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Abstract: Functional data are generally curves indexed over a time domain, and land-use regression
(LUR) is a promising spatial technique for generating high-resolution spatial estimation of retro-
spective long-term air pollutants. We developed a methodology for the novel functional land-use
regression (FLUR) model, which provides high-resolution spatial and temporal estimations of ret-
rospective pollutants. Long-term fine particulate matter (PM2.5) in the megacity of Tehran, Iran,
was used as the practical example. The hourly measured PM2.5 concentrations were averaged for
each hour and in each air monitoring station. Penalized smoothing was employed to construct
the smooth PM2.5 diurnal curve using averaged hourly data in each of the 30 stations. Functional
principal component analysis (FPCA) was used to extract FPCA scores from pollutant curves, and
LUR models were fitted on FPCA scores. The mean of all PM2.5 diurnal curves had a maximum of
39.58 µg/m3 at 00:26 a.m. and a minimum of 29.27 µg/m3 at 3:57 p.m. The FPCA explained about
99.5% of variations in the observed diurnal curves across the city using just three components. The
evaluation of spatially predicted long-term PM2.5 diurnal curves every 15 min provided a series
of 96 high-resolution exposure maps. The presented methodology and results could benefit future
environmental epidemiological studies.

Keywords: air pollution; spatiotemporal modeling; functional data analysis; land-use regression; Tehran

1. Introduction

Air pollution is one of the most challenging health problems worldwide. In particular,
airborne fine particulate matter (PM2.5) is recognized as the main cause of nine million
deaths at the global level [1]. Long-term exposure to a higher concentration of PM2.5 is
known to be associated with higher mortality from an all-natural cause of death, cardio-
vascular disease, respiratory disease, lung cancer, diabetes, dementia, asthma, and acute
lower-respiratory infections such as pneumonia and bronchiolitis [2]. Moreover, it is associ-
ated with the onset of several diseases, most importantly, lung cancer and leukemia [3,4].

Scientific communities around the world have focused on studying the problem of
air pollution from different aspects. Researchers considered modeling various pollutants
to predict (or estimate) retrospective, real-time, or prospective concentrations as each of
these goals has various implications. They used a number of statistical frameworks to
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spatially, temporally, or spatiotemporally model pollutant concentrations based on their
goals, with different time and spatial scales for local, national, and continental study areas.
Moreover, researchers tried to recognize and use the best set of predicting information
based on their available resources. Examples of such studies are the spatiotemporal real-
time prediction of hourly PM2.5 concentration to build a novel short-distance route finder
using the back-propagation neural network as the modeling technique [5]; the modeling
of several air pollutants to build an early warning system based on the technique of
fuzzy time series, where the goal was to temporally predict prospective air-pollutant
concentrations [6]; the spatial prediction of the annual average of several air pollutants to
be used in epidemiological studies of long-term exposure to air pollutants, where the goal
was to spatially estimate retrospective concentrations of air pollutants in the residential
addresses of citizens using data from around 30 fixed monitoring stations by applying
the ordinary land-use regression (LUR) model [7,8]; the spatiotemporal modeling of the
daily averages of PM2.5 concentrations using a set of land-use predictors that provided
high-resolution daily-exposure estimation maps for epidemiological studies of long-term
air pollutant health effects [9]; and the spatial modeling of the annually averaged diurnal
curve of nitrogen dioxides using an extension of the technique of ordinary kriging for
functional data, which provided retrospective long-term estimation which is suitable for
subsequent environmental epidemiological studies [10].

Land-use regression has been used extensively in environmental epidemiology to
provide individual-level spatial estimation of long-term retrospective exposure data. Gen-
erally, it uses the averaged concentrations of an air pollutant over one or several years at a
number of monitoring stations, uses land-use variables at the geo-location of monitoring
stations as the predictors of the model and then uses the trained model to spatially predict
retrospective long-term concentrations at all geo-points in the study area by employing
high-resolution input maps of the model predictors [11–14].

