

ScienceDirect

Procedia Computer Science 232 (2024) iii-xxi

Table of Contents

Manuel Brunner, Nadine Bachmann, Shailesh Tripathi, Sebastian Pöchtrager, and Herbert Jodlbauer	
Complexity of green innovation in manufacturing: a case in a foundry Stefano Saetta, Ivan Stefani, and Sara Tapola	1
An Optimization Model for Smart and Sustainable Distributed Permutation Flow Shop Scheduling Amir M. Fathollahi-Fard, Lyne Woodward, and Ouassima Akhrif	2
Transfer of Logistics Optimizations to Material Flow Resource Optimizations using Quantum Computing Raphael Pfister, Gunnar Schubert, and Markus Kröll	32
Proactive Relocation Decision-Making in a Multinational Manufacturing Network Emil Persson, Olli-Pekka Hilmola, and Per Hilletofth	43
Multi-Autonomous Mobile Robot traffic Management Based on Layered Costmaps and a modified Dijkstra's Algorithm	
Simon Mouritsen Langbak, Casper Schou, and Karl Damkjær Hansen	53
Exploring Time-Based Characteristics of the E-Car Market for Effective Market Segmentation Shailesh Tripathi, Nadine Bachmann, Manuel Brunner, and Herbert Jodlbauer	64
Efficient Rollout of a Dynamic Optimization Algorithm Philipp Neuhauser, Rudolf Cihal, Stefan Wagner, and Harald Flößholzer	77
Are rules for social sustainability in supply chains strong enough? Defining the "nullification principle" Gabriele Zangara, Vincenzo Corvello, and Luigino Filice	87
Deep Fuzzy Cognitive Maps for Defect Inspection in Antenna Assembly T. Tziolas, K. Papageorgiou, A. Feleki, T. Theodosiou, K. Rapti, E. Papageorgiou, S. Pantoja, and A. Cuinas.	91
Industry 4.0 in the Context of Agribusiness: A Systematic Literature Review Oscar Bertoglio, and Simone Sehnem	107
Supply Chain Management Strategies Approach for the UK Textile Industry Samina Komal, and Sameh M Saad	117
A Hybrid Predictive Maintenance Solution for Fault Classification and Remaining Useful Life Estimation of Bearings Using Low-Cost Sensor Hardware	10/
Sebastian Schwendemann, Andreas Rausch, and Axel Sikora	128
Exploring the relationship between Project Cost Deployment and Industry 4.0 through an industrial application in an Engineer-to-Order environment Marcello Proglio Expressed Di Page Marce Eraselini Reberto Cobbrielli and Leopardo Marregrini	127
Marcello Braglia, Francesco Di Paco, Marco Frosolini, Roberto Gabbrielli, and Leonardo Marrazzini	139
Digital Datasheet model: enhancing value of AI digital platforms Sara Masiero, Jovista Qosaj, and Vincenzo Cutrona	149

iv Contents

Exploring the key success factors: A case study of a digital marketplace platform for Brazilian small farmers	
Gladys Milena Berns Carvalho do Prado, Elizabete Catapan, Cinthya Mônica da Silva Zanuzzi, Florinda Matos, and Paulo Maurício Selig	159
Digitization Workflow for Data Mining in Production Technology applied to a Feed Axis of a CNC Milling Machine	
Lucas Drowatzky, Mauritz Mälzer, Kim A. Wejlupek, Hajo Wiemer, and Steffen Ihlenfeldt	169
The emotional metaverse: exploring the benefits of predicting emotion from 3D avatars Darren Bellenger, Minsi Chen, and Zhijie Xu	183
Sensor and data: key elements of human-machine interaction for human-centric smart manufacturing Jialu Yang, Ying Liu, and Phillip L. Morgan	191
Hybrid prognosis of drill-bits based on direct inspection Luca Bernini, Ugo Malguzzi, Paolo Albertelli, and Michele Monno	201
Distributed Artificial Intelligence Application in Agri-food Supply Chains 4.0 Mahdi Sharifmousavi, Vahid Kayvanfar, and Roberto Baldacci	211
Employee Acceptance for AI Based Knowledge Transfer: Conception, Realization and Results of an ELSI+UX Workshop	
Nicole Ottersböck, Isabella Urban, Christian Cost Reyes, Sven Peters, and Caroline Boiteux	221
Digital transformation under uncertainty – market value effects of early Industry 4.0 innovation projects Philipp Majocco, Philipp Mosch, and Robert Obermaier	232
Modeling and simulation: A comparative and systematic statistical review Lina Naciri, Maryam Gallab, Aziz Soulhi, Safae Merzouk, and Mario Di Nardo	242
Trusted Evidences on the Digital Transformation of Classic Cars Restoration José Murta, Vasco Amaral, and Fernando Brito e Abreu	254
Developing self-adaptive microservices João Figueira, and Carlos Coutinho	264
Electronic performance monitoring framework to quantify unhealthy and unsafe on-site behaviours Diego Calvetti, Pedro Mêda, and Hipólito de Sousa	274
Acceptance Level of Drone Delivery among Malaysian Consumers Soh Yee Fang, Umi Kartini Rashid, and Lee Te Chuan	284
An NFC application for the process mapping automation for SMEs Ludovica M. Oliveri, Diego D'Urso, Natalia Trapani, and Ferdinando Chiacchio	298
PAS - A Feature Selection Process Definition for Industrial Settings Sabrina Luftensteiner, Georgios C. Chasparis, and Josef Küng	308
Towards 5.0 skills acquisition for students in industrial engineering: the role of learning factories Alexandra Lagorio, and Chiara Cimini	317
Applications of IoT and Advanced Analytics for manufacturing operations: a systematic literature review Anna Presciuttini, and Alberto Portioli-Staudacher.	327
Towards the Adoption of Industry 4.0 Technologies in the Digitalization of Manufacturing Supply Chain Oluseyi Afolabi Adeyemi, Pedro M. G. Pinto, Funlade Sunmola, Abiodun Musa Aibinu, Julius .O. Okesola, and Esther .O. Adeyemi	337
Resource-efficient Edge AI solution for predictive maintenance Viktor Artiushenko, Sebastian Lang, Christoph Lerez, Tobias Reggelin, and Matthias Hackert-Oschätzchen	348

Contents v

Promoting Safety, Security, Awareness and Productivity in Port Plants Agostino G. Bruzzone, Marina Massei, Kirill Sinelshichikov, Alberto De Paoli, Antonio Giovannetti, Francesco Longo, Gianfranco Fancello, Tommaso Vairo, Claudia Giliberti, and Raffaele Mariconte	358
Analyzing The Purpose And Technologies Of Digital Twins In Distributed Manufacturing: A Systematic Literature Review	
Monika Risling, Michael Oberle, and Thomas Bauernhansl	368
Physics-Informed Imputation for Data Cleaning and Pre-Processing in Robust Smart Manufacturing Systems	
Dieter Joenssen, Abhinav Singh Hada, and Juergen Lenz	377
Applying grid world based reinforcement learning to real world collaborative transport Alexander Hämmerle, Christoph Heindl, Gernot Stübl, Jenish Thapa, Edoardo Lamon, and Andreas Pichler	388
Edge Intelligence for Industrial IoT: Opportunities and Limitations	300
Claudio Savaglio, Pasquale Mazzei, and Giancarlo Fortino	397
Methodical assessment of the value of sensory captured data regarding the suitability for influencing manufacturing process goals	
Johannes Mayer, Tobias Kaufmann, Philipp Niemietz, and Thomas Bergs	406
Tools to support managerial decision - building competencies in data driven decision making in manufacturing SMEs	
Miroslav Žilka, Zeynep Tugce Kalender, Jan Lhota, Václav Kalina, and Rui Pinto	416
Supervised and unsupervised techniques in textile quality inspections Hugo M. Ferreira, David R. Carneiro, Miguel Â. Guimarães, and Filipe V. Oliveira	426
Characterizing Circular and Open Business Models in a profit-driven environment through Business Model Patterns	40.
Anna-Kristin Behnert, Oliver Antons, and Julia Arlinghaus	436
A reference architecture to implement Self-X capability in an industrial software architecture Walter Quadrini, Francesco Alessandro Cuzzola, Luca Fumagalli, Marco Taisch, Gabriele De Luca, Marta Calderaro, Mattia Giuseppe Marzano, and Angelo Marguglio	446
Multi-Objective Workforce and Process Planning For Socio-Economic Sustainable RMS: Lp-metric vs Epsilon Constraint	
Alireza Ostovari, Lyes Benyoucef, Hichem Haddou Benderbal, and Xavier Delorme	456
Smart Rainwater Harvesting Service Design Adrielly Nahomee Ramos Alvarez, Idalia Flores-De-la-Mota, and Francisca Irene Soler Anguiano	465
On the Polymeric Coating Deposition Techniques to Increase Body Acceptance and Allow Drug Delivery in Smart Bio-devices	
Michela Sanguedolce, Marina Latino, Gerardo Coppolab Sudip Chakraborty, and Luigino Filice	473
Integrating extended reality in industrial maintenance: a game-based framework for compressed air system training	
Birkan Isik, Gulbahar Emir Isik, and Miroslav Zilka	483
The Product Environmental Footprint – A Critical Review Viktoria Mordaschew, and Sven Tackenberg	493
Digital Twin-based Predictive Maintenance for Sheet Metal Bending Simon Mayr, Thomas Gross, Stefan Krenn, Wolfgang Kunze, and Christian Zehetner	504

vi Contents

Identification of Required Actions in the Process of Work Design – Developed Method for a Criteria-based Work System Analysis Sina Niehues, Fatemeh Shahinfar, Markus Harlacher, and Stephan Sandrock	512
•	513
Business model development concept for SMEs in the era of twin transition Viola Gallina, Arko Steinwender, Elisabeth Zudor, Davy Preuveneers, and Sebastian Schlund	523
Augmented Reality for Quality Inspection, Assembly and Remote Assistance in Manufacturing Thierry Treinen, and Sri Sudha Vijay Keshav Kolla	533
Effect of interlayer temperature and cold wire addition in Wire Arc Additive Manufacturing on carbon steel	
Gustavo de Castro Lopes, Demostenes Ferreira Filho, and Valtair Antonio Ferraresi	544
Returns on Solid Waste Management: Evidence from Indian Informal MSMEs Lokesh Posti	554
Threat or opportunity? - Managers' and employees' perception of automation and digitalization in the horticultural sector Sam Schroeder, Mira L, and Kai Sparke	564
DQ-DeepLearn: Data Quality Driven Deep Learning Approach for Enhanced Predictive Maintenance in Smart Manufacturing Nitesh Bharot, Priyanka Verma, Mirco Soderi, and John G. Breslin	574
A multi-facet approach to functional and ergonomic assessment of passive exoskeletons Riccardo Karim Khamaisi, Margherita Peruzzini, Agnese Brunzini, Zoi Arkouli, Vincent Weistroffer, Anoop Vargheese, and Pietro Alberto Cultrona	584
Unifying Skill-Based Programming and Programming by Demonstration through Ontologies Thomas Eiband, Florian Lay, Korbinian Nottensteiner, and Dongheui Lee	595
A messaging library for distributed modeling Jan Zenisek, Florian Bachinger, Dominik Falkner, Erik Pitzer, Stefan Wagner, Alfredo Lopez, and Michael Affenzeller	606
Impact of Blemish Artefacts on Object Detection Models in Autonomous Driving: A Study on Camera Module Manufacturing Defects	
Nitin Augustine, Maximilian Schwab, Steffen Klarmann, Christian Pfefferer, and Alexander Schiendorfer	616
Implementing Industry 4.0 Technologies for Enhanced Material Flow and Handling Management: A Case Study in Logistics	
Laura Monferdini, Benedetta Pini, Barbara Bigliardi, and Eleonora B	626
Bi-Objective Job-Shop Scheduling Considering Human Fatigue in Cobotic Order Picking Systems: A Case of an Online Grocer	
Berry Lance Vermin, David Abbink, and Frederik Schulte	635
Towards ultra-flexibility: a framework for evaluating the cyber-physical continuum in flexible production systems	
Martin Birtic, Anna Syberfeldt, and Luis Ribeiro	645
An indicator scheme for improving measurability of Sustainable Development Goals in manufacturing enterprises	
Maximilian Nowak, Stephan Martineau, Thomas Sobottka, Fazel Ansari, and Sebastian Schlund	655
Information Communication Tools in Alternative Food Networks Patrick Burgess, Funlade Sunmola, and Sigrid Wertheim-Heck	665
5G and Beyond 5G Technologies Enabling Industry 5.0: Network Applications for Robotics Christina C. Lessi, Andreas Gavrielides, Vittorio Solina, Renxi Qiu, Letizia Nicoletti, and Daiyou Li	675

