
UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II

UNIVERSITÀ DEGLI STUDI DI BERGAMO

PH.D. THESIS
IN

TECHNOLOGY, INNOVATION AND MANAGEMENT

A DEEP FRAMEWORK FOR TIME SERIES
FORECASTING

ANTONINO FERRARO

TUTOR: PROF. VINCENZO MOSCATO

COORDINATOR: PROF. RENATO REDONDI

XXXVI CICLO

Table of contents

Summary 1

I Time Series forecasting 3

1 Introduction to Time Series forecasting 7
1.1 From conventional statistical models torward Deep Neural

Networks . 14
1.1.1 Stochastic-based models 22
1.1.2 Deterministic-based models 31
1.1.3 Deep-based models 35

2 Proposed Framework 43
2.1 Motivations . 44
2.2 Methodology . 45

2.2.1 Pre-processor and Feature Engineer Module 45
2.2.2 Data Augmentation Module 48
2.2.3 Encoding Module 50
2.2.4 Deep Model selector Module 51

iv |

2.3 Goals . 53

2.3.1 Advancing Time Series Forecasting Through General-
Purpose Utility . 54

2.3.2 Modularity and Customizability: Empowering Preci-
sion through Adaptability 54

2.3.3 Unleashing Potential for Efficacy and Efficiency . . 55

3 Applications in Real-World scenarios 57
3.1 Industry 4.0 . 60

3.2 FinTech . 64

II Time Series forecasting in Industry 4.0 69

4 Time series encodings evaluation for predictive maintenance 79
4.1 Introduction . 79

4.2 Related Work . 83

4.3 Framework . 86

4.3.1 CNN-based Classifiers 87

4.4 Experiments . 89

4.4.1 Experimental protocol 90

4.4.2 Dataset . 90

4.4.3 Pre-processing and Feature engineering 92

4.4.4 Evaluation metrics 95

4.5 Results . 96

4.5.1 Results on Alibaba HDD 96

4.5.2 Results on NASA Bearing 103

4.5.3 Benefits of GAN 109

4.5.4 Combination of Encoding strategies 112

4.6 Discussion & Conclusions 113

| v

5 A predictive maintenance application in IoT scenarios 115
5.1 Introduction . 115
5.2 Related Work . 116

5.2.1 Selection Criteria 117
5.2.2 Recurrent models 118
5.2.3 Hybrid models . 119
5.2.4 Research Challenges in Predictive Maintenance . . . 120

5.3 Methodology . 121
5.3.1 Model architecture 122
5.3.2 Positional encoding 123

5.4 Experimental Evaluation 124
5.4.1 Hyperparameters 125
5.4.2 Feature Selection and normalization 126
5.4.3 RUL target function definition 126
5.4.4 Time-windows creation 128
5.4.5 Performance metrics 128

5.5 Results . 130
5.6 Discussion and Conclusions 135

III Time Series forecasting in FinTech 141

6 Forecasting the stock market leveraging social media data 155
6.1 Introduction . 155
6.2 Related Work . 157
6.3 Methodology . 159

6.3.1 Data ingestion module 161
6.3.2 Pre-processing module 161
6.3.3 Stock forecasting module 162

6.4 Experimental analysis . 162
6.4.1 Experimental protocol 163

vi |

6.4.2 Hyperparameter optimization 164
6.5 Results . 166
6.6 Conclusion . 171

7 Benchmarking stock prediction models exploiting social data and
news 173
7.1 Introduction . 173
7.2 Related Work . 175
7.3 System Overview . 177

7.3.1 Dataset and Metrics 181
7.4 Results and Discussion . 187

7.4.1 Model Results . 192
7.4.2 Discussions . 197

7.5 Conclusions and future work 208

Discussions and Open Issues 211

Bibliography 215

List of figures 247

List of tables 253

Summary

Time series forecasting is a crucial task with applications across various do-
mains, including finance and healthcare. Conventional methods often grapple
with the complexities of time-varying data, leading to the adoption of deep
learning techniques. However, these approaches tend to be specialized for
particular tasks, resulting in ad-hoc solutions that lack versatility. In this Ph.D.
Thesis, the author presents an innovative framework designed to overcome
these limitations. This framework offers a general-purpose approach, em-
phasizing modularity and customization in each processing step, ensuring
an efficient and effective processing pipeline. To validate the framework’s
practicality, it is applied to real-world domains such as "Industry 4.0" and
"FinTech." This pragmatic approach recognizes the challenges of universal ap-
plication due to the diversity of time series data in different domains. Within
the realm of Industry 4.0, the focus is on Predictive Maintenance (PdM),
with two significant papers presented: The Chapter 4 evaluates various time
series coding techniques, including Recurrence Plot, Gramian Angular Field,
Markovian Transition Field, and Wavelet Transform, combined with im-
age classifiers based on convolutional neural networks (CNNs). The results
demonstrate the superiority of CNNs and the advantages of data augmentation

2 |

techniques, including generative adversarial networks (GANs). The Chap-
ter 5 introduces a deep learning approach for PdM, utilizing a multi-head
attention mechanism. This approach achieves high accuracy in estimating
Remaining Useful Life (RUL) while maintaining low memory requirements,
making it suitable for implementation on equipment hardware. In the realm
of FinTech, the research focuses on investment strategies, particularly stock
market prediction, with two significant papers: The Chapter 6 introduces
a framework that leverages historical data and user-generated content from
Online Social Networks (OSNs) to enhance stock forecasting. The study high-
lights the importance of analyzing content from multiple OSNs and explores
the influence of text data from Twitter and Reddit on stock prediction. The
Chapter 7 addresses various research questions related to the impact of social
and news data on the stock market. It conducts a benchmarking of machine
learning and deep learning forecasting models, emphasizing the correlation
between market and social/news data for specific stocks. In summary, this
Ph.D. Thesis contributes a versatile framework for time series forecasting,
validated in diverse real-world contexts, and sheds light on key considerations
for enhancing analysis and prediction. The research underscores the potential
of deep learning and user-generated content from OSNs in improving stock
market forecasting.

Part I

Time Series forecasting

| 5

Time Series modeling represents a dynamically evolving field of research
that has captured the attention of the scholarly community over recent decades
[1]. The central objective of Time Series modeling is to meticulously gather,
analyze, and investigate historical data in order to construct a suitable model
that encapsulates the inherent structure of the temporal sequence [2]. This
resultant model is subsequently leveraged to elucidate the underlying patterns
within the Time Series and to project future values—a process commonly
referred to as forecasting. Time Series forecasting stands as one of the most
pervasive and widely employed tasks in the realm of learning [3]. On a daily
basis, businesses harness Time Series forecasting to cater to a diverse spectrum
of applications, encompassing the prediction of daily stock prices, fluctuations
in foreign currency exchange rates, and the anticipation of unemployment
rates [4, 5]. Meteorologists, in a similar vein, employ this technique to
approximate wind speeds, daily temperature extrema, and precipitation levels
[6, 7].

These myriad applications, among others, underscore the profound signif-
icance of Time Series analysis and the critical role played by accurate future
estimations. Such estimations prove pivotal for businesses to effectively pre-
pare for potential surges or dips in sales, thereby enabling proactive strategies,
or to avert potential disasters through the interpretation of meteorological
data.

Time Series forecasting, essentially, entails the thoughtful projection of
future trends based on meticulous retrospective analysis. Given the indis-
pensable nature of this task across a multitude of domains, including finance,
meteorology, commerce, and the sciences, devising an appropriate model
to conform to and subsequently predict the temporal sequence is far from
a straightforward endeavor [8]. The uniqueness of each signal or sequence,
with its distinct properties and dependencies on exogenous parameters, poses
a challenge in accurately encapsulating it within a model.

6 |

Over the passage of time, a wealth of research endeavors and model for-
mulations have been proposed by academics, statisticians, and economists
alike, all aimed at augmenting the precision of predictive forecasting. Conse-
quently, a spectrum of Time Series models has been developed and refined,
although the copiousness of available models does not inherently translate
into universal applicability [9]. Notably prevalent and enduring are statistical
models like AutoRegressive Integrated Moving Average (ARIMA) and Expo-
nential Smoothing (ES), alongside machine learning regression models, when
suitably adapted for Time Series, such as Support Vector Regression (SVR)
[10, 11]. However, in recent years, Deep Neural Networks (DNNs) have
increasingly exhibited competitiveness vis-à-vis traditional methodologies,
extending their potential for versatility beyond the aforementioned models.
DNNs hold the capacity to accommodate a wide array of exogenous data,
enriching the insights furnished by Time Series analysis [12].

Figure 1: An example of a time series relating the number of monthly visitors
to Yellowstone Park (USA) and the recorded environmental temperature, at
several different times of the year.

1
Introduction to Time Series forecasting

Time series forecasting presents a distinct challenge compared to traditional
regression tasks—temporal order. The sequential nature of data introduces
a significant constraint for estimators striving to create a robust, enduring
model. Patterns within the data may emerge temporarily and then vanish,
or the entire data distribution might undergo changes. This challenge is
particularly evident in stock price prediction, where regulatory shifts can
fundamentally alter market behavior, presenting a substantial obstacle to
accurate predictions in future periods (as illustrated in Figure 1.1).

Within the realm of time series analysis, the central aim is forecasting,
a process rooted in the fundamental principle of leveraging historical data
to predict future events [13]. The most suitable model, which accurately
captures the underlying data patterns, forms the basis for making future
predictions based on past observations. A forecasting model provides a
functional representation that illuminates the behavior of a time series, serving
as the framework for generating predictions.

A time series represents an ordered sequence of data points, typically
measured over consecutive time intervals. In mathematical terms, it can be ex-
pressed as a set of vectors x(t), where t = 0,1,2, . . . signifies the elapsed time

8 | Introduction to Time Series forecasting

Figure 1.1: A pratical example of changes in data distribution: Stock prices.
Market variation given by multiple factors (internal or external) is a strong
obstacle to the accuracy of future forecasting.

Figure 1.2: An example of Time Series Prediction: Predicting future sales,
based on past historical observations.

| 9

[14, 15]. Each variable x(t) is regarded as a stochastic variable. Importantly,
the data points in a time series follow a systematic chronological order [2].

When a time series consists of records related to a single variable, it falls
under the category of an univariate time series. Conversely, when the data
includes records of multiple variables, it is referred to as a multivariate time
series.

An univariate time series comprises a sequence of observations or data
points recorded at regular time intervals, where each data point corresponds
to a single variable [16]. In simpler terms, it involves a single stream of data
points arranged in chronological order. This type of time series captures the
temporal evolution of a single phenomenon or variable of interest. Analyzing
univariate time series entails exploring patterns, trends, and dependencies
within the data to gain insights and make predictions about its future behavior.

Within the domain of univariate time series, two primary categories of
variables are relevant:

• Endogenous Variables: These encompass past values of the time series
itself, forming a vital component in forecasting model construction.

• Exogenous Variables: Also known as explicative variables, these exter-
nal factors are intrinsically linked to the time series value and exhibit
correlation. Exogenous variables should ideally exhibit deterministic
attributes, such as calendar-related data. It is imperative to ensure de-
terminism to avert the scenario of utilizing other time series to predict
the very series under consideration—a characteristic often observed in
multivariate time series forecasting scenarios.

A multivariate time series, in contrast, comprises a set of observations
recorded over time, with each observation containing multiple variables or
attributes. In this context, each time point is represented by a vector of values,
capturing the evolution of several interconnected variables simultaneously.

10 | Introduction to Time Series forecasting

Figure 1.3: Representation of an Univariate and Multivariate Time Series.

Multivariate time series data often arise in situations where different vari-
ables are influenced by and interact with one another, resulting in intricate
interdependencies. Analyzing multivariate time series entails investigating
the relationships and interplay among these variables to comprehend their
collective behavior and make predictions about future developments.

To summarize, the distinction between univariate and multivariate time
series hinges on the number of variables considered at each time point. Uni-
variate time series focuses on the temporal evolution of a single variable,
whereas multivariate time series involves the concurrent monitoring of multi-
ple interlinked variables over time.

Time series data comprises a sequential collection of observations denoted
as xt , recorded at discrete time points t. In the context of discrete time series,
these time points belong to a set T with t ∈ T . Conversely, if observations
are continuously measured over a time interval, they are referred to as a
continuous time series [17].

Moreover, it is possible to transition from a continuous time series to
a discrete one by aggregating data over predefined time intervals. This

| 11

Figure 1.4: Time series related to the sales of a generic retail store.

transformation simplifies the continuous time series into a discrete form,
making it more suitable for analysis and interpretation.

Time series data can be dissected into distinct components that capture
specific underlying patterns [18]. These components include:

• Tt : The trend, representing persistent ascending or descending values.

• St : The seasonality, encompassing recurring short-term cycles with a
predefined frequency.

• Ct : Cycles, akin to seasonality but characterized by less precise period-
icity, often spanning durations exceeding two years.

• Rt : The residual component, encapsulating residual fluctuations.

Under the assumption of additive decomposition, the original time series
can be expressed as the sum of its components, as shown in the equation:

yt = Tt +St +Ct +Rt (1.1)

12 | Introduction to Time Series forecasting

Figure 1.5: Decomposition of the time series in the figure 1.4.

The additive decomposition is suitable when the magnitude of fluctua-
tions around the trend or the scale of seasonal variations aligns with the level
(anticipated value) of the time series. However, situations where such align-
ment is not maintained require a different approach known as multiplicative
decomposition, defined as:

yt = Tt ·St ·Ct ·Rt (1.2)

The multiplicative model assumes that the four constituent elements of
a time series may have interdependencies, with their influences capable of
interacting. In contrast, the additive model treats the four components as
independent entities.

It’s worth noting that in various decomposition techniques, the cyclical
component is intertwined with the trend, highlighting the complex interplay
between these constituents.

Residual or irregular fluctuations within a time series result from un-
foreseeable factors that lack a consistent pattern or repetitive nature. These

| 13

variations stem from events such as conflicts, labor strikes, earthquakes,
floods, revolutions, and other unpredictable occurrences. These irregular in-
fluences cannot be quantified using conventional statistical methods designed
for time series analysis.

Time series data can be categorized based on various classification criteria
[19]. In this context, we will focus on Time Dependency and Stationarity.

Time dependency refers to the influence of previous values on newly
observed data points within the recorded variable or phenomenon. This
distinction leads to the classification of time series into two categories:

• Long-term Memory Time Series

• Short-term Memory Time Series

Long-term Memory Time Series are characterized by a gradual decline
in their auto-correlation function, indicating a prolonged change in behavior.
These instances are often found in meteorological and geological data, with a
notable example being the gradual evolution of mean planetary temperatures.

On the other hand, Short-term Time Series represent processes with rapid
changes, and their auto-correlation function decreases quickly as the temporal
distance from the present increases. This rapid decrease in correlation with
time underscores their distinct nature. Financial data, such as stock prices,
serves as a classic example of such time series.

Transitioning to the second classification criterion, Stationarity, a distinc-
tion is made between:

• Stationarity Time series

• Non-Stationarity Time series

Stationary Time Series represent processes characterized by statistical proper-
ties like mean and variance that remain unaffected by temporal fluctuations. In
contrast, time series that deviate from this conventional description are labeled

14 | Introduction to Time Series forecasting

Figure 1.6: Distinct examples of different patterns of time series, starting
from the top, from right to left: Short-Term, Long-Term, Stationary and Non-
Stationary.

as Non-Stationary. Non-Stationary time series are frequently encountered
in domains such as finance and retail. To tackle the forecasting challenges
posed by Non-Stationary Time Series, a preprocessing approach is essential.
This approach involves employing a variety of techniques to transform these
processes into stationary ones, ultimately enhancing predictive accuracy.

1.1 From conventional statistical models torward
Deep Neural Networks

In the previous Chapter 1, a comprehensive exploration of fundamental as-
pects related to time series modeling and forecasting was undertaken. The
significance of selecting an appropriate model was emphasized, as it plays a
pivotal role in unveiling the inherent structure of the time series, forming the
basis for future predictions. Time series models are broadly categorized as

1.1 From conventional statistical models torward Deep Neural Networks |
15

Figure 1.7: The figure describes the Box-Jenkins principle, it is based on 4
steps: i) Identification ii) Estimation iii) Diagnostic and iv) Forecasting

either Linear or Non-Linear, depending on whether the current value of the se-
ries is a linear or non-linear function of past observations. Within the realm of
time series data, a multitude of model forms exist [20], encompassing diverse
Stochastic and Deterministic processes. In this landscape, two prominently
employed linear time series models have garnered considerable attention: the
Autoregressive (AR) and Moving Average (MA) models. Combining elements
from these two paradigms, the Autoregressive Moving Average (ARMA) and
Autoregressive Integrated Moving Average (ARIMA) models were introduced.
To address seasonal time series forecasting, a variation of ARIMA, known as
the Seasonal Autoregressive Integrated Moving Average (SARIMA) model,
proves invaluable. The ARIMA model and its various derivations adhere to
the Box-Jenkins principle, earning them the collective moniker of Box-Jenkins
models, as illustrated in Figure 1.7.

16 | Introduction to Time Series forecasting

In the realm of time series modeling, linear models have garnered promi-
nence owing to their relative simplicity in terms of interpretation and im-
plementation. However, it is worth noting that many real-world time series
exhibit non-linear patterns. For instance, as highlighted by [21], non-linear
models prove to be more suitable for forecasting volatility changes in eco-
nomic and financial time series. Consequently, a spectrum of non-linear
models has been proposed, including the widely recognized Autoregressive
Conditional Heteroskedasticity (ARCH) model and its derivatives such as Gen-
eralized ARCH (GARCH) and Exponential Generalized ARCH (EGARCH)
models.

The time series forecasting field has also embraced the Deep Neural
Networks (DNNs) approach, which has gained substantial traction in recent
years. This is evident in the following queries conducted on Scopus, focusing
on papers published in the field of Time Series Prediction utilizing DNN-based
methodologies. In particular, the following query in Scopus was employed:

TITLE-ABS-KEY (time AND series AND forecasting AND deep AND
learning) AND PUBYEAR > 2006 AND PUBYEAR < 2024 AND (LIMIT-
TO (DOCTYPE , "ar") OR LIMIT-TO (DOCTYPE , "cp") OR LIMIT-
TO (DOCTYPE , "cr") OR LIMIT-TO (DOCTYPE , "ch") OR LIMIT-
TO (DOCTYPE , "re")) AND (LIMIT-TO (EXACTKEYWORD , "Time
Series") OR LIMIT-TO (EXACTKEYWORD , "Forecasting") OR LIMIT-TO
(EXACTKEYWORD , "Deep Learning") OR LIMIT-TO (EXACTKEYWORD ,
"Time Series Forecasting") OR LIMIT-TO (EXACTKEYWORD , "Time Series
Analysis") OR LIMIT-TO (EXACTKEYWORD , "Machine Learning") OR
LIMIT-TO (EXACTKEYWORD , "Deep Neural Networks") OR LIMIT-TO
(EXACTKEYWORD , "Times Series") OR LIMIT-TO (EXACTKEYWORD
, "Time Series Prediction") OR LIMIT-TO (EXACTKEYWORD , "Neural
Networks") OR LIMIT-TO (EXACTKEYWORD , "Time-series Data") OR
LIMIT-TO (EXACTKEYWORD , "Long Short-term Memory"))

1.1 From conventional statistical models torward Deep Neural Networks |
17

Document type
Article 3,278

Conference paper 2,367
Book chapter 64

Review 56
Total 5,765

Table 1.1: Summary of the type of documents retrieved on Scopus. A screen-
ing of the title and abstract of the papers was performed.

Y
ea

r

Documents

D
oc

um
en

ts
 b

y
ye

ar

20
02

20
04

20
06

20
08

20
10

20
12

20
14

20
16

20
18

20
20

20
22

20
24

0

25
0

50
0

75
0

10
00

12
50

15
00

17
50

C
op

yr
ig

ht
 ©

 2
02

3
E

ls
ev

ie
r

B
.V

. A
ll

ri
gh

ts
 r

es
er

ve
d.

 S
co

pu
s®

 is
 a

 r
eg

is
te

re
d

tr
ad

em
ar

k
of

 E
ls

ev
ie

r
B

.V
.

Figure 1.8: Papers published by year indexed on Scopus: we can say that the
interest of the Scientific community in wanting to propose prediction models
based on DNNs is registered from the year 2017.

18 | Introduction to Time Series forecasting

Y
ea

r

Documents

D
oc

um
en

ts
 p

er
 y

ea
r

by
 s

ou
rc

e
C

om
pa

re
 th

e
do

cu
m

en
t c

ou
nt

s
fo

r
up

 to
 1

0
so

ur
ce

s.
C

om
pa

re
 s

ou
rc

es
 a

nd
 v

ie
w

 C
ite

Sc
or

e,
 S

JR
, a

nd
 S

N
IP

da
ta

IE
E

E
 A

cc
es

s
A

C
M

 I
nt

er
na

tio
na

l C
on

fe
re

nc
e

Pr
oc

ee
di

ng
 S

er
ie

s
E

ne
rg

ie
s

C
om

m
un

ic
at

io
ns

 I
n

C
om

pu
te

r
A

nd
 I

nf
or

m
at

io
n

Sc
ie

nc
e

L
ec

tu
re

 N
ot

es
 I

n
C

om
pu

te
r

Sc
ie

nc
e

In
cl

ud
in

g
Su

bs
er

ie
s

L
ec

tu
re

 N
ot

es
 I

n
A

rt
if

ic
ia

l I
nt

el
lig

en
ce

 A
nd

 L
ec

tu
re

N
ot

es
 I

n
B

io
in

fo
rm

at
ic

s

E
xp

er
t S

ys
te

m
s

W
ith

 A
pp

lic
at

io
ns

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

0204060

C
op

yr
ig

ht
 ©

 2
02

3
E

ls
ev

ie
r

B
.V

. A
ll

ri
gh

ts
 r

es
er

ve
d.

 S
co

pu
s®

 is
 a

 r
eg

is
te

re
d

tr
ad

em
ar

k
of

 E
ls

ev
ie

r
B

.V
.

Figure 1.9: This plot shows the Top sources in terms of published papers in
the field of time series prediction with Deep approaches.

1.1 From conventional statistical models torward Deep Neural Networks |
19

Documents by type

Article (56.0%)

Conference Pape... (38.4%)

Conference Revi... (3.3%)

Book Chapter (1.3%)

Review (0.9%)

Copyright © 2023 Elsevier B.V. All rights reserved. Scopus® is a registered trademark of Elsevier B.V.

Figure 1.10: In this plot, on the other hand, we look at the types of articles
published; we see that 56% are journal articles while around 38% are confer-
ence papers.

20 | Introduction to Time Series forecasting

Documents by subject area

Computer Scienc... (30.2%)

Engineering (20.7%)

Mathematics (11.1%)

Energy (6.3%)

Decision Scienc... (5.4%)

Physics and Ast... (4.4%)

Environmental S... (4.0%)

Materials Scien... (3.0%)

Earth and Plane... (2.5%)

Social Sciences... (2.5%)

Other (10.1%)

Copyright © 2023 Elsevier B.V. All rights reserved. Scopus® is a registered trademark of Elsevier B.V.

Figure 1.11: Finally, in the pie chart it is possible to observe the papers
published according to the subject area, it is shows that more than 50% are
from the Computer Science and Engineering area.

1.1 From conventional statistical models torward Deep Neural Networks |
21

In the realm of artificial intelligence, Deep Neural Networks (DNNs) have
emerged as a technology aiming to mimic human brain intelligence within
machines [22, 23]. Similar to the human brain, DNNs excel at identifying
intricate patterns within input data, learning from their experiences, and sub-
sequently generating generalized outcomes based on acquired knowledge.
While they draw inspiration from biological systems, DNNs have found di-
verse applications, with a particular emphasis on forecasting and classification
tasks [24, 25].

The appeal of DNNs in time series analysis and prediction can be at-
tributed to several key features:

Firstly, Deep Neural Networks (DNNs) are data-driven and adaptive in na-
ture [26]. They do not necessitate a predefined model structure or assumptions
about the data distribution. Instead, they dynamically adapt the model based
on the inherent characteristics of the data. This adaptability proves invaluable
in scenarios where theoretical guidance about data generation processes is
lacking.

Secondly, DNNs inherently incorporate non-linearity, making them highly
effective at capturing complex data patterns. This sets them apart from
traditional linear methodologies like ARIMA [27]. Numerous instances
demonstrate the superior analytical and forecasting capabilities of DNNs
compared to linear models.

Finally, as elucidated by [28], DNNs serve as universal function approxi-
mators. Research has shown that neural networks can approximate continuous
functions with any desired level of accuracy. DNNs leverage parallel pro-
cessing to approximate a wide range of functions with exceptional precision.
Moreover, they excel in handling scenarios involving erroneous, incomplete,
or fuzzy input data [29].

In this section, a theoretical foundation of the stochastic and deterministic
models commonly used in state-of-the-art time series prediction is provided,
with a brief mention of the operation of DNNs, particularly Recurrent Neural

22 | Introduction to Time Series forecasting

Figure 1.12: Example of a generic Deep Neural Network (DNN), unlike an
Artificial Neural Network (ANN), it has more than one hidden layer.

Networks (RNNs). Detailed discussions about specific architectures are
deferred to subsequent chapters (II and III).

1.1.1 Stochastic-based models

AR The Autoregressive (AR) model is a fundamental time series forecasting
approach that predicts a variable’s future value based on its past values. In
this model, the current time series value is regarded as a linear combination
of its preceding values, often referred to as "lags."

Mathematically, an AR(p) model of order p is expressed as:

xt = c+φ1xt−1 +φ2xt−2 + . . .+φpxt−p + εt

Here:

• xt denotes the time series value at time t.

• c is a constant term.

1.1 From conventional statistical models torward Deep Neural Networks |
23

• φ1,φ2, . . . ,φp are autoregressive coefficients that indicate the impact of
past values on the current one.

• εt represents white noise or random error at time t, accounting for
unexplained variability and randomness.

The AR(p) model captures linear relationships between the current time
series value and its lagged values up to order p, providing insights into
temporal dependencies within the data.

MA The Moving Average (MA) model is another fundamental time series
forecasting technique that focuses on modeling the relationship between
the current value of a variable and its past forecast errors, also known as
"residuals."

In an MA(q) model of order q, the current time series value is represented
as a linear combination of the most recent q forecast errors, often referred to
as "lags of residuals."

Mathematically, an MA(q) model is defined as:

xt = µ + εt +θ1εt−1 +θ2εt−2 + . . .+θqεt−q

Here:

• xt signifies the time series value at time t.

• µ is the mean or intercept term.

• εt stands for white noise or random error at time t.

• θ1,θ2, . . . ,θq are coefficients that determine the influence of past fore-
cast errors on the current value.

• εt−1,εt−2, . . . ,εt−q represent past forecast errors.

24 | Introduction to Time Series forecasting

The MA(q) model captures dependencies between the current value and
recent forecast errors, which are assumed to be white noise. It is particularly
effective in capturing short-term fluctuations or shocks in time series data.

ARMA The Autoregressive Moving Average (ARMA) model combines the
Autoregressive (AR) and Moving Average (MA) concepts to create a versatile
time series forecasting model that encompasses both the linear relationship
between past values and the influence of past forecast errors.

An ARMA(p,q) model, with order p for the autoregressive component
and q for the moving average component, is defined as:

xt = c+φ1xt−1 +φ2xt−2 + . . .+φpxt−p +εt +θ1εt−1 +θ2εt−2 + . . .+θqεt−q

Here:

• xt represents the time series value at time t.

• c is a constant term.

• φ1,φ2, . . . ,φp are autoregressive coefficients that determine the impact
of past values on the current value.

• εt is the white noise term or random error at time t.

• θ1,θ2, . . . ,θq are coefficients that determine the influence of past fore-
cast errors on the current value.

• εt−1,εt−2, . . . ,εt−q represent past forecast errors.

The ARMA model integrates lagged values of the time series and past
forecast errors to create a comprehensive forecasting model. The Autoregres-
sive component captures temporal dependencies, while the Moving Average
component accounts for the influence of past forecast errors. It is particularly

1.1 From conventional statistical models torward Deep Neural Networks |
25

useful for capturing both short-term fluctuations and the overall temporal
structure of time series data.

ARIMA The Autoregressive Integrated Moving Average (ARIMA) model
is a powerful and widely used time series forecasting model that combines the
Autoregressive (AR), differencing (I), and Moving Average (MA) components
to handle both trend and seasonality in time series data.

An ARIMA(p,d,q) model consists of three primary components:

1. Autoregressive (AR) component of order p.

2. Differencing (I) component of order d.

3. Moving Average (MA) component of order q.

Mathematically, an ARIMA(p,d,q) model can be defined as:

(1−φ1B−φ2B2−. . .−φpBp)(1−B)dxt = c+(1+θ1B+θ2B2+. . .+θqBq)εt

Here:

• xt represents the value of the time series at time t.

• c is a constant term.

• φ1,φ2, . . . ,φp are the autoregressive coefficients that determine the im-
pact of the previous values on the current value.

• d represents the order of differencing, which helps in making the time
series stationary.

• B is the backshift operator, where Bxt = xt−1.

• θ1,θ2, . . . ,θq are the coefficients that determine the impact of the past
forecast errors on the current value.

26 | Introduction to Time Series forecasting

• εt is the white noise term (random error) at time t.

The ARIMA model effectively captures short-term dependencies, tempo-
ral structure, trend, and seasonality within time series data. The autoregressive
and moving average components capture linear relationships with past val-
ues and forecast errors, while differencing addresses trend and seasonality,
ensuring stationarity.

The ARIMA model is particularly useful for handling time series data
with trend and seasonality while maintaining flexibility to model various data
patterns.

SARIMA The Seasonal Autoregressive Integrated Moving Average
(SARIMA) model extends the ARIMA model to address time series data with
seasonal patterns. SARIMA combines Autoregressive (AR), Differencing
(I), Moving Average (MA), and their seasonal counterparts to capture both
temporal structure and seasonality.

The SARIMA(p,d,q)(P,D,Q)s model consists of three components for the
non-seasonal part:

1. Autoregressive (AR) component of order p.

2. Differencing (I) component of order d.

3. Moving Average (MA) component of order q.

Additionally, it includes three seasonal components for the seasonal part:

1. Seasonal Autoregressive (SAR) component of order P.

2. Seasonal Differencing (SI) component of order D.

3. Seasonal Moving Average (SMA) component of order Q.

Mathematically, the SARIMA(p,d,q)(P,D,Q)s model can be defined as:

1.1 From conventional statistical models torward Deep Neural Networks |
27

(1−φ1B−φ2B2− . . .−φpBp)(1−B)d(1−Φ1Bs−Φ2B2s− . . .−ΦPBP·s)

(1−Bs)Dxt =

c+(1+θ1B+θ2B2 + . . .+θqBq)(1+Θ1Bs +Θ2B2s + . . .+ΘQBQ·s)εt

Here:

• xt represents the time series value at time t.

• c is a constant term.

• φ1,φ2, . . . ,φp are autoregressive coefficients for the non-seasonal part.

• d represents the order of non-seasonal differencing.

• B is the backshift operator.

• Φ1,Φ2, . . . ,ΦP are autoregressive coefficients for the seasonal part.

• D represents the order of seasonal differencing.

• θ1,θ2, . . . ,θq are coefficients for the non-seasonal moving average part.

• Θ1,Θ2, . . . ,ΘQ are coefficients for the seasonal moving average part.

• s is the seasonal period, indicating the number of time steps in a season
(e.g., s = 12 for monthly data with yearly seasonality).

The SARIMA model excels in capturing short-term temporal relationships
and longer-term seasonality present in time series data. The appropriate values
for orders p, d, q, P, D, and Q are determined through statistical techniques
like AIC or BIC. SARIMA is essential for forecasting time series data with
recurring seasonal patterns.

28 | Introduction to Time Series forecasting

Seasonality Stationarity Non-Stationarity
AR N Y N
MA N Y N

ARMA N Y N
ARIMA N Y Y

SARIMA Y Y Y

Table 1.2: Brief summary of the Auto-Regressive models analyzed (Y:Yes;
N:No).

ARCH The Autoregressive Conditional Heteroskedasticity (ARCH) model
is a statistical approach used for predicting time series data with varying
levels of volatility or variance. It addresses the concept of heteroskedasticity,
where the variability of error terms changes over time.

The ARCH model concentrates on modeling the conditional variance of
the time series, implying that the variance of the error term at a given time
depends on previous observations of the time series.

In mathematical terms, an ARCH(p) model can be expressed as:

εt = σtzt

σ
2
t = α0 +α1ε

2
t−1 +α2ε

2
t−2 + . . .+αpε

2
t−p

Here:

• εt denotes the error term at time t.

• σ2
t represents the conditional variance of the error term at time t.

• zt is a white noise term with a mean of zero and a variance of one.

• α0,α1, . . . ,αp are the parameters of the ARCH model.

• εt−1,εt−2, . . . ,εt−p are past error terms.

1.1 From conventional statistical models torward Deep Neural Networks |
29

The ARCH model accounts for changing volatility in the time series by
adjusting the conditional variance based on past squared error terms. This
adaptability is crucial for handling time series data with varying volatility
levels.

GARCH The Generalized Autoregressive Conditional Heteroskedasticity
(GARCH) model is an extension of the ARCH model that offers a more flexi-
ble and advanced approach to modeling time series data with varying volatility.
Similar to the ARCH model, the GARCH model centers on capturing the
conditional variance of the time series.

The GARCH model introduces lagged values of both the conditional
variance and squared past error terms to better capture the dynamics of
changing volatility. It accommodates both short-term and long-term effects
on the conditional variance.

The GARCH(p, q) model can be defined as:

εt = σtzt

σ
2
t = ω +

p

∑
i=1

αiε
2
t−i +

q

∑
j=1

β jσ
2
t− j

Here:

• εt represents the error term at time t.

• σ2
t represents the conditional variance of the error term at time t.

• zt is a white noise term with a mean of zero and a variance of one.

• ω is a constant term.

• α1,α2, . . . ,αp are the autoregressive coefficients for squared past error
terms.

30 | Introduction to Time Series forecasting

• εt−1,εt−2, . . . ,εt−p are squared past error terms.

• β1,β2, . . . ,βq are the moving average coefficients for past conditional
variances.

• σ2
t−1,σ

2
t−2, . . . ,σ

2
t−q are past conditional variances.

The GARCH model enhances the ARCH model by considering both
squared past error terms and past conditional variances in calculating the
conditional variance at each time step. This approach allows the GARCH
model to capture the persistence of volatility changes over time, making it
suitable for time series data with complex volatility patterns.

EGARCH The Exponential Generalized Autoregressive Conditional Het-
eroskedasticity (EGARCH) model is an extension of the GARCH model that
accommodates asymmetric effects of positive and negative shocks on the
conditional volatility of a time series. The EGARCH model is particularly
effective at capturing the phenomenon of leverage, where negative shocks
tend to increase volatility more than positive shocks of the same magnitude.

Mathematically, an EGARCH(p, q) model can be defined as:

εt = σtzt

log(σ2
t) = ω +

p

∑
i=1

αi

(∣∣∣∣ εt−i

σt−i

∣∣∣∣−
√

2
π

)
+

q

∑
j=1

β j log(σ2
t− j)

Here:

• εt represents the error term at time t.

• σ2
t represents the conditional variance of the error term at time t.

• zt is a white noise term with a mean of zero

and a variance of one.

1.1 From conventional statistical models torward Deep Neural Networks |
31

• ω is a constant term.

• α1,α2, . . . ,αp are the autoregressive coefficients for asymmetric effects.

• εt−1,εt−2, . . . ,εt−p are past error terms.

• β1,β2, . . . ,βq are the moving average coefficients for past conditional
log-variances.

• log(σ2
t−1), log(σ2

t−2), . . . , log(σ2
t−q) are past conditional log-variances.

The distinctive feature of the EGARCH model is its inclusion of the
absolute values of past standardized errors (εt−i

σt−i
) in the conditional variance

equation. This allows the model to effectively capture the asymmetric re-

sponse of volatility to positive and negative shocks. The term
√

2
π

is included
to maintain the stability of the conditional variance equation.

The EGARCH model’s capability to model asymmetric volatility dynam-
ics makes it a valuable tool for accurately modeling and forecasting time
series data with these characteristics.

In general, models from the GARCH family are particularly useful for
financial time series data, where negative shocks often lead to larger increases
in volatility compared to positive shocks of the same magnitude.

The selection of appropriate orders (p, d, q, P, D, and Q) for these models
depends on the data’s characteristics and can be determined using statistical
techniques like the Akaike Information Criterion (AIC) or the Bayesian
Information Criterion (BIC).

1.1.2 Deterministic-based models

In this section, deterministic time series forecasting models are introduced:

SES The Simple Exponential Smoothing (SES) model is a fundamental
time series forecasting model used for short-term predictions. It is ideal for

32 | Introduction to Time Series forecasting

time series data with a constant level and no significant trends or seasonality.
The SES model calculates the forecast for the next period as a weighted
average of the most recent observation and the previous forecast. These
weights decrease exponentially as observations move further into the past,
with more emphasis on recent data.

The formula for the SES model is represented as:

ŷt+1 = α · yt +(1−α) · ŷt

Where: - ŷt+1 is the forecast for the next period. - yt is the observed value
at time t. - ŷt is the forecast at time t. - α is the smoothing parameter (smooth-
ing factor) that controls the weight assigned to the most recent observation,
with a range between 0 and 1.

The SES model emphasizes recent observations, with the parameter α

determining the extent of this emphasis. A smaller α assigns more weight to
past forecasts, resulting in a smoother and less responsive forecast, whereas
a larger α gives more weight to the most recent observation, resulting in a
more responsive forecast.

SES is suitable for relatively stable time series data with minimal trends
or seasonality. It provides a simple method for generating short-term fore-
casts, making it a valuable starting point for forecasting tasks. However, its
simplicity may limit its effectiveness for more complex time series patterns.

DES Holt’s Linear Trend model, also known as Double Exponential Smooth-
ing (DES), extends SES by incorporating a linear trend component. It is
designed for time series data with both a level component and a linear trend
over time. The model introduces two smoothing parameters: one for the level
(α) and another for the trend (β). It captures the current level and the rate of
change in the time series, and forecasts the next period based on the current
level and trend.

1.1 From conventional statistical models torward Deep Neural Networks |
33

The mathematical representations for Holt’s Linear Trend model are as
follows:

Level equation

Lt = α · yt +(1−α) · (Lt−1 +Tt−1)

Trend equation

Tt = β · (Lt−Lt−1)+(1−β) ·Tt−1

Forecast equation
ŷt+1 = Lt +Tt

Where:

• Lt is the estimated level at time t.

• Tt is the estimated trend at time t.

• yt is the observed value at time t.

• ŷt+1 is the forecast for the next time period.

• α is the smoothing parameter for the level, which determines the weight
assigned to the most recent observation.

• β is the smoothing parameter for the trend, which determines the weight
assigned to the estimated trend.

Similar to SES, the choice of α and β influences the weight given to recent
observations and trends, respectively. Adjusting these parameters allows the
model to react more quickly or slowly to changes in the data. Holt’s Linear
Trend model is suitable for time series data with a consistent trend component
but may not perform well with nonlinear trends or seasonality.

34 | Introduction to Time Series forecasting

TES The Triple Exponential Smoothing (TES) model, also known as the
Holt-Winters Exponential Smoothing model, extends Holt’s Linear Trend by
incorporating components for level, trend, and seasonality. It is appropriate
for time series data with level, trend, and seasonal patterns. TES introduces
three smoothing parameters: one for the level (α), one for the trend (β), and
one for the seasonal component (γ).

The mathematical representations for the TES model are as follows:
Level equation

Lt = α · (yt−St−m)+(1−α) · (Lt−1 +Tt−1)

Trend equation

Tt = β · (Lt−Lt−1)+(1−β) ·Tt−1

Seasonal equation

St = γ · (yt−Lt)+(1− γ) ·St−m

Forecast equation

ŷt+h = Lt +h ·Tt +St−m+h

Where:

• Lt is the estimated level at time t.

• Tt is the estimated trend at time t.

• St is the estimated seasonal component at time t.

• yt is the observed value at time t.

• ŷt+h is the forecast for time t + h, where h represents the forecast
horizon.

1.1 From conventional statistical models torward Deep Neural Networks |
35

Trend Seasonality Multiplicative Seasonality
SES Y N N
DES Y N N
TES Y Y Y

Table 1.3: Brief summary of the Exponential-Smoothing models analyzed
(Y:Yes; N:No)

• m is the number of seasons (seasonal periods) in a cycle.

• α is the smoothing parameter for the level.

• β is the smoothing parameter for the trend.

• γ is the smoothing parameter for the seasonal component.

The TES model accounts for interactions between the level, trend, and
seasonality, allowing it to capture more complex patterns in the data. It
is particularly useful for time series data with seasonality that repeats at
regular intervals. However, TES may not perform well with data exhibiting
irregular or changing patterns. Smoothing parameters (α , β , and γ) are
typically estimated using optimization techniques to minimize forecast errors
on historical data.

1.1.3 Deep-based models

Stochastic models, Deterministic models and DNNs are three prominent
methodologies for time series forecasting. However, each approach possesses
distinct limitations that researchers and practitioners must carefully consider
when selecting the most appropriate methodology [30].

Stochastic Models: Stochastic models, often grounded in statistical methods,
have been extensively employed for time series forecasting. These mod-
els assume a probabilistic distribution governing the data generation pro-
cess. Notable stochastic models encompass ARIMA (AutoRegressive

36 | Introduction to Time Series forecasting

Integrated Moving Average), GARCH (Generalized AutoRegressive
Conditional Heteroskedasticity), and state space models.

Nevertheless, stochastic models entail several limitations [31]:

1. Assumption Rigidity: Stochastic models frequently impose strict
distributional assumptions on the data, which may not hold true
in real-world scenarios. Violations of these assumptions can lead
to suboptimal forecasting outcomes.

2. Complex Pattern Representation: Stochastic models may strug-
gle to capture intricate temporal patterns, particularly when con-
fronted with nonlinear relationships or intricate interactions.

3. Feature Engineering Demands: Stochastic models often ne-
cessitate manual feature engineering, a process that can be time-
intensive and might inadvertently overlook relevant data features.

4. Memory Constraints: Stochastic models usually incorporate
only a finite history of past observations, potentially neglecting
significant long-term dependencies.

Deterministic Models: Deterministic models, exemplified by Exponential
Smoothing, offer an alternative paradigm for time series forecasting.
These models emphasize capturing patterns through weighted aver-
ages of past observations, while incorporating trend and seasonality
components.

