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A B S T R A C T

Endogeneity is a key empirical challenge in transportation modeling, which may lead to
inconsistent estimates and biased policy decisions. This paper investigates the sources of
endogeneity and focuses on tackling this issue for a discrete choice model analyzing the
multimodal London–Amsterdam route, where air transport and high-speed rail (HSR) compete.
Contrary to previous literature, we found no evidence of endogeneity in service frequency for
the London–Amsterdam market. This could be attributed to market-specific features, such as
feeding considerations, slot retention dynamics, and the congestion of the HSR network, which
constrains capacity expansion opportunities. Conversely, we observed that fare introduced
endogeneity into the model. To address this issue, we applied the control function approach and
proposed two novel instruments: the fare for similar markets and the price of power sources.
These instruments proved to be effective in correcting for endogeneity by increasing model
performance. We also discuss the adverse impact of neglecting endogeneity and estimate price
and frequency elasticities, ultimately demonstrating the significance of dealing with endogeneity
in ensuring the reliability of results in transportation studies and appropriately informing policy
decisions.

. Introduction

High-speed rail (HSR) has become an affordable and sustainable alternative to air travel for domestic and cross-border trips
orldwide (for recent reviews on the topic, see, e.g., Givoni and Dobruszkes, 2013; Li et al., 2019a; Zhang et al., 2019b). On
ne hand, this pattern was triggered by the spread of high-speed networks on a global scale. The length of high-speed networks
n operation worldwide has increased rapidly, reaching an extension of approximately 58,000 km in 2021, and it is expected to
ncrease by 20,000 km in the near future (UIC, 2022). On the other hand, the undeniable environmental impacts of air transport

which accounts for approximately 2.5% of global 𝐶 𝑂2 emissions, increasing to 3.5% if non-𝐶 𝑂2 impacts are considered (Lee et al.,
021)— have provided the impetus for policymakers and industry stakeholders to devise mechanisms to reduce emissions. Among
hem, the fostering of a modal shift toward alternative transport modes, especially HSR, emerged as a promising solution for short
nd medium-haul routes characterized by high demand intensity, primarily due to the greenness of HSR compared to air transport
n a per-seat basis (Avogadro and Redondi, 2023; Jiang et al., 2021).

Following this trend, researchers have increasingly investigated the drivers underpinning transport demand in markets where
SR competes with air carriers. The standard approach to these analyses is the use of linear econometric models or the adoption of
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gravity-based formulations, where the dependent variable is the aggregate demand or the market share of a single alternative (see,
e.g., Gu and Wan, 2022; Li et al., 2019a,b; Mizutani and Sakai, 2021; Strauss et al., 2021). However, at the individual level, transport
demand is not continuous but discrete. This is because single passengers choose the best alternative for their trip. Thus, empirical
studies that use individual data rely extensively on discrete choice models (DCMs) to investigate passenger preferences.

Table 1 summarizes previous studies jointly investigating HSR and air transport demand using individual passenger choices and
compares them with this paper. Most studies have only leveraged stated preferences (SP) surveys or combined them with revealed
preferences (RP) data. This is because the former allows the modeler to study hypothetical scenarios and countervail possible
correlations and lack of variability among alternatives’ attributes. However, this approach suffers from potential response bias, since
real and stated choices may diverge significantly (Cameron et al., 2011; Haghani et al., 2021; Jiang et al., 2022). Not surprisingly,
from a methodological perspective, the majority of previous works estimated multinomial (MNL) or nested logit (NL) models, which
re the most common DCMs applied in the transport literature, since they have closed-form expressions for the choice probability,
aking them computationally easy to estimate (Arteaga et al., 2022; Ortúzar and Willumsen, 2011; Molloy et al., 2021; Train, 2009).

Regarding modal attributes, the fare, service frequency, travel time, and access and egress times are among the most investigated
xplanatory variables. However, other variables, such as comfort, reliability, and individual socioeconomic characteristics, have also
een demonstrated to affect passenger choices.

Notably, previous studies leveraging DCMs have systematically disregarded possible correlations between the error term and the
xplanatory variables, which may lead to biased and inconsistent estimates of the model parameters (Danaf et al., 2020; Guerrero

et al., 2022; Guevara, 2015; Sarrias, 2021; Watanabe and Maruyama, 2023). This so-called endogeneity problem has been extensively
investigated in the case of linear models. For example, it is well known that the fare may be endogenous because higher consumption
allows transport providers with market power to charge higher prices (Birolini et al., 2020; Pagoni and Psaraki-Kalouptsidi, 2016;
Zhang et al., 2017). In this case, demand, which is the dependent variable, affects the price, leading to a problem known as
imultaneous estimation, which causes endogeneity (Lurkin et al., 2017; Perera and Tan, 2019; Vigren, 2017; Zhang et al., 2019a).

Moreover, demand may also affect frequency, so even this variable could introduce endogeneity problems (Birolini et al., 2020; Yang
et al., 2020; Zhang et al., 2019a). Another source of endogeneity is the correlation of ticket price with the unobservable service
quality characteristics or passengers’ subjective attitudes, which can affect demand, an effect known as omitted variable bias (Berry
and Jia, 2010; Fernández-Antolín et al., 2016; Fu et al., 2015; Gama, 2017; Hsiao and Hansen, 2011; Li et al., 2020; Palma et al.,
2016).

When endogeneity is neglected, it can result in inconsistent estimates of model parameters and elasticities. More importantly,
these biased estimates may lead to suboptimal (if not inadequate) policy decisions when DCM outcomes are used in the planning and
ocial evaluation of transportation projects. Therefore, devising methods to tackle this issue in DCMs and accurately quantify the
ffects stemming from endogeneity is a crucial priority in promoting effective planning of transportation systems (Guerrero et al.,

2021).
Based on these gaps, this paper contributes to the transport literature in three ways. First, contrary to the prior literature, this

study evaluates potential sources of endogeneity in a DCM analysis of a multimodal corridor featuring competition between HSR
and air transport. To do so, we apply the Control Function (CF) approach. The reason behind this choice is threefold: (i) its use is
largely supported by the literature, which recognizes this method as a suitable approach to tackling endogeneity in DCMs (Guerrero
et al., 2021; Guevara and Ben-Akiva, 2012; Guevara, 2015); (ii) its adoption is facilitated by the ease and speed of estimation
using readily available software and the possibility of estimating models using RP data without requiring additional information
rom individuals, such as perception or attitude indicators; and (iii) it yields consistent parameters, even considering the potential
rade-off with efficiency due to the estimation process (Guevara, 2015). We applied the CF approach to analyze one of the latest

additions to the European HSR network: the Eurostar connection between Amsterdam and London. The HSR alternative entered
this highly dense route in 2018, gaining a market share of about 10% against a broad set of air alternatives, including traditional
and low-cost carriers, connecting Amsterdam with various airports within the London airport system (Avogadro et al., 2023). To
analyze passenger preferences in this market, we leveraged a set of RP data from the International Passenger Survey conducted by
he UK Office for National Statistics (ONS), which interviews passengers traveling to and from the United Kingdom by air or the
hannel tunnel.