Contents vii

Productivity and Ergonomics Alessio Baratta, Antonio Cimino, Francesco Longo, Giovanni Mirabelli, and Letizia Nicoletti	688
Additive Manufacturing Process Root Selection Using Bayesian Network Sagar Ghuge, and Milind Akarte	698
Life Cycle Assessment of a Jet Printing and Dispensing Machine Samruddha Kokare, Sayyed Shoaib-ul-Hasan, Farazee M.A. Asif, Gustaf Mårtensson, and Kristina Svanteson	708
Mitigating Bias in Aesthetic Quality Control Tasks: An Adversarial Learning Approach Denis Bernovschi, Alex Giacomini, Riccardo Rosati, and Luca Romeo	719
Evaluation of mental stress in human-robot interaction: an explorative study Marta Rinaldi, Ciro Natale, Marcello Fera, Roberto Macchiaroli, Maria Grazia Lourdes Monaco, and Eric H. Grosse	726
Artificial Intelligence – Qualification and Competence Development Requirements for Executives Yannick Peifer, and Sebastian Terstegen	736
A Human Digital Twin of Disabled Workers for Production Planning Viktoria Mordaschew, Sönke Duckwitz, and Sven Tackenberg	745
Manufacturing Line Ablation, an approach to perform reliable early prediction Kapil Deshpande, Jan Holzweber, Stefan Thalhuber, Alexander Hämmerle, Michael Mayrhofer, Andreas Pichler, and Pedro Luiz de Paula Filho	752
Sustainable Additive Manufacturing in the context of Industry 4.0: a literature review Barbara Bigliardi, Eleonora Bottani, Emilio Gianatti, Laura Monferdini, Benedetta Pini, and Alberto Petroni	766
Key Success Factors for Integration of Blockchain and ERP Systems: A Systematic Literature Review Funlade Sunmola, and Geo Liantal Lawrence	775
Autonomous Fault Monitoring for Efficient Multi-Actuator Compressed Air Systems:Data Analytics of Demand-Oriented Parameters	502
Massimo Borg, Paul Refalo, and Emmanuel Francalanza	783
Corina Pacher, Manuel Woschank, and Bernd Markus Zunk	794 804
Responsible AI (RAI) in Manufacturing: A Qualitative Framework Philipp Besinger, Daniel Vejnoska, and Fazel Ansari	813
Transformed-based foundational models in Computer Vision: an industrial use case Davide Pasanisi, Emanuele Rota, Alissa Zaccaria, and Stefano Ierace	823
User-Centred Product Design with Photorealistic Virtual Prototypes: A Case Study on Process Optimisation for Aesthetic Quality Enhancement Paolo Senesi, Marco Mandolini, Barbara Lonzi, and Riccardo Rosati	831
Development of a Smart Monitoring System for Advancing LPG Cylinder Safety and Efficiency in Sub-Saharan Africa	
A.B. Edward, M.O. Okwu, B.U. Oreko, C. Ugorji, K. Ezekiel, O.F. Orikpete, C. Maware, and C.P. Okonkwo.	839

viii Contents

AutoML Applied to Time Series Analysis Tasks in Production Engineering Felix Conrad, Mauritz Mälzer, Felix Lange, Hajo Wiemer, and Steffen Ihlenfeldt	849
Power Consumption and Processing Time Estimation of CNC Machines Using Explainable Artificial Intelligence (XAI)	
Suman Thapaliya, Omid Fatahi Valilai, and Hendro Wicaksono	861
Improvement of job shop scheduling method based on mathematical optimization and machine learning Eiji Morinaga, Xuetian Tang, Koji Iwamura, and Naoki Hirabayashi	871
Driving Sustainable Innovation: Exploring Lean, Green, Circular, and Smart Design Abla Chaouni Benabdellah, Kamar Zekhnini, Anass Cherrafi, and Jose Garza Reyes	880
Using Cloning-GAN Architecture to Unlock the Secrets of Smart Manufacturing: Replication of Cognitive Models	
Vagan Terziyan, and Timo Tiihonen	890
A Comparative Analysis of Digital Maturity Models to Determine Future Steps in the Way of Digital Transformation	
Zeynep Tuğçe Kalender, and Miroslav Žilka	903
Object Detection and Text Recognition for Immersive Augmented Reality Training in Laser Powder Bed Fusion	
Hongji Zhang, Yecheng Jiao, Yizhuo Yuan, Yuanchen Li, Yiqin Wang, Wenfeng Lu, Jerry Fuh, and Bingbing Li	913
Exploring machine learning techniques for oil price forecasting: A comparative study of SVM, SMO, and SGD-base models	
Siham AKIL, Sara SEKKATE, and Abdellah ADIB	924
Implementing Swarm Production System with Multi-Robot Simulation Akshay Avhad, Halldor Arnarson, Casper Schou, and Ole Madsen	934
Towards Holistic Interoperability of Cyber-Physical Production Systems within RAMI 4.0 Jasper Wilhelm, Dario Niermann, Dennis Keiser, and Michael Freitag	946
Implementation of a Business Intelligence System in the Brazilian Nuclear Industry: An Action Research Luiz Guilherme Martins Siqueira, Rodrigo Furlan de Assis, Julio César Montecinos, and	
William de Paula Ferreira	956
Intelligent Assistant for Smart Factory Power Management	
José Cação, Mário Antunes, José Santos, and Diogo Gomes	966
Enhancing Supply Chain Resilience Through Dynamic Capabilities of Blockchain Technology: A Structural Model Analysis	222
Azz-eddine Meafa, Abla Chaouni Benabdellah, and Kamar Zekhnini	980
Design and implementation of a digital twin for a stone-cutting machine: a case study Carlos Cremonini, Joel Vasco, Carlos Capela, Agostinho da Silva, and Marcelo Gaspar	990
Towards Zero-Defect Manufacturing: a review on measurement-assisted processes and their technologies Victor Azamfirei, Foivos Psarommatis, Anna Granlund, and Yvonne Lagrosen	1001
Automated simulation modeling: ensuring resilience and flexibility in Industry 4.0 manufacturing systems Antonio Cimino, Francesco Longo, Letizia Nicoletti, and Pierpaolo Veltri	1011
Non-Financial Reporting in SMEs: a new approach to measure corporate well-being based on employee perception	
Filippo Nicola Coppoletta Gabriele Zangara Antonio Maria Igor Cosma, and Luigino Filica	1025

Contents ix

Ana Filipa Silva, Giuliana Veronese, and Ana Sofia Matos	1
Nonlinear Transient Switching Filter for Automatic Buffer Window Adjustment in Short-term Ship Response Prediction Hamed Majidian, Hossein Enshaei, and Damon Howe	1
Improved interaction with collaborative robots - evaluation of event-specific haptic feedback in virtual reality	
My Andersson, and Anna Syberfeldt	1
Anomaly Detection in Binary Time Series Data: An unsupervised Machine Learning Approach for Condition Monitoring	
Gábor Princz, Masoud Shaloo, and Selim Erol	1
Insights from interviews with German supply chain managers: a study of supply chain transformations and emerging issues	
Moritz Berneis, Herwig Winkler, and Nizar Abdelkafi	1
Digital twin architecture for assembly line performance monitoring Andrea Bonci, Alessandro Di Biase, M. Cristina Giannini, Sauro Longhi, and Mariorosario Prist	1
A Hybrid Digital Twin Scheme for the Condition Monitoring of Industrial Collaborative Robots Samuel Ayankoso, Eric Kaigom, Hassna Louadah, Hamidreza Faham, Fengshou Gu, and Andrew Ball	1
A brief review of INCONEL® alloys numerical analysis on traditional machining predictability A.F.V. Pedroso, V.F.C. Sousa, N.P.V. Sebbe, F.J.G. Silva, R.D.S.G. Campilho, R.C.M. Sales-Contini, and A.M.P. Jesus	1
Exploring the limitations and potential of digital twins for mobile manipulators in industry Dario Antonelli, Khurshid Aliev, Marco Soriano, Kousay Samir, Fabio Marco Monetti, and Antonio Maffei.	1
Use Cases for Shop Floor Operator Support by means of Mixed Reality Pim de Jong, and Jenny Coenen.	1
Applying a process-centric approach to the digitalization of operations in manufacturing companies: a case study	
Matteo Rossini, Alireza Ahmadi, and Alberto Portioli Staudacher	1
Enabling Industry 4.0 Transformation in Calabria region: Framework, Machine Interconnection and ERP Synergy	
Francesco Borda, Antonio M.I. Cosma, and Luigino Filice	1
Requirements for Human-Machine-Interaction Applications in Production and Logistics within Industry 5.0 – A Case Study Approach	
Lars Panter, Rieke Leder, Dennis Keiser, and Michael Freitag	1
REMOTE: First insights into assessing and evaluating remote learning practices in STEM Martí Casadesús, Josep Llach, Víctor Matos, and Marc Pons	1
Identifying Digital Supply Chain Capabilities Josselyne Ricárdez-Estrada, Claudia Lizette Garay-Rondero, David Romero, Thorsten Wuest, and Roberto Pinto	1
Modeling & Simulation for assessing production policies: a real case study from a manufacturing company in Canada	
Francesco Longo, Antonio Nervoso, Letizia Nicoletti, Vittorio Solina, and Adriano O. Solis	1
Modeling and simulation of coffee mucilage removal in spontaneous fermentation using fuzzy logic Honorato Ccalli Pacco	1