To date, many LUR studies published focus on the spatial modeling of annual or
seasonal means of pollutants [7,8,15,16] or the spatiotemporal modeling of a series of a
pollutant’s averages at discrete time points, such as days [9] or hours [17]. To the best of
our knowledge, none of the published LUR studies have modeled the long-term diurnal
curves of a pollutant where the datum unit is a curve and not a scalar value. The only
similar study that was recently published modeled the long-term diurnal curves of nitrogen
dioxides using the functional extension of the ordinary kriging technique. Despite its
novelty in terms of modeling continuous diurnal pollutant curves, it suffered from a lack of
providing any land-use predictor and relied on kriging, which resulted in low-resolution
and smoothed long-term-exposure estimation maps [10].

Functional data analysis (FDA) is a branch of modern statistics that deals with so-
called functional data. Functional data are generally curves or surfaces that derive from the
continuous measurements of a variable over time. However, functional data are usually
observed at consecutive discrete time points, in most cases due to the design of measuring
instruments, so a smoothing method is generally used to recover continuous functional
data [18,19]. Spatiotemporal models for functional data have been recently proposed by [20]
based on the EM algorithm, extending [21].

Epidemiological studies of the long-term effects of air pollution usually rely on LUR
studies where high-resolution annual spatial estimations of a pollutant are extracted from
LUR maps at the geographic location of participants’ residential addresses [22–27]. How-
ever, this exposure assessment has an important limitation: a person is usually exposed to
the pollutant’s concentrations at several geographic locations (home, work, school, etc.)
and at different periods during a typical day. Therefore, using estimated exposures at
merely the geolocation of each person’s residential address could result in exposure mis-
classification. Even using a ratio of the estimated daily average of a pollutant concentration
to the time spent by a person in the geographic location of his/her home and workplace
maybe not be justifiable because, as highlighted in a recently published study, the pattern of
changes in air-pollutant concentrations during the daily timeframe may vary in the study
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area [10]. Hence, we adopted the framework of the LUR model and extended it to FLUR
to provide high-resolution spatial estimation for the annually averaged diurnal curves of
PM2.5 and not just the estimation of spatial annual averages without considering intra-day
changes. The FLUR model is a spatiotemporal model with a continuous time dimension
and the ability to produce a high-resolution spatial estimation of retrospective long-term
pollutants. This model as an extension of the LUR model can foster epidemiological studies
of long-term air pollutants.

The remainder of the paper is structured as follows: In Section 2, we provide a
description of the study area and data, including an explanation of the ordinary LUR
model, the basis expansion of functional data, the functional land-use regression model, and
validation using an alternative model. Section 3 presents descriptive mean and standard
deviation curves for long-term diurnal PM2.5 curves in the study area, along with the
estimated functional principal component curves and their corresponding estimated scores.
We also discuss the results of LUR modeling of functional principal component scores, the
estimated curves of the FLUR model coefficients, the result of comparison of the FLUR
model and the alternative spatiotemporal model, as well as the estimated series of high-
resolution prediction maps. In Section 4, we discuss the results, and Section 5 provides
the conclusion.

2. Materials and Methods

In this section, we first describe the study area, response data, and predictors’ data. Then,
we introduce the ordinary LUR model, followed by the basis expansion of functional data.
Finally, we introduce the functional land-use regression model and its estimation procedure.

2.1. Description of the Study Area and Data

The study area is the megacity of Tehran, Iran, with 9 million urban residents and a
daytime population of >10 million inhabitants due to diurnal migration. Tehran’s populated
area covers approximately 613 km2. The Alborz Mountains are located in the north of
Tehran and a desert is located to the south. The elevation in Tehran is approximately 1800 m
above sea level in the north and approximately 1000 m in the south. The prevailing winds
blow from the west and north. The weather is predominantly sunny, and the mean cloud
cover is approximately 30% [7–9]. The average temperature of Tehran in 2015 was 19 ◦C
and the annual total precipitation was 205 mm [9].

Hourly data of Tehran’s airborne PM2.5, which were measured at 30 fixed air quality-
monitoring stations in 2015, were acquired from the Tehran Air Quality Control Company
and the Iranian Department of Environment. These two agencies maintain the monitoring
stations and regularly check the validation of data and calibrate measuring devices. The
extent of the megacity of Tehran and the locations of monitoring stations are depicted in
Figure 1. We calculated the mean of PM2.5 data in the year 2015 at each monitoring station
for each hour from 0 to 23 as the raw response data to be used in the modeling.