The CF approach has a major shortcoming: finding valid instruments is challenging, since they must be correlated with the
endogenous variable (relevance condition) and must be independent of the error term in the DCM (exogeneity condition). Thus,
the second contribution of this paper is the proposal of relatively easy-to-obtain valid instruments for correcting fare endogeneity
in markets where HSR competes with air carriers. In this case, we propose the fare observed in similar markets and the fuel price
of each alternative (e.g., oil or electricity) as instruments. Although we proved endogeneity in the fare when estimating the MNL,
the CF method considering the proposed instruments was capable of correcting the estimates. Moreover, by applying the likelihood
ratio test, we proved that the corrected model overperformed the endogenous model, and also quantified the impacts of endogeneity
on price and frequency elasticities.

The third contribution of our paper concerns the possibility of endogeneity in frequency. While this problem has been somewhat
rgued in the transportation literature, we found no proof of endogeneity concerning this service attribute in the London–Amsterdam
oute after checking various instruments. This is likely due to the peculiarities of the specific market, which limit the possibility for
irlines and HSR operators to modify service frequency in response to changes in demand.

The remainder of the paper is structured as follows. Section 2 introduces the CF approach used to solve endogeneity in DCMs
and describes how to test instrument validity. Section 3 presents the data, while Section 4 discusses the empirical results. Lastly,
ection 5 summarizes the findings and suggests avenues for further research.
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Table 1
Summary of studies jointly analyzing HSR and air transport demand using individual observations and DCMs.

Paper Country Market Surveya Modelb Transport alternative attributes Endogeneity
or Region Correction

Fare Frequency Travel Access/egress Expected delay Comfort Others
time time (Reliability)

Hensher (1997) Australia Sydney SP HEVL ✓ ✓ ✓ ✓

Canberra
González-Savignat (2004) Spain Madrid SP MNL ✓ ✓ ✓ ✓

Barcelona
Park and Ha (2006) Korea Seul SP MNL ✓ ✓ ✓

Busan
Mokpo

Ortúzar and Simonetti (2008) Chile Santiago RP-SP NL ✓ ✓ ✓ ✓ ✓

Concepción
Román et al. (2010) Spain Madrid RP-SP NL ✓ ✓ ✓ ✓ ✓ ✓

Zaragoza
Barcelona

Cascetta et al. (2011) Italy Rome RP MNL, NL ✓ ✓ ✓ ✓

Naples
Behrens and Pels (2012) Europe London RP MNL-ML ✓ ✓ ✓ ✓ ✓

Paris
Pagliara et al. (2012) Spain Madrid RP-SP MNL-ML ✓ ✓ ✓ ✓ ✓ ✓

Barcelona
Martín et al. (2014) Spain Madrid RP-SP NL ✓ ✓ ✓ ✓ ✓ ✓

Barcelona
Bergantino and Madio (2020) Italy Bari SP BL ✓ ✓

Brindisi
Rome

Hong and Najmi (2022) USA Dallas SP MNL ✓ ✓ ✓

Houston
This paper Europe London RP MNL-CF ✓ ✓ ✓ ✓ ✓ ✓

Amsterdam

a Stated Preferences (SP), Revealed Preferences (RP).
b Heteroscedastic Extreme Value Logit (HEVL), Multinomial Logit (MNL), Nested Logit (NL), Mixed Logit (ML), Binomial Logit (BL), Multinomial Logit with Control
unctions (MNL-CF).

2. Modeling framework

Endogeneity is an unavoidable challenge in econometric modeling and stems from potential sources such as omitted variables,
measurement or specification inaccuracies, simultaneous determination, and self-selection (Guevara, 2015). To mitigate this issue
for DCMs, we apply the CF technique, which is recognized as a practical approach to cope with endogeneity issues (Danaf et al.,
2023; Petrin and Train, 2010; Train, 2009; Wooldridge, 2015).

2.1. Control function approach

To introduce the CF approach, let us assume a DCM with endogeneity resulting from the omission of a certain variable 𝑞,
orrelated with an observable variable 𝑋. Let 𝑉𝑖𝑛 denote the utility obtained by individual 𝑛 when choosing alternative 𝑖:

𝑉𝑖𝑛 = 𝐴𝑆 𝐶𝑖 + 𝛽𝑦𝑌𝑖𝑛 + 𝛽𝑥𝑋𝑖𝑛 + 𝛽𝑞𝑞𝑖𝑛 + 𝑒𝑖𝑛
⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝜀𝑖𝑛

, (1)

where 𝐴𝑆 𝐶𝑖 is an alternative specific constant, 𝑌𝑖𝑛 is a set of known (measurable) and exogenous attributes, 𝑋𝑖𝑛 is the possible
endogenous variable, 𝛽𝑦, 𝛽𝑥, and 𝛽𝑞 are parameters to be estimated, and 𝑒𝑖𝑛 is an exogenous error term. Then, assuming that 𝑞𝑖𝑛 is
an unobservable variable, the specification proposed by the modeler is as follows:

𝑉𝑖𝑛 = 𝐴𝑆 𝐶𝑖 + 𝛽𝑦𝑌𝑖𝑛 + 𝛽𝑥𝑋𝑖𝑛 + 𝜀𝑖𝑛, (2)

where the new error term, 𝜀𝑖𝑛, contains both 𝑒𝑖𝑛 and 𝑞𝑖𝑛.
The variable 𝑋𝑖𝑛 is endogenous because it is correlated with 𝜀𝑖𝑛 through 𝑞𝑖𝑛 in Eq. (2). The correlation arises because in Eq. (3),

the variable 𝑋𝑖𝑛 depends on 𝑞𝑖𝑛 as follows:

𝑋𝑖𝑛 = 𝛾0 + 𝛾𝑧1𝑧1,𝑖𝑛 + 𝛾𝑧2𝑧2,𝑖𝑛 + 𝛾𝑦𝑌𝑖𝑛 + 𝛾𝑞𝑞𝑖𝑛 + 𝜙𝑖𝑛
⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝛿𝑖𝑛

, (3)

where 𝑧1,𝑖𝑛 and 𝑧2,𝑖𝑛 are the so-called instrumental variables (IVs or instruments), and 𝜙𝑖𝑛 is an exogenous error term. For illustration,
e assume that the endogenous variable 𝑋𝑖𝑛 is correlated with the exogenous variables 𝑌𝑖𝑛. However, these variables can also be

independent without affecting the validity of the CF method. Moreover, we can rewrite Eq. (3) as follows:
𝑋𝑖𝑛 = 𝛾0 + 𝛾𝑧1𝑧1,𝑖𝑛 + 𝛾𝑧2𝑧2,𝑖𝑛 + 𝛾𝑦𝑌𝑖𝑛 + 𝛿𝑖𝑛, (4)

