)

T2011S 0.92496 0.0777011 -5.85 (-6.53) 7.67 (6.17) 0.87 (1.90) 17.15 (16.11) 14.06 (14.15) 7.90 (8.44) 16.58 (13.86) 17.46 (17.68)

Average [%] reduction 9.22 (6.59) 6.55 (4.74) 3.93 (2.80) 20.14 (16.53) 17.33 (14.84) 10.03 (8.81) 12.06 (9.19) 22.22 (18.26)
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Table 5.46: Percentage reduction [%] of the primary structure seismic response obtained with the proposed TMD tuning method, for the primary struc-

ture with n
S

= 25, m
S,i

= 100 t (in brackets the results obtained with Den Hartog tuning formulas [26]: f(µ = 0.02) = 0.980392,

ζ
T
(µ = 0.02) = 0.0857493).

Earthquake fopt ζopt
T

∆xmax
S,n

∆ẋmax
S,n

∆ẍmax
S,n

∆xRMS
S,n

∆ẋRMS
S,n

∆ẍRMS
S,n

∆Tmax
S

∆TRMS
S

L1933 0.826521 0.0694907 10.57 (11.07) 8.26 (11.85) 3.33 (7.47) 8.46 (5.57) 6.91 (5.84) 2.92 (2.95) 15.74 (23.77) 12.88 (17.28)

E1934 0.979245 0.0142654 42.04 (25.49) 39.12 (21.33) 0.82 (0.64) 47.52 (35.82) 42.37 (32.55) 18.75 (15.12) 61.48 (39.22) 61.62 (48.45)

I1940 0.965417 0.0819431 -1.16 (-1.52) -1.42 (-1.67) 0.01 (0.04) 17.22 (17.10) 16.52 (16.73) 9.28 (9.56) -3.17 (-3.71) 22.83 (22.25)

K1952 1.08635 0.0561919 23.55 (20.29) 13.95 (12.92) 0.70 (0.62) 16.51 (13.12) 16.67 (11.84) 10.65 (6.82) 34.23 (29.47) 35.86 (24.68)

B1968 0.988204 0.055978 4.90 (4.64) 6.38 (5.97) 1.27 (1.20) 24.27 (23.25) 24.54 (23.38) 22.48 (21.42) 11.74 (11.24) 28.15 (27.13)

S1971 1.04145 0.0507049 2.48 (2.35) 1.18 (1.12) 9.43 (7.03) 24.90 (21.29) 22.22 (18.50) 14.03 (11.49) 1.74 (1.74) 20.30 (17.24)

I1979 0.80405 0.0351891 3.06 (2.66) 3.23 (3.93) -0.56 (-7.27) 12.65 (6.85) 8.50 (6.37) 3.17 (3.00) 5.74 (7.60) 9.49 (6.99)

C1985 0.940815 0.106603 5.79 (5.74) 4.15 (3.80) -0.07 (-0.31) 10.95 (10.42) 7.65 (7.74) 0.73 (0.76) 0.43 (-0.82) 6.89 (6.91)

L1989 0.915713 0.0302927 13.19 (12.18) 2.61 (0.63) 1.73 (1.29) 22.55 (12.22) 16.26 (9.84) 2.63 (1.79) 6.92 (12.32) 16.49 (14.57)

N1994 0.995999 0.0393052 -2.57 (-2.06) 5.36 (4.47) 0.22 (0.18) 33.79 (30.22) 28.18 (25.33) 9.20 (8.42) 11.12 (9.12) 30.52 (26.47)

K1995TZ 0.930757 0.0645064 3.62 (3.97) 4.37 (5.36) 0.74 (0.90) 17.41 (15.68) 15.10 (14.40) 9.47 (9.57) 5.57 (6.35) 11.67 (12.93)

K1995TK 0.864846 0.0452862 9.27 (8.52) 6.77 (5.64) 5.81 (6.99) 15.14 (7.67) 12.81 (9.10) 8.40 (7.85) 13.03 (11.89) 25.00 (22.83)

A2009 0.944308 0.0560224 0.52 (0.48) 1.16 (1.27) 0.32 (0.36) 17.49 (15.63) 11.67 (10.73) 2.12 (2.02) 0.67 (0.81) 4.24 (4.28)

C2010A 0.98958 0.0417818 32.57 (29.11) -3.16 (0.90) -1.12 (-0.71) 31.67 (28.33) 23.47 (21.10) 2.09 (1.91) 16.21 (22.44) 30.54 (27.87)

C2010C 0.924213 0.0492752 15.44 (15.91) 12.77 (8.72) 2.72 (6.31) 15.88 (12.35) 8.53 (7.28) 1.30 (1.23) 24.51 (17.58) 20.15 (17.36)

N2010 0.928838 0.0581873 14.36 (9.44) 18.75 (15.23) 0.97 (1.14) 21.81 (18.95) 21.61 (20.18) 17.40 (17.34) 34.59 (29.23) 31.90 (29.05)

T2011T 0.993899 0.0651747 24.85 (24.36) 17.14 (15.61) 3.02 (2.64) 24.64 (24.00) 22.81 (21.97) 3.11 (2.99) 25.70 (23.48) 37.59 (35.64)

T2011S 0.985809 0.0648794 -2.12 (-2.06) -1.04 (-0.91) -0.24 (0.30) 15.30 (15.05) 10.78 (10.66) 3.92 (3.93) -2.71 (-2.41) 7.17 (7.25)

Average [%] reduction 11.13 (9.48) 7.75 (6.45) 1.62 (1.60) 21.01 (17.42) 17.59 (15.20) 7.87 (7.12) 14.64 (13.30) 22.96 (20.51)
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Table 5.47: Percentage reduction [%] of the primary structure seismic response obtained with the proposed TMD tuning method, for the primary struc-

ture with n
S

= 25, m
S,i

= 150 t (in brackets the results obtained with Den Hartog tuning formulas [26]: f(µ = 0.02) = 0.980392,

ζ
T
(µ = 0.02) = 0.0857493).

Earthquake fopt ζopt
T

∆xmax
S,n

∆ẋmax
S,n

∆ẍmax
S,n

∆xRMS
S,n

∆ẋRMS
S,n

∆ẍRMS
S,n

∆Tmax
S

∆TRMS
S

L1933 0.971582 0.0550948 18.99 (16.33) 10.21 (9.92) 1.33 (1.39) 26.34 (24.94) 25.57 (24.29) 14.43 (13.83) 28.62 (25.13) 32.29 (29.98)

E1934 0.995106 0.030268 23.52 (20.37) 20.86 (15.54) 1.37 (1.30) 30.76 (27.22) 27.55 (24.14) 9.37 (8.31) 33.29 (25.44) 43.72 (37.30)

I1940 0.961494 0.107142 5.46 (5.63) 9.32 (9.94) 3.27 (3.44) 11.13 (11.01) 11.13 (11.26) 5.56 (5.69) 17.19 (17.32) 17.72 (18.35)

K1952 1.05555 0.029747 3.32 (2.89) 8.82 (7.88) 0.33 (0.32) 15.11 (10.06) 14.57 (9.40) 5.90 (3.78) 10.82 (9.02) 18.39 (15.10)

B1968 0.964775 0.0452373 3.45 (3.24) 1.83 (1.83) 0.57 (0.61) 23.43 (21.32) 21.86 (20.26) 17.20 (16.38) 7.35 (7.46) 21.80 (20.67)

S1971 0.838063 0.0229259 2.64 (3.08) 1.00 (1.26) 0.41 (0.51) 9.97 (-0.22) 5.74 (0.56) 1.28 (0.27) 1.48 (1.99) 3.30 (4.07)

I1979 0.993928 0.0340141 14.90 (14.82) 7.35 (7.31) 4.99 (4.07) 40.50 (34.82) 35.67 (30.80) 20.03 (17.60) 16.87 (16.84) 43.04 (37.91)

C1985 0.956726 0.0333983 27.37 (18.41) -4.62 (-2.60) 0.46 (-0.02) 36.01 (29.32) 27.02 (22.58) 2.37 (2.07) 8.19 (11.16) 32.07 (25.62)

L1989 1.0227 0.0432962 3.93 (3.90) 5.68 (5.03) 0.92 (0.81) 18.35 (15.43) 16.31 (14.02) 2.42 (2.15) -0.25 (-0.32) 13.63 (10.63)

N1994 0.933284 0.172167 4.24 (5.50) 2.94 (4.10) 0.46 (0.53) 5.37 (3.77) 3.39 (2.35) 0.43 (0.25) 6.44 (8.96) 6.77 (7.94)

K1995TZ 1.00418 0.0415647 2.03 (2.03) 0.96 (1.05) -0.02 (0.04) 23.53 (21.53) 20.09 (18.19) 10.99 (10.09) 1.32 (1.64) 18.62 (17.12)

K1995TK 1.0283 0.0747715 10.71 (8.91) 8.15 (7.16) 3.06 (2.52) 18.61 (17.86) 18.64 (16.89) 14.52 (12.54) 21.16 (18.28) 33.21 (29.94)

A2009 0.975983 0.053513 0.69 (0.68) 0.70 (0.80) -0.09 (0.00) 22.29 (21.18) 16.48 (15.80) 2.44 (2.39) 2.69 (2.83) 8.14 (7.74)

C2010A 0.940572 0.0713449 0.55 (1.24) 1.01 (-1.78) -0.95 (-0.53) 14.30 (13.07) 8.42 (7.99) 0.32 (0.31) 14.65 (16.14) 8.18 (6.91)

C2010C 0.835697 0.0298387 -3.29 (-6.45) 7.36 (-10.74) 0.55 (0.34) 12.07 (6.03) 5.67 (4.13) 0.54 (0.56) 8.62 (-12.00) 10.42 (-6.89)

N2010 0.922716 0.0545801 10.03 (8.54) 12.67 (12.30) -0.07 (-0.27) 21.54 (18.62) 18.94 (17.60) 13.11 (13.13) 22.88 (22.77) 24.33 (23.52)

T2011T 0.89795 0.0581179 1.62 (5.34) -0.01 (3.67) -0.25 (-1.18) 12.24 (8.12) 8.92 (7.29) 0.48 (0.47) -8.33 (-8.58) 5.09 (9.16)

T2011S 0.932302 0.0498266 -3.25 (-2.31) -1.88 (-1.55) 0.41 (0.73) 22.67 (18.84) 15.56 (13.83) 4.65 (4.43) -5.20 (-4.41) 13.92 (13.18)

Average [%] reduction 7.05 (6.23) 5.13 (3.95) 0.93 (0.81) 20.23 (16.83) 16.75 (14.52) 7.00 (6.35) 10.43 (8.87) 19.70 (17.12)
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Table 5.48: Percentage reduction [%] of the primary structure seismic response obtained with the proposed TMD tuning method, for the primary struc-

ture with n
S

= 40, m
S,i

= 100 t (in brackets the results obtained with Den Hartog tuning formulas [26]: f(µ = 0.02) = 0.980392,

ζ
T
(µ = 0.02) = 0.0857493).

Earthquake fopt ζopt
T

∆xmax
S,n

∆ẋmax
S,n

∆ẍmax
S,n

∆xRMS
S,n

∆ẋRMS
S,n

∆ẍRMS
S,n

∆Tmax
S

∆TRMS
S

L1933 0.877317 0.103496 -5.76 (-7.40) -2.68 (-3.04) -0.14 (-0.12) 7.27 (5.37) 6.47 (5.81) 2.01 (2.04) -10.93 (-17.90) 2.95 (0.90)

E1934 0.778907 0.0155729 5.87 (5.69) 3.16 (2.58) -1.71 (2.48) 7.19 (0.22) 3.45 (1.15) 0.27 (0.27) 4.82 (4.65) 7.41 (-0.79)

I1940 0.990345 0.048193 5.64 (5.17) 5.45 (5.18) 2.60 (2.45) 30.29 (28.08) 26.44 (24.88) 12.85 (12.35) 8.54 (8.34) 33.16 (30.60)

K1952 0.868955 0.0734992 11.49 (11.93) 6.37 (5.97) 0.07 (0.08) 8.56 (4.27) 6.23 (4.32) 1.56 (1.49) 11.59 (11.44) 12.03 (11.86)

B1968 1.04321 0.0755945 1.15 (1.26) 2.70 (2.54) 0.73 (0.70) 14.84 (14.07) 14.69 (12.98) 10.50 (8.77) 5.49 (5.23) 18.22 (16.30)

S1971 1.0465 0.0346906 0.56 (0.52) 1.12 (1.07) 3.17 (2.49) 21.22 (17.27) 16.49 (13.06) 4.28 (3.35) 1.67 (1.66) 13.46 (10.71)

I1979 0.82141 0.0102298 1.18 (0.99) 0.28 (0.16) -0.51 (-2.15) 12.86 (2.43) 6.70 (1.80) 1.19 (0.34) 0.57 (0.35) 5.87 (3.61)

C1985 0.836333 0.0294891 5.87 (1.38) -2.21 (-0.88) 0.19 (0.54) 10.76 (-1.14) 4.72 (0.08) 0.12 (0.02) -4.18 (-2.27) 2.42 (-1.14)

L1989 0.996509 0.0313646 17.33 (14.92) 2.37 (2.13) 0.10 (0.14) 33.62 (28.98) 32.98 (27.83) 7.08 (6.07) 3.94 (3.60) 31.63 (28.75)

N1994 0.907679 0.0745779 -2.99 (-4.05) -1.70 (-1.63) -0.14 (-0.26) 9.66 (8.07) 4.97 (4.61) 0.28 (0.29) -3.13 (-3.16) -0.12 (-0.61)

K1995TZ 0.994111 0.026436 4.91 (4.55) 0.11 (0.20) -0.04 (0.04) 15.50 (14.02) 9.69 (8.94) 2.27 (2.20) -0.32 (-0.15) 4.01 (4.14)

K1995TK 1.0055 0.049696 8.19 (8.76) -2.30 (-1.69) -1.32 (-1.08) 26.55 (24.54) 20.97 (19.37) 10.32 (9.62) 0.67 (1.93) 20.99 (19.90)

A2009 0.983696 0.0269553 0.64 (0.67) 0.55 (0.71) 0.30 (0.28) 25.20 (21.93) 16.98 (15.00) 1.50 (1.38) 0.38 (0.40) 6.04 (5.67)

C2010A 0.90052 0.0596004 1.89 (-6.08) -3.34 (1.03) 0.61 (0.76) 9.27 (5.31) 4.61 (3.53) 0.08 (0.08) 9.30 (11.06) 2.66 (1.96)

C2010C 1.09889 0.0471123 20.50 (9.90) 17.12 (6.31) -0.18 (-2.69) 13.23 (9.52) 10.04 (6.33) 0.85 (0.49) 19.31 (-6.75) 20.10 (6.74)

N2010 0.923111 0.0237832 -4.22 (2.03) -0.20 (1.06) 0.98 (1.09) 20.54 (13.21) 15.76 (10.80) 7.05 (5.29) 3.34 (2.40) 7.10 (9.56)

T2011T 0.901184 0.0377875 23.93 (11.26) -3.82 (-7.33) 0.39 (-0.03) 26.49 (13.26) 20.46 (11.49) 0.87 (0.56) -5.77 (-11.61) 20.95 (12.06)

T2011S 1.02095 0.0894362 5.04 (5.14) 2.60 (2.39) -0.13 (-0.11) 13.40 (13.03) 8.11 (7.59) 1.49 (1.34) 2.11 (2.17) 7.96 (7.41)

Average [%] reduction 5.62 (3.70) 1.42 (0.93) 0.28 (0.26) 17.03 (12.36) 12.76 (9.98) 3.59 (3.11) 2.63 (0.63) 12.05 (9.31)
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Table 5.49: Percentage reduction [%] of the primary structure seismic response obtained with the proposed TMD tuning method, for the primary struc-

ture with n
S

= 40, m
S,i

= 150 t (in brackets the results obtained with Den Hartog tuning formulas [26]: f(µ = 0.02) = 0.980392,

ζ
T
(µ = 0.02) = 0.0857493).

Earthquake fopt ζopt
T

∆xmax
S,n

∆ẋmax
S,n

∆ẍmax
S,n

∆xRMS
S,n

∆ẋRMS
S,n

∆ẍRMS
S,n

∆Tmax
S

∆TRMS
S

L1933 0.955698 0.046404 4.42 (3.09) 4.02 (3.21) -0.23 (-0.16) 23.20 (20.81) 22.69 (21.04) 9.19 (8.80) 6.78 (5.05) 25.05 (22.29)

E1934 0.971989 0.0327772 22.00 (16.87) 10.57 (7.99) 2.81 (2.21) 37.60 (31.72) 32.11 (27.70) 5.80 (5.19) 3.74 (3.96) 38.05 (33.66)

I1940 0.919803 0.189829 3.81 (4.28) 2.00 (2.17) 0.48 (0.33) 3.99 (2.21) 2.82 (1.47) 0.57 (0.20) 2.92 (2.83) 3.11 (2.15)

K1952 0.950311 0.0468714 7.18 (6.71) 3.06 (3.86) 0.03 (0.04) 20.55 (18.42) 17.45 (16.59) 4.81 (4.81) 6.85 (6.69) 23.16 (22.86)

B1968 0.874511 0.01 1.11 (1.63) 0.97 (1.10) -0.20 (0.11) 19.74 (10.74) 14.99 (8.39) 7.24 (4.41) 1.58 (2.01) 16.37 (11.08)

S1971 0.777448 0.01 0.44 (0.58) 0.17 (0.58) -1.06 (-0.57) 8.67 (-6.19) 4.86 (-2.91) 0.53 (-0.27) 0.29 (0.40) 1.87 (0.63)

I1979 1.03415 0.0311838 8.54 (8.07) 0.61 (0.57) 1.43 (1.20) 26.73 (20.76) 18.93 (14.91) 4.11 (3.34) 1.09 (1.01) 12.59 (10.60)

C1985 1.03084 0.0670524 12.13 (13.37) 6.06 (7.30) -0.41 (-0.40) 22.01 (21.01) 16.20 (14.70) 0.59 (0.51) 10.21 (11.89) 16.12 (15.90)

L1989 0.936382 0.0585033 10.31 (9.46) 6.31 (6.52) -0.31 (-0.29) 20.32 (18.54) 17.02 (16.45) 2.06 (2.14) 2.23 (2.63) 17.16 (17.16)

N1994 0.921999 0.0639964 4.38 (4.16) 0.23 (0.04) 0.09 (0.11) 16.02 (14.38) 9.62 (9.39) 0.42 (0.45) 0.46 (0.16) 5.15 (4.98)

K1995TZ 0.995601 0.01 3.33 (3.37) -0.04 (0.05) -0.14 (-0.08) 14.89 (12.06) 7.49 (6.38) 0.94 (0.91) -0.27 (-0.24) 1.92 (1.90)

K1995TK 0.998614 0.0768521 4.92 (4.78) 0.53 (0.56) -0.34 (-0.30) 12.24 (12.10) 6.94 (6.82) 1.76 (1.74) 4.16 (4.03) 6.88 (6.58)

A2009 0.967124 0.0205529 3.13 (3.07) 0.20 (0.22) 0.12 (0.15) 18.70 (16.45) 10.30 (9.51) 0.41 (0.42) 0.19 (0.22) 2.91 (2.85)

C2010A 0.855924 0.0227172 22.69 (-0.63) 6.25 (0.27) -0.11 (-0.43) 21.72 (0.38) 10.79 (1.21) 0.13 (0.03) -7.20 (-12.29) 13.67 (-0.64)

C2010C 0.999338 0.0392166 12.71 (10.80) 6.20 (3.26) 0.07 (0.07) 28.41 (26.37) 21.92 (20.04) 1.34 (1.23) 2.48 (5.64) 21.95 (20.19)

N2010 0.829933 0.0866787 10.36 (1.83) 1.44 (2.03) 0.48 (0.97) 7.76 (5.00) 5.88 (5.35) 2.14 (2.46) 2.13 (3.19) 9.05 (5.50)

T2011T 1.0801 0.0750689 18.57 (13.87) 3.08 (1.25) -0.12 (-0.20) 16.32 (14.21) 13.87 (10.88) 0.47 (0.34) 4.39 (1.60) 23.40 (16.39)

T2011S 1.01173 0.0362881 1.35 (0.93) -0.04 (0.21) -0.02 (0.05) 28.78 (25.00) 15.51 (13.62) 1.67 (1.50) -0.37 (-0.31) 5.89 (4.96)

Average [%] reduction 8.41 (5.90) 2.87 (2.29) 0.14 (0.16) 19.31 (14.66) 13.86 (11.20) 2.45 (2.12) 2.31 (2.14) 13.57 (11.06)
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5.7 Analysis of the numerical results: TMD per-

formance and structural characteristics

5.7.1 TMD performance at assumed earthquake

The bar charts in Figs. 5.41–5.58 represent the percentage reduction of the response

index assumed as objective function, i.e. the RMS displacement of the top storey

of the primary structure, which values have been taken from Tables 5.34–5.49 and

gathered here for each earthquake. Such a further and selected representation of the

obtained results in terms of TMD performance has been provided here with the aim

of achieving a better comprehension of the whole scenario proposed in this study.