We employed the same set of predictors in a recent study of a PM2.5 spatiotemporal
daily LUR model in Tehran in 2015 to predict the spatial dimension of our model [9]. The
predictors were the natural logarithm of distance to the nearest road (m), total population
density in buffer radii of 2750 m (persons per km2), arid or undeveloped land-use area in
buffer radii of 200 m (m2), and the residual of recognizable land-use areas in buffer radii of
400 m (m2), all of which were provided as fine-scale raster maps with a resolution of 5 m.
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2.2. Ordinary LUR Model

An ordinary LUR model, in general, employs long-term averages of a measured air
pollutant from a number of monitoring stations as the response of a regression model and
a rich set of suitable high-resolution geographical information as the model predictors
to spatially estimates the retrospective long-term averages of the air pollutant in all the
geo-points in the study area.

The training or fitting model of the ordinary LUR model is as follows:

yi = α0 + ∑p
j=1 αjxi,j + εi; i = 1, . . . , n, (1)

where yi is the long-term average of the measured pollutant concentrations at monitoring
station i and xi,j is the value of corresponding geographical predictor j at the geo-location
of that monitoring station, and αj ; j = 0, . . . , p are coefficients to be estimated.

Hence, the resulting prediction model of the ordinary LUR is as follows:

ŷs = α̂0 + ∑p
j=1 α̂jxs,j; s ∈ S2, (2)

where ŷs is the estimate of the long-term average of pollutant concentrations at the geo-
location s, xs,j is the value of the corresponding geographical predictor j at the same
geo-location s, and S2 is the study area. In addition, α̂j; j = 0, . . . , p are fixed values
resulting from fitting the train model of Equation (1).

2.3. Basis Expansion of Functional Data

The basic philosophy of functional data analysis is to consider successive measure-
ments of the quantity of interest, e.g., the concentration of an air pollutant, as realizations
of an underlying continuous function are defined over that time domain [28]. Therefore, it
is essential to first convert the pair of time and the corresponding concentration observed
at that time, (tih, yih); h = 0, . . . , 23, to a smooth functional observation: yi(t); t ∈ (0, T],
where T = 24 is the diurnal period of our study. This was accomplished using smoothing
techniques at each monitoring station (i = 1, . . . , n).

The set of Fourier basis functions was employed for the smoothing and representation
of functional observations. The Fourier basis expansion expresses functional data using the
below formula:
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yi(t) = c0 + c1 sin(ωt) + c2 cos(ωt) + . . . + ck−1 sin
(

kωt
2

)
+ ck cos

(
kωt

2

)
; i = 1, . . . , n, (3)

where ω = 2π/T and the number of the used basis functions was k = 23, as this number
provides a saturated model corresponding to the hourly data required for subsequent
functional principal component analysis.

2.4. Functional Principal Component Analysis

Functional principal component analysis (FPCA) is an extension of ordinary principal
component analysis. Although the aim of both methods is dimension reduction, their input
data and the type of their estimated factors are different. The ordinary principal component
analysis employs several variables as input scalar data to estimate a limited number of
variables acting as underlying factors. The FPCA input data are functional data such as
diurnal pollutant curves at different stations and the output to be estimated is a limited
number of functional data, such as curves with the same domain of input curves, acting as
underlying factors [18]. Assume that yi(t) is a functional datum, e.g., an observed diurnal
PM2.5 curve; the FPCA estimates a limited number of empirical orthogonal functions with
the same time domain, of which approximates the functional datum as a linear expression
of those estimated empirical basis functions. Therefore, each functional datum can be
represented as follows:

yi(t) = y(t) + ∑m
r=1 c̃ir B̃r(t); i = 1, . . . , n, (4)

where y(t) is the mean function which is the average of all functional data across monitoring
stations; B̃r(t); r = 1, . . . , m are the estimated principal component basis functions that
are independent on the monitoring station i; and c̃ir are the corresponding functional
principal component scores (FPCS) specific to station i. Details about FPCA can be found
elsewhere [18].