x Contents

Surface quality related to machining parameters in 3D-printed PETG components Mohamad El Mehtedi, Pasquale Buonadonna, Rayane El Mohtadi, Francesco Aymerich, and Mauro Carta	1212
Customer Service with AI-Powered Human-Robot Collaboration (HRC): A Literature Review Diogo Leocádio, Leonel Guedes, José Oliveira, João Reis, and Nuno Melão	1222
Perishable Product Inventory Management In The Case Of Discount Policies And Price-Sensitive Demand: Discrete Time Simulation And Sensitivity Analysis Federico Solari, Natalya Lysova, Michele Bocelli, Andrea Volpi, and Roberto Montanari	1233
Remarks from an experimental study on human-robot collaborative assembly Sotirios Panagou, W. Patrick Neumann, Michael A. Greig, and Fabio Fruggiero	1242
Metrological Evaluation of Software-Defined Radios (Adalm-Pluto and LimeSDR usb) in Radio Frequency Signal Generation Sandra Dixe, Valdemar Leiras, Luis Filipe Azevedo, Sérgio Dias, Sérgio Faria, Jaime C. Fonseca, António H. J. Moreira, and João Borges	1248
Leveraging Natural Language Processing for enhanced remote troubleshooting in Product-Service Systems: A case study Roberto Sala, Fabiana Pirola, Giuditta Pezzotta, and Sergio Cavalieri	1259
Unleashing the Potential of Large Language Models for Knowledge Augmentation: A Practical Experiment on Incremental Sheet Forming Haolin Fan, Jerry Fuh, Wen Feng Lu, A. Senthil Kumar, and Bingbing Li	1269
Multi-objective optimization of cycle time and robot energy expenditure in human-robot collaborated assembly lines Amir Nourmohammadi, Masood Fathi, Taha Arbaoui, and Ilhem Slama	1279
Laser Scanning Application for the Enhancement of Quality Assessment in Shipbuilding Industry Serena Bertagna, Luca Braidotti, Vittorio Bucci, and Alberto Marinò	1289
Implementation of Zero Defect Manufacturing using quality prediction: a spot welding case study from Bosch Foivos Psarommatis, Baifan Zhou, and Evgeny Kharlamov	1299
Fostering Entrepreneurial Mindsets in Deep Tech Disciplines: Exemplary Development of a Toolkit Corina Pacher, and Martin Glinik	1309
Leveraging Auto-generative Simulation for Decision Support in Engineer-to-Order Manufacturing Mohaiad Elbasheer, Virginia D'Augusta, Giovanni Mirabelli, Vittorio Solina, and Simone Talarico	1319
A multi-skill RCPSP variant for persons with disabilities in sheltered workshops Jan-Phillip Herrmann, Viktoria Mordaschew, and Sven Tackenberg	1329
Design and Testing of an Active Balancing Board for Exergames Carol Sergenti, Giuseppe Mangano, Marco Carnevale, and Hermes Giberti	1339
A collaborative platform to support the creation of a Learning Organization in Industry 4.0: A co-created tool using three industrial contexts	12.47
Juliana Salvadorinho, Tiago Bastos, Pedro Cruto, and Leonor Teixeira	1347 1357
Interactions between planners' and PPC systems: Derivation of simulation scenarios with consideration of cognitive bias and disruptions Patrick Rannertshauser, Oliver Antons, and Julia Arlinghaus	1367

Contents xi

Enhancing Predictive Quality in HVOF Coating Technology: A Comparative Analysis of Machine Learning Techniques Wolfgang Pannethouar Coring Hambrack, Simon Hubman and Banny Bomley	127
Wolfgang Rannetbauer, Carina Hambrock, Simon Hubmer, and Ronny Ramlau	137
Taxonomy-Informed Neural Networks for Smart Manufacturing Vagan Terziyan, and Oleksandra Vitko	138
Environmental Assessment of Electric Scooters: Unveiling Research Gaps, Analyzing Factors, and Charting Pathways for Sustainable Micromobility Angela Neves, Hugo Ferreira, Francisco J. Lopes, and Radu Godina	140
Cloud Usage for Manufacturing: Challenges and Opportunities Athanasios Kiatipis, and Alexandros Xanthopoulos	141
Blockchain-Powered Traceability Solutions: Pioneering Transparency to Eradicate Counterfeit Products and Revolutionize Supply Chain Integrity Peter Onu, Charles Mbohwa, and Anup Pradhan	142
Automated Machine Learning in Bankruptcy Prediction of Manufacturing Companies Mário Papík, and Lenka Papíková	142
Towards automating stocktaking in warehouses: Challenges, trends, and reliable approaches Adamos Daios, Alexandros Xanthopoulos, Dimitrios Folinas, and Ioannis Kostavelis	143
Toward halal supply chain 4.0: MILP model for halal food distribution Dwi Agustina Kurniawati, Iwan Vanany, Dias Dzaky Kumarananda, and Muhammad Arief Rochman	144
How to raise consumer awareness of the environmental impact of vehicle attributes? A big data analysis Hugo Ferreira, Angela Neves, Francisco J. Lopes, and Radu Godina	145
Hybrid knowledge based system supporting Digital Twins in the Industry 5.0 Emiliano Traini, Gabriel Antal, Giulia Bruno, Manuela De Maddis, Franco Lombardi, Luigi Panza, and Pasquale Russo Spena	147
Essentials for Digitalizing Maintenance Activities in SMEs Oliver Fuglsang Grooss	148
Creative and Adversarial Cellular Automata for Simulating Resilience in Industry 5.0 Vagan Terziyan, Artur Terziian, and Oleksandra Vitko	149
Enhancing Flexibility in Industry 4.0 Workflows: A Context-Aware Component for Dynamic Service Orchestration William Ochoa, Felix Larrinaga, Alain Perez, and Javier Cuenca	150
Chempreneurs: Understanding Motivations, Barriers and Intentions in two selected European countries Sebastian Walther, Stephan Haubold, Andreas Zieleniewicz, and Renata Dobrucka	150
Method for the Derivation of Flexible Process Modules Patricia Berkhan, Daniel Ranke, and Thomas Bauernhansl	152
Business analytics capabilities in digitally-enabled and non-digitally-enabled companies in an emerging economy Note: Oliveiro Casta, Salma Oliveiro, and Evalda Badrigues.	1.53
Natan Oliveira Costa, Selma Oliveira, and Evaldo Rodrigues	153
Learning the inhomogenous term of a linear ODE Florian Sobieczky, Erika Dudkin, and Jan Zesinek	154
Implementation of an intelligence-based framework for anomaly detection on the demand-side of sustainable compressed air systems Jasmine Mallia, Emmanuel Francalanza, Peter Xuereb, Massimo Borg, and Paul Refalo	155
vaccinite comment in interior in the contraction of	10.

xii Contents

Automatic Gear Tooth Alignment in Vision Based Preventive Maintenance Florian Grimm, Daniel Kiefer, Tim Straub, Günter Bitsch, and Clemens van Dinther	1564
Workforce scheduling approaches for supporting human-centered algorithmic management in manufacturing: A systematic literature review and a conceptual optimization model Florens L. Burgert, Matthäus Windhausen, Maximilian Kehder, Niklas Steireif, Susanne Mütze-Niewöhner, and Verena Nitsch.	1573
Toward human-centered intelligent assistance system in manufacturing: challenges and potentials for operator 5.0	
Christian Bechinie, Setareh Zafari, Lukas Kroeninger, Jaison Puthenkalam, and Manfred Tscheligi	1584
Data augmentation strategy for generating realistic samples on defect segmentation task Massimo Martini, Riccardo Rosati, Luca Romeo, and Adriano Mancini	1597
Tool Condition Monitoring for milling process using Convolutional Neural Networks Stefania Ferrisi, Gabriele Zangara, David Rodríguez Izquierdo, Danilo Lofaro, Rosita Guido, Domenico Conforti, and Giuseppina Ambrogio	1607
A New Architecture Paradigm for Tool Wear Prediction during AISI 9840 Drilling Operation Roberto Munaro, Aldo Attanasio, Andrea Abeni, Cristian Cappellini, Piervincenzo Tavormina, and Federico Venturelli	1617
Assessing the sustainability of hydrogen supply chains using network Data Envelopment Analysis Svetlana Ratner, Svetlana Balashova, and Svetlana Revinova	1626
Deep learning-based network anomaly detection and classification in an imbalanced cloud environment Amol D. Vibhute, and Vikram Nakum.	1636
Novel Simulation Optimization Approach for Supply Chain Coordination and Management Alexandros Xanthopoulos, and Ioannis Kostavelis	1646
Quantum Technologies in Industry 4.0: Navigating the Ethical Frontier with Value-Sensitive Design Steven Umbrello.	1654
Failure prediction in the refinery piping system using machine learning algorithms: classification and comparison	
Yassine Kanoun, Aynaz Mohammadi Aghbash, Tikou Belem, Bassem Zouari, and Hatem Mrad	1663
Integration of Lean Supply Chain and Industry 4.0	1.672
Matteo Rossini, Alireza Ahmadi, and Alberto Portioli Staudacher	1673
Media Sentiment Analysis Approaches Amir Jahanian Najafabadi, Anastasiia Skryzhadlovska, and Omid Fatahi Valilai	1683
A Brief Review of Artificial Intelligence Robotic in Food Industry Liaw Siau Hwa, and Lee Te Chuan	1694
Automated Machine Learning for Industrial Applications – Challenges and Opportunities Florian Bachinger, Jan Zenisek, and Michael Affenzeller	1701
Integrating Industry 4.0 and Circular Economy: A Conceptual Framework for Sustainable Manufacturing Virginia Dolci, Barbara Bigliardi, Alberto Petroni, Bendetta Pini, Serena Filippelli, and Leonardo Tagliente	1711
Improving Supply Chain Sustainability and Resilience via anyLogistix: Research Trends and Future Challenges	
Francesco Longo, Karen Althea Manfredi, Vittorio Solina, Romina Conte, and Antonio Cosma	1721
Revolutionising the Sustainability of Steel Manufacturing Using Computer Vision Callum O'Donovan, Cinzia Giannetti, and Cameron Pleydell-Pearce	1729

Contents xiii

Market Data Exploitation: Exemplified by the Battery Electric Vehicle Market Herbert Jodlbauer, Shailesh Tripathi, Nadine Bachmann, Manuel Brunner, and Alexander Piereder	1739
What is known about smart ports around the world? A benchmarking study Juliana Basulo-Ribeiro, Carina Pimentel, and Leonor Teixeira.	1748
ELECTRE applied in supplier selection – a literature review Guilherme Salvador, Miguel Moura, Pablo Campos, Pedro Cardoso, Pedro Espadinha-Cruz, and R. Godina	1759
Leveraging Gamification in Industry 5.0: Tailored Solutions for Workplace' Employees Leonor Cónego, Rui Pinto, Joana Pinto, and Gil Gonçalves	1769
Integrating Machine Learning into Supply Chain Management: Challenges and Opportunities Dominik Falkner, Michael Bögl, Anna Gattinger, Roman Stainko, Jan Zenisek, and Michael Affenzeller	1779
Automated HMI design as a custom feature in industrial SCADA systems Mladen Šverko, and Tihana Galinac Grbac	1789
Engineering Education goes Lifelong Learning: Modularized Technical Vocational Education and Training Program for the Automotive Sector Vera Carla Poschauko, Ernst Kreuzer, Mario Hirz, and Corina Pacher	1799
Digital transformation and business intelligence for a SME: systems thinking action research using PrOH modelling	1/99
Gajanan Panchal, Ben Clegg, Ehsan Eslamian Koupaei, Donato Masi, and Iain Collis	1809
Maturity level and Effects of the 4.0 Paradigm on the Italian Agricultural Industry: A preliminary study Federico Maffezzoli, Marco Ardolino, and Andrea Bacchetti	1819
Potentials of the Metaverse for Robotized Applications in Industry 4.0 and Industry 5.0 Eric Guiffo Kaigom	1829
Metaverse: a possible sustainability enabler in the transition from Industry 4.0 to 5.0. Michela Piccarozzi, Cecilia Silvestri, Luigi Fici, and Luca Silvestri	1839
Training reinforcement learning-based controller using performance simulation of the laser remelting process	
Honghe Wu, Evgueni Bordatchev, and O. Remus Tutunea-Fatan	1849
Exploring Human-Centricity in Industry 5.0: Empirical Insights from a Social Media Discourse Antonio Padovano, Martina Cardamone, Manuel Woschank, and Corina Pacher	1859
A Review of Industry 4.0 Maturity Models: Theoretical Comparison in The Smart Manufacturing Sector Hussein Magdy Elhusseiny, and José Crispim.	1869
Augmented and Virtual Reality to support Corrective and Preventive Actions in maintenance: a framework proposal	
Valentina Di Pasquale, Valentina De Simone, Chiara Franciosi, Paola Morra, and Salvatore Miranda	1879
Introducing fine grained energy consumption variables into a public passenger transport simulation in SUMO	
García-Cerrud Carmen Angelina, Hernández Rosales Manuel, and Flores de la Mota Idalia	1890
A 4th Industrial Revolution Systems Approach for Human Resource Optimization in Maintenance Megashnee Munsamy, Arnesh Telukdarie, and Mpho Manenzhe	1900
Performance analysis of promotion programs of the smart factory using propensity score matching Tai-Woo Chang, and Yuri Kim	1909
Towards a Sustainable Digital Manufacturing: A State of Art Fabio De Felice, Cinzia Salzano, Ilaria Baffo, Antonio Forcina, and Antonella Petrillo	1918

