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Güzin Bayraksan∗ Francesca Maggioni† Daniel Faccini‡ Ming Yang§

May 20, 2023

Abstract: Multistage mixed-integer distributionally robust optimization (DRO) forms a

class of extremely challenging problems since their size grows exponentially with the num-

ber of stages. One way to model the uncertainty in multistage DRO is by creating sets

of conditional distributions (the so-called conditional ambiguity sets) on a finite scenario

tree and requiring that such distributions remain close to nominal conditional distribu-

tions according to some measure of similarity/distance (e.g., ϕ-divergences or Wasserstein

distance). In this paper, new bounding criteria for this class of difficult decision problems

are provided through scenario grouping using the ambiguity sets associated with various

commonly used ϕ-divergences and the Wasserstein distance. Our approach does not re-

quire any special problem structure such as linearity, convexity, stagewise independence,

and so forth. Therefore, while we focus on multistage mixed-integer DRO, our bounds can

be applied to a wide range of DRO problems including two-stage and multistage, with or

without integer variables, convex or nonconvex, and nested or non-nested formulations.

Numerical results on a multistage mixed-integer production problem show the efficiency

of the proposed approach through different choices of partition strategies, ambiguity sets,

and levels of robustness.

Keywords: Multistage Distributionally Robust Optimization, Bounding, Dynamic Mea-

sures of Risk, Phi-Divergences, Wasserstein Distance.

∗Bayraksan.1@osu.edu
Department of Integrated Systems Engineering, The Ohio State University, USA

†Francesca.Maggioni@unibg.it
Department of Management, Information and Production Engineering, University of Bergamo, Italy

‡Daniel.Faccini@unibg.it
Department of Management, Information and Production Engineering, University of Bergamo, Italy

§Yang.3149@osu.edu
Department of Integrated Systems Engineering, The Ohio State University, USA

1



1 Introduction

Multistage stochastic programming has been widely used to solve important problems

arising in various fields including finance [19], transportation [8], energy [28, 45] and the

environment [47], among others. Despite their wide applicability, this class of problems

suffers from two main issues. First, traditional models assume that the underlying stochas-

tic process that governs the uncertain parameters is known. This is rarely true in real

life. Second, multistage stochastic programs—particularly those involving mixed-integer

variables and nonlinear terms—are notoriously difficult to solve. To alleviate the first is-

sue, Distributionally Robust Optimization (DRO) can be used, where the assumed-known

distribution is replaced by an ambiguity set of distributions [43]. Unfortunately, the re-

sulting multistage problem is still extremely challenging to solve due to the exponential

growth of the problem in the number stages, and can become even more challenging de-

pending on the type of DRO used. Furthermore, many real-world problems lack special

structures (e.g., convexity, stagewise independence, binary state variables) that prevent

efficient solution algorithms. Therefore, approximation techniques that provide bounds on

the optimal value for multistage DRO problems can be very useful in practice. In these

situations, easy-to-compute bounds and approximations are desirable.

Most of the existing literature on DRO focuses on static, two-stage, or chance-constrained

settings [35]. There is relatively little work on multistage DRO, most of which investigates

different ways of forming ambiguity sets such as moment-based [6, 44, 46], nested Wasser-

stein [29], modified χ2 distance [30], general ϕ-divergences [27], L∞-norm [15], Wasserstein

[10] and ∞-Wasserstein distance [5]. Most papers assume linear models with continuous

decision variables [31, 43], except for [5, 46], which consider mixed-integer decision vari-

ables. The majority of the existing works also focus on solution methods through nested

Benders’ decomposition or its sampling-based variant, the Stochastic Dual Dynamic Pro-

gramming (SDDP) [10, 15, 27, 30, 46]. Linear decision rules have also been used to

approximately solve these problems [5, 6].

In this paper we investigate bounds via scenario tree decomposition for a class of multi-

stage DRO minimization problems formed using ϕ-divergences and Wasserstein distance.

The considered approach divides the sample space into subgroups which, being of smaller

size, can be solved more efficiently than the original DRO problem. Then, the optimal

values of subgroups can be combined, e.g., in a distributionally robust manner, to form

lower bounds (LBs) on the optimal value. We provide conditions on ways to combine
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the optimal values of the subgroups to obtain LBs for ambiguity sets formed via many

commonly used ϕ-divergences and Wasserstein distance. Because obtaining LBs for mini-

mization problems is typically more challenging than obtaining upper bounds (UBs), the

majority of the paper focuses on LBs. UBs, which are briefly discussed, are calculated by

fixing some decisions obtained through the LBs, finding a feasible policy, and using the

cost of that policy; see, e.g., [21, 25].