The average values of these performance indexes have been collected for each

floor mass value and for the complete set of primary structures, as overall mean

performance. At first sight, it appears that the global mean value of the average

response reduction is included within a range from 15% to 20%, with the extremes

cases represented by the lowest value of 13.8% for the K1995TK earthquake and the

highest value of 22.8% in the case of the E1934 earthquake. This provides a first

information on the attended performance of the TMD device.

Within the wide range of cases considered for this study, various different sit-

uations are recovered, and related features are discussed in the following. First,

a qualitative survey on the average percentage reductions related to the two floor

masses point out that the related values are slightly higher for m
S,i

= 150 t, even if

several cases exhibit instead larger reduction for m
S,i

= 100 t. Also, these average

values display a small dispersion from the global mean value. Hence, it appears

that the performance of the TMD is independent of the floor mass. This fact is

somewhat expected, since modal parameters could instead condition significantly

the effectiveness of the control device.

Actually, more detailed considerations can be extracted from these outcomes. The

main impression is that of quite varied values, which could not be stated by general

trends, from both points of view of number of floors and floor masses. However,

it appears that the 1-storey primary structure is characterised by the lowest level

of TMD effectiveness, especially for m
S,i

= 100 t, which denotes the building with
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the smallest modal period. In this sense, a noticeable case is instead represented by

that of the 1-storey frame building, when subjected to the A2009 earthquake, which

response is reduced of about 24% for m
S,i

= 100 t and about 29% for m
S,i

= 150 t.

It is remarkable the fact that, for the same earthquake event, the following primary

structure, i.e. the 2-storey building, displays instead quite low values of response

reduction.

The cases of reduction larger than 20% are recovered for the structures with n
s
>2,

and in general for the primary structure with large modal periods; also these cases are

characterised by an apparently casual distribution among the different earthquakes.

Same considerations could be extended to the cases of response abatement larger

than 30%, even if this latter range of cases is much restricted.

The best performance is detected for some outstanding cases, where the decrease

of the considered response index reaches values higher than 35%, which fact denotes

a very positive combination of structural context, seismic signal characteristics and

TMD setting. Finally, after a comprehensive study on the outcomes in Figs. 5.41–

5.58, it appears that the basis for a wider analysis has been provided. Nevertheless,

further contributions are required in order to outline a global interpretation of the

results of this research work. In this sense, a significative effort is represented in the

following section, where complementary outcomes will be displayed and discussed

in detail.
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Figure 5.41: Percentage reduction [%] of xRMS
S,n

for the considered primary structures, subjected

to the Long Beach 1933 earthquake.
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Figure 5.42: Percentage reduction [%] of xRMS
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for the considered primary structures subjected

to the El Centro 1934 earthquake.
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for the considered primary structures subjected

to the Imperial Valley 1940 earthquake.
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Figure 5.44: Percentage reduction [%] of xRMS
S,n

for the considered primary structures subjected

to the Kern County 1952 earthquake.
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Figure 5.45: Percentage reduction [%] of xRMS
S,n

for the considered primary structures subjected

to the Borrego Mountain 1968 earthquake.
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Figure 5.46: Percentage reduction [%] of xRMS
S,n

for the considered primary structures subjected

to the San Fernando 1971 earthquake.
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Figure 5.47: Percentage reduction [%] of xRMS
S,n

for the considered primary structures subjected

to the Imperial Valley 1979 earthquake.
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Figure 5.48: Percentage reduction [%] of xRMS
S,n

for the considered primary structures subjected

to the Chile 1985 earthquake.
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Figure 5.49: Percentage reduction [%] of xRMS
S,n

for the considered primary structures subjected

to the Loma Prieta 1989 earthquake.
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Figure 5.50: Percentage reduction [%] of xRMS
S,n

for the considered primary structures subjected

to the Northridge 1994 earthquake.
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Figure 5.51: Percentage reduction [%] of xRMS
S,n

for the considered primary structures subjected

to the Kobe 1995 earthquake (Takarazuka station).
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Figure 5.52: Percentage reduction [%] of xRMS
S,n

for the considered primary structures subjected

to the Kobe 1995 earthquake (Takatori station).
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Figure 5.53: Percentage reduction [%] of xRMS
S,n

for the considered primary structures subjected

to the L’Aquila 2009 earthquake.
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Figure 5.54: Percentage reduction [%] of xRMS
S,n

for the considered primary structures subjected

to the Chile 2010 earthquake (Angol station).
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Figure 5.55: Percentage reduction [%] of xRMS
S,n

for the considered primary structures subjected

to the Chile 2010 earthquake (Concepcion San Pedro station).
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Figure 5.56: Percentage reduction [%] of xRMS
S,n

for the considered primary structures subjected

to the New Zealand 2010 earthquake.
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Figure 5.57: Percentage reduction [%] of xRMS
S,n

for the considered primary structures subjected

to the Tohoku 2011 earthquake (Tsukidate station).
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Figure 5.58: Percentage reduction [%] of xRMS
S,n

for the considered primary structures subjected

to the Tohoku 2011 earthquake (Sendai station).
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5.7.2 Comparison based on modal analysis

The present study on the effectiveness of TMDs for seismic applications will be

completed in this section, whose reported outcomes are in a sense complementary

to those displayed and commented previously. In Tables 5.50–5.67 several indexes

have been reported, which represent modal quantities and response spectra values

computed at a pre- and a post-tuning stage.

The modes of vibration considered for this analysis are those characterised by

effective modal mass M
me,S,i

>5 %, which has been fixed a priori as threshold for

the modes considered to be significant within the purposes of the present analysis.

As a direct consequence of this assumption, the contextualisation into the present

primary structures leads to consider only the first 2 modes for the pre-tuning analysis

and three modes for the post-tuning analysis, as could be immediately read out of

Tables 5.50–5.67. Moreover, since the TMD has been tuned with reference to the

first mode of vibration, the proposed selection allows for an immediate inspection

of the effect of the TMD addition on the modal properties.

In particular, such quantities are reported in terms of:

• Effective modal mass M
me,S,i

;

• Modal periods T
S,i
;

• Frequency amplitude spectrum FAS(T
S,i
);

• Displacement response spectrum Sd(TS,i
);

• Pseudo-velocity response spectrum Spv(TS,i
);

• Pseudo-acceleration response spectrum Spa(TS,i
).

The effective modal mass represents a fundamental index for the definition of

the hierarchy of the vibration modes. The modal periods turn out fundamental to

locate the dynamic behaviour with respect to the seismic frequency content and the

response spectra. Indeed, all remaining quantities have been evaluated in correspon-

dence of the modal periods, through a linear interpolation method with neighbours

values. In this sense, the goodness of the seismic signal record and of the response
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spectra ensures high level of accuracy in the evaluation of these indexes, which is

fundamental for the reliability of the whole investigation, since many quantities ex-

hibit extremely variable shapes, e.g. the pseudo-acceleration response spectrum at

short periods.

The FAS index, which express the signal amplitude within the frequency content

of the seismic ground acceleration, is an input quantity and its analysis aims at

checking the existence of possible connections between seismic signal characteristics

and TMD effectiveness. Finally, the three response spectra represent the most usual

and complete representation of the earthquake response, and therefore significant

indications from their values are somewhat expected.

All these indexes have been gathered, for each earthquake, for all the primary

structures, following the scheme adopted for the bar charts in the previous section.

Hence, it is possible to develop a crossed comparison between these two sets of

results, which would assist in finding possible connections between the structural

and dynamic quantities and the TMD performance.

The modification in the modal properties after the insertion of the TMD will be

commented first. In this sense, the main direct consequence is a split of the first

mode of vibration (in general, that on which the TMD is tuned), which generates

two modes, characterised by periods one slightly lower and one slightly higher than

that of the reference mode. The further modes are just negligibly affected by the

insertion of the TMD.

The hierarchy of the new two modes obtained from the split of the original first

mode exhibits different cases. The situation that often occurs concerns two modes

with effective modal mass that are quite different from each other (usually the ratio

of effective modal mass between the two modes is about 2, but in some cases is even

higher), and therefore the presence of a dominant mode with a subordinate mode

that could however have a noticeable role within the structural behaviour, since

its effective modal mass is usually larger than 25%. In general, it appears that it

could not be established if the new dominant mode is that with shorter or larger

period, even if some buildings exhibit main trends in this sense, e.g. the 1-storey

building mainly (but not only) displays, after a global survey, a dominant second
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mode, which is that with the shorter period.

In other cases, which however represent a smaller group with respect to the

previous case, the new modes show approximately the equal amount of effective

modal mass, and thus it may be supposed that their role within the structural

dynamic behaviour is equally relevant.

As pointed out before with the bar chart, the insertion of the TMD generally

brings benefit since it allows a reduction of the seismic response of about 15%–

20%. In Tables 5.50–5.67 it has been noted that a shared feature among the most

favourable cases is the modal property discussed just above, i.e. the equal relevance

of the two new modes of vibration generated by the addition of the TMD. Indeed,

it appears that a remarkable correspondence holds between this property and a

good performance of the TMD. In detail, such noticeable feature actually appears

to represent a sort of good starting point, but then the TMD effectiveness should

be further supported by the reduction of the values related to the response spectra.

When this favorable situation occurs, the level of effectiveness of the TMD usually

reaches its highest values.

In other cases, where the modes display equal relevance but the control index

(FAS and response spectra) are less reduced, the TMD performance turn out gen-

erally significant, even if not outstanding. This is the case when the effectiveness

takes values around the average performance.

As a sort of confirmation of this statement, it appears from the available data

that the less positive cases are detected in correspondence of a dominant new mode.

As explained before, the 1-storey buildings are those much characterised by this

feature, and also the primary structures that exhibit the lower benefit from the TMD

addition. Also different primary structures, with higher number of floors, do not

display remarkable response abatements when the two split modes are unbalanced

from the point of view of the modal masses, i.e. when one of the modes exhibit an

effective modal mass much higher than that of the other.
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Table 5.50: Comparison of modal parameters for the main modes of vibration before and after the insertion of the optimum TMD, for all the considered

primary structures subjected to the Long Beach 1933 earthquake, with µ = 0.02, ζ
S
= 0.05.

n
S,n

m
S,i

[t]
M

me,S,i
[%] T

S,i
[s] FAS(T

S,i
) [m/s] Sd(TS,i

) [m] Spv(TS,i
) [m/s] Spa(TS,i

) [m/s2]

No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD

1

100
100.00 33.31 0.1171 0.1322 0.1885 0.1001 0.0009872 0.001324 0.005386 0.006401 0.2886 0.3037

66.69 0.1127 0.07944 0.0008801 0.004985 0.2774

150
100.00 36.92 0.1434 0.1604 0.04795 0.2557 0.001871 0.003295 0.008317 0.01315 0.3629 0.515

63.08 0.1376 0.09579 0.001518 0.007053 0.3217

2

100

94.72 30.86 0.1894 0.2131 0.3558 0.5315 0.005225 0.005786 0.01768 0.01743 0.5865 0.515

5.28 63.96 0.07236 0.1822 0.08882 0.276 0.0004058 0.005316 0.003599 0.01871 0.3139 0.6461

5.18 0.07232 0.0887 0.0004057 0.0036 0.3142

150

94.72 22.70 0.232 0.2686 0.2034 0.5084 0.005873 0.00972 0.0162 0.02319 0.4381 0.5425

5.28 72.12 0.08862 0.2251 0.1356 0.1418 0.000503 0.005415 0.003633 0.01541 0.2578 0.4303

5.18 0.08858 0.1355 0.0005026 0.003632 0.2579

3

100

91.41 62.15 0.2631 0.2787 0.4696 0.1151 0.009546 0.009829 0.02325 0.0226 0.5555 0.5096

7.49 29.41 0.09389 0.2406 0.08891 0.2414 0.0005711 0.007182 0.003883 0.01912 0.2596 0.4991

7.36 0.0938 0.0922 0.0005697 0.003878 0.2595

150

91.41 29.17 0.3222 0.3626 0.07613 0.3643 0.01101 0.01278 0.02189 0.02258 0.427 0.3914

7.49 62.37 0.115 0.3099 0.06487 0.1268 0.0009356 0.01116 0.005193 0.02308 0.2832 0.468

7.37 0.1149 0.05991 0.0009334 0.005185 0.2829

5

100

87.95 21.64 0.4113 0.4736 0.3955 0.8589 0.01865 0.02714 0.02905 0.03672 0.4436 0.4871

8.72 66.48 0.1409 0.3985 0.07897 0.6984 0.001678 0.01509 0.007612 0.02425 0.3388 0.3823

8.59 0.1408 0.07067 0.001668 0.007576 0.3376

150

87.95 61.35 0.5038 0.5324 0.7242 0.3538 0.02594 0.02727 0.033 0.03282 0.4116 0.3873

8.72 26.79 0.1726 0.4587 0.1488 0.4571 0.004619 0.02429 0.01712 0.03393 0.6225 0.4649

8.58 0.1724 0.1592 0.004598 0.01706 0.6213

Continued on the next page
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Continued from the previous page

n
S,n

m
S,i

[t]
M

me,S,i
[%] T

S,i
[s] FAS(T

S,i
) [m/s] Sd(TS,i

) [m] Spv(TS,i
) [m/s] Spa(TS,i

) [m/s2]

No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD

10

100

84.79 20.28 0.7834 0.9039 0.4196 0.711 0.04601 0.07451 0.03763 0.05281 0.3018 0.3671

9.14 64.70 0.2631 0.7594 0.4696 0.5218 0.009546 0.03944 0.02325 0.03327 0.5555 0.2753

9.02 0.2628 0.4695 0.009538 0.02325 0.5561

150

84.79 23.20 0.9594 1.093 0.6503 0.8119 0.08914 0.1028 0.05953 0.06025 0.3898 0.3463

9.14 61.78 0.3222 0.9267 0.07613 0.721 0.01101 0.08037 0.02189 0.05557 0.427 0.3767

9.02 0.3219 0.05 0.01101 0.02191 0.4279

15

100

83.62 49.55 1.156 1.237 0.7078 0.5869 0.09367 0.07042 0.05193 0.03648 0.2823 0.1853

9.16 34.28 0.3866 1.073 0.1674 0.9217 0.0133 0.1039 0.02204 0.06201 0.3582 0.363

9.03 0.3861 0.1664 0.01328 0.02204 0.3588

150

83.62 16.23 1.416 1.668 0.1248 0.3627 0.05711 0.07912 0.02585 0.03038 0.1147 0.1144

9.16 67.59 0.4735 1.379 0.8602 0.06381 0.02713 0.05632 0.03671 0.02617 0.4871 0.1193

9.04 0.473 0.8644 0.02707 0.03667 0.487

25

100

82.63 10.83 1.901 2.348 0.2029 0.5657 0.09406 0.1405 0.0317 0.03834 0.1048 0.1026

9.13 72.00 0.6345 1.864 0.08917 0.203 0.02444 0.09712 0.02469 0.03338 0.2446 0.1125

9.02 0.6339 0.08115 0.02451 0.02478 0.2457

150

82.63 38.27 2.328 2.539 0.5782 0.4531 0.1384 0.1428 0.0381 0.03604 0.1028 0.08919

9.13 44.58 0.777 2.202 0.5134 0.4411 0.04428 0.1169 0.03651 0.034 0.2952 0.09703

9.01 0.7761 0.5269 0.04404 0.03635 0.2942

40

100

82.05 16.60 3.019 3.542 0.2406 0.3938 0.1157 0.1758 0.02455 0.03179 0.0511 0.05639

9.10 65.66 1.007 2.938 0.9193 0.281 0.09963 0.1148 0.0634 0.02504 0.3957 0.05355

8.98 1.006 0.9109 0.09948 0.06336 0.3958

150

82.05 33.46 3.697 4.073 0.426 0.3898 0.1959 0.2342 0.03394 0.03685 0.05768 0.05685

9.10 48.81 1.233 3.52 0.5943 0.3891 0.07156 0.1727 0.03718 0.03144 0.1895 0.05612

8.97 1.232 0.5969 0.07196 0.03743 0.191175
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Table 5.51: Comparison of modal parameters for the main modes of vibration before and after the insertion of the optimum TMD, for all the considered

primary structures subjected to the El Centro 1934 earthquake, with µ = 0.02, ζ
S
= 0.05.

n
S,n

m
S,i

[t]
M

me,S,i
[%] T

S,i
[s] FAS(T

S,i
) [m/s] Sd(TS,i

) [m] Spv(TS,i
) [m/s] Spa(TS,i

) [m/s2]

No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD

1

100
100.00 33.83 0.1171 0.132 0.06055 0.1186 0.00101 0.001394 0.005523 0.006752 0.2968 0.321

66.17 0.1127 0.1607 0.0009651 0.005486 0.3063

150
100.00 36.60 0.1434 0.1605 0.351 0.2291 0.001721 0.002086 0.007683 0.008319 0.3368 0.3254

63.40 0.1376 0.13 0.001574 0.007313 0.3336

2

100

94.72 42.06 0.1894 0.2077 0.1654 0.2107 0.004001 0.005242 0.01352 0.01616 0.4483 0.4886

5.28 52.76 0.07236 0.1798 0.05483 0.2462 0.0003447 0.003051 0.003037 0.01087 0.2634 0.38

5.18 0.07232 0.05091 0.0003442 0.003035 0.2633

150

94.72 30.86 0.232 0.261 0.8682 0.9559 0.008095 0.009738 0.02235 0.02393 0.6053 0.5766

5.28 63.96 0.08862 0.2231 0.113 0.1964 0.0006204 0.007306 0.00447 0.02096 0.3162 0.5902

5.18 0.08857 0.126 0.0006193 0.004464 0.316

3

100

91.41 57.05 0.2631 0.2806 1.161 0.4033 0.009315 0.007372 0.02273 0.01683 0.5442 0.377

7.49 34.50 0.09389 0.2432 0.1247 0.4418 0.0007111 0.009007 0.004839 0.02371 0.3238 0.612

7.36 0.0938 0.09354 0.0007097 0.004834 0.3238

150

91.41 42.36 0.3222 0.3517 0.6398 0.3401 0.01015 0.01214 0.02016 0.02212 0.3928 0.3952

7.49 49.19 0.115 0.3049 0.1287 0.2335 0.0009885 0.008314 0.005506 0.01747 0.3013 0.36

7.36 0.1149 0.1089 0.0009874 0.005505 0.3015

5

100

87.95 50.34 0.4113 0.4415 0.5602 0.5253 0.01812 0.0188 0.02822 0.02727 0.431 0.3882

8.72 37.79 0.1409 0.3833 0.05085 0.7905 0.001669 0.01588 0.007588 0.02653 0.3383 0.4347

8.58 0.1408 0.07192 0.001666 0.007581 0.3384

150

87.95 25.63 0.5038 0.571 0.2712 0.6381 0.02355 0.01995 0.02995 0.02239 0.3736 0.2464

8.72 62.49 0.1726 0.4858 0.2625 0.8186 0.002909 0.02286 0.0108 0.03015 0.3933 0.39

8.59 0.1724 0.2572 0.002906 0.0108 0.3936
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n
S,n

m
S,i

[t]
M

me,S,i
[%] T

S,i
[s] FAS(T

S,i
) [m/s] Sd(TS,i

) [m] Spv(TS,i
) [m/s] Spa(TS,i

) [m/s2]

No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD

10

100

84.79 70.49 0.7834 0.8152 0.3982 0.2662 0.02899 0.03155 0.02371 0.0248 0.1902 0.1911

9.14 14.51 0.2631 0.6825 1.161 0.571 0.009315 0.03672 0.02273 0.03447 0.5442 0.3174

9.00 0.2627 1.136 0.009396 0.02296 0.5504

150

84.79 28.28 0.9594 1.074 0.3254 0.575 0.03829 0.04087 0.02557 0.02438 0.1675 0.1426

9.14 56.71 0.3222 0.9209 0.6398 0.2935 0.01015 0.03801 0.02016 0.02645 0.3928 0.1805