2.5. Functional Land-Use Regression Model

We aim to develop functional fitting and prediction LUR models analogous to
Equations (1) and (2) that can model and predict the diurnal curves of the pollutant
instead of its diurnal scalar averages.

The fitting LUR model for the functional response of y(t) is

yi(t) = α0(t) +
p

∑
j=1

αj(t)xij + εi(t); i = 1, . . . , n (5)

Hence, the resulting prediction LUR model for the functional response of y(t) is
as follows:

ŷs(t) = α̂0(t) +
p

∑
j=1

α̂j(t)xsj; s ∈ S2 (6)

To estimate the functional coefficients of α̂j(t) ; j = 0, . . . , p where t ∈ (0, t], we need
to fit the below regression models for scalar responses of cir where r is considered fixed in
each model:

c̃ir = α0r +
p

∑
j=1

αjrxij + εir; i = 1, . . . , n; r = 1, . . . , m (7)

Therefore, m independent multiple regression models with the same set of Equation (5)
predictors are fitted. The response of each regression model is cir ; i = 1, . . . , n for a fixed
r = 1, . . . , m corresponding to a vector of FPCS values resulting from Equation (4).
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Then, by substituting Equation (7) into Equation (4), we obtain the below equation:

yi(t) = y(t) +
m

∑
r=1

{(
α0r +

p

∑
j=1

αjrxij + εir

)
B̃r(t)

}
; i = 1, . . . , n (8)

The arrangement of Equation (6) results in the below equation, which resembles
Equation (5):

yi(t) =

{
y(t) +

m

∑
r=1

{
α0r B̃r(t)

}}
+

p

∑
j=1

{
m

∑
r=1

{
αjr B̃r(t)

}}
xij +

m

∑
r=1

{
εir B̃r(t)

}
; i = 1, . . . , n (9)

Comparing Equations (5) and (9) shows that:

α0(t) = y(t) +
m

∑
r=1

{
α0r B̃r(t)

}
; αj(t) =

m

∑
r=1

{
αjr B̃r(t)

}
; εi(t) =

m

∑
r=1

{
εir B̃r(t)

}
(10)

Hence, the estimation of α̂j(t); j = 0, . . . , p in Equation (6) is as follows:

ˆα0(t) = y(t) +
m

∑
r=1

{
ˆα0r B̃r(t)

}
; ˆαj(t) =

m

∑
r=1

{
α̂jr B̃r(t)

}
; j = 1, . . . , p, (11)

where t ∈ (0, T] and B̃r(t) ; r = 1, . . . , m are the estimated functional principal component
basis functions in Equation (4); α̂jr is the estimated scalar coefficient resulting from fitting
multiple regression models of Equation (7).

Alternatively, if the goal is to only spatially predict the resulting estimation maps at
each time point and not the estimation of the functional regression coefficients curves of
αj(t); j = 1, . . . , p, Equation (9) can be re-arranged to achieve a more parsimonious equation
that relies on storing m high-resolution, calculated, inter-mean spatial raster maps instead
of p high-resolution maps of predictors. This could facilitate the delivery of the estimated
exposure values because the number of adequate functional principal components could
be less than the number of geographic predictors of the FLUR model.

ˆys(t) =

{
y(t) +

m

∑
r=1

{
ˆα0r B̃r(t)

}}
+

m

∑
r=1

{
p

∑
j=1

{
α̂jrxs

}}
B̃r(t); s ∈ S2 (12)

Hence, Equation (12) can be represented using the simple formula below:

ˆys(t) = α̂0(t) +
m

∑
r=1

z̃rs B̃r(t); s ∈ S2 and z̃rs =

{
p

∑
j=1

{
α̂jrxs

}}
; r = 1, . . . , m (13)

Please note that α̂0(t) and B̃r(t); r = 1, . . . , m are just simple time series where, even
with the temporal resolution of a minute during the day, each would be a series of 1440 real
numbers and z̃rs; r = 1, . . . , m; s ∈ S2 for each fixed r is a calculated, high-resolution, inter-
mean spatial raster map. The number of these inter-mean spatial maps are the same as the
number of used functional principal components in the model.