xiv Contents

Sailing Towards Sustainability: How Seafarers Embrace New Work Cultures for Energy Efficient Ship Operations in Maritime Industry Mohammud Hanif Dewan, and Radu Godina	1930
Green ICT Methodology for Energy Consumption Calculation in ICT Architecture Components Nasia Balakera, Vasiliki Tzelepi, Fotios K. Konstantinidis, Georgios Tsimiklis, and Angelos Amditis	1944
Melt pool instability in surface polishing by laser remelting: preliminary analysis and online monitoring with K-means clustering	40.50
Srdjan Cvijanovic, Evgueni V. Bordatchev, and O. Remus Tutunea-Fatan	1953
Simplifying Robot Grasping in Manufacturing with a Teaching Approach based on a Novel User Grasp Metric	
Matteo Pantano, Vladislav Klass, Qiaoyue Yang, Akhil Sathuluri, Daniel Regulin, Lucas Janisch, Markus Zimmermann, and Dongheui Lee.	1961
Design of Matrix Production Systems: New Demands on Factory Planning Methods Joshua Mohr, Niels Schmidtke, and Fabian Behrendt	1972
Investigating the Accuracy of Artificial Neural Network Models in Predicting Surface Roughness in Drilling Processes	
M.O. Okwu, O.B. Otanocha, B.A. Edward, B.U. Oreko, J. Oyekale, O.J. Oyejide, J. Osuji, C. Maware, K. Ezekiel, and O.F. Orikpete	1982
Use of augmented reality for iterative robot program optimisation in robot-automated series production processes	1001
Lukas Antonio Wulff, Ole Schmedemann, and Thorsten Schüppstuhl	1991
Lean green practices in Automotive Components Manufacturing Funlade Sunmola, Onyinyechi Racheal Mbafotu, Memunat Lami Salihu-Yusuf, and Hakeem Omolade Sunmola	2001
Developing a constraint model for using artificial intelligence on existing, limited hardware in manufacturing machines	
Christian Blümel, Safa Omri, and Kristian Schaefer	2009
Innovative measurement system for saber curvature observation in straightening processes Lukas Bathelt, Eugen Djakow, Christian Henke, and Ansgar Trächtler	2018
Methodology for Implementing a Manufacturing Execution System in the Machinery and Equipment Industry	
Leonor Costa, António Almeida, and Luís Reis.	2028
Requirements Analysis for Digital Supply Chain Compliance Management Platforms: Case of German Meat Industry	
Adrian Längle, Patrick Burgess, and Funlade Sunmola	2038
Internet of Production: Unleashing the Full Potential of Industry 4.0 – A Comprehensive Review of Trends, Drivers, and Challenges	
Peter Onu, Charles Mbohwa, and Anup Pradhan.	2049
Unsupervised Correlation- and Interaction-Aware Anomaly Detection for Cyber-Physical Production Systems based on Graph Neural Networks Christian Goetz, and Bernhard G. Humm	2057
Software compensation to improve the Stereolithography fabrication of porous features and porous	2037
surface texturing at micro-scale Vito Basile, Francesco Modica, and Irene Fassi	2072

Contents xv

Natural Language Processing Approaches in Industrial Maintenance: A Systematic Literature Review Keyi Zhong, Tom Jackson, Andrew West, and Georgina Cosma	2082
Big Data Analytical for Sustainable Information Quality in an Emerging Market Ilan Rodrigo Leal de Paula, João Victor Rodrigues, and Selma R.M. Oliveira	2098
Industrial metaverse – company perspectives Karoliina Salminen, and Susanna Aromaa	2108
The Impact of Industry 4.0 on Business Performance: A Multiple Case Study in the Automotive Sector Antonio Piepoli, Francesco Arcidiacono, Luigi Jesus Basile, Roberta Pellegrino, Florian Schupp, and Tobias Zuehlke.	2117
CAD-based Autonomous Vision Inspection Systems Francesco Lupi, Antonio Maffei, and Michele Lanzetta	2127
Industry 5.0: prioritizing human comfort and productivity through collaborative robots and dynamic task allocation	2127
Irene Granata, Maurizio Faccio, and Giovanni Boschetti Exploring Diverse Methods of Reverse Engineering MQTT Client Interfaces Marcel Bartholet, and Christian Überall	2137 2147
Defect detection in additive manufacturing using image processing techniques Adem Ben Hammouda, Ahmed Frikha, Sana Koubaa, and Hatem Mrad	2157
An overview of current research in automated fibre placement defect rework Stig McArthur, Jörn Mehnen, Catherine Yokan, and Iain Bomphray	2167
Circular Economy Challenges within the Road Freight Transport: Case Study of Portuguese Companies Florinda Matos, and M Rosario Perello-Marin	2181
Designing of a prototype production process based on Value Stream Design and action-challenge-tactics designing model Dorota Klimecka-Tatar, and Manuela Ingaldi	2101
Deep Homeomorphic Data Encryption for Privacy Preserving Machine Learning Vagan Terziyan, Bohdan Bilokon, and Mariia Gavriushenko	2191 2201
Exploiting Extended Reality under the Manufacturing as a Service paradigm Letizia Nicoletti, Vittorio Solina, Kandarp Amin, Christina Lessi, Paul McHard, Renxi Qiu, and Stefano Tedeschi	2213
Challenges and opportunities of digitalization in the healthcare supply chain: A literature review Laura Monferdini, Benedetta Pini, Barbara Bigliardi, and Eleonora Bottani	2220
A preliminary framework to address the industrial environmental challenge Marcello Braglia, Francesco Di Paco, Marco Frosolini, Roberto Gabbrielli, and Leonardo Marrazzini	2230
Data driven value creation in industrial services including remanufacturing Melissa Stucki, Jürg Meierhofer, Barna Gal, Viola Gallina, and Stefanie Eisl	2240
A human-centered perspective in repetitive assembly processes: preliminary investigation of cognitive support of collaborative robots Riccardo Gervasi, Matteo Capponi, Dario Antonelli, Luca Mastrogiacomo, and Fiorenzo Franceschini	2249
Application of Fuzzy Mamdani Model for Biogas Yield Prediction in Anaerobic Co-Digestion of Decomposable Wastes M.O. Okwu, O.J. Oyejide, J. Oyekale, K. Ezekiel, C. Maware, O.F. Orikpete, and C.P. Okonkwo	2259

xvi Contents

Lean maintenance practices in the improvement of information management processes: a study in the Facility Management division	
Marta Fernandes, Diogo Correia, and Leonor Teixeira	2269
A Framework for Monitoring Stability of Tailings Dams in Realtime Using Digital Twin Simulation and Machine Learning	
Joseph Mwanza, Peter Mashumba, and Arnesh Telukdarie	2279
Improving the reliability of power distribution substations equipment for life extension by considering Condition Based Maintenance	2200
Moyahabo Dominic Ramere, and Opeyeolu Timothy Laseinde	2289
Overcoming Data Limitations in Precision Poultry Farming: Processing and Data Fusion Challenges Nikolajs Bumanis	2302
Immersive Interaction in Digital Factory: Metaverse in Manufacturing Shimasadat Hosseini, Ali Abbasi, Luis G. Magalhaes, Jaime C. Fonseca, Nuno M. C. da Costa, António H. J. Moreira, and João Borges	2310
Machine Learning based calibration SDR in Digital Twin application Valdemar Leiras, Sandra Dixe, L. Filipe Azevedo, Sérgio Dias, Sérgio Faria, Jaime C. Fonseca, António H. J. Moreira, and João Borges	2321
Deep Neural Networks, Cellular Automata and Petri Nets: Useful Hybrids for Smart Manufacturing Olena Kaikova, and Vagan Terziyan	2334
Exploring the impact of the process parameters on the thermal treatment of viscous food fluids in a tube-in-tube heat exchanger Natalya Lysova, Federico Solari, Michele Bocelli, Antonio Rizzi, and Roberto Montanari	2347
Machine Learning tool to prevent and control Bag Filter clogging Giovanni Paolo Tancredi, and Giuseppe Vignali	2358
A Digital Twin of an Off Highway Vehicle based on a Low Cost Camera Steven Robyns, Wouter Heerwegh, and Sam Weckx	2366
Towards hybrid-cloud infrastructure composition for SAP systems landscapes in smart manufacturing Andrey Kharitonov, Abdulrahman Nahhas, Hendrik Müller, and Klaus Turowski	2376
In-line parameters optimization of plastic injection molding process in the context of disrupted supply chains	
Fabio Daniele, Matteo Confalonieri, Lorenzo Agbomemewa, Andrea Ferrario, and Paolo Pedrazzoli	2386
Anomaly Detection in Hobbing Tool Images: Using An Unsupervised Deep Learning Approach in Manufacturing Industry	
Daniel Kiefer, Stefan Wezel, Alexander Böttcher, Florian Grimm, Tim Straub, Günter Bitsch, and Clemens Van Dinther	2396
The realities of achieving a Smart, Sustainable, and Inclusive shopfloor in the age of Industry 5.0. Amberlynn Bonello, Emmanuel Francalanza, and Paul Refalo	2406
Experiencing Education 5.0 for Civil Engineering Diego Calvetti, Pedro Mêda, Hipólito de Sousa, Miguel Chichorro Gonçalves, José Manuel Amorim Faria, and Jorge Moreira da Costa.	2416
The state of the additive manufacturing ontology landscape for enabling rapid response in times of crisis Johannes Frey, Arash Akrami, and Christian Zinke-Wehlmann	2426
Q-Learning for Inventory Management: an application case Ivan Ferretti, and Beatrice Marchi	2431

Contents xvii

Smart-Cast: An AI-Based System for Semisolid Casting Process Control Ziyu Li, He Tan, Anders E.W Jarfors, Per Jansson, and Lucia Lattanzi	2
Impact of Smartness on Sustainability: An Empirical Study of North American Agri-food Companies	
Damla Durak Uşar	2
Driving Supply Chain Resilience: Exploring the Potential of Operations Management and Industry 4.0 Isam Hafidy, Asmaa Benghabrit, Kamar Zekhnini, and Abla Chaouni Benabdellah	2
T-Fire System: A Novel Integrated Fire Monitoring and Extinguishing System for Trucks Salvatore Digiesi, Nicola Laurieri, Andrea Lucchese, and Giovanni Piccininno	2
Performance Evaluation and Explainability of Last-Mile Delivery Ângela F. Brochado, Eugénio M. Rocha, Emmanuel Addo, and Samuel Silva.	2
Autonomous robotic polishing of free-form poly-surfaces: planning from scanning in realistic industrial setting	
Alessandra Tafuro, Carla Ghalloub, Andrea Maria Zanchettin, and Paolo Rocco.	2
Challenges of Quality Assurance in Early Planning and Ramp Up of Production Facilities - Potentials of Planning Automation via Virtual Engineering	
Luca Janecki, Daniel Reh, and Julia C. Arlinghaus.	2
Towards a generic framework of OEE monitoring for driving effectiveness in digitalization era Zineb MOUHIB, Maryam GALLAB, Safae MERZOUK, Aziz SOULHI, and Brahim ELBHIRI	2
Digital twinning for smart restoration of classic cars Frederico Ferreira, Vasco Amaral, and Fernando Brito e Abreu	2
Servitization in Digital Age: A Systematic Literature Review Diogo Leocádio, Leonel Guedes, José Oliveira, João Reis, and Nuno Melão	2
Can ChatGPT Challenge the Scientific Impact of Published Research, Particularly in the Context of Industry 4.0 and Smart Manufacturing?	
Vagan Terziyan, Olena Kaikova, Mariia Golovianko, and Oleksandra Vitko	2
Towards a Modular Approach for Workforce Qualification in Reconfigurable Manufacturing Systems Slim Zidi, Rachel Campos Sabioni, and Hamza Bouzekri	2
Unveiling embedded features in Wav2vec2 and HuBERT msodels for Speech Emotion Recognition Adil CHAKHTOUNA, Sara SEKKATE, and Abdellah ADIB	2
Deep Reinforcement Learning for Solving Allocation Problems in Supply Chain: An Image-Based Observation Space	
Abdulrahman Nahhas, Andrey Kharitonov, and Klaus Turowski	2
An investigation on logistics firms' human resources qualifications in transition to Industry 4.0: An insight from Türkiye	
İsmail Cem Sezer, and Metehan Feridun Sorkun.	2
Enhancing flexibility and safety: collaborative robotics for material handling in end-of-line industrial operations	
Yevheniy Dmytriyev, Marco Carnevale, and Hermes Giberti	2
Numerical modeling of galvanic corrosion behaviour into simulated body fluid of hybrid joint Carmine Borgia, Romina Conte, and Giuseppina Ambrogio.	2
An adaptive large neighborhood search for the order picking process: the case of a retail distribution company in Italy	
Luigi Di Puglia Pugliese, Francesca Guerriero, Giusy Macrina, Massimiliano Matteucci, and Veronica Mosca	2