9.01 0.3219 0.6292 0.01008 0.02004 0.391

15

100

83.62 56.95 1.156 1.224 0.4411 0.2625 0.03388 0.02877 0.01878 0.01506 0.1021 0.07736

9.16 26.88 0.3866 1.056 0.6038 0.5422 0.01646 0.04148 0.02726 0.02517 0.4429 0.1498

9.03 0.3861 0.6314 0.01637 0.02714 0.4416

150

83.62 18.93 1.416 1.642 0.1492 0.138 0.0277 0.04059 0.01254 0.01584 0.05564 0.0606

9.16 64.88 0.4735 1.374 0.4075 0.1953 0.02216 0.02576 0.02999 0.01201 0.398 0.05493

9.04 0.473 0.4468 0.02213 0.02997 0.3981

25

100

82.63 40.51 1.901 2.064 0.6268 0.1575 0.06133 0.06039 0.02067 0.01875 0.06833 0.05706

9.13 42.33 0.6345 1.792 0.8384 0.1475 0.03057 0.04385 0.03086 0.01568 0.3056 0.05498

9.01 0.6337 0.8508 0.03039 0.03072 0.3046

150

82.63 45.17 2.328 2.507 0.468 0.1277 0.05423 0.06001 0.01492 0.01534 0.04027 0.03844

9.13 37.68 0.777 2.178 0.6835 0.1526 0.02895 0.05964 0.02388 0.01755 0.1931 0.05064

9.01 0.7761 0.6699 0.02901 0.02395 0.1939

40

100

82.05 7.50 3.019 3.938 0.1001 0.2609 0.05213 0.09378 0.01106 0.01526 0.02303 0.02435

9.10 74.75 1.007 2.976 0.6751 0.119 0.03829 0.05169 0.02437 0.01113 0.1521 0.0235

8.99 1.006 0.6813 0.03823 0.02435 0.1521

150

82.05 38.09 3.697 4.032 0.3611 0.1586 0.1015 0.08469 0.01759 0.01346 0.0299 0.02098

9.10 44.18 1.233 3.496 0.2702 0.2397 0.02784 0.08846 0.01447 0.01621 0.07372 0.02913

8.97 1.232 0.269 0.02798 0.01456 0.07426177
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Table 5.52: Comparison of modal parameters for the main modes of vibration before and after the insertion of the optimum TMD, for all the considered

primary structures subjected to the Imperial Valley 1940 earthquake, with µ = 0.02, ζ
S
= 0.05.

n
S,n

m
S,i

[t]
M

me,S,i
[%] T

S,i
[s] FAS(T

S,i
) [m/s] Sd(TS,i

) [m] Spv(TS,i
) [m/s] Spa(TS,i

) [m/s2]

No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD

1

100
100.00 39.90 0.1171 0.1301 0.08368 0.2355 0.002426 0.00291 0.01321 0.01434 0.7066 0.6926

60.10 0.112 0.16 0.001996 0.01137 0.6362

150
100.00 27.18 0.1434 0.1652 0.1602 0.4274 0.002758 0.004675 0.01233 0.01811 0.541 0.6884

72.82 0.1389 0.4467 0.002739 0.01265 0.5728

2

100

94.72 40.34 0.1894 0.2083 0.2694 1.008 0.005639 0.00681 0.01907 0.02094 0.6325 0.6316

5.28 54.48 0.07236 0.1802 0.1752 0.298 0.0006343 0.005208 0.005613 0.01852 0.4887 0.6458

5.18 0.07232 0.1928 0.0006339 0.005613 0.4889

150

94.72 25.39 0.232 0.2657 0.55 0.8687 0.01073 0.014 0.02961 0.03379 0.8015 0.7999

5.28 69.43 0.08862 0.2244 0.0524 0.4374 0.0009666 0.009163 0.006969 0.0261 0.4934 0.7296

5.18 0.08858 0.05339 0.0009653 0.006962 0.4932

3

100

91.41 51.91 0.2631 0.2827 1.448 0.7001 0.01413 0.01402 0.03444 0.03179 0.8233 0.7069

7.49 39.64 0.09389 0.2455 0.1786 0.4081 0.001097 0.01316 0.007464 0.03432 0.4995 0.8782

7.36 0.0938 0.1681 0.001095 0.007457 0.4996

150

91.41 56.97 0.3222 0.3437 0.3622 0.3294 0.01723 0.01788 0.03427 0.03333 0.6684 0.6094

7.49 34.58 0.115 0.2979 0.4296 0.7853 0.00225 0.01521 0.01246 0.03271 0.6778 0.6899

7.36 0.1149 0.4531 0.002241 0.01242 0.6763

5

100

87.95 19.08 0.4113 0.4795 0.5889 0.8924 0.02436 0.04461 0.03795 0.05961 0.5796 0.781

8.72 69.04 0.1409 0.3997 0.4844 0.9412 0.00273 0.02326 0.01241 0.03728 0.5537 0.5861

8.59 0.1408 0.5308 0.002728 0.01242 0.5544

150

87.95 24.20 0.5038 0.574 0.6615 1.74 0.0519 0.0715 0.06598 0.07981 0.8228 0.8737

8.72 63.92 0.1726 0.4866 0.1617 1.079 0.005058 0.04673 0.01878 0.06151 0.6843 0.7941

8.59 0.1724 0.1715 0.005055 0.01879 0.6851

Continued on the next page
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n
S,n

m
S,i

[t]
M

me,S,i
[%] T

S,i
[s] FAS(T

S,i
) [m/s] Sd(TS,i

) [m] Spv(TS,i
) [m/s] Spa(TS,i

) [m/s2]

No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD

10

100

84.79 19.63 0.7834 0.9068 1.127 1.163 0.08326 0.1085 0.0681 0.07665 0.5462 0.5311

9.14 65.35 0.2631 0.76 1.448 0.7044 0.01413 0.08052 0.03444 0.06788 0.8233 0.5612

9.02 0.2628 1.278 0.01415 0.0345 0.8256

150

84.79 63.03 0.9594 1.009 1.348 0.5461 0.1187 0.1261 0.07925 0.0801 0.519 0.499

9.14 21.97 0.3222 0.8633 0.3622 2.463 0.01723 0.105 0.03427 0.07794 0.6684 0.5673

9.00 0.3218 0.2597 0.01722 0.03429 0.6697

15

100

83.62 34.38 1.156 1.272 1.047 0.7282 0.1119 0.1034 0.06201 0.05209 0.3371 0.2573

9.16 49.44 0.3866 1.1 0.2811 0.853 0.02343 0.1122 0.03883 0.06535 0.6312 0.3733

9.04 0.3862 0.4084 0.0234 0.03882 0.6317

150

83.62 34.49 1.416 1.558 0.6263 0.5373 0.08765 0.1151 0.03967 0.04735 0.1761 0.191

9.16 49.34 0.4735 1.347 1.598 0.3402 0.04457 0.08755 0.06032 0.04165 0.8006 0.1943

9.04 0.4729 1.587 0.04457 0.06038 0.8023

25

100

82.63 36.48 1.901 2.081 0.6071 0.8464 0.1515 0.1923 0.05107 0.0592 0.1688 0.1788

9.13 46.36 0.6345 1.803 1.12 1.3 0.07512 0.1401 0.07587 0.04981 0.7514 0.1736

9.01 0.6337 1.04 0.07511 0.07594 0.753

150

82.63 35.35 2.328 2.555 0.5024 0.6281 0.2534 0.2682 0.06973 0.06727 0.1882 0.1655

9.13 47.49 0.777 2.211 1.006 0.7922 0.08258 0.2249 0.06809 0.06518 0.5506 0.1852

9.01 0.7762 0.9934 0.08248 0.06809 0.5512

40

100

82.05 43.44 3.019 3.259 0.8389 0.6064 0.2472 0.243 0.05247 0.04777 0.1092 0.09211

9.10 38.83 1.007 2.83 0.6176 1.173 0.1259 0.2689 0.08011 0.06086 0.4999 0.1351

8.97 1.006 0.6685 0.1257 0.08011 0.5006

150

82.05 24.44 3.697 4.181 0.2734 0.4281 0.197 0.1739 0.03414 0.02666 0.05802 0.04007

9.10 57.83 1.233 3.562 1.16 0.2959 0.1116 0.2145 0.05801 0.03858 0.2956 0.06804

8.98 1.232 1.147 0.1119 0.05819 0.2968179
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Table 5.53: Comparison of modal parameters for the main modes of vibration before and after the insertion of the optimum TMD, for all the considered

primary structures subjected to the Kern County 1952 earthquake, with µ = 0.02, ζ
S
= 0.05.

n
S,n

m
S,i

[t]
M

me,S,i
[%] T

S,i
[s] FAS(T

S,i
) [m/s] Sd(TS,i

) [m] Spv(TS,i
) [m/s] Spa(TS,i

) [m/s2]

No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD

1

100
100.00 27.66 0.1171 0.1346 0.07132 0.2388 0.0008232 0.00122 0.004485 0.00578 0.2399 0.2688

72.34 0.1134 0.08891 0.0007225 0.00406 0.2241

150
100.00 28.34 0.1434 0.1645 0.224 0.1369 0.001592 0.002492 0.00709 0.009704 0.31 0.3709

71.66 0.1388 0.1844 0.001388 0.006395 0.2892

2

100

94.72 21.15 0.1894 0.2209 0.1615 0.6404 0.003568 0.004958 0.01206 0.01437 0.3999 0.4088

5.28 73.67 0.07236 0.1841 0.01825 0.5031 0.0002472 0.003184 0.002183 0.01106 0.1897 0.3768

5.18 0.07232 0.01704 0.000247 0.002182 0.1897

150

94.72 56.93 0.232 0.2484 0.5607 0.2939 0.005453 0.005321 0.01507 0.01373 0.4085 0.3474

5.28 37.90 0.08862 0.2155 0.03187 0.5913 0.00042 0.004819 0.003026 0.01433 0.2141 0.4179

5.18 0.08856 0.03323 0.0004191 0.003022 0.2139

3

100

91.41 45.83 0.2631 0.2854 0.4859 0.2992 0.006255 0.007144 0.01523 0.01604 0.3639 0.3531

7.49 45.72 0.09389 0.2477 0.07057 0.3397 0.0005051 0.005312 0.003427 0.01374 0.2287 0.3486

7.36 0.09381 0.07774 0.0005037 0.003421 0.2285

150

91.41 33.27 0.3222 0.3586 0.7515 0.9674 0.01261 0.01163 0.02506 0.02079 0.4887 0.3645

7.49 58.28 0.115 0.3084 0.1401 0.2167 0.0007662 0.009841 0.004244 0.02044 0.231 0.4165

7.37 0.1149 0.1224 0.0007636 0.004233 0.2306

5

100

87.95 28.91 0.4113 0.4614 0.2893 0.3915 0.01971 0.02495 0.03069 0.03465 0.4686 0.4721

8.72 59.22 0.1409 0.3951 0.2652 0.8411 0.001479 0.01461 0.006716 0.02367 0.2992 0.3762

8.59 0.1408 0.2756 0.001473 0.006695 0.2986

150

87.95 32.42 0.5038 0.5597 0.6531 0.4205 0.02107 0.02206 0.02679 0.02525 0.3342 0.2835

8.72 55.71 0.1726 0.4818 0.2098 0.8542 0.002683 0.02129 0.009956 0.02832 0.3625 0.3694

8.59 0.1724 0.2048 0.002679 0.009949 0.3626

Continued on the next page
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n
S,n

m
S,i

[t]
M

me,S,i
[%] T

S,i
[s] FAS(T

S,i
) [m/s] Sd(TS,i

) [m] Spv(TS,i
) [m/s] Spa(TS,i

) [m/s2]

No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD

10

100

84.79 22.08 0.7834 0.8967 0.6052 0.6765 0.03965 0.04806 0.03243 0.03434 0.2601 0.2407

9.14 62.91 0.2631 0.7577 0.4859 0.5348 0.006255 0.03354 0.01523 0.02836 0.3639 0.2351

9.02 0.2628 0.4597 0.006247 0.01523 0.3641

150

84.79 49.24 0.9594 1.028 0.2305 0.2943 0.03805 0.0386 0.02541 0.02405 0.1664 0.1469

9.14 35.76 0.3222 0.8928 0.7515 0.8431 0.01261 0.04906 0.02506 0.03521 0.4887 0.2479

9.01 0.3218 0.8059 0.01256 0.025 0.488

15

100

83.62 54.35 1.156 1.228 0.4562 0.2107 0.04922 0.04981 0.02728 0.02598 0.1483 0.1329

9.16 29.48 0.3866 1.063 0.3001 0.2914 0.01277 0.03883 0.02115 0.02341 0.3436 0.1384

9.03 0.3861 0.2861 0.01269 0.02105 0.3424

150

83.62 14.83 1.416 1.685 0.4183 0.8661 0.06035 0.1085 0.02732 0.04125 0.1212 0.1538

9.16 68.99 0.4735 1.381 0.6165 0.5119 0.02224 0.05785 0.0301 0.02684 0.3996 0.1221

9.04 0.4731 0.6292 0.02229 0.0302 0.4013

25

100

82.63 65.98 1.901 1.986 0.4175 0.2712 0.09023 0.08341 0.03041 0.02691 0.1005 0.08515

9.13 16.87 0.6345 1.68 0.7111 0.8781 0.03004 0.1087 0.03033 0.04146 0.3004 0.1551

9.00 0.6335 0.7042 0.02997 0.03031 0.3006

150

82.63 60.52 2.328 2.45 0.264 0.2014 0.0826 0.08679 0.02273 0.02269 0.06135 0.05819

9.13 22.33 0.777 2.101 0.2962 0.2675 0.03826 0.07675 0.03155 0.0234 0.2551 0.06999

9.00 0.776 0.2929 0.03802 0.03139 0.2542

40

100

82.05 15.40 3.019 3.571 0.1909 0.2587 0.1048 0.1093 0.02225 0.01961 0.04631 0.03451

9.10 66.86 1.007 2.942 0.6827 0.2085 0.03844 0.1026 0.02447 0.02235 0.1527 0.04772

8.98 1.006 0.6721 0.03844 0.02449 0.153

150

82.05 31.99 3.697 4.087 0.3407 0.2644 0.1111 0.1064 0.01926 0.01668 0.03273 0.02564

9.10 50.28 1.233 3.527 0.2164 0.2228 0.04945 0.1102 0.0257 0.02002 0.131 0.03567

8.97 1.232 0.2148 0.04957 0.02579 0.1315181
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Table 5.54: Comparison of modal parameters for the main modes of vibration before and after the insertion of the optimum TMD, for all the considered

primary structures subjected to the Borrego Mountain 1968 earthquake, with µ = 0.02, ζ
S
= 0.05.

n
S,n

m
S,i

[t]
M

me,S,i
[%] T

S,i
[s] FAS(T

S,i
) [m/s] Sd(TS,i

) [m] Spv(TS,i
) [m/s] Spa(TS,i

) [m/s2]

No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD

1

100
100.00 51.18 0.1171 0.1274 0.01369 0.06874 0.0005044 0.0006535 0.002754 0.003279 0.1477 0.1615

48.82 0.1105 0.07503 0.0004356 0.002524 0.1434

150
100.00 33.64 0.1434 0.1618 0.03013 0.1252 0.001063 0.001453 0.004726 0.005755 0.2063 0.2236

66.36 0.138 0.02262 0.0008814 0.004082 0.1855

2

100

94.72 50.15 0.1894 0.2048 0.1193 0.1863 0.001526 0.001994 0.00516 0.006236 0.1711 0.1914

5.28 44.68 0.07236 0.1779 0.003871 0.06561 0.0001911 0.0014 0.001684 0.00505 0.1461 0.1788

5.18 0.07231 0.003937 0.0001908 0.001683 0.1461

150

94.72 30.63 0.232 0.2611 0.1504 0.0751 0.00281 0.004806 0.007749 0.01179 0.2097 0.2838

5.28 64.19 0.08862 0.2232 0.01032 0.06823 0.0002866 0.002255 0.00207 0.00646 0.1468 0.1816

5.18 0.08857 0.005948 0.0002864 0.002069 0.1468

3

100

91.41 45.16 0.2631 0.2857 0.275 0.137 0.004825 0.004585 0.01175 0.01028 0.2808 0.2262

7.49 46.39 0.09389 0.248 0.01994 0.2131 0.000316 0.003917 0.002153 0.01011 0.1442 0.256

7.36 0.09381 0.02265 0.0003156 0.002152 0.1442

150

91.41 28.56 0.3222 0.3633 0.1819 0.09664 0.004505 0.007001 0.008954 0.01234 0.1745 0.2134

7.49 62.98 0.115 0.3101 0.02894 0.1003 0.0004825 0.004385 0.002681 0.009059 0.1463 0.1836

7.37 0.1149 0.02175 0.0004816 0.002678 0.1463

5

100

87.95 45.38 0.4113 0.445 0.4266 0.09089 0.008813 0.008977 0.01373 0.01293 0.2097 0.1825

8.72 42.74 0.1409 0.3865 0.05719 0.1326 0.0009636 0.008335 0.004372 0.01382 0.1947 0.2246

8.58 0.1408 0.04765 0.0009574 0.004351 0.194

150

87.95 47.04 0.5038 0.5435 0.379 0.2764 0.009631 0.009552 0.01225 0.01126 0.1528 0.1301

8.72 41.09 0.1726 0.4721 0.11 0.3651 0.001475 0.009483 0.005485 0.01287 0.2001 0.1713

8.58 0.1724 0.08365 0.001478 0.005501 0.2009

Continued on the next page
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n
S,n

m
S,i

[t]
M

me,S,i
[%] T

S,i
[s] FAS(T

S,i
) [m/s] Sd(TS,i

) [m] Spv(TS,i
) [m/s] Spa(TS,i

) [m/s2]

No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD

10

100

84.79 68.92 0.7834 0.817 0.1564 0.1316 0.02369 0.02675 0.01937 0.02097 0.1554 0.1613

9.14 16.08 0.2631 0.6883 0.275 0.5881 0.004825 0.02345 0.01175 0.02183 0.2808 0.1993

9.00 0.2627 0.2726 0.004821 0.01176 0.2814

150

84.79 24.52 0.9594 1.088 0.1763 0.2463 0.04039 0.06352 0.02697 0.03741 0.1767 0.2161

9.14 60.47 0.3222 0.9252 0.1819 0.2844 0.004505 0.03694 0.008954 0.02558 0.1745 0.1737

9.01 0.3219 0.1881 0.004484 0.00892 0.174

15

100

83.62 22.46 1.156 1.319 0.7468 0.4792 0.07705 0.1029 0.04271 0.04999 0.2322 0.2381

9.16 61.36 0.3866 1.117 0.1337 0.2241 0.008339 0.06971 0.01382 0.03999 0.2246 0.2249

9.04 0.3862 0.13 0.008325 0.01381 0.2247

150

83.62 14.03 1.416 1.696 0.7577 0.8604 0.1163 0.145 0.05264 0.05477 0.2336 0.2029

9.16 69.78 0.4735 1.383 0.3599 0.4708 0.009514 0.1123 0.01287 0.05202 0.1709 0.2364

9.04 0.4731 0.3738 0.009505 0.01287 0.171

25

100

82.63 43.15 1.901 2.054 0.9462 0.9723 0.1634 0.1721 0.05509 0.05368 0.1821 0.1642

9.13 39.69 0.6345 1.784 0.6797 0.6662 0.01893 0.1532 0.01911 0.05501 0.1892 0.1937

9.01 0.6337 0.6863 0.01881 0.01902 0.1885

150

82.63 36.29 2.328 2.55 0.7109 0.3132 0.1842 0.1852 0.05068 0.04655 0.1368 0.1147

9.13 46.55 0.777 2.208 0.2213 0.5629 0.02342 0.1803 0.01931 0.0523 0.1562 0.1488

9.01 0.7762 0.2401 0.02344 0.01935 0.1566

40

100

82.05 57.43 3.019 3.189 0.1549 0.3857 0.1739 0.1767 0.03691 0.03549 0.07682 0.06992

9.10 24.85 1.007 2.746 0.2952 1.186 0.04514 0.1801 0.02873 0.04201 0.1793 0.09612

8.97 1.005 0.2944 0.04494 0.02864 0.179

150

82.05 16.18 3.697 4.35 0.525 0.2987 0.1705 0.1611 0.02954 0.02372 0.0502 0.03427

9.10 66.08 1.233 3.6 0.2286 0.3655 0.08925 0.173 0.04637 0.03079 0.2363 0.05373

8.98 1.232 0.2252 0.08907 0.04632 0.2363183
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Table 5.55: Comparison of modal parameters for the main modes of vibration before and after the insertion of the optimum TMD, for all the considered

primary structures subjected to the San Fernando 1971 earthquake, with µ = 0.02, ζ
S
= 0.05.