Furthermore, please note that multiplying each principal component curve of B̃r(t),
which is purely temporal to the corresponding calculated inter-mean map of z̃rs; s ∈ S2

which is purely spatial, and summing the results of all these interaction terms in Equation
(13), enables the FLUR model to be highly flexible in terms of accounting for complicated
space and time interactions in the spatiotemporal modeling of the air pollutant.

Finally, the estimated long-term PM2.5 maps were plotted for two sets of desirable time
points over the study area. The selected time points were: (a) the start of each hour from 0
to 23 where the series of 24 estimation maps are presented as a figure, and (b) the start of
each 15 min in the diurnal time domain where the series of 96 high-resolution estimation
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maps is presented as a Supplementary Video that highlights changes in the spatial pattern
of long-term PM2.5 concentrations in Tehran over the day.

All statistical analyses and mappings were performed in the freely available “R”
statistical environment and its accompanying “fda” and “raster” packages [29–31].

2.6. Validation Using an Alternative Model

While the ordinary LUR model is a spatial model, the proposed FLUR model is a
spatiotemporal model that provides spatial estimation at each arbitrary time point during
the diurnal period. To check the validity of the proposed FLUR model, we used the D-
STEM (Distributed Space–Time Expectation Maximization) spatiotemporal model [32] as
an alternative modeling approach that provides spatial estimation at each hour in the
diurnal period.

The equation of the D-STEM spatiotemporal model is as follows:

y(s, t) = α0 +
p

∑
j=1

αjxj(s) + ρω(s, t) + z(t) + ε(s, t); s ∈ S2 (14)

where αj; j = 0, . . . , p are fixed-effect coefficients of the model, xj(s) are the same set of
spatial predictors of the FLUR model, ω(s, t) is a latent spatiotemporal variable with an
exponential auto-correlation structure, ρ is a scaling parameter, z(t) is a latent temporal
variable with a Markovian dynamic structure, and ε(s, t) is the measurement error term.

3. Results

Figure 2 shows the mean± 2SD of the PM2.5 long-term diurnal curves of 30 monitoring
stations in Tehran in 2015. The smoothed mean profile starts from 39.48 µg/m3 at 00:00, then
shows a slight increase to 39.58 µg/m3 at 00:26 a.m., which is the maximum value of the
mean profile. Then, it decreases to 34.5 µg/m3 at 06:45 a.m. and increases to 35.22 µg/m3

at 08:56 a.m. Thereafter, it decreases to 29.27 µg/m3 at 03:57 p.m., which is the minimum
value of the mean profile; subsequently, the mean profile continuously increases until its
end at 11:59 p.m., which is 39.47 µg/m3.
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Figure 3 shows the estimated three main functional principal component curves of
long-term PM2.5 diurnal curves across 30 monitoring stations in Tehran, where 92.5%, 5%,
and 2% of variations in the observed curves are explained by the first, second, and third
functional principal component curves, respectively. These curves are B̃r(t); r = 1, 2, 3 in
Equation (4).
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Table 1 shows the three vectors of FPCS values corresponding to the three functional
principal component curves that are presented in Figure 3. These values are c̃ir; i =
1, . . . , 30; r = 1, 2, 3 in Equation (4), which are station-specific scalar values. The difference
between the station-specific curves and the overall mean curve of all the stations is the
result of multiplying these values by the corresponding functional principal component
curves of Figure 3.

Table 1. The estimated three main functional principal component scores (FPCS) of PM2.5 diurnal
curves for the 30 monitoring stations in Tehran.