However, deterministic models also present limitations [32]:

1. Sensitivity to Initialization: Exponential Smoothing models can
be sensitive to initial parameter choices, potentially leading to
divergent forecasts with slight variations in initialization.

2. Pattern Complexity: These models might struggle to capture
intricate and nonlinear patterns inherent in certain datasets.

1.1 From conventional statistical models torward Deep Neural Networks |
37

Figure 1.13: Architectures of Recurrent Neural Networks (RNNs), starting
with Vanilla-RNN, and then exploring Long Short Term Memory and Gated
Recurrent Unit (GRU).

3. Limited Long-term Dependencies: Deterministic models often
prioritize short-term dependencies, potentially missing out on
capturing longer-term trends and dependencies.

Deep Neural Networks: Deep neural networks, specifically Recurrent Neu-
ral networks (RNNs) and their variations like Long Short-Term Memory
(LSTM) and Gated Recurrent Unit (GRU), have garnered attention for
time series forecasting due to their proficiency in learning intricate
temporal relationships [33]. In particular, they are specifically designed
to handle sequential data. RNNs possess feedback connections that
allow them to maintain a form of memory about previous time steps,
while LSTMs enhance this by incorporating gating mechanisms that
control the flow of information through the network’s memory cells.
These architectures are adept at modeling and remembering depen-
dencies over long sequences, making them well-suited for time series
prediction tasks [34].

A Recurrent Neural Network (RNN) is a type of neural network ar-
chitecture designed to process sequences of data while maintaining a
memory of previous elements in the sequence. This memory enables
RNNs to capture temporal dependencies and patterns in sequential data,

38 | Introduction to Time Series forecasting

Figure 1.14: Simple RNN unit

making them well-suited for tasks like natural language processing,
speech recognition, and time series analysis [35–37].

The core idea behind an RNN is the introduction of hidden states that
store information about previous elements in the sequence. At each
time step t, the RNN takes as input the current element of the sequence
xt and the previous hidden state ht−1, and produces an output yt and an
updated hidden state ht . This hidden state ht serves as a memory that
encodes information from past time steps and influences the network’s
predictions at the current time step [38].

The computations in an RNN can be described as follows:

Input to Hidden State:

ht = activation(Whxxt +Whhht−1 +bh)

where:

• ht is the hidden state at time step t.

• xt is the input at time step t.

1.1 From conventional statistical models torward Deep Neural Networks |
39

• Whx is the weight matrix for the input-to-hidden transformation.

• Whh is the weight matrix for the hidden-to-hidden transformation.

• bh is the bias term for the hidden state transformation.

• activation is a non-linear activation function (e.g., tanh or ReLU).

Hidden State to Output:

yt = activation
(
Wyhht +by

)
where:

• yt is the output at time step t.

• Wyh is the weight matrix for the hidden-to-output transformation.

• by is the bias term for the output transformation.

The RNN’s parameters consist of the weight matrices Whx, Whh, and
Wyh, as well as the bias terms bh and by. These parameters are learned
through the training process, typically using gradient-based optimiza-
tion algorithms like backpropagation through time (BPTT).

One challenge with basic RNNs is the vanishing gradient problem,
where gradients can become extremely small as they are backpropa-
gated through time, leading to difficulty in learning long-range depen-
dencies. This challenge has led to the development of more advanced
RNN variants like Long Short-Term Memory (LSTM) networks and
Gated Recurrent Units (GRUs), which are designed to better capture
and manage long-term dependencies in sequential data.

Yet, DNNs in general, also exhibit limitations [39]:

1. Data Intensity: Effective learning in DNNs often demands sub-
stantial data quantities, a requirement that can be challenging to
fulfill in certain domains.

40 | Introduction to Time Series forecasting

2. Overfitting Vulnerability: DNNs are susceptible to overfitting if
not appropriately regularized, particularly when training data is
limited.

3. Computational Demands: Training deep neural networks can
entail significant computational expense and time consumption,
necessitating substantial computational resources.

4. Opaque Nature: DNNs may be perceived as black-box models,
hindering the interpretation of learned patterns and the compre-
hension of rationale behind specific forecasts.

In summary, the choice between stochastic models, deep neural networks, and
deterministic models such as Exponential Smoothing should be driven by the
characteristics of the time series data and the specific forecasting objectives.
Each approach carries its own advantages and limitations, and an informed
decision should be based on a comprehensive understanding of these factors.

In conclusion, neural networks are preferred to classical approaches, such
as deterministic and linear methods, in time series prediction for several key
reasons in the academic literature [40–42], including:

• It excel at capturing the intricate, nonlinear patterns found in time series
data, which classical methods struggle to model effectively.

• It can automatically extract relevant features from the raw data, elimi-
nating the need for manual feature engineering, a process often required
by traditional methods.

• Time series data often show dynamic and evolutionary trends influenced
by various factors, and possess the ability to capture changing patterns
over time, making them suitable for modeling these trends.

• It skillfully handle multiple inputs, allowing interactions between vari-
ables to be incorporated. This ability proves invaluable in predicting
time series influenced by multiple sources of information.

1.1 From conventional statistical models torward Deep Neural Networks |
41

• Neural networks, especially those with recurrent layers, effectively
capture long-term dependencies in time series data, unlike linear models
that may fall short in this aspect.

In addition, given the increase in complex, high-dimensional time data sets,
neural networks are more adept at handling the resulting data complexities.
Moreover, it boasts a remarkable modeling capability, which enables them to
learn from extensive data and adapt to different types of models, ultimately
improving prediction accuracy [43]. Their adaptive learning nature facilitates
continuous adjustment of internal parameters based on new data, which is
crucial when dealing with nonstationary time series characterized by changing
statistical properties [9]. Another important aspect is that neural networks
can be integrated with ensemble methods or hybrid models to exploit the
strengths of different techniques, resulting in increased prediction accuracy
[44, 45]. Advances in neural network architectures and training algorithms,
such as LSTM and attention mechanisms, have helped to significantly improve
performance in time series forecasting tasks [46]. In conclusion, the ability
of neural networks to capture complex, nonlinear relationships in time series
data, their ability to adapt to changing patterns, and their suitability for high-
dimensional data contribute to their superiority over classical methods in
improving the accuracy of time series forecasting.

Lastly, in real-world scenarios, the use of neural networks for time series
forecasting has proven to be highly advantageous over traditional determinis-
tic and linear approaches; for further details, refer to Chapter 3.

42 | Introduction to Time Series forecasting

Figure 1.15: Summary of pros and cons on using Statistics-based approaches
for time series prediction.

Figure 1.16: Summary of pros and cons on using Deep Learning-based
approaches for time series prediction.

2
Proposed Framework

Time series forecasting is a fundamental challenge across various domains,
from finance to healthcare and beyond. Traditional methods often struggle
to capture the intricate patterns inherent in time-varying data, leading to the
increasing adoption of deep learning techniques. However, the majority of
existing approaches focus on specific forecasting tasks, resulting in ad-hoc
solutions that lack flexibility and fail to address the broader landscape of time
series prediction.

To overcome this limitation, a pioneering framework that encapsulates a
general-purpose approach, modularity, and customization in each processing
step for time series forecasting is presented in this dissertation to ensure an
effective and efficient processing pipeline. Specifically, in this Chapter 2,
the motivations, methodology applied and goals achieved by the proposed
framework were explored in depth.

44 | Proposed Framework

2.1 Motivations

The paramount objective of the proposed framework is to offer a versatile
solution for time series forecasting across diverse domains. Unlike conven-
tional methods that cater to distinct forecasting requirements, our framework
adopts a holistic approach to accommodate forecasting tasks of any nature.
This empowers researchers and practitioners to engage with a unified plat-
form regardless of the domain-specific intricacies, thereby streamlining the
forecasting process.

One of the distinguishing features of our framework is its modular design,
where each component within the pipeline is treated as an independent module.
This modularity enables users to selectively activate or deactivate modules,
tailoring the processing pipeline to the specific needs of their forecasting task.
The customizability extends to a granular level, encompassing functionalities
such as pre-processing, feature engineering, data augmentation, and encoding
strategies. This adaptability ensures that the framework caters to both novices
seeking a plug-and-play solution and experts aiming to experiment with
intricate preprocessing and modeling techniques.

The versatility of the framework is based on the ability to choose coding
techniques for time series and deep neural network-based models for predic-
tion. Instead of imposing a single algorithmic approach, the framework offers
a spectrum of coding methodologies, allowing users to align their choices
with the characteristics of the underlying data. In addition, the prediction
network itself is non-prescriptive, allowing users to experiment with various
deep learning architectures, from Convolutional Neural Networks (CNNs) to
Recurrent Neural Networks (RNNs), based on the complexities of the data to
be processed.

Instead, the framework transcends the conventional static nature of pro-
cessing pipelines. Recognizing that different forecasting tasks demand tai-
lored strategies, the framework introduces adaptive module activation. De-
pending on the specific challenges posed by a forecasting problem, users can

2.2 Methodology | 45

dynamically enable or disable modules within the processing pipeline. This
ensures that the framework remains both efficient and effective across a wide
array of forecasting scenarios.

2.2 Methodology

The proposed framework revolutionizes time series processing and forecasting
by introducing a meticulously designed pipeline comprising four distinct
steps. Each step is characterized by its modular nature, enabling users to
seamlessly tailor their approach to the intricacies of their forecasting task.
The framework’s overarching objective is to provide a unified solution for
diverse time series forecasting challenges while upholding the principles of
modularity and customization.

2.2.1 Pre-processor and Feature Engineer Module

The Pre-Processing and Feature Engineering phase stands as the bedrock of
our framework, sculpting raw time series data into a form that optimally facili-
tates subsequent stages of analysis and forecasting. Through a combination of
preparatory steps and strategic feature engineering, this phase ensures that the
data is primed for extraction of relevant patterns and insights. The following
techniques exemplify the comprehensive approach undertaken within this
step.

Pre-Processing Techniques:

1. Normalization: To ensure uniformity and comparability across data
points, normalization standardizes time series values within a common
range. By mitigating the influence of varying scales, normalization
enhances the framework’s capacity to identify subtle patterns across
the data.

46 | Proposed Framework

Figure 2.1: Illustration of the proposed Deep framework. It consists of 4
modules: 1⃝ Pre-processor and Feature Engineer, 2⃝ Data Augmentation, 3⃝
Encoding and 4⃝ Deep Model selector.

2.2 Methodology | 47

2. Imputation: Addressing missing values is vital to prevent data loss
and ensure the integrity of subsequent analyses. Imputation techniques,
such as linear interpolation or mean substitution, are employed to fill
gaps and maintain continuity in the time series.

3. Outlier Detection and Treatment: Outliers can significantly skew
forecasts and insights. Detection methods, like Z-score or percentile-
based techniques, identify potential outliers, which can then be treated
through transformation or removal.

Feature Engineering Strategies:

1. Lag Features: By introducing lagged versions of the time series data,
temporal dependencies and trends are explicitly captured. These lag
features enable the model to consider historical patterns, critical for
accurate forecasting.

2. Moving Averages: Calculating moving averages smooths out noise
and fluctuations, revealing underlying trends and cyclical patterns that
might be obscured by noise.

3. Statistical Measures: Extracting statistical properties such as mean,
variance, skewness, and kurtosis offers a comprehensive view of data
distribution and behavior, facilitating the identification of distinct pat-
terns.

4. Time-Domain and Frequency-Domain Features: These features
capture both time-related characteristics (e.g., autocorrelation) and
frequency-domain attributes (e.g., dominant frequencies) that contribute
to the overall data profile.

The amalgamation of these pre-processing and feature engineering tech-
niques transforms raw data into a refined format that enhances the framework’s

48 | Proposed Framework

ability to capture relevant temporal patterns and characteristics. This foun-
dational phase ensures that the subsequent modules receive data optimized
for extracting valuable insights, thereby contributing to more accurate and
insightful forecasting.

In the spirit of the framework’s modularity, users have the autonomy to
customize the pre-processing and feature engineering steps to align with their
specific dataset characteristics and forecasting objectives. This adaptability
empowers researchers and practitioners to cater to the unique intricacies of
their time series data, a hallmark of the framework’s comprehensive approach
to time series analysis and prediction.

2.2.2 Data Augmentation Module

Building on the refined time series from Step 1⃝, the Data Augmentation phase
(Step 2⃝) contributes a critical augmentation layer to the framework. Data
augmentation, a technique widely recognized for its ability to alleviate data
scarcity and improve model robustness, introduces synthetic variations to the
existing dataset. Techniques like Generative Adversarial Networks (GANs),
Over Sampling, and Under Sampling are integrated to create augmented data
samples. GANs generate synthetic samples by modeling data distribution,
while Over Sampling and Under Sampling address class imbalance concerns.
By diversifying the dataset, the framework gains resilience against overfitting
and better generalization capabilities, thereby enhancing forecasting accuracy.

Techniques for Data Augmentation:

1. Generative Adversarial Networks (GANs): GANs are a cutting-edge
technique in deep learning that involves training a generator and a
discriminator in tandem. The generator creates synthetic data samples
that mimic the distribution of the real data, while the discriminator
aims to differentiate between real and synthetic samples. The iterative
interplay between these components leads to the generation of highly
realistic synthetic data, enriching the dataset.

2.2 Methodology | 49

2. Over Sampling: Over Sampling targets class imbalance by replicating
instances from the minority class, thereby achieving a more balanced
distribution. This approach prevents the model from being biased
towards the majority class and aids in capturing the subtleties of the
minority class.

3. Under Sampling: Conversely, Under Sampling involves reducing in-
stances from the majority class to balance class proportions. This
technique is particularly effective when a substantial class imbalance is
present, ensuring that both classes are adequately represented during
model training.

4. Time-Series Specific Augmentation: Techniques like Time Warping,
Noise Injection, and Magnitude Scaling introduce controlled variations
to the time series. Time Warping, for instance, distorts the temporal
structure, simulating scenarios where data might be temporally shifted
or warped.

5. Synthetic Time Series Generation: Simulating various temporal patterns
through mathematical functions or simulations can augment the dataset
with diverse scenarios. This is particularly valuable for capturing
uncommon patterns that might be underrepresented in the original
dataset.

By infusing the dataset with synthetic variations, the Data Augmentation
phase equips the framework with greater adaptability and resilience against
overfitting. The resulting augmented dataset encapsulates a broader range of
temporal dynamics, empowering the framework to generalize more effectively
to unseen data and scenarios.

Customizability is once again a fundamental feature of this phase, al-
lowing users to select and combine augmentation techniques according to
the peculiarities of their dataset and forecasting requirements. This user-
driven adaptability is integral to the overarching ethos of the framework,

50 | Proposed Framework

which prioritizes a tailored approach to time series forecasting across diverse
domains.

2.2.3 Encoding Module

The Encoding Module (Step 3⃝), a distinctive component of our framework,
leverages mathematical transformations to bridge the gap between time se-
ries data and image-based deep learning architectures. Operating on the
augmented time series generated in Step 2⃝, this module employs transfor-
mations to convert time series data into images, preserving intricate temporal
correlations and dependencies. The following mathematical transformations,
each tailored to capture specific aspects of time series data, constitute the core
of this module:

• Recurrence Plot (RP): RP is a technique that transforms a time series
into a binary matrix by examining the recurrence of patterns in the
data. Each element of the matrix indicates whether a pair of time points
exhibits similarity, effectively highlighting temporal correlations and
repeating patterns. RP excels at revealing cyclic behavior and capturing
non-linear dependencies present in the time series.

• Gramian Angular Field (GAF): GAF leverages trigonometric functions
to convert a time series into an image representation, portraying the
relative angles between data points. This transformation encapsulates
phase information and temporal correlations, enabling convolutional
neural networks to identify intricate patterns and trends across the time
series.

• Markovian Transition Field (MTF): MTF encodes transitions between
sequential data points by mapping them onto a matrix. By quantifying
the likelihood of transitioning from one state to another, MTF encodes
both short-term and long-term dependencies present in the time series.

2.2 Methodology | 51

This technique is particularly effective for capturing transition patterns
in data with varying temporal dynamics.

• Wavelet Transform: Wavelet Transform decomposes a time series into
multiple frequency components, unveiling its multi-resolution structure.
By analyzing the amplitude and frequency of each component across
time, the transformed data retains both global trends and local variations.
This approach is particularly suitable for capturing transient events and
oscillatory patterns.

The incorporation of these mathematical transformations in the Encoding
Module facilitates the conversion of time series data into images, effectively
preserving temporal correlations and dependencies. These image representa-
tions enable the utilization of well-established convolutional neural network
architectures, such as VGG-16 and others. The modularity of the framework
extends to this module as well, allowing users to selectively adopt the trans-
formation techniques that best align with the characteristics of their data and
forecasting task.

In essence, the Encoding Module serves as a bridge between the domain
of time series and image-based deep learning, unlocking a new realm of
possibilities for accurate and nuanced forecasting. By harnessing the strengths
of mathematical transformations, this phase imbues the framework with
adaptability, enabling it to address a wide spectrum of forecasting scenarios
across diverse domains.

2.2.4 Deep Model selector Module

The Choice of Deep Forecasting Model (Step 4⃝), the culmination of our
framework, offers a comprehensive selection of deep learning architectures
tailored to both classification and regression tasks. Recognizing that time
series forecasting encompasses diverse goals, from predicting discrete classes
to continuous values, this phase provides a unified solution that accommodates

52 | Proposed Framework

both objectives seamlessly. The selection process is fortified by the modularity
inherent to our framework, enabling users to align their choice with the
intricacies of their forecasting challenge.

• Supporting Classification and Regression: For classification tasks,
the framework offers a spectrum of architectures conducive to handling
discrete outcomes. These encompass Convolutional Neural Networks
(CNNs) with softmax outputs, tailored for class probabilities estimation,
as well as LSTM and GRU networks with a final dense layer suited for
multi-class classification.

For regression tasks, the framework deploys architectures optimized for
continuous value prediction. Here, LSTM and GRU networks configured
for regression purposes emerge as effective choices, capitalizing on their
sequence-to-sequence mapping capabilities.

The evaluation of time series forecasting models is pivotal in quantifying
their performance and aiding model selection. Several metrics, entrenched in
the literature, serve as guiding standards [8, 47]:

• Mean Squared Error (MSE): This metric gauges the average squared
difference between predicted and actual values. It provides insights
into the overall model accuracy while heavily penalizing larger errors.

• Mean Absolute Error (MAE): MAE computes the average absolute
differences between predicted and actual values. It offers a straight-
forward measure of the model’s forecasting precision, less sensitive to
outliers compared to MSE.

• Root Mean Squared Error (RMSE): RMSE extends MSE by taking
the square root of the average squared differences. It presents errors in
the original unit of the data, offering better interpretability.

• Mean Absolute Percentage Error (MAPE): MAPE quantifies the
average percentage difference between predicted and actual values. It

2.3 Goals | 53

is particularly useful for interpreting errors in the context of the data’s
magnitude.

• Accuracy and F1-Score: For classification tasks, accuracy and F1-
score serve as pivotal metrics. Accuracy measures the ratio of correctly
predicted instances to the total, while F1-score balances precision and
recall to account for class imbalances.

• Mean Directional Accuracy (MDA): MDA assesses the correctness
of the directional movement predicted by the model in time series
forecasting. It evaluates whether the model’s direction matches the
observed direction of the target variable.

• Quantile Loss: When uncertainty estimation is crucial, quantile loss
assesses the predictive quantiles of the model. It is particularly useful
for probabilistic forecasting.

By offering a broad spectrum of architectures and embracing evaluation
metrics tailored to both classification and regression tasks, our framework
acknowledges the multifaceted nature of time series forecasting. The modu-
larity and adaptability inherent in the framework extend to this phase as well,
empowering users to select models and metrics aligned with their specific
objectives and challenges. This approach resonates with the overarching
philosophy of the framework, which strives to offer a unified solution that
transcends domain-specific limitations in time series forecasting.

2.3 Goals

This Section 2.3 seeks to introduce the goals of the paradigm-shifting frame-
work proposed in this dissertation, which is designed to push the field of time
series analysis and forecasting to new heights. The core of this framework

54 | Proposed Framework

seeks to address the limitations inherent in traditional, specialized methodolo-
gies by embracing a comprehensive and adaptive approach. The overall goals
of this effort are threefold:

1. To provide the scientific community with a versatile tool for time series
analysis.

2. Instill modularity and customization as core principles.

3. To achieve excellent prediction performance through strategic calibra-
tion.

As the study unfolds, it charts the path to a future in which time series
prediction enables practitioners to navigate the complex landscape of data
analysis with high accuracy and effectiveness.

2.3.1 Advancing Time Series Forecasting Through General-
Purpose Utility

The primary goal of this research endeavor is to contribute a versatile and
comprehensive framework to the scientific community, offering an instrument
of unparalleled utility for the analysis and prediction of time series data. This
framework represents a groundbreaking departure from conventional, task-
specific methodologies, striving to address the vast spectrum of time series
forecasting challenges that span diverse domains.

2.3.2 Modularity and Customizability: Empowering Preci-
sion through Adaptability

An intrinsic tenet of our framework is its unwavering commitment to modular-
ity and customizability. By embodying these principles, the framework seeks
to empower researchers and practitioners with the freedom to orchestrate a

2.3 Goals | 55

tailored workflow that seamlessly integrates with their specific data and objec-
tives. The modular architecture encompasses a palette of interdependent yet
independent components, allowing for fine-grained control over the activation
and deactivation of functionalities within the pipeline.

2.3.3 Unleashing Potential for Efficacy and Efficiency

The framework embodies the potential to achieve outstanding levels of ef-
fectiveness and efficiency, provided that the data scientist or data engineer
can navigate the terrain of calibration and optimization. The optimization
journey involves a judicious selection of pre-processing techniques, data aug-
mentation strategies, encoding methodologies, and forecasting models. This
carefully curated orchestration harmonizes the framework’s capabilities with
the intricacies of the forecasting task at hand.

In essence, this framework aspires to transcend the conventional bound-
aries of time series forecasting. By furnishing a platform that is both powerful
and flexible, it aims to revolutionize the manner in which time series data is
analyzed and forecasted. As it extends an open invitation to the scientific com-
munity, this framework embodies the essence of innovation and collaboration,
poised to illuminate new paths in the realm of time series analysis.

3
Applications in Real-World scenarios

In the contemporary era of data-driven decision making, predictive analyt-
ics of time series data has emerged as a key tool in several areas. This
methodology is particularly promising when exploited through deep learning
approaches, which harness the power of neural networks to capture intricate
temporal patterns and correlations within dynamic datasets. This introduc-
tion lays the groundwork for an exploration of concrete applications of deep
learning-based time series prediction, encompassing several real-world con-
texts. . Notable cases range from climate monitoring to optimizing patient
care trajectories, from forecasting stock market fluctuations to fine-tuning the
maintenance of equipment in manufacturing processes.

Let’s delve into a few concrete examples to better understand this context:

Climate Modeling: Deep neural networks have been harnessed to model
complex climate patterns and predict future climatic trends. By ingest-
ing historical data on various climatic variables, such as temperature,
humidity, and atmospheric pressure, DNNs can capture intricate tem-
poral relationships. This enables more accurate long-term climate
predictions, helping researchers and policymakers anticipate shifts in
weather patterns, potential natural disasters, and the impact of climate
change on different regions [48, 49].

58 | Applications in Real-World scenarios

Stock Prediction: Deep neural networks are adept at analyzing large vol-
umes of historical stock market data and identifying intricate patterns
that influence stock prices. By considering factors like market senti-
ment, financial indicators, and historical stock prices, DNNs can make
predictions that assist traders and investors in making informed deci-
sions. Their ability to capture nonlinear relationships in financial data
sets them apart from traditional linear models, contributing to more
accurate short-term and long-term stock price forecasts [50, 51].

Predictive Maintenance and Fault Detection: In the realm of predictive
maintenance, deep neural networks play a pivotal role in assessing the
health of industrial equipment. By analyzing real-time sensor data,
DNNs can detect subtle deviations from normal operating conditions
that could indicate impending faults or failures. This allows mainte-
nance teams to intervene proactively, reducing downtime and preventing
costly breakdowns. DNNs excel at capturing complex patterns of equip-
ment behavior and can adapt to changing conditions, making them a
powerful tool for optimizing maintenance strategies [52, 53].

Health Forecasting: Deep neural networks have found application in fore-
casting healthcare-related outcomes, such as patient admission rates,
disease outbreaks, and healthcare resource demands. By analyzing
historical patient data, environmental factors, and public health poli-
cies, DNNs can predict disease prevalence and healthcare needs. This
information aids healthcare providers, policymakers, and emergency
response teams in allocating resources effectively and implementing
timely interventions [54, 55].

In these real-world scenarios, neural networks shine due to their ability
to handle intricate and nonlinear patterns, adapt to changing conditions, and
learn from complex data relationships. This effectiveness makes them a

| 59

preferred choice over traditional deterministic and linear methods for accurate
and reliable time series forecasting.

Figure 3.1: Time-series prediction examples in real-world scenarios

Within the scope of this PhD thesis, the presented framework not only
introduces a pioneering methodology but also endeavors to validate its efficacy
through practical application in distinct real-world contexts. The validation
efforts have notably extended to two pivotal domains: Industry 4.0 and
FinTech. This strategic selection stems from the recognition that attempting
to apply the framework across the entire spectrum of conceivable scenarios
would be a formidable undertaking. Given the ubiquity of time series data
representation across diverse domains, such an all-encompassing application
would inevitably encounter insurmountable challenges.

By focusing validation on specific sectors—Industry 4.0, emblematic of
modern manufacturing, and Fintech, emblematic of financial technology—the

60 | Applications in Real-World scenarios

thesis underscores the framework’s adaptability to varying requirements and
challenges. It is a pragmatic recognition that while the framework’s potency
is universal, the intricacies of distinct sectors necessitate tailored approaches.
Through these selected real-world scenarios, the thesis exemplifies how the
framework’s modular and customizable architecture can be harnessed to
yield profound insights and forecasts, even within contexts characterized by
nuanced temporal dynamics. In the backdrop of this validation strategy, the
framework emerges not merely as an abstract concept, but as a tangible asset
poised to shape the landscape of practical time series analysis and forecasting.

3.1 Industry 4.0

The data generated by production processes have experienced exponential
growth, driven by the widespread adoption of information and communication
technologies. Analyzing and processing these vast datasets yields valuable
insights into the production process, as well as the systems and equipment of
interest [56]. According to industry experts, the industrial sector is currently
undergoing the Fourth Industrial Revolution, commonly referred to as Industry
4.0. This revolution is primarily characterized by the profound interconnection
between the physical and digital realms within a production system [57].
This correlation generates a wealth of data captured by various equipment
distributed across different sectors of a company. Furthermore, Industry 4.0
enables seamless integration between machines, products, and personnel,
resulting in enhanced and more efficient information exchange [58].

3.1 Industry 4.0 | 61

Figure 3.2: Outline of Industrial Revolutions, starting from the First Revolu-
tion toward Industry 4.0

This wealth of data collected by industrial systems encompasses events,
alarms, and process information within the industrial chain. When analyzed
and processed effectively, it can provide insights into production dynamics.
For instance, it can help in:

• reducing production costs;

• making informed decisions about operational strategies;

• minimizing failures, costs, and repair times;

• enhancing the safety of human operators;

• optimizing profitability.

One of the most compelling challenges in the industrial domain is significantly
improving the efficiency and operational timelines of various production
systems. To achieve this, it is imperative to promptly identify potential faults
and address them to prevent production interruptions. Different maintenance

62 | Applications in Real-World scenarios

strategies are employed in the industrial context, including Run-to-Failure
(R2F), Preventive Maintenance (PvM), and Predictive Maintenance (PdM).
Notably, R2F, also known as corrective maintenance, is implemented only
when equipment malfunctions. While it is a straightforward approach, it
entails production stoppages, resulting in unexpected costs. PvM, on the other
hand, involves scheduled or timed maintenance at predefined intervals to
prevent breakdowns. It excels in averting failures but can lead to unnecessary
corrective actions, thereby increasing maintenance costs [59].

Figure 3.3: Benefits on the application of predictive maintenance in the
context of production lines

In contrast, Predictive Maintenance (PdM) leverages predictive tools to
determine the optimal timing for maintenance interventions. This approach
necessitates continuous monitoring of the integrity of machinery or processes
and intervening only when necessary [60]. Essentially, PdM aims to forecast
failures before they occur, enabling maintenance precisely when needed. The
advantage lies in early fault detection facilitated by predictive tools, which
rely on historical data, integrity factors, engineering principles, and inferential

3.1 Industry 4.0 | 63

statistics. Consequently, an optimal maintenance strategy reduces the like-
lihood of failures and minimizes maintenance costs, ultimately prolonging
the lifespan of equipment. Undoubtedly, PdM is a highly promising strategy
and a cornerstone of Industry 4.0, as it strives to minimize or delay mainte-
nance actions while optimizing equipment operation and utilization, all by
predicting potential failures before they manifest [61].

Figure 3.4: Maintenance approaches: Preventive Maintenance, Run to Failure
and Predictive Maintenance.

Recent literature highlights the efficacy of machine learning (ML) meth-
ods in PdM to prevent failures. The effectiveness of these methods hinges
on the choice of ML algorithms employed. In the realm of artificial intelli-
gence (AI), ML techniques enable the development of intelligent prediction
algorithms capable of handling vast and multivariate datasets to uncover
relationships that might remain hidden in complex industrial environments.
Consequently, ML provides robust predictive approaches for the realm of

64 | Applications in Real-World scenarios

PdM. However, it is essential to note that the performance of predictive
maintenance is closely tied to the selection of appropriate ML algorithms,
as we will explore further in subsequent sections (II). Within the realm of
regression-based PdM problems, several modeling challenges persist, includ-
ing grappling with high-dimensionality [62], addressing data fragmentation,
necessitating adaptive solutions [63, 64], and demanding interpretable models
[65]. A particular open question in PdM modeling pertains to the treatment of
input data, specifically equipment or process variables that exhibit time-series
evolution, resulting in scalar-type outputs. The customary approach in such
scenarios involves extracting a uniform set of features from each time series.
However, this approach entails an inherent loss of information, given the
inability to discern in advance which segments of a given time series, if any,
exert influence on the output variable [66].

3.2 FinTech

Digitization has exerted a profound influence on the financial services sector,
primarily attributed to the fact that financial products predominantly rely on
information rather than physical components, such as payment transactions
and credit contracts [67]. This transformation is further underscored by the
increasing prevalence of digital processes that require little to no physical
interaction, exemplified by online payment systems and stock trading [67].

Recent advancements in information technology (IT), including social
computing, big data, the internet of things, and cloud computing, have not only
led to process automation but have also instigated a significant restructuring
of the financial services value chain. This restructuring has given rise to
innovative business models such as robo-advisors and introduced new market
participants like Apple [68].

Several drivers fuel this transformation:

3.2 FinTech | 65

1. Changing Role of IT: The convergence of IT capabilities empowers
financial service providers to not only automate their existing opera-
tions but also to introduce entirely novel products, services, processes,
and business models [69]. Crowdfunding and peer-to-peer insurance
platforms stand as prominent examples of these new models [70].

2. Changing Consumer Behavior: The proliferation of electronic inter-
action channels among consumers necessitates a shift in how financial
service providers engage with clients. This shift entails resizing branch
and agent networks and transitioning towards hybrid client interaction
and self-service options [71].

3. Changing Ecosystems: Traditional financial institutions have progres-
sively outsourced their operations, resulting in a more specialized focus.
This trend has extended from back-office functions to front-office op-
erations, fostering the development of new ecosystems that include
both incumbents and fintech startups, as well as external entities from
outside the financial services sector [72].

4. Changing Regulation: Post-2008 financial crisis, regulatory measures
have tightened across various facets of the financial services industry.
However, several countries have initiated initiatives to lower entry bar-
riers for fintech startups. Notable examples include London, Singapore,
and Hong Kong, which have introduced fintech ’sandboxes’ for exper-
imenting with new products and services, specialized organizations
for market development, and financial support (Monetary Authority of
Singapore) [73].

66 | Applications in Real-World scenarios

Figure 3.5: Representation of the FinTech world and its component parts

The term ’FinTech’ itself, a portmanteau of ’Financial Technology,’ was
first mentioned in the early 1990s by Citicorp’s chairman John Reed in the
context of the ’Smart Card Forum’ consortium. It encompasses innovative
financial solutions facilitated by IT and is commonly associated with startup
companies that provide these solutions, along with traditional financial service
providers like banks and insurers [74].

Furthermore, fintech is closely linked to the concept of ’financial innova-
tion,’ defined as the creation and popularization of new financial instruments,
technologies, institutions, and markets [75]. These innovations manifest
across primary categories, including products and services, organizational
structures, processes, systems (e.g., blockchain), and business models (e.g.,
crowdlending), smart strategic investments (e.g. stock prediction), reflecting
the multifaceted dimensions of fintech [76, 77]. Among these dimensions,
stock market prediction has emerged as a topic of significant academic inter-
est, particularly with the advent of deep neural network approaches and the
utilization of heterogeneous data sources beyond traditional market data, such
as sentiment analysis from social networks like Reddit and Twitter, as well
as online news sources [78]. Certainly, let’s delve deeper into stock market
prediction and how social and news data are leveraged in this context within
the fintech landscape:

Stock market prediction is a pivotal area of interest in fintech, as it seeks
to forecast the future movements of financial markets, such as stock prices,

3.2 FinTech | 67

indices, and commodities. Accurate predictions can provide investors, traders,
and financial institutions with valuable insights for making informed decisions.
Historically, stock market prediction has relied on various quantitative models,
statistical analysis, and technical indicators. However, recent advancements
in technology, particularly in the realm of artificial intelligence and deep
learning, have introduced novel approaches that exhibit promise in improving
prediction accuracy [79, 80].

One key approach in stock market prediction involves sentiment analysis
of social media and news data. Sentiment analysis algorithms examine textual
data from platforms like Twitter, Reddit, and online news articles to gauge the
sentiment (positive, negative, or neutral) surrounding specific stocks or the
overall market. For instance, if there is a surge of positive sentiment regarding
a particular company on Twitter, it may indicate bullish behavior among retail
investors [81, 82].

Thus, Natural Language Processing (NLP) techniques are integral in ex-
tracting valuable information from unstructured textual data. NLP algorithms
can identify key phrases, opinions, and trends within social media posts and
news articles. By analyzing the language used in these sources, predictive
models can discern market sentiment and potential market-moving events
[83].

In addition, Social and news data can be employed to detect significant
events that may impact the financial markets. For instance, by monitoring
news articles and social media posts for keywords related to geopolitical
tensions, economic indicators, or corporate earnings reports, algorithms can
identify events that could trigger market fluctuations [84, 85].

Deep neural network models, such as Recurrent Neural Networks (RNNs)
and Convolutional Neural Networks (CNNs), are adept at processing sequen-
tial data like time series or textual information. Fintech researchers and
practitioners integrate these models with sentiment analysis to build predic-
tive models. These models learn from historical price data and associated

68 | Applications in Real-World scenarios

sentiment signals to make future price predictions [86]. To enhance prediction
accuracy, fintech applications often combine diverse data sources, including
market data, social sentiment data, and news data, into a single integrated
model. This data fusion approach allows for a holistic view of the factors
influencing market movements [87].

Finally, the speed of social and news data processing is crucial for stock
market forecasting. In fact, advanced fintech systems use real-time data
feeds and fast processing algorithms to ensure that forecasts can be made
quickly, enabling traders and investors to respond quickly to changing market
conditions [88].

In summary, social media and news data play a pivotal role in enhancing
stock market prediction within the fintech domain. By harnessing the power
of sentiment analysis, natural language processing, and predictive modeling,
fintech applications can provide valuable insights to market participants,
helping them make informed decisions and manage risk effectively in the
dynamic world of financial markets.

Part II

Time Series forecasting in Industry
4.0

| 71

In this Part II, two approaches applied in the context of Industry 4.0,
specifically focusing on predictive maintenance (PdM), are presented.

In Chapter 4, the emphasis is placed on predictive maintenance (PdM)
within industrial settings, addressing the challenge of data-intensive require-
ments inherent in machine learning and deep learning approaches. The paper
introduces a comprehensive framework for assessing time series encoding
techniques in conjunction with Convolutional Neural Network-based im-
age classifiers for PdM tasks. Empirical evaluations are carried out using
real-world datasets, with performance comparisons against state-of-the-art
methods.

In Chapter 5, on the other hand, the exploration extends to the utilization
of data-driven artificial intelligence techniques for PdM within the realm of
Industry 4.0. This chapter introduces a novel deep learning (DL) approach
specifically designed to address computational efficiency, tailored for Internet
of Things (IoT) scenarios. The approach harnesses a multi-head attention
mechanism to optimize the estimation of remaining useful life (RUL) and
reduce model storage requirements. Experimental results demonstrate its su-
perior performance in terms of both effectiveness and efficiency compared to
existing techniques, positioning it as a viable solution for resource-constrained
embedded AI applications. Prior to their introduction, a theoretical back-
ground is presented to facilitate comprehension for the reader.

Background

This section summarizes a combination of coding techniques and neural
networks and introduces the concept of Attention Mechanism, used in the
Chapters 4 and 5.

Recurrence Plot A Recurrence Plot (RP) [89, 90] is a visualization tool
to explore an m-dimensional phase space trajectory through a 2-dimensional

72 |

representation of its recurrences. The core idea is to reveal in which points
some trajectories return to a previous state. Mathematically, this concept can
be formulated as:

Ri, j = θ(ε−||⃗si− s⃗ j||), s⃗(.) ∈ Rm, i, j = 1, ...,K (3.1)

where K is the number of states s⃗, ε is a threshold distance, ||.|| is the norm
and θ is the Heaviside function. As a result R is a matrix. Fading to the upper
left and lower right corners represents a trend, while vertical and horizontal
lines indicate that some states do not change or change slowly.

Gramian Angular Field A Gramian Angular Field (GAF) [91] encoding
produces an image representing a time series in a polar coordinate system
rather than the typical Cartesian coordinates. Let Y = {y1,y2, . . . ,yn} be a
time series having observation values scaled within the [−1,1] interval. Then,
the scaled time series is represented in polar coordinates by encoding each
value as the angular cosine, and the time stamp as the radius using the equation
below: φ = arccos(x̃i) −1≤ x̃i ≤ 1, x̃i ∈ X̃

r = ti
N ti ∈ N

(3.2)

where ti is the time stamp and N is a constant factor to regularize the span of
the polar coordinate system. This transformation has three core properties:
i) it is bijective with rescaled [0,1] time series data and it produces one and
only map; ii) it is surjective with rescaled [−1,1] data and it produces one
map, as the inverse image is not unique because of the ambiguity of cos(φ)
when φ is in [0,2π]; iii) unlike Cartesian coordinates, polar coordinates
preserve absolute temporal relations. A GAF provides a different information
granularity for classification tasks. After transforming the time series into
polar coordinates, a GAF constructs a map by calculating the trigonometric

| 73

sum (GASF), or the difference (GADF), between each point. GASF and
GADF are calculated as follows:GASF = cos(φi +φ j)

GADF = sin(φi−φ j)
(3.3)

The GAF is defined as follow:

G =

cos(φ1 +φ1) · · · cos(φ1 +φn)

cos(φ2 +φ1) · · · cos(φ2 +φn)
...

cos(φn +φ1) · · · cos(φn +φn)

 (3.4)

As mentioned, the use of this encoding preserves temporal dependence
and temporal correlations.

Markovian Transition Field In a Markovian Transition Field (MTF) [91],
the encoding starts with a time series X and identifies its Q quartile bins
by assigning to each xi its corresponding bin q j (j ∈ [1,Q]). After that,
the adjacency matrix W = Q×Q is constructed, where each element wi, j

represents the frequency with which a point in q j is followed by a point in qi.
W is called the Markov transition matrix. Importantly, this step potentially
leads to a loss of temporal information. In order to overcome this issue, the
matrix is distributed. An MTF is thus defined as:

wi j|x1∈qi,x1∈q j ... wi j|x1∈qi,xn∈q j

wi j|x2∈qi,x1∈q j ... wi j|x2∈qi,xn∈q j

...

wi j|xn∈qi,x1∈q j ... wi j|xn∈qi,xn∈q j

where each element wi, j represents the transition probability from quantile qi

to quantile q j and the main diagonal is the special case of the self-transition

74 |

probability from each quantile to itself. The sum of the elements of a row
must have a value equal to 1. Like the GAF, the MTF is surjective and,
starting from a time series X and fixing quantile bins Q, produces a single
map. Note that the inverse image of the MTF is not unique.

Wavelet Transform The Wavelet Transform (WT) [92, 93] is an alternative
to the more classic Fourier transform, decomposing a function into a set of
wavelets. It provides high resolution in both the time and frequency domains,
and it is thus suitable for analysing dynamic signals. An important property
is that a wavelet exists for a finite duration.

There are two types of WT:

• Discrete Wavelet Transform (DWT): The frequencies of the origi-
nal signals are decomposed into approximate coefficients and detail
coefficients (also called wavelet coefficients). Detail coefficients with
larger amplitudes are considered significant, while those with smaller
amplitudes are noise. A DWT used in combination with threshold
denoising is a low-pass filter: it removes high-frequency noise and it is
suitable for removing transient signals.

• Continuous Wavelet Transform (CWT): It is based on the mother
wavelet. One type of application requires a different mother, because
each of them has a characteristic frequency band. The equivalent
frequency is defined as:

Feq =
C f

sδ t
(3.5)

where C f represents the center frequency, s is the wavelet scale and δ t
is the sampling interval. The output of a CWT are coefficients that are
function of scale, frequency and time: the higher the number of scales
considered, the finer is the scale discretization.

| 75

The DWT is often used for denoising and compression of signals because
it can represent them with few coefficients. The CWT is instead often used in
time-frequency analysis and filtering of time-localised frequency components.

Multi-Head Attention Attention mechanism can be described as mapping
a query and a set of key-value pairs to an output. Queries, keys, values and
outputs are vectors. The output is computed as a weighted sum of the values,
where the weight assigned to each value is given by an arbitrary compatibility
function of the query with the corresponding key. According to [94], the
selected compatibility function, is the Scaled Dot-Product Attention.

Firstly, each of the timesteps in input is linearly projected to obtain its
specific query, key and value vectors of dimension dk. Next, given a query, the
dot product of the query with all keys is computed. Then, these products are
divided by

√
dk. Finally, the softmax function is applied to obtain the weights

on the values. These weights can be seen as scores, thus they represent
the importance of the values (each corresponding to one multiplied key)
with respect to the value corresponding to the query. Intuitively, a subset of
more important times receives high weights, while useless ones receive lower
weights. At this point, weighted values are summed up.