xviii Contents

Telematics and machine learning system for estimating the load condition of a heavy-duty vehicle Fabio Ribeiro von Glehn, Bruno Henrique Pereira Gonçalves, Marlipe Garcia Fagundes Neto, and João Paulo da Silva Fonseca	2616
Practical Aspects of Designing a Human-centred AI System in Manufacturing Yuji Yamamoto, Alvaro Aranda Muñoz, and Kristian Sandström	2626
Cross-Impact Analysis of Entrepreneurial Failure and Business Model Innovation: Navigating the Impact of Societal Perceptions Nadine Bachmann, Shailesh Tripathi, Manuel Brunner, Herbert Jodlbauer, and Alexander Piereder	2639
Strategic Digitalization in SMEs of developing economies: Digital twin driven engineering value chain for customer-centricity Gautam Dutta, and Dr Ravinder Kumar	2654
Unveiling the Potential of Mixed Reality: Enhancing Time Measurement and Operator Support in Manual Assembly Processes	
Masood Fathi, Ingemar Karlsson, Göran Grahn, and Andreas Björnsson	2670 2680
Exploring Mechanical Engineering Equipment at TVET Colleges in South Africa, Towards Integrating Virtual and Cyber-Physical Learning B.N. Lukhele, and O.T. Laseinde.	2690
Design of KPIs for evaluating the environmental impact of warehouse operations: a case study Antonio Cosma, Romina Conte, Vittorio Solina, and Giuseppina Ambrogio	2701
Smart Factory Hub – Towards a Data Mesh in Smart Manufacturing Roberto González-Velázquez, Izaskun Fernández, Rubén Ferreira, Carlos Carballo, Álvaro García, Bruno Santamaría, and Diego González	2709
Aid decision on blockchain project: public vs private Mor Diop, Said Tazi, and Yves Ducq	2720
Assessing Factory's Industry 4.0 Readiness: A Practical Method for IIoT Sensor and Network Analysis Sabari Nathan Anbalagan, Melissa Schwarz, Rob Bemthuis, and Paul Havinga	2730
Forecasting Steel Demand: Comparative Analysis of Predictability across diverse Countries and Regions Sonja Strasser, and Shailesh Tripathi	2740
Comparing the decarbonization benefit provided by waste-based hydrogen routes to green steel production process: an analytical model Micaela Vitti, Francesco Facchini, and Giorgio Mossa	2751
Biomedical devices surface functionalization through superfinishing processes to improve tribocorrosion Maria Rosaria Saffioti, Giovanna Rotella, and Domenico Umbrello	2761
Applying strategic analysis for designing an educational program in smart manufacturing: the case of MIMS Andrea Bikfalvi, Martí Casadesus, Rodolfo de Castro, Inés Ferrer, Lea Fobbe, Maria Luisa Garcia-Romeu, and Pilar Marques	2767
Industry 4.0 Technologies and their Implications for Environmental Sustainability in the Manufacturing Industry Jacob Kopeinig, Manuel Woschank, and Nadine Olipp.	2777
Machine Learning in Warehouse Management: A Survey Rodrigo Furlan de Assis, Alexandre Frias Faria, Vincent Thomasset-Laperrière, Luis Antonio Santa-Eulalia, Mustapha Ouhimmou, and William de Paula Ferreira.	2790

Contents xix

Considering cognitive biases in design: an integrated approach Sofia Holguin Jimenez, Xavier Godot, Jelena Petronijevic, Marc Lassagne, and Bruno Daille-Lefevre	2800
Energy efficient dry-storage systems in the semiconductor manufacturing industry Daniel Frendo, Paul Refalo, Robert N. Farrugia, and Noel Balzan	2810
Active vision: A promising technology for achieving zero-defect manufacturing Konstantinos A. Tsintotas, Ioannis Kansizoglou, Fotios K. Konstantinidis, Spyridon G. Mouroutsos, Georgios Ch. Syrakoulis, Foivos Psarommatis, Yiannis Aloimonos, and Antonios Gasteratos	2821
Minimizing Carbon Emission in Hybrid Flow Shop Scheduling: A Comparative Analysis of Flow-based and Set Partitioning Formulations Guilherme de Souza Ferreira, Geraldo Robson Mateus, and Martín Gómez Ravetti	2831
NFT based Digital Twins for Tracing Value Added Creation in Manufacturing Supply Chains Noah Habtemichael, Hendro Wicaksono, and Omid Fatahi Valilai	2841
Quantifying the decentralization elements for robust smart manufacturing systems Shreyanshu Parhi, Manoj Govind Kharat, Ranjit Roy Ghatak, and Mukesh Govind Kharat	2847
Optimizing efficiency and zero-defect manufacturing with in-process inspection: challenges, benefits, and aerospace application Foivos Psarommatis, Gökan May, Victor Azamfirei, and Fotios Konstantinidis	2857
Promising SLAM Methods for Automated Guided Vehicles and Autonomous Mobile Robots Li Li, Lothar Schulze, and Kunal Kalavadia	2867
Digital twin and digital thread within the product lifecycle management Christine Lehner, Antonio Padovano, Christian Zehetner, and Georg Hackenberg	2875
Intelligent and self- reconfigurable manufacturing system Halldor Arnarson, Syed Abdur Rahman Tahir, Beibei Shu, Bernt Arild Bremdal, and Bjørn Solvang	2887
Hybrid Intelligence in Production Systems and Its Effects on Human Work: Insights from Four Use-Cases Nikolas J. Schierhorst, Laura Johnen, Christian Fimmers, Vincent Lohrmann, Josefine Monnet, Hanwen Zhang, Thomas Bergs, Christian Brecher, Alexander Mertens, and Verena Nitsch	2901
Enabling Professionals for Industry 5.0: The Self-Made Programme Rui Pinto, Miroslav Žilka, Thalie Zanoli, Mikhail V. Kolesnikov, and Gil Gonçalves	2911
Flexible automation of quality inspection in parts assembly using CNN-based machine learning Masoud Shaloo, Gábor Princz, Roman Hörbe, and Selim Erol	2921
The role of supply chain integration in the risk management of circular economy: a multiple case study in the furniture industry Roberta Pellegrino, Francesco Russo, and Luigi Jesus Basile	2933
Inventory management and delivery of perishable products with stochastic demands and risks consideration Antonio Violi, Annarita De Maio, and Gerarda Fattoruso	2941
Student learning of engineering systems through simulation-based design using Onshape and Blender Igor Verner, Dan Cuperman, and Matthew Mueller.	2950
Mathematical programming formulations for the reclaimer scheduling problem with sequence-dependent setup times and availability constraints Oualid Benbrik, Rachid Benmansour, and Abdelhak Elidrissi	2959
Optimizing Mechanical Design for an Additively Manufactured Prosthetic Leg Miguel Zamora Cordero, Remzo Dedic, Zlata Jelacic, and Rayko Toshev	2939

xx Contents

A sustainability-oriented tool for evaluating servitization business models in the steel sector Mattia Galimberti, Chiara Cimini, Giacomo Copani, and Sergio Cavalieri	2984
Compatibility Assessment for Interfaces in Drivetrains of Robot-Like Systems Marcus Volpert, Birgit Vogel-Heuser, Dominik Hujo, Karsten Stahl, and Markus Zimmermann	2994
Process variability aware Health Index for the optimal cutting blade replacement in industrial environments Etxabe Kerman López de Calle, Alejandro Muro, Perez Eider Garate, and Aitor Arnaiz	3003
Locally Masked Convolutional Models for Anomalous Sound Detection by Deep Learning Frederic Abad, Yuta Nakano, Remy Bendahan, Akiyoshi Takabe, Toshiki Muneto, and Hidehiro Ito	3013
Circular Economy in the Food Supply Chain: A literature review Barbara Bigliardi, Virginia Dolci, Serena Filippelli, Benedetta Pini, Alberto Petroni, and Leonardo Tagliente	3024
Adaptive explainable artificial intelligence for visual defect inspection. Jože M. Rožanec, Beno Šircelj, Blaž Fortuna, and Dunja Mladenić	3034
Application of Decision Support Expert Systems for Improved gasoline yield in Refinery Catalytic Cracking	2044
O.J. Oyejide, A. Faiz, A. Muhammad, and M.O. Okwu Concept for a Robust and Reliable Manufacturing and Logistics System that Combines Production Planning and Control with Predictive Maintenance	3044
Alexandra Maierhofer, Sebastian Trojahn, and Frank Ryll The Challenges of 3D Food Printing in Malaysian Manufacturing Firms: A Preliminary Study Lee Te Chuan, and Nabiha Husna Zaidi	3054 3063
Safe workplace layout design by joint analysis of workers and material flows Mahenina R. Feno, and Adriana Savescu	3074
A hybrid digital twin approach for proactive quality control in manufacturing Paolo Catti, Nikolaos Nikolakis, Konstantinos Sipsas, Nadir Picco, and Kosmas Alexopoulos	3083
Off-axis optical system for the monitoring of the Laser Metal Deposition process Marco Mazzarisi, Maria Grazia Guerra, Marco Latte, Andrea Angelastro, Sabina Luisa Campanelli, and Luigi Maria Galantucci	3092
A Comparative analysis of service supply chain performance using analytic hierarchy process methodology	
Oluseyi A. Adeyemi, Martin Potticary, Funlade Sunmola, Musibaudeen O. Idris, Esther O. Adeyemi, and Ibrahim O. Raji.	3102
A methodology to guide companies in using Explainable AI-driven interfaces in manufacturing contexts Fabio Grandi, Debora Zanatto, Andrea Capaccioli, Linda Napoletano, Sara Cavallaro, and Margherita Peruzzini	3112
A framework for throughput bottleneck analysis using cloud-based cyber-physical systems in Industry 4.0 and smart manufacturing	2121
Ehsan Mahmoodi, Masood Fathi, Morteza Ghobakhloo, and Amos H.C. Ng	3121
Advancing Human-Robot Collaboration: proposal of a methodology for the design of Symbiotic Assembly Workstations	2121
Barravecchia Federico, Bartolomei Mirco, Mastrogiacomo Luca, and Franceschini Fiorenzo	3141