Station ID Station Name Latitude (N) Longitude (E) FPCS #1 FPCS #2 FPCS #3

1 Region 11 35.672980 51.389730 −5.83 1.57 7.25

2 Golbarg 35.731030 51.506130 −34.19 2.18 −0.06

3 Elmo Sanat 35.739811 51.511431 16.87 −4.74 −0.56

4 Tehran university 35.703356 51.397764 21.12 1.37 −3.73

5 Cheshme 35.752714 51.262824 −7.61 −12.57 4.76

6 Shokufe park 35.685736 51.450761 17.16 −3.61 6.50

7 Region 15 35.641076 51.479964 −12.29 13.55 −7.97

8 Setad 35.727080 51.431200 −0.01 −3.98 2.67

9 Atisaz 35.797161 51.522739 7.31 −22.75 3.48

10 Aghdasyeh 35.795870 51.484140 −27.26 −3.31 4.14

11 Beheshti 35.803375 51.395137 −36.75 −6.69 −1.69
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Table 1. Cont.

Station ID Station Name Latitude (N) Longitude (E) FPCS #1 FPCS #2 FPCS #3

12 Pasdaran 35.789664 51.473361 −40.13 17.48 2.53

13 Farmandary Rey 35.593005 51.427697 83.90 7.73 −8.86

14 Region 4 35.741820 51.506430 −27.95 −5.18 −6.73

15 Sharif University 35.702270 51.350940 24.79 −2.77 −7.59

16 Shad Abad 35.670050 51.297350 −15.74 3.15 −1.54

17 Poonak 35.762300 51.331680 −52.98 1.3 −2.46

18 Rose park 35.739890 51.267891 −17.40 −10.39 2.01

19 Salamat park 35.648900 51.356078 34.71 5.11 −5.78

20 Shahre Rey 35.603630 51.425710 7.14 6.94 −4.53

21 Ghaem park 35.658217 51.328228 71.56 13.01 15.79

22 Region 2 35.777089 51.368175 −43.33 −0.50 −3.51

23 Darous 35.769994 51.454160 25.66 −8.84 −4.47

24 Tarbiyat Modares
university 35.717510 51.381570 −43.73 6.14 −1.08

25 Region 19 35.635210 51.362519 0.62 4.18 9.64

26 Razi park 35.670158 51.389386 79.87 −7.21 −2.85

27 Region 10 35.697480 51.358031 −7.97 4.92 2.82

28 Region 16 35.644584 51.397657 −9.95 5.75 2.96

29 Masoudiyeh 35.630030 51.499020 0.55 −1.81 −0.82

30 Tehransar 35.712960 51.214490 −8.15 −0.04 −0.33

Table 2 shows the estimated coefficients resulting from fitting each column of the FPCS
values of Table 1 to the set of four geographical predictors. The presented coefficients are the
results of three independent fitting LUR models of Equation (7). These estimated scalar coef-
ficients are needed in Equations (11) and (13) to then provide functional coefficients curves
and spatiotemporal estimation of the retrospective long-term air pollutant, respectively.

Table 2. Estimated regression coefficients for the three main functional principal component scores
(FPCS) as the responses of ordinary regression models.

Regression Intezrcept and Predictors
Estimated Coefficients for the Main FPCS

FPCS #1 FPCS #2 FPCS #3

0. Intercept 2.908 × 101 −6.643 × 10−2 5.868 × 10−1

1. Residual of recognizable land-use
areas in buffer radii of 400 m (m2) −1.495 × 10−3 4.702 × 10−5 −3.206 × 10−5

2. Natural logarithm of distance to the
nearest road (m) −1.313 × 101 −1.202 × 100 −3.579 × 10−1

3. Total population density in buffer radii
of 2750 m (persons per km2) 1.622 × 10−3 3.484 × 10−4 2.405 × 10−5

4. Arid or undeveloped land-use area in
buffer radii of 200 m (m2) −4.563 × 10−4 −1.220 × 10−4 7.129 × 10−5

Figure 4 depicts the estimated functional regression coefficients of the FLUR model.
These estimated curves are α̂j(t); j = 0, 1, 2, 3 in Equation (11). The estimated functional
coefficients show the time-varying effects of purely spatial predictors on the diurnal curve
of long-term PM2.5 concentrations. As expected, the estimated functional intercept curve
in Figure 4 mimics the pattern of the diurnal mean curve in Figure 2. The estimated
curves of functional coefficients number 1, 2, and 4 are negative, which correspond to
predictors number 1, 2, and 4 in Table 2. However, the sign of the estimated curve of the
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third functional coefficient is positive. This figure emphasizes that the effect of land-use
predictors on long-term particulate matter concentration is not constant throughout the day.
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Figure 4. The estimated coefficients’ curves of the FLUR model in estimating PM2.5 long-term diurnal
variation curves in Tehran in 2015. Please note that each curve has a separate vertical axis that
matches the curve’s color.