The explained calculation is valid only when there is a single query. In
practice, as we have seen, there are a number of queries equal to the number
of timesteps in the selected time window, i.e. Tw. Therefore, in order to
speed-up the computation, the scaled dot-product attention is computed on a
set of queries of queries simultaneously, packed together into a matrix Q. If
we do the same with the keys and values, the output can be expressed as:

Attention(Q,K,V) = so f tmax(
QKT
√

dk
)V (3.6)

Multi-head attention mechanism (Figure 3.6) simply repeats the above
computation a number of times equal to the chosen number of heads, h.
More precisely, instead of calculating a single attention function with one set

76 |

of queries, keys and values, this mechanism first creates h different sets of
queries, keys and values and for each of them performs the attention function
in parallel.

The outputs of each head are concatenated and the final result is linearly
projected in order to obtain the matrix of shape (Tw,Nx).

Figure 3.6: Multi-Head Attention.

Mathematically, multi-head attention is defined as:

MultiHead(Q,K,V) =Concat(head1, ...,headh)W O (3.7)

where

headi = Attention(QW Q
i ,KW K

i ,VWV
i) (3.8)

| 77

At a higher level of abstraction, the multi-head attention sub-module com-
putes a new representation of the input time window. In this representation,
each timestep is enriched by the knowledge of the timesteps that precede or
follow it in the sequence.

4
Time series encodings evaluation for

predictive maintenance

4.1 Introduction

The individual rapidly navigating the digital technology landscape has been
instrumental in transforming industrial processes due to the deep integration
between physical and digital systems within production environments. In
the present day, this individual possesses the capability to amass substantial
volumes of data concerning the functioning of diverse equipment, all while
facilitating targeted exchanges of information among individuals, products,
and machines.

The increasing pace of transformative technological advancements has led
experts to characterize this new phase of development as the "Fourth Industrial
Revolution" or "Industry 4.0," linking it to high connectivity, the availability
of rich data sources, and the capacity of technologies to explore the high
dimensionality of such sources, thanks to enhancements in computational
power and storage capacity [95]. For example, this individual can analyze
in real-time the multitude of events unfolding along an industrial production
line, establishing correlations between real-time data and past occurrences to

80 | Time series encodings evaluation for predictive maintenance

identify and proactively mitigate potential structural failures, thereby averting
prolonged downtime.

In a more general context, data that is rich and high-dimensional in
real-time can yield valuable insights into the internal dynamics of intricate
industrial systems. In this regard, this individual has uncovered the incredi-
ble potential of applying data analytics techniques to the industrial pipeline
across various domains, including cost reduction in maintenance, minimiza-
tion of machine faults, decreased repair stoppages, inventory reduction in
spare parts, extended lifespan of spare parts, augmented overall production
output, enhanced operator safety, validation of repair actions, overall profit
augmentation, and numerous other applications [96, 97].

Notably, most of these challenges are intrinsically connected to the timely
execution of efficient and effective maintenance procedures.

A particular area of interest for this individual undoubtedly lies in the
realm of condition monitoring and diagnostics concerning mechanical com-
ponents within industries such as avionics and automotive. This encompasses
elements such as gearboxes, ball bearings, and rotating shafts [98]. In these
domains, a sudden interruption in the production line carries costs associated
with the loss of product that far surpass the expenses related to the compo-
nent itself. Another intriguing domain where maintenance procedures hold
significant importance is in the management of Information Technology (IT)
infrastructures, particularly in the prediction of hard disk failures within large-
scale data centers. The disruption of hard disks within these data centers
directly impacts the reliability of the entire infrastructure, thereby adversely
affecting the business’s Service Level Agreement [99].

To address these challenges, Predictive Maintenance techniques have
become indispensable for ensuring substantial improvements in business
operations, harnessing the technological advancements of Industry 4.0 to
minimize downtime and reduce equipment failure rates across diverse contexts
[100–104].

4.1 Introduction | 81

As is often the case in fields dealing with vast and complex data, this
individual has found that approaches leveraging machine learning and deep
learning tools hold the most promise among the array of modern predictive
maintenance techniques [101, 105, 106]. Typically, these approaches rely on
historical datasets organized as labeled time series data concerning equipment
operations, enabling the training of various regression and classification mod-
els. These models can then be utilized to predict potential failures in terms of
"Remaining Useful Life" (RUL) estimation. It is evident that the effectiveness
of these approaches is closely tied to the availability of comprehensive and
reliable training data.

Given that this is not always the case in real-world scenarios, deep learn-
ing models have garnered attention as a means to address potential limitations
arising from data scarcity [107]. Notably, many reliable deep learning ar-
chitectures have been developed with a primary focus on image analysis.
Consequently, in recent years, there has been a surge in research efforts aimed
at encoding time series data as images and reimagining RUL prediction as an
image classification task [108].

In the present work, this individual presents a framework for evaluating
the performance of several widely used time series encoding techniques,
including Recurrence Plot, Gramian Angular Field, Markovian Transition
Field, and Wavelet Transform, in conjunction with image classifiers based
on Convolutional Neural Networks (CNNs). These CNN models are subse-
quently compared with three benchmarking deep learning models using the
PAKDD2020 Alibaba AI Ops Competition dataset, which provides data on
hard disk status within a data center, and two state-of-the-art models using
the NASA bearing dataset, consisting of vibration signals from bearings.
The experimental evaluation highlights that the utilization of CNNs, with
inputs generated through encoding techniques, delivers high effectiveness
performance, surpassing most state-of-the-art models and demonstrating su-
perior Memory Occupation parameters. The advantages of appropriate data

82 | Time series encodings evaluation for predictive maintenance

augmentation techniques, including those based on Generative Adversarial
Networks (GANs), are discussed, and the results underscore the benefits
and drawbacks of various modeling and training choices. In particular, it is
shown that while the incorporation of GANs enhances the training process
and slightly improves performance, this advantage must be weighed against
increased demands on training time and memory resources.

To the best of this individual’s knowledge, this work represents one of
the earliest comprehensive studies reporting a systematic benchmark of a
variety of extensively used time series encoding techniques as viable models
for predictive maintenance tasks.

In summary, the main contributions of this approach can be summarized
as follows:

• Designing a comprehensive framework for assessing the performance
of prevalent time series encoding techniques in predictive maintenance
tasks.

• Utilizing two distinct CNN-based models for predicting equipment
failures, with inputs generated through different encoding techniques.

• Conducting a comparative analysis of encoding-based techniques ver-
sus various state-of-the-art approaches using two real-world datasets
(PAKDD2020 Alibaba AI Ops Competition and NASA bearing).

• Analyzing the performance impact of GANs as a data augmentation
strategy.

In conclusion, this work sheds light on the challenges and opportunities in
predictive maintenance within the context of Industry 4.0, offering valuable
insights into the efficacy of different techniques and models in enhancing
equipment reliability and reducing downtime.

The chapter’s structure is as follows. Section 4.2 provides an overview of
related research concerning predictive maintenance techniques, with particular

4.2 Related Work | 83

emphasis on recent machine-based approaches. The 4.3 section outlines the
proposal and evaluation of the proposed framework. Section 4.4 presents
the findings from the experiments conducted to assess the various encoding
techniques introduced in this chapter. Lastly, in Section 4.6, the chapter
concludes by summarizing the results and discussing potential avenues for
future research.

4.2 Related Work

Scheduling maintenance decisions is a critical task aimed at preventing un-
foreseen shutdowns of mechanical equipment, ultimately enhancing their
reliability [105]. Predictive maintenance has gained significance in the in-
dustry by leveraging machine learning models to analyze large volumes
of operational data, thereby improving equipment efficiency and reducing
operational costs by using machine learning models [105, 109, 100, 110].
Advances in artificial intelligence (AI) have been pivotal in enhancing the
reliability of predictive maintenance [111, 52, 112]. Deep learning techniques,
which require labeled datasets consisting of equipment operation trajectories
typically encoded as time series data, have been instrumental in estimating
Remaining Useful Life (RUL) [101, 105, 106, 113].

Recent studies have successfully applied various models for RUL predic-
tion across different domains. For instance, some have employed autoregres-
sive models such as AR-RPF to predict the RUL of lithium-ion batteries [114].
Others have utilized support vector machine (SVM) models for fault detection
and diagnosis in chillers [115]. Predicting RUL of bearings, common me-
chanical components in various equipment, has also been a focus [116, 117].
Early approaches relied on regression strategies [118, 119]. Some more re-
cent approaches focused on deep learning models using vibration signals
from bearings [120, 121]. Predicting Hard Disk Drive (HDD) RUL using
S.M.A.R.T. attributes has been explored as well [122–124, 56].

84 | Time series encodings evaluation for predictive maintenance

Deep learning models’ performance is highly dependent on the availability
of extensive, consistent, and reliable training data [125]. Addressing data
scarcity in real-world scenarios, some research has explored the use of deep
learning models [107]. Given that extensive work on deep learning models has
taken place in the domain of image analysis, recent work has experimented
with encoding time series data as images [126].

Various encoding techniques have been developed to represent temporal
correlations as images, which can be used to train deep learning models for
a wide range of applications. Four prominent encoding methods include the
Gramian Angular Field (GAF), Discrete Wavelet Transform (DWT), Markov
Transition Field (MTF), and Recurrent Plot (RP). GAF encoding has been
used for tasks such as solar irradiation forecasting, knowledge distillation,
activity recognition, and financial forecasting [127–130]. In addition, GAF-
based methods have been applied to predictive maintenance for conveyor
motors [131]. DWT has been utilized for fault detection in gearboxes and
arrhythmia detection using ECG signals [132–135]. MTF encoding has been
employed for tasks such as candidate transient classification and arrhythmia
classification [136, 137]. RP encoding has been used for human activity
recognition and Parkinson’s disease diagnosis [138–140].

Despite these successful applications in various domains, there is a no-
ticeable gap in the literature concerning the use of encoding techniques for
equipment failure prediction, especially for HDD and bearing health status
prediction, which are commonly studied cases in predictive maintenance.
This study aims to investigate the application of encoding strategies to predic-
tive maintenance tasks with the goal of reducing memory and training time
requirements while achieving performance comparable to state-of-the-art ap-
proaches. The research focuses on multidimensional time-series data typically
generated in industrial settings and explores various encoding techniques, un-
like most previous approaches that primarily analyze one-dimensional signals
using a single encoding strategy.

4.2 Related Work | 85

Paper Model Time Series Encoding Application
[127] Convolutional LSTM One-dimensional GAF Solar Irradiation Forecasting
[128] CNN One-dimensional GAF Knowledge distillation
[129] CNN One-dimensional GAF Activity Recognition
[130] CNN One-dimensional GAF Financial forecasting
[131] CNN One-dimensional GAF Conveyor Motor maintenance
[59] CNN Multi-dimensional GAF Hard drives health status
[141] CNN Multi-dimensional GAF, MTF Sensor classification
[142] CNN+SVM Multi-dimensional GAF Electricity consumption forecasting
[143] CNN Multi-dimensional GAF Stock Market Forecasting
[132] CNN One-dimensional DWT Gearboxes fault diagnosis
[133] CNN One-dimensional DWT Gearboxes fault diagnosis
[135] ESN One-dimensional DWT Time-series forecasting
[134] NCA+1NN classifier One-dimensional DWT Arrhythmia detection
[136] CNN One-dimensional MTF Light curves classification
[137] CNN One-dimensional MTF Arrhythmia classification
[144] CNN One-dimensional MTF Anomalous energy consumption
[145] CNN One-dimensional MTF Online Fraud Detection
[138] CNN Multi-dimensional RP Activity Recognition
[139] CNN Multi-dimensional RP Disease identification
[140] CNN One-dimensional RP Classification task

Table 4.1: State-of-the art approaches classified on the basis of the neural
network model adopted, the encoding method, and their application domain.
Encoding methods are: Gramian Angular Field (GAF), Recurrence Plot (RP),
Markovian Transition Field (MTF), and Wavelet Transform (WT). NCA and
1NN stand respectively for Neighborhood Component Analysis and 1-Nearest
Neighborhood.

86 | Time series encodings evaluation for predictive maintenance

In the remainder of this paper, a framework is presented to evaluate four
time series encoding techniques in the context of predictive maintenance
tasks, integrating them with CNN-based image classifiers. The evaluation is
conducted using the Alibaba and NASA bearing datasets, comparing the per-
formance of CNN models to alternative machine learning architectures [126].

4.3 Framework

An overview of the training and evaluation framework is depicted in Figure 4.1.
The primary objective is to establish a benchmark for various techniques that
encode time-series data into images, with a specific focus on their performance
in equipment failure prediction.

Figure 4.1: Architectural overview of the proposed framework , that is com-
posed by different phases. The initial step is devoted to pre-processing and
feature engineering, the second step is to create the time series sequences and
convert them into images, choosing the technique to be used in the encoding
module.

The initial phase involves a series of pre-processing and feature engi-
neering operations applied to the dataset. These operations encompass the
removal of attributes containing missing values and columns that do not
contribute to equipment failure prediction, such as capacity or manufacturing-
related features. This results in a reduction in the overall number of features.

4.3 Framework | 87

Additionally, various rebalancing and feature transformation techniques are
applied using different methodologies, as detailed in Section 4.4.3.

In the subsequent phase, time-series sequences are constructed and fed
into one of the image encoding methods outlined in Section II. This process
generates the input data for the subsequent Convolutional Neural Network
(CNN) designed for the specific time window under consideration. Two
types of CNN models are trained to address the predictive maintenance task.
Furthermore, a focused investigation is carried out to determine whether the
utilization of a Generative Adversarial Network (GAN) has any impact on
the overall performance.

4.3.1 CNN-based Classifiers

The dataset naturally yields time series of varying lengths, necessitating the
creation of time series sequences based on fixed time windows (40 steps).
These sequences are then suitable for input into one of the encoding techniques
discussed in Section 4.4.3. This step generates image encodings, which serve
as input data for a Convolutional Neural Network (CNN) model. Two distinct
CNN models are considered for this purpose.

The first model comprises three convolutional layers utilizing the leaky
ReLU activation function, each succeeded by a max-pooling layer with a
specific filter size. At the top, there is a fully connected layer with softmax
activation (Model 1; Figure 4.2).

Secondly, a CNN model based on the VGG-16 architecture [146] is
considered. This pre-trained model is designed to process RGB images of
dimensions (224,224). It comprises two convolutional layers with 64 and
128 filters, followed by a max-pooling layer. The third block consists of
three convolutional layers with 256 filters and a max-pooling layer. At the
top of this architecture, there are two fully connected layers, each containing
2048 neurons and employing softmax activation (VGG-like; Figure 4.3). This

88 | Time series encodings evaluation for predictive maintenance

Figure 4.2: First CNN architec-
ture

Figure 4.3: VGG-like architec-
ture

4.4 Experiments | 89

choice of a shallower CNN allows for more efficient handling of smaller
inputs, such as those sized 40×40.

Finally, the chosen loss function is the log-loss (also known as cross-
entropy loss). This loss function returns a probability ranging from 0 to 1 for
the two task classes, as described by equation 4.1.

Li =−(y · log(p)+(1− y) · log(1− p)) (4.1)

In this equation, y represents the correct label, p denotes the probability for
the correct label, and Li signifies the loss for the i-th element predicted by
the classifier. Additionally, the Adam optimizer [147] is employed due to
its ability to facilitate smoother gradient descent and prevent convergence to
local optima. The Adam optimizer introduces two supplementary parameters
known as the first and second moment. The former serves as a velocity term,
reflecting a combination of historical information and the current value, while
the latter acts as an energy term representing recent movements.

4.4 Experiments

Now that all the technical infrastructure is set up, the focus can shift to the
heart of the evaluation task. The primary objective is to assess the performance
of various methodologies with the aim of optimizing effectiveness, thereby
minimizing both false positives and false negatives, while also considering
efficiency. Consequently, different combinations of encoding methods and
architectures are assessed for their effectiveness, using the metrics outlined
in Section 4.4.4, and their efficiency, as measured by each model’s memory
usage and training time.

90 | Time series encodings evaluation for predictive maintenance

4.4.1 Experimental protocol

As a foundation for the evaluation, two distinct datasets were selected to
explore the utilization of encoding methods in various industrial applications.
The chosen approaches were those that yielded the highest effectiveness
values.

The first dataset, provided by Alibaba for the PAKDD 2020 AIOps Com-
petition1, pertains to Hard Disk Drives (HDDs). Following a preprocessing
and feature engineering phase, the dataset’s size was reduced to approximately
420 MB. This dataset comprises over 150,000 tensors, each sized at 40×76,
where 40 represents the window size, and 76 corresponds to the number of
features. To enrich the dataset, additional features were generated by applying
five different methods (Raw, Normalized, Shift, Absolute, and Relative) to
the raw S.M.A.R.T. attributes. The dataset was partitioned such that 60% of
it served as the training set, 20% as the validation set, and 20% as the testing
set. Balancing was applied to ensure an equal number of healthy and failed
disks.

The second dataset, referred to as the NASA Bearing dataset2, comprises a
total of 19,680,000 data points divided into 984 files, each containing 20,000
samples. After the preprocessing phase, a window of size five was applied
to each file to generate encoded images. Consequently, the result of this
processing is 984 images, each depicting the health state of a bearing at a
specific moment during its operation. The dataset was divided into three
parts using a Stratified approach: 60% and 30% for the training and test
sets, respectively, and 10% for evaluating generalization performance (see
Section 4.4.3 for further details).

4.4.2 Dataset

As previously mentioned, the predictive maintenance of equipment’s health
status holds paramount importance in large-scale industrial infrastructures,

4.4 Experiments | 91

Parameters Values
Windows size (1,3,5,7,10,15,20,30)

Epoch [20 - 300]
Learning Rate 0.1,0.01,0.001

% Fake 25%,30%
% GAN module Yes,No

Table 4.2: Hyper-parameters optimization phase.

as equipment failures can profoundly impact the overall reliability of such
infrastructures. Consequently, the evaluation of the various methodologies
discussed thus far is primarily focused on the task of predicting potential
failures of equipment within a predefined time window (e.g., 30 days). This
prediction relies on the analysis of time series data.

To facilitate this evaluation, two distinct datasets were selected, each
representing predictive maintenance tasks in different industrial contexts.
These contexts mainly revolve around bearings, which are subject to high-
speed and high-pressure conditions, and Hard Disk Drives (HDDs), a critical
component affecting the reliability of large-scale data centers. Specifically, a
dataset from the PAKDD2020 Alibaba AI OPS1 competition was leveraged.
It comprises approximately 40 GB of samples collected from July 2017 to
July 2018. The dataset includes S.M.A.R.T. attributes, providing both raw
and normalized values for each disk per day, along with labels and failure
timestamps.

Furthermore, the NASA Bearing dataset2 was utilized, with details outlined
in Table 4.3. This dataset primarily focuses on the analysis of vibration
signals captured using accelerometers along the X-axis. These vibration
signals were recorded with a 1-second time window at 10-minute intervals,
with a sampling rate of 20 KHz. Subsequently, noise reduction and data

1https://tianchi.aliyun.com/competition/entrance/231775/introduction
2https://ti.arc.nasa.gov/c/3/

https://tianchi.aliyun.com/competition/entrance/231775/introduction
https://ti.arc.nasa.gov/c/3/

92 | Time series encodings evaluation for predictive maintenance

Bearing No.of Samples No. of raw features Conditions
Bearing 1 984 20480 Outer race failure
Bearing 2 984 20480 No defect
Bearing 3 984 20480 No defect
Bearing 4 984 20480 No defect

Table 4.3: NASA Bearing dataset

normalization were performed, employing a moving average technique and
Min-max Normalization, respectively.

4.4.3 Pre-processing and Feature engineering

The pre-processing of the Alibaba dataset involved two consecutive phases.
Initially, a set of relevant features was selected, reducing the total from over
500 to 32. This selection process began by eliminating attributes with a miss-
ing value percentage exceeding 10% and a standard deviation of 0. Columns
that were deemed non-critical for failure prediction were also dropped. Any
remaining missing values were imputed using a moving average with a win-
dow size of 5 steps backward and 5 steps forward. Additionally, the dataset’s
overall balance between healthy and unhealthy disks was adjusted, shifting
from 1% to 50% healthy disks by reducing the number of healthy disks.

Regarding the NASA Bearing dataset, a down-sampling operation was
applied, reducing the sampling rate from 20KHz to 4KHz while employing
a window size of five. Since this dataset lacks labels, a visual analysis was
performed to identify the moment of failure, following the experimental pro-
cedure outlined in [148]. Vibration data was classified into three categories:
HIGH-RISK for samples near the point of failure, LOW-RISK for samples
representing normal behavior, and MEDIUM RISK for a state with a hypothet-
ical medium risk of failure. In summary, the samples in the NASA Bearing
dataset were categorized as follows:

4.4 Experiments | 93

• Samples from 2004-02-12 10:32:39 to 2004-02-17 10:52:39 are labeled
as LOW-RISK

• Samples from 2004-02-17 10:52:39 to 2004-02-18 13:52:39 are labeled
as MEDIUM-RISK

• Samples from 2004-02-18 13:52:39 to 2004-02-19 06:22:39 are labeled
as HIGH-RISK

The prediction task was further designed as a binary problem, where the
union of the classes HIGH-RISK and MEDIUM-RISK was considered as a
single class.

Next, the raw features were converted into normalized features using the
following methods:

• Shift features (Shift): The original raw features (V (n)) were shifted by
N days (V (n−N)), with different values of N = 1,3,5,7,10,15,20,30.

• Relative comparison features (Diff): The difference between a raw
feature (V (n)) and its corresponding shifted feature (V (n−N)) was
computed as follows:

Relative(n)[N] =V (n)−V (n−N) (4.2)

• Absolute comparison features (Sum): The sum of a raw feature
(V (n)) and its corresponding shifted feature (V (n−N)) was calculated
as follows:

Absolute(n)[N] =V (n)+V (n−N) (4.3)

• Exponential moving average features (Exp): This transformation
was applied to S.M.A.R.T. raw features for each disk, according to

94 | Time series encodings evaluation for predictive maintenance

equation 4.4:

history(n) = 0.9×history(n−1)+0.1× raw(n) history(−1) = 0

(4.4)

where raw(n) is the current value of S.M.A.R.T.raw at the n− th step
and history is the cumulative weighted sum of historic data.

• Division features (Div): These features represent the ratio between
raw and normalized features, as shown in equation 4.5:

Division(n) =
S.M.A.R.T.raw(n)

S.M.A.R.T.Normalized(n)+ ε
(4.5)

where ε is a constant used to avoid division by zero.

It is important to note that the number inside the parenthesis in the next
tables corresponds to the shifted feature in terms of number of days.

A grid search was performed using the hyper-parameters shown in Ta-
ble 4.2 to identify the optimal ones for training the models. To validate the
results statistically, a 10-cross validation [149, 150] was executed, reporting
the mean and standard deviation of each experiment outcome. A stratified
sampling strategy was also employed to split the dataset into training and test
sets.

The evaluation framework was deployed on Google Colaboratory3 using
TensorFlow V24 and Keras5 for building deep learning models. The pre-
processing operations and running of the time series classification algorithms
were performed using pyts6.

3https://colab.research.google.com/
4https://www.tensorflow.org/
5https://keras.io/
6https://pyts.readthedocs.io/

https://colab.research.google.com/
https://www.tensorflow.org/
https://keras.io/
https://pyts.readthedocs.io/

4.4 Experiments | 95

Model 1 VGG-like
P F1-score Precision Recall F1-score Precision Recall
15 39.64±0.31 33.04±1.78 31.07±2.34 28.44±0.79 32.23±0.19 27.67±2.41
30 59.24± 0.39 61.15±3.18 57.62±2.61 31.59±1.25 29.58±0.22 34.03±3.13
45 47.94±1.41 42.77±3.47 48.08±2.89 46.67±2.09 43.01±1.74 48.13±3.85

Table 4.4: Evaluation of the both networks varying the P parameter.

4.4.4 Evaluation metrics

In this section, several metrics are described that are used to evaluate the
efficiency of the proposed framework, which is defined as the ability to assess
the equipment’s health status within a 30-day interval. Specifically, a P-
window (set to 30 days - further details in table 4.4) is defined as a fixed-size
sliding window starting from the first moment in which a disk is predicted to
fail.

Precision for P-window: the fraction of records that actually failed (T P)
and the fraction expected overall (T P+FP):

Precision =
T P

T P+FP
(4.6)

where T P and FP are respectively true and false positives.

Recall for R-window: the fraction of predicted failed disks that actually
failed (T P) over the overall number of failed disks (T P+FN):

Recall =
T P

T P+FN
(4.7)

where T P and FN are respectively true and false negatives.

F1-score is defined according to equation 4.8:

F1 =
2 ·Precision ·Recall
Precision+Recall

(4.8)

96 | Time series encodings evaluation for predictive maintenance

4.5 Results

In this section, the obtained results on the Alibaba HDD and NASA bearing
datasets are discussed. Finally, the performance of the discussed methodology
when adopting a Generative adversarial Networks (GAN) is investigated.

4.5.1 Results on Alibaba HDD

The two CNN models described in Section 4.3.1 are compared. The aim
is to understand how each model performs based on the best fit between
different encoding techniques — (RP, GAF, MTF, WT) — and pre-processing
approaches (see Section 4.4.3). To summarize, two different CNN networks
(one custom and another pretrained) are compared to effectively exploit the
images generated by using the encoding strategies. The goal is to compare
two different strategies (pretrained vs custom) while varying the different
encoding methods. Table 4.5 shows the performance of both models in terms
of memory usage and overall training time, where Model 1 achieves the best
results independently of the encoding method. This result is due to the larger
number of parameters to be optimized within the VGG-like model, resulting
in a larger increase in network training time.

Model Memory(kB) Training time(secs/epoch)
Model 1 470 13.7±0.1

VGG-like 73.000 37.4±0.2

Table 4.5: Memory usage and training time for both models (independently
of encoding method)

The overall performance of Model 1, a CNN, is influenced by different
combinations of encoding techniques and feature engineering approaches, as
shown in Table 4.6. The highest precision is achieved by GASF+Exp(15),
but it also leads to a large number of True Negatives. On the other hand,

4.5 Results | 97

Technique F1-score Precision Recall
RP + Sum(1) 22.96±1.34 16.52±0.56 37.61±4.34

MTF + Diff(1) 21.64±0.55 15.74±0.22 34.82±2.22
GADF + Diff(7) 32.50±1.44 24.98±0.64 46.41±3.76
GASF + Exp(15) 31.04±2.09 28.03±0.46 35.01±4.84
WV + Exp(30) 26.67±1.46 21.73±0.31 35.01±5.11

Table 4.6: Performance of Model 1, based on the different image encoding
techniques and pre-processing approaches used to generate its input. It is
important to note that the number inside the parenthesis in the next tables
corresponds to the shifted feature in terms of number of days.

Technique TP FP FN TN
RP + Sum(1) 30 155 49 127

MTF + Diff(1) 28 148 52 133
GADF + Diff(7) 50 150 60 101
GASF + Exp(15) 30 75 57 199
WV + Exp(30) 27 100 54 180

Table 4.7: Model 1: Confusion matrices (median values over repeated tests)

GADF+Diff(7) produces the best results in terms of F1-Score, but with a high
number of False Positives, as indicated in Table 4.7.

Moving on to the second CNN model, the results achieved by the VGG-
16-like architecture for different combinations of feature engineering methods
and encoding techniques are shown in Table 4.8. It is evident that the combi-
nation of GASF+Exp(7) yields the highest F1-score and Precision, although
it identifies a large number of True Positives. On the other hand, RP+Sum(1)
achieves the highest Recall score but returns a significant number of False
Positives (Table 4.9).

Finally, the performances of both models on six different types of faults
according to the tag field into the PAKDD2020 Alibaba AI Ops Competition1

were investigated. The results of the investigation can be seen in Table 4.10
and 4.11. It should be noted that GAF achieved the highest results by using

98 | Time series encodings evaluation for predictive maintenance

Technique F1-score Precision Recall
RP + Sum(1) 22.17±1.52 15.15±0.70 41.68±5.46

MTF + Diff(1) 20.87±0.82 14.04±0.28 41.29±4.40
GADF + Diff(7) 29.63±1.17 23.53±0.23 40.23±3.62
GASF + Exp(15) 31.59±1.25 29.58±0.22 34.03±3.13
WV + Exp(30) 26.29±1.85 22.32±0.27 32.38±5.04

Table 4.8: Performance of the VGG-like model, based on the different image
encoding techniques and pre-processing approaches used to generate its input.

Technique TP FP FN TN
RP + Sum(1) 34 182 42 103

MTF + Diff(1) 29 183 42 107
GADF + Diff(7) 45 146 66 104
GASF + Exp(15) 31 74 61 195
WV + Exp(30) 27 95 58 181

Table 4.9: VGG-like architecture: Confusion matrices (median values over
repeated tests)

4.5 Results | 99

difference and exponential features over 7 and 15 days respectively. This can
be attributed to how the encoding method handles the distribution of features
over time from different perspectives (GADF and GASF), which allows for
the representation of time series data in multi-channel images.

The performance metrics of Model 1 on the six available fault types
([0,5]) based on various coding techniques and pre-processing approaches are
displayed in Table 4.11.

It is evident from the results that Model 1 surpasses VGG-like, as antici-
pated, due to its optimization for the specific tasks required.

The comparison between our best-performing CNN model, using GASF
as the image encoding method, and alternative machine learning approaches,
including LSTM, GRU, XGBoost, ResNet-50, DenseNet-121, and VGG-16,
was conducted to evaluate their effectiveness in the predictive maintenance
task.

The LSTM and GRU models each consist of two layers with 64 units and
a final softmax activation layer. These recurrent neural networks were chosen
for their reported performance in similar tasks. The XGBoost model, on the
other hand, is a gradient boosting algorithm based on decision trees, known
for its effectiveness in machine learning tasks.

In addition to the original dataset features (S.M.A.R.T. raw and normal-
ized), we also utilized some of the generated features (Shift, Relative, and
Absolute) to maximize model performance.

To assess the performance of these models, we compared them against
our CNN-based Model 1, which used GASF as the image encoding method.
This combination yielded the best results in our evaluation. The results of this
comparison are presented in Table 4.6.

Table 4.12 provides a comparison between our best model and the selected
benchmark models. Notably, Model 1 outperforms the others in terms of
F1-score and Precision, while the LSTM model exhibits the highest Recall.

100 | Time series encodings evaluation for predictive maintenance
Fa

ul
t

M
et

ri
cs

Te
ch

ni
qu

e
R

P
+

Su
m

(1
)

M
T

F
+

D
iff

(1
)

G
A

D
F

+
D

iff
(7

)
G

A
SF

+
E

xp
(1

5)
W

V
+

E
xp

(3
0)

0
F1

-s
co

re
22

.7
6±

1.
33

20
.7

7±
0.

51
32

.4
5±

1.
41

31
.0

2±
2.

08
26

.6
5±

1.
49

Pr
ec

is
io

n
16

.2
6±

0.
55

15
.8

2±
0.

19
24

.9
8±

0.
62

28
.0

9±
0.

43
21

.7
1±

0.
32

R
ec

al
l

37
.6

1±
4.

37
34

.9
1±

2.
19

46
.3

3±
3.

75
34

.9
7±

4.
84

34
.9

8±
5.

09

1
F1

-s
co

re
23

.6
7±

1.
35

22
.6

9±
0.

59
32

.5
2±

1.
47

31
.0

6±
8.

10
26

.7
6±

1.
45

Pr
ec

is
io

n
16

.9
7±

0.
57

15
.8

5±
0.

22
25

.0
2±

0.
63

27
.9

8±
0.

49
21

.7
5±

0.
34

R
ec

al
l

37
.5

1±
4.

30
34

.6
7±

2.
25

46
.5

7±
3.

79
35

.0
8±

4.
86

35
.0

7±
5.

13

2
F1

-s
co

re
22

.4
5±

1.
36

21
.4

7±
0.

53
32

.6
3±

1.
45

31
.1

1±
8.

09
26

.6
7±

1.
46

Pr
ec

is
io

n
16

.6
5±

0.
58

15
.6

2±
0.

23
24

.6
8±

0.
64

28
.0

1±
0.

48
21

.7
6±

0.
33

R
ec

al
l

37
.2

1±
4.

34
35

.0
6±

2.
24

46
.2

1±
3.

78
35

.0
1±

4.
82

35
.0

2±
5.

12

3
F1

-s
co

re
22

.7
5±

1.
32

21
.7

6±
0.

56
32

.4
2±

1.
43

31
.3

8±
2.

11
26

.5
9±

1.
46

Pr
ec

is
io

n
16

.5
4±

0.
56

15
.6

1±
0.

24
25

.0
8±

0.
62

28
.0

3±
0.

45
21

.7
4±

0.
29

R
ec

al
l

37
.7

2±
4.

33
34

.6
2±

2.
22

46
.6

3±
3.

74
35

.0
2±

4.
83

35
.0

1±
5.

10

4
F1

-s
co

re
23

.6
3±

1.
37

21
.7

0±
0.

54
32

.4
7±

1.
42

30
.9
±

2.
07

26
.6

3±
1.

47
Pr

ec
is

io
n

16
.8

4±
0.

53
15

.8
7±

0.
21

25
.0

3±
0.

66
28

.0
2±

0.
45

21
.6

9±
0.

31
R

ec
al

l
37

.8
6±

4.
37

34
.8

9±
2.

21
46

.3
7±

3.
74

35
.0

3±
4.

81
35

.0
4±

5.
12

5
F1

-s
co

re
22

.4
4±

1.
31

21
.4

5±
0.

57
32

.5
1±

1.
46

30
.7

7±
2.

09
26

.7
2±

1.
43

Pr
ec

is
io

n
15

.8
6±

0.
57

15
.6

7±
0.

23
25

.1
3±

0.
67

28
.0

5±
0.

46
21

.7
3±

0.
27

R
ec

al
l

37
.7

5±
4.

33
34

.7
7±

2.
21

46
.3

5±
3.

76
34

.9
5±

4.
88

34
.9

4±
5.

10

Table 4.10: Performance of Model 1 according to six different HDD fault
types, based on the different images technique and pre-processing approaches
used to generate its input.

4.5 Results | 101

Fa
ul

t
M

et
ri

cs
Te

ch
ni

qu
e

R
P

+
Su

m
(1

)
M

T
F

+
D

iff
(1

)
G

A
D

F
+

D
iff

(7
)

G
A

SF
+

E
xp

(1
5)

W
V

+
E

xp
(3

0)

0
F1

-s
co

re
22

.1
3±

1.
56

20
.8

6±
0.

66
29

.6
0±

1.
15

31
.5

7±
1.

25
26

.2
2±

1.
85

Pr
ec

is
io

n
15

.1
3±

0.
66

13
.9

5±
0.

28
23

.6
5±

0.
23

29
.6

5±
0.

21
22

.3
1±

0.
26

R
ec

al
l

41
.5

4±
5.

44
41

.2
6±

4.
15

40
.2

6±
3.

65
34

.0
2±

3.
12

32
.3

3±
5.

02

1
F1

-s
co

re
22

.1
8±

1.
61

20
.8

9±
0.

67
29

.6
5±

1.
14

31
.6

0±
1.

24
26

.3
4±

1.
84

Pr
ec

is
io

n
15

.1
8±

0.
67

13
.9

7±
0.

31
23

.6
7±

0.
21

29
.6

7±
0.

22
22

.3
6±

0.
28

R
ec

al
l

41
.6

7±
5.

41
41

.2
7±

4.
46

40
.2

4±
3.

58
34

.0
4±

3.
16

32
.4

2±
5.

05

2
F1

-s
co

re
22

.2
1±

1.
48

20
.8

7±
0.

71
29

.6
7±

1.
22

31
.5

6±
1.

23
26

.2
4±

1.
83

Pr
ec

is
io

n
15

.1
3±

0.
71

14
.0

5±
0.

26
23

.5
4±

0.
26

29
.5

4±
0.

23
22

.3
1±

0.
27

R
ec

al
l

41
.7

9±
5.

61
41

.2
9±

4.
55

40
.2

2±
3.

74
34

.0
2±

3.
14

32
.4

2±
5.

07

3
F1

-s
co

re
22

.1
1±

1.
51

20
.8

6±
0.

72
29

.6
3±

1.
11

31
.5

8±
1.

26
26

.5
8±

1.
86

Pr
ec

is
io

n
15

.1
4±

0.
72

14
.0

9±
0.

27
23

.5
2±

0.
27

29
.6

2±
0.

20
22

.3
5±

0.
29

R
ec

al
l

41
.8

7±
5.

43
41

.3
1±

4.
45

40
.2

5±
3.

75
34

.0
2±

3.
11

32
.3

7±
5.

03

4
F1

-s
co

re
22

.2
2±

1.
53

20
.9

1±
0.

69
29

.6
1±

1.
22

31
.6

1±
1.

24
26

.1
7±

1.
84

Pr
ec

is
io

n
15

.1
7±

0.
69

14
.1

7±
0.

29
23

.3
9±

0.
22

29
.4

9±
0.

23
22

.3
3±

0.
25

R
ec

al
l

41
.6

6±
5.

45
41

.3
6±

4.
37

40
.2

1±
3.

56
34

.0
1±

3.
12

32
.3

6±
5.

04

5
F1

-s
co

re
22

.1
7±

1.
43

20
.8

3±
0.

71
29

.6
2±

1.
18

31
.6

2±
1.

28
26

.1
9±

1.
83

Pr
ec

is
io

n
15

.1
5±

0.
71

14
.0

1±
0.

27
23

.4
1±

0.
25

29
.5

1±
0.

23
22

.3
2±

0.
27

R
ec

al
l

41
.5

5±
5.

42
41

.2
5±

4.
42

40
.2

0±
3.

44
34

.0
7±

3.
13

32
.3

8±
5.

03

Table 4.11: Performance of VGG-like according to six different HDD fault
types, based on the different images technique and pre-processing approaches
used to generate its input.

102 | Time series encodings evaluation for predictive maintenance

Model F1-score Precision Recall
XGBoost 40.19±0.60 30.03±0.41 60.85±1.02

LSTM 52.51±1.32 42.87±1.73 67.79±2.24
GRU 51.73±1.81 41.47±1.85 66.81±2.45

VGG-16 52.23±1.74 42.17±1.81 67.21±2.25
ResNet-50 51.91±1.71 41.38±1.75 66.92±2.32

DenseNet-121 51.22±1.83 41.16±1.87 66.24±2.47
CNN Model 1 59.24±0.39 61.15±3.18 57.62±2.61

Table 4.12: Performances of the CNN Model 1 with respect to six state-of-
the-art ones.

Model TP FP FN TN
XGBoost 83 136 51 161

LSTM 96 127 44 166
GRU 89 122 50 170

VGG-16 90 121 51 169
ResNet-50 88 121 55 167

DenseNet-121 87 123 53 168
CNN Model 1 103 67 71 190

Table 4.13: Confusion matrices (median values over repeated tests)

Model Memory usage Training time (seconds)
XGBoost 7 MB 780 (2000 estimators)

LSTM 850 kB 6 s/epoch (best at 10-th epoch)
GRU 767 kB 5 s/epoch (best at 15-th epoch)

VGG-16 8 MB 12 s/epoch (best at 21-th epoch)
ResNet-50 11 MB 14 s/epoch (best at 19-th epoch)

DenseNet-121 15 MB 8 s/epoch (best at 26-th epoch)
CNN Model 1 540 kB 91 s/epoch (best at 25-th epoch)

Table 4.14: Memory usage and training time

4.5 Results | 103

Encoding Techniques Accuracy Precision Recall F1-Score
GAF+Diff(7) 0.80±0.02 0.84±0.01 0.70±0.02 0.75±0.02
MTF+Exp(7) 0.75±0.01 0.74±0.02 0.74±0.01 0.74±0.02
RP+ Exp(15) 0.87±0.02 0.86±0.01 0.88±0.01 0.83±0.01
WV+Exp(30) 0.79±0.02 0.76±0.02 0.73±0.01 0.75±0.02

Table 4.15: Performances | 3-class classification

Moreover, our CNN model achieves higher numbers of true positives and
true negatives compared to the XGBoost, GRU, LSTM, VGG-16, ResNet-50,
and DenseNet-121 models (Table 4.13).

Regarding memory usage and training time (Table 4.14), our model
demonstrates better efficiency in memory usage compared to the benchmark
models. However, the GRU model proves to be the fastest in terms of training
time.

In summary, Model 1 excels in both efficacy and efficiency compared to
the VGG-based network, mainly because the latter is a pre-trained network.

4.5.2 Results on NASA Bearing

In this section, the experimental results involving encoding techniques for
generating input images for CNN classification are discussed. The results
are presented for both labeling procedures, including binary and three-class
classification.

Three Classes Classification Results

Starting with the analysis of three-class classification results, the CNN’s
output provides the probability of a sample belonging to one of the three
classes. Table 4.15 clearly indicates that the Recurrence Plot technique
consistently outperforms others in all evaluated metrics.

104 | Time series encodings evaluation for predictive maintenance

Moreover, the results presented in Table 4.15 are substantiated by the ex-
amination of confusion matrices generated from the model’s predictions using
different encoding techniques on the test set. These matrices are illustrated in
Figure 4.4, 4.5, and 4.6.

Figure 4.4: GAF Confusion Matrix | 3-class classification.

Specifically, it is evident that the network accurately identifies the first
class (LOW-RISK) when employing the RP encoding technique. However,
it struggles to distinguish between the other two classes (MEDIUM-RISK
and HIGH-RISK), as these classes exhibit similarities in their vibration signal
characteristics. This challenge arises due to the complexity of discerning
differences between these closely related classes.

As observed in Figure 4.7, the loss curve exhibits a typical pattern with a
plateau that converges to approximately 0.4 for the validation subset. This
suggests that the network has been adequately trained, but the resulting
predictions do not exhibit a high confidence level.

4.5 Results | 105

Figure 4.5: MTF Confusion Matrix | 3-class classification.

Encoding Techniques Accuracy Precision Recall F1-Score
GAF+Diff(7) 0.85±0.02 0.84±0.01 0.83±0.02 0.84±0.02
MTF+Exp(7) 0.81±0.01 0.80±0.02 0.79±0.01 0.80±0.02
RP+Exp(15) 0.96±0.02 0.95±0.01 0.95±0.01 0.95±0.01
WV+Exp(30) 0.83±0.01 0.82±0.02 0.81±0.01 0.81±0.01

Table 4.16: Performances | 2-class classification

Two Classes Classification Results

In this section, the results for predicting bearing health status in two classes
using a CNN are analyzed by merging the MEDIUM-RISK and HIGH-RISK
classes into a single class, creating a 2-Band classification model. Table 4.16
demonstrates that the Recurrence Plot technique consistently outperforms
others in all metrics, even in this specific task.