Contents xxi

Integration of Process Modeling and Six Sigma for defect reduction: A case study in a wind blade factory Daniela Oliveira, Leonor Teixeira, and Helena Alvelos	3151
A practical simulation approach for the support of wire arc DED additive manufacturing systems design Iosif Karouanas, Panagis Foteinopoulos, Harry Bikas, and Panagiotis Stavropoulos	3161
Causal Inference in Supply Chain Management: How Does Ever Given Accident at the Suez Canal Affect the Prices of Shipping Containers? Nadhir Mechai, and Hendro Wicaksono	3173
Towards a Digital Predictive Maintenance (DPM): Healthcare Case Study Maryam Gallab, Ikram Ahidar, Nabila Zrira, and Nabil Ngote	3183
Machine Learning for failure prediction: A cost-oriented model selection Alessia Maria Rosaria Tortora, Ciele Resende Veneroso, Valentina Di Pasquale, Stefano Riemma, and Raffaele Iannone	3195
Supply Network Risk Mitigation-Industry 4.0 Approach Sameh M Saad, Dasunika Ubeywarna, and Hongwei Zhang	3206
Metaverse Simulator for Emotional Understanding Mizna Rehman, Antonella Petrillo, Antonio Forcina, and Fabio De Felice	3216
AI-driven real-time failure detection in additive manufacturing Mangolika Bhattacharya, Mihai Penica, Eoin O'Connell, and Martin Hayes	3229
Recursive autoencoder network for prediction of CAD model parameters from STEP files Victoria Miles, Stefano Giani, Oliver Vogt, and Raheleh Kafieh	3239
Applications of AI/ML in Maritime Cyber Supply Chains Rafael Diaz, Ricardo Ungo, Katie Smith, Lida Haghnegahdar, Bikash Singh, and Tran Phuong	3247
Impact of Industry 4.0 Technologies on Operations Resilience: Adverse Effects of COVID-19 as a Moderator Dilupa Nakandala	3258
Artificial Intelligence Enabled Human Resources Recruitment Functionalities: A Scoping Review Omar Ali, and Layal Kallach	3268

Available online at www.sciencedirect.com

ScienceDirect

Procedia Computer Science 232 (2024) 1259-1268

F----

5th International Conference on Industry 4.0 and Smart Manufacturing

Leveraging Natural Language Processing for enhanced remote troubleshooting in Product-Service Systems: A case study

Roberto Sala^{a*}, Fabiana Pirola^a, Giuditta Pezzotta^a, Sergio Cavalieri^a

^aUniversity of Bergamo, Department of Management, Information and Production Engineering, Viale Marconi, 5, Dalmine (BG), 24044, Italy

Abstract

In Product-Service System (PSS) offerings is crucial to deliver services in the shortest time to maximize customer satisfaction. One of the first contacts that customers have with the provider is usually through remote assistance delivered via telephone or email. Thus, the development of a structured troubleshooting procedure is fundamental for fast problem identification and resolution. While customers exchange with help desk technicians are saved in a company database, they are often lacking proper structure and, thus, are rarely analyzed. This poses a challenge since aggregated data can provide valuable insights for knowledge extraction and reuse, benefiting PSS lifecycle management and improvement (e.g., enhancing troubleshooting, maintenance service, or PSS design). The paper presents a case study where the textual data collected from the customer ticket database have been analyzed to extract the most recurrent problems and the frequently suggested solutions and improve remote troubleshooting.

© 2024 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)

Peer-review under responsibility of the scientific committee of the 5th International Conference on Industry 4.0 and Smart Manufacturing

Keywords: Product-Service Systems (PSS); Maintenance; Natural Language Processing (NLP); Troubleshooting

1. Introduction

In the current industrial context, the capability of improving and delivering services efficiently and effectively is crucial to be competitive. To do so, it is necessary to extract knowledge generated by daily activities, summarize it, and turn it into something useful, such as a set of procedures, guidelines, or standardized processes that allow employees to do their job most easily and clearly. Such a scope requires understanding the process that needs to be improved, identifying its flaws, understanding how to overcome them, and working toward their implementation [1].

* Corresponding author. Tel.: +39-0352052005 *E-mail address:* roberto.sala@unibg.it Such an approach can be applied to many processes to optimize their flow and ensure the expected outcomes. For instance, in the case of manufacturing companies, this can be translated into the process of managing and delivery maintenance, especially in the case of market offerings based on product-service bundles, usually referred to Product-Service Systems (PSS) [2]. In this kind of offering, the relationship between the industrial asset/product provider and the customers is not limited to the moment of the sale but continues over time thanks to the service provision. The durability of this relationship is subject to service quality and economic sustainability [3, 4].

Service delivery is not an easy task and requires considering service and asset integration since the designing phase [5]. It is very uncommon that the service design result in the optimal configuration after the first iteration since new elements emerge over time while the customers use the asset and the provider gains experience in the service delivery process [6]. For this reason, the collection and analysis of data on the service execution and delivery are required to continuously improve these aspects [7].

Using the maintenance service as a reference, multiple authors highlighted the need to continuously learn from the data collected to know if, when, and what maintenance should be delivered [8]. This knowledge can stem from the analysis of numerical (e.g., vibrations, production, quality rates) [9] or textual data (e.g., maintenance reports, maintenance tickets) [10] that must be analyzed with the most appropriate methods depending on their nature. Leveraging on the knowledge extracted, companies can update their internal processes to improve the execution of maintenance and the management of the PSS lifecycle [8]. One of the most important phases of the maintenance delivery process is the initial one, where the customer contacts the provider requiring support. The fast and correct identification of the problem allows for a timely problem resolution and guarantees higher satisfaction for the customer and optimized resource usage for the provider. Thus, the definition of proper remote troubleshooting is required to offer reliable maintenance services, and the knowledge generated through the information exchange with the customer can constitute a base for this.

Being usually in the form of unstructured written text, it is hard for companies to summarize it in a fast and efficient way [11]. In this regard, recent years have seen the development of research on the topic of Natural Language Processing (NLP), and related applications in the industry context for text summarization, information discovery, and others [12]. The adoption of NLP can be a means for companies to summarize information collected in the exchange with customers and transform the knowledge extracted into useful troubleshooting procedures.

This paper is not aimed at introducing new NLP models but aims to demonstrate how NLP approaches could be included in a wider PSS lifecycle management process that is aimed at improving service execution (i.e., maintenance and help desk) and future design [5]. In particular, this paper presents a case study where the ticketing data of an Italian company has been analyzed with NLP-based approaches to extract knowledge targeted to the improvement of the troubleshooting phase for the maintenance help desk.

The paper is structured as follows: Section 2 briefly discusses the literature on the topic, and Section 3 details the methodology used. Section 4 describes the case study used for this research. Section 5 discussed the outcome of the analysis. Section 6 concludes the paper also delineating future research.

2. Literature background

Product-Service Systems (PSS) offerings gained considerable attention in the manufacturing sector over the years. To be effective, they need to be built upon strict integration of product and service components that should be designed in a way that allows providers to deliver satisfactory services to customers in a sustainable way (especially considering the economic aspect) [4]. To do so, researchers clarified the need to constantly improve the offering through data collection and analysis targeted to summarize knowledge to be reused for product or service redesign, especially because of the unprecedented data availability that characterizes the modern industrial scenario [13–15].

In this context, maintenance is among the most common services that companies offer to customers given the considerable effect that poor execution may have on the performance of an asset or a plant, leading to a reduction of its productivity that goes from 5% to 20% according to [16]. Another frequent service the companies offer to customers is the help desk, which consists in supporting remotely the customers in solving some problems that may occur with the machine [17, 18]. This process is strictly tied to the maintenance one since, based on the identification of specific problems in the asset, a maintenance intervention might be scheduled. In turn, to avoid useless interventions and reduce

the downtime of the assets, companies must define reliable troubleshooting procedures that help employees in identifying the problems and the related solutions [19].

The Natural Language Processing (NLP) literature proposed a plethora of contributions related to the application of such an approach to the industry. Such contributions span from the fault log text classification [20], to the support for staff assignment [21], to the topic modeling for discovering frequent problems [10], or to the correction of manual classification [22]. These approaches are all interested in understanding how the data and information entered in maintenance reports might be summarized through automatic means and translated into knowledge to be later reused for improvement.

While [23] proposes a custom word embedding model targeted at extracting knowledge from maintenance reports, [24] addresses the problem of adapting NLP approaches to technical text, also discussed by [25, 26].

From this brief literature background, it emerges the interest that NLP applications gained in the maintenance field, with various applications that should be further deepened to show the benefits that a wider adoption could have on the companies' improvement processes. In doing so, this paper embeds its research contribution in the PSS context, where actors can learn from previous experience to build new products and services and improve the current ones.

3. Research approach

Company A is an Italian manufacturing company producing equipment and plants for the food and beverage sector. The company realized in recent years the necessity of moving towards a more structured maintenance offering because of the higher competitiveness that emerged in the market and the possibility of instantiating new revenue streams through PSS offerings, beneficial for internal investments and future expansion.

The research aimed to verify whether the use of Natural Language Processing (NLP) on a dataset of claim records from customers could be used to improve the maintenance service by achieving more efficient maintenance execution and effective remote troubleshooting. The dataset, structured in a tabular format, was composed of a main column "Contact message", a second column "Suggested activities", and other numerical or categorical columns useful to have more detail on the operators carrying out the support of the customer requiring assistance.

The methodological steps followed to carry out the research are the following (also shown in Figure 1):

- 1. Data collection. Where data from the company database were extracted in .csv format.
- 2. Data pre-processing ("Contact Message"). Where the .csv files were merged into one, and standard pre-processing steps (e.g., dataset translation, tokenization, stop-words removal, Part-of-Speech tagging, lemmatization, n-grams identification) were applied. This phase was carried out using Python 3.9 code and Python packages such as nltk [27] and spaCy [28].
- 3. *Feature extraction* ("Contact Message"). Where weights were assigned to the pre-processed dataset to identify the most important features for the following step.
- 4. *Topic modeling* ("Contact Message"). The pre-processed messages were clustered into topic arguments to allow distinguishing them based on their content. To carry out this phase, Latent Dirichlet Allocation (LDA) [29] method was used through genism [30]. The result was saved in a model to be used in step 6.
- 5. *Topic validation* ("Contact Message"). The validity of the topics was evaluated through mathematical indexes like Perplexity and Coherence [31] and manual checks of the topics' content.
- 6. *Topic assignment* ("Contact Message"). Once validated the topics, the model created in step 4 was used to assign, to each message, one or more topics.
- 7. *Topic clustering*. Based on the results of step 6, messages were clustered according to the topic assigned.
- 8. Data pre-processing ("Suggested Activities"). As in the case of the "Contact message" column, the "Suggested activities" column underwent a pre-processing phase to uniform the content and favor the analysis.
- 9. *Frequency analysis* ("Suggested Activities"). Following the pre-processing phase, the authors analyzed the content of the suggested activities connected to each "Contact message" to identify the most common resolution strategies suggested. This phase was carried out through simple frequency analysis due to the requests of the company.

10. *Troubleshooting process improvement*. Based on the results of step 9, a troubleshooting procedure, in the form of required checks was defined for each topic identified in step 4.

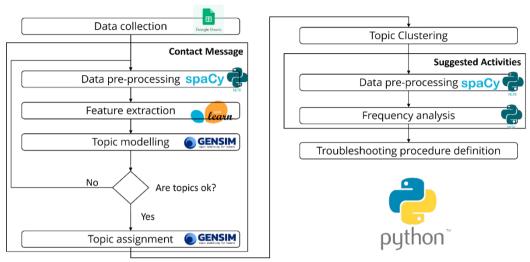


Figure 1 - Research Approach

4. Case Study

Starting from the methodological description provided in section 3, section 4 aims at presenting its application to the case of Company A.