3 
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where the error term 𝛿𝑖𝑛 contains both 𝜙𝑖𝑛 and 𝑞𝑖𝑛. By construction, the IVs are correlated with 𝑋𝑖𝑛 through Eq. (4) but are
independent of the modeler error term 𝜀𝑖𝑛. Then, it can be shown that a DCM corrected by endogeneity has the following functional
orm (Guevara and Ben-Akiva, 2012):

𝑉𝑖𝑛 = 𝐴𝑆 𝐶𝑖 + 𝛽𝑦𝑌𝑖𝑛 + 𝛽𝑥𝑋𝑖𝑛 + 𝛽𝛿𝛿𝑖𝑛 + 𝑒𝑖𝑛, (5)

where 𝛿𝑖𝑛 is a proper estimator of 𝛿𝑖𝑛. The intuition is that 𝛿𝑖𝑛 captures the part of the endogenous variable 𝑋𝑖𝑛 correlated with
the error term 𝜀𝑖𝑛. Therefore, if the instruments 𝑧1,𝑖𝑛 and 𝑧2,𝑖𝑛 are truly exogenous and correlated with the endogenous variable, 𝛿𝑖𝑛
should be added to the utility 𝑉𝑖𝑛 to control the endogeneity problem.

The practical implementation of the CF approach follows two main stages. The first is to find an estimator for 𝛿𝑖𝑛, which can be
omputed as the residual of the ordinary least squares (OLS) regression of 𝑋𝑖𝑛 on the instruments (𝑧1,𝑖𝑛, 𝑧2,𝑖𝑛) and the exogenous

variables (𝑌𝑖𝑛). The second stage is to estimate the DCM by considering 𝛿𝑖𝑛, 𝑋𝑖𝑛, and 𝑌𝑖𝑛 as explanatory variables to obtain consistent
estimators 𝛽𝑥 for the parameter 𝛽𝑥 (Guevara and Ben-Akiva, 2012).

Sequential estimation implies efficiency loss, which, in any case, would not occur when the error terms 𝜖𝑖𝑛 and 𝛿𝑖𝑛 are
homoscedastic and are not autocorrelated (Rivers and Vuong, 1988). Estimating standard errors is also more complicated since they
cannot be directly obtained from the Fisher information matrix. Therefore, to make inferences, the variance–covariance matrix must
be determined using nonparametric methods, such as bootstrapping (Petrin and Train, 2003) or the approach proposed by Karaca-
Mandic and Train (2003). Despite these concerns, the sequential estimation of the CF approach proved to be more robust to model
misspecification and less computationally expensive (Guevara, 2015).

To verify the hypothesis that a given variable is endogenous in the uncorrected model, we follow the Rivers and Vuong (1988)
method by evaluating the significance of the endogenous variable’s residual in the second stage of the CF approach. If the residual is
significant, the model exhibits endogeneity in that variable. Moreover, since the endogenous model described in Eq. (2) is a restricted
version of the correct one proposed in Eq. (5), to evaluate the goodness of fit of these two models and, thus, determine whether
the CF approach effectively addresses endogeneity issues, the likelihood ratio test (LR) can be used (Ortúzar and Willumsen, 2011).
This test is based on the likelihood function, which measures the probability that a given model generated the observed data. The
test statistic for the LR test is defined as follows:

𝐿𝑅 = −2(𝑙(𝛩)𝐸 − 𝑙(𝛩)𝐶 𝐹 ) ∼ 𝜒2
𝑟 , (6)

where 𝑙(𝛩)𝐸 and 𝑙(𝛩)𝐶 𝐹 are the log-likelihood of the endogenous and corrected model, respectively. Under the null hypothesis, the
R statistic defined above is asymptotically chi-square distributed with 𝑟 degrees of freedom, where 𝑟 corresponds to the number of

linear restrictions required to transform the more generic model into its restricted version. The LR test has several advantages, such
as not requiring strong assumptions about the distribution of errors and its suitability to be applied to a broad range of models.
Notwithstanding, it also has some limitations, including the sensitivity to small sample sizes and dependence on proper model
specification. In our case, for instance, given that the term 𝛽𝛿𝛿𝑖𝑛 is zero, the LR test can be used to compare the models in Eqs. (2)
and (5).

2.2. Instruments for endogeneity correction

Prior studies have grouped potential IVs for transportation applications into four main categories (Guerrero et al., 2021; Hotle
t al., 2015; Mumbower et al., 2014):

• Cost-shifting instruments (Casey, 1989), with the aim of explaining cost variations across geographic areas or product
characteristics;

• Stern-type measures (Stern, 1996) of competition and market power, which focus on the number of products in the market
and the time since a product (or firm) was introduced;

• Hausman-type price instruments, which rely on the prices of the same product in other geographic contexts (Hausman et al.,
1994; Hausman, 1996);

• BLP-type measures of non-price characteristics of other products, introduced by Berry et al. (1995) and based on the average
non-price attributes of other products.

To be considered valid instruments and, thus, solve endogeneity issues, the IVs required for the implementation of the CF
ethod in a DCM need to satisfy two requirements (Rivers and Vuong, 1988; Villas-Boas and Winer, 1999): (i) they must be

correlated with the endogenous variable (relevance condition), and (ii) they must be independent of the error term in the DCM
(exogeneity condition). Identifying appropriate IVs for practical applications has been a consistent challenge and the subject of
controversy (Bresnahan, 1997). However, compliance with these conditions can be verified by specific tests.1

Instrument relevance has typically been investigated by evaluating the correlation between the instrument and the endogenous
variable. This aspect, initially overlooked, has since been extensively analyzed for linear models (Staiger and Stock, 1997). Stock and

ogo (2005) formalized the analysis of the weak instruments problem in linear regression, determining critical values for identifying
weak instruments based on two unambiguous criteria: relative bias and size distortion in the Wald test (Wald, 1943). These tests draw
on the F statistic, which tests whether the coefficients of the instruments are zero in the first-stage regression of the CF approach.

1 Furthermore, for the CF model to be identifiable, at least as many IVs as endogenous variables are required (Guevara and Ben-Akiva, 2012).
4 
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Transposing the F-test to evaluate instrument strength in DCMs has then become a common practice and is widely recognized to
provide a good proxy of instrument relevance (Guevara, 2024; Guevara and Navarro, 2015). Only recently, Frazier et al. (2020)
highlighted that the F-test approach might be unsuitable for DCMs, instead proposing an innovative solution for detecting weak
instruments in DCMs. Although this approach appears to be more suitable for DCMs, its implementation is quite complex. Therefore,
in this study, in line with current practice, we evaluate the strength of the instrument using the F-test. Nevertheless, we acknowledge
his as a limitation of the current work, which can be addressed in future research.