Furthermore, the results presented in Table 4.16 are corroborated by the
examination of confusion matrices generated from the model’s predictions on
the test set (see Table 4.17).

106 | Time series encodings evaluation for predictive maintenance

Figure 4.6: Recurrence Plot Confusion Matrix | 3-class classification.

Technique TP FP FN TN
GAF+Diff(7) 131 14 19 33
MTF+Exp(7) 138 7 17 35
RP+Exp(15) 140 5 6 46
WV+Exp(30) 139 8 16 34

Table 4.17: Confusion matrices (median values over repeated tests) | 2-class
classification

It is evident that the developed network achieves outstanding performance
when dealing with only two classes, enhancing model prediction reliability.
Specifically, the confusion matrices indicate that both the numbers of False
Positives and False Negatives are exceptionally low.

As evident from Figure 4.8, the loss curve maintains a typical shape, reach-
ing a plateau at approximately 0.2 for the validation subset. This suggests that
the network was trained effectively, and the predictions it generates exhibit a
higher percentage of accuracy compared to the scenario with 3 classes.

4.5 Results | 107

Figure 4.7: Model loss with RP | 3-class classification.

Comparison with different baselines

In this section, the designed model was compared to two reference models
(see Table 4.18) for the binary classification task: the first model is an LSTM,
a commonly used architecture for time series classification in predictive
maintenance tasks. It consists of 2 layers, each containing 64 units, and a
final layer with a softmax activation function. The second reference model
is the one described in [151], which achieved the best performance on the
classification task using the NASA bearing dataset.

Model Accuracy F1-score
[151] 0.98±0.01 0.97±0.01

LSTM 0.90±0.02 0.91±0.02
Proposed CNN 0.96±0.02 0.95±0.01

Table 4.18: Performances of the three compared models.

It is important to highlight that the proposed network does not surpass
the performance of the model described in [151]. However, it achieved better

108 | Time series encodings evaluation for predictive maintenance

Figure 4.8: Model loss with RP | 2-class classification

results than the LSTM network in terms of both accuracy and F1-score. Table
4.19 presents the efficiency performance of the designed model compared to
the two models examined in Table 4.18, considering factors such as model
memory size and mean training time.

Model Memory usage Training time (seconds)
[151] 5 MB 60 s/epoch (b. at 60-th ep)

LSTM 850 kB 10 s/epoch (b. at 20-th ep)
Proposed CNN 380 kB 20 s/epoch (b. at 50-th ep)

Table 4.19: Memory usage and training time

It is important to highlight that the proposed network does not surpass
the performance of the model described in [151]. However, it achieved better
results than the LSTM network in terms of both accuracy and F1-score. Table
4.19 presents the efficiency performance of the designed model compared to
the two models examined in Table 4.18, considering factors such as model
memory size and mean training time.

4.5 Results | 109

4.5.3 Benefits of GAN

Despite various data augmentation strategies proposed, some, such as ro-
tating and flipping, when applied to encoded images, can distort the time
domain signal, rendering them unreasonable for use (see [152] for examples).
Therefore, the performance of the discussed methodology is analyzed when
adopting Generative Adversarial Networks (GANs). Specifically, Table 4.20
demonstrates that while GANs provide a slight performance improvement
during training, this advantage must be weighed against increased demands
on training time and memory resources.

To address the potential drawback of having failure labels still within the
minority class, a GAN was developed to augment the number of samples in
the minority class (see Figure 4.9). This GAN utilizes a CNN discriminator
to differentiate between real and generated images created by another CNN
generator, which samples from a Gaussian distribution.

Figure 4.9: GAN architecture - It consists of two sub-models, Generator
and Discriminator. The former is responsible for generating new plausible
examples from the problem domain. The second one is used to classify
examples as real (from the domain) or false (generated).

110 | Time series encodings evaluation for predictive maintenance

Technique F1-Score Precision Recall

A
lib

ab
a Without GAN (GASF + Exp(15)) 31.59±1.25 29.58±0.22 34.03±3.13

With GAN (+25% fake tensors) 34.47±2.13 32.46±0.22 37.02±4.96
With GAN (+50% fake tensors) 32.52±1.24 27.43±0.66 40.16±3.91

B
ea

ri
ng Without GAN (RP + Exp(15)) 0.95±0.01 0.95±0.01 0.95±0.01

With GAN (+25% fake tensors) 0.97±0.02 0.97±0.03 0.96±0.02
With GAN (+50% fake tensors) 0.96±0.01 0.96±0.02 0.97±0.01

Table 4.20: Results of data augmentation with GAN on Alibaba HDD and
NASA Bearing datasets.

The GAN model operates by jointly training the discriminator and the
generator (as illustrated in Figure 4.10 and 4.11). The discriminator is trained
on a batch comprising half fake and half real samples, while the generator
updates its parameters based on the loss of the frozen discriminator. The
discriminator’s role is to predict the probability of assigning a given input
image to class ’0’ (fake) or ’1’ (real). Meanwhile, the generator aims to
maximize the probability of the discriminator labeling artificially generated
images as "truthful."

If the discriminator consistently predicts a low probability of truthfulness
for the artificially generated images, it results in a substantial back-propagated
error signal in the generator. Consequently, this error drives a relatively large
feedback to the generator, improving its ability to generate more convincing
"fake" samples in the subsequent batch.

The assumption about the GAN’s behavior was further substantiated by
examining the generator’s loss. To illustrate this, we present the loss data
for the HDD dataset in Figure 4.12. It’s evident from the figure that the
generator’s loss stabilizes between batch numbers 2000 and 3000, indicating
that the generator is functioning effectively.

4.5 Results | 111

Figure 4.10: Discriminative
network

Figure 4.11: Generative net-
work

112 | Time series encodings evaluation for predictive maintenance

Figure 4.12: Loss plot for real and fake samples, and the generator

4.5.4 Combination of Encoding strategies

Recent advancements in the literature [153, 154] have led to the application
of an ensemble of encoding techniques. This approach combines various
strategies described in Section II to enhance the model’s performance and
reliability. For each sample, a single three-channel input volume (40×40×3)
is generated by employing three different encoding strategies (GAF, MTF,
RP).

The network parameters and training procedures remain consistent with
the previous experiments, with the only modification being the network input.
Table 4.21 presents the experimental results comparing the performance of
the 1-channel and 3-channel networks. It indicates a slight increase in the
confidence interval of the combination strategy, with the loss being statistically
smaller in the second network. However, there is no statistically significant
difference in accuracy and F1 performance.

4.6 Discussion & Conclusions | 113

Encoding Type Accuracy F1-score Loss
1-Channel 0.96±0.02 0.95±0.01 0.06±0.01
3-Channel 0.96±0.01 0.94±0.01 0.01±0.01

Table 4.21: Performance of 3-channel encoding

4.6 Discussion & Conclusions

In the context of industrial systems, the need for preventive maintenance and
effective monitoring techniques has grown significantly due to the increasing
complexity of these systems. Predictive maintenance has emerged as a crucial
tool for businesses and industrial settings, offering benefits such as cost
reduction, data loss prevention, and minimized downtime, especially in data
centers and mechanical component maintenance.

With the rapid digitization of industrial processes, vast amounts of real-
time data are now available for analysis. This paper aims to develop and
evaluate techniques that can harness this wealth of information effectively.
The authors propose an evaluation framework that combines various time
series encoding methods with Convolutional Neural Network (CNN) image
classifiers for predictive maintenance tasks. CNNs have demonstrated their
ability to handle challenges often encountered in predictive maintenance data,
such as missing values and sparsity.

The study explores four encoding methods and assesses two different
CNN models using the PAKDD2020 Alibaba AI Ops Competition dataset
(focused on HDD health status in data centers) and the NASA Bearing dataset
(capturing vibration signals from bearings). Additionally, the authors in-
vestigate the potential benefits of using a Generative Adversarial Network
(GAN) to enhance model performance. While the GAN does provide a slight
improvement in prediction performance, it comes at the cost of significantly
increased training time and computational resources, leading to a discussion
of the trade-offs involved.

114 | Time series encodings evaluation for predictive maintenance

In a subsequent evaluation, the authors compare their best-performing
CNN model and encoding technique with three benchmarking neural network
models on the Alibaba and NASA Bearing datasets. The benchmarks include
LSTM and XGBoost models, with a particular focus on the competition-
winning XGBoost model for the Alibaba dataset, as well as LSTM and a
model from a previous study for the NASA Bearing dataset. The discus-
sion delves into the trade-offs between computational resources and model
performance across various evaluation metrics.

Overall, the results support the combined use of image encoding tech-
niques with CNN models for predictive maintenance tasks, especially when
compared to other models. However, the resource-intensive nature of CNN
models, such as longer training times, should be carefully considered. The pa-
per highlights the importance of conducting thorough cross-model evaluations
for different tasks in the predictive maintenance domain.

In summary, the proposed approach achieves comparable or superior
results to the state-of-the-art for both datasets, with a particular advantage
in terms of efficiency. Future research directions may involve exploring
tiled CNNs for improved computational efficiency, refining GAN-based ap-
proaches, investigating ensemble models for enhanced classification perfor-
mance, and incorporating Explainable AI (XAI) techniques to aid practitioners
in understanding misclassifications.

5
A predictive maintenance application in

IoT scenarios

5.1 Introduction

The current era of Industry 4.0 is characterized by the integration of modern
technologies like the Internet of Things (IoT) and Artificial Intelligence (AI)
into manufacturing and industrial practices [155]. This integration involves
the collection of vast amounts of data from smart equipment and sensors in
production environments.

Smart sensors play a pivotal role by generating data on physical parameters
and offering functionalities like self-monitoring and self-configuration. This
data is analyzed for strategic decision-making, leading to benefits such as
reduced maintenance costs, decreased machine faults, optimized spare parts
inventory, and increased production efficiency.

Maintenance procedures in industrial settings are crucial, with industries
investing in data-driven maintenance strategies [156, 157]. These strategies
can be categorized as model-driven, data-driven, or hybrid-driven. Data-
driven methods, which leverage collected data to predict machinery failures,
are particularly promising for predictive maintenance [158, 159].

116 | A predictive maintenance application in IoT scenarios

Predictive Maintenance (PdM) is a key focus, where maintenance actions
are scheduled based on sensor-reported health status. Machine learning and
deep learning techniques have become effective tools for PdM, utilizing
historical data to train models for Remaining Useful Life (RUL) estimation
and failure prediction [101, 105, 106].

However, challenges exist, including the need for computational efficiency
and real-world IoT scenarios. Deep learning models often demand significant
computational resources, limiting their deployment on equipment hardware.
Embedded AI techniques are emerging to address these challenges [160].

The chapter introduces a deep learning approach for PdM that employs
a multi-head attention mechanism. This approach offers high accuracy in
RUL estimation while maintaining low memory storage requirements, making
it suitable for direct implementation on equipment hardware. Experimental
results on the NASA dataset demonstrate its superior effectiveness and effi-
ciency compared to state-of-the-art techniques, making it a viable solution
for real-world PdM scenarios [161].

The Chapter is organized as in the following. Section 5.2 reports the
Related Work about PdM approaches and the related challenges, while Section
5.3 describes the proposed methodology together with the introduced deep
architecture for PdM task. Sections 5.4 and 5.5 present the experimental
protocol and the achieved results, respectively. Finally, Section 5.6 reports a
final Discussion together with some Conclusions and Future Work.

5.2 Related Work

Predictive maintenance has emerged as a prominent research area, with a
focus on leveraging Machine Learning (ML) and Deep Learning (DL) tech-
niques, especially in the context of IoT and AI advancements. Recent studies,
exemplified by [162] and [163], have explored data-driven methodologies
that rely on time series analysis and mining. Additionally, [164] introduced a

5.2 Related Work | 117

framework for Predictive Maintenance (PdM) that combines historical and
real-time data to continually enhance performance.

Table 5.1 provides a summary of some notable proposals in this field. It’s
evident that a majority of these approaches are built upon Long-Short Term
Memory (LSTM) networks and Convolutional Neural Networks (CNNs).
Within the realm of DL approaches, those utilizing the NASA Turbofan
Engine dataset have garnered significant interest, particularly falling into two
categories: Recurrent models and Hybrid models, as outlined in Table 5.1.
The next sections will outline the criteria for organizing the literature review,
delve into the discussed models, and elucidate how our proposed approach
addresses pertinent limitations.

5.2.1 Selection Criteria

The literature review adhered to the guidelines outlined by [165] and [166],
ensuring the systematic and high-quality conduct of research. This process
involved several key steps: formulating the research question, identifying
pertinent literature, synthesizing the findings, and presenting the results.

The primary objective was to retrieve relevant publications in the realm of
Predictive Maintenance (PdM) employing Deep Learning (DL) approaches
across various industrial contexts. Special attention was given to studies
utilizing our dataset for experimentation, as outlined in Table 5.1. Notably,
the focus was on works employing Recurrent and Hybrid network models.
Ultimately, this literature review aimed to address the key research challenges
in the PdM domain.

The search spanned the years 2017 to 2022 and encompassed articles
from both Scopus and Google Scholar. Several keywords, individually and
in combination, were employed, including "predictive maintenance," "deep
learning," "recurrent model," "hybrid," "machine learning," "attention mecha-
nism," and "multi-head attention."

118 | A predictive maintenance application in IoT scenarios

Consequently, this process yielded a collection of 21 articles, comprising
17 from Scopus and 4 from Google Scholar. An initial screening was con-
ducted based on abstracts and methodologies, followed by a comprehensive
review of full chapters for articles that utilized the NASA Turbofan Engine
Dataset.

Ref. Year Deep Learning (DL) approach

[167] 2020 Anomaly triggered Long Short-Term Memory (LSTM)
[168] 2019 Restricted Boltzmann Machine (RBM) + Long Short-Term Memory (LSTM)
[169] 2020 Long Short-Term Memory (LSTM) with attention
[170] 2019 Long Short-Term Memory (LSTM) + Convolutional Neural Network (CNN)
[171] 2020 Multi-Head Attention (MHA) + LSTM + CNN + Neural Turing Machine (NTM)
[172] 2020 Noisy Bidirectional Long Short-Term Memory (BLSTM) + CNN

Table 5.1: A summary of the most recent papers regarding NASA Turbofan
Engine Dataset.

5.2.2 Recurrent models

[167] introduced a two-component framework for predictive maintenance.
The initial component is responsible for identifying significant deviations from
the normal (healthy) state. Following anomaly detection in streaming sensor
data, the second component, an LSTM model, is activated for Remaining
Useful Life (RUL) estimation. This approach continuously monitors for
anomalies and initiates RUL estimation only upon anomaly detection.

A similar LSTM-based approach for RUL estimation was devised by
[187]. This method uncovers concealed patterns through the analysis of
sensor sequence data. Likewise, [188] employed an LSTM model with a
data-driven approach to predict failures based on real operating conditions
and dynamic loading.

[169] employed an Encoder-Decoder architecture based on LSTM, incor-
porating an attention mechanism to address lengthy sequences. Attention
mechanisms, by prioritizing specific aspects of the input while minimizing

5.2 Related Work | 119

attention to others, enhance the training process and reveal relationships be-
tween input and output [189] (further details in Section 5.3). Similarly, [190]
introduced another LSTM-based attention mechanism to enhance the model’s
capacity to analyze sequences of signals in survival analysis. Additionally,
[191] proposed a predictive maintenance system based on an FPGA-adapted
LSTM network, aiming to concurrently reduce power consumption and man-
agement costs.

A common challenge in supervised predictive maintenance applications is
the scarcity of labeled data. [168] tackled this problem by exploring the impact
of unsupervised pre-training in RUL predictions using a semi-supervised
setup. The approach involved using a Restricted Boltzmann Machine (RBM)
in the initial layer for unsupervised pre-training. The RBM learned abstract
features from unlabeled raw input data and initialized weights, facilitating
supervised fine-tuning with LSTM to capture long-term dependencies. Finally,
a fully connected output layer was added for RUL prediction.

5.2.3 Hybrid models

[170] introduced a Hybrid Deep Neural Network Model (HDNN) consist-
ing of two parallel paths, LSTM and CNN, followed by a fully connected
layer that combines their outputs to predict the target Remaining Useful
Life (RUL). This framework employs the LSTM path to extract temporal
features, while concurrently using CNN to extract spatial features. An ex-
tension of this approach was developed by [172], introducing a dual-path
deep learning architecture trained with noisy input data (Noisy Bidirectional
LSTM - NBLSTM). They demonstrated that training on noisy data, particu-
larly with Gaussian Noise, could enhance the model’s robustness, leading to
significantly improved generalization behavior.

Recently, [171] proposed a dual-stream architecture, comprising a Multi-
Head Attention (MHA) module and a Neural Turing Machine module. In this
approach, time-series data is divided into shorter windows and labeled using

120 | A predictive maintenance application in IoT scenarios

a piece-wise linear degradation model, with a fixed maximum RUL value of
125. These windows are then input into the MHA module, which identifies
relationships between different sensor data to reveal hidden patterns. The
MHA module’s output is subsequently fed into the networks in each stream.
The features extracted by the LSTMs in the first stream and the CNN in the
second stream are concatenated with augmented features computed by the
NTM module. Finally, two stacked feedforward networks map the extracted
features to a sequence of RUL values.

[192] presented the ConvNet model, utilizing a CNN-LSTM network
to estimate the RUL of a turbofan engine while reducing the number of
parameters. On the other hand, [193] proposed a novel bi-directional gated
recurrent unit with a temporal self-attention mechanism (BiGRU-TSAM) for
RUL prediction.

Lastly, [194] introduced a hybrid multi-task deep learning approach that
integrates the strengths of CNN and LSTM networks. CNN serves as a feature
extractor, while LSTM captures long-term temporal dependency features.

5.2.4 Research Challenges in Predictive Maintenance

Despite the considerable progress made in developing predictive maintenance
approaches in recent years, several limitations have been identified:

1. Recurrent Neural Networks (RNNs), due to their inherently sequential
nature, lack parallelization within training examples.

2. The length of the time window used as input during training can pose
challenges, especially concerning vanishing and exploding gradient
problems. RNNs, including Long Short-Term Memory (LSTM) net-
works, may struggle to retain information from the early timesteps when
processing lengthy sequences, leading to issues with very long-term
dependencies.

5.3 Methodology | 121

3. Many existing frameworks are complex and have a substantial number
of parameters, requiring significant storage space. This complexity is
often not considered, even though it is crucial for deploying predictive
maintenance models in resource-constrained hardware environments,
where memory size and power consumption are critical factors.

Therefore, there is a need to design efficient analytics for critical predic-
tive maintenance applications that can meet specific requirements, such as
reliability, low latency, privacy, and power efficiency, as highlighted in [195].

Inspired by the success of Transformer models in Natural Language Pro-
cessing (NLP), researchers have explored their applicability in other domains.
For instance, [196] introduced the SAnD (Simply Attend and Diagnose) ar-
chitecture for clinical time-series data, incorporating a masked, self-attention
mechanism, positional encoding, and dense interpolation strategies to handle
temporal order. Additionally, [176] used Transformers for time-series fore-
casting, a critical task in various scientific and engineering disciplines that
involves predicting future trends based on historical data.

The main innovation of this work is the introduction of an efficient deep
network based on multi-head attention for predictive maintenance tasks. This
model maintains high accuracy performance while significantly reducing
processing time and storage requirements. Notably, while previous litera-
ture often combined the attention mechanism with other types of networks
(e.g., LSTMs or CNNs), our proposed model relies solely on the attention
mechanism, making it an efficient solution for embedded AI applications.

5.3 Methodology

As we have seen from previous sections, tasks related to predictive mainte-
nance can be modeled as regression and classification problems. In regression,
the primary objective is to estimate the Remaining Useful Life (RUL) of ma-
chinery, while in classification, the goal is to predict the health state of the

122 | A predictive maintenance application in IoT scenarios

equipment. Data-driven techniques play a crucial role in optimizing mainte-
nance procedures and preventing downtime.

The aim of this work is to design an AI model capable of estimating
RUL from various types of equipment data. The general workflow for RUL
estimation involves:

Selecting the most suitable RUL estimation model based on the available
data and system knowledge. Training the estimation model using historical
data. Using test data similar to historical data to estimate the RUL of the test
component. In this section, the methodology is detailed, beginning with the
task definition and then presenting the model architecture, with a particular
focus on the introduced "Attention" module.

5.3.1 Model architecture

The high-level view of the proposed model architecture for the PdM task is
depicted in Figure 5.1. The architecture comprises several key components,
including positional encoding and an attention module.

Specifically, the model architecture consists of:

• Positional Encoding: This component addresses the sequential nature
of the data by incorporating information about the relative or absolute
position of time-steps in the input sequence. It helps capture temporal
dependencies.

• Attention Module: The attention module is composed of two sub-
layers with residual connections:

1. Multi-Head Attention Block: This block enables the model to
attend to different parts of the input sequence simultaneously,
capturing complex relationships between features.

2. Fully Connected Network Module: This module processes the
multi-head attention outputs to produce the final predictions.

5.3 Methodology | 123

The positional encoding ensures that the model can account for the
order and position of time-steps in the input sequence, which is crucial
for detecting degradation trends. The attention module helps the model
capture temporal dependencies effectively.

Figure 5.1: Proposed AI architecture.

5.3.2 Positional encoding

Since the proposed model lacks recurrences, it requires a mechanism to incor-
porate the order of time-steps. Positional encoding is introduced to achieve
this. Each time-step in the input sequence is augmented with information
about its position. This positional encoding is added to each input time-step to
provide the model with a sense of order. The positional encoding is computed
using sine and cosine functions with varying frequencies, resulting in a vector
of length Nx. These functions introduce information about the position of
the time-steps in the sequence, ensuring that the model can capture the order
of events effectively. By combining positional encoding with the attention
mechanism, the model can process sequential data efficiently. The proposed
model architecture aims to address the challenges of predictive maintenance
effectively while maintaining efficiency and accuracy. It leverages positional
encoding and attention mechanisms to capture temporal dependencies and
provide reliable RUL estimations.

124 | A predictive maintenance application in IoT scenarios

5.4 Experimental Evaluation

The major innovation of this work lies in the introduction of an attention-
based deep architecture for predictive maintenance, specifically designed for
applications that require predictive models to be stored in memory-constrained
devices. To demonstrate its effectiveness compared to common recurrent
deep models, a comparison was conducted with a widely used architecture in
terms of model storage size and accuracy performance, using specific metrics.

The chosen architecture for comparison is an LSTM network with two
layers, each containing 128 units, and a final Dense layer with a ReLU
activation function for the regression task.

The comparison was conducted using the Turbofan Engine Degradation
Simulation Dataset, provided by NASA Ames Prognostics Data Repository
7. This dataset is a well-known benchmark in the Prognostic and Health
Management (PHM) field. It is generated by the C-MAPSS tool, simulating
various degradation scenarios of engines of the same type. The dataset
comprises four sub-datasets (FD001, ..., FD004) with different operating
conditions and fault modes, each including training and testing datasets.

The training dataset consists of run-to-failure sequential data collected
from 21 sensors [197]. The engines initially operate normally with varying
degrees of initial wear, and the sensors record data until a system failure
occurs.

Each row of the dataset includes 26 fields:

1. Engine ID.

2. Cycle index.

3. Three fields representing the engine’s operating condition.

4. Twenty-one sensor readings.

7https://data.nasa.gov/Aerospace/Turbofan-engine-degradation-simulation-data-set/
vrks-gjie

https://data.nasa.gov/Aerospace/Turbofan-engine-degradation-simulation-data-set/vrks-gjie
https://data.nasa.gov/Aerospace/Turbofan-engine-degradation-simulation-data-set/vrks-gjie

5.4 Experimental Evaluation | 125

The test set data differs in that the engines start in an unknown deterio-
rated state, and the sensor readings terminate before a system failure occurs.
Therefore, the objective is to predict the Remaining Useful Life (RUL) of each
engine. For evaluation purposes, the true RUL values for the test trajectories
are provided.

In the test dataset, sensory data of the system leading up to the system
failure are recorded. The task is to estimate the RUL of the engine in the
testing dataset, and the actual RUL of each data sample in the testing dataset
is provided for result validation of the proposed method.

5.4.1 Hyperparameters

To provide more insight into the model’s hyperparameters, a summary is
presented:

1. NUM_ENC: This parameter indicates the number of stacked attention
modules.

2. NUM_HEADS: It signifies the number of attention heads in the multi-
head attention mechanism.

3. KEY_DIM: This parameter denotes the dimension of the query and key
vectors. In this work, the value vector also has this dimension, although
it is not mandatory.

4. FFN_FACTOR: It regulates the number of neurons in the first layer of
the Fully Connected sublayer within each of the attention modules.

However, there are other hyperparameters, such as learning rate, batch
size, and the number of epochs, which are not specific to the proposed model
but do impact the training stage of the model.

The implementation of the proposed model was carried out in Tensorflow
2.0 using the corresponding Keras layers.

126 | A predictive maintenance application in IoT scenarios

Below, the analysis steps are summarized, followed by more detailed
explanations of each:

1. Feature selection and normalization.

2. Definition of the RUL target function.

3. Creation of time windows.

5.4.2 Feature Selection and normalization

Feature selection activities were conducted, including the removal of con-
stant columns. Specifically, the following columns were deleted: sensor1,
sensor5, sensor16, sensor18, and sensor19. Additionally, columns related to
the operational condition were removed since it was consistent across all
engines.

Figure 5.2 illustrates that sensor6 and sensor10 do not significantly con-
tribute to detecting a degradation trend. Therefore, these features were also
dropped. This holds true for the other engines as well.

The engine IDs and cycle numbers are not utilized during model training
but are crucial for creating the time windows.

Following the feature selection process, 14 columns are retained.
Considering the varying ranges of sensor measurements, a normalization

step is implemented to standardize the values and ensure unbiased contribu-
tions from each sensor reading. Specifically, min-max scaling is applied to
each sensor, scaling their values to the [0, 1] range.

5.4.3 RUL target function definition

Data obtained from the NASA UCR Repository cannot be directly employed
for training a model using supervised learning techniques since it lacks ground-
truth information. To address this limitation, various approaches have been
introduced in the literature.

5.4 Experimental Evaluation | 127

Figure 5.2: Features plot of the first engine.

In this work, the piece-wise linear degradation model is utilized. The
fundamental concept behind this strategy is straightforward. As engine failure
typically occurs gradually, it is not suitable to employ the real remaining
useful life (RUL) as the label. Instead, a degradation threshold is established,
and the period before the engine reaches this threshold is disregarded. Once
the operating time surpasses the degradation threshold, the engine’s remaining
usable life monotonically decreases. To model this process, a piece-wise linear
degradation model is adopted, based on the approach proposed by [198].

In accordance with the majority of related studies, a clip value of 125 is
set.

Figure 5.3 illustrates the distinction between the two primary RUL target
functions commonly employed.

To formalize this concept, let’s introduce some variables. Consider ni as
the total number of cycles for the i-th engine, and let xi represent the current
cycle of that engine. The RUL value for this cycle can be determined as
follows:

128 | A predictive maintenance application in IoT scenarios

Figure 5.3: Linear and Piece-Wise Linear degradation model.

• If ni− xi > 125, then the RUL value is set to a fixed value of 125.

• Otherwise, the RUL value is calculated as ni− xi.

5.4.4 Time-windows creation

To summarize the data preparation phase, the proposed model requires input
data in the form of sequential time windows. This is achieved using the sliding
window method, as illustrated in Figure 5.4. With a given window size, W ,
the total number of cycles, T , and the window stride, s, it becomes possible
to generate T −W − s time windows for each engine. During training, the
RUL value associated with a time window corresponds to the RUL of its last
timestep (cycle). This study employs various time window sizes, including
10, 20, and 30, while keeping the stride s fixed at 1.

5.4.5 Performance metrics

In this section, the evaluation metrics employed for assessment are outlined.
For the Turbofan Engine Degradation dataset, two objective metrics are

5.4 Experimental Evaluation | 129

Figure 5.4: Time windows creation.

utilized to evaluate the model’s performance: the Scoring Function and the
Root Mean Square Error (RMSE), given that it is a regression problem.

Let RUL′i and RULi represent the estimated and actual RUL, respectively,
of the ith test engine (with a total of N engines). The RMSE is expressed as
follows:

RMSE =

√
1
N

N

∑
i=1

(RUL′i−RULi) (5.1)

The Scoring function, originally introduced in [197] and now commonly
employed in Prognostic and Health Management (PHM) applications, is
utilized. By defining hi = RUL′i−RULi, this function can be expressed as
follows:

S =
N

∑
i=1

si (5.2)

where

si =

{
e
−hi
13 −1 i f hi < 0

e
hi
10 −1 i f hi ≥ 0

(5.3)

130 | A predictive maintenance application in IoT scenarios

The scoring function aims for lower values to indicate better performance.
In Figure 5.5, a plot depicts the scoring function alongside the RMSE. Notably,
the RMSE does not distinguish between early predictions (when the estimated
RUL is lower than the actual) and late predictions. However, in PHM, having
accurate RUL predictions that allow for timely maintenance before machine
failure is crucial. This characteristic is evident in the plot: as the predicted
RUL exceeds the actual, the scoring function increases exponentially. On the
other hand, if the predicted RUL is lower than the actual, it is considered an
error but with a lower rate of increase in the scoring function.

Figure 5.5: Scoring function.

5.5 Results

In this section, the results obtained from the experiments are presented and
discussed. Specifically, Table 5.3 displays the performance metrics of the
proposed model, with variations in the time window length. To ensure robust
estimations, all tests were repeated 10 times, and the means and standard
deviations were calculated. Similarly, Table 5.4 provides the performance
metrics for the LSTM network under different time window lengths.

5.5 Results | 131

For the proposed model, the chosen hyperparameters are as follows:
NUM_ENC 1, NUM_HEADS 8, KEY _DIM 28, and FFN_FACTOR 517.
As for the LSTM model, it consists of 2 layers, each with 128 units. Both
models were trained using the Adam optimizer, with a maximum of 300
epochs, a batch size of 128, and a learning rate of 10e−3.

The first observation drawn from the results is that, as expected, both
models benefit from an increase in the time window length.

Performance metrics achieve their highest scores with a time window
length fixed at 30 cycles, which is reasonable as a larger number of samples
can aid in extracting a degradation pattern in the engine.

Upon analyzing the reported results, there is no statistically significant
difference between the two models in the score function when the time
window length is equal to 20 cycles (391 and 375) and 30 cycles (279 and
262). However, this difference becomes statistically significant in favor of the
proposed model when considering a time window length of 10 cycles.

Furthermore, the reported results should also be evaluated in terms of
model complexity. Table 5.5 provides the number of parameters for both
models. Notably, the proposed model achieves comparable performance to
LSTM with approximately 86% fewer parameters.

This final aspect significantly impacts two critical aspects: model storage
size and training time.

Table 5.6 reveals that the proposed model only requires 141 KB of mem-
ory, in stark contrast to the 2.5 MB needed by the LSTM network. This results
in the proposed model being 94.36

To underscore the importance of limited memory occupancy in industrial
contexts, it’s worth referencing some published work in this domain. For
instance, [199] devised a PdM strategy for embedded plant and machinery
systems. Given the inherent limitations in embedded systems regarding
computing resources, they had to strike a balance between memory occupancy,
processing speed, and accuracy. Similarly, [200] introduced "TIP4.0," a

132 | A predictive maintenance application in IoT scenarios

modular framework for PdM in IoT, with a primary objective of offering a
system capable of running on hardware with limited computational power
and memory.

Table 5.7 includes the training times for the models with varying time
window lengths. As demonstrated, the proposed model is approximately 20%
faster to train compared to the LSTM model, even though their performance
varies only slightly (an average of about 53 seconds for all tested window
lengths). While this may seem like a modest improvement, it can be signif-
icant in real-world scenarios where data have high dimensionality. In such
cases, even a small reduction in training time can have a substantial impact,
particularly in terms of ensuring the system’s scalability concerning dataset
size, as highlighted in [201].

Table 5.8 provides a comparison with state-of-the-art approaches using the
Turbofan Engine Degradation dataset as a benchmark. While our attention-
based approach may not be the top-performing method, it remains competitive,
particularly when considering the scoring function. The best results are
highlighted in bold.

Figure 5.6 and Figure 5.7 display the prediction errors for the best runs of
the proposed and LSTM models, respectively.

The horizontal axis represents the test engine’s ID, ordered in decreasing
order based on their actual RUL. For example, the engine with ID 82 in the test
dataset has the lowest RUL, and so on. The vertical axis shows RUL′i−RULi,
which is denoted as "diff" in the plots, indicating the predicted RUL (RUL′i)
for the i-th engine compared to its actual RUL (RULi).

The prediction error is consistently less than 10 when the actual RUL
values are low. However, as the actual RUL increases, the prediction error
tends to rise in both cases. This behavior may be attributed to the fact that
when the actual RUL is low, the degradation process has already started,
making it easier for the models to recognize the pattern. Conversely, when
the actual RUL is very high, the engine is assumed to be in good condition,

5.5 Results | 133

and the models struggle to differentiate between engines with true RULs of
80 and 105.

Figure 5.6: Best proposed model’s prediction errors.

In summary, the analysis of the results provides several valuable insights:

134 | A predictive maintenance application in IoT scenarios

Figure 5.7: Best LSTM model’s prediction errors.

• The proposed approach achieves a high level of accuracy when com-
pared to the best-performing deep learning models in the literature.
This indicates its effectiveness in estimating RUL.

5.6 Discussion and Conclusions | 135

• The model exhibits shorter training times and requires significantly less
storage capacity, making it an efficient solution suitable for implemen-
tation on hardware with resource constraints.

• Despite its validation in a limited scenario, the model demonstrates
promising results. This suggests that deploying it in a real-world In-
ternet of Things (IoT) environment could meet the requirements of
reliability, low latency, privacy, and low power consumption, as previ-
ously discussed in the literature [195].

5.6 Discussion and Conclusions

In the Industry 4.0 era, predictive maintenance (PdM) holds significant man-
agerial and practical implications, offering the potential to reduce mainte-
nance costs, prevent equipment failures, and optimize industrial operations.
Data-driven approaches, particularly those employing machine learning algo-
rithms, have gained prominence in recent years, enabling the estimation of
machinery’s remaining useful life (RUL) by analyzing historical operational
data.

A notable trend in this domain is the adoption of deep learning models,
which have demonstrated state-of-the-art results in fields like Computer Vision
and Natural Language Processing, making them applicable to PdM tasks.
However, many existing models are overly complex and ill-suited for critical
applications where resource-constrained hardware is prevalent, notably in
terms of memory capacity and power consumption. In such cases, relying on
cloud-based processing is less desirable due to the stringent requirements of
reliability, low latency, data privacy, and energy efficiency.

This work introduces a lightweight attention-based model designed to
address these challenges. The attention mechanism, known for its success
in Natural Language Processing tasks, is creatively adapted in this study to
analyze time-series data. To validate the proposed model, the well-established

136 | A predictive maintenance application in IoT scenarios

Turbofan Engine Degradation Dataset provided by NASA is used. The study
includes comparisons with the latest state-of-the-art methods on this dataset,
as well as an assessment of spatial and temporal complexity in comparison to
a standard LSTM model.

The experimental results reveal that the proposed model achieves com-
parable performance in terms of RMSE and a PHM scoring function when
compared to the recurrent LSTM model. However, the key advantage lies in
the significantly reduced number of model parameters, resulting in a much
smaller storage footprint and faster training times. This trade-off between effi-
ciency and effectiveness is particularly valuable in industrial contexts, where
optimizing the relationship between performance and resource allocation is
crucial.

In summary, the findings demonstrate that the proposed approach meets
the requirements of modern embedded AI applications. This holds significant
implications for smart manufacturing systems, where reliability, low latency,
privacy, and energy efficiency are paramount. Future research avenues may
explore the application of the attention mechanism in various predictive main-
tenance scenarios and investigate methods for providing model explanations
using eXplainable Artificial Intelligence (XAI) tools.

5.6 Discussion and Conclusions | 137

R
eference

A
pplication

dom
ain

D
L

approach
O

utputofthe
m

odel
D

ataset

[173]
A

utom
obile

A
E

+
D

N
N

E
stim

ation
ofT

B
F

of
an

autom
obile

Private

[174]
R

ailw
ay

Pow
erE

quipm
ent

L
ST

M
w

ith
residual

connections
Prediction

ofthe
next

failure
tim

e
Private

[175]
C

onveyorM
otor

G
A

F
+

C
N

N
A

class
corresponding

to:
N

o
Fault,M

inorFault
and

C
riticalFault

Private

[176]
M

otorB
earing

L
ST

M
H

ealth
Status

N
A

SA
B

earing
D

ataset

[177]
W

ind
Turbine

Texture
SignalIm

ages
+

M
ultichannelC

N
N

H
ealth

Status
ora

specific
fault

Synthetic

[178]
R

otating
M

achine
SA

E
+

L
ST

M
/

Private

[179]
R

olling
B

earing
C

N
N

+
B

id.G
R

U
+

A
ttention

m
echanism

R
U

L
Private

[180]
H

elicopter
Tim

e-series
im

aging
+

C
A

E
A

nom
aly

detection
A

irbus

[181]
M

illing
M

achine
C

utter
G

A
F

+
C

N
N

Toolw
earclass

M
illing

M
achine

D
ataset

(PH
M

10)
[182]

R
olling

B
earing

G
S

+
C

N
N

Toolw
earclass

N
A

SA
B

earing
D

ataset

[183]
H

ard
D

isk
C

N
N

-L
ST

M
A

class
indicating

w
hetherornot

an
H

D
D

is
going

to
fail

H
D

D
D

ataset

[184]
H

ard
D

isk
L

ST
M

A
class

indicating
w

hetheror
notan

H
D

D
is

going
to

fail
Z

T
E

’s
disk

dataset

[185]
H

ard
D

isk
L

ST
M

A
class

representing
the

health
state

ofthe
H

D
D

H
D

D
B

ackblaze
dataset

[186]
Industrialequipm

ent
A

utoencoder
A

nom
aly

detection
M

IM
IID

ataset

[59]
H

ard
D

isk
G

A
F

+
C

N
N

A
class

representing
the

health
state

ofthe
H

D
D

H
D

D
B

ackblaze
dataset

Table 5.2: A summary of the most recent Chapters regarding Deep Learning
models for predictive maintenance.

138 | A predictive maintenance application in IoT scenarios

TW [Cycles] RMSE Score

10 18,92±0,26 1290±42
20 14,40±0,21 391±17
30 13,50±0,30 279±23

Table 5.3: Performance metrics of the proposed model varying the Time
Window length.

TW [Cycles] RMSE Score

10 19,73±0,46 1521±44
20 14,76±0,28 375±37
30 13,11±0,36 262±20

Table 5.4: Performance metrics of the LSTM network varying the Time
Window length.

TW [Cycles] Proposed approach Standard LSTM

10 28233 204929
20 28373 204929
30 28513 204929

Table 5.5: Number of parameters comparison.

Proposed approach Standard LSTM

141 KB 2,5 MB

Table 5.6: Models’ storage size.

TW [Cycles] Proposed approach Standard LSTM

10 217,68±4,04 [s] 272,54±3,81 [s]
20 235,08±1,69 [s] 290,21±2,83 [s]
30 273,34±2,99 [s] 323,67±16,50 [s]

Table 5.7: Comparison of training times by varying the time window (TW)
between proposed model and LSTM network.

5.6 Discussion and Conclusions | 139

Authors DL approach RMSE Score

[172] Noisy BLSTM + CNN 11,36±0,09 226±3
[169] LSTM with attention 11,44 263
[168] RBM + LSTM 12,10 251
[170] LSTM + CNN 12,22±0,04 288±4
[202] CNN + LSTM 12,46 535

Standard LSTM LSTM 13,11±0,36 262±20
Proposed approach Attention-based 13,50±0,30 279±23

[167] Anomaly triggered LSTM 17,63 424
[171] MHA + LSTM + CNN + NTM / 275

Table 5.8: Comparison with state-of-the-art approaches.

Part III

Time Series forecasting in FinTech

| 143

In this Part III, two approaches applied in the context of Fintech, specifi-
cally focusing on stock market prediction, are presented.

The Chapter 6 introduces a stock forecasting framework that integrates
textual user-generated content and financial data as inputs into various deep
learning models. A case study centered around GameStop is conducted, ex-
amining various deep learning models and assessing how textual information
gleaned from prominent OSNs (Twitter and Reddit) can impact the stock
prediction module’s performance. The analysis underscores the significance
of analyzing user-generated content sourced from diverse OSNs in the context
of stock forecasting, even in the presence of dynamic user opinions that may
pose challenges to the stock prediction task.

Instead, Chapter 7 developed a system dedicated to Stock Price Predic-
tion, with the primary objective being the evaluation of market-derived data
encompassing elements such as supply, demand, and exchanges as effective
predictors of market trends, using Machine Learning (ML) and Deep Learning
(DL) models. Furthermore, this investigation seeks to determine whether
augmenting this data with sentiment analysis drawn from news sources and
online communities can provide additional insights into stock price prediction.
Prior to their introduction, a theoretical background is presented to facilitate
comprehension for the reader.

Background

This Section summarizes a combination of Machine Learning algorithms and
Neural Networks as predictive models, which were used in Chapters 6 and 7.

Random Forest Random Forest, proposed by Breiman [203] is a widespread
ensemble learning method that combines the predictions of multiple decision
trees to make more accurate predictions. The main idea behind Random
Forest is to train many decision trees on random subsets of the training data

144 |

and features, and then combine their predictions by averaging or taking the
majority vote.

The individual decision trees in a Random Forest are trained on random
subsets of the training data, which helps to reduce overfitting and improve
generalization. Each decision tree is trained to predict the target variable
based on a random subset of the input features, which helps to increase
diversity among the trees and reduce correlation. The final prediction of the
Random Forest is typically obtained by averaging or taking the majority vote
of the predictions of the individual trees. Random Forest can handle both
classification and regression tasks, and is robust to noisy and missing data.

To train a single decision tree, we recursively partition the input space into
rectangular regions, based on the values of the input features. Each partition
is defined by a decision rule of the form:

x j ≤ tk (5.4)

where x j is the value of the jth feature, and tk is a threshold value.