As anticipated in the previous section, data were extracted from the company database in the form of .csv files. Two main files were extracted. One ("Contact messages") contains the message that started the conversation between the company and the customer, and another one ("Suggested Activities") contains the message exchange that followed between the two actors. The extraction of two files instead of one was due to the structure of the database, which did not allow a single extraction. Using the numerical identifier stored in the column "Intervention ID", it was possible to create a single file for analysis. The file was structured with the following columns "Intervention ID", "Customer", "Location", "Subsidiary", "Status", "Contact Message", "Suggested activities", "Start date", "Closure date", and others. It must be clarified that the "Suggested activities" column contains not only the message(s) sent by the technician but contains the whole conversation with the customer (apart from the initial message).

4.1. Pre-processing and features extraction

The pandas library [32, 33] was used to create the file for analysis. The joined dataset was composed of almost 15000 rows, each one corresponding to a ticket. Before moving to the analysis of its content, the dataset was cleaned through the removal of rows missing fundamental information for the analysis (e.g., the content of the "Contact message" or "Suggested activities" columns), leading to a final set of 13000 rows. If the "Contact message" was missing, it was not possible to assign the corresponding "Suggested activities" info to a specific topic. The same goes if the "Suggested activities" content was missing since it was not possible to improve the troubleshooting phase on the assigned topic without that information.

As a first activity, the "Contact Message" and "Suggested Activities" columns were translated into English using Google Sheets and the GOOGLETRANSLATE function to achieve higher uniformity in the analysis. This passage was executed in accordance with the company after evaluating the potential risk of information loss due to mistranslations.

Following, *Tokenization* took place and allowed the separation of the sentences into single words (tokens) while removing the punctuation and white-spacing from the messages. It is important to clarify that the spaCy library was modified to avoid removing negative words (e.g., no, not) to avoid problems of interpretation (e.g., "work" vs "does

not work"). Once tokenized, the *stop-words removal* phase took place. In this phase, the tokens were compared against a list of common words widely used in the English language. If the token matched one of the stopwords, it was removed from the list. If not, it was kept in the dataset.

Then, using spaCy, tokens underwent the Part-of-Speech (POS) tagging phase and the following lemmatization. POS tagging consists in assigning the grammar meaning and classification to each token (e.g., verb, noun, adjective), while the lemmatization is used to convert a word in its root form (e.g., from plural to singular, form conjugated to the infinitive) and allow the following model to better perform. *Stop-words removal* took place once again to ensure the removal of all the non-useful words. In addition, the stop-words list was customized to include additional words that the company experts considered non-significant. Then, n-grams, which are a set of words (e.g., two for bigrams, three for trigrams, and so on) that frequently appear in the text, were identified in the scope of better contextualizing some problems.

4.2. Topic modeling and validation

Topic modeling is a text-mining technique that is aimed at analyzing the content of a set of documents (corpus) to identify recurrent patterns that can be later generalized into topics. More in detail, topic modeling is based on an unsupervised approach, where documents that were previously not labeled, are labeled based on their content and the content of the corpus under analysis. To maximize the probability of identifying topics accurately, the dataset was pre-processed, as described in the previous sub-section. To run the analysis, the Latent Dirichlet Allocation (LDA) algorithm was used. The LDA algorithm uses a statistical and probabilistic approach to cluster documents into a set of topics that require to be validated. Methodologically, the validation of the topics follows the use of two mathematical indexes, the Perplexity (the lower, the better), and the Coherence (the higher, the better), as well as a manual check to ensure the correctness of the topics' content.

The algorithm provided in the genism package can be customized by setting the values of specific parameters (e.g., number of topics, chuck size, iterations). In the case of analysis, 14 topics were identified as the optimal number considering the perplexity score (113) and the coherence (0.65). It must be clarified that these scores are the ones that minimize the perplexity and maximize the coherence. Since the literature does not provide a clear indication of the optimal values for these indexes but only gives general indications for evaluation (the lower the perplexity the better, the higher the coherence the better), authors, after an evaluation of the topics content, considered the result satisfiable. The LDA algorithm provides as output a table with the topic number and the topic keywords, while the topic name must be manually defined by the user. Table 1 provides an overview of the topics and the related keywords as well as a short explanation of its content.

The table reports only part of the keywords associated with a topic. The more the keywords are explored, the more words can be found, even crossing other topics, which is something expected since there is the possibility that a customer might have a request involving multiple problems. The acceptance of these 14 topics followed the fact that their content was well clustered and no excessive overlapping took place. Once acquired the topics and validated their content, a model, able to categorize messages according to these topics, was created and saved. Following, the same model was used to analyze the single messages in the "Contact Message" column in the scope of assigning a topic to each message. One of the problems with the LDA algorithm is that it does not return the simple belonging of a message to one topic but returns probability scores that can be used to understand to what topic the message belongs. For instance, it might assign a probability of 75% to belong to the topic "Trigger code", 24% to belonging to the topic "Format", and another probability of 1% split over the 12 remaining topics because, due to the way it is designed, it must assign a probability to each topic. Once assigned the probabilities score for each message, the "main topic" was identified for each one. The identification of the main topic follows the selection of the maximum score value assigned to the message (e.g., if the maximum value assigned by the LDA model is 75% for Topic_01, it means that the message deals with the "Trigger code" topic).

Following, the records in the dataset were clustered according to the main topic identified for each one of them. Then, the authors analyzed the "Suggested Activities" column, as discussed in the next subsection.

Table 1. Topics, keywords, and topics explanation

Topic Number	Topic	Keywords	Topic explanation
Topic_01	Trigger code	Code, trigger, trigger code, request, code request	It deals with problems related to the code required to make the machine function after certain problems occurred.
Topic_02	Ring	Problem, ring, problem ring, communication problem, fiber	It deals with problems related to the item that connects the various components of Company A's machines through high-speed signal interchange.
Topic_03	Oven	Oven, oven problem, alarm, machine error, error oven	It deals with problems in the oven, that cover a fundamental phase in the production process.
Topic_04	Format	Format, request format, problem format, format machine	It deals with problems related to the kind of product produced. Different formats lead to the production of different products.
Topic_05	Password	Request, password, password request, change, request change	It deals with problems related to the password requested to modify some parameters in the machine.
Topic_06	Communication	Communication problem, communication error, communication, oven communication	It deals with the problems related to the ability of the machine to communicate internally (e.g., between components) or externally (e.g., with the company cloud)
Topic_07	Level	Level, need, level request, password level, send password	It deals with problems related to the password requested to access some functions of the machine.
Topic_08	Warranty	New, warranty, reported, request warranty, installation, new format	It deals with problems related to the request for maintenance under or outside warranty.
Topic_09	System	System, installation, change system, install system, request system	It deals with problems related to the software installed on the machine.
Topic_10	Terminal	Terminal, error, terminal error, terminal installation, change terminal	It deals with problems related to the terminal used to control the machine.
Topic_11	Film	Film, start, program, problem film, replacement film	It deals with problems related to the film used for the packaging of the products.
Topic_12	Alarm	Replacement, alarm, change, warranty, send	It deals with some problems related to some alarms shown by the machine.
Topic_13	Machine	Machine, start, start machine, system, error	It deals with some general problems related to the machine functions.
Topic_14	Customer	Problem, oven, customer problem, communication customer, request	It deals with generic problems described by the customers

4.3. Results

Once the clusters of "Suggested Activities" were created, they were analyzed in the scope of identifying common solutions or tests suggested by the technicians to customers. One of the main problems that Company A is facing is the lack of standardization in the way information is collected from customers and suggestions are given. This is because a common troubleshooting approach is missing, and the resolution process heavily relies on the expertise of the technicians dealing with the customer and the ability of the customer in describing the problem.

Like in the case of the "Contact Message" column, the pre-processing steps were applied to the "Suggested Activities" one. This is justified by the fact that the authors and the company evaluated the risk of losing part of the information if the pre-processing phase was not run also in this case, especially considering that this phase exploited the word-count approach as the main tool for the information extraction.

Table 2. Topics, suggested checks, and specific actions

Topic	Suggested check	Specific action	
Trigger code	- Trigger code request	- Send trigger code	
Ring	- Optical fiber interruption	- Replace optical fiber	
	- Check power	- Plug-in power	
	- Check connected components	- Replace broken components	
Oven	- Check power	- Replace broken components	
	- Check the cable connection	- Update the database with oven specifications	
	- Check the integrity of the fan, inverter, and resistors		
Format	- Check the format's existence in the database	- Replace mold	
	- Check bearings	- Replace bearings	
		- Update available format	
		- Move gearbox	
Password	- Check password	- Send password	
Communication	- Check cable integrity	- Replace cables	
	- Check the connection between components	- Plug-in connectors	
	- Check peripherals	- Connect peripherals	
Level	- Check level required	- Send the password for the level required	
Warranty	- Check the component warranty	- Propose quotation	
		- Send spare parts	
System	- Check system installation	- Re-install system	
	- Check the internet connection	- Connect to the internet	
	- Check sensors	- Replace sensors	
Terminal	- Check the terminal connection	- Fix installation problems	
	- Check parameters	- Update parameters	
	- Check power voltage		
	- Check connection with other components		
Film	- Check film status	- Send technical data	
	- Check the cutting blade	- Change film typology	
Alarm	- Check the power connection	- Send activation code	
	- Check led status	- Replace led	
	- Check system	- Replace broken components	
Machine	- Check the machine database	- Restart the system	
	- Check the cable connection	- Change bearings	
	- Check power	- Change belt	
	- Check the component's integrity	- Change engine	
Customer	- Confirm problem	- Send technical support	
	•	- Send documentation	

Specifically, the aim was to search for single words but, more important, for n-grams able to give better context on the check request or executed. In particular, this phase was run using the nltk library and the FreqDist() method. In this way, authors were able to extract, for each topic, a list of suggested checks proposed and attempted that were later

used to improve the troubleshooting. Table 2 summarizes the most frequent actions and checks found. Due to space constraints, it is not possible to provide examples of the questionnaire for troubleshooting that Company A started developing after the analysis.

5. Discussion

The analysis carried out through the NLP approach was aimed at identifying the most common requests that technicians ask customers to verify problems and suggest solutions when the customers require support. Such a scope should be considered as a step towards the improvement of the troubleshooting process, which in turn can help improve the management of the ticketing system and that, in a wider view, contributes to the improvement of the PSS offering management and service delivery [8, 10, 19]. As far as the authors' knowledge, no other case studies have been presented in the field of PSS and maintenance, with some papers discussing the problem from a more general perspective without addressing the problem as discussed in this paper [20, 34].

Starting from the troubleshooting point of view, the results of the analysis allowed identifying a set of problems that are commonly encountered by the customers, and that require particular attention from Company A in the scope of offering a satisfactory service. While Table 2 provides a schematic overview of the results, Company A also used them to define a troubleshooting questionnaire adapted to the typology of problems that the customers have. The questionnaire is aimed at requiring specific tests, partially reported in Table 2, to check the most common causes of problems first and then check the less frequent causes. The definition of a standardized approach to the troubleshooting phase would allow for the provision of a quality service independently from the experience of the technician that is responsible for the activity. Moreover, in a wider perspective, the collection of data and statistics over the response of customers to the troubleshooting procedure (e.g., easiness in guiding them and retrieving the information, the correctness of the test required) would allow, in the long term, to update and improve the troubleshooting phase to identify in a shorter time the problem.

Similarly, this can be extended to the ticketing system, which can benefit from the creation of a list of common problems and resolution strategies both from the customer's and the technician's point of view. For the customer, it would be easier to check some control marks on the ticketing tool to better describe the problem and, following, allow the technician to identify the proper solution. On the other hand, this could also go in the direction of a more automated resolution system, where the customer enters the details of the problem through a guided procedure, and the system, depending on the problem, might immediately provide suggestions for resolution without the need of interaction with a human technician.