Instrument exogeneity is more challenging to demonstrate because the independence of IVs from the error term —which is
ot observed— needs to be verified. This requirement is typically assessed using overidentification tests that rely on having more
nstruments than endogenous variables. Various tests can be used to establish the exogeneity of instruments in DCMs, including the
memiya-Lee-Newey (ALN) test of overidentifying restrictions, the Refutability (REF) test, and the Hausman (HAU) test (Amemiya,

1978; Guevara, 2010; Hausman, 1978).2 Recently, Guevara (2018) proposed a novel overidentification test for instrument exogeneity
in DCMs —the modified refutability test (𝑆𝑚𝑅𝐸 𝐹 )— and evaluated its performance relative to other tests using a binary choice Monte
Carlo experiment. The results demonstrated that the 𝑆𝑚𝑅𝐸 𝐹 test offers a more straightforward application and is recommended due
to its larger power, smaller size distortion, and greater robustness compared to the other tests. Accordingly, in this study, we evaluate
instrument exogeneity by applying the 𝑆𝑚𝑅𝐸 𝐹 test.

The 𝑆𝑚𝑅𝐸 𝐹 test implies adding all the instruments (in our case, 𝑧1,𝑖𝑛 and 𝑧2,𝑖𝑛) as additional variables within the utility function
nd considering the parameters 𝐴𝑆 𝐶𝑖, 𝛽𝑥, 𝛽𝑦, and 𝛽𝛿 to be fixed (as estimated in the corrected model in Eq. (5)) and estimating the

parameters 𝛽𝑧1 and 𝛽𝑧2 while obtaining the associated log-likelihood 𝑙(𝛩)𝐶 𝐹𝑍 . The model specification in this case is as follows:

𝑉𝑖𝑛 = 𝐴𝑆 𝐶𝑖 + 𝛽𝑦𝑌𝑖𝑛 + 𝛽𝑥𝑋𝑖𝑛 + 𝛽𝛿𝛿𝑖𝑛 + 𝛽𝑧1𝑧1,𝑖𝑛 + 𝛽𝑧2𝑧2,𝑖𝑛 + 𝑒𝑖𝑛. (7)

Consistent with this formulation, the statistic of the 𝑆𝑚𝑅𝐸 𝐹 test for exogeneity is as follows:

𝑆𝑚𝑅𝐸 𝐹 = −2(𝑙(𝛩)𝐶 𝐹 − 𝑙(𝛩)𝐶 𝐹𝑍 ) ∼ 𝜒2
𝑟 , (8)

where 𝑙(𝛩)𝐶 𝐹 is the log-likelihood of the corrected model obtained in Eq. (5), 𝜒2
𝑟 represents the value of a chi-square distribution

ith 𝑟 degrees of freedom, and 𝑟 equals the degrees of overidentification of the model. The null hypothesis for the 𝑆𝑚𝑅𝐸 𝐹 test states
hat the instruments are exogenous. Conversely, the alternative hypothesis suggests that at least one of the IVs is endogenous. Thus,

if 𝑆𝑚𝑅𝐸 𝐹 is lower than the critical value of 𝜒2
𝑟 at the required significance level, the instruments can be considered exogenous and

ndependent from the error in the DCM.

3. Data

Data on passenger choices and the characteristics of available transport alternatives are needed to estimate the endogenous and
corrected DCM for the Amsterdam–London market.

We used data on modal passenger choices between Amsterdam and London gathered from the International Passenger Survey
(IPS), a continuous survey conducted by the UK Office for National Statistics (ONS), which interviews a random sample of about
750,000 passengers per year traveling to and from the United Kingdom by air, sea, or the Channel tunnel. The information collected
includes the respondents’ sociodemographic characteristics (such as age and gender) and details of the travel arrangements, the
departure and arrival travel facilities, and the fare paid. Furthermore, for UK residents, the main county of residence is collected,
and for visitors leaving the United Kingdom, the town they visited during their stay is noted.

For our analysis, we selected observations of passengers traveling via London travel facilities (airports and railway stations)
to Amsterdam and vice versa between 2015 and 2019. Furthermore, observations of air passengers who claimed to travel through
London or Amsterdam airports for an interconnecting flight were excluded. The sample assembled according to these specifications
was composed of 5199 observations. Table 2 reports the number of observations per year and the travel alternative selected. Overall,
ow-cost carriers (i.e., easyJet and Vueling) held a market share ranging between 53% in 2015 and 31% in 2019. Full-service carriers

served about 47% of passengers in 2015, increasing to about 57% in 2019. Lastly, the Eurostar HSR connection, which began
perations in the second quarter of 2018, has gained a relatively limited market share of about 10%.

The choice set faced by passengers in each period, namely the various travel alternatives, was reconstructed by considering the
availability and characteristics of the transport modes between London and Amsterdam. The choice set contained at least seven and
 maximum of ten travel alternatives. All supply characteristics of the aviation and HSR connections were collected from various
econdary sources with monthly granularity. The average weekly frequencies and onboard travel times were collected from the OAG
chedule Analyzer database for the air alternative, while official Eurostar timetables were used for the HSR alternative. Expected
elays were calculated based on CAA3 and Eurostar data.

We calculated the access/egress time to reach each HSR station and airport in the United Kingdom based on the county of
esidence (UK residents) or the last town visited (foreign visitors) indicated in the IPS survey.4 In regard to Amsterdam, due to

the absence of specific information in the questionnaire about the passenger departure zone or destination, we did not include the
access/egress time in the Netherlands. Lastly, the average fare per alternative and period was computed by considering the primary
IPS data source. Descriptive statistics for the explanatory variables used are reported in Table A.6 in Appendix A.

2 For a more comprehensive review on the topic, please refer to Guevara (2018).
3 Civil Aviation Authority (CAA) UK flight punctuality data.
4 To compute the access and egress times, we leveraged the routing services Rome2Rio and Openrouteservice.
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Table 2
Number of observations per year and chosen alternative (market shares are in brackets).

Year Alternative

AIR 1 AIR 2 AIR 3 AIR 4 AIR 5 AIR 6 AIR 7 AIR 8 AIR 9 HSR
LCY-AMS LCY-AMS LGW-AMS LGW-AMS LHR-AMS LHR-AMS LTN-AMS LTN-AMS STN-AMS QQS-ZYA
BA KL BA U2 BA KL U2 VY U2 EUR

2015 33 (2.6) 80 (6.3) 261 (20.6) 231 (18.2) 250 (19.7) 286 (22.5) 129 (10.2)
2016 60 (5.1) 75 (6.4) 223 (18.9) 194 (16.4) 235 (19.9) 181 (15.3) 38 (3.2) 174 (14.7)
2017 51 (4.9) 38 (3.6) 38 (3.6) 120 (11.4) 172 (16.4) 262 (25) 244 (23.3) 63 (6) 61 (5.8)
2018 40 (4.7) 25 (2.9) 33 (3.8) 123 (14.3) 129 (15) 216 (25.1) 179 (20.8) 44 (5.1) 34 (4) 36 (4.2)
2019 30 (3.6) 46 (5.5) 32 (3.8) 73 (8.7) 115 (13.7) 254 (30.2) 139 (16.5) 30 (3.6) 16 (1.9) 106 (12.6)

AMS: Amsterdam Schiphol; LCY: London City; LGW: London Gatwick; LTN: London Luton; QQS: London St Pancras; STN: London Stansted; ZYA: Amsterdam
Centraal; BA: British Airways; EUR: Eurostar; KL: KLM; U2: easyJet; VY: Vueling Airlines.