Bounding techniques have a rich history in the stochastic programming literature,

and these have been successfully applied to traditional multistage stochastic programs

with expected-value objectives; see, e.g., [11, 12, 18]. Bounds for multistage stochastic

linear programs via scenario tree decomposition, the approach also used in this work, were

proposed for the first time in [20]. In [21], the authors extend the bounding approach

of [7, 20, 40] for stochastic multistage mixed-integer linear programs, solving a sequence

of group subproblems made by a subset of reference scenarios plus a subset of scenarios

from the finite support. They show the monotonicity of the chains of LBs in terms of

the cardinality of reference scenarios and of the remaining scenarios in each subgroup. A

scalable bounding framework for general multistage stochastic programs, extending the

work of [40], has been investigated in [41]. Recently, [2] introduced sampling scenario set

partition dual bounds for multistage stochastic programs.

Bounds for risk-averse multistage mixed-integer stochastic programs, which are related

to the DRO problems studied in this paper (see Section 2.4), via scenario tree decompo-

sition were first proposed by [23] and [25]. In particular, [23] considers multistage convex

problems with concave risk functional applied to the total cost over the planning horizon.

New refinement chains of LBs are constructed, where each bound can be computed by

solving sets of group subproblems less complex than the original one. A monotonically

nondecreasing behavior in the cardinality of scenarios of each subproblem is proved. LBs

for replacing the scenario process by its expectation are also considered, as well as UBs

based on inserting feasible solutions derived from smaller subproblems. In [25], the au-

thors consider a dynamic risk functional in the objective function, formed by a convex

combination of mean and Conditional Value-at-Risk (mean-CVaR). LBs by using convo-

lution of mean-CVaRs with different parameters are obtained through various scenario

partition strategies, and a solution algorithm for mean-CVaR multistage mixed-integer

stochastic problems is provided based on an inner approximation of the dual set of the

considered coherent measure of risk; see also [26] for algorithmic use of these bounds. An
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alternative approach to bound the original risk-averse multistage stochastic program uses

barycentric discretizations [13, 14, 17]. In [24], the authors generalize the bounding ideas

of [13, 14, 17] to not necessarily Markovian scenario processes and derive valid LBs and

UBs for the convex case based on the concepts of first order and convex order stochastic

dominance.

However, contributions based on bounding techniques in the distributionally robust

optimization literature are very scarce and to the best of our knowledge the only one is

provided in [9], where the authors propose inner and outer approximations for two-stage

DRO problems with moment-based ambiguity sets and a combined ambiguity set including

Wasserstein distance and moment information. The employed methodology to get LBs

relies on splitting a random vector into smaller sub-vectors and is parameterized by the

number of split pieces. Nevertheless, these results are limited to two-stage problems,

so neither multistage settings nor ϕ-divergences, which are considered in this paper, are

investigated.

This paper, to the best of our knowledge for the first time, introduces new LB criteria

for multistage DRO through scenario tree decomposition. UBs are also examined. Our

work is similar in spirit to [21, 23, 25], but we consider a large class of DRO formed on

finite scenario trees, where the ambiguity sets are constructed using a ϕ-divergence (e.g.,

variation distance, Cressie-Read power divergence, J-divergence, etc.) or Wasserstein

distance on a finite support [10]. We provide conditions on how to choose the ambiguity

sets’ radii of the subgroup problems as well as the radius of the ambiguity set to combine

the optimal values of subgroup problems in order to obtain LBs.

Compared to the bounding approach proposed in the stochastic programming literature

via scenario tree decomposition [2, 7, 20, 21, 23, 40, 41], where LBs were obtained mainly by

relaxing the nonanticipacitivity constraints or refining the filtration, in the DRO setting,

additional conditions on how to choose the ambiguity sets’ radii are needed. The derivation

of bounds in the DRO setting thus requires to adopt a new methodology, mainly based

on an inner approximation of the ambiguity sets associated with the chosen measure of

similarity between distributions. Results show that in the DRO setting, unlike previous

works, the monotonicity of the chains of LBs in terms of the cardinality of the reference

scenarios and of the remaining ones in each subgroup does not hold anymore. The proposed

approach is more general than the one employed in [25], where the LBs were based on

an inner approximation of the mean-CVaR risk envelope. Indeed, our proof through
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ambiguity set, although being equivalent to the one using risk envelope, does not require

the knowledge of the risk functional’s explicit expression which is often difficult to assess.