To find the optimal partition for each node of the decision tree, we choose
the feature and threshold that minimize a cost function C, such as the Gini
index or information gain:

C =
n

∑
i=1

pi(1− pi) (5.5)

where n is the number of classes, and pi is the proportion of training
examples in class i in the current node.

To build a Random Forest, we train T decision trees on random subsets of
the training data and features. For each tree t, we sample m features from the
total p features, where m << p. This helps to increase diversity among the
trees and reduce correlation.

| 145

m << p, T decision trees trained on random subsets of data and features
(5.6)

To make a prediction for a new example, we pass it through each decision
tree in the forest, and obtain a set of T predictions. The final prediction
is obtained by averaging (for regression) or taking the majority vote (for
classification) of the individual predictions.

Final prediction =

 1
T ∑

T
t=1 ft(x), regression

mode({ ft(x)}), classification
(5.7)

where ft(x) is the prediction of the tth decision tree on the input example
x.

In practice, Random Forest has been shown to be effective on a wide range
of problems, including image classification [204], text classification [205],
and regression analysis [206]. It has become a popular choice for machine
learning tasks due to its robustness, scalability, and ease of use.

Gradient Boosting Gradient Boosting is a popular ensemble learning tech-
nique used in supervised learning tasks, particularly in regression and classifi-
cation problems. It involves constructing a series of weak prediction models
and iteratively refining them to improve the overall predictive performance
of the model. The technique works by iteratively adding new models to
the ensemble, with each new model attempting to correct the errors of the
previous models.

The key idea behind gradient boosting is to optimize a loss function using
gradient descent, where the gradient is computed with respect to the output
of the current ensemble of models. This approach allows gradient boosting
to effectively handle complex datasets with high-dimensional input features,

146 |

noisy or missing data, and nonlinear relationships between the input features
and the output variable.

The origin of gradient boosting can be traced back to the work of Friedman
[207], who introduced the concept of boosting decision trees using gradient
descent. Since then, gradient boosting has become a widely-used technique in
machine learning, with a variety of implementations and extensions developed
over the years.

The objective function to be minimized in gradient boosting is typically
defined as a sum of loss functions over all training examples:

L =
n

∑
i=1

L(yi,F(xi)) (5.8)

where n is the number of training examples, yi is the true label of the ith
example, xi is the input feature vector of the ith example, F(xi) is the current
prediction of the ensemble model on the ith example, and L is a loss function
that measures the difference between the predicted and true labels.

The gradient of the objective function with respect to the output of the
current ensemble model F(x) can be computed as:

∂L

∂F(xi)
=

n

∑
j=1

∂L(y j,F(x j))

∂F(xi)
(5.9)

To update the ensemble model, a new weak learner h(x) is fit to the
negative gradient of the loss function:

ri j =−
∂L(yi,F(xi))

∂F(xi)
, ∀i = 1, . . . ,n (5.10)

h j(x) = argmin
h∈H

n

∑
i=1

(h(xi)− ri j)
2 (5.11)

| 147

where H is the space of possible weak learners, and ri j is the residual
error between the predicted value and the true label for the ith example using
the current ensemble model.

The weak learner is then added to the ensemble model by multiplying
its predictions by a small learning rate ν and adding them to the current
predictions:

F(x)← F(x)+νh(x) (5.12)

Extremely Randomized Trees (ExtraTrees) ExtraTrees is a ML algorithm
that belongs to the ensemble family of methods. It was first introduced by
Geurts et al. [208].

ExtraTrees is an extension of the popular Random Forest algorithm, which
builds a collection of decision trees and aggregates their predictions to make a
final prediction. In contrast, ExtraTrees introduces additional randomness by
randomly selecting a subset of candidate features at each node of the decision
tree and randomly selecting the splitting thresholds. This extra randomness
leads to a more diverse set of decision trees and can improve the performance
of the algorithm.

The training process of ExtraTrees can be summarized as follows. Given
a training set {(x1,y1), . . . ,(xn,yn)}, where xi is a feature vector and yi is a
label, the algorithm generates a collection of T decision trees, where each tree
is trained on a bootstrap sample of the training set and a randomly selected
subset of features. For each node of each tree, a random subset of features is
selected, and a splitting threshold is chosen at random. The best split among
the randomly chosen ones is selected to split the node, and the process is
repeated recursively until all the nodes are pure or until a stopping criterion is
met.

The final prediction of the ExtraTrees algorithm is obtained by aggregating
the predictions of the individual trees. For regression tasks, the predictions are

148 |

simply averaged over the trees, while for classification tasks, the predictions
are combined using voting or weighted voting.

The performance of ExtraTrees depends on the number of trees T , the
number of randomly selected features, and the number of randomly chosen
thresholds. Generally, increasing the number of trees and the number of
features can improve the performance of the algorithm, but at the cost of
increased computational complexity.

In summary, ExtraTrees can improve the performance of decision tree
ensembles by introducing additional randomness in the tree building process.
It has been shown to be effective in a wide range of applications, including
image classification [209], speech recognition [210], and anomaly detection
[211].

Least Absolute Shrinkage and Selection Operator (Lasso) Lasso is a
regularization technique used in linear regression to prevent overfitting and
select important features. It was first introduced by Tibshirani [212].

The Lasso technique adds a penalty term to the least squares cost function
that encourages the coefficients of the less important features to be set to zero.
This results in a sparse solution that selects only the most important features
and avoids overfitting. The penalty term is defined as the L1 norm of the
coefficient vector.

The optimization problem can be written as follows:

min
β0,β

n

∑
i=1

(yi−β0−
p

∑
j=1

xi jβ j)
2 +λ

p

∑
j=1
|β j| (5.13)

where yi is the target variable, xi j is the jth feature of the ith observation,
β j is the corresponding coefficient, β0 is the intercept, and λ is a hyperparam-
eter that controls the strength of the penalty. The first term is the least squares
cost function, and the second term is the L1 penalty term.

The Lasso algorithm solves the above optimization problem using coordi-
nate descent, which updates the coefficients sequentially while holding the

| 149

other coefficients fixed. This makes the algorithm computationally efficient
and allows for high-dimensional data.

The performance of the Lasso algorithm depends on the value of the
hyperparameter λ , which controls the trade-off between the fit of the model
and the sparsity of the solution. A larger value of λ results in a sparser
solution, while a smaller value of λ allows for more features to be included
in the model.

In summary, Lasso is a powerful regularization technique that can prevent
overfitting and select important features in linear regression. It has been
shown to be effective in a wide range of applications, including genetics
[213], finance [214], and image processing [215].

Long Short-Term Memory (LSTM) LSTM is a type of recurrent neural
network (RNN) that is capable of learning long-term dependencies and has
become popular in various fields such as natural language processing, speech
recognition, and image captioning. The LSTM architecture was introduced
by Hochreiter & Schmidhuber in [216].

The key feature of LSTM is its ability to selectively remember or forget
information from previous time steps. This is achieved through the use of
memory cells and gates. The memory cell is a vector that stores information
over time, and the gates are used to control the flow of information into and
out of the cell.

The LSTM architecture consists of four main components: the input gate,
the forget gate, the output gate, and the cell state. The input gate controls
the flow of information from the input at the current time step into the cell
state. The forget gate controls the flow of information from the previous cell
state into the current cell state, allowing the LSTM to selectively forget or
remember information from the past. The output gate controls the flow of
information from the cell state to the output at the current time step.

The equations for the LSTM architecture are as follows:

150 |

ft = σ(Wf [ht−1,xt]+b f) (5.14)

it = σ(Wi[ht−1,xt]+bi) (5.15)

C̃t = tanh(WC[ht−1,xt]+bC) (5.16)

Ct = ft⊙Ct−1 + it⊙C̃t (5.17)

ot = σ(Wo[ht−1,xt]+bo) (5.18)

ht = ot⊙ tanh(Ct) (5.19)

where xt is the input at time step t, ht−1 is the output of the LSTM at the
previous time step, σ is the sigmoid activation function, ⊙ denotes element-
wise multiplication, Wf ,Wi,WC,Wo are weight matrices, and b f ,bi,bC,bo are
bias vectors.

The forget gate ft and input gate it are computed using the sigmoid
function and control the flow of information into and out of the cell state.
The candidate values C̃t are computed using the hyperbolic tangent function
and are used to update the cell state Ct . Finally, the output gate ot controls
the flow of information from the cell state to the output, and the output ht

is computed by taking the element-wise product of the output gate and the
hyperbolic tangent of the updated cell state.

In summary, LSTM is a type of recurrent neural network that is capable
of learning long-term dependencies by selectively remembering or forgetting
information from previous time steps. The architecture uses memory cells
and gates to control the flow of information and has become a popular choice
for a wide range of applications [217].

Bidirectional LSTM Bidirectional Long Short-Term Memory (BiLSTM)
is a type of neural network that combines the forward and backward infor-
mation flow of two Long Short-Term Memory (LSTM) networks to model

| 151

temporal dependencies in both forward and backward directions. BiLSTM
was introduced by Schuster & Paliwal in [218].

The BiLSTM architecture consists of two LSTMs, one processing the
input sequence in the forward direction and the other processing it in the
backward direction. The outputs of both LSTMs are then concatenated at each
time step to produce the final output. The use of both forward and backward
information allows the BiLSTM to capture not only past dependencies but
also future dependencies in the input sequence.

The equations for the BiLSTM architecture are as follows:

−→
ht = LSTM(xt ,

−−→
ht−1)

←−
ht = LSTM(xt ,

←−−
ht+1) ht = [

−→
ht ;
←−
ht] (5.20)

where xt is the input at time step t,
−−→
ht−1 is the hidden state of the forward

LSTM at the previous time step, and
←−−
ht+1 is the hidden state of the backward

LSTM at the next time step. [·; ·] denotes concatenation of vectors.
The forward and backward LSTMs are identical to the standard LSTM,

with the exception that the backward LSTM processes the input sequence in
reverse order. The output of the BiLSTM at each time step is the concatenation
of the forward and backward LSTM outputs.

BiLSTM has been shown to be effective in various applications such
as speech recognition [219], natural language processing [220], and image
captioning [221], where the modeling of both past and future dependencies is
important.

Gated Recurrent Unit (GRU) Gated Recurrent Unit (GRU) is a type of
recurrent neural network that is designed to address the vanishing gradient
problem and allow for efficient modeling of long-term dependencies. GRU
was introduced by Cho et al. in [222].

The GRU architecture is similar to Long Short-Term Memory (LSTM),
but with fewer parameters and a simpler gating mechanism. The GRU unit

152 |

has a reset gate and an update gate, which control how much information is
passed from the previous time step and how much information is updated
based on the current input. The update gate allows the GRU to selectively
update the hidden state based on the input, while the reset gate allows the
GRU to forget previous information that is no longer relevant.

The equations for the GRU unit are as follows:

zt = σ(Wzxt +Uzht−1) (5.21)

rt = σ(Wrxt +Urht−1) (5.22)

h̃t = tanh(Whxt +Uh(rt⊙ht−1)) (5.23)

ht = (1− zt)⊙ht−1 + zt⊙ h̃t (5.24)

where xt is the input at time step t, ht−1 is the hidden state at the previous
time step, σ is the sigmoid activation function, ⊙ denotes element-wise
multiplication, and Wz,Wr,Wh,Uz,Ur,Uh are weight matrices to be learned.

The update gate zt determines how much of the previous hidden state to
keep and how much of the new candidate hidden state h̃t to incorporate. The
reset gate rt determines how much of the previous hidden state to forget and
how much of the new input to use for the new candidate hidden state h̃t .

GRU has been shown to be effective in various natural language process-
ing tasks, such as language modeling [223], machine translation [224], and
sentiment analysis [225], as well as in other applications such as image and
speech recognition [226].

Bidirectional GRU Bidirectional Gated Recurrent Unit (BiGRU) is an
extension of GRU that incorporates information from both past and future
contexts in the input sequence. BiGRU was first introduced by Graves &
Schmidhuber in [227]. BiGRU consists of two separate GRUs, one processing
the input sequence forward and one processing the input sequence backward.

| 153

The output of each GRU is concatenated at each time step, providing a
context window that includes information from both past and future. The
forward and backward GRUs have their own set of weights, which are learned
independently during training.

The equations for the forward GRU unit are as follows:

zt = σ(W f
z xt +U f

z h f
t−1) (5.25)

rt = σ(W f
r xt +U f

r h f
t−1) (5.26)

h̃ f
t = tanh(W f

h xt +U f
h (rt⊙h f

t−1)) (5.27)

h f
t = (1− zt)⊙h f

t−1 + zt⊙ h̃ f
t (5.28)

The equations for the backward GRU unit are as follows:

zt = σ(W b
z xt +Ub

z hb
t+1) (5.29)

rt = σ(W b
r xt +Ub

r hb
t+1) (5.30)

h̃b
t = tanh(W b

h xt +Ub
h (rt⊙hb

t+1)) (5.31)

hb
t = (1− zt)⊙hb

t+1 + zt⊙ h̃b
t (5.32)

where xt is the input at the time step t, h f
t−1 is the hidden state of the for-

ward GRU at the previous time step, hb
t+1 is the hidden state of the backward

GRU at the next time step, σ is the sigmoid activation function, ⊙ denotes
elemental multiplication, and W f

z ,W
f

r ,W
f

h ,U
f

z ,U
f

r ,U
f

h are weight matrices
for the forward GRU, and W b

z ,W
b
r ,W

b
h ,U

b
z ,U

b
r ,U

b
h are weight matrices for the

backward GRU.

The output of the Bi-GRU at each time step is the concatenation of the
forward and backward hidden states:

154 |

ht = [h f
t ,h

b
t] (5.33)

BiGRU has been shown to be effective in various natural language pro-
cessing tasks, such as part-of-speech tagging, named entity recognition, and
sentiment analysis [220].

S-LSTM is a sequence of LSTM layers stacked on top of each other so that
the output of each layer is the input of the next one. This allows the network
to build a hierarchical representation of the input, where each layer is able to
extract more abstract features from the data.

6
Forecasting the stock market leveraging

social media data

6.1 Introduction

In recent years, there has been a growing interest in stock market analysis,
driven by investors looking to profit from financial markets [228–230].

The stock market’s fluctuations have a significant impact on the social and
economic conditions of both individuals and countries [231]. It affects a wide
range of industries, including communication, banking, home appliances,
medicine, transportation, and civil aviation. However, the stock market is
known for its high degree of nonlinearity and dynamism [232, 233], mak-
ing investment decisions challenging. Additionally, the market’s dynamic
price fluctuations and chaotic behavior pose substantial challenges for price
forecasting [234].

Over the past decade, researchers have developed various machine learn-
ing models to address stock market forecasting [235]. Notably, there has been
a growing trend toward using deep learning models for stock forecasting, with
promising results [236]. These models leverage historical financial data and
have shown effectiveness in predicting stock market trends.

156 | Forecasting the stock market leveraging social media data

However, the stock market is also influenced by contextual events, such
as financial news, user opinions, and investor decisions [229]. These factors
contribute to the market’s dynamic and nonlinear nature. To address this
complexity, researchers have explored information fusion strategies for stock
price and trend prediction [237].

The rise of Online Social Networks (OSNs) has had a profound impact on
investor and consumer behavior in the stock market [228, 238, 239]. Recent
studies [240, 241] have investigated the role of social media information in
understanding investor behavior and predicting market trends. This became
especially evident during the Gamestop (GME) squeeze event in early 2021,
where online discussions and debates on platforms like Reddit influenced
millions of novice traders, leading to significant market disruptions. The price
of GME surged by a staggering 1700% during this period, causing substantial
losses for major investors like Melvin Capital.

This chapter aims to explore how content shared on OSNs can impact
investor decisions and, consequently, stock market forecasting. It does so
by integrating historical financial data with social media data and evaluating
their combined effect on prediction outcomes.

The chapter is structured as follows: Section 6.2 provides an overview
of state-of-the-art approaches in stock prediction. Section 6.3 presents the
proposed methodology, which integrates user-generated content from Online
Social Networks (OSNs) with historical financial data. Section 6.4 outlines
the experimental protocol, including hyperparameter optimization for training
the stock forecasting model. Section 6.5 presents the obtained results and dis-
cusses key findings. Finally, Section 6.6 offers a summary of the methodology
and results, along with insights into potential future research directions.

6.2 Related Work | 157

6.2 Related Work

In recent years, stock market prediction has become a prominent challenge
in the finance domain [231, 242]. Despite the Efficient Market Hypothesis
theory suggesting that consistently outperforming the market is impossible,
researchers and practitioners have been actively developing approaches and
methodologies to assist traders in achieving financial gains within the stock
market [243].

Early stock forecasting approaches primarily relied on statistical methods
[244, 245], which yielded subpar results due to the stock market’s high volatil-
ity and nonlinearity [246, 232]. This inherent complexity posed significant
challenges for investors seeking profits from their investments.

The proliferation of Artificial Intelligence (AI) models in the financial
domain [247, 243] has offered opportunities for investors to gain profits. Ma-
chine learning models have been extensively developed for stock forecasting
[228], with deep learning-based models gaining prominence due to the grow-
ing volume of financial data [235, 248, 249]. While deep learning models
have shown promise in stock market prediction [236], their applications have
limitations, as highlighted by Thakkar and Chaudhari [229].

The dynamic and nonlinear nature of the stock market necessitates the
consideration of various data sources, such as financial news and content
from Online Social Networks (OSNs) [234]. Some approaches have focused
on analyzing news for stock forecasting but faced challenges due to the
costly and time-consuming nature of news collection [250]. Others, like Zhai
and Zhang [251], proposed LSTM-based forecasting models that combine
historical data with features extracted from news using Deep Text Mining
methods. Bayesian inference-based approaches, such as the one presented
by Colasanto et al. [252], utilize polarity scores inferred from news through
models like AlBERTo. In [253], authors propose an approach that investigates
news related to homogeneous clusters of companies to integrate information
from these clusters with the target company’s data. Ray et al. [254] combined

158 | Forecasting the stock market leveraging social media data

Bayesian Structural Time Series with LSTM to investigate the influence of
news sentiment on short-term stock price forecasting.

While news content can provide technical input, information shared on
OSNs often exerts a more significant influence on user opinions [255]. Sev-
eral approaches have integrated information from OSNs into stock prediction
processes, as demonstrated by [238]. The rapid spread of information and
related user opinions on OSNs has been observed across various domains
[256, 257], emphasizing the importance of affective factors [258]. Jing et al.
[259] designed an LSTM-based approach to predict stock prices by combining
historical financial data with investor sentiment. In [240], authors integrated
semantic features extracted using the BERT model, external structural charac-
teristics inferred by Node2vec, and Tweet embeddings into a deep learning
model with an attention mechanism, alongside historical stock prices. Lu et
al. [241] used an Artificial Neural Network to predict stock market crises,
combining market indicators, mixed-frequency investor sentiment, and histor-
ical data. Zheng et al. [260] investigated the collective behaviors of Reddit
users, analyzing topics and user sentiment through interaction networks.

Despite the myriad approaches proposed in the literature, challenges
persist due to the inherent nonlinear and dynamic behavior of the stock
market. The key novelties relative to existing state-of-the-art analyses and
approaches include:

• Adoption of a multi-modal approach, combining historical stock prices
and sentiment time series, in contrast to [229], which focuses solely on
analyzing AI models and heuristics using historical financial data.

• Correlation of information extracted from social networks with histori-
cal stock price data for stock prediction, while [260] primarily focuses
on the analysis of social behavior during the GameStop squeeze event.

• Investigation of two different social networks to uncover potential
correlation patterns, compared to [240, 260], which predominantly

6.3 Methodology | 159

focuses on a single social network (Twitter and Reddit, respectively),
and [259], which concentrates on a specific investor forum.

• Extraction of three distinct time series for inferring daily sentiment
(positive/neutral/negative) relative to a stock, as opposed to [240, 260],
which amalgamate sentiment scores into a single value.

6.3 Methodology

In this section, the proposed framework for stock forecasting is described in
detail, as depicted in Figure 6.1. The framework aims to combine content
information from various Online Social Networks with historical financial
data to predict the next-day stock opening price.

The framework comprises three main steps:

1. Data Collection: In the first step, information is collected from multiple
data sources (represented as number 1⃝ in Figure 6.1).

2. Pre-processing: Subsequently, different pre-processing operations are
applied to the collected data (number 2⃝ in Figure 6.1).

3. Prediction Module: The pre-processed data is then fed as input into
the prediction module (number 3⃝ in Figure 6.1), which is responsible
for forecasting the next-day stock opening price.

160 | Forecasting the stock market leveraging social media data

Figure 6.1: Overview of the proposed framework, which relies on three main
steps: Data ingestion, Pre-processing and Stock forecasting.

Figure 6.2: Description of the task in which different time series may be
considered to forecast next day stock price.

The task involves utilizing diverse data sources, which include historical
market data and textual content from various social media platforms [261].

6.3 Methodology | 161

The purpose of combining these different data sources is to enhance the
accuracy of market predictions by taking into account its non-linear nature
and high volatility. Figure 6.2 illustrates the heterogeneous data sources used
in this task.

6.3.1 Data ingestion module

The first stage of the framework, as depicted in Figure 6.1, focuses on gather-
ing data from various sources such as Online Social Networks and dedicated
portals, in order to provide multiple perspectives on a single stock. To obtain
user-generated text content from OSNs like comments, tweets, and posts,
standard information retrieval methods are utilized. This involves the use
of specific APIs (snscrape 8 and pushshift pushshift9) with different crite-
ria based on the selected OSNs (e.g., keyword lists for Twitter or specific
subreddits for Reddit).

Concurrently, financial data is crawled from dedicated portals, which con-
tain historical market prices and transaction volume statistics. The historical
financial information is collected using the yfinance API yfinance10, and takes
into account seven different features: open price, high price, low price, close
price, adjusted price, close price, and volume.

6.3.2 Pre-processing module

The objective of the second module of the framework is to perform pre-
processing and Sentiment analysis operations. First, special characters, sym-
bols (e.g. @ , \, or #), and Uniform Resource Locators (URLs) are removed
from user generated content as they do not affect user sentiment. Then, the
roBERTa model is used to assign three sentiment scores (positive, neutral, and

8https://github.com/JustAnotherArchivist/snscrape
9https://github.com/pushshift/api

10https://pypi.org/project/yfinance/

https://github.com/JustAnotherArchivist/snscrape
https://github.com/pushshift/api
https://pypi.org/project/yfinance/

162 | Forecasting the stock market leveraging social media data

negative) to each comment ci ∈C (where C is the set of comments). Finally,
the comments are aggregated daily to create three different time series which
are then used as input for the Stock forecasting module.

Additionally, historical financial data is normalized using the min-max
operation to scale the values in the range [0,1]. These normalized values are
then used as input for the prediction module.

In summary, this module generates three distinct time series for each
analyzed OSN, representing the daily sentiment scores for positive, negative,
and neutral sentiments. It also produces a multivariate time series for the
historical financial data as its output.

6.3.3 Stock forecasting module

The aim of the last module is forecasting the stock price for the next day. This
is achieved by combining historical financial values and sentiment scores to
enhance the accuracy of the prediction module. It should be noted that in
Figure 6.1, one or more data sources can be chosen to assist the forecasting
process. This process depends on five distinct deep learning models - Long
Short Term Memory (LSTM), Gated Recurrent Unit (GRU), Bidirectional
LSTM (Bi-LSTM), Bi-GRU, and Stacked-LSTM (S-LSTM) - to handle the
given task.

6.4 Experimental analysis

In this section, a comprehensive description of the experimental analysis
is provided, which was conducted to evaluate the approach across various
datasets and time window lengths (refer to Section 6.4.1). Furthermore, the
detailed process of hyper-parameter optimization employed to optimize each
deep learning model used in the forecasting module is presented in Section
6.4.2.

6.4 Experimental analysis | 163

6.4.1 Experimental protocol

The analysis’s goal is to evaluate the efficiency and effectiveness of the
proposed methodology. It also aims to investigate the impact of user-generated
content published on Online Social Networks on stock prediction.

In summary, two analyses were conducted using different datasets and
time window lengths:

• The efficiency of each deep learning model in terms of training time
was assessed.

• The effectiveness of the proposed methodology was measured by com-
paring different deep learning models using Root Mean Square Error
(RMSE), as defined in equation 6.1. Specifically, the cumulative RMSE
for the validation set was calculated, while the test set was evaluated in
terms of day-by-day RMSE.

RMSE =

√
N

∑
i=1

(Predictedi−Actuali)2

N
(6.1)

Furthermore, each model has undergone optimization through the imple-
mentation of a greedy search, where the learning rate (∈{0.01,0.001,0.0001})
and batch size (∈ {16,32,64,128,256}) were varied.

Various datasets have been constructed to investigate different real-world
scenarios related to GameStop (GME) stock, based on the time span between
January 1, 2021, and December 31, 2021. These datasets can be categorized
as follows: i) only financial data obtained from Yahoo! Finance, ii) data
obtained from both Yahoo! Finance and Twitter, iii) data obtained from both
Yahoo! Finance and Reddit, and iv) consideration of data from all available
sources (Yahoo! Finance, Twitter, and Reddit). The characteristics of these
datasets are presented in Table 6.1.

164 | Forecasting the stock market leveraging social media data

Dataset Amount Data type Average STD
Twitter 893,400 Tweet 2247.67 652.26
Reddit 41,436 Forum comments 113.52 19.21

Yahoo!
Finance

2,184
Open Price;High Price;Low Price;

Close Price Adj Price;
Close Price;Volume

1 1

Table 6.1: Dataset characterization of the collected dataset based on the time
span between January 1, 2021 and December 31, 2021. It is worth to note
that the average and standard deviation are daily computed.

The methodology has been implemented on Google Colaboratory 11, in
which deep learning models have been built by using Keras12, TensorFlow
V213 and pyts14 for time series analysis.

6.4.2 Hyperparameter optimization

In this section, the hyper-parameter optimization made for each model is
described, with the aim of identifying the best parameters by performing
a grid search. This search considers 15 different configurations, which are
detailed in Table 6.2.

11https://colab.research.google.com/
12https://keras.io/
13https://www.tensorflow.org/
14https://pyts.readthedocs.io/

https://colab.research.google.com/
https://keras.io/
https://www.tensorflow.org/
https://pyts.readthedocs.io/

6.4 Experimental analysis | 165

Configuration Hyperparameters
Batch size Learning rate

1 16 0.01
2 16 0.001
3 16 0.0001
4 32 0.01
5 32 0.001
6 32 0.0001
7 64 0.01
8 64 0.001
9 64 0.0001
10 128 0.01
11 128 0.001
12 128 0.0001
13 256 0.01
14 256 0.001
15 256 0.0001

Table 6.2: Hyper-parameter configurations used during the grid search strategy
for each model.

The hyper-parameter optimization was performed by varying the time
window size to evaluate its effect on stock forecasting. The results for time
windows of 8 and 16 days are shown in Figure 6.3 and 6.4 (6.5 and 6.6). It is
evident that configurations 1, 4, 5, 6, and 12 exhibit a balance between effi-
ciency and efficacy. Furthermore, the models trained on 16 days outperformed
those trained on 8 days, leading to a focus on the longer time window.

In terms of model efficacy, the GRU model generally had shorter training
times compared to the other models. However, in the case of the dataset
integrating data from both social networks and historical financial data, the
LSTM model was the fastest but less effective than GRU. Configurations

166 | Forecasting the stock market leveraging social media data

Figure 6.3: Running time analysis varying datasets and fixed time window
equal to 8.

3, 4, and 5 achieved significantly faster training times with GRU, while
configurations with a batch size of 16 showed similar efficiency. The best
configurations considering both efficiency and effectiveness were GRU with a
batch size of 16 and learning rate of 0.01 and LSTM with a batch size of 128
and learning rate of 0.0001. Both models were slightly better than GRU with
a 16-day time window in terms of efficiency but significantly less effective.

Lastly, Figure 6.7 illustrates the characteristics of each deep learning
model at the end of the hyper-parameter optimization phase, including the
number of layers and trainable parameters.

6.5 Results

In this section, the effectiveness results once the hyper-parameter optimization
of each model is performed, as detailed in Section 6.4.2, are discussed. The
table 6.3 depicts the mean and standard deviation of RMSE evaluated on the
test set.

6.5 Results | 167

Figure 6.4: RMSE training set varying datasets and fixed time window equal
to 8.

YF YF+Reddit YF+Twitter YF+All
Models Mean STD Mean STD Mean STD Mean STD

16
da

ys

GRU 2.552 0.523 3.541 0.244 4.717 0.378 6.147 0.519
LSTM 3.965 1.039 6.374 1.109 4.323 0.992 6.530 0.698
S-LSTM 6.007 0.258 6.897 0.625 6.025 0.672 5.907 0.467
B-LSTM 3.437 0.185 6.767 1.003 4.854 1.279 6.201 0.862
B-GRU 3.410 0.469 5.661 0.241 4.240 0.314 4.894 0.128

8
da

ys

GRU 4.570 0.738 6.723 1.599 4.688 1.040 8.819 0.292
LSTM 3.834 0.151 7.694 0.624 5.100 0.429 10.101 1.229
S-LSTM 5.858 0.776 6.476 0.089 5.401 0.169 8.588 0.904
B-LSTM 4.036 1.073 5.201 0.160 4.396 0.092 4.649 0.124
B-GRU 3.889 0.283 7.154 0.224 4.539 0.029 8.712 2.666

Table 6.3: Results of each deep learning model in terms of RMSE over the
entire test set. In particular, YF and All stand for Yahoo Finance and both
OSNs, respectively.

168 | Forecasting the stock market leveraging social media data

Figure 6.5: Running time analysis varying datasets and fixed time window
equal to 16.

Despite the consideration of the influence of OSNs on different tasks by
Zheng et al. [260], the best results in terms of RMSE on the entire set are
achieved using only financial data. In terms of models, it is evident that GRU
achieves better results when considering the 16-day window due to its ability
to discard long-term information, while LSTM performs better on the 8-day
window by considering the temporal relationship over the entire analysis
period. When it comes to social networks, Reddit provides more information,
as evidenced by the observed effect of squeeze in some subreddits [262, 263].

Furthermore, more insight about the obtained results has been provided
by investigating the day-by-day RMSE evaluated on the test set considering
all the possible datasets. Specifically, the number of tweets and comments
that have been published on Twitter and Reddit in the days of the test set are
shown in Figure 6.8, respectively.

6.5 Results | 169

Figure 6.6: RMSE training set varying datasets and fixed time window equal
to 16.

It is observed that there are some days when there is a predominance
of tweets compared to Reddit comments and vice versa. Specifically, the
days with a high number of tweets and low number of Reddit comments are
highlighted in blue, while the days with a high number of Reddit comments
and low number of tweets are highlighted in orange. On the other hand,
the days with a high number of information published on both social media
platforms are highlighted in red. In terms of RMSE values, the days indicated
in blue and orange show higher values when considering the dataset with
Twitter and Reddit comments respectively. However, when considering
financial data and data from both social media platforms, a higher RMSE is
achieved on the days highlighted in red.

Despite previous studies highlighting the potential impact of social dy-
namics on stock prediction, our analysis reveals that the use of social data
does not always improve the prediction task. This can be observed in Figure

170 | Forecasting the stock market leveraging social media data

Figure 6.7: Configuration of each deep learning model at the end of the
hyper-parameter optimization.

Figure 6.8: Number of Tweets and Reddit comments per days.

6.6 Conclusion | 171

6.8, where the network’s performance does not improve on days 4, 5, and 6
despite having over 2000 tweets. Therefore, it can be concluded that while
social data has an impact on stock prediction, it is not always beneficial even
when there is significant informational content.

6.6 Conclusion

In the realm of FinTech, stock market forecasting stands out as a significant
challenge, attracting increasing attention due to the substantial daily trading
volumes on stock exchanges [264]. This chapter introduces a framework that
combines historical data with content derived from user-generated posts on
Online Social Networks (OSNs) to enhance stock forecasting. The case study
revolves around GME and assesses various deep learning models and the
influence of text data extracted from Twitter and Reddit on stock prediction
performance. The proposed approach introduces three key innovations: i) the
development of a multimodal methodology that merges historical stock prices
with sentiment scores from diverse OSNs, ii) the exploration of potential
correlations between different social networks and historical data during the
GameStop squeeze, and iii) the extraction of distinct sentiment scores for
each day.

The analysis underscores the significance of examining user-generated
content from multiple OSNs for effective stock forecasting, considering vari-
ous deep learning models and time windows. Moreover, the investigation of
distinct OSNs provides varied perspectives that may unveil correlations in data
analysis. However, the ever-shifting sentiments of OSN users can adversely
affect stock prediction tasks, particularly with the spread of misleading news,
as demonstrated in previous studies [265–267].

Future research endeavors will broaden the scope to encompass a wider
range of stocks and multimedia social networks like Instagram and Facebook.

172 | Forecasting the stock market leveraging social media data

Additionally, the integration of eXplainable Artificial Intelligence (XAI) tools
will empower practitioners in their decision-making processes.

7
Benchmarking stock prediction models

exploiting social data and news

7.1 Introduction

The GameStop squeeze, which took place in late January 2021, involved a
group of amateur traders on the Reddit forum r/wallstreetbets. They coor-
dinated the purchase of GameStop (GME) shares, a struggling video game
retailer, with the aim of driving up the stock price. The goal was to trigger
a "short squeeze," compelling investors who had bet against GameStop (by
"shorting" the stock) to buy shares and limit their losses, causing the stock
price to rise further.

This coordinated buying led to a significant increase in GameStop’s stock
price and resulted in substantial losses for hedge funds that had shorted the
stock. The GameStop squeeze also had broader implications for the financial
market, raising questions about market fairness and the influence of retail
traders using social media coordination. Some called for increased market
regulation, while others viewed it as a triumph for individual investors against
Wall Street.

In summary, the GameStop squeeze marked a historic moment in finance,
highlighting how social media and online communities can impact financial

174 | Benchmarking stock prediction models exploiting social data and
news

markets. Social media, particularly the Reddit forum r/wallstreetbets, played
a pivotal role in this short squeeze by facilitating information sharing and
coordinated buying. This collective action empowered individual investors
and contributed to the squeeze’s success.

Furthermore, social networks can influence the stock market in various
ways, including information dissemination, collective action, shaping market
sentiment, and spreading rumors. While they offer opportunities for informa-
tion sharing and collective decision-making, caution is necessary due to the
potential spread of misinformation.

Additionally, news from reputable sources can also influence investor deci-
sions, impacting stock prices based on factors like earnings reports, regulatory
issues, and macroeconomic news.

This Chapter aims to address research questions related to the influence of
social and news data on the stock market, the most suitable data sources, com-
bining such data with market data, forecasting techniques, model selection,
performance metrics, and the correlation between market and social/news
data for specific stocks. Specifically:

• RQ1: Can social or news data impact the stock market by influencing
investor decisions based on sentiment associated with such information?

• RQ2: What are the optimal data sources, such as social media platforms
(e.g., Twitter, Reddit) and news websites, for maximizing the utility of
this data?

• RQ3: How can social and news data from selected sources be effectively
utilized and integrated with market data to enhance stock prediction?
Do sentiment-related time series from social and news data exhibit
distinct or similar temporal patterns compared to market data? How
does data volume and availability over specific time intervals affect the
quality of analysis?

7.2 Related Work | 175

• RQ4: What forecasting techniques prove most effective when dealing
with stock prediction in the presence of diverse data sources?

• RQ5: Are Machine Learning (ML) and Deep Learning (DL) methods
the most promising approaches? Which ML/DL models demonstrate
the highest performance for our task?

• RQ6: Which performance metrics are best suited for selecting the
optimal model for stock prediction, considering the various types of
data?

• RQ7: In which basket of stocks is the correlation between market data
and social/news data most pronounced? Can such data serve as a robust
test case for the chosen models?

The Chapter is organized into sections covering related work (7.2), the
proposed system overview (7.3), results and discussion (7.4), and conclusions
and future work (7.5).

7.2 Related Work

The relationship between news sentiment, social network comments, and
their influence on the stock market has garnered significant research attention
in the financial field [268]. Recent research suggests that news sentiment
and comments on social media platforms can exert a substantial impact on
stock market trends and serve as valuable indicators of stock price movements
[269, 270]. Machine Learning (ML) and Deep Learning (DL) techniques
have been employed to analyze extensive data from various sources, including
news articles and social media platforms, resulting in more accurate stock
market predictions compared to traditional statistical models [271]. The
superiority of these models is widely acknowledged in the realm of stock
market prediction [272, 273].

176 | Benchmarking stock prediction models exploiting social data and
news

Sentiment analysis plays a pivotal role in understanding the stock mar-
ket. Analyzing sentiments from diverse sources provides insights into how
the stock market responds to different categories of news over varying
timeframes—short-term, medium-term, and long-term. As a result, sen-
timent analysis has emerged as a novel approach to assess the impact of news
sentiment on financial markets [274].

Reddit and Twitter are frequently utilized as sources for sentiment analysis
due to their popularity and the availability of publicly accessible data [275–
277]. In these studies, major news websites such as Financial Times, The Wall
Street Journal, Bloomberg, Reuters, Forbes, Yahoo Finance, and Business
Insider are commonly used as news sources [270, 272, 278].

Khan and Ghazanfar [279] adopted a unique approach to sentiment analy-
sis compared to previous studies. Their approach encompasses not only news
articles but also posts from social media platforms, especially Twitter. The
authors collected data from three primary sources: stock data from Yahoo!
Finance, news articles from Business Insider, and tweets containing stock
ticker symbols preceded by the dollar sign ($), such as ’$NYSE’ and ’$HPQ’.
These tweets provided crucial attributes: Source, TweetText, and Date. The
study explored various Machine Learning algorithms, including Support Vec-
tor Machine, Logistic Regression, and Random Forest, revealing that some
markets are more influenced by news sources, while others are more affected
by social media platforms.

Another proposed method, S_I_LSTM [280], integrates multiple data
sources, encompassing traditional historical stock data, technical indicators,
stock-related posts, and financial news for stock price prediction. This ap-
proach combines sentiment index, technical indicators, and stock historical
transaction data as features for stock price prediction and employs the Long
Short-Term Memory (LSTM) network for predicting the China Shanghai A-
share market. The study demonstrates the model’s effectiveness in predicting
stock closing prices with lower errors compared to using a single data source,

7.3 System Overview | 177

as assessed through Mean Absolute Error (MAE), Mean Square Error (MSE),
and Root Mean Square Error (RMSE).

In contrast, another study [281] underscores the challenges of predicting
stock prices due to their multifaceted influences and inherent unpredictability.
The authors propose a machine learning model based on the Long-Short Term
Memory (LSTM) algorithm designed to predict stock price data. Their system
operates in real-time using the Yahoo Finance API and incorporates Twitter
sentiment analysis as a feature to provide public opinion insights on specific
stocks. The model successfully generates prediction graphs with minimal
error, particularly for Asian Paints data.

Conversely, a different study [282] introduces an approach reliant on
Ensemble Learning and Sentiment Analysis. This approach utilizes a dataset
comprising historical data, technical indicators, and sentiment features for
50 stocks in the Nifty 50 Index, spanning two different time horizons (1
year and 5 years). The dataset is augmented with sentimental features such
as Wikipedia page hits and Google News mentions for each company. The
study compares the performance of state-of-the-art machine learning models,
including XGBoost, LSTM, ARIMA, and SVR, in predicting stock closing
prices. The results highlight the superior performance of LSTM and XGBoost
in terms of RMSE.

7.3 System Overview

This section presents the structural design of the system, as depicted in Figure
7.1. It will subsequently provide a comprehensive explanation of the key
stages comprising the presented workflow.

The selected methodology revolves around the concept of information
integration, specifically employing early feature fusion. This approach enables
the merging of multiple data sources at the outset of the forecasting process.
In the context of stock prediction, these data sources encompass financial data,

178 | Benchmarking stock prediction models exploiting social data and
news

news articles, and sentiment analysis from social media. By adopting early
feature fusion, the predictive model gains the capacity to capture intricate
relationships and dependencies among these diverse data sources, potentially
enhancing its predictive accuracy [87].

Figure 7.1: Overview of the proposed framework

Data Extraction As explained in Section 7.1, this research is focused on
utilizing historical price data, stock news, and user comments from social
media for precise stock prediction. The choice of these data sources was
influenced by a comprehensive literature review, where previous studies fre-
quently investigated stocks belonging to the S&P 500 index, particularly
Apple, Amazon, Tesla, Google, and Meta. This index encompasses 500 com-
panies, representing approximately 80% of the total market capitalization.
To collect stock news, the commonly used platform Business Insider was
selected, as it aggregates news articles from reputable sources such as Reuters
and Financial Times, as documented in previous research [279, 283]. For ex-
tracting sentiment from social media, Reddit was chosen due to its active user

7.3 System Overview | 179

community engaged in stock market discussions. All comments containing
the stock name or full company name, regardless of the case (uppercase, low-
ercase, or mixed), were extracted for analysis. Additionally, historical market
data was obtained from Yahoo! Finance. In this study, the data spanned from
July 14, 2022, to August 23, 2022, covering the specified time period.

Data Processing After identifying the required data for constructing the
dataset, the subsequent step involves processing the extracted data of various
types. Regarding the price history data, specific attributes were derived for
each security, including the opening price, highest price reached, lowest price
touched, closing price, and traded volume on a given date.

Additionally, additional features of potential interest were calculated. One
such feature is the Previous Trend attribute, which was defined and computed
as follows:

PTn =

Positive, if Cn >Cn−1

Negative, if Cn <Cn−1

Here, PTn represents the Previous Trend on day n, Cn denotes the closing
price on day n, and Cn−1 refers to the closing price on day n−1. Furthermore,
the Future Close Price was calculated as the closing price of the stock on the
next day, which is the value to be predicted in the final stages of the process.

Different operations were performed on the news and Reddit comments.
For the news data, an approach was sought to associate each news story with
a specific asset. This was achieved by searching for the stock name and
associated company in both the headline and the text of the news articles.

To enhance the accuracy of tagging unclassified news, two JSON files
were created. These files contained, for each stock, the names of key indi-
viduals working in the associated companies (including competitors) and the
products introduced to the market. This additional information facilitated a
more precise search within the news to enable effective tagging.

180 | Benchmarking stock prediction models exploiting social data and
news

Once all 3618 news items were labeled, the five equities with the highest
number of news items were selected for further analysis. Specifically, these
stocks are Meta (with 292 news items), Apple (with 264 news items), Amazon
(with 262 news items), Tesla (with 89 news items), and Google (with 65 news
items).

After determining the assets to be considered and their corresponding
news items, an approach was developed to filter the Reddit comments to
make them relevant. This was achieved by applying Name Entity Recognition
(NER), which involves identifying and categorizing key information (entities)
in a text. Entities can consist of individual words or phrases consistently
referring to the same entity. Each identified entity is then classified into a
predetermined category.