Eventually, the improvement of the troubleshooting procedure can be seen as part of a wider PSS offering improvement, where the analysis and collection of data related to the troubleshooting procedure could be used, as said, to make more efficient the problem identification and resolution phases but, on the other hand, could also be used in a more general improvement logic. In fact, by studying the more frequent problem requests and proposed resolution approaches, it would be possible for designers to modify the design of the product to allow for a reduced occurrence and a simplified maintenance procedure.

Thus, while on the one hand, the analysis and improvement of the troubleshooting process are targeted to provide operational benefits in terms of problem identification and resolution, thus looking at the day-by-day activities, on the other it can be considered to have an impact on the strategical and tactical level, with the re-design of certain parts of the machines, the revision of the maintenance policies (e.g., based on actual frequency of problem occurrence) and procedures (e.g., resolution approaches that might be transferred to customers instead of requiring the intervention of the technician).

6. Conclusions

The troubleshooting phase is one of the most important for companies offering field maintenance and help-desk services to customers. A good and straightforward troubleshooting procedure allows fast and correct identification of the problem and its cause, resulting in faster resolution and thus, short downtime, allowing the customers to continue

production and maintain productivity at the expected levels. The provision of fast and reliable maintenance service is an important competitive factor for manufacturing companies dealing with the PSS business model since it is the ability to deliver service in a fast and efficient way that allows them to keep alive the relationship with the customers. For this reason, the development of a standardized and reliable troubleshooting approach, created from the analysis of historical data on causes and faults, and on the experience of technicians, is required to remain competitive.

In this context, the paper presents a case study where the NLP was used on the ticketing database of Company A, in the scope of clustering recurrent problems that customers ask for and the way technicians are used to answer them. Company A used the outcome of the analysis as a means to develop a standardized troubleshooting procedure based on a set of questions asked to customers when they encounter certain problems. Also, suggestions to solve the problems have been identified based on the content of the message exchange with customers.

Through the NLP approach, it has been possible to analyze in a short time the around 13000 customer tickets. The approach has been divided into two consecutive steps, the first one aimed at clustering problems, and the second one aimed at identifying checks/solutions. A manual analysis and classification of the whole dataset in a single session would have required days, while, once trained, the algorithm classified the whole dataset in few minutes.

From a academic and theoretical point of view, the approach demonstrated its usefulness in terms of contribution to the maintenance service improvement, especially considering a lifecycle perspective where the information collected through the tickets, in terms of problems or solutions, could be used to enhance the design of the machine (when shared with the design teams) or the way service is executed on the field (when shared with the service department and the customer service).

From a practical point of view, the case study demonstrated the validity of the approach, which allowed to analyze and summarize in a short time the content of the ticketing database, allowing to extract knowledge and define a more structured troubleshooting procedure to improve the process at the operational level. By using the knowledge extracted in terms of problems, Company A could also improve the ticketing software by adding classification fields that could be used to immediately show possible solutions to the customer or the technician, depending on how the service is structured.

The approach used in the case study could be further enhanced by deepening the analysis in the second step of the methodology, for instance by developing a LDA model specific for each problem since, as of now, the main solutions have been identified based on a simple frequency analysis. Further research, overcoming the limitations of the current research, will encompass the analysis of the ticketing solutions using the LDA as well as testing other approaches for the analysis of the database (e.g., BERT). Another major improvement to the research would be to cluster messages not only based on the topic but also based on the asset model.

Acknowledgements

This paper was supported by the project National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.3 – Call for tender No. 341 of 15/03/2022 of Italian Ministry of University and Research funded by the European Union (NextGenerationEU), Award Number PE00000004, Concession Decree No. 1551 of 11/10/2022 adopted by the Italian Ministry of University and Research, CUP F13C22001230001 MICS (Made in Italy - Circular and Sustainable).

References

- [1] Morlock, Friedrich. (2015) "Service Value Stream Mapping in Industrial Product-Service System Performance Management." Procedia CIRP.
- [2] Beuren, Fernanda Hänsch, Marcelo Gitirana Gomes Ferreira, and Paulo A. Cauchick Miguel. (2013) "Product-service systems: a literature review on integrated products and services." *Journal of Cleaner Production* **47** (**May 2013**): 222–31.
- [3] Pekkola, Sanna, Minna Saunila, Juhani Ukko, and Tero Rantala. (2016) "The role of performance measurement in developing industrial services." *Journal of Quality in Maintenance Engineering* **22** (3): 264–76.
- [4] Lee, Sora, Youngjung Geum, Hakyeon Lee, and Yongtae Park. (2012) "Dynamic and multidimensional measurement of product-service system (PSS) sustainability: a triple bottom line (TBL)-based system dynamics approach." *Journal of Cleaner Production* 32: 173–82.
- [5] Pezzotta, Giuditta, Claudio Sassanelli, Fabiana Pirola, Roberto Sala, Monica Rossi, Sophia Fotia, et al. (2018) "The Product Service System Lean Design Methodology (PSSLDM)." *Journal of Manufacturing Technology Management* **29** (8): 1270–95.
- [6] Mourtzis, Dimitris, Sophia Fotia, Marta Gamito, Rui Neves-Silva, Ana Teresa Correia, Philipp Spindler, et al. (2016) "PSS Design

- Considering Feedback from the Entire Product-service Lifecycle and Social Media." Procedia CIRP 47: 156-61.
- [7] Bertoni, Alessandro, and Tobias Larsson. (2017) "Data Mining in Product Service Systems Design: Literature Review and Research Questions." *Procedia CIRP* **64**: 306–11.
- [8] Sala, Roberto, Fabiana Pirola, Giuditta Pezzotta, and Sergio Cavalieri. (2022) "Data-Driven Decision Making in Maintenance Service Delivery Process: A Case Study." *Applied Sciences* **12** (15): 7395.
- [9] Carvalho, Thyago P., Fabrizzio A.A.M.N. Soares, Roberto Vita, Roberto da P. Francisco, João P. Basto, and Symone G.S. Alcalá. (2019) "A systematic literature review of machine learning methods applied to predictive maintenance." *Computers & Industrial Engineering* 137: 106024.
- [10] Sala, Roberto, Fabiana Pirola, Giuditta Pezzotta, and Sergio Cavalieri. (2022) "NLP-based insights discovery for industrial asset and service improvement: an analysis of maintenance reports." *IFAC-PapersOnLine* **55** (2): 522–7.
- [11] Lee, Shenae, Maria Vatshaug Ottermo, Stein Hauge, and Mary Ann Lundteigen. (2023) "Towards standardized reporting and failure classification of safety equipment: Semi-automated classification of failure data for safety equipment in the operating phase." *Process Safety and Environmental Protection* 177: 1485–93.
- [12] Naqvi, Syed Meesam Raza, Mohammad Ghufran, Safa Meraghni, Christophe Varnier, Jean-Marc Nicod, and Noureddine Zerhouni. (2022) "Cbr-based decision support system for maintenance text using nlp for an aviation case study." in 2022 Prognostics and Health Management Conference (PHM-2022 London) IEEE; p. 344–9.
- [13] Bertoni, Alessandro, and Marco Bertoni. (2018) "PSS cost engineering: A model-based approach for concept design." *CIRP Journal of Manufacturing Science and Technology*. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1755581718300464
- [14] Cibat, Janis, Thomas Süße, and Uta Wilkens. (2017) "An Ecosystem Approach as a Design Principle for a PSS-Specific Business Simulation." *Procedia CIRP* **64** : 223–8.
- [15] Bertoni, Marco, and Alessandro Bertoni. (2022) "Designing solutions with the product-service systems digital twin: What is now and what is next?" *Computers in Industry* **138**: 103629.
- [16] Coleman, Chris, Satish Damodaran, and Ed Deuel. 2022 "Predictive maintenance and the smart factory." [Internet]Deloitte; Available from: https://www2.deloitte.com/us/en/pages/operations/articles/predictive-maintenance-and-the-smart-factory.html
- [17] Kolling, Camila, Janine Fleith de Medeiros, José Luis Duarte Ribeiro, and Donato Morea. (2022) "A conceptual model to support sustainable Product-Service System implementation in the Brazilian agricultural machinery industry." *Journal of Cleaner Production* **355**: 131733.
- [18] Maleki, Elaheh, Farouk Belkadi, Eric Bonjour, Ali Slayman, and Alain Bernard. (2019) "Interface modeling for product-service system integration." *Systems Engineering* **22** (6): 471–84.
- [19] Liang, Jeremy S. (2020) "A process-based automotive troubleshooting service and knowledge management system in collaborative environment." *Robotics and Computer-Integrated Manufacturing* **61** (July 2019): 101836.
- [20] A, Darlington-Njoku Chidinma, Bhupesh Kumar Mishra, and Will Sayers. (2022) "Fault Log Text Classification Using Natural Language Processing And Machine Learning For Decision Support." in 2022 14th International Conference on Software, Knowledge, Information Management and Applications (SKIMA) p. 98–103.
- [21] Mo, Y., D. Zhao, J. Du, M. Syal, A. Aziz, and H. Li. (2020) "Automated staff assignment for building maintenance using natural language processing." *Automation in Construction* 113.
- [22] Hong, Sungil, Junghyun Kim, and Eunhwa Yang. (2022) "Automated text classification of maintenance data of higher education buildings using text mining and machine learning techniques." *Journal of Architectural Engineering* **28** (1): 04021045.
- [23] Bhardwaj, Abhijeet Sandeep, Akash Deep, Dharmaraj Veeramani, and Shiyu Zhou. (2022) "A Custom Word Embedding Model for Clustering of Maintenance Records." *IEEE Transactions on Industrial Informatics* **18** (2): 816–26.
- [24] Dima, Alden, Sarah Lukens, Melinda Hodkiewicz, Thurston Sexton, and Michael P. Brundage. (2021) "Adapting natural language processing for technical text." *Applied AI Letters* 2 (3): e33.
- [25] Akhbardeh, Farhad, Travis Desell, and Marcos Zampieri. (2020) "NLP Tools for Predictive Maintenance Records in MaintNet." in Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing: System Demonstrations p. 26–32.
- [26] Brundage, Michael P., Thurston Sexton, Melinda Hodkiewicz, Alden Dima, and Sarah Lukens. (2021) "Technical language processing: Unlocking maintenance knowledge." *Manufacturing Letters* 27: 42–6.
- [27] Bird, Steven, Ewan Klein, and Edward Loper. (2009) "Natural language processing with Python: analyzing text with the natural language toolkit." O'Reilly Media, Inc.;
- [28] Honnibal, Matthew, Ines Montani, Sofie Van Landeghem, and Adriane Boyd. (2020) "spaCy: Industrial-strength Natural Language Processing in Python." [Internet]Zenodo; Available from: https://doi.org/10.5281/zenodo.1212303
- [29] Blei, David M., Andrew Y. Ng, and Michael I. Jordan. (2003) "Latent dirichlet allocation." the Journal of machine Learning research 3: 993–1022.
- [30] Řehůřek, Radim, and Petr Sojka. (2010) "Software Framework for Topic Modelling with Large Corpora." in *Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks* Valletta, Malta: ELRA; p. 45–50.
- [31] Morstatter, Fred, and Huan Liu. (2018) "In search of coherence and consensus: measuring the interpretability of statistical topics." *Journal of Machine Learning Research* **18** (169): 1–32.
- [32] team, The pandas development. (2020) "pandas-dev/pandas: Pandas." [Internet]Zenodo; Available from: https://doi.org/10.5281/zenodo.3509134
- [33] McKinney, Wes. (2010) "Data Structures for Statistical Computing in Python." in Stéfan van der Walt and Jarrod Millman (eds.) Proceedings of the 9th Python in Science Conference p. 56–61.
- [34] Iyer, Naresh, Nurali Virani, Zhaoyuan Yang, and Abhinav Saxena. (2022) "Mixed Initiative Approach for Reliable Tagging of Maintenance Records with Machine Learning." in *Annual Conference of the PHM Society*.