Furthermore, in the multistage setting, we propose a way to dissect the scenario tree and

combine the subgroups in a nested fashion which has not been done before.

Our results are applicable to a broad class of problems including two- and multistage,

with or without integer variables, nested vs. non-nested formulations. Therefore, after

recalling background information in Section 2, in Section 3, we first present our results in

the two-stage setting and then discuss how to apply these LBs in the multistage setting.

UBs are also derived. We then investigate the effectiveness of the proposed bounds on a

multistage mixed-integer production planning problem and its two-stage variant in Section

4, discussing the insights gained from these experiments. Section 5 concludes the paper

and outlines future research directions. We end by noting that the proposed approach has

the important advantage to split a given problem into independent scenario groups. This

allows to tackle problems for which simple linear relaxations leave large optimality gaps,

problems lacking special structure like convexity, stagewise independence, etc. that prevent

efficient solution methods, and large-scale multistage problems that are not solvable by

commercial solvers.

2 Basic facts and notation

2.1 Multistage DRO

We consider a finite-horizon sequential decision making problem under uncertainty, where

decisions are made at discrete stages t ∈ T := {0, 1, . . . , T} and T denotes the planning

horizon. The decision process begins with initial decision x0 ∈ Rn0
+ × Zn′

0
+ at stage t = 0,

called the first-stage or here-and-now decision, followed by sequential decisions xt ∈ Rnt
+ ×

Zn′
t

+ at stages t ∈ T \ {0}. The history of the decision process, at a given point in time,

is denoted by xt := (x0, x1, . . . , xt), t ∈ T . The uncertainty is described by a random

process ξ := {ξ0, ξ1, . . . , ξT } ∈ Rd0 × . . . × RdT defined on a measurable space (Ω, F ).

We assume ξ0 is a constant and ξ is a random parameter evolving as a discrete-time

stochastic process with finite support. The filtration associated with ξ is denoted by

{∅, Ω} = F0 ⊆ F1 ⊆ . . . ⊆ FT = F , where Ft, t ∈ T —a σ-subalgebra of F—models

the information available so far. Each ξt, t ∈ T , has finite support Ωt ∈ Rdt and nominal

distribution Qt. Support of ξ is given by Ω = ×T
t=0 Ωt, and the history of the random
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process up to stage t is denoted by ξt := (ξ0, . . . , ξt), t ∈ T . The following represents the

nested formulation of a multistage DRO (see [43]):

min
x0∈X0(ξ0)

c0(x0, ξ0)+ max
P1|ξ0∈P1|ξ0

EP1|ξ0

[
min

x1∈X1(x0,ξ1)
c1(x1, ξ1) + max

P2|ξ1∈P2|ξ1
EP2|ξ1

[
. . .

· · · + max
PT |ξT −1∈P

T |ξT −1
EPT |ξT −1

[
min

xT ∈XT (xT −1,ξT )
cT (xT , ξT )

]
. . .

]]
,

(1)

where the mixed-integer first-stage feasibility set is given by X0 ⊆ Rn0
+ × Zn′

0
+ and, for

t ∈ T \ {0}, Xt : Rnt−1
+ ×Zn′

t−1
+ ×Rdt → Rnt

+ ×Zn′
t

+ are Ft-measurable mixed-integer point-

to-set mappings. The possibly nonlinear cost functions are given by c0 : Rn0
+ × Zn′

0
+ → R

in the first stage and by ct : Rnt
+ × Zn′

t
+ × Rdt → R in stages t ∈ T \ {0}, which are

Ft-measurable. We assume all relevant optimization problems in the paper have finite

optimal solutions. Set Pt|ξt−1 denotes the conditional ambiguity set at period t ∈ T \ {0},

conditioned on the history ξt−1, and it is defined as

Pt|ξt−1 :=
{

Pt|ξt−1 ∈ M(Ωt|ξt−1) : ∆(Pt|ξt−1 , Qt|ξt−1) ≤ ρt

}
, (2)

where ρt ≥ 0 is a given radius, also called the level of robustness. Above, M(Ωt|ξt−1)

represents a class of probability distributions defined on the finite support Ωt|ξt−1 , Qt|ξt−1

denotes the nominal conditional probability measure at stage t, t ∈ T \ {0}, conditioned

on the history of the process ξt−1, and ∆(·, ·) denotes a measure of similarity or distance

between Pt|ξt−1 and Qt|ξt−1 . We are interested in building ambiguity sets using existing

data via ϕ-divergences and Wasserstein distance, which we recall in the next sections.