4. Results

4.1. Sources of endogeneity

Prior research has reported three primary instances in which the condition of exogeneity becomes violated and, therefore,
ndogeneity may occur in econometric models: omission of variables, errors-in-variables, and simultaneous causality (Wooldridge,

2010). When considering transportation applications, it is worth taking into account the two main variables that can introduce
endogeneity: fare and frequency (Yang et al., 2020; Zhang et al., 2017).

Fare endogeneity can occur due to both simultaneous causality and omission of variables. The former arises because higher
consumption (and more urgent transportation needs) allows transport providers to increase their market power and charge
igher prices (D’Alfonso et al., 2023). Thus, demand, which is the dependent variable, can affect the price and cause biased

estimates (Pagoni and Psaraki-Kalouptsidi, 2016; Zhang et al., 2017). Furthermore, the fare may be correlated with unobservable
thus, not modeled) quality features of transport modes or passengers’ subjective attitudes and perceptions, which may affect

demand. In these cases, the fare variable also internalizes the effect of this omitted variable(s), resulting in potentially inconsistent
estimates of model parameters (Hsiao and Hansen, 2011; Li et al., 2020; Berry and Jia, 2010).

Simultaneous causality also determines frequency endogeneity. This phenomenon arises due to the existence of supply–demand
interactions (Hsu and Wen, 2003). Naturally, companies tend to adapt the frequency offered and, more generally, their supply based
n the level of demand. However, the overall level of supply in a market also affects overall demand. In addition to the exogenous

strength of the socioeconomic attraction factors between the two regions, the quality of available transportation options constitutes
 potential driver in contributing to the stimulation of additional flows or, conversely, restrict passenger traffic (Adler et al., 2018;

Boonekamp et al., 2018). Importantly, these phenomena (endogeneity in fare and frequency) can occur simultaneously, thereby
ncreasing the complexity of proposing solutions to correct them.

Interestingly, our investigation into the sources of (potential) endogeneity in the London–Amsterdam market revealed no
evidence of endogeneity in the frequency. We estimated models assuming that the frequency is also an endogenous variable using
wo additional instruments. The first IV corresponds to the monthly number of passengers in the London–Amsterdam market, since

companies tend to adapt the frequency to changes of demand for air and HSR transport. The second instrument is the weekly
frequency in a different market, specifically the London–Paris market. This is a Hausman-type instrument, which relies on the
characteristics of the same product in other geographic contexts than the one under investigation (Hausman et al., 1994; Hausman,
1996). We verified the validity of the instruments and the hypothesis of service frequency endogeneity using the set of tests
resented in Section 2.5 While we concluded that the monthly number of passengers on the London–Amsterdam market is not

a valid instrument because it did not meet the exogeneity requirement, the weekly frequency for the London–Paris market resulted
n being a valid instrument. However, in this case, the weekly frequency residual was not significant, indicating the absence of
ervice frequency endogeneity (Rivers and Vuong, 1988). Furthermore, the likelihood ratio test showed that the model aimed at

correcting for frequency and fare endogeneity did not outperform the model aimed at correcting only fare endogeneity.
The reason behind the lack of this phenomenon in our case needs to be traced back to the specific characteristics of the market

under consideration. Amsterdam airport as well as airports in London (e.g., London City and Heathrow) use slot regulation to control
irport congestion.6 Although there are no property rights, grandfather rights are used to regulate slot allocation. The grandfather

rule determines slot assignment priorities and limits the entrance of new competitors and increases in the frequency of existing
airlines. If a carrier has used some slots at least 80% of the time during a season, it is entitled to use the same slot in the next
corresponding period; otherwise, the slots become free and may be assigned to new carriers (D’Alfonso et al., 2023). This use-it-or-
ose-it dynamic may induce slot hoarding and inefficient use of slots, with behaviors such as the so-called slot babysitting, in which

5 The test results are available in Appendix B.
6 In the European Union, the Slot Allocation Regulation (EC Regulation 95/93, as amended by Regulation 793/2004) defines the mandatory rules for

coordinated airports (EC, 2004).
6 
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airlines only use them for the minimum amount required to retain their grandfather rights (Ball et al., 2018; Dempsey, 2001).
This results in few carriers holding many slots and potentially operating several flights simply to comply with the use-it-or-lose-it
rule (Madas and Zografos, 2008, 2006). Furthermore, given the specific market under consideration and the presence of hubs,
frequencies are largely determined by network considerations (Wei and Hansen, 2005).

As a result, the London–Amsterdam air market is not only highly concentrated but also highly rigid. This significantly reduces the
ossibility for airlines to increase capacity (frequency) to accommodate higher demand and prevents a reduction in frequency in a
ertain period of the year due to the feeding dynamic and the threat of losing slots. Similarly, HSR capacity expansion opportunities
re severely undermined by the congestion of the core European HSR network. From a theoretical point of view, the above evidence
upports the absence of frequency endogeneity resulting from the existence of supply–demand interactions. Consequently, we focus
elow on investigating instruments aimed at correcting fare endogeneity.

4.2. Empirical results

To analyze passenger choices in the London–Amsterdam market, we first estimated an MNL model in which each alternative
was a single travel option (i.e., the combination of the departure/arrival travel facility and the carrier, as shown in Table 2). We
modeled passenger choice based on onboard travel time, access/egress time, the logarithm of weekly frequency, expected delay,
and fare, which are the variables that usually contribute to consumer choice in this context (see, e.g., Pagliara et al., 2012; Martín
et al., 2014). Service frequency was included in logarithmic form for two reasons (Hansen, 1990). First, to account for the expected
decreasing marginal utility of frequency. Second, since a route alternative is considered an aggregation of individual flights or trains,
the logarithmic form is considered the most suitable for a characteristic that captures the size of an aggregate alternative. In addition
to relevant supply attributes that affect passenger choice, we also included a set of alternative specific constants (ASCs) to model
the effect of characteristics not explicitly included in the utility formulation (e.g., comfort, safety, and individual preference in the
market under study; Ortúzar and Willumsen, 2011).7

We opted for this straightforward formulation to avoid all other possible sources of biased or inconsistent parameters, such
as identification issues, poor specification, or problems in the optimization procedure, since the MNL has proven to produce
robust and consistent parameter estimators. Since the omission of sociodemographic variables from the analysis may introduce an
apparent endogeneity issue that could be mitigated if they are properly accounted for, we also tested different model specifications
incorporating the sociodemographic variables available in our sample (i.e., gender and age) as systematic taste variations in
our utility function. Notably, the results demonstrated that the model still exhibits fare endogeneity even when controlling for
sociodemographic attributes, indicating that their omission is not the source of this endogeneity. Accordingly, the only source of
iased parameters in the model was fare endogeneity due to omitted variables (other than sociodemographic attributes) or reverse
ausality. For simplicity, we excluded sociodemographic variables from the base model presented below, as they do not provide
dditional insights into the main findings of this paper. Nevertheless, the best-performing models (endogenous and corrected) that
ncorporate sociodemographic variables are presented in Appendix C.