n
S,n

m
S,i

[t]
M

me,S,i
[%] T

S,i
[s] FAS(T

S,i
) [m/s] Sd(TS,i

) [m] Spv(TS,i
) [m/s] Spa(TS,i

) [m/s2]

No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD

1

100
100.00 63.21 0.1171 0.1252 0.3659 1.014 0.006265 0.007947 0.0341 0.04054 1.822 2.032

36.79 0.1086 0.3612 0.004457 0.02627 1.52

150
100.00 35.67 0.1434 0.1609 1.167 1.221 0.009615 0.01103 0.04293 0.04391 1.881 1.715

64.33 0.1377 0.3801 0.009126 0.04246 1.94

2

100

94.72 25.87 0.1894 0.2165 0.5764 2.95 0.01778 0.02775 0.06009 0.08211 1.992 2.384

5.28 68.94 0.07236 0.1832 0.2872 0.5426 0.002155 0.01533 0.01903 0.05349 1.654 1.832

5.18 0.07232 0.3167 0.002153 0.01903 1.655

150

94.72 80.54 0.232 0.2411 2.185 1.106 0.02445 0.02349 0.06756 0.0624 1.832 1.625

5.28 14.30 0.08862 0.2009 0.4467 1.078 0.003233 0.02382 0.02333 0.07593 1.653 2.374

5.17 0.08855 0.4236 0.003227 0.0233 1.653

3

100

91.41 52.27 0.2631 0.2825 1.334 0.4875 0.0354 0.03709 0.08615 0.08416 2.057 1.873

7.49 39.28 0.09389 0.2453 0.655 0.7606 0.003507 0.02537 0.02392 0.06618 1.605 1.694

7.36 0.0938 0.5887 0.003503 0.02392 1.606

150

91.41 13.42 0.3222 0.3934 0.9147 3.476 0.04407 0.1102 0.08759 0.1795 1.708 2.869

7.49 78.12 0.115 0.3156 0.8519 2.334 0.005765 0.04252 0.03189 0.08633 1.733 1.719

7.37 0.1149 0.8338 0.005748 0.03182 1.73

5

100

87.95 41.15 0.4113 0.4484 2.309 2.386 0.1036 0.09654 0.1613 0.138 2.465 1.934

8.72 46.97 0.1409 0.3889 1.494 3.37 0.009315 0.1106 0.04234 0.1822 1.888 2.944

8.59 0.1408 1.381 0.009297 0.0423 1.888

150

87.95 38.86 0.5038 0.5516 1.793 1.143 0.09835 0.08125 0.1251 0.09441 1.561 1.076

8.72 49.26 0.1726 0.4778 0.868 2.217 0.01237 0.09775 0.04587 0.1311 1.669 1.724

8.59 0.1724 0.9188 0.01233 0.04577 1.667

Continued on the next page
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n
S,n

m
S,i

[t]
M

me,S,i
[%] T

S,i
[s] FAS(T

S,i
) [m/s] Sd(TS,i

) [m] Spv(TS,i
) [m/s] Spa(TS,i

) [m/s2]

No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD

10

100

84.79 14.28 0.7834 0.9382 0.8814 2.363 0.1392 0.25 0.1139 0.1708 0.9133 1.144

9.14 70.70 0.2631 0.7651 1.334 1.294 0.0354 0.1257 0.08615 0.1053 2.057 0.8644

9.02 0.2629 1.227 0.03529 0.08597 2.054

150

84.79 23.87 0.9594 1.09 2.263 2.843 0.2644 0.3557 0.1766 0.209 1.156 1.204

9.14 61.12 0.3222 0.9259 0.9147 2.498 0.04407 0.2427 0.08759 0.1679 1.708 1.139

9.02 0.3219 0.9806 0.04393 0.08741 1.706

15

100

83.62 46.35 1.156 1.243 2.006 2.161 0.3896 0.4193 0.216 0.2161 1.174 1.092

9.16 37.48 0.3866 1.08 3.317 3.038 0.1095 0.3491 0.1815 0.2071 2.951 1.205

9.03 0.3861 3.292 0.1093 0.1814 2.952

150

83.62 34.75 1.416 1.557 3.106 3.009 0.4411 0.4718 0.1997 0.1942 0.8862 0.7835

9.16 49.07 0.4735 1.346 1.953 2.844 0.0966 0.4309 0.1307 0.205 1.735 0.9569

9.04 0.4729 1.901 0.09646 0.1307 1.736

25

100

82.63 57.45 1.901 2.009 2.079 1.281 0.4733 0.4692 0.1595 0.1496 0.5272 0.4679

9.13 25.40 0.6345 1.731 1.394 2.837 0.06611 0.4716 0.06676 0.1745 0.6611 0.6335

9.00 0.6336 1.375 0.06594 0.06668 0.6612

150

82.63 11.90 2.328 2.841 0.7386 1.238 0.4307 0.4529 0.1185 0.1021 0.3199 0.2259

9.13 70.93 0.777 2.28 1.024 0.5733 0.1345 0.4388 0.1109 0.1233 0.8969 0.3398

9.02 0.7764 1.039 0.1341 0.1106 0.8951

40

100

82.05 58.16 3.019 3.186 0.9968 0.7257 0.4636 0.47 0.0984 0.09453 0.2048 0.1864

9.10 24.12 1.007 2.741 2.891 1.344 0.3011 0.4455 0.1916 0.1041 1.196 0.2388

8.97 1.005 2.86 0.3001 0.1913 1.195

150

82.05 7.42 3.697 4.831 0.6042 1.334 0.4749 0.7868 0.08229 0.1043 0.1398 0.1357

9.10 74.83 1.233 3.645 2.147 0.5583 0.417 0.4752 0.2167 0.08354 1.104 0.144

8.99 1.232 2.146 0.4169 0.2168 1.105185
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Table 5.56: Comparison of modal parameters for the main modes of vibration before and after the insertion of the optimum TMD, for all the considered

primary structures subjected to the Imperial Valley 1979 earthquake, with µ = 0.02, ζ
S
= 0.05.

n
S,n

m
S,i

[t]
M

me,S,i
[%] T

S,i
[s] FAS(T

S,i
) [m/s] Sd(TS,i

) [m] Spv(TS,i
) [m/s] Spa(TS,i

) [m/s2]

No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD

1

100
100.00 27.75 0.1171 0.1346 0.1719 0.47 0.003762 0.0052 0.02051 0.0247 1.098 1.152

72.25 0.1134 0.09489 0.003367 0.01894 1.047

150
100.00 10.18 0.1434 0.1902 0.3244 0.4298 0.006082 0.01111 0.02713 0.03742 1.188 1.236

89.82 0.1415 0.1261 0.005878 0.02659 1.181

2

100

94.72 54.68 0.1894 0.2034 0.4264 0.8914 0.01105 0.01386 0.03736 0.04361 1.239 1.346

5.28 40.15 0.07236 0.1766 0.09517 0.1493 0.0008519 0.009955 0.007527 0.03605 0.6543 1.281

5.18 0.07231 0.09123 0.000851 0.007524 0.6545

150

94.72 52.29 0.232 0.25 0.9324 0.5243 0.02249 0.023 0.06213 0.05895 1.683 1.482

5.28 42.53 0.08862 0.2171 0.08389 0.8227 0.001512 0.01906 0.01088 0.0561 0.7695 1.621

5.18 0.08857 0.08692 0.001508 0.01087 0.7686

3

100

91.41 33.07 0.2631 0.2929 0.6264 1.121 0.0217 0.01979 0.05287 0.04329 1.263 0.9286

7.49 58.47 0.09389 0.2519 0.1397 0.6415 0.001767 0.02276 0.01202 0.05792 0.8034 1.446

7.37 0.09381 0.1205 0.001764 0.012 0.8031

150

91.41 32.66 0.3222 0.3591 1.825 0.9319 0.03354 0.03857 0.06663 0.06883 1.298 1.205

7.49 58.89 0.115 0.3086 0.08628 1.393 0.003539 0.02458 0.01963 0.051 1.069 1.038

7.37 0.1149 0.08937 0.003529 0.01959 1.068

5

100

87.95 40.85 0.4113 0.4486 0.671 0.6495 0.03805 0.03957 0.05926 0.05652 0.9052 0.7917

8.72 47.28 0.1409 0.389 0.2793 0.6455 0.005817 0.03142 0.02643 0.05174 1.178 0.8358

8.59 0.1408 0.3202 0.005801 0.02639 1.178

150

87.95 36.22 0.5038 0.5547 0.9754 0.5708 0.03782 0.047 0.04809 0.0543 0.5998 0.6152

8.72 51.91 0.1726 0.4795 0.3271 0.4465 0.009185 0.03701 0.03404 0.04946 1.238 0.6481

8.59 0.1724 0.3121 0.009151 0.03395 1.236

Continued on the next page
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n
S,n

m
S,i

[t]
M

me,S,i
[%] T

S,i
[s] FAS(T

S,i
) [m/s] Sd(TS,i

) [m] Spv(TS,i
) [m/s] Spa(TS,i

) [m/s2]

No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD

10

100

84.79 60.84 0.7834 0.8259 1.969 0.4984 0.1357 0.1066 0.111 0.08267 0.8904 0.6291

9.14 24.16 0.2631 0.7097 0.6264 2.16 0.0217 0.1469 0.05287 0.1326 1.263 1.174

9.00 0.2627 0.568 0.0217 0.05293 1.267

150

84.79 48.40 0.9594 1.03 1.69 1.095 0.1623 0.163 0.1084 0.1014 0.7098 0.6188

9.14 36.59 0.3222 0.8941 1.825 1.358 0.03354 0.1397 0.06663 0.1001 1.298 0.7032

9.01 0.3218 1.728 0.03327 0.06618 1.291

15

100

83.62 11.92 1.156 1.412 1.45 2.461 0.184 0.2925 0.102 0.1327 0.5544 0.5903

9.16 71.89 0.3866 1.132 0.4934 1.596 0.03148 0.1812 0.05218 0.1025 0.8483 0.5691

9.05 0.3863 0.4735 0.03148 0.05223 0.85

150

83.62 49.10 1.416 1.516 2.424 1.928 0.2911 0.2481 0.1317 0.1049 0.5848 0.4347

9.16 34.73 0.4735 1.316 0.199 2.753 0.03685 0.2976 0.04987 0.1449 0.6619 0.6919

9.03 0.4729 0.1627 0.03683 0.04991 0.6632

25

100

82.63 9.08 1.901 2.408 0.9058 1.408 0.1952 0.2423 0.06578 0.06446 0.2174 0.1682

9.13 73.75 0.6345 1.869 1.635 0.6164 0.1071 0.1937 0.1082 0.0664 1.071 0.2232

9.02 0.634 1.608 0.1067 0.1078 1.069

150

82.63 44.82 2.328 2.509 1.618 0.887 0.2623 0.2224 0.07219 0.05681 0.1948 0.1423

9.13 38.02 0.777 2.179 2.148 1.227 0.1403 0.2549 0.1157 0.07495 0.9356 0.2161

9.01 0.7761 2.175 0.1409 0.1164 0.9423

40

100

82.05 10.31 3.019 3.751 0.3617 0.5994 0.2364 0.2475 0.05017 0.04228 0.1044 0.07083

9.10 71.94 1.007 2.963 0.6643 0.312 0.1579 0.2358 0.1005 0.051 0.6272 0.1082

8.98 1.006 0.6469 0.1577 0.1005 0.6275

150

82.05 55.31 3.697 3.918 0.6774 0.3546 0.243 0.2475 0.04212 0.04048 0.07157 0.06493

9.10 26.96 1.233 3.383 1.519 0.5718 0.2547 0.2331 0.1324 0.04415 0.6744 0.08201

8.97 1.231 1.483 0.2534 0.1318 0.6726187
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Table 5.57: Comparison of modal parameters for the main modes of vibration before and after the insertion of the optimum TMD, for all the considered

primary structures subjected to the Chile 1985 earthquake, with µ = 0.02, ζ
S
= 0.05.

n
S,n

m
S,i

[t]
M

me,S,i
[%] T

S,i
[s] FAS(T

S,i
) [m/s] Sd(TS,i

) [m] Spv(TS,i
) [m/s] Spa(TS,i

) [m/s2]

No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD

1

100
100.00 22.44 0.1171 0.1377 0.3077 1.555 0.004203 0.006556 0.02292 0.03044 1.227 1.387

77.56 0.114 0.2611 0.003834 0.02145 1.179

150
100.00 26.07 0.1434 0.1659 1.527 0.792 0.007505 0.01228 0.03345 0.04732 1.463 1.789

73.93 0.1391 1.859 0.00676 0.03111 1.404

2

100

94.72 39.24 0.1894 0.2088 2.483 1.496 0.01871 0.01806 0.06325 0.05542 2.098 1.668

5.28 55.58 0.07236 0.1804 0.198 2.198 0.001214 0.0167 0.01071 0.0593 0.9298 2.065

5.18 0.07232 0.1769 0.001213 0.0107 0.9298

150

94.72 43.06 0.232 0.2538 0.8221 2.915 0.02156 0.02541 0.05952 0.06408 1.612 1.585

5.28 51.77 0.08862 0.2199 0.3667 2.568 0.001942 0.01984 0.01401 0.0578 0.9922 1.651

5.18 0.08857 0.3892 0.001939 0.01399 0.9919

3

100

91.41 7.03 0.2631 0.3564 1.505 4.253 0.02845 0.1019 0.06927 0.1831 1.654 3.229

7.49 84.50 0.09389 0.2599 0.1658 2.555 0.002265 0.02758 0.01539 0.068 1.028 1.644

7.38 0.09384 0.2434 0.002262 0.01538 1.028

150

91.41 32.79 0.3222 0.359 6.364 4.263 0.08523 0.1029 0.1695 0.1836 3.304 3.213

7.49 58.76 0.115 0.3086 0.7396 6.004 0.003954 0.069 0.02192 0.1432 1.195 2.913

7.37 0.1149 0.9483 0.003942 0.02188 1.193

5

100

87.95 50.80 0.4113 0.4412 3.99 2.642 0.1094 0.1045 0.1705 0.1517 2.604 2.16

8.72 37.33 0.1409 0.383 1.209 2.714 0.007059 0.1056 0.03206 0.1766 1.429 2.897

8.58 0.1408 1.044 0.007031 0.03197 1.427

150

87.95 56.68 0.5038 0.5358 3.014 0.9 0.0921 0.08071 0.1172 0.09653 1.462 1.132

8.72 31.45 0.1726 0.4638 1.088 2.047 0.01426 0.1038 0.05284 0.1434 1.922 1.944

8.58 0.1724 1.815 0.0142 0.05267 1.918

Continued on the next page
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n
S,n

m
S,i

[t]
M

me,S,i
[%] T

S,i
[s] FAS(T

S,i
) [m/s] Sd(TS,i

) [m] Spv(TS,i
) [m/s] Spa(TS,i

) [m/s2]

No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD

10

100

84.79 32.20 0.7834 0.8679 1.687 0.789 0.07547 0.06876 0.06172 0.05076 0.4951 0.3676

9.14 52.79 0.2631 0.7481 1.505 1.575 0.02845 0.07846 0.06927 0.0672 1.654 0.5644

9.01 0.2628 2.193 0.02838 0.06916 1.653

150

84.79 31.53 0.9594 1.065 0.8057 0.1099 0.08049 0.08868 0.05375 0.05336 0.352 0.3149

9.14 53.46 0.3222 0.9171 6.364 1.253 0.08523 0.07143 0.1695 0.0499 3.304 0.3419

9.01 0.3219 8.765 0.08502 0.1692 3.303

15

100

83.62 57.87 1.156 1.222 0.3881 0.3532 0.07663 0.07241 0.04248 0.03796 0.231 0.1952

9.16 25.96 0.3866 1.053 4.683 0.6802 0.1064 0.08976 0.1764 0.0546 2.867 0.3257

9.03 0.3861 4.636 0.1063 0.1764 2.872

150

83.62 43.15 1.416 1.531 0.5663 0.4354 0.07821 0.0864 0.0354 0.03616 0.1571 0.1484

9.16 40.67 0.4735 1.33 2.928 0.5636 0.1012 0.07016 0.1369 0.03381 1.818 0.1598

9.03 0.4729 2.573 0.1013 0.1373 1.825

25

100

82.63 29.71 1.901 2.115 0.5369 0.721 0.1018 0.1112 0.0343 0.03367 0.1134 0.1

9.13 53.13 0.6345 1.819 1.607 0.144 0.07641 0.09498 0.07715 0.03345 0.764 0.1155

9.01 0.6338 1.655 0.07614 0.07696 0.7629

150

82.63 34.01 2.328 2.563 0.9809 0.3582 0.1695 0.1579 0.04665 0.03948 0.1259 0.09679

9.13 48.83 0.777 2.215 1.009 0.439 0.07562 0.1348 0.06236 0.03898 0.5043 0.1106

9.01 0.7762 0.8877 0.07572 0.06251 0.5061

40

100

82.05 11.64 3.019 3.691 0.1891 0.4151 0.1253 0.217 0.02659 0.03767 0.05533 0.06413

9.10 70.62 1.007 2.957 0.561 0.2267 0.08971 0.1227 0.05709 0.02658 0.3563 0.05648

8.98 1.006 0.5255 0.08958 0.05706 0.3564

150

82.05 54.51 3.697 3.922 0.3996 0.4374 0.2175 0.203 0.03768 0.03315 0.06404 0.05311

9.10 27.77 1.233 3.39 0.279 0.6828 0.07119 0.1732 0.03699 0.03274 0.1885 0.06068

8.97 1.231 0.2901 0.07134 0.03712 0.1894189
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Table 5.58: Comparison of modal parameters for the main modes of vibration before and after the insertion of the optimum TMD, for all the considered

primary structures subjected to the Loma Prieta 1989 earthquake, with µ = 0.02, ζ
S
= 0.05.

n
S,n

m
S,i

[t]
M

me,S,i
[%] T

S,i
[s] FAS(T

S,i
) [m/s] Sd(TS,i

) [m] Spv(TS,i
) [m/s] Spa(TS,i

) [m/s2]

No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD

1

100
100.00 22.78 0.1171 0.1375 0.3685 0.2925 0.004386 0.005428 0.02395 0.02533 1.284 1.16

77.22 0.114 0.08093 0.0041 0.02299 1.266

150
100.00 3.46 0.1434 0.2877 0.6214 2.595 0.006227 0.04155 0.02768 0.09245 1.208 2.017

96.54 0.1429 0.672 0.00611 0.02726 1.194

2

100

94.72 20.39 0.1894 0.2218 0.4894 2.404 0.01388 0.02002 0.04695 0.05783 1.557 1.639

5.28 74.43 0.07236 0.1843 0.12 0.6181 0.001308 0.01333 0.01156 0.04635 1.006 1.581

5.18 0.07232 0.1191 0.001307 0.01156 1.006

150

94.72 43.67 0.232 0.2536 1.084 0.9997 0.02069 0.02467 0.05714 0.06228 1.548 1.542

5.28 51.15 0.08862 0.2198 0.09513 1.54 0.002167 0.01994 0.01561 0.05814 1.104 1.663

5.18 0.08857 0.09722 0.002163 0.01559 1.104

3

100

91.41 28.19 0.2631 0.2969 0.8164 0.7579 0.02857 0.05084 0.06949 0.1096 1.658 2.316

7.49 63.35 0.09389 0.2533 0.0956 1.081 0.00264 0.02458 0.0179 0.06211 1.194 1.54

7.37 0.09382 0.1062 0.002633 0.01787 1.193

150

91.41 46.75 0.3222 0.349 3.039 2.358 0.06843 0.07314 0.1361 0.1343 2.653 2.419

7.49 44.80 0.115 0.303 0.04814 2.389 0.004195 0.05665 0.02331 0.1197 1.272 2.48

7.36 0.1149 0.04135 0.004186 0.02328 1.272

5

100

87.95 45.81 0.4113 0.4447 1.115 1.246 0.0652 0.0569 0.1016 0.08196 1.553 1.158

8.72 42.32 0.1409 0.3862 0.4875 0.8965 0.005618 0.07564 0.02549 0.1255 1.135 2.043

8.58 0.1408 0.4701 0.00558 0.02535 1.13

150

87.95 40.85 0.5038 0.5495 1.714 1.433 0.07146 0.05714 0.09088 0.06663 1.134 0.762