The black vertical axis meters the black curve which shows the estimated functional
intercept of the model, and the blue axis meters the blue curve which shows the estimated
first functional coefficient that corresponds to the predictor of recognizable land-use areas
in buffer radii of 400 m (m2). The brown vertical axis meters the brown curve which
shows the estimated second functional coefficient that corresponds to the predictor of
the natural logarithm of distance to the nearest road (m). The red axis meters the red
curve which shows the estimated third functional coefficient that corresponds to the
predictor of total population density in buffer radii of 2750 m (persons per km2). The green
vertical axis meters the green curve which shows the estimated fourth functional coefficient
that corresponds to the predictor of arid or undeveloped land-use area in buffer radii of
200 m (m2).

The result of comparing the prediction of the FLUR model and the alternative D-STEM
model is presented in Table 3. Although the prediction error of the FLUR model in the
spatial aspect was a bit more than the D-STEM model (5.6580 vs. 5.6578), the prediction
error of the temporal aspect of the FLUR model was substantially less than the D-STEM
model (0.0041 vs. 0.6727), and the prediction error of the spatiotemporal aspect of the FLUR
model was also less than the D-STEM model (6.0820 vs. 6.1895).

Table 3. Comparison of the introduced FLUR model and the alternative D-STEM model from different
aspects (spatial, temporal, and spatiotemporal) using the R-Squared and RMSE metrics *.

Dimensions
FLUR Model Assessment D-STEM Model Assessment

R-Squared RMSE R-Squared RMSE

Spatial 32.75% 5.6580 33.62% 5.6578

Temporal 99.99% 0.0041 99.44% 0.6727

Spatiotemporal 43.35% 6.0820 42.20% 6.1895
* A higher value of R-Squared and a lower value of RMSE means better prediction.

Figure 5 displays the spatial estimation of a long-term retrospective PM2.5 concen-
tration with a resolution of 5 m for hours from 0 to 23, provided by the FLUR model.
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These maps result from the evaluation of Equation (13) on the start time point of each hour.
Furthermore, the estimated diurnal curves of long-term PM2.5 were evaluated on initial
time points of every 15 min during the diurnal timeframe, which is presented in Video S1.
It highlights that the level and spatial pattern of PM2.5 long-term concentrations change
with the hours of the day.
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Tehran in 2015 for hours from 0 to 23 were estimated using the FLUR model.

As shown in Figure 5 and in the Supplementary Video of estimation maps, the trend
of changes in PM2.5 concentrations was not constant in the diurnal period. For example,
the west of Tehran had its cleanest conditions at the approximate hours of 5 a.m. to 8 a.m.,
while it seems the rest of Tehran had their less polluted conditions around the hours of
3 p.m. to 7 p.m. This result highlighted one of the important strengths of the FLUR model:
it accounts for complicated space and time interactions in spatiotemporal estimations of
the air pollutant.

4. Discussion

In this study, we estimated spatially resolved long-term retrospective diurnal curves
of PM2.5 in the megacity of Tehran. This is analogous to the spatiotemporal estimation of
long-term retrospective PM2.5 concentrations over a very fine temporal resolution in the
daily timeframe.

The high concentrations of PM2.5 concentrations at monitoring stations and at the
estimated maps in Tehran are in line with previous studies. The estimated PM2.5 concentra-
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tions were higher in the south, center, and east regions, while being lower in the west and
north of Tehran—this is primarily related to population and traffic density [33].

The sign of estimated regression coefficients in the FLUR model presented in Figure 4
is the same as the sign of a corresponding, published, non-functional LUR model for
PM2.5 daily averages in Tehran [9]. Hence, the impact of the predictors’ effects on PM2.5
concentrations during the day is the same as the whole day average that was previously
published. Thanks to this functional data analysis extension of the ordinary LUR model,
we can see that the effects of these geographical predictors are not fixed during the day.
The fact that time-invariant geographical predictors have time-variant effects on PM2.5
concentrations during the day is interesting, but interpreting the reasons behind these
increases and decreases in the intensity of effects during the day is not simple. Possibly,
diurnal variations in emissions of the sources of the predictors are representative (e.g.,
traffic for the road variable) and diurnal variations in meteorology (e.g., mixing height)
play a role.