The results of the model without sociodemographic variables, denoted as the endogenous or uncorrected model, are presented on
he left-hand side of Table 3. Except for the fare parameter, the parameters of the endogenous model showed correct signs and were

statistically significant at 99%. Overall, the model confirmed the sensitivities toward the different travel characteristics reported in
previous transport mode choice studies (e.g., Avogadro et al., 2023; Behrens and Pels, 2012; Wardman et al., 2016). Thus, travel
time, access time, and expected delay negatively influenced passenger utility, while a higher frequency increased passenger attitudes
toward all travel alternatives. Additionally, all ASCs had negative signs, indicating an inherent preference for HSR. This preference
s likely due to greater comfort onboard and the absence of stringent luggage size requirements (Avogadro and Redondi, 2023).

However, the positive sign of the fare parameter was evidence of endogeneity in the model. The positive coefficient implies that
the passenger’s utility increases with the cost incurred when traveling, which is not in line with basic economic theory and typical
passenger behavior (Birolini et al., 2020; Pagoni and Psaraki-Kalouptsidi, 2016; Perera and Tan, 2019). Since the fare was significant
in the endogenous model and was considered a highly relevant policy variable, its positive sign was considered a major modeling
problem that needed to be adequately addressed (Ortúzar and Willumsen, 2011). Furthermore, due to the presence of endogeneity,
ot only the fare parameter can be biased, but other coefficients can also be biased in magnitude.

To correct for fare endogeneity, we propose two instruments: (i) the average fares observed for trips occurring during the
ame month and year but in a similar market (i.e., London–Paris) by mode and (ii) the average price of the power source of each
lternative (i.e., oil or electricity) for the month and year when the trip occurred. Given the nature of the instruments, the former
an be considered a Hausman-type instrument, while the latter is a cost-shifting-type instrument. Theoretically, the two proposed

IVs are correlated with the endogenous variable fare and do not confound with market share. In other words, they can affect the
endogenous variable through aggregate travel demand but not the individual passenger’s travel utility and associated unobservable
service attributes. Fuel cost has been considered a valid instrument, as it is correlated with the ticket price and not confounded with
market share (Birolini et al., 2020; Gama, 2017; Hsiao and Hansen, 2011). Similarly, Mumbower et al. (2014) and Lurkin et al.
(2017) used average prices for other markets as an effective instrument to control for the effects of endogeneity in modeling airline
rice-demand elasticity.

7 In a simultaneous but independent work, de Grange et al. (2024) demonstrated that the CF approach could lead to biased estimations of ASCs, which
could, in turn, affect the estimates of elasticities and marginal effects. However, we did not test this hypothesis in this paper for two reasons. First, de Grange
et al. (2024) also showed that the CF approach did not introduce bias in the parameters of the explanatory variables. Second, comparing our results with those
obtained using the innovative approach proposed by de Grange et al. (2024) was beyond the scope of this paper.
7 
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Table 3
Endogenous and corrected DCM for the multimodal London–Amsterdam market.

Variable Alternative Endogenous model Corrected model

Coefficienta Std. Error Coefficienta Std. Errorb

ASC AIR 1 −11.230 0.8463 −8.2560 0.8675

AIR 2 −10.960 0.8202 −8.0765 0.8396

AIR 3 −8.8570 0.7765 −6.3023 0.7930

AIR 4 −8.1550 0.7815 −5.6479 0.7986

AIR 5 −9.2730 0.7876 −6.3260 0.8118

AIR 6 −9.1810 0.7974 −6.1407 0.8228

AIR 7 −8.6980 0.8252 −6.2176 0.8399

AIR 8 −9.1370 0.7994 −6.6753 0.8135

AIR 9 −9.3210 0.8356 −6.5675 0.8528

HSR (base) – (base) –

Onboard travel time All −0.0638 0.0053 −0.0457 0.0054

Access/egress time All −0.0529 0.0006 −0.0532 0.0007

Log (weekly frequency) All 0.6787 0.0562 0.6541 0.0591

Expected delay All −0.0140 0.0033 −0.0114 0.0033

Fare All 0.0026 0.0003 −0.0101 0.0010

Fare’s residual All – – 0.0147 0.0010

Sample size 5199 5199

Log-likelihood −8921.164 −8892.846

a All parameters are significant at the 99% level.
b Standard errors determined using bootstrap.

The first IV (i.e., average fare for the London–Paris market) was calculated in the same way as the fare for the London–Amsterdam
arket, that is, by leveraging the fares reported in the IPS observations of passengers traveling between London and Paris. Regarding

he second IV, the average oil price, which is highly correlated with the price of jet fuel, was collected from the EIA (2023), while
he electricity price, which is the energy source of the HSR, was obtained from Eurostat (2023).

The right-hand side of Table 3 reports the model corrected for endogeneity using the CF approach. As mentioned in Section 2.1,
the standard errors could not be directly inferred from the Fisher information matrix, since we estimated the corrected parameters
in two stages. Therefore, we determined the standard errors of the corrected model using the bootstrap approach.8 The corrected
model provides an additional estimate compared to the endogenous model: that corresponding to the fare residual derived from the
first stage of the CF method.

Before discussing the estimated parameters, let us verify the hypothesis of fare endogeneity in the uncorrected model and the
ompliance of the proposed IVs with the exogeneity and relevance requirements. Considering the former, fare endogeneity can be
roved following the Rivers and Vuong (1988) method by evaluating the significance of the fare residuals in the second stage of

the CF approach (see the right-hand side of Table 3). In our case, the fare residual is significant in the second stage of the CF
approach; thus, there is evidence that the model exhibits endogeneity due to the fare variable. Second, we evaluated the validity
of the proposed IVs by checking their relevance and exogeneity conditions using the tests explained in Section 2.2. We summarize
he results of these tests in Table 4.

Concerning the relevance condition, we considered the recommendation of Guevara and Navarro (2015) to check whether the
F-test was greater than 10 in the first-stage regression. This condition held in our model, which confirmed that our instruments
(energy source price and London–Paris fares) were correlated with the fare in the London–Amsterdam market. The exogeneity
condition of the instruments was confirmed by the 𝑆𝑚𝑅𝐸 𝐹 test, which is the most recommended test in the literature (Guevara,
2018). Since the model included one endogenous variable and two instruments, the degree of overidentification for this test was
qual to one. In this case, the critical value of the test Chi-square (𝜒2

𝑟=1) was 3.84, above the value of the 𝑆𝑚𝑅𝐸 𝐹 test for our model.
herefore, we can conclude that all our instruments were exogenous, meaning that they were independent of the error term and
nly affected passenger choice through the value of the fare.