8.72 47.28 0.1726 0.4765 0.943 1.451 0.01427 0.05825 0.05308 0.07835 1.937 1.034

8.59 0.1724 0.9509 0.0143 0.05326 1.946

Continued on the next page
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n
S,n

m
S,i

[t]
M

me,S,i
[%] T

S,i
[s] FAS(T

S,i
) [m/s] Sd(TS,i

) [m] Spv(TS,i
) [m/s] Spa(TS,i

) [m/s2]

No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD

10

100

84.79 75.60 0.7834 0.8092 0.9087 0.6425 0.07333 0.06945 0.05998 0.05499 0.4812 0.427

9.14 9.42 0.2631 0.6565 0.8164 1.822 0.02857 0.09452 0.06949 0.09224 1.658 0.8828

8.99 0.2626 0.7344 0.02833 0.06904 1.65

150

84.79 8.06 0.9594 1.244 0.1883 0.9931 0.0591 0.1261 0.03947 0.06496 0.2585 0.3281

9.14 76.92 0.3222 0.9452 3.039 0.1301 0.06843 0.05804 0.1361 0.03934 2.653 0.2615

9.02 0.322 3.044 0.06834 0.136 2.653

15

100

83.62 36.20 1.156 1.267 1.232 0.6307 0.1219 0.127 0.06756 0.06422 0.3673 0.3184

9.16 47.63 0.3866 1.097 0.8596 0.8925 0.07559 0.1178 0.1253 0.06878 2.037 0.3939

9.04 0.3862 0.903 0.07565 0.1256 2.044

150

83.62 45.72 1.416 1.524 0.6313 0.2464 0.09714 0.08842 0.04397 0.03716 0.1952 0.1532

9.16 38.11 0.4735 1.324 1.675 0.9588 0.05893 0.1198 0.07977 0.05798 1.059 0.2752

9.03 0.4729 1.659 0.05907 0.08005 1.064

25

100

82.63 23.73 1.901 2.156 0.4467 0.3275 0.1199 0.1114 0.0404 0.03311 0.1335 0.09649

9.13 59.11 0.6345 1.833 0.6845 0.3086 0.0829 0.1196 0.0837 0.04179 0.8288 0.1432

9.01 0.6338 0.6444 0.08249 0.08337 0.8264

150

82.63 52.84 2.328 2.477 0.5071 0.2027 0.1114 0.1117 0.03066 0.02888 0.08273 0.07326

9.13 30.01 0.777 2.145 0.8953 0.3649 0.07512 0.1138 0.06195 0.034 0.501 0.0996

9.00 0.776 0.8696 0.07535 0.06222 0.5038

40

100

82.05 45.23 3.019 3.249 0.916 0.723 0.1913 0.2136 0.04059 0.04213 0.08449 0.08147

9.10 37.04 1.007 2.822 0.7131 0.5742 0.07814 0.1489 0.04972 0.03381 0.3102 0.07529

8.97 1.006 0.7035 0.07745 0.04934 0.3083

150

82.05 28.35 3.697 4.128 0.5484 0.4588 0.2798 0.2554 0.04849 0.03964 0.0824 0.06034

9.10 53.91 1.233 3.544 1.168 0.5641 0.1248 0.2688 0.06486 0.0486 0.3305 0.08616

8.98 1.232 1.189 0.1246 0.06483 0.3307191
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Table 5.59: Comparison of modal parameters for the main modes of vibration before and after the insertion of the optimum TMD, for all the considered

primary structures subjected to the Northridge 1994 earthquake, with µ = 0.02, ζ
S
= 0.05.

n
S,n

m
S,i

[t]
M

me,S,i
[%] T

S,i
[s] FAS(T

S,i
) [m/s] Sd(TS,i

) [m] Spv(TS,i
) [m/s] Spa(TS,i

) [m/s2]

No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD

1

100
100.00 25.76 0.1171 0.1356 0.3581 1.787 0.01095 0.01378 0.05976 0.06504 3.203 3.015

74.24 0.1136 0.5314 0.01008 0.05665 3.129

150
100.00 63.30 0.1434 0.1533 1.34 1.752 0.01497 0.01788 0.06685 0.07445 2.931 3.044

36.70 0.133 1.203 0.0134 0.06453 3.051

2

100

94.72 51.15 0.1894 0.2045 1.7 1.272 0.02595 0.03195 0.08783 0.1 2.915 3.073

5.28 43.68 0.07236 0.1776 0.5557 1.859 0.003422 0.02879 0.02999 0.1038 2.587 3.675

5.18 0.07231 0.687 0.003413 0.02993 2.584

150

94.72 37.41 0.232 0.2567 2.672 1.592 0.03638 0.04225 0.1005 0.1053 2.725 2.576

5.28 57.41 0.08862 0.2214 1.552 1.558 0.006861 0.03691 0.04945 0.1068 3.499 3.033

5.18 0.08857 1.53 0.006849 0.04939 3.497

3

100

91.41 7.56 0.2631 0.3514 2.199 5.675 0.04578 0.1294 0.1114 0.236 2.661 4.22

7.49 83.98 0.09389 0.2597 0.8902 2.785 0.007556 0.04416 0.05153 0.1089 3.455 2.635

7.38 0.09384 0.9971 0.007551 0.05152 3.457

150

91.41 32.32 0.3222 0.3594 2.991 1.671 0.1274 0.1325 0.2534 0.2361 4.941 4.128

7.49 59.22 0.115 0.3087 0.9512 5.411 0.01043 0.111 0.05789 0.2302 3.159 4.682

7.37 0.1149 0.8953 0.0104 0.05781 3.157

5

100

87.95 33.95 0.4113 0.4553 5.049 5.379 0.1372 0.1581 0.2138 0.2225 3.266 3.071

8.72 54.18 0.1409 0.3926 1.332 3.36 0.01455 0.1477 0.06614 0.241 2.95 3.858

8.59 0.1408 1.318 0.01453 0.0661 2.951

150

87.95 15.58 0.5038 0.6003 3.929 5.132 0.1852 0.2349 0.2355 0.2507 2.938 2.624

8.72 72.53 0.1726 0.4916 1.951 1.544 0.0277 0.1814 0.1028 0.2364 3.744 3.021

8.59 0.1725 1.952 0.02766 0.1028 3.745

Continued on the next page
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n
S,n

m
S,i

[t]
M

me,S,i
[%] T

S,i
[s] FAS(T

S,i
) [m/s] Sd(TS,i

) [m] Spv(TS,i
) [m/s] Spa(TS,i

) [m/s2]

No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD

10

100

84.79 51.66 0.7834 0.8366 2.777 1.044 0.2738 0.2524 0.224 0.1933 1.797 1.452

9.14 33.34 0.2631 0.7256 2.199 2.194 0.04578 0.245 0.1114 0.2163 2.661 1.873

9.01 0.2627 2.353 0.04563 0.1112 2.659

150

84.79 58.38 0.9594 1.015 1.558 0.7074 0.225 0.1916 0.1503 0.121 0.9842 0.749

9.14 26.62 0.3222 0.8751 2.991 1.566 0.1274 0.2565 0.2534 0.1878 4.941 1.348

9.00 0.3218 3.191 0.1271 0.2529 4.939

15

100

83.62 47.48 1.156 1.241 2.719 1.642 0.225 0.2404 0.1247 0.1241 0.678 0.6282

9.16 36.35 0.3866 1.078 4.681 1.095 0.1419 0.2189 0.2351 0.1301 3.82 0.7588

9.03 0.3861 4.866 0.1412 0.2341 3.809

150

83.62 17.08 1.416 1.659 1.057 1.741 0.2812 0.3022 0.1273 0.1167 0.5649 0.4419

9.16 66.73 0.4735 1.377 2.668 0.9009 0.1711 0.2727 0.2316 0.1269 3.073 0.5787

9.04 0.473 2.714 0.1709 0.2315 3.075

25

100

82.63 45.43 1.901 2.046 2.05 1.11 0.329 0.3911 0.1109 0.1225 0.3665 0.376

9.13 37.42 0.6345 1.777 3.697 1.636 0.2187 0.3155 0.2208 0.1137 2.188 0.4021

9.01 0.6337 3.7 0.2191 0.2216 2.197

150

82.63 27.80 2.328 2.605 0.4991 0.6597 0.387 0.2978 0.1065 0.07325 0.2874 0.1767

9.13 55.04 0.777 2.234 2.761 0.7351 0.2745 0.4084 0.2264 0.1171 1.83 0.3295

9.01 0.7762 2.759 0.2745 0.2266 1.834

40

100

82.05 21.88 3.019 3.448 0.4428 0.565 0.2666 0.3059 0.05659 0.05685 0.1178 0.1036

9.10 60.39 1.007 2.918 0.8298 0.4714 0.1926 0.2616 0.1226 0.05744 0.7649 0.1237

8.98 1.006 0.8451 0.1928 0.1229 0.7675

150

82.05 24.93 3.697 4.173 0.5053 0.6602 0.3161 0.3578 0.05478 0.05493 0.0931 0.08271

9.10 57.34 1.233 3.56 1.72 0.5382 0.2395 0.3121 0.1244 0.05617 0.6341 0.09914

8.98 1.232 1.732 0.2393 0.1245 0.635193
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Table 5.60: Comparison of modal parameters for the main modes of vibration before and after the insertion of the optimum TMD, for all the considered

primary structures subjected to the Kobe 1995 earthquake (Takarazuka station), with µ = 0.02, ζ
S
= 0.05.

n
S,n

m
S,i

[t]
M

me,S,i
[%] T

S,i
[s] FAS(T

S,i
) [m/s] Sd(TS,i

) [m] Spv(TS,i
) [m/s] Spa(TS,i

) [m/s2]

No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD

1

100
100.00 54.92 0.1171 0.1266 0.4024 0.1695 0.003345 0.004246 0.01823 0.02143 0.9763 1.062

45.08 0.11 0.1876 0.002652 0.01545 0.8827

150
100.00 59.85 0.1434 0.154 0.6179 0.3901 0.008888 0.01107 0.03957 0.04604 1.729 1.879

40.15 0.1337 0.1272 0.005829 0.02768 1.291

2

100

94.72 9.46 0.1894 0.246 0.6944 1.204 0.01432 0.02826 0.04843 0.07372 1.607 1.886

5.28 85.35 0.07236 0.1867 0.04909 0.5902 0.00105 0.01405 0.009268 0.04823 0.8052 1.624

5.19 0.07233 0.05324 0.001049 0.009265 0.8053

150

94.72 46.47 0.232 0.2523 1.711 0.801 0.02874 0.02656 0.07936 0.06752 2.15 1.683

5.28 48.35 0.08862 0.219 0.135 0.7955 0.001597 0.02207 0.01153 0.06454 0.8167 1.852

5.18 0.08857 0.1275 0.001595 0.01152 0.8165

3

100

91.41 79.71 0.2631 0.2725 0.3815 0.3627 0.02407 0.02342 0.05867 0.05507 1.403 1.27

7.49 11.85 0.09389 0.2243 0.12 1.082 0.001822 0.025 0.01239 0.07127 0.8288 1.993

7.35 0.09377 0.1207 0.001817 0.01237 0.8286

150

91.41 23.41 0.3222 0.3699 0.6329 0.9832 0.03674 0.05853 0.07298 0.1014 1.422 1.722

7.49 68.13 0.115 0.3119 0.2017 0.4718 0.003141 0.02901 0.01742 0.05953 0.9487 1.198

7.37 0.1149 0.1944 0.003133 0.01738 0.9476

5

100

87.95 10.96 0.4113 0.5124 1.436 3.232 0.07963 0.132 0.124 0.1651 1.894 2.025

8.72 77.16 0.1409 0.4038 0.7028 1.47 0.008213 0.07513 0.03728 0.1192 1.661 1.854

8.60 0.1408 0.6843 0.008185 0.03719 1.658

150

87.95 53.11 0.5038 0.5385 3.72 1.943 0.136 0.1034 0.1729 0.1231 2.158 1.437

8.72 35.02 0.1726 0.4671 0.7535 3.488 0.01313 0.1349 0.04877 0.185 1.777 2.489

8.58 0.1724 0.7205 0.01313 0.0488 1.78

Continued on the next page
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n
S,n

m
S,i

[t]
M

me,S,i
[%] T

S,i
[s] FAS(T

S,i
) [m/s] Sd(TS,i

) [m] Spv(TS,i
) [m/s] Spa(TS,i

) [m/s2]

No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD

10

100

84.79 20.31 0.7834 0.9038 0.7293 1.16 0.1462 0.1866 0.1196 0.1323 0.9591 0.9198

9.14 64.67 0.2631 0.7593 0.3815 0.8771 0.02407 0.131 0.05867 0.1105 1.403 0.9143

9.02 0.2628 0.388 0.0241 0.05879 1.407

150

84.79 43.14 0.9594 1.039 1.005 0.962 0.1954 0.2342 0.1305 0.1444 0.8547 0.8734

9.14 41.85 0.3222 0.9021 0.6329 1.166 0.03674 0.1863 0.07298 0.1323 1.422 0.9217

9.01 0.3218 0.6505 0.03643 0.07247 1.414

15

100

83.62 14.04 1.156 1.384 1.509 2.918 0.2875 0.3679 0.1594 0.1703 0.8664 0.7728

9.16 69.77 0.3866 1.129 0.7202 1.485 0.06528 0.2794 0.1082 0.1586 1.758 0.8825

9.04 0.3863 0.7262 0.06514 0.108 1.757

150

83.62 41.54 1.416 1.536 2.959 2.254 0.3781 0.4056 0.1712 0.1692 0.7597 0.6925

9.16 42.28 0.4735 1.333 3.508 2.845 0.1387 0.3456 0.1877 0.1661 2.492 0.7829

9.03 0.4729 3.506 0.1385 0.1876 2.493

25

100

82.63 27.18 1.901 2.131 1.425 1.531 0.3973 0.3603 0.1339 0.1083 0.4426 0.3194

9.13 55.66 0.6345 1.825 1.431 1.321 0.1254 0.4069 0.1266 0.1428 1.254 0.4916

9.01 0.6338 1.427 0.1252 0.1266 1.255

150

82.63 47.78 2.328 2.496 1.336 1.056 0.3277 0.3247 0.09019 0.08334 0.2434 0.2098

9.13 35.07 0.777 2.167 0.766 1.521 0.1425 0.3542 0.1175 0.1047 0.9499 0.3036

9.00 0.7761 0.7716 0.1419 0.1171 0.9483

40

100

82.05 44.54 3.019 3.253 0.6456 0.5446 0.2956 0.2834 0.06274 0.05582 0.1306 0.1078

9.10 37.73 1.007 2.825 0.9855 0.7484 0.2096 0.2992 0.1334 0.06787 0.8324 0.1509

8.97 1.006 0.9864 0.2086 0.1329 0.8302

150

82.05 44.97 3.697 3.981 0.4674 0.4366 0.238 0.2104 0.04124 0.03386 0.07009 0.05344

9.10 37.30 1.233 3.457 2.307 0.4935 0.307 0.2652 0.1595 0.04915 0.8128 0.08932

8.97 1.232 2.285 0.3066 0.1595 0.8138195
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Table 5.61: Comparison of modal parameters for the main modes of vibration before and after the insertion of the optimum TMD, for all the considered

primary structures subjected to the Kobe 1995 earthquake (Takatori station), with µ = 0.02, ζ
S
= 0.05.

n
S,n

m
S,i

[t]
M

me,S,i
[%] T

S,i
[s] FAS(T

S,i
) [m/s] Sd(TS,i

) [m] Spv(TS,i
) [m/s] Spa(TS,i

) [m/s2]

No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD

1

100
100.00 40.84 0.1171 0.1298 0.1197 0.3542 0.004088 0.005356 0.02233 0.02643 1.198 1.279

59.16 0.1119 0.5828 0.003693 0.02112 1.186

150
100.00 30.84 0.1434 0.1631 0.2808 0.69 0.00782 0.01158 0.03484 0.04535 1.524 1.744

69.16 0.1384 0.4929 0.006855 0.03167 1.436

2

100

94.72 28.42 0.1894 0.2147 1.032 1.522 0.02044 0.02132 0.06912 0.0636 2.292 1.861

5.28 66.40 0.07236 0.1826 0.03902 0.9405 0.0009904 0.01898 0.008729 0.06655 0.7571 2.289

5.18 0.07232 0.03579 0.0009891 0.008723 0.757

150

94.72 34.67 0.232 0.2584 0.7722 0.8512 0.02519 0.03077 0.06956 0.07629 1.884 1.855

5.28 60.15 0.08862 0.2221 0.07348 0.9791 0.001736 0.02303 0.01251 0.0664 0.8853 1.878

5.18 0.08857 0.07985 0.001733 0.01249 0.8847

3

100

91.41 22.62 0.2631 0.303 1.578 0.4431 0.03191 0.04929 0.0777 0.1042 1.856 2.16

7.49 68.93 0.09389 0.2549 0.1954 0.9993 0.002187 0.02995 0.0148 0.07526 0.9853 1.855

7.37 0.09382 0.2038 0.002181 0.01477 0.9838

150

91.41 21.94 0.3222 0.3723 1.6 2.322 0.0557 0.07413 0.1107 0.1276 2.16 2.154

7.49 69.60 0.115 0.3124 0.2061 0.7251 0.00393 0.05275 0.02185 0.1082 1.193 2.176

7.37 0.1149 0.2489 0.003924 0.02183 1.193

5

100

87.95 69.77 0.4113 0.43 1.29 0.7944 0.07452 0.06805 0.1161 0.1014 1.774 1.482

8.72 18.36 0.1409 0.3644 0.4693 2.307 0.007317 0.07185 0.03323 0.1263 1.481 2.179

8.58 0.1407 0.4493 0.007279 0.03311 1.477

150

87.95 31.60 0.5038 0.5608 0.8371 1.344 0.06863 0.08487 0.08727 0.09695 1.088 1.086

8.72 56.52 0.1726 0.4823 0.5042 1.942 0.01495 0.06834 0.05536 0.0908 2.011 1.183

8.59 0.1724 0.6044 0.01488 0.05513 2.005
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n
S,n

m
S,i

[t]
M

me,S,i
[%] T

S,i
[s] FAS(T

S,i
) [m/s] Sd(TS,i

) [m] Spv(TS,i
) [m/s] Spa(TS,i

) [m/s2]

No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD

10

100

84.79 12.95 0.7834 0.9491 1.885 2.681 0.1707 0.3124 0.1396 0.2109 1.12 1.396

9.14 72.03 0.2631 0.7664 1.578 1.388 0.03191 0.1484 0.0777 0.124 1.856 1.016

9.02 0.2629 1.606 0.03186 0.07763 1.856

150

84.79 65.36 0.9594 1.005 2.335 1.205 0.321 0.3539 0.2144 0.2256 1.404 1.41

9.14 19.64 0.3222 0.8561 1.6 1.512 0.0557 0.2325 0.1107 0.174 2.16 1.277

9.00 0.3217 1.495 0.05552 0.1105 2.159

15

100

83.62 31.31 1.156 1.282 6.721 5.412 0.6657 0.7743 0.369 0.387 2.006 1.897

9.16 52.51 0.3866 1.104 2.261 6.334 0.07665 0.5393 0.127 0.3128 2.065 1.779

9.04 0.3862 2.327 0.0766 0.1271 2.068

150

83.62 75.18 1.416 1.461 0.5184 2.125 0.6386 0.5803 0.289 0.2545 1.283 1.095

9.16 8.66 0.4735 1.178 1.785 6.934 0.06902 0.7083 0.09341 0.3852 1.24 2.055

9.01 0.4726 1.731 0.06907 0.09364 1.245

25

100

82.63 14.97 1.901 2.257 2.907 3.844 0.8045 0.9458 0.2712 0.2684 0.8962 0.7472

9.13 67.86 0.6345 1.854 1.736 3.032 0.1053 0.7809 0.1063 0.2699 1.053 0.9145

9.02 0.6339 1.728 0.1053 0.1065 1.055

150

82.63 54.28 2.328 2.472 3.331 3.233 0.9163 0.8861 0.2522 0.2297 0.6806 0.5838

9.13 28.57 0.777 2.138 1.784 5.543 0.1619 0.9443 0.1335 0.283 1.079 0.832

9.00 0.776 1.768 0.1604 0.1324 1.072

40

100

82.05 47.79 3.019 3.235 2.566 1.78 0.7654 0.753 0.1624 0.1491 0.3381 0.2896

9.10 34.48 1.007 2.808 1.201 2.908 0.3548 0.8042 0.2258 0.1835 1.409 0.4105

8.97 1.006 1.204 0.354 0.2256 1.41

150

82.05 45.83 3.697 3.975 1.015 0.8318 0.6916 0.5945 0.1198 0.09583 0.2037 0.1515

9.10 36.44 1.233 3.452 8.338 1.179 0.7696 0.7589 0.3999 0.1409 2.038 0.2564

8.97 1.232 8.36 0.7688 0.4 2.041197
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Table 5.62: Comparison of modal parameters for the main modes of vibration before and after the insertion of the optimum TMD, for all the considered

primary structures subjected to the L’Aquila 2009 earthquake, with µ = 0.02, ζ
S
= 0.05.