The NER procedure involved extrapolating entities from the news head-
lines and saving them in a JSON file. For each stock, this file contains the
date along with the associated keywords extracted from the news published
on that date.

Subsequently, the extracted keywords from the news stories were used to
search for related comments within the Reddit dataset.

Sentiment analysis for Reddit comments and news The data required for
this study were obtained as outlined in the previous section. It is now essential
to determine the sentiment associated with the headlines, text content of news
articles, and Reddit comments. Each news headline, article text, and Reddit
comment received a sentiment score, with values ranging from -1, signifying
negative sentiment, to 1, representing positive sentiment. Figure 7.2 provides
an overview of the sentiment score calculation process.

7.3 System Overview | 181

Figure 7.2: Extrapolation of the sentiment score

7.3.1 Dataset and Metrics

The dataset used for training predictive algorithms underwent several stages
of processing to derive a subset from a larger dataset. Initially, a total of 3,618
news items were extracted from Business Insider, covering the period from
July 14, 2022, to August 23, 2022. Each news item was associated with the
following attributes:

• ID: An identifier generated from the last 16 characters of the SHA256
hash encoding of the news title.

• Title: The headline of the news.

• Text: The body of the news item.

• Datasite: The publication date of the news item on the website.

182 | Benchmarking stock prediction models exploiting social data and
news

• DataScraping: The date when the news item was extracted by the
crawler, useful when website publication dates were unavailable.

• Source: The link to the page containing the full news item.

• Premium: A boolean variable indicating whether the news content
might be restricted to premium users.

Following this, the news items were labeled, and the analysis focused
solely on the five stocks with the highest number of instances: Apple, Amazon,
Google, Meta, and Tesla.

For the Reddit data, a total of 1,672,967 comments were collected for
these five stocks, and each instance was characterized by the following at-
tributes:

• author: The username of the commenter.

• body: The content of the comment.

• id: The identifier associated with the user.

• link: The link to the comment.

• subreddit: The subreddit where the comment was posted.

• subreddit_id: The identifier of the subreddit.

• subreddit_type: Indication of whether the subreddit is public or pri-
vate.

• datetime: The date the comment was made.

The Reddit posts were further refined using named entity recognition
(NER) keywords, resulting in the following number of comments for each
stock:

• Apple: 39,665 instances.

7.3 System Overview | 183

• Amazon: 19,675 instances.

• Tesla: 5,343 instances.

• Google: 92,390 instances.

• Meta: 16,283 instances.

The final dataset used for experiments combined data from both news
items and Reddit comments, resulting in instances corresponding to the
number of trading days between July 14, 2022, and August 23, 2022, for each
stock. Given that the stock market is not open every day, each asset had 29
instances in the dataset.

During the experiments, the dataset was employed in four distinct config-
urations:

1. Stock Price Data: This configuration included data from Yahoo Fi-
nance.

2. Stock Price Data + Sentiment News: It incorporated data from Yahoo
Finance, sentiment scores extracted from news, and the count of positive
and negative news items.

3. Stock Price Data + Reddit Sentiment: In addition to the attributes
from the Stock Price Data configuration, this setup included a sentiment
score derived from Reddit posts for each stock.

4. Stock Price Data + Sentiment News + Sentiment Reddit: This
comprehensive configuration merged all data from the previous setups.

Figure 7.3 provides a visual summary of the resulting final dataset, show-
casing the attributes associated with each configuration.

184 | Benchmarking stock prediction models exploiting social data and
news

Figure 7.3: Final Dataset

Before utilizing the derived data to train predictive models, a series of
preprocessing steps were applied. Initially, adjustments were made to the
Stock Price Data configuration. An additional attribute called Exponential
Moving Average (EMA) was introduced, a commonly used indicator in stock
trading. The EMA serves as a trend indicator by computing the average of
daily closing prices over a specified period. EMA values were calculated
based on the Close Prices using the following formula:

EMAt = EMAt−1 +α× (Close Pricet−EMAt−1)

In this formula, EMAt represents the EMA at time t, EMAt−1 represents
the EMA at time t−1, Close Pricet represents the close price at time t, and
α denotes the smoothing factor.

Additionally, an encoding operation was carried out on the Stock Price
Data to convert the values in the "Previous Trend" column from strings
("Positive" and "Negative") to integers (1 and 0).

7.3 System Overview | 185

The resulting modified dataset, encompassing these changes, is visually
represented in Figure 7.4.

Figure 7.4: Final Dataset

Once it was confirmed that the dataset comprised numerical data, a scaling
operation was performed to enhance the quality of the results. The dataset
underwent scaling using the StandardScaler, a transformation that adjusts the
data to have a mean of zero and a standard deviation of one, conforming to the
standard normal distribution (z-distribution). This scaling operation facilitates
quicker convergence and improves the effectiveness of the statistical model.
The scaling formula employed is as follows:

z =
x−µ

σ

Here, z represents the standardized value, x is the original value, µ denotes
the mean, and σ signifies the standard deviation.

In summary, the dataset was meticulously prepared and preprocessed
to be employed in various configurations, with the additional scaling step
implemented to enhance result quality.

This study specifically focuses on three widely recognized evaluation
metrics commonly utilized in the literature for stock prediction tasks:

Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean
Squared Error (RMSE) [284, 285, 234].

The adoption of these metrics serves the purpose of evaluating the predic-
tive performance of stock prediction models that leverage both financial data
and social data sourced from Reddit and news channels.

186 | Benchmarking stock prediction models exploiting social data and
news

Reddit was chosen as a social data source due to its extensive usage as a
platform for financial discussions and insights [286–288]. Furthermore, we
incorporated news channels from Business Insider, renowned for its compre-
hensive coverage of financial and business news [270, 272, 278, 279]. By
combining financial and social data, our study aims to explore the influence of
market sentiment and news events on the performance of our stock prediction
models.

Mean Absolute Error (MAE) In the realm of statistics, Mean Absolute Er-
ror (MAE), often referred to as L1 loss, serves as a metric for quantifying dis-
crepancies between paired observations representing the same phenomenon.
These pairs usually involve comparisons between predictions and correspond-
ing observations, temporal disparities between later and earlier time points,
or differences between a measurement technique and an alternative method.
MAE is calculated by summing the absolute errors and dividing the result by
the sample size, as expressed in the following formula:

MAE =
∑

n
i=1 |yi− xi|

n
=

∑
n
i=1 |ei|

n
It represents the average value of the absolute errors, with each error term,

denoted as ei, signifying the absolute difference between the predicted value
yi and the true value xi.

Mean Squared Error Mean Squared Error (MSE), also known as L2
Loss, is a statistical measure obtained by squaring the difference between the
observed y value and its corresponding predicted value. MSE is calculated
using the formula below:

MSE =
∑

n
i=1 (yi− ŷi)

2

n
Here:

7.4 Results and Discussion | 187

• yi represents the ith observed value.

• ŷ denotes the predicted value associated with yi.

• n indicates the total number of observations.

The process of calculating MSE is similar to computing variance. To
determine MSE, the observed value is subtracted from the expected value,
and the resulting difference is squared. This procedure is repeated for all
observations. Subsequently, the squared differences are summed, and the
resulting sum is divided by the number of observations to obtain MSE.

Root Mean Square Error Root Mean Square Error (RMSE) serves as
a metric for assessing the average discrepancy between predicted values
generated by a model and the actual values in a given dataset. A lower RMSE
value indicates better fitting of the model to the dataset.

The formula for RMSE calculation is as follows:

RMSE =

√
∑

n
i=1 (yi− ŷi)

2

n

Here:

• yi denotes the ith observed value.

• ŷ represents the corresponding predicted value.

• n signifies the total number of observations.

7.4 Results and Discussion

In this section, the results of the analysis are presented, addressing the research
questions posed in Section 7.1.

188 | Benchmarking stock prediction models exploiting social data and
news

Google considerations The analysis begins with an examination of the
Google asset. Graphs comparing the performance of sentiment scores derived
from news (Score Title and Score Text) and Reddit comments are provided.

The trends of both Score Title and Score Text are largely similar, but
Score Title exhibits more abrupt changes due to the shorter length of the titles.
Averaging the scores tends to smooth out the trends but may not capture
nuanced sentiment in longer news articles. An interesting outlier occurred
on July 26, 2022, where the trend of the scores deviated. This was caused by
a news item with a headline mentioning "rejections," resulting in a negative
score. Although the body of the article conveyed a positive sentiment, the
headline’s influence on the score underscores the importance of considering
the entire news content.

Comparing the scores derived from Reddit, it is evident that the trend is
much smoother, thanks to the higher volume of Reddit comments available for
the Google asset. However, the sentiment in Reddit comments tends to lean
more negative compared to news scores, possibly due to the use of stronger
negative language in social media. Further filtering of Reddit comments based
on news-related keywords could provide more accurate sentiment analysis.

Additionally, the analysis reveals that the news trend often precedes the
Reddit trend by a day, suggesting that the release of news articles can impact
subsequent social media discussions. To explore the correlation between
sentiment trends and market trends, the closing price graph is examined.
Notably, there are instances where the trends in news scores and Reddit scores
align with the price trend, suggesting a potential correlation.

Amazon considerations The analysis continues with an examination of
the Amazon asset. Similar to the previous case, the trends of Score Title
and Score Text are comparable, with Score Title exhibiting more pronounced
variations. However, in this instance, the trends of the Reddit scores and
news scores do not consistently align, highlighting the divergent nature of
sentiment expressed in news and Reddit comments for the Amazon asset.

7.4 Results and Discussion | 189

Figure 7.5: Amazon Score

Figure 7.6: Amazon Close

Meta considerations Next, the Meta asset is examined. The trends in Score
Title and Score Text are again similar, with Score Title displaying sharper
variations. The analysis indicates that the trend of news scores often precedes
the Reddit trend by a day, potentially indicating the influence of news articles
on subsequent social media discussions.

190 | Benchmarking stock prediction models exploiting social data and
news

Figure 7.7: Meta Score

Figure 7.8: Meta Close

Apple considerations The analysis then moves to the Apple asset. The
trends in Score Title and Score Text for Apple exhibit comparable patterns,
with Score Title showing sharper fluctuations. It is notable that the trend of
news scores aligns with the market trend until around August 9. However,
after this point, the sentiment scores become negative while the price contin-
ues to rise. An interesting date to note is August 22, where all scores show a
strong downward trend, coinciding with a decline in the market price.

7.4 Results and Discussion | 191

Figure 7.9: Apple Score

Figure 7.10: Apple Close

Tesla considerations Lastly, the Tesla asset is analyzed. The sentiment
scores for Tesla, both in news and Reddit, tend to be more negative compared
to the other assets. However, the negative sentiment does not reflect the
market performance, as Tesla experiences substantial price fluctuations. It
is worth noting that Tesla had the highest price variation among the assets
studied, which may have impacted the performance of predictive models.

192 | Benchmarking stock prediction models exploiting social data and
news

Figure 7.11: Tesla Score

Figure 7.12: Tesla Close

7.4.1 Model Results

In this section, the results obtained from various algorithms are examined to
address the remaining research questions. A comparison is made between
supervised machine learning approaches (Random Forest, Gradient Boost,
ExtraTrees, and Lasso) and deep learning approaches (LSTM, BiLSTM, GRU,
and BiGRU).

Stock Price Data

The analysis begins by considering the results obtained solely from the Stock
Price Data configuration, without incorporating sentiment from news or Red-

7.4 Results and Discussion | 193

dit. The Mean Absolute Error (MAE) metric is used for evaluation. The
Random Forest Regressor consistently outperforms other models for Google,
Apple, and Amazon assets. However, for the Meta and Tesla assets, the Gradi-
entBoostingRegressor and ExtraTreesRegressor perform better, respectively.
When considering the Mean Squared Error (MSE) and Root Mean Squared
Error (RMSE) metrics, the deep learning models (LSTM, BiLSTM, GRU,
and BiGRU) generally yield better results.

Stock Price Data + Sentiment News

The analysis then proceeds to the results obtained by incorporating sentiment
from news in addition to the stock price data. The Random Forest Regressor
performs the best across most assets, achieving the lowest MAE values. For
MSE and RMSE, LSTM outperforms other models for Apple, Meta, and
Tesla, while GRU and BiLSTM emerge as the best solutions for Google and
Amazon, respectively.

Stock Price Data + Sentiment Reddit

The next set of results considers the inclusion of sentiment from Reddit com-
ments along with stock price data. The Random Forest Regressor generally
performs the best, with the lowest MAE values across most assets. However,
when considering MSE and RMSE, no model stands out as the clear winner.
Deep learning algorithms generally yield better results across all assets.

Stock Price Data + Sentiment News + Sentiment Reddit

Finally, the analysis encompasses the results obtained by combining sentiment
from both news and Reddit comments with stock price data. The Random
Forest Regressor and ExtraTreesRegressor exhibit the lowest MAE values for
various assets. For MSE and RMSE, LSTM performs the best for Amazon,

194 | Benchmarking stock prediction models exploiting social data and
news

Stock Price Dataset
MAE

Google Apple Amazon Meta Tesla

Random Forest Regressor 2.80 ± 0.001 2.03 ± 0.0002 2.84 ± 0.004 6.02 ± 0.004 5.05 ± 0.03

GradientBoostingRegressor 2.88±0.14 2.85±0.18 3.01±0.08 4.88±0.02 4.16 ±0.19
ExtraTreesRegressor 3.05±0.004 2.20±0.17 3.092±0.002 5.38±0.006 5.70±0.01

Lasso 3.17±0 2.78±0 4.6±0 5.26±0 8.85±0

LSTM 5.41±10.87 13.22±9.82 16.80±19.80 2.9±1.72 81.81±378.50

BiLSTM 8.30±10.28 15.07±5.47 11.53±0.86 6.67±9.04 34.065432.98

GRU 8.86±11.18 12.8±1.67 7.75±3.90 1.93 ±3.04 45.33±1104.21

BIGRU 7.92±6.03 11.60±2.49 7.37±13.05 5.83±7.71 85.71±2762.07

MSE
Google Apple Amazon Meta Tesla

Random Forest Regressor 12.07±0.09 6.72±0.008 13.76±0.30 45.25±0.72 30.52±2.34

GradientBoostingRegressor 12.40±7.97 13.01±11.88 15.98±2.87 32.06±4.13 25.75±26.03

ExtraTreesRegressor 12.74±0.17 8.62±0.17 13.97±0.14 43.50±0.15 38.64±0.43

Lasso 12.66±0 10.14±0 22.88±0 36.29±0 146.13±0

LSTM 2.03 ±0.21 3.08±0.09 3.35±0.07 1.41±0.17 7.47±1.52

BiLSTM 2.27±0.31 3.17±0.08 2.89±0.86 2.28±0.17 4.64 ±2.29
GRU 2.46±0.26 2.91±0.03 2.29±0.06 1.04 ±0.36 5.38±4.74

BIGRU 2.24±0.15 2.73 ±0.03 2.25 ±0.31 2.14±0.42 7.79±8.88

RMSE
Google Apple Amazon Meta Tesla

Random Forest Regressor 3.47±0.002 2.59±0.0003 3.71±0.006 6.73±0.004 5.52±0.02

GradientBoostingRegressor 3.50±0.19 3.57±0.22 3.99±0.05 5.66±0.03 5.05±0.25

ExtraTreesRegressor 3.57±0.003 2.93±0.005 3.74±0.002 6.60±0.001 6.22±0.003

Lasso 3.56±0 3.18±0 4.78±0 6.02±0 12.09±0

LSTM 1.42 ±0.024 1.75±0.007 1.83±0.006 1.17±0.04 2.72±0.05

BILSTM 1.49±0.04 1.78±0.006 1.70±0.003 1.5±0.02 2.13 ±0.11
GRU 1.56±0.03 1.70±0.01 1.51±0.006 0.98 ±0.09 2.28±0.19

BIGRU 1.49±0.02 1.65 ±0.002 1.49 ±0.03 1.45±0.05 2.74±0.27

Table 7.1: Comparison of experimental results, set the dataset (Stock Price
Dataset), according to the considered stock and prediction model.

7.4 Results and Discussion | 195

Stock Price & Sentiment News Dataset
MAE

Google Apple Amazon Meta Tesla

Random Forest Regressor 1.54 ±0.001 1.99±0.01 2.98 ±0.001 4.71 ±0.008 5.55 ±0.04
GradientBoostingRegressor 1.62±0.03 2.39±0.11 3.72±0.29 5.93±0.88 7.52±1.75

ExtraTreesRegressor 1.79±0.002 1.65 ±0.001 3.02±0.01 5.59±0.04 6.22±0.03

Lasso 2.25±0 2.32±0 4.78±0 6.07±0 6.77±0

LSTM 8.32±6.80 14.02±6.92 5.34±8.03 7.20±6.37 52.07±117.32

BILSTM 14.46±26.69 17.65±32.64 3.52±2.22 36.03±121.69 86.94±2223.99

GRU 5.61±0.41 16.14±12.14 8.65±4.00 20.71±25.38 127.66±10100.23

BIGRU 10.61±11.62 17.41±11.07 9.47±16.84 47.31±41.89 159.31±2502.55

MSE
Google Apple Amazon Meta Tesla

Random Forest Regressor 3.84±0.01 5.78±0.22 13.14±0.06 43.31±2.60 43.09±5.29

GradientBoostingRegressor 4.17±0.43 8.13±4.97 24.12±64.50 49.18±30.18 82.45±760.01

ExtraTreesRegressor 5.02±0.04 5.03±0.02 16.61±0.10 41.58±4.14 56.026±14.05

Lasso 6.54±0 8.56±0 28.34±0 35.21±0 53.67±0

LSTM 2.36±0.14 2.96 ±0.05 1.86±0.31 2.24 ±0.10 6.19 ±0.50
BILSTM 3.19±0.47 3.39±0.30 1.53 ±0.16 5.31±0.94 7.62±7.42

GRU 2.22 ±0.01 3.35±0.16 2.25±0.15 4.13±0.32 9.40±17.60

BIGRU 2.95±0.15 3.40±0.06 2.64±0.40 6.27±0.21 11.60±4.04

RMSE
Google Apple Amazon Meta Tesla

Random Forest Regressor 1.96 ±0.001 2.40±0.01 3.62±0.06 6.58±0.02 6.56±0.03

GradientBoostingRegressor 2.04±0.02 2.82±0.16 4.85±0.62 6.93±1.09 8.96±2.25

ExtraTreesRegressor 2.24±0.002 2.24±0.001 4.07±0.002 6.44±0.03 7.48±0.06

Lasso 2.56±0 2.93±0 5.32±0 5.93±0 7.33±0

LSTM 1.53±0.01 1.72 ±0.004 1.35±0.05 1.49 ±0.01 2.48 ±0.02
BiLSTM 1.78±0.03 1.87±0.02 1.22 ±0.03 2.29±0.05 2.71±0.26

GRU 1.49±0.002 1.83±0.01 1.49±0.02 2.03±0.02 3±0.43

BiGRU 1.71±0.01 1.84±0.004 1.61±0.04 2.50±0.008 3.39±0.08

Table 7.2: Comparison of experimental results, set the dataset (Stock Price
and Sentiment Datasets), according to the considered stock and prediction
model.

196 | Benchmarking stock prediction models exploiting social data and
news

Stock Price & Sentiment Reddit Dataset
MAE

Google Apple Amazon Meta Tesla

Random Forest Regressor 2.23 ±0.002 2.23 ±0.008 2.93 ±0.007 5.56±0.007 5.62 ±0.04
GradientBoostingRegressor 2.36±0.006 2.41±0.36 3.97±0.50 3.73±0.04 6.10±0.79

ExtraTreesRegressor 2.48±0.0004 2.27±0.006 2.99±0.002 4.71±0.005 5.95±0.11

Lasso 2.66±0 2.73±0 4.6±0 4.75±0 14.88±0

LSTM 8.32±6.82 18.08±52.39 18.17±4.81 7.48±32.27 47.44±51.29

BiLSTM 5.59±6.81 15.70±66.91 14.05±38.71 1.11 ±0.16 59.70±98.70

GRU 7.11±3.38 15.70±35.90 13.11±8.59 1.01 ±0.39 87.02±1273.53

BiGRU 23.88±194.19 16.83±24.27 5.10±4.87 4.44±8.14 114.13±244.15

MSE
Google Apple Amazon Meta Tesla

Random Forest Regressor 7.52±0.09 7.25±0.07 13.46±0.27 36.20±1.21 36.06±10.94

GradientBoostingRegressor 9.23±0.66 9.71±0.57 22.65±46.47 18.26±2.09 56.30±188.99

ExtraTreesRegressor 9.52±0.66 8.11±0.17 13.36±0.20 32.50±1.29 40.78±15.47

Lasso 9.75±0 11.01±0 22.80±0 29.70±0 334.00±0

LSTM 2.36±0.14 3.51±0.07 3.68±0.09 2.30±0.73 5.65 ±0.10
BiLSTM 2.31 ±0.01 3.42±0.11 3.12±0.53 0.88±0.03 6.28±0.87

GRU 2.33±0.007 3.43±0.12 2.97±0.05 0.84 ±0.082 8.38±1.85

BiGRU 4.20±2.61 3.34 ±0.01 1.99 ±0.13 1.67±0.31 9.32±0.75

RMSE
Google Apple Amazon Meta Tesla

Random Forest Regressor 2.74±0.003 2.69±0.002 3.65±0.005 6.02±0.008 6.00±0.08

GradientBoostingRegressor 3.03±0.02 3.11±0.01 4.70±0.54 4.27±0.03 7.45±0.81

ExtraTreesRegressor 3.09±0.0005 2.85±0.006 3.66±0.004 5.70±0.01 6.38±0.10

Lasso 3.12±0 3.32±0 4.78±0 5.45±0 18.28±0

LSTM 1.53±0.01 1.87±0.005 1.92±0.006 1.49±0.08 2.38 ±0.004
BiLSTM 1.52 ±0.001 1.85±0.009 1.75±0.05 0.93±0.008 2.50±0.04

GRU 1.53±0.0008 1.85±0.009 1.72±0.004 0.91 ±0.02 2.89±0.05

BiGRU 2.01±0.18 1.82 ±0.01 1.41 ±0.02 1.27±0.05 3.05±0.02

Table 7.3: Comparison of experimental results, set the dataset (Stock Price &
Sentiment Reddit Dataset), according to the considered stock and prediction
model.

7.4 Results and Discussion | 197

Stock Price Data + Sentiment News + Sentiment Reddit
MAE

Google Apple Amazon Meta Tesla
Random Forest Regressor 1.63 ±0.001 1.99 ±0.008 3.50±0.09 6.10±0.02 5.58 ±0.08

GradientBoostingRegressor 1.63±0.004 2.70±0.36 4.58±0.63 4.40±0.16 6.41±0.14
ExtraTreesRegressor 1.74±0.001 2.35±0.006 3.10 ±0.01 3.55 ±0.004 6.22±0.11

Lasso 2.42±0 2.78±0 4.29±0 3.98±0 17.96±0
LSTM 12.43±50.74 22.56±52.40 7.73±9.48 6.69±4.30 93.94±207.07

BiLSTM 7.73±1.67 29.28±66.92 9.92±10.11 42.20±85.80 96.71±3220.69
GRU 12.61±104.56 27.57±35.90 10.93±0.71 23.72±24.37 89.93±1285.01

BiGRU 8.42±4.03 16.46±24.27 11.01±15.10 23.12±31.90 136.86±2817.44
MSE

Google Apple Amazon Meta Tesla
Random Forest Regressor 4.38±0.03 5.21±0.29 18.62±5.94 41.94±3.77 42.68±9.04

GradientBoostingRegressor 4.42±0.12 10.44±16.72 37.08±166.48 22.76±18.70 56.79±41.59
ExtraTreesRegressor 4.77±0.009 8.13±0.13 17.33±1.19 38.17±0.77 54.91±13.59

Lasso 8.78±0 10.71±0 21.89±0 25.09±0 366.92±0
LSTM 2.91±0.83 3.97±0.22 2.30 ±0.33 2.07 ±0.06 7.88 ±0.45

BiLSTM 2.48 ±0.08 4.39±0.39 2.62±0.23 6.05±0.63 7.99±6.94
GRU 2.97±1.36 4.49±0.32 2.77±0.01 4.61±0.26 8.14±3.52

BiGRU 2.73±0.11 3.37 ±0.09 2.74±0.22 4.48±0.43 10.02±8.72
RMSE

Google Apple Amazon Meta Tesla
Random Forest Regressor 2.09±0.002 2.28±0.01 4.31±0.08 6.48±0.02 6.53±0.06

GradientBoostingRegressor 2.10±0.007 3.17±0.36 5.99±1.21 4.75±0.19 7.53±0.19
ExtraTreesRegressor 2.19±0.0005 2.85±0.004 4.16±0.02 6.18±0.005 7.41±0.06

Lasso 2.96±0 3.27±0 4.68±0 5.01±0 19.16±0
LSTM 1.68±0.07 1.99±0.01 1.50 ±0.04 1.43 ±0.007 2.81±0.02

BiLSTM 1.57 ±0.008 2.09±0.02 1.61±0.02 2.45±0.03 2.79 ±0.21
GRU 1.69±0.10 2.12±0.02 1.66±0.001 4.61±0.01 2.83±0.11

BiGRU 1.65±0.01 1.83 ±0.007 1.65±0.02 2.11±0.02 3.12±0.26

Table 7.4: Comparison of experimental results, set the dataset (Stock Price,
Sentiment News & Sentiment Reddit Dataset), according to the considered
stock and prediction model.

Meta, and Tesla, while BiLSTM and BiGRU emerge as the top solutions for
Google and Apple, respectively.

7.4.2 Discussions

In the context of addressing the research questions introduced in 7.1, it can
be stated as follows:

• RQ1: In the context of addressing this research question, recent re-
search, as discussed in the Related Work section (see Section 7.2), has
indicated that news sentiment and social media comments can exert

198 | Benchmarking stock prediction models exploiting social data and
news

a substantial influence on stock market trends and serve as valuable
predictors of stock price movements [269, 270]. Notably, there exists
a discernible correlation between the sentiments expressed on social
media and news platforms and the behavior of stock prices. For ex-
ample, sentiment analysis of social media data has been employed to
investigate the impact of news flows on cryptocurrency prices [289].
Consequently, sentiment data derived from social media and news
sources can impact investors’ decisions to buy or sell stocks, guided by
the sentiment associated with such information [290].

The experimental findings further substantiate the notion that incorpo-
rating information from news sentiment or Reddit comments can result
in substantial enhancements in model performance in certain cases.
Interestingly, it is worth noting that combining both news sentiment
and Reddit comments rarely leads to superior outcomes.

• RQ2: Reddit and Business Insider have emerged as prominent data
sources in stock prediction research for several reasons. Firstly, Reddit
serves as a prominent social media platform with specialized com-
munities (subreddits) dedicated to finance and investing. Researchers
have recognized its value in stock prediction due to the abundance of
user-generated content related to financial markets, offering real-time
discussions, opinions, and sentiments expressed by investors and traders
[287].

Secondly, Reddit discussions contain valuable information reflecting
the sentiment of retail investors and the broader market. Analyzing
posts and comments related to specific stocks or market events enables
researchers to gain insights into market sentiment, potential shifts in
investor behavior, and the impact of social media on stock prices [286,
281].

7.4 Results and Discussion | 199

Business Insider, a reputable news website covering financial news,
stock market updates, and business-related topics, is another data source
frequently utilized by researchers. Its reliable reporting and compre-
hensive coverage of financial events, along with accessible textual data,
make Business Insider articles valuable for incorporation into stock
prediction models [279, 278].

Both Reddit and Business Insider offer publicly accessible data, facili-
tating data collection for research purposes [288, 278]. Additionally,
Reddit’s community-driven nature allows researchers to tap into the
insights shared by passionate and knowledgeable individuals regarding
specific stocks, enabling aggregation and anonymized incorporation of
such information into prediction models [287].

In conclusion, Reddit and Business Insider are favored data sources in
stock prediction research due to their extensive user-generated content,
sentiment insights, reputable reporting, and data accessibility. By
leveraging the unique characteristics of these sources, researchers can
enhance their understanding of market sentiment and improve stock
prediction models. However, researchers should exercise caution in
interpreting results, taking into account potential limitations and biases
associated with these data sources.

• RQ3: In the realm of stock prediction research, Reddit and Business
Insider have risen to prominence as significant data sources for sev-
eral compelling reasons. Firstly, Reddit serves as a prominent social
media platform, replete with specialized communities (subreddits) ded-
icated to finance and investing. Researchers have keenly recognized its
value in stock prediction due to the wealth of user-generated content
pertaining to financial markets. This content provides real-time discus-
sions, opinions, and sentiments expressed by investors and traders, as
documented in [287].

200 | Benchmarking stock prediction models exploiting social data and
news

Secondly, Reddit discussions contain a trove of valuable information
that reflects the sentiment of retail investors and the broader market.
The analysis of posts and comments related to specific stocks or market
events empowers researchers to gain valuable insights into market
sentiment, potential shifts in investor behavior, and the influence of
social media on stock prices, as detailed in studies such as [286, 281].

Furthermore, Business Insider, a reputable news website renowned
for its coverage of financial news, stock market updates, and business-
related topics, represents another data source frequently harnessed by
researchers. Its dependable reporting and comprehensive coverage of
financial events, coupled with accessible textual data, render Business
Insider articles highly valuable for integration into stock prediction
models, as evidenced by references such as [279, 278].

Both Reddit and Business Insider offer publicly accessible data, thereby
simplifying the data collection process for research endeavors [288,
278]. Additionally, Reddit’s community-driven nature empowers re-
searchers to tap into the insights shared by impassioned and knowl-
edgeable individuals with respect to specific stocks. This enables the
aggregation and anonymized incorporation of such information into
prediction models, as elucidated in [287].

In summary, Reddit and Business Insider occupy a favored position
as data sources in stock prediction research due to their extensive
reservoirs of user-generated content, which offer valuable insights
into sentiment, their credible reporting, and the ease of data access.
By harnessing the distinctive attributes of these sources, researchers
can enrich their comprehension of market sentiment and enhance the
accuracy of their stock prediction models. Nevertheless, it is essential
for researchers to exercise prudence in the interpretation of results,
while remaining mindful of potential limitations and biases associated
with these data sources.

7.4 Results and Discussion | 201

• RQ4: The comprehensive review of existing literature has firmly estab-
lished that the analysis of diverse data sources, which includes news
articles and social media platforms, has been effectively addressed
through the utilization of Machine Learning (ML) techniques. Deep
Learning (DL) methods have received particular emphasis and have
demonstrated their capability in achieving highly accurate predictions
in the realm of stock market forecasting, as corroborated by [271].
This superiority in predictive performance becomes evident when con-
trasting ML and DL models with traditional statistical approaches, as
corroborated by references such as [272, 273, 291].

Furthermore, the experiments conducted within the confines of this
study have yielded significant insights into the consequences of in-
corporating information related to news sentiment or comments from
Reddit into prediction models. Notably, the augmentation of such in-
formation has translated into substantial performance improvements in
specific instances, as vividly illustrated by the enhancements observed
in the case of the Google asset. Nevertheless, the outcomes have taken a
divergent trajectory for other assets, such as Tesla, where the inclusion
of sentiment or Reddit data has led to diminished performance. Of par-
ticular interest is the revelation that the concurrent incorporation of both
sentiment and Reddit data has seldom resulted in superior outcomes.

• RQ5: In the pursuit of their objectives, extensive exploration has been
conducted into the domain of Machine Learning (ML) and Deep Learn-
ing (DL) techniques. Nevertheless, an intriguing observation has sur-
faced regarding the consistent underperformance of the Lasso algorithm
when juxtaposed with other models, regardless of the asset or metric
utilized. This observation underscores the inherent limitations of lin-
ear regression-based algorithms when confronted with time prediction
problems, which frequently encompass intricate nonlinear relationships.

202 | Benchmarking stock prediction models exploiting social data and
news

The judicious selection of the most proficient ML/DL model hinges
upon the specific metric of interest and the degree of susceptibility to
outlier errors. When considering the Mean Absolute Error (MAE), it
becomes apparent that machine learning models generally outshine
their counterparts. Conversely, when assessing the Mean Squared Error
(MSE) and Root Mean Squared Error (RMSE), the supremacy of deep
learning models becomes evident.

In the realm of predictive model accuracy evaluation, deep learning
algorithms, with a particular spotlight on the Long Short-Term Memory
(LSTM), have earned recognition as more fitting choices. LSTM,
being a variant of recurrent neural network, has distinguished itself by
excelling in the encapsulation of prolonged dependencies and sequential
patterns, rendering it especially advantageous for temporal predictions.

Nevertheless, in scenarios where practical application centers around
trading, with an uncompromising emphasis on the evasion of outlier
errors, it becomes imperative to accord greater significance to MAE.
In such circumstances, machine learning models emerge as the more
prudent alternatives, largely attributable to their heightened capacity
for managing outliers with efficacy.

To summarize succinctly, the optimal choice between ML and DL mod-
els is contingent upon the metric of interest and the specific context
of its application. Machine learning models, primarily celebrated for
their commendable MAE performance, reign supreme, whereas deep
learning models, particularly the LSTM, shine when pinpoint accuracy
assessments are the mandate. However, discretion is urged when de-
ploying deep learning models in settings where the mitigation of outlier
errors takes precedence.

• RQ6: In the context of tasks related to stock prediction, which encom-
pass the consideration of diverse data sources, the appropriateness of

7.4 Results and Discussion | 203

performance metrics for selecting the most suitable model can hinge
on the specific data type being integrated. To elaborate, the conse-
quences of amalgamating sentiment scores derived from sources such
as news and Reddit display significant fluctuations, contingent upon
the particular asset and metric employed for evaluation.

It is discernible that there is no consistent, uniform pattern of perfor-
mance enhancement observed across various assets when incorporating
sentiment scores. The outcomes diverge depending on the specific asset
in question. For instance, when dealing with assets like Google and
Apple, the inclusion of sentiment data extracted from news sources
translates into improved performance. Conversely, for assets such as
Meta, superior results are attained through the utilization of sentiment
sourced from Reddit comments. However, the amalgamation of senti-
ment data for assets like Amazon and Tesla does not yield substantial
performance improvements.

It is crucial to underscore that a combined approach, wherein senti-
ment scores from both news and Reddit sources are integrated, fails
to emerge as the optimal solution for any of the assets subjected to
analysis. Consequently, it is imperative to acknowledge that the impact
of incorporating sentiment data is contingent upon the specific asset
and does not uniformly influence performance outcomes.

• RQ7: The research question aims to identify a group of stocks in which
the correlation between market data and social/news data is particularly
pronounced and assess whether this data can serve as a suitable testing
ground for the selected models.

In tackling this inquiry, it is essential to recognize that algorithm per-
formance can exhibit significant variations across different assets. For
Mean Absolute Error (MAE), the Random Forest Regressor consis-
tently demonstrates superior overall performance across most assets. In

204 | Benchmarking stock prediction models exploiting social data and
news

contrast, when assessing Mean Squared Error (MSE) and Root Mean
Squared Error (RMSE), the Long Short-Term Memory (LSTM) model
consistently achieves the lowest values for specific stocks such as Ap-
ple, Meta, and Tesla. However, for Google and Amazon stocks, the
Bi-directional LSTM (BiLSTM) and Bi-directional Gated Recurrent
Unit (BiGRU) models respectively yield better results.

Nonetheless, it is imperative to highlight that there is no single algo-
rithm that consistently outperforms others across all assets. Perfor-
mance disparities arise based on the particular stock being analyzed.
Nevertheless, the Random Forest Regressor (for MAE) and LSTM
(for MSE and RMSE) exhibit promising performance across multiple
assets.

The correlation between market data and social/news data appears more
evident in specific stock groupings, especially when employing the
previously mentioned models. Consequently, employing such data as a
testing ground for the chosen models has the potential to yield valuable
insights into the relationship between market trends and social/news
sentiments for particular assets. Nevertheless, further investigation is
required to determine the extent of the models’ suitability and their
applicability across diverse stock groupings and market conditions.

In summary, when it comes to selecting the best model for stock prediction
tasks that integrate various data sources, it is crucial to factor in the asset-
specific influence of sentiment data when deciding on performance metrics.
The choice of metrics should align with the specific asset under scrutiny
and the type of sentiment data being integrated to ensure more precise and
effective stock predictions.

Furthermore, the findings emphasize that algorithm choice, the incor-
poration of sentiment data, and the unique characteristics of assets all play
substantial roles in determining performance outcomes. While the Random
Forest Regressor, LSTM, and other deep learning models exhibit potential

7.4 Results and Discussion | 205

MAE
Stock Price Stock Price and News Stock Price and Reddit Stock Price, News and Reddit

Google 2.80±0.001 1.54 ±0.001 2.23±0.002 1.63±0.001

Apple 2.03±0.0002 1.65 ±0.001 2.23±0.008 1.99±0.008

Amazon 2.84 ±0.004 2.98±0.001 2.93±0.007 3.10±0.01

Meta 2.9±1.72 4.71±0.008 1.11 ±0.16 3.55±0.004

Tesla 4.16 ±0.19 5.55±0.04 5.62±0.04 5.58±0.08

MSE
Stock Price Data Stock Price Data + News Stock Price Data + Reddit Stock Price Data + News + Reddit

Google 2.03 ±0.21 2.22±0.01 2.31±0.01 2.48±0.08

Apple 2.73 ±0.03 2.96±0.05 3.34±0.01 3.37±0.09

Amazon 2.29±0.06 1.53 ±0.16 1.99±0.13 2.30±0.33

Meta 1.04±0.36 2.24±0.10 0.88 ±0.03 2.07±0.06

Tesla 4.64 ±2.29 6.19±0.50 5.65±0.10 7.88±0.45

RMSE
Stock Price Data Stock Price Data + News Stock Price Data + Reddit Stock Price Data + News + Reddit

Google 1.42 ±0.024 1.49±0.002 1.52±0.001 1.57±0.008

Apple 1.70 ±0.01 1.72±0.004 1.82±0.01 1.83±0.007

Amazon 1.51±0.006 1.22 ±0.03 1.41±0.02 1.50±0.04

Meta 0.98±0.09 1.49±0.01 0.93 ±0.008 2.11±0.02

Tesla 2.13 ±0.11 2.48±0.02 2.38±0.004 2.79±0.21

Table 7.5: Summary of the top results achieved. varying the Dataset and stock
considered.

for accurate predictions, careful deliberation is necessary when choosing the
most appropriate approach for each asset and evaluation metric.

Now, let’s provide an overview of the additional considerations regard-
ing the obtained results. Firstly, it’s important to highlight that the Google
asset showed the highest level of similarity between the score chart and the
closing price. Interestingly, it demonstrated improved performance when
additional information was incorporated. In contrast, the stocks of Tesla
and Amazon exhibited a different behavior, with their performance declining
when supplementary data was included.

Another significant factor that deserves attention is the price variation
within the evaluated time frame. As shown in Table 7.7 below, Tesla had the
greatest price fluctuation, approximately twice as much as the other assets.
Amazon also displayed a higher variation compared to the remaining assets.
This aspect could have had an impact on the performance of the predictive

206 | Benchmarking stock prediction models exploiting social data and
news

MAE
Stock Price Data Stock Price Data + News Stock Price Data + Reddit Stock Price Data + News + Reddit

Google Random Forest Regressor Random Forest Regressor Random Forest Regressor Random Forest Regressor

Apple Random Forest
Regressor

ExtraTreesRegressor Random Forest Regressor Random Forest Regressor

Amazon Random Forest
Regressor

Random Forest Regressor Random Forest Regressor ExtraTreesRegressor

Meta LSTM Random Forest Regressor BiLSTM ExtraTreesRegressor

Tesla GradientBoostingRegressor Random Forest Regressor Random Forest Regressor Random Forest Regressor

MSE
Stock Price Data Stock Price Data + News Stock Price Data + Reddit Stock Price Data + News + Reddit

Google LSTM GRU BILSTM BILSTM

Apple BiGRU LSTM BiGRU BiGRU

Amazon GRU BiLSTM BiGRU LSTM

Meta GRU LSTM BiLSTM LSTM

Tesla BiLSTM LSTM LSTM LSTM

RMSE
Stock Price Data Stock Price Data + News Stock Price Data + Reddit Stock Price Data + News + Reddit

Google LSTM GRU BiLSTM BiLSTM

Apple GRU LSTM BiGRU BiGRU

Amazon GRU LSTM BiGRU LSTM

Meta GRU LSTM BiLSTM LSTM

Tesla BiLSTM LSTM LSTM LSTM

Table 7.6: Summary of the top models in terms of efficacy, varying the Dataset
and stock considered.

7.4 Results and Discussion | 207

Close
Min Max Max-Min

Google 150.02 122.08 17.06
Apple 146.87 174.55 27.68

Amazon 110.63 144.78 34.15
Meta 158.05 183.17 25.12
Tesla 238.31 309.32 71.01

Table 7.7: Stock Price Table.

models. Notably, these two cases showed higher variance in the predictive
models.

An intriguing phenomenon is observed in the case of the Meta asset.
Specifically, it stands out as the only case where the evaluation of Mean Abso-
lute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error
(RMSE) consistently favored Deep Learning models as the optimal solutions.
Furthermore, when examining the price trend graph, it is evident that Meta
alone displayed a "repeating" pattern, while the other assets exhibited only an
increasing pattern. This suggests a potential opportunity to identify repeating
patterns, and it is plausible that the LSTM or BiLSTM model contributed
to superior performance in this scenario. The image below illustrates the
best-case scenario, where the Meta asset in the "Stock Price Data + Reddit
configuration" outperformed other instances.

208 | Benchmarking stock prediction models exploiting social data and
news

Figure 7.13: Meta Best Model

7.5 Conclusions and future work

This chapter concludes by providing an overview of the significant role that
artificial intelligence has played in the financial sector, with a particular focus
on a case study involving Stock Price Prediction. The study investigates the
potential enhancements that web-extracted information can offer to existing
predictive models found in the literature.

One noteworthy discovery is that the analysis of news from newspapers
necessitates a deeper examination of article texts in addition to headlines to
obtain more reliable sentiment values. Similarly, information extracted from
social networks, especially Reddit comments, presents challenges due to the
vast amount of data and diverse language usage, which complicates sentiment
analysis.

Furthermore, the study underscores the substantial impact of metric choice
on model performance. Machine Learning algorithms excel in achieving
lower Mean Absolute Error (MAE), while Deep Learning models prove more
accurate when optimizing for metrics like Mean Squared Error (MSE) and
Root Mean Squared Error (RMSE).