Before we do so, let us define additional notation used in the paper.

Scenario tree and nominal probability notation. Because we assume ξ has finite

support, the information structure can be described in the form of a scenario tree T with

T + 1 levels (stages). Let Ωt be the set of ordered nodes of the tree T at stage t ∈ T

and let Ω := Ω1 × . . . × ΩT . By assumption, we have a discrete number |Ωt| of nodes

at each stage t ∈ T . Each stage-t (t > 0) node n is connected to a unique node at

stage t − 1, called ancestor and denoted a(n). Similarly, each stage-t (t < T ) node n is

connected to nodes at stage t + 1 called successors or children, where B(n) denotes the

set of children nodes of n. With qa(n),n we denote the conditional nominal probability of

the random process at node n given its history up to the ancestor node a(n). A scenario

ωi, i = 1, . . . , |ΩT | is a path through nodes from the root node at t = 0 to a leaf node
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at t = T . We indicate with qωi the nominal probability of a scenario ωi passing through

nodes n0, n1, . . . , nT (where nt, t = 0, . . . , T represent generic nodes at stage t), defined

as qωi
:= qn0,n1 · qn1,n2 · . . . · qnT −1,nT . We also indicate with qn

t the nominal probability of

node n at stage t. So, if node n at stage t is reachable through node n0 at stage 0, node n1

at stage 1, . . . , node nt−1 at stage t − 1, then qn
t := qn0,n1 · qn1,n2 · . . . · qnt−1,nt . Moreover,∑

n∈Ωt
qn

t = 1, t ∈ T and
∑

m∈B(n) qn,m = 1, n ∈ Ωt, t = 0, . . . , T − 1.

Set notation. We use shorthand notation [m] to denote the set {1, 2, . . . , m}.

For simplicity, from here until Section 3.5, we consider two-stage DRO and only point

to changes for multistage case. That is, we set T = 1 in (1), drop ξ0 as it is a constant,

and let ξ1 ≡ ξ be defined on a probability space (Ω, F , Q) with sample space Ω :=

{ω1, ω2, . . . , ω|Ω|}, σ-algebra F and nominal probability Q. The nominal probability of

scenario ωi ∈ Ω can be specified as qωi ≥ 0 with
∑

i∈[|Ω|] qωi = 1. Similarly, we simply use

P with probability of scenario ωi as pωi ≥ 0 to define ambiguity set (2). So, (2) becomes

P =
{
P : ∆(P, Q) ≤ ρ,

∑
i∈[|Ω|] pωi = 1, pωi ≥ 0, ∀ωi ∈ Ω

}
.

2.2 ϕ-divergences

For this class of ambiguity sets, ∆ in (2) is given by

∆ϕ(P, Q) :=
∑

i∈[|Ω|]
qωiϕ

(
pωi

qωi

)
,

where the convex ϕ-divergence function ϕ(u) ≥ 0 takes value 0 when both pωi > 0 and

qωi > 0 have the same value; i.e., ϕ(1) = 0. When qωi = 0, it holds that 0 · ϕ(pωi/0) =

pωi lim
u→∞

(ϕ(u)/u) and 0 · ϕ(0/0) = 0. Accordingly, ambiguity set Pt|ξt−1 in (2) can be built

using some of the well-known ϕ-divergences described in Table 1 and Table 2. These in-

clude Variation Distance (VD) and J-divergence, along with two families of ϕ-divergences,

namely, the Cressie-Read (CR) power divergence family and the χ-divergence family of

order a > 1. CR power divergence family includes some of the most widely used ϕ-

divergences as a special case—e.g., the modified χ2 distance and the Kullback-Leibler

divergence—when its parameter θ takes specific values or when the limit of θ tends to 0

or 1. These special cases are listed in Table 2. Equivalence of the well-known divergences

in Table 2 and the CR power divergence family in Table 1 is achieved when the radius

ρt in the ambiguity set (2) formed via a divergence in Table 2 is set to an adjusted value

c · ρθ
t,CR, where ρθ

t,CR is the radius of the CR divergence in Table 1. Values of coefficient
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c corresponding to certain θ are listed in the last column of Table 2. For example, when

the radius of the modified χ2 distance, denoted ρt,mχ2 , equals 2 · ρθ=2
t,CR, where ρθ=2

t,CR repre-

sents the radius formed via CR power divergence with θ = 2, the two ambiguity sets are

equivalent.