n
S,n

m
S,i

[t]
M

me,S,i
[%] T

S,i
[s] FAS(T

S,i
) [m/s] Sd(TS,i

) [m] Spv(TS,i
) [m/s] Spa(TS,i

) [m/s2]

No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD

1

100
100.00 49.82 0.1171 0.1276 1.072 0.5616 0.004936 0.004961 0.02712 0.02491 1.463 1.228

50.18 0.1107 0.5346 0.005329 0.03088 1.755

150
100.00 43.72 0.1434 0.1581 1.17 1.338 0.007046 0.007136 0.03152 0.02894 1.384 1.152

56.28 0.1366 0.6969 0.006358 0.02971 1.363

2

100

94.72 21.85 0.1894 0.2202 0.1814 0.7217 0.009554 0.01311 0.0323 0.03814 1.071 1.088

5.28 72.97 0.07236 0.184 0.2076 0.5999 0.001494 0.008639 0.01308 0.03003 1.127 1.025

5.18 0.07232 0.1916 0.001491 0.01306 1.126

150

94.72 29.04 0.232 0.2624 0.3584 0.793 0.01491 0.01816 0.04115 0.04436 1.114 1.063

5.28 65.78 0.08862 0.2235 0.631 0.3537 0.00272 0.01362 0.01963 0.039 1.392 1.096

5.18 0.08857 0.6174 0.002717 0.01962 1.392

3

100

91.41 34.13 0.2631 0.2921 0.8135 0.5705 0.01818 0.018 0.04429 0.03946 1.058 0.8487

7.49 57.42 0.09389 0.2515 0.7905 0.6037 0.003258 0.01754 0.02209 0.04468 1.473 1.116

7.37 0.09381 0.7516 0.003249 0.02205 1.471

150

91.41 9.95 0.3222 0.4105 0.8592 1.503 0.02169 0.05064 0.0431 0.07906 0.8401 1.21

7.49 81.58 0.115 0.317 0.8731 0.8632 0.005065 0.02056 0.02835 0.04154 1.559 0.8233

7.38 0.1149 0.9056 0.005069 0.02839 1.562

5

100

87.95 59.33 0.4113 0.4359 1.466 1.164 0.05058 0.04958 0.07879 0.07287 1.204 1.05

8.72 28.80 0.1409 0.3764 0.7687 1.086 0.007055 0.04464 0.03209 0.07595 1.432 1.267

8.58 0.1407 0.7412 0.007056 0.03213 1.435

150

87.95 57.71 0.5038 0.535 0.7369 0.8484 0.07069 0.07689 0.0899 0.09207 1.121 1.081

8.72 30.42 0.1726 0.4628 0.6814 0.7732 0.007803 0.05844 0.02898 0.0809 1.056 1.098

8.58 0.1724 0.6334 0.007798 0.02899 1.058

Continued on the next page
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n
S,n

m
S,i

[t]
M

me,S,i
[%] T

S,i
[s] FAS(T

S,i
) [m/s] Sd(TS,i

) [m] Spv(TS,i
) [m/s] Spa(TS,i

) [m/s2]

No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD

10

100

84.79 54.88 0.7834 0.8327 1.064 0.8842 0.1022 0.1038 0.08358 0.07987 0.6705 0.6026

9.14 30.12 0.2631 0.7206 0.8135 1.244 0.01818 0.1045 0.04429 0.09295 1.058 0.8105

9.01 0.2627 0.8034 0.01817 0.04433 1.061

150

84.79 19.95 0.9594 1.109 0.7917 1.063 0.1144 0.1197 0.07643 0.06914 0.5006 0.3918

9.14 65.04 0.3222 0.9304 0.8592 0.4953 0.02169 0.1125 0.0431 0.07748 0.8401 0.5232

9.02 0.3219 0.8635 0.0216 0.04297 0.8384

15

100

83.62 45.81 1.156 1.244 1.026 0.6557 0.1196 0.1172 0.06629 0.06036 0.3604 0.3047

9.16 38.02 0.3866 1.081 2.598 1.024 0.04811 0.1193 0.07972 0.07074 1.296 0.4112

9.03 0.3861 2.592 0.04797 0.07959 1.295

150

83.62 41.59 1.416 1.535 0.5778 0.4909 0.1073 0.1066 0.04855 0.04449 0.2155 0.1821

9.16 42.23 0.4735 1.333 1.679 0.7572 0.06206 0.1121 0.08397 0.0539 1.114 0.2541

9.03 0.4729 1.621 0.06188 0.08383 1.114

25

100

82.63 30.62 1.901 2.11 0.29 0.3646 0.1239 0.1288 0.04177 0.03911 0.1381 0.1164

9.13 52.22 0.6345 1.817 1.109 0.2427 0.09389 0.1209 0.09481 0.04262 0.939 0.1474

9.01 0.6338 1.151 0.09377 0.09479 0.9398

150

82.63 39.55 2.328 2.533 0.3647 0.3345 0.1305 0.1297 0.0359 0.03282 0.09689 0.08143

9.13 43.29 0.777 2.198 1.247 0.3781 0.1029 0.1298 0.08482 0.03785 0.686 0.1082

9.01 0.7761 1.274 0.103 0.085 0.6882

40

100

82.05 41.51 3.019 3.27 0.2761 0.2207 0.1231 0.1184 0.02612 0.0232 0.05437 0.04458

9.10 40.77 1.007 2.84 0.9293 0.313 0.117 0.1261 0.07446 0.02845 0.4647 0.06295

8.97 1.006 0.9279 0.117 0.07452 0.4656

150

82.05 36.69 3.697 4.043 0.2013 0.1924 0.1119 0.1039 0.01939 0.01647 0.03295 0.02559

9.10 45.58 1.233 3.504 0.7144 0.2042 0.1177 0.1166 0.06115 0.02133 0.3116 0.03825

8.97 1.232 0.7218 0.1177 0.06125 0.3125199
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Table 5.63: Comparison of modal parameters for the main modes of vibration before and after the insertion of the optimum TMD, for all the considered

primary structures subjected to the Chile 2010 earthquake (Angol station), with µ = 0.02, ζ
S
= 0.05.

n
S,n

m
S,i

[t]
M

me,S,i
[%] T

S,i
[s] FAS(T

S,i
) [m/s] Sd(TS,i

) [m] Spv(TS,i
) [m/s] Spa(TS,i

) [m/s2]

No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD

1

100
100.00 42.56 0.1171 0.1293 0.3008 0.4516 0.007033 0.009105 0.03833 0.04508 2.052 2.19

57.44 0.1116 0.5228 0.005858 0.03351 1.882

150
100.00 10.09 0.1434 0.1905 0.9657 5.243 0.01271 0.0315 0.05654 0.1059 2.47 3.494

89.91 0.1415 1.966 0.01189 0.0537 2.38

2

100

94.72 48.50 0.1894 0.2053 4.391 5.055 0.03126 0.03319 0.1057 0.1036 3.506 3.175

5.28 46.32 0.07236 0.1783 0.6809 3.847 0.002092 0.02822 0.0183 0.1014 1.576 3.574

5.18 0.07231 0.4736 0.002086 0.01826 1.574

150

94.72 30.91 0.232 0.2609 2.661 6.47 0.03668 0.048 0.1013 0.1179 2.745 2.839

5.28 63.91 0.08862 0.2231 1.291 5.175 0.003453 0.03424 0.02497 0.0983 1.773 2.768

5.18 0.08857 1.07 0.003452 0.02497 1.774

3

100

91.41 42.07 0.2631 0.2873 8.289 2.675 0.04803 0.04298 0.117 0.09595 2.796 2.101

7.49 49.48 0.09389 0.249 1.523 1.555 0.003671 0.04154 0.02504 0.1068 1.68 2.695

7.36 0.09381 0.5472 0.003667 0.02504 1.681

150

91.41 40.82 0.3222 0.3527 4.169 3.217 0.03242 0.03389 0.06448 0.06155 1.258 1.096

7.49 50.73 0.115 0.3055 1.206 2.795 0.006582 0.03493 0.03648 0.07334 1.986 1.511

7.36 0.1149 1.219 0.00656 0.03639 1.983

5

100

87.95 30.89 0.4113 0.4588 1.46 0.648 0.0301 0.03077 0.04688 0.04297 0.7161 0.5885

8.72 57.23 0.1409 0.3941 0.7892 0.4712 0.01164 0.03196 0.05282 0.052 2.352 0.8299

8.59 0.1408 0.6155 0.01158 0.05261 2.346

150

87.95 40.73 0.5038 0.5496 2.136 0.5838 0.04058 0.04326 0.05158 0.05044 0.6431 0.5767

8.72 47.40 0.1726 0.4766 3.961 1.737 0.02686 0.03587 0.09969 0.04821 3.63 0.6355

8.59 0.1724 4.04 0.02682 0.09964 3.632

Continued on the next page
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n
S,n

m
S,i

[t]
M

me,S,i
[%] T

S,i
[s] FAS(T

S,i
) [m/s] Sd(TS,i

) [m] Spv(TS,i
) [m/s] Spa(TS,i

) [m/s2]

No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD

10

100

84.79 43.91 0.7834 0.8471 0.4892 1.038 0.05263 0.06123 0.04305 0.04631 0.3453 0.3435

9.14 41.08 0.2631 0.7357 8.289 1.182 0.04803 0.06303 0.117 0.05491 2.796 0.4691

9.01 0.2628 8.821 0.04803 0.1171 2.803

150

84.79 39.41 0.9594 1.046 0.6696 0.1287 0.05192 0.04838 0.03467 0.02963 0.2271 0.178

9.14 45.58 0.3222 0.9072 4.169 1.58 0.03242 0.06217 0.06448 0.04391 1.258 0.3042

9.01 0.3218 3.748 0.03247 0.06467 1.263

15

100

83.62 36.11 1.156 1.267 0.1293 0.3786 0.04829 0.05326 0.02677 0.02693 0.1455 0.1335

9.16 47.71 0.3866 1.097 0.9144 0.4806 0.03397 0.04294 0.05632 0.02507 0.9159 0.1436

9.04 0.3862 0.8137 0.03403 0.05649 0.9197

150

83.62 38.72 1.416 1.544 0.8986 0.6044 0.05956 0.05056 0.02696 0.02098 0.1197 0.08541

9.16 45.10 0.4735 1.339 1.358 0.6533 0.03513 0.06029 0.04753 0.02885 0.6306 0.1354

9.03 0.4729 0.9553 0.035 0.0474 0.6297

25

100

82.63 43.55 1.901 2.053 0.5929 0.5064 0.08635 0.08546 0.0291 0.02667 0.0962 0.08165

9.13 39.29 0.6345 1.783 1.505 0.5698 0.04843 0.06969 0.04892 0.02504 0.4845 0.08826

9.01 0.6337 1.453 0.04854 0.04909 0.4869

150

82.63 29.64 2.328 2.591 0.226 0.3267 0.06119 0.07113 0.01684 0.01759 0.04544 0.04265

9.13 53.19 0.777 2.229 1.002 0.3251 0.05304 0.06165 0.04374 0.01772 0.3537 0.04997

9.01 0.7762 1.035 0.0531 0.04384 0.3549

40

100

82.05 20.49 3.019 3.469 0.1738 0.1758 0.0743 0.09171 0.01577 0.01694 0.03282 0.03068

9.10 61.77 1.007 2.923 0.2448 0.252 0.05097 0.07592 0.03244 0.01664 0.2025 0.03577

8.98 1.006 0.3007 0.05108 0.03254 0.2033

150

82.05 13.74 3.697 4.43 0.1903 0.3289 0.1044 0.1332 0.01809 0.01926 0.03074 0.02732

9.10 68.52 1.233 3.611 0.7513 0.2107 0.05514 0.09767 0.02865 0.01733 0.146 0.03015

8.98 1.232 0.7799 0.05517 0.02869 0.1463201
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Table 5.64: Comparison of modal parameters for the main modes of vibration before and after the insertion of the optimum TMD, for all the considered

primary structures subjected to the Chile 2010 earthquake (Concepcion San Pedro station), with µ = 0.02, ζ
S
= 0.05.

n
S,n

m
S,i

[t]
M

me,S,i
[%] T

S,i
[s] FAS(T

S,i
) [m/s] Sd(TS,i

) [m] Spv(TS,i
) [m/s] Spa(TS,i

) [m/s2]

No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD

1

100
100.00 26.43 0.1171 0.1353 1.404 1.23 0.004959 0.0067 0.02709 0.0317 1.453 1.473

73.57 0.1135 0.5452 0.004628 0.02606 1.441

150
100.00 45.71 0.1434 0.1575 2.016 1.398 0.007765 0.009183 0.0346 0.03739 1.513 1.494

54.29 0.1362 0.4234 0.006779 0.03185 1.469

2

100

94.72 38.29 0.1894 0.2092 2.03 1.633 0.01948 0.01993 0.06586 0.06105 2.184 1.835

5.28 56.53 0.07236 0.1806 0.2498 1.407 0.001209 0.01748 0.01062 0.062 0.9184 2.157

5.18 0.07232 0.172 0.001207 0.01061 0.9177

150

94.72 35.20 0.232 0.258 4.15 2.893 0.02437 0.02437 0.06727 0.06052 1.821 1.474

5.28 59.62 0.08862 0.222 0.2863 2.617 0.002246 0.02043 0.01619 0.05889 1.146 1.665

5.18 0.08857 0.2226 0.002242 0.01617 1.146

3

100

91.41 44.19 0.2631 0.2862 6.357 2.596 0.02463 0.02899 0.05999 0.06486 1.433 1.423

7.49 47.36 0.09389 0.2483 0.6775 3.073 0.002748 0.02464 0.01862 0.06363 1.241 1.612

7.36 0.09381 1.029 0.002739 0.01858 1.24

150

91.41 39.87 0.3222 0.3533 0.43 2.372 0.03292 0.04222 0.06541 0.07659 1.275 1.363

7.49 51.68 0.115 0.3059 0.8884 1.883 0.004764 0.03423 0.02648 0.07165 1.446 1.471

7.36 0.1149 0.4051 0.004755 0.02645 1.446

5

100

87.95 55.62 0.4113 0.4381 2.857 1.565 0.05334 0.05911 0.08309 0.08643 1.269 1.239

8.72 32.51 0.1409 0.3795 0.4941 5.222 0.007267 0.04878 0.033 0.08235 1.471 1.363

8.58 0.1408 0.3461 0.007234 0.0329 1.468

150

87.95 46.07 0.5038 0.5444 3.939 1.634 0.0784 0.07711 0.09973 0.09074 1.244 1.047

8.72 42.06 0.1726 0.4728 0.7283 1.98 0.01429 0.0738 0.05292 0.1 1.923 1.329

8.58 0.1724 0.4074 0.01421 0.05269 1.917

Continued on the next page
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n
S,n

m
S,i

[t]
M

me,S,i
[%] T

S,i
[s] FAS(T

S,i
) [m/s] Sd(TS,i

) [m] Spv(TS,i
) [m/s] Spa(TS,i

) [m/s2]

No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD

10

100

84.79 15.61 0.7834 0.9287 2.256 1.404 0.1004 0.1403 0.08209 0.09678 0.6584 0.6548

9.14 69.37 0.2631 0.7638 6.357 4.874 0.02463 0.09253 0.05999 0.07761 1.433 0.6384

9.02 0.2628 5.475 0.02461 0.06 1.435

150

84.79 58.01 0.9594 1.015 1.701 2.733 0.1338 0.1231 0.08937 0.07768 0.5853 0.4807

9.14 26.99 0.3222 0.876 0.43 5.329 0.03292 0.1789 0.06541 0.1309 1.275 0.9386

9.00 0.3218 0.9677 0.03264 0.06494 1.267

15

100

83.62 26.58 1.156 1.3 1.8 2.257 0.1244 0.1504 0.06894 0.07418 0.3748 0.3586

9.16 57.24 0.3866 1.111 1.736 1.644 0.04938 0.1062 0.08184 0.06121 1.331 0.3461

9.04 0.3862 2.473 0.04935 0.08189 1.333

150

83.62 44.42 1.416 1.528 2.579 0.6384 0.1442 0.1571 0.06527 0.06589 0.2897 0.271

9.16 39.40 0.4735 1.327 1.703 0.896 0.07374 0.1476 0.0998 0.07128 1.325 0.3376

9.03 0.4729 1.694 0.07379 0.09999 1.329

25

100

82.63 25.63 1.901 2.142 0.4937 0.8964 0.1499 0.1215 0.05053 0.03635 0.167 0.1066

9.13 57.21 0.6345 1.829 2.07 0.7823 0.07339 0.1579 0.07411 0.05532 0.734 0.19

9.01 0.6338 1.764 0.07327 0.07406 0.7342

150

82.63 11.67 2.328 2.848 0.689 0.5603 0.1269 0.2009 0.03491 0.0452 0.09421 0.09971

9.13 71.16 0.777 2.281 1.671 0.438 0.09769 0.1238 0.08054 0.03478 0.6512 0.09581

9.02 0.7764 1.452 0.09743 0.0804 0.6506

40

100

82.05 67.28 3.019 3.146 0.4496 0.4798 0.1649 0.1289 0.03499 0.02625 0.07282 0.05243

9.10 15.00 1.007 2.644 1.952 0.7652 0.1225 0.2153 0.07796 0.05216 0.4866 0.124

8.96 1.005 1.8 0.1224 0.07801 0.4876

150

82.05 46.04 3.697 3.974 0.8669 0.2684 0.1596 0.1794 0.02765 0.02893 0.04699 0.04575

9.10 36.23 1.233 3.451 3.724 0.3557 0.1326 0.1349 0.06889 0.02504 0.3511 0.0456

8.97 1.232 3.804 0.1325 0.06892 0.3517203
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Table 5.65: Comparison of modal parameters for the main modes of vibration before and after the insertion of the optimum TMD, for all the considered

primary structures subjected to the New Zealand 2010 earthquake, with µ = 0.02, ζ
S
= 0.05.

n
S,n

m
S,i

[t]
M

me,S,i
[%] T

S,i
[s] FAS(T

S,i
) [m/s] Sd(TS,i

) [m] Spv(TS,i
) [m/s] Spa(TS,i

) [m/s2]

No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD

1

100
100.00 31.13 0.1171 0.1331 0.1176 0.02404 0.004085 0.005444 0.02227 0.02616 1.192 1.234

68.87 0.113 0.2134 0.003604 0.02035 1.129

150
100.00 47.15 0.1434 0.1571 0.16 0.8558 0.006616 0.007488 0.02951 0.03057 1.292 1.225

52.85 0.136 0.4536 0.005771 0.02713 1.252

2

100

94.72 36.02 0.1894 0.2103 0.5903 0.5677 0.008999 0.01519 0.03042 0.04627 1.009 1.383

5.28 58.80 0.07236 0.1811 0.1247 0.5042 0.001272 0.007542 0.01115 0.02666 0.9621 0.9243

5.18 0.07232 0.1007 0.001269 0.01113 0.9611

150

94.72 29.60 0.232 0.2619 0.4309 0.5149 0.0161 0.01801 0.0445 0.044 1.207 1.054

5.28 65.22 0.08862 0.2234 0.2133 0.5114 0.002205 0.0166 0.01592 0.04764 1.129 1.341

5.18 0.08857 0.2014 0.002203 0.01592 1.129

3

100

91.41 58.09 0.2631 0.2802 0.4451 0.6044 0.01845 0.02144 0.04487 0.04902 1.07 1.099

7.49 33.46 0.09389 0.2427 0.2263 0.7248 0.002364 0.01398 0.01613 0.03695 1.083 0.9579

7.36 0.0938 0.3029 0.002362 0.01613 1.084

150

91.41 21.73 0.3222 0.3726 0.3768 0.6539 0.0279 0.03419 0.05549 0.05878 1.083 0.9911