7.5 Conclusions and future work | 209

The study also highlights the potential advantages of incorporating news
sentiment or Reddit comments into predictive models. While the addition of
such information significantly enhances model performance for assets like
Google, it can lead to deteriorations in performance for assets like Tesla.
Moreover, combining both types of information rarely results in improved
outcomes.

To enhance this study, future research could expand the dataset by consid-
ering a broader range of dates. Automating the process of news scraping and
labeling using scripts would facilitate this expansion, especially for assets
within the S&P 500. Additionally, exploring the impact of news sentiment
on equities within specific sectors, as categorized by Business Insider, could
provide valuable insights into the relationship between information and price
trends.

To further refine the analysis of Reddit comments, applying additional
filtering based on keywords extracted from Named Entity Recognition (NER)
in news articles could strengthen the correlation between news and social
media sentiments. Moreover, manually labeling some Reddit comments and
training a specialized model for sentiment assignment could enhance the
accuracy of sentiment analysis.

Lastly, optimizing the neural networks utilized in the study holds promise
for achieving even better performance results. Fine-tuning the configurations
of these models could lead to significant improvements in predictive accuracy
and overall effectiveness.

Discussions and Open Issues

In conclusion, the presented doctoral dissertation has introduced a compre-
hensive and adaptable framework for time series forecasting, addressing the
ever-evolving challenges across various domains. This framework stands out
due to its versatility, modularity, and customization capabilities, making it a
valuable asset for both researchers and practitioners.

The primary goal of this framework is to offer a unified solution for time
series forecasting, transcending the limitations of specialized methodologies.
It achieves this by allowing users to tailor the processing pipeline to their spe-
cific forecasting needs. The modular design of the framework empowers users
to selectively activate or deactivate components, including pre-processing,
feature engineering, data augmentation, and encoding strategies. This adapt-
ability caters to both novice users seeking simplicity and experts seeking
advanced customization.

The framework’s flexibility extends to the choice of coding techniques
and deep learning models, providing a wide range of options to align with
data characteristics. It goes beyond static pipelines, introducing adaptive
module activation to address the unique challenges of each forecasting task
dynamically.

212 | Discussions and Open Issues

In the context of Industry 4.0, the framework has been successfully ap-
plied to predictive maintenance tasks (Chapter 4). We explored various time
series encoding techniques combined with Convolutional Neural Networks
(CNNs) and evaluated their performance on real-world datasets, such as the
PAKDD2020 Alibaba AI Ops Competition and NASA Bearing datasets. While
the inclusion of Generative Adversarial Networks (GANs) showed promise, it
came at the cost of increased computational resources. In brief, the proposed
approach achieves results comparable or superior to the state of the art for
both datasets, with a particular advantage in terms of efficiency.

In another Industry 4.0 application, a light attention-based model was in-
troduced in Chapter 5, demonstrating efficiency and effectiveness in handling
time-series data with fewer parameters and faster training times compared to
LSTM models. This trade-off between efficiency and accuracy is essential in
industrial contexts.

In the realm of Fintech, a novel framework integrating historical stock
data with sentiment scores from social networks was proposed (Chapter
6). The analysis revealed the potential impact of user-generated content on
stock prediction, though the dynamic nature of social network discussions
posed challenges. However, there is to be observed from the experimental
results, that although social data has an impact on stock prediction, it is not
always beneficial, even when the information content is significant. The final
case study presented in Chapter 7 emphasized the role of AI in financial
domains, specifically in stock price prediction. It highlighted the importance
of considering both headlines and article texts for news sentiment analysis
and the varying performance of machine learning and deep learning models
based on different metrics. Incorporating web-extracted information from
news and social networks into predictive models showed promising results,
with significant enhancements for some assets. However, it also emphasized
the need for careful consideration of data sources and metrics for different
use cases. In summary, this doctoral dissertation has contributed a versatile

Discussions and Open Issues | 213

framework for time series forecasting, demonstrating its applicability in
Industry 4.0 and Fintech scenarios. The modularity and adaptability of
the framework make it a valuable tool for addressing diverse forecasting
challenges across various domains, ushering in a new era of forecasting
possibilities.

In terms of open issues, the framework will be extended to address some
of the limitations highlighted by the research findings. One avenue of explo-
ration will involve integrating encoding techniques with tiled Convolutional
Neural Networks (CNNs), as documented in the work by [292], which have
demonstrated superior computational efficiency compared to standard CNNs.
Additionally, there will be a heightened focus on enhancing the capabilities
of GANs to further improve their effectiveness in the framework.

Furthermore, future research endeavors will investigate the potential ad-
vantages of adopting ensemble models in conjunction with CNNs, potentially
leading to enhanced classification performance. Alongside this, there will
be a concerted effort to explore eXplainable Artificial Intelligence (XAI) ap-
proaches, aimed at providing explanations for mis-classifications, thus aiding
practitioners in their decision-making processes.

In the context of predictive maintenance applications, upcoming work will
delve deeper into the application of the attention mechanism across various
scenarios. Additionally, efforts will be made to interpret what the model
learns, specifically identifying areas that garner greater attention, in order to
facilitate the use of XAI tools.

Regarding the Fintech studies, future research will encompass a broader
array of stocks and incorporate multimedia social networks such as Instagram
and Facebook. Again, this expansion will also involve the integration of XAI
techniques to support practitioners in making informed decisions.

Instead, forthcoming research will consider the inclusion of a more ex-
tensive dataset, including data spanning a wider range of dates. The process
of news scraping and labeling will be automated using scripts, particularly

214 | Discussions and Open Issues

for assets within the S&P 500. Additionally, exploring the impact of news
sentiment on equities within specific sectors, as categorized by Business In-
sider, will provide valuable insights into the relationship between information
dissemination and price trends.

To refine the analysis of Reddit comments, future work will involve
additional filtering based on keywords extracted through Named Entity Recog-
nition (NER) in news articles. Furthermore, a manual labeling process for
select Reddit comments and the training of specialized models for sentiment
assignment will be pursued to enhance the accuracy of sentiment analysis.

Lastly, optimization of the neural networks employed in the studies will
be a priority, with fine-tuning of model configurations expected to yield
significant improvements in predictive accuracy and overall effectiveness.

Bibliography

[1] James D Hamilton. Time series analysis. Princeton university press,
2020.

[2] Ratnadip Adhikari and Ramesh K Agrawal. An introductory study on
time series modeling and forecasting. arXiv preprint arXiv:1302.6613,
2013.

[3] Ming C Hao, Umeshwar Dayal, Daniel A Keim, and Tobias Schreck.
Importance-driven visualization layouts for large time series data. In
IEEE Symposium on Information Visualization, 2005. INFOVIS 2005.,
pages 203–210. IEEE, 2005.

[4] Sheikh Mohammad Idrees, M Afshar Alam, and Parul Agarwal. A
prediction approach for stock market volatility based on time series
data. IEEE Access, 7:17287–17298, 2019.

[5] Yakov Amihud. Illiquidity and stock returns: cross-section and time-
series effects. Journal of financial markets, 5(1):31–56, 2002.

[6] Liang Lu, Hualiang Lin, Linwei Tian, Weizhong Yang, Jimin Sun,
and Qiyong Liu. Time series analysis of dengue fever and weather in
guangzhou, china. BMC Public Health, 9:1–5, 2009.

[7] Zahra Karevan and Johan AK Suykens. Transductive lstm for time-
series prediction: An application to weather forecasting. Neural Net-
works, 125:1–9, 2020.

216 | Bibliography

[8] José F Torres, Dalil Hadjout, Abderrazak Sebaa, Francisco Martínez-
Álvarez, and Alicia Troncoso. Deep learning for time series forecasting:
a survey. Big Data, 9(1):3–21, 2021.

[9] Changqing Cheng, Akkarapol Sa-Ngasoongsong, Omer Beyca, Trung
Le, Hui Yang, Zhenyu Kong, and Satish TS Bukkapatnam. Time series
forecasting for nonlinear and non-stationary processes: a review and
comparative study. Iie Transactions, 47(10):1053–1071, 2015.

[10] Lucie Michel and David Makowski. Comparison of statistical models
for analyzing wheat yield time series. PLoS One, 8(10):e78615, 2013.

[11] Kunhui Lin, Qiang Lin, Changle Zhou, and Junfeng Yao. Time series
prediction based on linear regression and svr. In Third International
Conference on Natural Computation (ICNC 2007), volume 1, pages
688–691. IEEE, 2007.

[12] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane
Idoumghar, and Pierre-Alain Muller. Deep learning for time series clas-
sification: a review. Data mining and knowledge discovery, 33(4):917–
963, 2019.

[13] Balpreet Singh, Pawan Kumar, Nonita Sharma, and KP Sharma. Sales
forecast for amazon sales with time series modeling. In 2020 first
international conference on power, control and computing technologies
(ICPC2T), pages 38–43. IEEE, 2020.

[14] John H Cochrane. Time series for macroeconomics and finance, 1997.

[15] Thanapant Raicharoen, Chidchanok Lursinsap, and Paron San-
guanbhokai. Application of critical support vector machine to time
series prediction. In Proceedings of the 2003 International Symposium
on Circuits and Systems, 2003. ISCAS’03., volume 5, pages V–V. IEEE,
2003.

[16] IA Iwok and AS Okpe. A comparative study between univariate and
multivariate linear stationary time series models. American Journal of
Mathematics and Statistics, 6(5):203–212, 2016.

[17] Peter J Brockwell and Richard A Davis. Introduction to time series
and forecasting. Springer, 2002.

Bibliography | 217

[18] G Peter Zhang and Min Qi. Neural network forecasting for seasonal
and trend time series. European journal of operational research,
160(2):501–514, 2005.

[19] Zhiguang Wang, Weizhong Yan, and Tim Oates. Time series classi-
fication from scratch with deep neural networks: A strong baseline.
In 2017 International joint conference on neural networks (IJCNN),
pages 1578–1585. IEEE, 2017.

[20] Theodore W Anderson. The statistical analysis of time series. John
Wiley & Sons, 2011.

[21] Roberto Perrelli. Introduction to arch & garch models. University of
illinois optional TA handout, pages 1–7, 2001.

[22] J Kihoro, Romanus Odhiambo Otieno, and C Wafula. Seasonal time
series forecasting: A comparative study of arima and ann models.
2004.

[23] Joarder Kamruzzaman, Rezaul Begg, and Ruhul Sarker. Artificial
neural networks in finance and manufacturing. IGI Global, 2006.

[24] Kasun Amarasinghe, Daniel L Marino, and Milos Manic. Deep neural
networks for energy load forecasting. In 2017 IEEE 26th international
symposium on industrial electronics (ISIE), pages 1483–1488. IEEE,
2017.

[25] Poonam Sharma and Akansha Singh. Era of deep neural networks: A
review. In 2017 8th International Conference on Computing, Commu-
nication and Networking Technologies (ICCCNT), pages 1–5. IEEE,
2017.

[26] Guoqiang Zhang, B Eddy Patuwo, and Michael Y Hu. Forecasting
with artificial neural networks:: The state of the art. International
journal of forecasting, 14(1):35–62, 1998.

[27] G Peter Zhang. Time series forecasting using a hybrid arima and neural
network model. Neurocomputing, 50:159–175, 2003.

[28] Sho Sonoda and Noboru Murata. Neural network with unbounded acti-
vation functions is universal approximator. Applied and Computational
Harmonic Analysis, 43(2):233–268, 2017.

218 | Bibliography

[29] Marek Śmieja, Łukasz Struski, Jacek Tabor, Bartosz Zieliński, and
Przemysław Spurek. Processing of missing data by neural networks.
Advances in neural information processing systems, 31, 2018.

[30] Vincent Le Guen and Nicolas Thome. Deep time series forecasting with
shape and temporal criteria. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 45(1):342–355, 2022.

[31] Yeming Gong and René BM De Koster. A review on stochastic models
and analysis of warehouse operations. Logistics Research, 3:191–205,
2011.

[32] Hui Liu, Chao Chen, Xinwei Lv, Xing Wu, and Min Liu. Deterministic
wind energy forecasting: A review of intelligent predictors and aux-
iliary methods. Energy Conversion and Management, 195:328–345,
2019.

[33] Apeksha Shewalkar, Deepika Nyavanandi, and Simone A Ludwig.
Performance evaluation of deep neural networks applied to speech
recognition: Rnn, lstm and gru. Journal of Artificial Intelligence and
Soft Computing Research, 9(4):235–245, 2019.

[34] Rui Fu, Zuo Zhang, and Li Li. Using lstm and gru neural network
methods for traffic flow prediction. In 2016 31st Youth academic
annual conference of Chinese association of automation (YAC), pages
324–328. IEEE, 2016.

[35] Jianqiong Xiao and Zhiyong Zhou. Research progress of rnn language
model. In 2020 IEEE International Conference on Artificial Intelli-
gence and Computer Applications (ICAICA), pages 1285–1288. IEEE,
2020.

[36] George Saon, Zoltán Tüske, Daniel Bolanos, and Brian Kingsbury. Ad-
vancing rnn transducer technology for speech recognition. In ICASSP
2021-2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 5654–5658. IEEE, 2021.

[37] Alper Tokgöz and Gözde Ünal. A rnn based time series approach for
forecasting turkish electricity load. In 2018 26th Signal processing
and communications applications conference (SIU), pages 1–4. IEEE,
2018.

Bibliography | 219

[38] Danilo Mandic and Jonathon Chambers. Recurrent neural networks
for prediction: learning algorithms, architectures and stability. Wiley,
2001.

[39] Alaa Sagheer and Mostafa Kotb. Time series forecasting of petroleum
production using deep lstm recurrent networks. Neurocomputing,
323:203–213, 2019.

[40] Ray J Frank, Neil Davey, and Stephen P Hunt. Time series prediction
and neural networks. Journal of intelligent and robotic systems, 31:91–
103, 2001.

[41] Sui-Lau Ho, Min Xie, and Thong Ngee Goh. A comparative study of
neural network and box-jenkins arima modeling in time series predic-
tion. Computers & Industrial Engineering, 42(2-4):371–375, 2002.

[42] Tian Guo, Zhao Xu, Xin Yao, Haifeng Chen, Karl Aberer, and Koichi
Funaya. Robust online time series prediction with recurrent neural
networks. In 2016 IEEE international conference on data science and
advanced analytics (DSAA), pages 816–825. Ieee, 2016.

[43] Rajat Sen, Hsiang-Fu Yu, and Inderjit S Dhillon. Think globally, act
locally: A deep neural network approach to high-dimensional time
series forecasting. Advances in neural information processing systems,
32, 2019.

[44] Ashu Jain and Avadhnam Madhav Kumar. Hybrid neural network
models for hydrologic time series forecasting. Applied Soft Computing,
7(2):585–592, 2007.

[45] Durdu Ömer Faruk. A hybrid neural network and arima model for water
quality time series prediction. Engineering applications of artificial
intelligence, 23(4):586–594, 2010.

[46] Hossein Abbasimehr and Reza Paki. Improving time series forecasting
using lstm and attention models. Journal of Ambient Intelligence and
Humanized Computing, pages 1–19, 2022.

[47] Ahmed Tealab. Time series forecasting using artificial neural net-
works methodologies: A systematic review. Future Computing and
Informatics Journal, 3(2):334–340, 2018.

220 | Bibliography

[48] Eduardo Rocha Rodrigues, Igor Oliveira, Renato Cunha, and Marco
Netto. Deepdownscale: A deep learning strategy for high-resolution
weather forecast. In 2018 IEEE 14th International Conference on
e-Science (e-Science), pages 415–422. IEEE, 2018.

[49] Aditya Grover, Ashish Kapoor, and Eric Horvitz. A deep hybrid model
for weather forecasting. In Proceedings of the 21th ACM SIGKDD
international conference on knowledge discovery and data mining,
pages 379–386, 2015.

[50] Ryo Akita, Akira Yoshihara, Takashi Matsubara, and Kuniaki Uehara.
Deep learning for stock prediction using numerical and textual informa-
tion. In 2016 IEEE/ACIS 15th International Conference on Computer
and Information Science (ICIS), pages 1–6. IEEE, 2016.

[51] Mojtaba Nabipour, Pooyan Nayyeri, Hamed Jabani, Amir Mosavi, and
Ely Salwana. Deep learning for stock market prediction. Entropy,
22(8):840, 2020.

[52] Oscar Serradilla, Ekhi Zugasti, Jon Rodriguez, and Urko Zurutuza.
Deep learning models for predictive maintenance: a survey, compar-
ison, challenges and prospects. Applied Intelligence, 52(10):10934–
10964, 2022.

[53] Youdao Wang, Yifan Zhao, and Sri Addepalli. Remaining useful
life prediction using deep learning approaches: A review. Procedia
manufacturing, 49:81–88, 2020.

[54] Francesco Piccialli, Fabio Giampaolo, Edoardo Prezioso, David Cama-
cho, and Giovanni Acampora. Artificial intelligence and healthcare:
Forecasting of medical bookings through multi-source time-series fu-
sion. Information Fusion, 74:1–16, 2021.

[55] Abdelhafid Zeroual, Fouzi Harrou, Abdelkader Dairi, and Ying Sun.
Deep learning methods for forecasting covid-19 time-series data: A
comparative study. Chaos, solitons & fractals, 140:110121, 2020.

[56] Aniello De Santo, Antonio Galli, Michela Gravina, Vincenzo Moscato,
and Giancarlo Sperli. Deep learning for hdd health assessment: an
application based on lstm. IEEE Transactions on Computers, pages
1–1, 2020.

Bibliography | 221

[57] Diego GS Pivoto, Luiz FF de Almeida, Rodrigo da Rosa Righi,
Joel JPC Rodrigues, Alexandre Baratella Lugli, and Antonio M Al-
berti. Cyber-physical systems architectures for industrial internet of
things applications in industry 4.0: A literature review. Journal of
manufacturing systems, 58:176–192, 2021.

[58] Michael Sony and Subhash Naik. Industry 4.0 integration with socio-
technical systems theory: A systematic review and proposed theoretical
model. Technology in society, 61:101248, 2020.

[59] Antonino Ferraro, Antonio Galli, Vincenzo Moscato, and Giancarlo
Sperlí. A novel approach for predictive maintenance combining gaf
encoding strategies and deep networks. In 2020 IEEE 6th International
Conference on Dependability in Sensor, Cloud and Big Data Systems
and Application (DependSys), pages 127–132, 2020.

[60] R Keith Mobley. An introduction to predictive maintenance. Elsevier,
2002.

[61] Sule Selcuk. Predictive maintenance, its implementation and latest
trends. Proceedings of the Institution of Mechanical Engineers, Part B:
Journal of Engineering Manufacture, 231(9):1670–1679, 2017.

[62] Chanhee Park and Seoung Bum Kim. Virtual metrology modeling
of time-dependent spectroscopic signals by a fused lasso algorithm.
Journal of Process Control, 42:51–58, 2016.

[63] Adriaan Van Horenbeek and Liliane Pintelon. A dynamic predictive
maintenance policy for complex multi-component systems. Reliability
engineering & system safety, 120:39–50, 2013.

[64] Gian Antonio Susto and Alessandro Beghi. Dealing with time-series
data in predictive maintenance problems. In 2016 IEEE 21st Interna-
tional Conference on Emerging Technologies and Factory Automation
(ETFA), pages 1–4. IEEE, 2016.

[65] Ruben Sipos, Dmitriy Fradkin, Fabian Moerchen, and Zhuang Wang.
Log-based predictive maintenance. In Proceedings of the 20th ACM
SIGKDD international conference on knowledge discovery and data
mining, pages 1867–1876, 2014.

[66] Philippe Esling and Carlos Agon. Time-series data mining. ACM
Computing Surveys (CSUR), 45(1):1–34, 2012.

222 | Bibliography

[67] Alessandra Tanda and Cristiana-Maria Schena. FinTech, BigTech
and banks: Digitalisation and its impact on banking business models.
Springer, 2019.

[68] Thomas Puschmann and Rainer Alt. Sharing economy. Business &
Information Systems Engineering, 58:93–99, 2016.

[69] Mariam H Ismail, Mohamed Khater, and Mohamed Zaki. Digital busi-
ness transformation and strategy: What do we know so far. Cambridge
Service Alliance, 10(1):1–35, 2017.

[70] Rainer Lenz. Peer-to-peer lending: Opportunities and risks. European
Journal of Risk Regulation, 7(4):688–700, 2016.

[71] Rebecca Nüesch, Rainer Alt, and Thomas Puschmann. Hybrid cus-
tomer interaction. Business & Information Systems Engineering, 57:73–
78, 2015.

[72] Alessandra Tanda, Cristiana-Maria Schena, Alessandra Tanda, and
Cristiana-Maria Schena. Bank strategies in the light of the digitalisation
of financial activities. FinTech, BigTech and Banks: Digitalisation and
its Impact on Banking Business Models, pages 51–81, 2019.

[73] Ian Pollari. The rise of fintech opportunities and challenges. Jassa,
(3):15–21, 2016.

[74] Thomas Puschmann. Fintech. Business & Information Systems Engi-
neering, 59:69–76, 2017.

[75] Peter Tufano. Financial innovation. Handbook of the Economics of
Finance, 1:307–335, 2003.

[76] Christian Haddad and Lars Hornuf. The emergence of the global fintech
market: Economic and technological determinants. Small business
economics, 53(1):81–105, 2019.

[77] Mark A Chen, Qinxi Wu, and Baozhong Yang. How valuable is fintech
innovation? The Review of Financial Studies, 32(5):2062–2106, 2019.

[78] SM Raju and Ali Mohammad Tarif. Real-time prediction of bitcoin
price using machine learning techniques and public sentiment analysis.
arXiv preprint arXiv:2006.14473, 2020.

Bibliography | 223

[79] Isaac Kofi Nti, Adebayo Felix Adekoya, and Benjamin Asubam Weyori.
A novel multi-source information-fusion predictive framework based
on deep neural networks for accuracy enhancement in stock market
prediction. Journal of Big data, 8(1):1–28, 2021.

[80] Manas Ranjan Senapati, Sumanjit Das, and Sarojananda Mishra. A
novel model for stock price prediction using hybrid neural network.
Journal of the Institution of Engineers (india): Series B, 99:555–563,
2018.

[81] Thien Hai Nguyen and Kiyoaki Shirai. Topic modeling based sentiment
analysis on social media for stock market prediction. In Proceedings
of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pages 1354–1364,
2015.

[82] Tejas Mankar, Tushar Hotchandani, Manish Madhwani, Akshay
Chidrawar, and CS Lifna. Stock market prediction based on social
sentiments using machine learning. In 2018 international conference
on smart city and emerging technology (ICSCET), pages 1–3. IEEE,
2018.

[83] Om Mane et al. Stock market prediction using natural language
processing–a survey. arXiv preprint arXiv:2208.13564, 2022.

[84] Zhaoxia Wang, Seng-Beng Ho, and Zhiping Lin. Stock market predic-
tion analysis by incorporating social and news opinion and sentiment.
In 2018 IEEE International Conference on Data Mining Workshops
(ICDMW), pages 1375–1380. IEEE, 2018.

[85] Weiling Chen, Yan Zhang, Chai Kiat Yeo, Chiew Tong Lau, and
Bu Sung Lee. Stock market prediction using neural network through
news on online social networks. In 2017 international smart cities
conference (ISC2), pages 1–6. IEEE, 2017.

[86] Polash Dey, Emam Hossain, Md Ishtiaque Hossain, Mohammed Ar-
manuzzaman Chowdhury, Md Shariful Alam, Mohammad Shahadat
Hossain, and Karl Andersson. Comparative analysis of recurrent neu-
ral networks in stock price prediction for different frequency domains.
Algorithms, 14(8):251, 2021.

224 | Bibliography

[87] Ankit Thakkar and Kinjal Chaudhari. Fusion in stock market pre-
diction: a decade survey on the necessity, recent developments, and
potential future directions. Information Fusion, 65:95–107, 2021.

[88] Ranjan Kumar Behera, Sushree Das, Santanu Kumar Rath, Sanjay
Misra, and Robertas Damasevicius. Comparative study of real time
machine learning models for stock prediction through streaming data.
J. Univers. Comput. Sci., 26(9):1128–1147, 2020.

[89] Jean-Pierre Eckmann, S Oliffson Kamphorst, David Ruelle, et al. Re-
currence plots of dynamical systems. World Scientific Series on Non-
linear Science Series A, 16:441–446, 1995.

[90] Norbert Marwan, M. Carmen Romano, Marco Thiel, and Jürgen Kurths.
Recurrence plots for the analysis of complex systems. Physics Reports,
438(5):237–329, 2007.

[91] Zhiguang Wang and Tim Oates. Imaging time-series to improve classi-
fication and imputation. In Proceedings of the 24th International Con-
ference on Artificial Intelligence, IJCAI’15, page 3939–3945. AAAI
Press, 2015.

[92] Ali N Akansu, Richard A Haddad, Paul A Haddad, and Paul R Had-
dad. Multiresolution signal decomposition: transforms, subbands, and
wavelets. Academic press, 2001.

[93] Paul S Addison. Wavelet transforms and the ECG: a review. Physio-
logical measurement, 26(5):R155–R199, aug 2005.

[94] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention
is all you need. Advances in neural information processing systems,
30, 2017.

[95] Klaus Schwab. The fourth industrial revolution. Currency, 2017.

[96] Weiting Zhang, Dong Yang, and Hongchao Wang. Data-driven meth-
ods for predictive maintenance of industrial equipment: A survey.
IEEE Systems Journal, 13(3):2213–2227, 2019.

[97] Morteza Alizadeh and Junfeng Ma. A comparative study of series
hybrid approaches to model and predict the vehicle operating states.
Computers & Industrial Engineering, 162:107770, 2021.

Bibliography | 225

[98] Roberto M. Souza, Erick G.S. Nascimento, Ubatan A. Miranda, Wenis-
ten J.D. Silva, and Herman A. Lepikson. Deep learning for diagnosis
and classification of faults in industrial rotating machinery. Computers
& Industrial Engineering, 153:107060, 2021.

[99] Chuan-Jun Su and Shi-Feng Huang. Real-time big data analytics
for hard disk drive predictive maintenance. Computers & Electrical
Engineering, 71:93–101, 2018.

[100] Tiago Zonta, Cristiano André da Costa, Rodrigo da Rosa Righi, Miro-
mar José de Lima, Eduardo Silveira da Trindade, and Guann Pyng
Li. Predictive maintenance in the industry 4.0: A systematic literature
review. Computers & Industrial Engineering, 150:106889, 2020.

[101] Thyago P. Carvalho, Fabrízzio A. A. M. N. Soares, Roberto Vita,
Roberto da P. Francisco, João P. Basto, and Symone G. S. Alcalá. A sys-
tematic literature review of machine learning methods applied to predic-
tive maintenance. Computers & Industrial Engineering, 137:106024,
2019.

[102] Héctor Cañas, Josefa Mula, Manuel Díaz-Madroñero, and Francisco
Campuzano-Bolarín. Implementing industry 4.0 principles. Computers
& Industrial Engineering, 158:107379, 2021.

[103] Sujie Geng and Xiuli Wang. Predictive maintenance scheduling for
multiple power equipment based on data-driven fault prediction. Com-
puters & Industrial Engineering, 164:107898, 2022.

[104] Elisa Yumi Nakagawa, Pablo Oliveira Antonino, Frank Schnicke,
Rafael Capilla, Thomas Kuhn, and Peter Liggesmeyer. Industry 4.0
reference architectures: State of the art and future trends. Computers
& Industrial Engineering, 156:107241, 2021.

[105] Yongyi Ran, Xin Zhou, Pengfeng Lin, Yonggang Wen, and Ruilong
Deng. A survey of predictive maintenance: Systems, purposes and
approaches. arXiv preprint arXiv:1912.07383, 2019.

[106] Thomas Rieger, Stefanie Regier, Ingo Stengel, and Nathan L Clarke.
Fast predictive maintenance in industrial internet of things (iiot) with
deep learning (dl): A review. In CERC, pages 69–80, 2019.

[107] Jovani Dalzochio, Rafael Kunst, Edison Pignaton, Alecio Binotto,
Srijnan Sanyal, Jose Favilla, and Jorge Barbosa. Machine learning and

226 | Bibliography

reasoning for predictive maintenance in industry 4.0: Current status
and challenges. Computers in Industry, 123:103298, 2020.

[108] Sajja Tulasi Krishna and Hemantha Kumar Kalluri. Deep learning and
transfer learning approaches for image classification. International
Journal of Recent Technology and Engineering (IJRTE), 7(5S4):427–
432, 2019.

[109] Weiting Zhang, Dong Yang, and Hongchao Wang. Data-driven meth-
ods for predictive maintenance of industrial equipment: A survey.
IEEE Systems Journal, 13(3):2213–2227, 2019.

[110] Jovani Dalzochio, Rafael Kunst, Edison Pignaton, Alecio Binotto,
Srijnan Sanyal, Jose Favilla, and Jorge Barbosa. Machine learning and
reasoning for predictive maintenance in industry 4.0: Current status
and challenges. Computers in Industry, 123:103298, 2020.

[111] Adir Solomon, Mor Kertis, Bracha Shapira, and Lior Rokach. A
deep learning framework for predicting burglaries based on multiple
contextual factors. Expert Systems with Applications, 199:117042,
2022.

[112] Danilo Giordano, Flavio Giobergia, Eliana Pastor, Antonio La Macchia,
Tania Cerquitelli, Elena Baralis, Marco Mellia, and Davide Tricarico.
Data-driven strategies for predictive maintenance: Lesson learned from
an automotive use case. Computers in Industry, 134:103554, 2022.

[113] Sebastian Schwendemann, Zubair Amjad, and Axel Sikora. A survey
of machine-learning techniques for condition monitoring and predictive
maintenance of bearings in grinding machines. Computers in Industry,
125:103380, 2021.

[114] Lijun Zhang, Zhongqiang Mu, and Changyan Sun. Remaining useful
life prediction for lithium-ion batteries based on exponential model
and particle filter. IEEE Access, 6:17729–17740, 2018.

[115] Hua Han, Xiaoyu Cui, Yuqiang Fan, and Hong Qing. Least squares
support vector machine (ls-svm)-based chiller fault diagnosis using
fault indicative features. Applied Thermal Engineering, 154:540–547,
2019.

[116] Dong Wang, Kwok-Leung Tsui, and Qiang Miao. Prognostics and
health management: A review of vibration based bearing and gear
health indicators. IEEE Access, 6:665–676, 2018.

Bibliography | 227

[117] Zepeng Liu and Long Zhang. A review of failure modes, condition
monitoring and fault diagnosis methods for large-scale wind turbine
bearings. Measurement, 149:107002, 2020.

[118] David Siegel, Canh Ly, and Jay Lee. Methodology and framework for
predicting helicopter rolling element bearing failure. IEEE Transac-
tions on Reliability, 61(4):846–857, 2012.

[119] Theodoros H. Loutas, Dimitrios Roulias, and George Georgoulas.
Remaining useful life estimation in rolling bearings utilizing data-
driven probabilistic e-support vectors regression. IEEE Transactions
on Reliability, 62(4):821–832, 2013.

[120] Junqiang Liu, Chunlu Pan, Fan Lei, Dongbin Hu, and Hongfu Zuo.
Fault prediction of bearings based on lstm and statistical process analy-
sis. Reliability Engineering & System Safety, 214:107646, 2021.

[121] Yi Qin, Dingliang Chen, Sheng Xiang, and Caichao Zhu. Gated dual
attention unit neural networks for remaining useful life prediction
of rolling bearings. IEEE Transactions on Industrial Informatics,
17(9):6438–6447, 2021.

[122] Preethi Anantharaman, Mu Qiao, and Divyesh Jadav. Large scale
predictive analytics for hard disk remaining useful life estimation. In
2018 IEEE International Congress on Big Data (BigData Congress),
pages 251–254, 2018.

[123] Sanchita Basak, Saptarshi Sengupta, and Abhishek Dubey. Mecha-
nisms for integrated feature normalization and remaining useful life es-
timation using lstms applied to hard-disks. In 2019 IEEE International
Conference on Smart Computing (SMARTCOMP), pages 208–216,
2019.

[124] Fernando Dione S. Lima, Francisco Lucas F. Pereira, Lucas G. M.
Leite, Joao Paulo P. Gomes, and Javam C. Machado. Remaining useful
life estimation of hard disk drives based on deep neural networks. In
2018 International Joint Conference on Neural Networks (IJCNN),
pages 1–7, 2018.

[125] Huimin Zhao, Haodong Liu, Yang Jin, Xiangjun Dang, and Wu Deng.
Feature extraction for data-driven remaining useful life prediction of
rolling bearings. IEEE Transactions on Instrumentation and Measure-
ment, 70:1–10, 2021.

228 | Bibliography

[126] Antoine Guillaume, Christel Vrain, and Elloumi Wael. Time series
classification for predictive maintenance on event logs. arXiv preprint
arXiv:2011.10996, 2020.

[127] Ying-Yi Hong, John Joel F. Martinez, and Arnel C. Fajardo. Day-
ahead solar irradiation forecasting utilizing gramian angular field and
convolutional long short-term memory. IEEE Access, 8:18741–18753,
2020.

[128] Yang Liu, Keze Wang, Guanbin Li, and Liang Lin. Semantics-aware
adaptive knowledge distillation for sensor-to-vision action recognition.
IEEE Transactions on Image Processing, 30:5573–5588, 2021.

[129] Zhen Qin, Yibo Zhang, Shuyu Meng, Zhiguang Qin, and Kim-
Kwang Raymond Choo. Imaging and fusing time series for wear-
able sensor-based human activity recognition. Information Fusion,
53:80–87, 2020.

[130] Silvio Barra, Salvatore Mario Carta, Andrea Corriga, Alessandro Se-
bastian Podda, and Diego Reforgiato Recupero. Deep learning and
time series-to-image encoding for financial forecasting. IEEE/CAA
Journal of Automatica Sinica, 7(3):683–692, 2020.

[131] Kahiomba Sonia Kiangala and Zenghui Wang. An effective predictive
maintenance framework for conveyor motors using dual time-series
imaging and convolutional neural network in an industry 4.0 environ-
ment. IEEE Access, 8:121033–121049, 2020.

[132] Renxiang Chen, Xin Huang, Lixia Yang, Xiangyang Xu, Xia Zhang,
and Yong Zhang. Intelligent fault diagnosis method of planetary gear-
boxes based on convolution neural network and discrete wavelet trans-
form. Computers in Industry, 106:48–59, 2019.

[133] Pengfei Liang, Chao Deng, Jun Wu, Zhixin Yang, Jinxuan Zhu, and
Zihan Zhang. Compound fault diagnosis of gearboxes via multi-label
convolutional neural network and wavelet transform. Computers in
Industry, 113:103132, 2019.

[134] Turker Tuncer, Sengul Dogan, Paweł Pławiak, and U. Rajendra
Acharya. Automated arrhythmia detection using novel hexadeci-
mal local pattern and multilevel wavelet transform with ecg signals.
Knowledge-Based Systems, 186:104923, 2019.

Bibliography | 229

[135] Ruobin Gao, Liang Du, Okan Duru, and Kum Fai Yuen. Time se-
ries forecasting based on echo state network and empirical wavelet
transformation. Applied Soft Computing, 102:107111, 2021.

[136] M. Bugueño, G. Molina, F. Mena, P. Olivares, and M. Araya. Harness-
ing the power of cnns for unevenly-sampled light-curves using markov
transition field. Astronomy and Computing, 35:100461, 2021.

[137] K Vandith Sreenivas, M Ganesan, and R Lavanya. Classification of
arrhythmia in time series ecg signals using image encoding and convo-
lutional neural networks. In 2021 Seventh International conference on
Bio Signals, Images, and Instrumentation (ICBSII), pages 1–6, 2021.

[138] Jianjie Lu and Kai-Yu Tong. Robust single accelerometer-based activity
recognition using modified recurrence plot. IEEE Sensors Journal,
19(15):6317–6324, 2019.

[139] Luis C.S. Afonso, Gustavo H. Rosa, Clayton R. Pereira, Silke A.T.
Weber, Christian Hook, Victor Hugo C. Albuquerque, and João P. Papa.
A recurrence plot-based approach for parkinson’s disease identification.
Future Generation Computer Systems, 94:282–292, 2019.

[140] Ye Zhang, Yi Hou, Kewei OuYang, and Shilin Zhou. Multi-scale
signed recurrence plot based time series classification using inception
architectural networks. Pattern Recognition, page 108385, 2021.

[141] Chao-Lung Yang, Zhi-Xuan Chen, and Chen-Yi Yang. Sensor classi-
fication using convolutional neural network by encoding multivariate
time series as two-dimensional colored images. Sensors, 20(1), 2020.

[142] S. Chan, I. Oktavianti, and V. Puspita. A deep learning cnn and ai-tuned
svm for electricity consumption forecasting: Multivariate time series
data. In 2019 IEEE 10th Annual Information Technology, Electronics
and Mobile Communication Conference (IEMCON), pages 0488–0494,
2019.

[143] Wei Chen, Manrui Jiang, Wei-Guo Zhang, and Zhensong Chen. A
novel graph convolutional feature based convolutional neural network
for stock trend prediction. Information Sciences, 556:67–94, 2021.

[144] Muhammad Fahim, Khadija Fraz, and Alberto Sillitti. Tsi: Time series
to imaging based model for detecting anomalous energy consumption
in smart buildings. Information Sciences, 523:1–13, 2020.

230 | Bibliography

[145] Ruinan Zhang, Fanglan Zheng, and Wei Min. Sequential behavioral
data processing using deep learning and the markov transition field in
online fraud detection. arXiv preprint arXiv:1808.05329, 2018.

[146] Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[147] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. In Yoshua Bengio and Yann LeCun, editors, 3rd Inter-
national Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[148] Michał Markiewicz, Maciej Wielgosz, Mikołlaj Bocheński, Waldemar
Tabaczyński, Tomasz Konieczny, and Liliana Kowalczyk. Predic-
tive maintenance of induction motors using ultra-low power wireless
sensors and compressed recurrent neural networks. IEEE Access,
7:178891–178902, 2019.

[149] Robert P.W. Duin. A note on comparing classifiers. Pattern Recognition
Letters, 17(5):529–536, 1996.

[150] Alessio Benavoli, Giorgio Corani, Janez Demšar, and Marco Zaf-
falon. Time for a change: a tutorial for comparing multiple classifiers
through bayesian analysis. The Journal of Machine Learning Research,
18(1):2653–2688, 2017.

[151] Mohendra Roy, Sumon Kumar Bose, Bapi Kar, Pradeep Kumar
Gopalakrishnan, and Arindam Basu. A stacked autoencoder neu-
ral network based automated feature extraction method for anomaly
detection in on-line condition monitoring, 2018.

[152] Jianjie Lu and Kai-Yu Tong. Robust single accelerometer-based activity
recognition using modified recurrence plot. IEEE Sensors Journal,
19(15):6317–6324, 2019.

[153] Zeeshan Ahmad, Anika Tabassum, Ling Guan, and Naimul Mefraz
Khan. Ecg heartbeat classification using multimodal fusion. IEEE
Access, 9:100615–100626, 2021.

[154] Zeeshan Ahmad and Naimul Khan. Inertial sensor data to image encod-
ing for human action recognition. IEEE Sensors Journal, 21(9):10978–
10988, 2021.

Bibliography | 231

[155] Emil Blixt Hansen and Simon Bøgh. Artificial intelligence and internet
of things in small and medium-sized enterprises: A survey. Journal of
Manufacturing Systems, 58:362–372, 2021.

[156] Alberto Petrillo, Antonio Picariello, Stefania Santini, Biagio Scarciello,
and Giancarlo Sperlí. Model-based vehicular prognostics framework
using big data architecture. Computers in Industry, 115:103177, 2020.

[157] Peng Liu, Lizhe Wang, Rajiv Ranjan, Guojin He, and Lei Zhao. A
survey on active deep learning: from model-driven to data-driven. ACM
Computing Surveys (CSUR), 2021.

[158] Weichao Luo, Tianliang Hu, Yingxin Ye, Chengrui Zhang, and Yongli
Wei. A hybrid predictive maintenance approach for cnc machine tool
driven by digital twin. Robotics and Computer-Integrated Manufactur-
ing, 65:101974, 2020.

[159] Ming Zhang, Nasser Amaitik, Zezhong Wang, Yuchun Xu, Alexander
Maisuradze, Michael Peschl, and Dimitrios Tzovaras. Predictive main-
tenance for remanufacturing based on hybrid-driven remaining useful
life prediction. Applied Sciences, 12(7):3218, 2022.

[160] Yyi Kai Teoh, Sukhpal Singh Gill, and Ajith Kumar Parlikad. Iot and
fog computing based predictive maintenance model for effective asset
management in industry 4.0 using machine learning. IEEE Internet of
Things Journal, 2021.

[161] Marcelo Brandalero, Muhammad Ali, Laurens Le Jeune, Hector Ger-
ardo Muñoz Hernandez, Mitko Veleski, Bruno da Silva, Jan Lemeire,
Kristof Van Beeck, Abdellah Touhafi, Toon Goedemé, et al. Aitia:
Embedded ai techniques for embedded industrial applications. In 2020
International Conference on Omni-layer Intelligent Systems (COINS),
pages 1–7. IEEE, 2020.

[162] Guilherme Tortorella, Tarcisio Abreu Saurin, Flavio Sanson Fogli-
atto, Diego Tlapa, José Moyano-Fuentes, Paolo Gaiardelli, Zahra
Seyedghorban, Roberto Vassolo, Alejandro Francisco Mac Cawley,
V Raja Sreedharan, et al. The impact of industry 4.0 on the relationship
between tpm and maintenance performance. Journal of Manufacturing
Technology Management, 2022.

[163] Camilla Lundgren, Jon Bokrantz, and Anders Skoogh. A strategy
development process for smart maintenance implementation. Journal
of Manufacturing Technology Management, 32(9):142–166, 2021.

232 | Bibliography

[164] Roberto Sala, Marco Bertoni, Fabiana Pirola, and Giuditta Pezzotta.
Data-based decision-making in maintenance service delivery: the
d3m framework. Journal of Manufacturing Technology Management,
32(9):122–141, 2021.

[165] Christian F Durach, Joakim Kembro, and Andreas Wieland. A new
paradigm for systematic literature reviews in supply chain management.
Journal of Supply Chain Management, 53(4):67–85, 2017.

[166] Rob Dekkers, Lindsey Carey, and Peter Langhorne. Making Literature
Reviews Work: A Multidisciplinary Guide to Systematic Approaches.
Springer, 2021.