The trend of PM2.5 concentrations changes during the day at the monitoring stations
and at the estimated maps, as depicted in Figures 2 and 5; they are tied with traffic
regulations that restrict the commuting of heavy supply trucks in the megacity of Tehran
to the hours between 10 p.m. and 6 a.m. [34,35]. A similar pattern for long-term diurnal
changes in nitrogen dioxides was reported in a recently published paper, where the authors
employed a functional extension of ordinary kriging [10]. Furthermore, this is in line with
an emission inventory approach which showed that 85% of particle matter emissions in
Tehran were sourced from heavy-duty vehicles [36].

The developed FLUR model provides spatiotemporal estimations of long-term PM2.5
concentrations with a very high spatial resolution (5 m) in the continuous diurnal time
domain. Theoretically, this can be seen as an infinite temporal resolution because the
estimated diurnal curve can be evaluated at every desirable time point during the day,
which is an advantage with respect to conventional spatiotemporal models for scalar
responses that model air pollutants at discrete time points. Moreover, the developed
FLUR model is parsimonious with respect to alternative approaches to modeling, such as
fitting separate LUR models for spatial predicting at each desirable time point (such as
the hours from 0 to 23); this is because, if separate LUR models are fitted, the resulting
high-resolution maps for all those LUR models need to be stored. Meanwhile, here, we just
needed to use three calculated inter-mean high-resolution spatial prediction maps, four
time series resulting from the evaluation of the functional intercept of the FLUR model,
and the three functional principal component curves that were evaluated at desirable time
points (hourly/every 15 min/ or every minute during the daily timeframe) to provide the
complete spatiotemporal prediction using Equation (13).

It is well known that ignoring hours in epidemiological studies of long-term exposure
to air pollutants may result in exposure misclassification because people generally do not
stay in just one geographic location (e.g., their residential address) during the whole day.
On top of that, we showed that the spatial pattern of PM2.5 is not constant during the
day, so hour-specific exposure is not necessarily proportional to the corresponding daily
average. This observed pattern is also in line with a recently published study of nitrogen
dioxide modeling in Tehran [10].

On the other hand, although some previously published LUR studies predicted long-
term hourly pollutant concentrations [37–40], none of them provided a finer time scale than
hours. By employing functional data analysis methods, we succeeded in predicting the
pollutant concentrations more practically, at a time scale of 15 min.

Furthermore, from a modeling point of view, to the best of our knowledge, this is
the first LUR study with an underlying functional response model instead of using one of
various predicting models for scalar data [18,19,30]. Therefore, we are the first group to
spatially model the long-term diurnal curves of a pollutant using the LUR framework.

Finally, by comparing the prediction of the developed FLUR model (with continuous
time scale) and the alternative model of D-STEM (with discrete time scale), we displayed
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comparable results which validate the estimation procedure of the proposed FLUR model.
We also highlighted the strength of the FLUR model, which is based on semi-parametric
methods of functional data analysis, resulting in flexibility when accounting for the tempo-
ral variation of the pollutant.

5. Conclusions

In this study, we developed a method for the land-use regression modeling of long-
term diurnal curves of PM2.5 at a high temporal and spatial resolution. The airborne PM2.5
concentration data in the megacity of Tehran were used to fit the novel functional land-
use regression (FLUR) model. The resulting estimation maps at a very high spatial and
temporal resolution could benefit future epidemiological studies in this highly populated
and polluted Middle Eastern megacity. The developed FLUR model demonstrated high
flexibility in terms of accounting for complicated space and time interactions. Moreover, the
described detailed procedure to predict curves by extending the ordinary LUR model can
be adapted to other predicting techniques, such as machine learning to build models that
predict curves instead of just scalar values. The environmental epidemiological studies of
long-term air pollutants could benefit from the methodology and results of the FLUR model
provided in this study, as the FLUR methodology provides high-resolution estimation
maps of retrospective long-term air pollutants, and at the same time accounts for complex
temporal variations and the interaction of spatial and temporal dimensions.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/atmos14060926/s1, Video S1: Estimation of PM2.5 long-
term diurnal curves using the functional LUR model in the megacity of Tehran in 2015.
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