7.49 69.82 0.115 0.3125 0.2071 0.9912 0.003839 0.02785 0.02129 0.0571 1.16 1.148

7.37 0.1149 0.1922 0.003829 0.02125 1.159

5

100

87.95 8.72 0.4113 0.5303 0.9338 1.708 0.05217 0.09237 0.08124 0.1116 1.241 1.322

8.72 79.39 0.1409 0.4051 0.4136 0.4571 0.006322 0.04825 0.02872 0.07627 1.28 1.182

8.60 0.1408 0.4262 0.006311 0.02869 1.28

150

87.95 47.72 0.5038 0.5429 2.805 0.8185 0.09326 0.0888 0.1186 0.1048 1.479 1.213

8.72 40.41 0.1726 0.4716 0.3961 1.25 0.007799 0.07382 0.02899 0.1003 1.058 1.336

8.58 0.1724 0.3801 0.00781 0.02907 1.061

Continued on the next page
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n
S,n

m
S,i

[t]
M

me,S,i
[%] T

S,i
[s] FAS(T

S,i
) [m/s] Sd(TS,i

) [m] Spv(TS,i
) [m/s] Spa(TS,i

) [m/s2]

No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD

10

100

84.79 14.01 0.7834 0.9403 0.8324 2.005 0.2135 0.2352 0.1746 0.1603 1.401 1.071

9.14 70.97 0.2631 0.7654 0.4451 0.7891 0.01845 0.2023 0.04487 0.1693 1.07 1.39

9.02 0.2629 0.4217 0.01836 0.0447 1.067

150

84.79 37.22 0.9594 1.051 1.855 2.29 0.241 0.3013 0.1609 0.1837 1.054 1.099

9.14 47.77 0.3222 0.9101 0.3768 3.17 0.0279 0.2395 0.05549 0.1686 1.083 1.164

9.01 0.3218 0.4152 0.02792 0.0556 1.086

15

100

83.62 15.78 1.156 1.366 2.097 2.946 0.3468 0.3705 0.1923 0.1737 1.045 0.7989

9.16 68.03 0.3866 1.126 0.412 2.129 0.03721 0.3383 0.06166 0.1925 1.002 1.074

9.04 0.3862 0.3877 0.03715 0.06162 1.002

150

83.62 53.65 1.416 1.506 2.354 2.746 0.3365 0.3062 0.1523 0.1303 0.6762 0.5436

9.16 30.17 0.4735 1.303 1.322 4.999 0.07508 0.3819 0.1016 0.1877 1.348 0.9049

9.03 0.4729 1.242 0.07467 0.1012 1.344

25

100

82.63 26.72 1.901 2.134 2.519 3.336 0.5109 0.7142 0.1722 0.2144 0.5691 0.6313

9.13 56.12 0.6345 1.827 1.632 3.41 0.1185 0.4544 0.1196 0.1594 1.185 0.5483

9.01 0.6338 1.629 0.1181 0.1194 1.183

150

82.63 25.28 2.328 2.626 2.742 2.492 0.8362 0.8224 0.2301 0.2006 0.6211 0.48

9.13 57.55 0.777 2.241 1.02 1.687 0.2092 0.7915 0.1724 0.2263 1.394 0.6344

9.01 0.7762 1.044 0.2086 0.1722 1.394

40

100

82.05 25.18 3.019 3.404 1.742 1.405 0.5379 0.4768 0.1142 0.08974 0.2376 0.1656

9.10 57.09 1.007 2.906 3.141 1.028 0.2717 0.6127 0.1729 0.1351 1.079 0.2921

8.98 1.006 3.176 0.2709 0.1726 1.078

150

82.05 11.05 3.697 4.551 1.16 2.05 0.5459 1.04 0.0946 0.1464 0.1608 0.202

9.10 71.21 1.233 3.625 3.549 1.172 0.355 0.5011 0.1844 0.08857 0.9399 0.1535

8.98 1.232 3.537 0.355 0.1846 0.9415205
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Table 5.66: Comparison of modal parameters for the main modes of vibration before and after the insertion of the optimum TMD, for all the considered

primary structures subjected to the Tohoku 2011 earthquake (Tsukidate station), with µ = 0.02, ζ
S
= 0.05.

n
S,n

m
S,i

[t]
M

me,S,i
[%] T

S,i
[s] FAS(T

S,i
) [m/s] Sd(TS,i

) [m] Spv(TS,i
) [m/s] Spa(TS,i

) [m/s2]

No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD

1

100
100.00 6.54 0.1171 0.1734 1.801 10.61 0.01326 0.05283 0.07224 0.1953 3.865 7.086

0.00 93.46 0 0.1161 0 2.104 0 0.01283 0 0.07044 0 3.799

150
100.00 22.45 0.1434 0.1687 6.966 6.643 0.03522 0.05076 0.1569 0.1926 6.861 7.17

0.00 77.55 0 0.1396 0 7.012 0 0.03168 0 0.1453 0 6.539

2

100

94.72 40.58 0.1894 0.2083 11.9 11.83 0.05673 0.1069 0.1919 0.3282 6.365 9.886

5.28 54.24 0.07236 0.1801 0.6534 7.171 0.008903 0.05411 0.07843 0.1925 6.8 6.714

0.00 5.18 0 0.07232 0 0.7055 0 0.008889 0 0.07836 0 6.798

150

94.72 44.90 0.232 0.253 9.743 7.988 0.1741 0.1829 0.4806 0.4636 13.01 11.53

5.28 49.92 0.08862 0.2194 2.487 14.18 0.009623 0.1438 0.06989 0.4197 4.988 12.01

0.00 5.18 0 0.08857 0 1.865 0 0.009633 0 0.07002 0 5.002

3

100

91.41 59.69 0.2631 0.2796 6.91 6.616 0.1698 0.1447 0.414 0.3317 9.903 7.456

7.49 31.86 0.09389 0.2419 1.409 15.47 0.009491 0.1859 0.06487 0.4926 4.36 12.8

0.00 7.36 0 0.0938 0 0.6697 0 0.009487 0 0.06492 0 4.367

150

91.41 44.75 0.3222 0.3502 4.607 3.549 0.1346 0.105 0.2678 0.1921 5.225 3.447

7.49 46.80 0.115 0.3039 2.783 2.505 0.01235 0.1333 0.06844 0.2811 3.725 5.815

0.00 7.36 0 0.1149 0 1.867 0 0.01231 0 0.06825 0 3.718

5

100

87.95 36.85 0.4113 0.4523 2.101 1.186 0.08863 0.09535 0.138 0.1351 2.108 1.877

8.72 51.28 0.1409 0.3912 7.933 0.9569 0.03287 0.08158 0.1492 0.1336 6.649 2.147

0.00 8.59 0 0.1408 0 7.617 0 0.03273 0 0.1488 0 6.637

150

87.95 50.11 0.5038 0.5409 0.9457 1.073 0.08216 0.0855 0.1045 0.1013 1.304 1.176

8.72 38.02 0.1726 0.4697 12.15 2.418 0.05269 0.09334 0.1956 0.1273 7.128 1.703

0.00 8.58 0 0.1724 0 6.454 0 0.05265 0 0.1957 0 7.139

Continued on the next page
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n
S,n

m
S,i

[t]
M

me,S,i
[%] T

S,i
[s] FAS(T

S,i
) [m/s] Sd(TS,i

) [m] Spv(TS,i
) [m/s] Spa(TS,i

) [m/s2]

No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD

10

100

84.79 14.56 0.7834 0.9361 2.143 2.623 0.08092 0.1132 0.06618 0.07749 0.5308 0.5201

9.14 70.42 0.2631 0.7648 6.91 1.208 0.1698 0.0738 0.414 0.06181 9.903 0.5077

0.00 9.02 0 0.2628 0 8.048 0 0.1702 0 0.4154 0 9.944

150

84.79 43.05 0.9594 1.039 1.579 1.453 0.1217 0.11 0.08126 0.06784 0.5322 0.4103

9.14 41.94 0.3222 0.9022 4.607 1.599 0.1346 0.1138 0.2678 0.08084 5.225 0.563

0.00 9.01 0 0.3218 0 6.042 0 0.1349 0 0.2686 0 5.246

15

100

83.62 24.46 1.156 1.309 1.553 2.339 0.112 0.1699 0.06211 0.08317 0.3377 0.3992

9.16 59.36 0.3866 1.114 0.9273 1.736 0.0828 0.1067 0.1373 0.06136 2.232 0.3461

0.00 9.04 0 0.3862 0 0.7653 0 0.08294 0 0.1377 0 2.241

150

83.62 34.99 1.416 1.556 1.009 1.646 0.1309 0.1432 0.05924 0.05894 0.263 0.238

9.16 48.84 0.4735 1.346 3.072 1.183 0.09204 0.1633 0.1246 0.07774 1.654 0.3629

0.00 9.04 0 0.4729 0 2.07 0 0.09223 0 0.125 0 1.661

25

100

82.63 44.81 1.901 2.048 2.112 1.721 0.3118 0.2737 0.1051 0.08562 0.3473 0.2626

9.13 38.03 0.6345 1.779 2.658 4.75 0.08233 0.2641 0.08318 0.09512 0.8242 0.336

0.00 9.01 0 0.6337 0 2.377 0 0.08296 0 0.08391 0 0.8324

150

82.63 20.17 2.328 2.681 0.196 1.096 0.2631 0.2371 0.07241 0.05667 0.1954 0.1328

9.13 62.67 0.777 2.256 1.149 1.883 0.07887 0.2812 0.06502 0.07988 0.5257 0.2225

0.00 9.01 0 0.7763 0 0.8451 0 0.07858 0 0.06485 0 0.5249

40

100

82.05 20.61 3.019 3.467 1.093 2.435 0.3183 0.4596 0.06754 0.08494 0.1406 0.1539

9.10 61.65 1.007 2.923 0.9518 0.8021 0.1196 0.2906 0.07611 0.0637 0.475 0.1369

0.00 8.98 0 1.006 0 0.7017 0 0.1198 0 0.07633 0 0.4769

150

82.05 64.53 3.697 3.868 1.211 0.9878 0.43 0.3913 0.07452 0.06483 0.1266 0.1053

9.10 17.75 1.233 3.282 2.242 1.676 0.1603 0.425 0.08329 0.08298 0.4244 0.1589

0.00 8.96 0 1.231 0 2.568 0 0.16 0 0.08327 0 0.4249207



5.7.
A
n
aly

sis
of

th
e
n
u
m
erical

resu
lts:

T
M
D

p
erform

an
ce

an
d
stru

ctu
ral

ch
aracteristics

Table 5.67: Comparison of modal parameters for the main modes of vibration before and after the insertion of the optimum TMD, for all the considered

primary structures subjected to the Tohoku 2011 earthquake (Sendai station), with µ = 0.02, ζ
S
= 0.05.

n
S,n

m
S,i

[t]
M

me,S,i
[%] T

S,i
[s] FAS(T

S,i
) [m/s] Sd(TS,i

) [m] Spv(TS,i
) [m/s] Spa(TS,i

) [m/s2]

No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD

1

100
100.00 31.78 0.1171 0.1328 0.6939 1.298 0.006818 0.008484 0.03729 0.04085 2.003 1.931

68.22 0.1129 0.2654 0.00649 0.0368 2.05

150
100.00 36.49 0.1434 0.1606 0.6962 0.5341 0.01037 0.01141 0.04627 0.04552 2.027 1.782

63.51 0.1376 1.136 0.00936 0.0435 1.985

2

100

94.72 37.86 0.1894 0.2094 1.252 1.425 0.01372 0.01658 0.04641 0.05072 1.54 1.522

5.28 56.96 0.07236 0.1807 0.04522 1.227 0.002551 0.0129 0.0225 0.04574 1.953 1.591

5.18 0.07232 0.185 0.002548 0.02249 1.953

150

94.72 61.42 0.232 0.2469 1.761 0.813 0.01876 0.02044 0.0518 0.05305 1.403 1.35

5.28 33.41 0.08862 0.2138 0.7576 1.48 0.003876 0.01699 0.02798 0.05092 1.983 1.497

5.17 0.08856 1.045 0.003871 0.02796 1.983

3

100

91.41 20.42 0.2631 0.3061 1.262 2.963 0.02366 0.03565 0.05755 0.07461 1.373 1.532

7.49 71.12 0.09389 0.2555 0.4326 0.7676 0.004478 0.02162 0.03043 0.05419 2.033 1.333

7.37 0.09382 0.259 0.004469 0.03039 2.032

150

91.41 15.34 0.3222 0.387 1.861 3.16 0.03653 0.06708 0.07265 0.1111 1.417 1.805

7.49 76.20 0.115 0.3148 0.4312 1.972 0.006653 0.03625 0.03704 0.07379 2.027 1.473

7.37 0.1149 0.3507 0.006647 0.03704 2.027

5

100

87.95 32.69 0.4113 0.4566 4.092 2.053 0.06691 0.09543 0.1042 0.1338 1.592 1.841

8.72 55.43 0.1409 0.3933 0.4855 1.725 0.009947 0.06651 0.0452 0.1084 2.015 1.732

8.59 0.1408 0.9642 0.009924 0.04514 2.014

150

87.95 37.46 0.5038 0.5532 6.509 3.717 0.124 0.162 0.1577 0.1875 1.967 2.129

8.72 50.66 0.1726 0.4787 0.7074 4.678 0.01214 0.1158 0.04505 0.155 1.641 2.034

8.59 0.1724 0.301 0.01212 0.04503 1.642

Continued on the next page
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n
S,n

m
S,i

[t]
M

me,S,i
[%] T

S,i
[s] FAS(T

S,i
) [m/s] Sd(TS,i

) [m] Spv(TS,i
) [m/s] Spa(TS,i

) [m/s2]

No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD No TMD TMD

10

100

84.79 44.98 0.7834 0.8455 2.624 1.603 0.2784 0.2494 0.2277 0.189 1.827 1.405

9.14 40.01 0.2631 0.7344 1.262 1.18 0.02366 0.2728 0.05755 0.238 1.373 2.037

9.01 0.2628 1.897 0.02352 0.05728 1.368

150

84.79 30.31 0.9594 1.068 5.797 2.439 0.3938 0.3902 0.263 0.234 1.722 1.377

9.14 54.68 0.3222 0.9185 1.861 1.091 0.03653 0.3538 0.07265 0.2468 1.417 1.688

9.01 0.3219 1.781 0.03651 0.07267 1.419

15

100

83.62 74.62 1.156 1.194 1.902 3.304 0.3395 0.3387 0.1882 0.1818 1.023 0.9567

9.16 9.22 0.3866 0.9678 2.543 9.288 0.06714 0.3995 0.1113 0.2644 1.81 1.717

9.02 0.3859 2.013 0.06723 0.1116 1.819

150

83.62 26.03 1.416 1.594 2.425 1.862 0.3373 0.4225 0.1527 0.1698 0.6776 0.6691

9.16 57.79 0.4735 1.362 4.632 3.083 0.1118 0.3481 0.1512 0.1638 2.007 0.7556

9.04 0.473 4.723 0.1114 0.1509 2.004

25

100

82.63 42.44 1.901 2.057 0.9958 0.7215 0.2978 0.2986 0.1004 0.09301 0.3318 0.2841

9.13 40.40 0.6345 1.786 4.215 1.324 0.2516 0.312 0.254 0.1119 2.516 0.3937

9.01 0.6337 5.084 0.2508 0.2536 2.514

150

82.63 27.56 2.328 2.607 1.267 1.915 0.3118 0.3282 0.08582 0.08066 0.2316 0.1944

9.13 55.28 0.777 2.235 6.381 1.565 0.2793 0.3278 0.2303 0.094 1.862 0.2643

9.01 0.7762 6.888 0.2794 0.2306 1.867

40

100

82.05 51.99 3.019 3.214 1.129 0.348 0.3845 0.3474 0.08161 0.06926 0.1699 0.1354

9.10 30.28 1.007 2.784 6.661 1.697 0.4085 0.3763 0.26 0.08661 1.622 0.1955

8.97 1.005 6.43 0.4087 0.2605 1.628

150

82.05 49.52 3.697 3.952 0.8733 0.2634 0.2923 0.2668 0.05066 0.04326 0.08609 0.06879

9.10 32.75 1.233 3.428 2.444 0.7907 0.3379 0.3208 0.1756 0.05997 0.8947 0.1099

8.97 1.231 2.31 0.3381 0.1759 0.8975209



5.7. Analysis of the numerical results: TMD performance and structural characteristics
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Chapter 6

Conclusions

The subject of the present doctoral dissertation was the optimum tuning of Tuned

Mass Dampers, within several different structural and dynamic frameworks, with a

main slant to the civil engineering context, but providing also indications of general

character and validity. The TMD devices, in their different forms, are certainly one

of the most important means for the controlled reduction of structural vibrations.

The versatility of TMDs allows for their application in many engineering fields, and

the insertion in a generic system either at design stage or also in existing structures.

Main achievements are outlined below.

The optimisation of the TMD device is first investigated for benchmark ideal

excitations, namely harmonic and white noise excitations, acting either as force on

the primary structure or as base acceleration, for the general case of damped SDOF

primary structures.

The considered excitations represent the most representative cases contemplated

in the literature and constitute suitable models for possible real loading situations.

The main task of this study was the development of general tuning formulas, gener-

ated from a shared fitting model, for a range of values suitable for civil engineering

applications. The optimum parameters have been obtained through a nonlinear

optimisation algorithm and then fitted by means of nonlinear least squares.

Then, two fitting models have been proposed and calibrated: the first is based

on a polynomial combination of terms and is completely originated from the surface
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fitting process of the obtained optimum parameters; the second is based on literature

formulas for the special and simplified case of undamped primary structure and

then enriched by proper additional terms taking into account the effect of damping.

A global comparison pointed out the effectiveness of the newly achieved tuning

formulas based on the proposed fitting model, which allows for the actual optimum

tuning of TMDs, through very simple expressions, which could likely turn out quite

useful in view of practical applications.

Within the context of ideal excitations, another important part has been dedi-

cated to the analysis of the TMD performance in reducing the structural transient

response, through the optimisation of the control device in the case of unit impulse

excitation, for the general case of damped SDOF primary structures.

First, the passive TMD has been tuned through the same optimisation procedure

described previously for the other excitations. At that stage, it was found that the

control device was not significantly able to reduce as well the peak response occurring

at the very beginning of the time history, while the overall response turned out to

be remarkably decreased. Such outcome is likely due to the inertial nature of the

passive TMD, which therefore does not react promptly when a sudden excitation

occurs on the structural system.

Hence, the TMD has been successively upgraded to a hybrid form, with the ad-

dition of an active controller. Two specific control strategies have been analysed

in details for the controller, the first basically following the mainstream literature

and composed of the total primary structure kinematic response, then limited to

velocity and displacement only, and the second newly-proposed based on the rela-

tive velocity between primary structure and TMD and on the displacement of the

primary structure. This latter control law was found to be the best one, since it

provided large response reductions and with a shorter settling time, which denotes

a more stable behaviour from the structural point of view.

The last chapter concerned the investigation on the seismic performance im-

provement of simple structural systems (shear-type frames) due to the insertion
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Chapter 6. Conclusions

of a passive TMD. Due to the intrinsic uncertainties related to the nature of the

earthquake events, a wide group composed of 16 shear-type frame structures and 18

earthquakes, for a total of 288 cases, has been considered. The primary structures

have been conceived so that their modal parameters could cover a wide range of

the response spectrum values, while the assumed seismic signals exhibit quite dif-

ferent characteristics in terms of magnitude, duration, frequency content. A quite

high structural damping has been adopted, so that to provide a challenging test for

the control device. Indeed, a lower structural damping would certainly increase the

TMD performance. The special character of this study concerns the seismic optimi-

sation of the TMD by means of an innovative tuning method, which directly involves

the earthquake event, by embedding the seismic input signal within the optimisation

process, and therefore provides a TMD tuned for each specific considered case. This

feature is very important, since it establishes a sort of objective for the TMDs, and

therefore it becomes possible to explore the highest level of TMD effectiveness, at

least for the response index assumed as objective function.

The so obtained optimum TMD parameters globally exhibit the trends obtainable

from the tuning in the case of canonical excitations, with the exception of some cases

where different values are recovered. The seismic response, evaluated for different

kinematic and energy indicators, displayed a general significant reduction, especially

with consideration of the indexes related to the overall response, while the peak

response mainly showed smaller percentage reductions. A minor group of cases

actually exhibited results, in terms of both TMD parameters and response reduction,

not in line with the mainstream, which fact could be motivated by different reasons,

among which the characteristics of the signal, the correlation between structural

modal parameters and seismic signal characteristics and, mostly, the shape of the

objective function involved in the optimisation process.