[167] Gurkan Aydemir and Burak Acar. Anomaly monitoring improves
remaining useful life estimation of industrial machinery. Journal of
Manufacturing Systems, 56:463–469, 2020.

[168] André Listou Ellefsen, Emil Bjørlykhaug, Vilmar Æsøy, Sergey
Ushakov, and Houxiang Zhang. Remaining useful life predictions
for turbofan engine degradation using semi-supervised deep architec-
ture. Reliability Engineering & System Safety, 183:240–251, 2019.

[169] Mohamed Ragab, Zhenghua Chen, Min Wu, Chee-Keong Kwoh,
Ruqiang Yan, and Xiaoli Li. Attention-based sequence to sequence
model for machine remaining useful life prediction. Neurocomputing,
466:58–68, 2021.

[170] Ali Al-Dulaimi, Soheil Zabihi, Amir Asif, and Arash Mohammadi.
A multimodal and hybrid deep neural network model for remaining
useful life estimation. Computers in Industry, 108:186–196, 2019.

[171] Alex Falcon, Giovanni D’Agostino, Giuseppe Serra, Giorgio Brajnik,
Carlo Tasso, and Fondazione Bruno Kessler. A dual-stream architecture
based on neural turing machine and attention for the remaining useful
life estimation problem. 5(1):10–10, 2020.

[172] Ali Al-Dulaimi, Soheil Zabihi, Amir Asif, and Arash Mohammed.
Nblstm: Noisy and hybrid convolutional neural network and blstm-
based deep architecture for remaining useful life estimation. Journal
of Computing and Information Science in Engineering, 20(2):021012,
2020.

Bibliography | 233

[173] Chong Chen, Ying Liu, Xianfang Sun, Carla Di Cairano-Gilfedder,
and Scott Titmus. Automobile maintenance prediction using deep
learning with gis data. Procedia CIRP, 81:447–452, 2019. 52nd CIRP
Conference on Manufacturing Systems (CMS), Ljubljana, Slovenia,
June 12-14, 2019.

[174] Qi Wang, Siqi Bu, and Zhengyou He. Achieving predictive and proac-
tive maintenance for high-speed railway power equipment with lstm-
rnn. IEEE Transactions on Industrial Informatics, 16(10):6509–6517,
2020.

[175] Kahiomba Sonia Kiangala and Zenghui Wang. An effective predictive
maintenance framework for conveyor motors using dual time-series
imaging and convolutional neural network in an industry 4.0 environ-
ment. IEEE Access, 8:121033–121049, 2020.

[176] Haiyue Wu, Aihua Huang, and John W. Sutherland. Avoiding envi-
ronmental consequences of equipment failure via an lstm-based model
for predictive maintenance. Procedia Manufacturing, 43:666–673,
2020. Sustainable Manufacturing - Hand in Hand to Sustainability
on Globe: Proceedings of the 17th Global Conference on Sustainable
Manufacturing.

[177] Samira Zare and Moosa Ayati. Simultaneous fault diagnosis of wind
turbine using multichannel convolutional neural networks. ISA Trans-
actions, 108:230–239, 2021.

[178] Zhe Li, Jingyue Li, Yi Wang, and Kesheng Wang. A deep learning
approach for anomaly detection based on sae and lstm in mechanical
equipment. The International Journal of Advanced Manufacturing
Technology, 103(1):499–510, 2019.

[179] Yuanhang Chen, Gaoliang Peng, Zhiyu Zhu, and Sijue Li. A novel deep
learning method based on attention mechanism for bearing remaining
useful life prediction. Applied Soft Computing, 86:105919, 2020.

[180] Gabriel Rodriguez Garcia, Gabriel Michau, Mélanie Ducoffe,
Jayant Sen Gupta, and Olga Fink. Time series to images: Monitoring
the condition of industrial assets with deep learning image processing
algorithms. arXiv preprint arXiv:2005.07031, 2020.

[181] Giovanna Martínez-Arellano, German Terrazas, and Svetan Ratchev.
Tool wear classification using time series imaging and deep learning.

234 | Bibliography

The International Journal of Advanced Manufacturing Technology,
104(9):3647–3662, 2019.

[182] Luis A Pinedo-Sanchez, Diego A Mercado-Ravell, and Carlos A
Carballo-Monsivais. Vibration analysis in bearings for failure pre-
vention using cnn. Journal of the Brazilian Society of Mechanical
Sciences and Engineering, 42(12):1–17, 2020.

[183] Sidi Lu, Bing Luo, Tirthak Patel, Yongtao Yao, Devesh Tiwari, and
Weisong Shi. Making disk failure predictions {SMARTer}! pages
151–167, 2020.

[184] Hongzhang Yang, Zongzhao Li, Huiyuan Qiang, Zhongliang Li,
Yaofeng Tu, and Yahui Yang. Zte-predictor: Disk failure prediction
system based on lstm. pages 17–20, 2020.

[185] Aniello De Santo, Antonio Galli, Michela Gravina, Vincenzo Moscato,
and Giancarlo Sperlì. Deep learning for hdd health assessment: An
application based on lstm. IEEE Transactions on Computers, 71(1):69–
80, 2022.

[186] Harsh Purohit, Ryo Tanabe, Kenji Ichige, Takashi Endo, Yuki Nikaido,
Kaori Suefusa, and Yohei Kawaguchi. Mimii dataset: Sound dataset
for malfunctioning industrial machine investigation and inspection.
arXiv preprint arXiv:1909.09347, 2019.

[187] Faatih Nuraliah Binti Sohaidan, Amgad Muneer, and Shakirah Mohd
Taib. Remaining useful life prediction of turbofan engine using long-
short term memory. In 2021 International Conference on Innovation
and Intelligence for Informatics, Computing, and Technologies (3ICT),
pages 1–6. IEEE, 2021.

[188] Hadis Hesabi, Mustapha Nourelfath, and Adnène Hajji. A deep learn-
ing predictive model for selective maintenance optimization. Reliability
Engineering & System Safety, 219:108191, 2022.

[189] Zhaoyang Niu, Guoqiang Zhong, and Hui Yu. A review on the attention
mechanism of deep learning. Neurocomputing, 452:48–62, 2021.

[190] Xingyu Li, Vasiliy Krivtsov, and Karunesh Arora. Attention-based
deep survival model for time series data. Reliability Engineering &
System Safety, 217:108033, 2022.

Bibliography | 235

[191] Jeffrey Chen, Sehwan Hong, Warrick He, Jinyeong Moon, and Sang-
Woo Jun. Eciton: Very low-power lstm neural network accelerator
for predictive maintenance at the edge. In 2021 31st International
Conference on Field-Programmable Logic and Applications (FPL),
pages 1–8. IEEE, 2021.

[192] Chang Woo Hong, Min-Seung Ko, and Kyeon Hur. Convnet-based
remaining useful life prognosis of a turbofan engine. In 2021 IEEE
4th International Conference on Knowledge Innovation and Invention
(ICKII), pages 190–193. IEEE, 2021.

[193] Jiusi Zhang, Yuchen Jiang, Shimeng Wu, Xiang Li, Hao Luo, and Shen
Yin. Prediction of remaining useful life based on bidirectional gated
recurrent unit with temporal self-attention mechanism. Reliability
Engineering & System Safety, page 108297, 2022.

[194] Maxim Shcherbakov and Cuong Sai. A hybrid deep learning frame-
work for intelligent predictive maintenance of cyber-physical systems.
ACM Transactions on Cyber-Physical Systems, 2022.

[195] Mehdi Mohammadi, Ala Al-Fuqaha, Sameh Sorour, and Mohsen
Guizani. Deep learning for iot big data and streaming analytics: A
survey. IEEE Communications Surveys Tutorials, 20(4):2923–2960,
2018.

[196] Huan Song, Deepta Rajan, Jayaraman Thiagarajan, and Andreas
Spanias. Attend and diagnose: Clinical time series analysis using
attention models. Proceedings of the AAAI Conference on Artificial
Intelligence, 32(1), Apr. 2018.

[197] A. Saxena, K. Goebel, D. Simon, N. Eklund. Damage propagation
modeling for aircraft engine run-to-failure simulation. 2008 Interna-
tional Conference on Prognostics and Health Management, pages 1–9,
2008.

[198] Emmanuel Ramasso. Investigating computational geometry for failure
prognostics in presence of imprecise health indicator: Results and com-
parisons on c-mapss datasets. In PHM Society European Conference,
volume 2, 2014.

[199] Carlo Concari and Giada Bettini. Embedded implementation of
rainflow-counting for on-line predictive maintenance. In 2020 IEEE

236 | Bibliography

Energy Conversion Congress and Exposition (ECCE), pages 981–988.
IEEE, 2020.

[200] Carlos Resende, Duarte Folgado, João Oliveira, Bernardo Franco,
Waldir Moreira, Antonio Oliveira-Jr, Armando Cavaleiro, and Ricardo
Carvalho. Tip4. 0: Industrial internet of things platform for predictive
maintenance. Sensors, 21(14):4676, 2021.

[201] Lorenzo Gigoni, Alessandro Betti, Mauro Tucci, and Emanuele Crisos-
tomi. A scalable predictive maintenance model for detecting wind
turbine component failures based on scada data. In 2019 IEEE Power
& Energy Society General Meeting (PESGM), pages 1–5, 2019.

[202] J. Li, X. Li, D. He. A directed acyclic graph network combined with
CNN and LSTM for remaining useful life prediction. IEEE Access,
7:75464–75475, 2019.

[203] Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.

[204] Anna Bosch, Andrew Zisserman, and Xavier Munoz. Image classifica-
tion using random forests and ferns. In 2007 IEEE 11th international
conference on computer vision, pages 1–8. Ieee, 2007.

[205] Yanxiong Sun, Yeli Li, Qingtao Zeng, and Yuning Bian. Application
research of text classification based on random forest algorithm. In
2020 3rd International Conference on Advanced Electronic Materials,
Computers and Software Engineering (AEMCSE), pages 370–374.
IEEE, 2020.

[206] Parveen Sihag, Sahar Mohsenzadeh Karimi, and Anastasia Angelaki.
Random forest, m5p and regression analysis to estimate the field unsat-
urated hydraulic conductivity. Applied Water Science, 9:1–9, 2019.

[207] Jerome H. Friedman. Greedy function approximation: A gradient
boosting machine. The Annals of Statistics, 29(5):1189–1232, 2001.

[208] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely random-
ized trees. Machine learning, 63:3–42, 2006.

[209] Xin Zhou, Jianmin Pang, and Guanghui Liang. Image classification
for malware detection using extremely randomized trees. In 2017 11th
IEEE International Conference on Anti-counterfeiting, Security, and
Identification (ASID), pages 54–59. IEEE, 2017.

Bibliography | 237

[210] Panikos Heracleous, Yasser Mohammad, and Akio Yoneyama. Inte-
grating language and emotion features for multilingual speech emotion
recognition. In Human-Computer Interaction. Multimodal and Natural
Interaction: Thematic Area, HCI 2020, Held as Part of the 22nd Inter-
national Conference, HCII 2020, Copenhagen, Denmark, July 19–24,
2020, Proceedings, Part II 22, pages 187–196. Springer, 2020.

[211] Chinedu I Ossai and Ifeanyi P Egwutuoha. Anomaly detection and
extra tree regression for assessment of the remaining useful life of
lithium-ion battery. In Advanced Information Networking and Applica-
tions: Proceedings of the 34th International Conference on Advanced
Information Networking and Applications (AINA-2020), pages 1474–
1488. Springer, 2020.

[212] Robert Tibshirani. Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society: Series B (Methodological),
58(1):267–288, 1996.

[213] Omid Kohannim, Derrek P Hibar, Jason L Stein, Neda Jahanshad, Xue
Hua, Priya Rajagopalan, Arthur W Toga, Clifford R Jack Jr, Michael W
Weiner, Greig I De Zubicaray, et al. Discovery and replication of
gene influences on brain structure using lasso regression. Frontiers in
neuroscience, 6:115, 2012.

[214] Xi Nie, Guangming Deng, et al. Enterprise financial early warning
based on lasso regression screening variables. Journal of Financial
Risk Management, 9(04):454, 2020.

[215] Tom Goldstein, Min Li, and Xiaoming Yuan. Adaptive primal-dual
splitting methods for statistical learning and image processing. Ad-
vances in neural information processing systems, 28, 2015.

[216] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

[217] Kamilya Smagulova and Alex Pappachen James. A survey on lstm
memristive neural network architectures and applications. The Euro-
pean Physical Journal Special Topics, 228(10):2313–2324, 2019.

[218] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural
networks. IEEE transactions on Signal Processing, 45(11):2673–2681,
1997.

238 | Bibliography

[219] Li Yang, Ying Li, Jin Wang, and Zhuo Tang. Post text processing of
chinese speech recognition based on bidirectional lstm networks and
crf. Electronics, 8(11):1248, 2019.

[220] Rushali Dhumal Deshmukh and Arvind Kiwelekar. Deep learning
techniques for part of speech tagging by natural language processing.
In 2020 2nd International Conference on Innovative Mechanisms for
Industry Applications (ICIMIA), pages 76–81. IEEE, 2020.

[221] Cheng Wang, Haojin Yang, Christian Bartz, and Christoph Meinel.
Image captioning with deep bidirectional lstms. In Proceedings of the
24th ACM international conference on Multimedia, pages 988–997,
2016.

[222] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry
Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio.
Learning phrase representations using rnn encoder-decoder for statisti-
cal machine translation. arXiv preprint arXiv:1406.1078, 2014.

[223] Ben Athiwaratkun and Jack W Stokes. Malware classification with
lstm and gru language models and a character-level cnn. In 2017 IEEE
international conference on acoustics, speech and signal processing
(ICASSP), pages 2482–2486. IEEE, 2017.

[224] Biao Zhang, Deyi Xiong, Jun Xie, and Jinsong Su. Neural machine
translation with gru-gated attention model. IEEE transactions on
neural networks and learning systems, 31(11):4688–4698, 2020.

[225] Muhammad Zulqarnain, Rozaida Ghazali, Muhammad Aamir, and
Yana Mazwin Mohmad Hassim. An efficient two-state gru based on
feature attention mechanism for sentiment analysis. Multimedia Tools
and Applications, pages 1–26, 2022.

[226] Yuan Yuan, Chunlin Tian, and Xiaoqiang Lu. Auxiliary loss multi-
modal gru model in audio-visual speech recognition. IEEE Access,
6:5573–5583, 2018.

[227] Alex Graves, Santiago Fernández, and Jürgen Schmidhuber. Bidirec-
tional lstm networks for improved phoneme classification and recog-
nition. In Artificial Neural Networks: Formal Models and Their
Applications–ICANN 2005: 15th International Conference, Warsaw,
Poland, September 11-15, 2005. Proceedings, Part II 15, pages 799–
804. Springer, 2005.

Bibliography | 239

[228] O Bustos and A. Pomares-Quimbaya. Stock market movement forecast:
A Systematic review. Expert Systems with Applications, 156:113464,
2020.

[229] Ankit Thakkar and Kinjal Chaudhari. A comprehensive survey on deep
neural networks for stock market: The need, challenges, and future
directions. Expert Systems with Applications, 177:114800, 2021.

[230] Ge Zhang, Zhao Li, Jiaming Huang, Jia Wu, Chuan Zhou, Jian Yang,
and Jianliang Gao. Efraudcom: An e-commerce fraud detection sys-
tem via competitive graph neural networks. ACM Transactions on
Information Systems, 40(3), mar 2022.

[231] T.O. Kehinde, Felix T.S. Chan, and S.H. Chung. Scientometric review
and analysis of recent approaches to stock market forecasting: Two
decades survey. Expert Systems with Applications, 213:119299, 2023.

[232] Dattatray P. Gandhmal and K. Kumar. Systematic analysis and review
of stock market prediction techniques. Computer Science Review,
34:100190, 2019.

[233] Jing Zhang, Shicheng Cui, Yan Xu, Qianmu Li, and Tao Li. A novel
data-driven stock price trend prediction system. Expert Systems with
Applications, 97:60–69, 2018.

[234] Isaac Kofi Nti, Adebayo Felix Adekoya, and Benjamin Asubam Weyori.
A systematic review of fundamental and technical analysis of stock
market predictions. Artificial Intelligence Review, 53(4):3007–3057,
2020.

[235] Mahinda Mailagaha Kumbure, Christoph Lohrmann, Pasi Luukka, and
Jari Porras. Machine learning techniques and data for stock market
forecasting: A literature review. Expert Systems with Applications,
197:116659, 2022.

[236] Weiwei Jiang. Applications of deep learning in stock market prediction:
Recent progress. Expert Systems with Applications, 184:115537, 2021.

[237] Ankit Thakkar and Kinjal Chaudhari. Fusion in stock market pre-
diction: A decade survey on the necessity, recent developments, and
potential future directions. Information Fusion, 65:95–107, 2021.

240 | Bibliography

[238] Sepideh Bazzaz Abkenar, Mostafa Haghi Kashani, Ebrahim
Mahdipour, and Seyed Mahdi Jameii. Big data analytics meets social
media: A systematic review of techniques, open issues, and future
directions. Telematics and Informatics, 57:101517, 2021.

[239] Xiaolong Zheng, Xiao Wang, Zepeng Li, Rongrong Jing, Shuqi Xu,
Tao Wang, Lifang Li, Zhenwen Zhang, Qingpeng Zhang, Huaiguang
Jiang, Zhihua Guo, Xiaowei Zhang, and Fei-Yue Wang. Donald J.
Trump’s Presidency in Cyberspace: A Case Study of Social Perception
and Social Influence in Digital Oligarchy Era. IEEE Transactions on
Computational Social Systems, 8(2):279–293, 2021.

[240] Huihui Ni, Shuting Wang, and Peng Cheng. A hybrid approach for
stock trend prediction based on tweets embedding and historical prices.
World Wide Web, 24:849–868, 2021.

[241] Shan Lu, Chenhui Liu, and Zhensong Chen. Predicting stock market
crisis via market indicators and mixed frequency investor sentiments.
Expert Systems with Applications, 186:115844, 2021.

[242] Fuli Feng, Xiangnan He, Xiang Wang, Cheng Luo, Yiqun Liu, and
Tat-Seng Chua. Temporal relational ranking for stock prediction. ACM
Transactions on Information Systems, 37(2), mar 2019.

[243] Noella Nazareth and Yeruva Venkata Ramana Reddy. Financial appli-
cations of machine learning: A literature review. Expert Systems with
Applications, 219:119640, 2023.

[244] Sotirios P Chatzis, Vassilis Siakoulis, Anastasios Petropoulos, Evange-
los Stavroulakis, and Nikos Vlachogiannakis. Forecasting stock market
crisis events using deep and statistical machine learning techniques.
Expert systems with applications, 112:353–371, 2018.

[245] Sarbjit Singh, Kulwinder Singh Parmar, and Jatinder Kumar. Soft
computing model coupled with statistical models to estimate future
of stock market. Neural Computing and Applications, 33:7629–7647,
2021.

[246] Rebecca Salles, Kele Belloze, Fabio Porto, Pedro H Gonzalez, and Ed-
uardo Ogasawara. Nonstationary time series transformation methods:
An experimental review. Knowledge-Based Systems, 164:274–291,
2019.

Bibliography | 241

[247] Longbing Cao. AI in Finance: Challenges, Techniques, and Opportu-
nities. ACM Computing Surveys, 55(3), feb 2022.

[248] Omer Berat Sezer, Mehmet Ugur Gudelek, and Ahmet Murat Ozbayo-
glu. Financial time series forecasting with deep learning : A systematic
literature review: 2005–2019. Applied Soft Computing, 90:106181,
2020.

[249] Yu Ma, Rui Mao, Qika Lin, Peng Wu, and Erik Cambria. Multi-
source aggregated classification for stock price movement prediction.
Information Fusion, 91:515–528, 2023.

[250] Matin N. Ashtiani and Bijan Raahemi. News-based intelligent pre-
diction of financial markets using text mining and machine learning:
A systematic literature review. Expert Systems with Applications,
217:119509, 2023.

[251] Shuang (Sophie) Zhai and Zhu (Drew) Zhang. Read the News, Not
the Books: Forecasting Firms’ Long-Term Financial Performance via
Deep Text Mining. ACM Transactions on Management Information
Systems, 14(1), jan 2023.

[252] Francesco Colasanto, Luca Grilli, Domenico Santoro, and Giovanni
Villani. AlBERTino for stock price prediction: a Gibbs sampling
approach. Information Sciences, 597:341–357, 2022.

[253] Nohyoon Seong and Kihwan Nam. Predicting stock movements based
on financial news with segmentation. Expert Systems with Applications,
164:113988, 2021.

[254] Paramita Ray, Bhaswati Ganguli, and Amlan Chakrabarti. A Hybrid
Approach of Bayesian Structural Time Series With LSTM to Identify
the Influence of News Sentiment on Short-Term Forecasting of Stock
Price. IEEE Transactions on Computational Social Systems, 8(5):1153–
1162, 2021.

[255] Jiyeon Im and Eunil Park. Effects of political orientation on sentiment
features: the case of online news outlets in south korea. Telematics
and Informatics, 74:101882, 2022.

[256] Young Anna Argyris, Victoria R. Nelson, Kaleigh Wiseley, Ruoyu
Shen, and Alexa Roscizewski. Do social media campaigns foster vac-
cination adherence? A systematic review of prior intervention-based

242 | Bibliography

campaigns on social media. Telematics and Informatics, 76:101918,
2023.

[257] Shinyoung Park and Jaemin Jung. The interplay between social media
virality metrics and message framing in influence perception of pro-
environmental messages and behavioral intentions. Telematics and
Informatics, 78:101947, 2023.

[258] Hua Pang. Identifying associations between mobile social media
users’ perceived values, attitude, satisfaction, and ewom engagement:
The moderating role of affective factors. Telematics and Informatics,
59:101561, 2021.

[259] Nan Jing, Zhao Wu, and Hefei Wang. A hybrid model integrating deep
learning with investor sentiment analysis for stock price prediction.
Expert Systems with Applications, 178:115019, 2021.

[260] Xiaolong Zheng, Hu Tian, Zhe Wan, Xiao Wang, Daniel Dajun Zeng,
and Fei-Yue Wang. Game Starts at GameStop: Characterizing the Col-
lective Behaviors and Social Dynamics in the Short Squeeze Episode.
IEEE Transactions on Computational Social Systems, 9(1):45–58,
2022.

[261] Tengteng Liu, Xiang Ma, Shuo Li, Xuemei Li, and Caiming Zhang. A
stock price prediction method based on meta-learning and variational
mode decomposition. Knowledge-Based Systems, 252:109324, 2022.

[262] Anna Mancini, Antonio Desiderio, Riccardo Di Clemente, and Giulio
Cimini. Self-induced consensus of reddit users to characterise the
gamestop short squeeze. Scientific reports, 12(1):13780, 2022.

[263] Ehsan-Ul Haq, Tristan Braud, Lik-Hang Lee, Anish K. Vallapuram,
Yue Yu, Gareth Tyson, and Pan Hui. Short, colorful, and irrever-
ent! a comparative analysis of new users on wallstreetbets during
the gamestop short-squeeze. In Companion Proceedings of the Web
Conference 2022, WWW ’22, page 52–61, New York, NY, USA, 2022.
Association for Computing Machinery.

[264] Ehsan Hoseinzade and Saman Haratizadeh. CNNpred: CNN-based
stock market prediction using a diverse set of variables. Expert Systems
with Applications, 129:273–285, 2019.

Bibliography | 243

[265] Lihong Wei, Jiankun Gong, Jing Xu, Nor Eeza Zainal Abidin, and
Oberiri Destiny Apuke. Do social media literacy skills help in combat-
ing fake news spread? Modelling the moderating role of social media
literacy skills in the relationship between rational choice factors and
fake news sharing behaviour. Telematics and Informatics, 76:101910,
2023.

[266] Ruoyu Sun, Cong Li, Barbara Millet, Khudejah Iqbal Ali, and John
Petit. Sharing news with online friends: A study of network homophily,
network size, and news type. Telematics and Informatics, 67:101763,
2022.

[267] Yang Liu and Yi-Fang Brook Wu. Fned: A deep network for fake news
early detection on social media. ACM Transactions on Information
Systems, 38(3), may 2020.

[268] Oscar Bustos and Alexandra Pomares-Quimbaya. Stock market move-
ment forecast: A systematic review. Expert Systems with Applications,
156:113464, 2020.

[269] Ali Derakhshan and Hamid Beigy. Sentiment analysis on stock social
media for stock price movement prediction. Engineering Applications
of Artificial Intelligence, 85:569–578, 2019.

[270] Wasiat Khan, Mustansar Ali Ghazanfar, Muhammad Awais Azam,
Amin Karami, Khaled H Alyoubi, and Ahmed S Alfakeeh. Stock
market prediction using machine learning classifiers and social media,
news. Journal of Ambient Intelligence and Humanized Computing,
pages 1–24, 2020.

[271] Weiwei Jiang. Applications of deep learning in stock market prediction:
recent progress. Expert Systems with Applications, 184:115537, 2021.

[272] Matin N Ashtiani and Bijan Raahmei. News-based intelligent predic-
tion of financial markets using text mining and machine learning: A
systematic literature review. Expert Systems with Applications, page
119509, 2023.

[273] Nusrat Rouf, Majid Bashir Malik, Tasleem Arif, Sparsh Sharma,
Saurabh Singh, Satyabrata Aich, and Hee-Cheol Kim. Stock mar-
ket prediction using machine learning techniques: A decade survey on
methodologies, recent developments, and future directions. Electronics,
10(21), 2021.

244 | Bibliography

[274] Anubhav Sarkar, Swagata Chakraborty, Sohom Ghosh, and Sudip Ku-
mar Naskar. Evaluating impact of social media posts by executives
on stock prices. In Proceedings of the 14th Annual Meeting of the
Forum for Information Retrieval Evaluation, FIRE ’22, page 74–82,
New York, NY, USA, 2023. Association for Computing Machinery.

[275] Kingstone Nyakurukwa and Yudhvir Seetharam. The evolution of
studies on social media sentiment in the stock market: Insights from
bibliometric analysis. Scientific African, 20:e01596, 2023.

[276] Yili Wang, Jiaxuan Guo, Chengsheng Yuan, and Baozhu Li. Sentiment
analysis of twitter data. Applied Sciences, 12(22):11775, 2022.

[277] Charlie Wang and Ben Luo. Predicting $ gme stock price movement us-
ing sentiment from reddit r/wallstreetbets. In Proceedings of the Third
Workshop on Financial Technology and Natural Language Processing,
pages 22–30, 2021.

[278] Matheus Gomes Sousa, Kenzo Sakiyama, Lucas de Souza Ro-
drigues, Pedro Henrique Moraes, Eraldo Rezende Fernandes, and
Edson Takashi Matsubara. Bert for stock market sentiment analysis.
In 2019 IEEE 31st International Conference on Tools with Artificial
Intelligence (ICTAI), pages 1597–1601. IEEE, 2019.

[279] Wasiat Khan, Mustansar ali Ghazanfar, Muhammad Awais Azam,
Amin Karami, Khaled Alyoubi, and Ahmed Alfakeeh. Stock market
prediction using machine learning classifiers and social media, news.
Journal of Ambient Intelligence and Humanized Computing, 13, 07
2022.

[280] Shengting Wu, Yuling Liu, Ziran Zou, and Tien-Hsiung Weng.
S_i_lstm: stock price prediction based on multiple data sources and
sentiment analysis. Connection Science, 34(1):44–62, 2022.

[281] Priyadarshan Dhabe, Ayush Chandak, Om Deshpande, Pratik Fandade,
Naman Chandak, and Yash Oswal. Stock market trend prediction
along with twitter sentiment analysis. In Valentina Emilia Balas, Vi-
jay Bhaskar Semwal, and Anand Khandare, editors, Intelligent Comput-
ing and Networking, pages 45–59, Singapore, 2023. Springer Nature
Singapore.

[282] Tinku Singh, Siddhant Bhisikar, Satakshi, and Manish Kumar. Stock
market prediction using ensemble learning and sentimental analysis.

Bibliography | 245

In Rajesh Doriya, Badal Soni, Anupam Shukla, and Xiao-Zhi Gao,
editors, Machine Learning, Image Processing, Network Security and
Data Sciences, pages 429–441, Singapore, 2023. Springer Nature
Singapore.

[283] Ljupco Todorovski and Savso Dzeroski. Combining classifiers with
meta decision trees. Machine Learning, 50:223–249, 2004.

[284] Zexin Hu, Yiqi Zhao, and Matloob Khushi. A survey of forex and
stock price prediction using deep learning. Applied System Innovation,
4(1), 2021.

[285] Dev Shah, Haruna Isah, and Farhana Zulkernine. Stock market analysis:
A review and taxonomy of prediction techniques. International Journal
of Financial Studies, 7(2), 2019.

[286] Dennis Huynh, Garrett Audet, Nikolay Alabi, and Yuan Tian. Stock
price prediction leveraging reddit: The role of trust filter and sliding
window. In 2021 IEEE International Conference on Big Data (Big
Data), pages 1054–1060. IEEE, 2021.

[287] Arnav Machavarapu. Reddit sentiments effects on stock market prices.
In Smart Intelligent Computing and Applications, Volume 1: Pro-
ceedings of Fifth International Conference on Smart Computing and
Informatics (SCI 2021), pages 75–84. Springer, 2022.

[288] Christopher N Broadhurst, Piotr Szczurek, et al. Data analytics on
nasdaq stock prices: Reddit social media case study. In 2022 IEEE
International Conference on Electro Information Technology (eIT),
pages 053–060. IEEE, 2022.

[289] Román A. Mendoza-Urdiales, José Antonio Núñez-Mora, Roberto J.
Santillán-Salgado, and Humberto Valencia-Herrera. Twitter sentiment
analysis and influence on stock performance using transfer entropy and
egarch methods. Entropy, 24(7), 2022.

[290] T Swathi, N Kasiviswanath, and A Ananda Rao. An optimal deep
learning-based lstm for stock price prediction using twitter sentiment
analysis. Applied Intelligence, 52(12):13675–13688, 2022.

[291] Jaimin Shah, Darsh Vaidya, and Manan Shah. A comprehensive re-
view on multiple hybrid deep learning approaches for stock prediction.
Intelligent Systems with Applications, 16:200111, 2022.

246 | Bibliography

[292] Jiquan Ngiam, Zhenghao Chen, Daniel Chia, Pang Koh, Quoc Le, and
Andrew Ng. Tiled convolutional neural networks. Advances in neural
information processing systems, 23, 2010.

List of figures

1 An example of a time series relating the number of monthly
visitors to Yellowstone Park (USA) and the recorded environ-
mental temperature, at several different times of the year. . . 6

1.1 A pratical example of changes in data distribution: Stock
prices. Market variation given by multiple factors (internal
or external) is a strong obstacle to the accuracy of future
forecasting. 8

1.2 An example of Time Series Prediction: Predicting future
sales, based on past historical observations. 8

1.3 Representation of an Univariate and Multivariate Time Series. 10
1.4 Time series related to the sales of a generic retail store. . . . 11
1.5 Decomposition of the time series in the figure 1.4. 12
1.6 Distinct examples of different patterns of time series, starting

from the top, from right to left: Short-Term, Long-Term,
Stationary and Non-Stationary. 14

1.7 The figure describes the Box-Jenkins principle, it is based on
4 steps: i) Identification ii) Estimation iii) Diagnostic and iv)
Forecasting . 15

248 | List of figures

1.8 Papers published by year indexed on Scopus: we can say that
the interest of the Scientific community in wanting to propose
prediction models based on DNNs is registered from the year
2017. 17

1.9 This plot shows the Top sources in terms of published papers
in the field of time series prediction with Deep approaches. . 18

1.10 In this plot, on the other hand, we look at the types of articles
published; we see that 56% are journal articles while around
38% are conference papers. 19

1.11 Finally, in the pie chart it is possible to observe the papers
published according to the subject area, it is shows that more
than 50% are from the Computer Science and Engineering area. 20

1.12 Example of a generic Deep Neural Network (DNN), unlike
an Artificial Neural Network (ANN), it has more than one
hidden layer. 22

1.13 Architectures of Recurrent Neural Networks (RNNs), start-
ing with Vanilla-RNN, and then exploring Long Short Term
Memory and Gated Recurrent Unit (GRU). 37

1.14 Simple RNN unit . 38

1.15 Summary of pros and cons on using Statistics-based ap-
proaches for time series prediction. 42

1.16 Summary of pros and cons on using Deep Learning-based
approaches for time series prediction. 42

2.1 Illustration of the proposed Deep framework. It consists of
4 modules: 1⃝ Pre-processor and Feature Engineer, 2⃝ Data
Augmentation, 3⃝ Encoding and 4⃝ Deep Model selector. . . 46

3.1 Time-series prediction examples in real-world scenarios . . . 59

3.2 Outline of Industrial Revolutions, starting from the First Rev-
olution toward Industry 4.0 61

List of figures | 249

3.3 Benefits on the application of predictive maintenance in the
context of production lines 62

3.4 Maintenance approaches: Preventive Maintenance, Run to
Failure and Predictive Maintenance. 63

3.5 Representation of the FinTech world and its component parts 66

3.6 Multi-Head Attention. 76

4.1 Architectural overview of the proposed framework , that is
composed by different phases. The initial step is devoted
to pre-processing and feature engineering, the second step
is to create the time series sequences and convert them into
images, choosing the technique to be used in the encoding
module. 86

4.2 First CNN architecture . 88

4.3 VGG-like architecture . 88

4.4 GAF Confusion Matrix | 3-class classification. 104

4.5 MTF Confusion Matrix | 3-class classification. 105

4.6 Recurrence Plot Confusion Matrix | 3-class classification. . . 106

4.7 Model loss with RP | 3-class classification. 107

4.8 Model loss with RP | 2-class classification 108

4.9 GAN architecture - It consists of two sub-models, Generator
and Discriminator. The former is responsible for generating
new plausible examples from the problem domain. The sec-
ond one is used to classify examples as real (from the domain)
or false (generated). 109

4.10 Discriminative network . 111

4.11 Generative network . 111

4.12 Loss plot for real and fake samples, and the generator 112

5.1 Proposed AI architecture. 123

5.2 Features plot of the first engine. 127

250 | List of figures

5.3 Linear and Piece-Wise Linear degradation model. 128

5.4 Time windows creation. 129

5.5 Scoring function. 130

5.6 Best proposed model’s prediction errors. 133

5.7 Best LSTM model’s prediction errors. 134

6.1 Overview of the proposed framework, which relies on three
main steps: Data ingestion, Pre-processing and Stock fore-
casting. 160

6.2 Description of the task in which different time series may be
considered to forecast next day stock price. 160

6.3 Running time analysis varying datasets and fixed time win-
dow equal to 8. 166

6.4 RMSE training set varying datasets and fixed time window
equal to 8. 167

6.5 Running time analysis varying datasets and fixed time win-
dow equal to 16. 168

6.6 RMSE training set varying datasets and fixed time window
equal to 16. 169

6.7 Configuration of each deep learning model at the end of the
hyper-parameter optimization. 170

6.8 Number of Tweets and Reddit comments per days. 170

7.1 Overview of the proposed framework 178

7.2 Extrapolation of the sentiment score 181

7.3 Final Dataset . 184

7.4 Final Dataset . 185

7.5 Amazon Score . 189

7.6 Amazon Close . 189

7.7 Meta Score . 190

7.8 Meta Close . 190

List of figures | 251

7.9 Apple Score . 191
7.10 Apple Close . 191
7.11 Tesla Score . 192
7.12 Tesla Close . 192
7.13 Meta Best Model . 208

List of tables

1.1 Summary of the type of documents retrieved on Scopus. A
screening of the title and abstract of the papers was performed. 17

1.2 Brief summary of the Auto-Regressive models analyzed (Y:Yes;
N:No). 28

1.3 Brief summary of the Exponential-Smoothing models ana-
lyzed (Y:Yes; N:No) . 35

4.1 State-of-the art approaches classified on the basis of the neu-
ral network model adopted, the encoding method, and their
application domain. Encoding methods are: Gramian Angu-
lar Field (GAF), Recurrence Plot (RP), Markovian Transition
Field (MTF), and Wavelet Transform (WT). NCA and 1NN
stand respectively for Neighborhood Component Analysis
and 1-Nearest Neighborhood. 85

4.2 Hyper-parameters optimization phase. 91

4.3 NASA Bearing dataset . 92

4.4 Evaluation of the both networks varying the P parameter. . . 95

254 | List of tables

4.5 Memory usage and training time for both models (indepen-
dently of encoding method) 96

4.6 Performance of Model 1, based on the different image en-
coding techniques and pre-processing approaches used to
generate its input. It is important to note that the number
inside the parenthesis in the next tables corresponds to the
shifted feature in terms of number of days. 97

4.7 Model 1: Confusion matrices (median values over repeated
tests) . 97

4.8 Performance of the VGG-like model, based on the different
image encoding techniques and pre-processing approaches
used to generate its input. 98

4.9 VGG-like architecture: Confusion matrices (median values
over repeated tests) . 98

4.10 Performance of Model 1 according to six different HDD
fault types, based on the different images technique and pre-
processing approaches used to generate its input. 100

4.11 Performance of VGG-like according to six different HDD
fault types, based on the different images technique and pre-
processing approaches used to generate its input. 101

4.12 Performances of the CNN Model 1 with respect to six state-
of-the-art ones. 102

4.13 Confusion matrices (median values over repeated tests) . . . 102

4.14 Memory usage and training time 102

4.15 Performances | 3-class classification 103

4.16 Performances | 2-class classification 105

4.17 Confusion matrices (median values over repeated tests) | 2-
class classification . 106

4.18 Performances of the three compared models. 107

4.19 Memory usage and training time 108

List of tables | 255

4.20 Results of data augmentation with GAN on Alibaba HDD
and NASA Bearing datasets. 110

4.21 Performance of 3-channel encoding 113

5.1 A summary of the most recent papers regarding NASA Tur-
bofan Engine Dataset. 118

5.2 A summary of the most recent Chapters regarding Deep
Learning models for predictive maintenance. 137

5.3 Performance metrics of the proposed model varying the Time
Window length. 138

5.4 Performance metrics of the LSTM network varying the Time
Window length. 138

5.5 Number of parameters comparison. 138

5.6 Models’ storage size. 138

5.7 Comparison of training times by varying the time window
(TW) between proposed model and LSTM network. 138

5.8 Comparison with state-of-the-art approaches. 139

6.1 Dataset characterization of the collected dataset based on the
time span between January 1, 2021 and December 31, 2021.
It is worth to note that the average and standard deviation are
daily computed. 164

6.2 Hyper-parameter configurations used during the grid search
strategy for each model. 165

6.3 Results of each deep learning model in terms of RMSE over
the entire test set. In particular, YF and All stand for Yahoo
Finance and both OSNs, respectively. 167

7.1 Comparison of experimental results, set the dataset (Stock
Price Dataset), according to the considered stock and predic-
tion model. 194

256 | List of tables

7.2 Comparison of experimental results, set the dataset (Stock
Price and Sentiment Datasets), according to the considered
stock and prediction model. 195

7.3 Comparison of experimental results, set the dataset (Stock
Price & Sentiment Reddit Dataset), according to the consid-
ered stock and prediction model. 196

7.4 Comparison of experimental results, set the dataset (Stock
Price, Sentiment News & Sentiment Reddit Dataset), accord-
ing to the considered stock and prediction model. 197

7.5 Summary of the top results achieved. varying the Dataset and
stock considered. 205

7.6 Summary of the top models in terms of efficacy, varying the
Dataset and stock considered. 206

7.7 Stock Price Table. 207

	Table of contents
	Summary
	I Time Series forecasting
	1 Introduction to Time Series forecasting
	1.1 From conventional statistical models torward Deep Neural Networks
	1.1.1 Stochastic-based models
	1.1.2 Deterministic-based models
	1.1.3 Deep-based models

	2 Proposed Framework
	2.1 Motivations
	2.2 Methodology
	2.2.1 Pre-processor and Feature Engineer Module
	2.2.2 Data Augmentation Module
	2.2.3 Encoding Module
	2.2.4 Deep Model selector Module

	2.3 Goals
	2.3.1 Advancing Time Series Forecasting Through General-Purpose Utility
	2.3.2 Modularity and Customizability: Empowering Precision through Adaptability
	2.3.3 Unleashing Potential for Efficacy and Efficiency

	3 Applications in Real-World scenarios
	3.1 Industry 4.0
	3.2 FinTech

	II Time Series forecasting in Industry 4.0
	4 Time series encodings evaluation for predictive maintenance
	4.1 Introduction
	4.2 Related Work
	4.3 Framework
	4.3.1 CNN-based Classifiers

	4.4 Experiments
	4.4.1 Experimental protocol
	4.4.2 Dataset
	4.4.3 Pre-processing and Feature engineering
	4.4.4 Evaluation metrics

	4.5 Results
	4.5.1 Results on Alibaba HDD
	4.5.2 Results on NASA Bearing
	4.5.3 Benefits of GAN
	4.5.4 Combination of Encoding strategies

	4.6 Discussion & Conclusions

	5 A predictive maintenance application in IoT scenarios
	5.1 Introduction
	5.2 Related Work
	5.2.1 Selection Criteria
	5.2.2 Recurrent models
	5.2.3 Hybrid models
	5.2.4 Research Challenges in Predictive Maintenance

	5.3 Methodology
	5.3.1 Model architecture
	5.3.2 Positional encoding

	5.4 Experimental Evaluation
	5.4.1 Hyperparameters
	5.4.2 Feature Selection and normalization
	5.4.3 RUL target function definition
	5.4.4 Time-windows creation
	5.4.5 Performance metrics

	5.5 Results
	5.6 Discussion and Conclusions

	III Time Series forecasting in FinTech
	6 Forecasting the stock market leveraging social media data
	6.1 Introduction
	6.2 Related Work
	6.3 Methodology
	6.3.1 Data ingestion module
	6.3.2 Pre-processing module
	6.3.3 Stock forecasting module

	6.4 Experimental analysis
	6.4.1 Experimental protocol
	6.4.2 Hyperparameter optimization

	6.5 Results
	6.6 Conclusion

	7 Benchmarking stock prediction models exploiting social data and news
	7.1 Introduction
	7.2 Related Work
	7.3 System Overview
	7.3.1 Dataset and Metrics

	7.4 Results and Discussion
	7.4.1 Model Results
	7.4.2 Discussions

	7.5 Conclusions and future work

	Discussions and Open Issues
	Bibliography
	List of figures
	List of tables