Finally, to evaluate the goodness of fit of the two models (endogenous and corrected, shown in Table 3), we used the likelihood
atio (LR) test and applied Eq. (6) for 𝑙(𝜃𝐸 ) = −8921.164 and 𝑙(𝜃𝐶 𝐹 ) = −8892.846. Due to the restrictions on the fare residuals, we

8 Each bootstrapping sub-sample was built by randomly selecting 80% of the observations from the original sample of 5199 individuals. We arbitrarily set
the number of bootstrapping sub-samples to 1000, which was large enough to obtain consistent estimations of the standard errors and confidence intervals.
8 
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Table 4
Relevance, exogeneity, goodness of fit, and fare endogeneity tests for the corrected model.

Property Test Value Threshold

Instruments’ relevance F-test 11.85 > 10 ✓

Instruments’ exogeneity 𝑆𝑚𝑅𝐸 𝐹 0.204 < 3.84 ✓

Model’s goodness of fit LR 56.64 > 3.84 ✓

Fare endogeneity Fare residual t-test 14.70 > 1.96 ✓

compared the LR statistic to the critical value for one degree of freedom at the 95% level (𝜒2
𝑟=1 = 3.84). Since the LR value exceeded

the critical value, we confidently rejected the null hypothesis and concluded that the corrected model outperformed the restricted
ne.

Looking at the coefficients of the corrected model (right-hand side of Table 3), we observed that the CF method allowed us
to obtain the appropriate sign of the fare parameter and, therefore, to correct for the endogeneity in this variable. This again
confirmed that the fare correlated with the error term of the endogenous model. Interestingly, the ASCs in the corrected model were
significantly lower than those in the endogenous model. This suggests that a possible cause of fare endogeneity was the omission of
ne characteristic of the HSR, which affects individual choice and is correlated with fare. In the endogenous model, the omission
f this characteristic was captured both in the ASCs and the fare parameter, while in the corrected model it was captured in the

residual parameter of the fare. However, the magnitude of the parameter associated with the weekly frequency did not change
significantly compared to the endogenous model, confirming that endogeneity in the London–Amsterdam market only affects the
fare. Lastly, it is worth noting that when employing the CF approach, the variances of the corrected model estimators tend to be
arger than those of the endogenous model, leading to wider confidence intervals in the CF approach (Guerrero et al., 2021).

Overall, the main results of our analysis can be summarized as follows. First, we did not find evidence of frequency endogeneity
in the London–Amsterdam bimodal corridor. This may occur due to market-specific conditions, such as slot regulation in the
corresponding airports and capacity restrictions in the HSR network. Second, we found strong evidence of endogeneity affecting
transport fares for the market under consideration. Theoretical and empirical evidence suggests that the source of endogeneity could
be the omission of relevant HSR attributes and the interdependence of transport demand and ticket prices. Third, we successfully
applied the CF method using two IVs: the price of oil or electricity and the fares in a competing market. These instruments,
extensively applied in linear models, have proven relevant and exogenous, allowing us to successfully correct for fare endogeneity
in the proposed DCM.

To further corroborate that the CF approach did correct the endogeneity problem in the fare parameter, let us focus on
he magnitude of the effect of the fare on passenger choice by analyzing the aggregate demand elasticities of the corrected
odel.9 Elasticities are frequently used in transport projects, as they model how demand responds to changes in relevant

ariables (Ortúzar and Willumsen, 2011). Understanding price, frequency, income, and cross-elasticities helps planners anticipate
shifts in transportation needs and provides useful insights into optimizing fare structures, ensuring cost-effective infrastructure
evelopment, evaluating environmental policy impact, and designing service frequency. Ultimately, by grasping the elasticities,
ecision-makers can make informed choices regarding the sustainability of transport projects and the effectiveness of infrastructure

planning. Table 5 presents the price and frequency elasticities for the multimodal corridor between London and Amsterdam. Taking
nto account the price elasticity, we observed values below one for all travel alternatives, demonstrating an inelastic demand for
oth HSR and airlines. This implies that an increase of one percent in the ticket price will result in a demand reduction that is less
han proportional. This aligns substantially with previous results on HSR and air competition that leverage DCMs (see the bottom
art of Table 5). Similarly, we also observed a low elasticity of demand with respect to the frequency, which is also consistent

with previous findings and a very saturated market between the two cities (Givoni and Rietveld, 2009). As expected, alternatives
ith higher connection frequencies (e.g., LGW-AMS-U2) exhibit lower frequency elasticity due to the decreasing marginal utility of

requency resulting from its inclusion in logarithmic form.

5. Conclusions

Endogeneity is a key challenge in transportation modeling, yet it remains largely overlooked in DCMs. It can result in biased
stimates and suboptimal, if not inadequate, policy decisions. This paper investigated sources of endogeneity in a multimodal

corridor featuring competition between HSR and air transport and proposed novel IVs to correct for endogeneity. Specifically, we
focused on the London–Amsterdam market, which recently observed the introduction of one of the latest additions to the European
HSR network. Building on prior literature, we investigated potential endogeneity induced by frequency and fare.

9 We computed aggregate price and frequency elasticities using sample enumeration, weighing the individual elasticities by the choice probabilities of each
alternative (see, e.g., Ramos et al., 2017).
9 
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Table 5
Mean and confidence intervals for price and frequency elasticities.

Alternative Price elasticity Frequency elasticity

Mean Confidence intervala Mean Confidence intervala

LCY-AMS-BA AIR1 −0.85 [−0.98, −0.71] 0.60 [0.60, 0.71]
LCY-AMS-KL AIR2 −0.92 [−1.06, −0.78] 0.60 [0.52, 0.70]
LGW-AMS-BA AIR3 −0.71 [−0.82, −0.60] 0.59 [0.51, 0.69]
LGW-AMS-U2 AIR4 −0.53 [−0.61, −0.45] 0.46 [0.40, 0.54]
LHR-AMS-BA AIR5 −0.90 [−1.04, −0.76] 0.53 [0.45, 0.61]
LHR-AMS-KL AIR6 −0.84 [−0.96, −0.71] 0.47 [0.40, 0.55]
LTN-AMS-U2 AIR7 −0.41 [−0.48, −0.35] 0.46 [0.39, 0.53]
LTN-AMS-VY AIR8 −0.60 [−0.69, −0.51] 0.61 [0.52, 0.70]
STN-AMS-U2 AIR9 −0.59 [−0.68, −0.51] 0.51 [0.44, 0.60]
QQS-ZYA-EUR HSR −0.74 [−0.85, −0.62] 0.56 [0.48, 0.65]

Study Mode Mean (Min, Max) Mean (Min, Max)

Martín et al. (2014) AIR −0.83
HSR −0.60

Behrens and Pels (2012) AIR −1.43 (−4.37, −0.48) 0.82 (0.6, 1.03)
HSR −0.44 (−0.64, −0.13) 0.24 (0.13, 0.25)

Román et al. (2010) HSR −0.64 (−0.72, −0.55)

a [2.5th and 97.5th percentile].