A further investigation focused on this direction has been developed, concerning

a crossed comparison involving the response reduction and relevant indicators repre-

senting both input and output of the analysis, such as modal parameters, frequency

content of the seismic signal and response spectra. Following this way, an inspection

for possible motivations of the TMD effectiveness has been carried out. As a main
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outcome of this analysis, it appears that the TMD performance could be further

supported when the effective modal mass of the mode on which the device is tuned

turns out equally partitioned on the two achieved split modes and the attached

values of the response spectra corresponding to the modal periods decrease, which

denotes a general reduction of the structural seismic response. As a further indi-

rect validation of this observation, the cases where the obtained TMD performance

was less remarkable, more often corresponding to situations where the post-tuning

modes displayed quite unbalanced modal masses and the main of these two modes

exhibited just small reductions in terms of response spectra values.

In conclusions, this doctoral thesis has represented an effort in establishing the

actual effectiveness of Tuned Mass Damper devices within different structural dy-

namic contexts, assessed through models of the structural system and of the dynamic

excitation representative of real situations. Hence, outcomes and guidelines outlined

in the present research study could likely be implemented in potential engineering

applications of such control devices.

The overall results of this wide investigation clearly pointed out basically a sig-

nificant positive effect related to the addition of the TMD to the primary structure.

Indeed, a general remarkable reduction of dynamic response is achieved, which could

take values from 20% to 50% of the total, depending on the structural and excita-

tion parameters. This outcome should, in principle, encourage the further adoption

of the Tuned Mass Dampers in practical engineering applications, including in the

realm of civil engineering.

However, the passive TMD turns out quite able to reduce mostly the overall

response, and especially the part related to the steady-state evolution, while the

level of performance for the mitigation of the peak and the beginning of the transient

response could be improved with the addition of an active controller, especially

when the excitation exhibits characteristics of typical impulse loading, such as unit

impulse and earthquake excitations, as analysed here. For this latter case, the

uncertainties related to this typology of loading, which is characterised by a purely

random nature, made necessary a wide study, where different situations have been
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Chapter 6. Conclusions

investigated. Such research provided not only a wide scenario of the potential seismic

performance of the TMD, but also started to point out the main connections between

a given earthquake response abatement due to TMD addition and the corresponding

structural context. These results should play an important role in explaining the

actual behaviour of TMDs in earthquake engineering, and also could significantly

contribute in improving the seismic tuning process, which could therefore be set in

order to match favourable conditions from both the structure and the excitation

points of view, so that to maximise the benefit coming from the control device.

With these remarks in mind, future studies could first focus on further and more

definite analyses on the effectiveness of TMDs in reducing the seismic response,

with the task of developing ad hoc tuning formulas, and set a comparison to those

available for classical ideal excitations.

Also, the performance of the hybrid TMD should be deepened in different con-

texts. Such typology of TMD looks very interesting, since it provides a basic effective

passive TMD and the active controller brings in the chance to further improve the

performance, with specific reference to the inertial component of the passive device

alone.

The indications provided within this research could provide important guidelines

for further studies on the optimal design of TMDs in earthquake engineering. In

particular, an improved tuning process could consider and take advantage from

the salient positive features that motivate the remarkable level of effectiveness of

the control device in decreasing the structural seismic response. Summary and final

outcome of these investigations and studies could likely be the development of a spe-

cial version of a TMD, designed specifically for civil engineering applications, which

should be able to control and reduce efficiently the structural dynamic response.
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Appendix

In the following, a representative sample of the codes assembled within a MAT-

LAB environment, for the solution of the tuning problems presented all along the

thesis, is reported. In particular, the codes list the main scheme of the numerical

implementations developed within this research work for the following topics:

• Optimisation of the passive TMD for ideal loading (Chapter 3);

• Tuning of the passive TMD for impulse loading (Chapter 4);

• Tuning of the hybrid TMD for impulse loading (Chapter 4);

• Seismic tuning of the passive TMD (Chapter 5).
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%% OPTIMISATION OF THE TMD FOR IDEAL LOADING %%

%% Initialisations

close all; clear all; clc; format long;

%% Numerical optimisation

% Variables

mu=0.0025:0.0025:0.1;

Zs=[0:0.0025:0.05,0.055:0.005:0.1];

g=0:0.0002:2; % frequency range

% Options, bounds and constraints

lb=[1e-5;1e-5]; ub=[5;5];

options=optimset(’Display’,’iter’,...

’TolX’,1e-6,’TolFun’,1e-6,’TolCon’,1e-6,...

’MaxFunEvals’,300,’MaxIter’,300);

% Optimisation loop

for i=1:length(mu);

for n=1:length(Zs);

x0=[1./(1+mu(i));

sqrt(3*mu(i)/(8*(1+mu(i))))]; % Den Hartog tuning

v=[mu(i) Zs(n)];

[x,fval,maxfval]=fminimax(@(x) HF_OF(x,v),x0,...

[],[],[],[],lb,ub,[],options);

As=x(1).^2-g.^2;

At=x(1).^2;

Ats=g.^2;

Bs=2.*x(2).*x(1).*g;

Bt=2.*x(2).*x(1).*g;
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Bts=0;

C=g.^4-g.^2.*(1+x(1).^2.*(1+v(1))+4.*v(2).*x(2).*x(1))+x(1).^2;

D=-g.^3.*(2.*x(2).*x(1).*(1+v(1))+2.*v(2))+...

g.*(2.*x(2).*x(1)+2.*v(2).*x(1).^2);

Xs=max(sqrt((As.^2+Bs.^2)./(C.^2+D.^2)));

Xt=max(sqrt((At.^2+Bt.^2)./(C.^2+D.^2)));

Xts=max(sqrt((Ats.^2+Bts.^2)./(C.^2+D.^2)));

RT(i,8*n-7:8*n)=[Zs(n) mu(i) x(1) x(2) Xs Xt Xts 0];

f(n,i)=x(1); Zt(n,i)=x(2);

vXs(n,i)=Xs; vXt(n,i)=Xt; vXts(n,i)=Xts;

end

end

%% THE END %%
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%% IMPULSE TUNING OF THE PASSIVE TMD %%

%% Initialisations

close all; clear all; clc; format long;

%% Optimisation parameters and options

% Time vector

t0=0; ta=10; fs=1e3; ni=fs*ta; dt=1/fs; t=t0:dt:ta;

% Structural parameters

m1=100; k1=10000; w1=sqrt(k1/m1);

mu=0.0025:0.0025:0.1; z1=[0,0.01,0.02,0.03,0.05];

% Optimisation options

lb=[0.001*w1;0.001]; ub=[5*w1;1];

options=optimset(’Display’,’iter’,’Algorithm’,’sqp’,...

’TolX’,1e-10,’TolFun’,1e-10,’TolCon’,1e-10,...

’MaxIter’,50,’MaxFunEvals’,300);

% Result vectors

f=zeros(length(z1),length(mu)); z2g=f; dresp_H2=f;

for l=1:length(mu);

for n=1:length(z1);

%% Structural parameters

% SDOF system

c1=2*z1(n)*sqrt(k1*m1); Hsn=1; Hsd=[m1,c1,k1];

% 2DOF system

m2=mu(l)*m1; w2=w1; k2=w2^2*m2; z2=10/100; c2=2*z2*sqrt(k2*m2);
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% Impulse loading

Xg=0.01; % amplitude of the base displacement [m]

F1s=Xg*[c1 k1]; F2s=[0 0];

% Transfer function

N1=conv(F1s,Hsn); D=Hsd; [res1,p,]=residue(N1,D);

% Time response

xt1=zeros(length(p),length(t)); xdt1=xt1; xddt1=xt1;

for i=1:length(p);

xt1(i,:)=res1(i)*exp(p(i)*t);

xdt1(i,:)=p(i)*xt1(i,:); xddt1(i,:)=p(i)^2*xt1(i,:);

end

xt1=sum(xt1); xdt1=sum(xdt1); xddt1=sum(xddt1);

% Time response (analytical formulation, base displacement)

xt1=exp(-c1./(2*m1).*t)./(m1.*sqrt(4*k1*m1-c1^2)).*...

((2*k1*m1-c1^2).*sin(sqrt(4*k1*m1-c1^2)./(2*m1).*t)+...

(c1.*sqrt(4*k1*m1-c1^2)).*cos(sqrt(4*k1*m1-c1^2)./(2*m1).*t));

% Peak response (analytical formulation)

tmax=2*m1/sqrt(4*m1*k1-c1^2)*atan((c1^2-m1*k1)*sqrt(4*m1*k1-c1^2)/...

(c1^3-3*m1*c1*k1));

xmax=sqrt(k1/m1)*sqrt((c1^2-3*m1*k1)^2)/(3*m1*k1-c1^2)*...

exp(-c1/sqrt(4*m1*k1-c1^2)*...

atan((c1^2-m1*k1)*sqrt(4*m1*k1-c1^2)/(c1^3-3*m1*c1*k1)));

% Optimisation loop (w2, z2)

x0=[w2; z2];

[x]=fmincon(@(x) of_p(x,t,m1,c1,k1,m2,F1s,F2s),x0,[],[],[],[],...

lb,ub,[],options);
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% TMD parameters

w2=x(1); z2=x(2); k2=w2^2*m2; c2=2*z2*sqrt(k2*m2);

% Transfer function

Hsn11p=[m2,c2,k2]; Hsn12p=[0,c2,k2];

Hsn21p=[0,c2,k2]; Hsn22p=[m1,c1+c2,k1+k2];

Hsdp=[m1*m2,c1*m2+c2*(m1+m2),c1*c2+k1*m2+k2*(m1+m2),...

c1*k2+c2*k1,k1*k2];

% Time response

[xt1p,xdt1p,xddt1p,xt2p,xdt2p,xddt2p]=...

iltr_2dof(t,F1s,F2s,Hsn11p,Hsn12p,Hsn21p,Hsn22p,Hsdp);

dr_H2=(norm(xt1)-norm(xt1p))/norm(xt1); frat=w2/w1;

f(n,l)=frat; z2g(n,l)=x(2); dresp_H2(n,l)=dr_H2;

end

end

%% THE END %%
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%% IMPULSE TUNING OF THE HYBRID TMD %%

%% Initialisations

close all; clear all; clc; format long;

%% Optimisation parameters and options

% Time vector

t0=0; ta=10; fs=1e3; ni=fs*ta; dt=1/fs; t=t0:dt:ta;

% Structural parameters

m1=100; k1=10000; w1=sqrt(k1/m1); mu=0.02; z1=0.05;

% Optimisation options

options=optimset(’Display’,’iter’,’Algorithm’,’sqp’,’TolX’,1e-10,...

’TolFun’,1e-10,’TolCon’,1e-10,’MaxIter’,50,’MaxFunEvals’,300);

%% Passive TMD

% Structural parameters

c1=2*z1*sqrt(k1*m1); Hsn=1; Hsd=[m1,c1,k1];

m2=mu*m1; w2=w1; z2=10/100;

% Impulse loading

Xg=0.01; % amplitude of the base displacement [m]

F1s=Xg*[c1 k1]; F2s=[0 0]; % base displacement

% Transfer function

N1=conv(F1s,Hsn); D=Hsd; [res1,p,]=residue(N1,D);

% Time response

xt1=zeros(length(p),length(t)); xdt1=xt1; xddt1=xt1;

for i=1:length(p);
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xt1(i,:)=res1(i)*exp(p(i)*t);

xdt1(i,:)=p(i)*xt1(i,:); xddt1(i,:)=p(i)^2*xt1(i,:);

end

xt1=sum(xt1); xdt1=sum(xdt1); xddt1=sum(xddt1);

% Optimisation loop (w2, z2)

x0=[w2; z2]; lb=[0.001*w1;0.001]; ub=[5*w1;1];

[x]=fmincon(@(x) of_p(x,t,m1,c1,k1,m2,F1s,F2s),x0,[],[],[],[],...

lb,ub,[],options);

% TMD parameters

w2=x(1); z2=x(2); k2=w2^2*m2; c2=2*z2*sqrt(k2*m2); f=w2/w1;

% System matrices

M=[m1 0;0 m2]; C=[c1+c2 -c2;-c2 c2]; K=[k1+k2 -k2;-k2 k2];

% Transfer function

Hsn11p=[m2,c2,k2]; Hsn12p=[0,c2,k2];

Hsn21p=[0,c2,k2]; Hsn22p=[m1,c1+c2,k1+k2];

Hsdp=[m1*m2,c1*m2+c2*(m1+m2),c1*c2+k1*m2+k2*(m1+m2),...

c1*k2+c2*k1,k1*k2];

[xt1p,xdt1p,xddt1p,xt2p,xdt2p,xddt2p]=...

iltr_2dof(t,F1s,F2s,Hsn11p,Hsn12p,Hsn21p,Hsn22p,Hsdp);

%% Hybrid TMD

% Selection of the control law

fcl=1;

% Gains optimisation

if fcl==1;

240



gv=20; gd=12000; lb=[0;10000]; ub=[50;25000]; x0h=[gv; gd];

[xh]=fmincon(@(x) of_h(x,t,m1,c1,k1,m2,c2,k2,F1s,F2s,fcl),x0h,...

[],[],[],[],lb,ub,[],options);

gv=xh(1); gd=xh(2); sprintf(’gv=%g, gd=%g’,gv,gd)

Mc=M; Cc=C+[gv 0; -gv 0]; Kc=K+[gd 0; -gd 0];

% Closed loop poles

cl_poles=polyeig(Kc,Cc,Mc); % closed loop poles

% Transfer function

Hsn11h=[m2,c2,k2]; Hsn12h=[0,c2+gv,k2+gd];

Hsn21h=[0,c2+gv,k2]; Hsn22h=[m1,c1+c2+gv,k1+k2+gd];

Hsdh=[m1*m2,c1*m2+c2*(m1+m2)+gv*m2,...

c1*c2+k1*m2+k2*(m1+m2)+gd*m2,c1*k2+c2*k1,k1*k2];

% Time response

[xt1h,xdt1h,xddt1h,xt2h,xdt2h,xddt2h]=...

iltr_2dof(t,F1s,F2s,Hsn11h,Hsn12h,Hsn21h,Hsn22h,Hsdh);

% Control force

fct=gv*xdt1h+gd*xt1h;

elseif fcl==2;

ga=-90; gv=30; lb=[-95;20]; ub=[-85;40]; x0h=[ga; gv];

% ga=-90; gv=30; lb=[-90;20]; ub=[-75;45]; x0h=[ga; gv];

[xh]=fmincon(@(x) of_h(x,t,m1,c1,k1,m2,c2,k2,F1s,F2s,fcl),x0h,...

[],[],[],[],lb,ub,[],options);

ga=xh(1); gv=xh(2); sprintf(’ga=%g, gv=%g’,ga,gv)

Mc=M+[ga 0; -ga 0]; Cc=C+[gv -gv; -gv gv]; Kc=K;

% Closed loop poles
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cl_poles=polyeig(Kc,Cc,Mc); % closed loop poles

% Transfer function

Hsn11h=[m2,c2+gv,k2]; Hsn12h=[ga,c2+gv,k2];

Hsn21h=[0,c2+gv,k2]; Hsn22h=[m1+ga,c1+c2+gv,k1+k2];

Hsdh=[m1*m2+ga*m2,c1*m2+c2*(m1+m2)+gv*(m1+m2),...

c1*c2+k1*m2+k2*(m1+m2)+gv*c1,c1*k2+c2*k1+gv*k1,k1*k2];

% Time response

[xt1h,xdt1h,xddt1h,xt2h,xdt2h,xddt2h]=...

iltr_2dof(t,F1s,F2s,Hsn11h,Hsn12h,Hsn21h,Hsn22h,Hsdh);

% Control force

fct=ga*xddt1h+gv*(xdt1h-xdt2h);

end

%% THE END %%
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%% SEISMIC TUNING OF THE TMD %%

%% Initialisations

close all; clear all; clc; format long;

%% Seismic analysis of the primary structure

% Constants and primary structure parameters

g=9.8066; run Structures/sp_01_100;

% Seismic input

run Strong_motions/Accel_LBE1933_LBE_NS;

acc=reshape(acc_LBE1933_LBE_NS’,[],1);

dt=dt_acc_LBE1933_LBE_NS; ta=0:dt:dt*length(acc)-dt;

% Number of degrees of freedom and initial conditions

u0=zeros(ndof,1); ud0=zeros(ndof,1);

% Evaluation and assignment of seismic forces

F=zeros(ndof,length(accp));

for i=1:length(accp);

F(:,i)=-M*ones(ndof,1)*accp(i);

end

%% Dynamic response (time domain)

[u,ud,udd]=newmark(M,C,K,u0,ud0,F,dt,ta);

[u_tst_Hinf,u_tst_H2,ud_tst_Hinf,ud_tst_H2,...

udd_tst_Hinf,udd_tst_H2,Ee,Te,De]=seisres(u,ud,udd,M,K,C,accp);

% PSa - periods

PSa_T=lint_PSaT(T,PSa,Trs);
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%% Optimization and seismic analysis of the structural system

% Variable parameters

mu=0.02; % mass ratio

% Options and constraints

x0=[1;0.1]; lb=[0.7;0.001]; ub=[1.1;0.1];

options=optimset(’Display’,’iter’,’Algorithm’,’interior-point’,...

’TolX’,1e-10,’TolFun’,1e-10,’MaxFunEvals’,500,’MaxIter’,500);

for r=1:length(mu);

for n=1:length(Z);

v=[mu(r) Z(n)];

x0=[1/(1+mu(r));sqrt(3*mu(r)/(8*(1+mu(r))))];

% Optimization algorithm

[x]=fmincon(@(x) objfun(x,v,ndof,M,K,C,w,Mm,accp,dt,ta),...

x0,[],[],[],[],lb,ub,[],options);

% TMD and structural system parameters

[M_tmd,K_tmd,C_tmd,ndof_ss,M_ss,K_ss,C_ss]=...

tmdpar(x,v,ndof,M,K,C,w,Mm);

% Boundary conditions

u0_ss=zeros(ndof_ss,1); ud0_ss=zeros(ndof_ss,1);

% Evaluation and assignment of seismic forces

F_ss=zeros(ndof_ss,length(accp));

for i=1:length(accp);

F_ss(:,i)=-M_ss*ones(ndof_ss,1)*accp(i);

end

244



% Dynamic response

[u_ss,ud_ss,udd_ss]=newmark(M_ss,C_ss,K_ss,u0_ss,ud0_ss,F_ss,dt,ta);

[u_ss_tst_Hinf,u_ss_tst_H2,ud_ss_tst_Hinf,ud_ss_tst_H2,...

udd_ss_tst_Hinf,udd_ss_tst_H2,u_tmd_Hinf,u_tmd_H2,...

ud_tmd_Hinf,ud_tmd_H2,udd_tmd_Hinf,udd_tmd_H2,Ee_pt,Te_pt,De_pt]=...

seisres_ss(u_ss,ud_ss,udd_ss,M,K,C,accp);

% Table of results

RT(n*length(mu)-(length(mu)-r),1:28)=[Z(n) mu(r) x(1) x(2)...

u_ss_tst_Hinf 100*(u_tst_Hinf-u_ss_tst_Hinf)/u_tst_Hinf...

ud_ss_tst_Hinf 100*(ud_tst_Hinf-ud_ss_tst_Hinf)/ud_tst_Hinf...

udd_ss_tst_Hinf 100*(udd_tst_Hinf-udd_ss_tst_Hinf)/udd_tst_Hinf...

u_ss_tst_H2 100*(u_tst_H2-u_ss_tst_H2)/u_tst_H2...

ud_ss_tst_H2 100*(ud_tst_H2-ud_ss_tst_H2)/ud_tst_H2...

udd_ss_tst_H2 100*(udd_tst_H2-udd_ss_tst_H2)/udd_tst_H2...

max(Ee_pt) 100*(max(Ee)-max(Ee_pt))/max(Ee)...

max(Te_pt) 100*(max(Te)-max(Te_pt))/max(Te)...

max(De_pt) 100*(max(De)-max(De_pt))/max(De)...

norm(Ee_pt) 100*(norm(Ee)-norm(Ee_pt))/norm(Ee)...

norm(Te_pt) 100*(norm(Te)-norm(Te_pt))/norm(Te)...

norm(De_pt) 100*(norm(De)-norm(De_pt))/norm(De)];

% Modal analysis

[eval_ss,evec_ss,w_ss,f_ss,T_ss,Mm_ss,Rho_ss,Mmeff_ss]=...

modan(M_ss,K_ss);

% PSa - periods

PSa_T_ss=lint_PSaT(T_ss,PSa,Trs);

end

end
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%% THE END %%
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