First, we showed that frequency could not be endogenous in the specific context of the London–Amsterdam multimodal route.
From a theoretical perspective, this could be traced back to certain market features —such as the existence of feeding dynamic
and slot retention considerations on the air transport side and congestion on the HSR side— that reduce the existence of supply–
demand interactions and, thus, dampen potential endogeneity. We corroborated this thesis by empirically testing different potential
instruments that failed to demonstrate frequency endogeneity. This result adds to the literature on frequency endogeneity by proving
that particular market configurations may limit the occurrence of this problem.

Second, we identified the fare variable as a potential troublemaker due to simultaneous causality and the omission of specific
factors that typically affect this variable. This also emerged from the fare coefficient, resulting in our baseline model (endogenous)
being inconsistent with basic economic theory principles. To tackle fare endogeneity, we proposed the average fare observed for
trips in a similar market (i.e., London–Paris) and the average price of the power source of each alternative as promising IVs. These
variables were demonstrated to satisfy the relevance and exogeneity conditions, supporting their use in correcting for endogeneity.

y applying the LR test, we proved that the corrected model outperformed the original model (endogenous). Beyond fixing the
nconsistency of the fare coefficient, the endogeneity correction provided more precise estimates for other factors under investigation.
his allowed us to suitably compute price and frequency elasticities and uncover variations in estimated parameters when neglecting

endogeneity, thus demonstrating the significance of dealing with endogeneity to ensure greater reliability of results in transportation
studies and appropriately supporting policy decisions.

The current research paves the way for further research directions. First, a promising topic for future research would be to
investigate the implications of travel purpose (business vs. leisure) in this type of market when the model is affected by endogeneity
nd the effectiveness of the proposed IVs in this context. Second, it would be worthwhile to adapt the model to allow for

disentangling mode-specific sensitivity toward alternative attributes (e.g., travel time and frequency). Third, given that a relevant
challenge to apply the CF approach lies in identifying suitable instruments that fulfill the exogeneity and relevance criteria, another
research avenue might be to investigate how the nature of the instrument (demand- or supply-related) affects the correction for
endogeneity. Finally, in light of the recent paper by de Grange et al. (2024) suggesting that ASC estimates using the CF approach
could be biased, we believe that comparing our model results with those obtained using that of de Grange et al. (2024) would be
nother interesting avenue for future research.
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Table A.6
Descriptive statistics for the explanatory variables.

Aira HSR Total

Mean SD Mean SD Mean SD

Onboard travel time 74.1 5.5 224.7 2.4 79.0 27.1
Access/egress time 58.9 36.3 44.3 45.8 58.4 36.7
Weekly frequency 38.2 18.6 15.0 3.0 37.4 18.8
Log (weekly frequency) 3.5 0.6 2.7 0.2 3.5 0.7
Expected delay 5.5 4.6 0.9 0.0 5.4 4.6
Fare 85.3 41.2 86.1 22.4 85.4 40.8
Sample size 43,071 1,431 44,502

a Alternatives from 1 to 9 in Table 2.

Table B.7
Relevance, exogeneity, goodness of fit, and frequency endogeneity tests compared with a corrected model assuming endogeneity
in the frequency.

Property Test MNP-LA WF-LP

Value Threshold Value Threshold

Instrument’s relevance F-test 218.10 > 10 ✓ 208.80 > 10 ✓

Instrument’s exogeneity 𝑆𝑚𝑅𝐸 𝐹 19.08 < 3.84 ✗ 1.52 < 3.84 ✓

Model’s goodness of fit LR −19.29 > 3.84 ✗ −4.77 > 3.84 ✗

Weekly frequency endogeneity WFR t-test 0.71 > 1.96 ✗ 1.20 > 1.96 ✗

MNP-LA: Monthly number of passengers in the London–Amsterdam market.
WF-LP: Weekly frequency for the London-Paris market.
WFR t-test: Weekly Frequency residual t-test.

Appendix A. Descriptive statistics

See Table A.6.

Appendix B. Weekly frequency endogeneity tests

See Table B.7.

Appendix C. Models including sociodemographic variables

In Table C.8, we present the endogenous and corrected models when controlling for sociodemographic attributes as taste
variations in the utility function. Specifically, we modeled the influence of sociodemographic variables observed in our sample
(i.e., age and gender) as taste variations affecting onboard travel time and weekly frequency. Age is defined as a dummy variable
equal to 1 if the respondent is 35 years old or younger, and otherwise 0. Gender is a dummy variable equal to 1 if the respondent is
male, and otherwise 0. reports the results of the endogenous and corrected models based on these specifications. Notably, including
ociodemographic variables does not correct the sign of the fare parameter in the endogenous model. Additionally, fare residual is

significant in the second stage of the CF approach. These outcomes suggest that the source of endogeneity is not the omission of
ociodemographic variables but rather the influence of demand on pricing.

Data availability

The authors do not have permission to share data.

Table C.8
Endogenous and corrected DCM for the multimodal London–Amsterdam market with sociodemographic variables
as systematic taste variations.

Variable Alternative Endogenous model Corrected model

Coefficient Std. Error Coefficient Std. Errorb

ASC AIR 1 −9.5330a 0.7970 −8.1375a 0.7693
AIR 2 −8.5940a 0.7733 −7.1678a 0.7513
AIR 3 −9.7160a 0.7773 −8.0248a 0.7558
AIR 4 −9.6600a 0.7859 −7.9116a 0.7652
AIR 5 −9.1340a 0.8137 −7.7271a 0.7892
AIR 6 −11.660a 0.8294 −9.9613a 0.8036

(continued on next page)
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Table C.8 (continued).
Variable Alternative Endogenous model Corrected model

Coefficient Std. Error Coefficient Std. Errorb

AIR 7 −9.7380a 0.8272 −8.1719a 0.8011
AIR 8 −9.2380a 0.7994 −7.7856a 0.7442
AIR 9 −11.400a 0.7682 −9.7451a 0.7800
HSR (base) – (base) –

Onboard travel time All −0.0619a 0.0053 −0.0515a 0.0051
Onboard travel time - Age All −0.0057a 0.0006 −0.0057a 0.0054
Onboard travel time - Gender All −0.0028a 0.0008 −0.0027a 0.0054

Access/egress time All −0.0528a 0.0006 −0.0530a 0.0006
Log (weekly frequency) All 1.0510a 0.0680 1.0412a 0.0686

Log (weekly frequency) - Age All −0.5866a 0.0340 −0.6246a 0.0006
Log (weekly frequency) - Gender All −0.0040 0.0270 0.0213 0.0008

Expected delay All −0.0142a 0.0030 −0.0129a 0.0030
Fare All 0.0022a 0.0003 −0.0054a 0.0009
Fare’s residual All – – 0.0091a 0.0010
Sample size 5199 5199
Log-likelihood −8871.029 −8858.445

a Significant at the 99% level.
b Standard errors determined using bootstrap.
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