Divergence ϕ(u) ϕ(u), u ≥ 0 ∆ϕ(P, Q)

Variation Distance ϕv |u − 1|
∑

|pωi − qωi |

Cressie-Read Power Divergence ϕθ
CR

1−θ+θu−uθ

θ(1−θ) , θ ̸= 0, 1 1−
∑

pθ
ωi

q1−θ
ωi

θ(1−θ) , θ ̸= 0, 1

J-Divergence ϕJ (u − 1) log u
∑

(pωi − qωi) log
(

pωi
qωi

)
χ-Divergence of order a > 1 ϕa

χ |u − 1|a
∑

qωi

∣∣∣1 − pωi
qωi

∣∣∣a
Table 1: Common ϕ-divergences.

θ Corresponding Divergence ϕ(u) ϕ(u), u ≥ 0 ∆ϕ(P, Q) ϕθ
CR(u) c

2 Modified χ2 Distance ϕmχ2 (u − 1)2 ∑ (pωi −qωi )2

qωi

1
2(u2 − 2u + 1) = 1

2(u − 1)2 2

1
2 Hellinger Distance ϕH (

√
u − 1)2 ∑

(√pωi − √
qωi)2 4(1

2 + 1
2 t −

√
u) = 2(1 −

√
u)2 1

2

−1 χ2 Distance ϕχ2
1
u(u − 1)2 ∑ (pωi −qωi )2

pωi

1
2(−2 + u + 1

u) = 1
2(

√
u − 1√

u
)2 2

→ 1 Kullback-Leibler Divergence ϕKL u log u − u + 1
∑

pωi log
(

pωi
qωi

)
u(log u − 1) + 1 1

→ 0 Burg Entropy ϕB − log u + u − 1
∑

qωi log
(

qωi
pωi

)
− log u + u − 1 1

Table 2: Some special cases of CR power divergence family. Kullback-Leibler divergence and Burg
entropy are obtained by taking the limit of θ to 1 and 0, respectively.

2.3 Wasserstein distance

Let η be a random variable on (Ω, F , Q) taking values (ηω1 , . . . , ηω|Ω|). We quantify

distributions P close to nominal distribution Q on the same support via Wasserstein

distance (see [10]), where ∆ in (2) is defined by

∆W (P, Q) := min
{zωi,ωj }|Ω|

i,j=1

|Ω|∑
j=1

|Ω|∑
i=1

dωi,ωj zωi,ωj

s.t.
|Ω|∑
i=1

zωi,ωj = qωj j = 1, . . . , |Ω|

|Ω|∑
j=1

zωi,ωj = pωi i = 1, . . . , |Ω|

zωi,ωj ≥ 0 i, j = 1, . . . , |Ω|

with dωi,ωj
:= ||ηωi − ηωj ||ς a distance between the two scenarios ωi and ωj using ς-norm

(e.g., ς ∈ {1, 2, ∞}). Ambiguity set Pt|ξt−1 in (2) can be built accordingly.
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2.4 Relation to risk-averse optimization

Because the ambiguity sets considered in this paper are compact convex subsets of (con-

ditional) probability measures and optimal values are assumed to be real-valued, DRO

is equivalent to Risk-Averse Stochastic Optimization (RASO) with the objective func-

tion expressed by a coherent risk measure; see e.g., [3, 36, 43]. Let us recall coherent

risk measures. Let Z := L∞(Ω, F , Q) be the space of bounded and F -measurable ran-

dom variables with respect to sample space Ω and probability distribution Q, and let

η ∈ Z be a random variable taking values (ηω1 , . . . , ηω|Ω|). First defined by [1], a function

R(η) : Z → R is called a coherent measure of risk if it satisfies the following properties:

1. Convexity: R(λη1 + (1 − λ)η2) ≤ λR(η1) + (1 − λ)R(η2) for all η1,η2 ∈ Z and

λ ∈ [0, 1];

2. Monotonocity: η1 ≥ η2 implies R(η1) ≥ R(η2) for all η1,η2 ∈ Z;

3. Translation Equivariance: R(η + λ) = R(η) + λ for all λ ∈ R and η ∈ Z;

4. Positive Homogeneity: R(λ · η) = λ · R(η) for all λ > 0 and η ∈ Z.

Coherent measures of risk can be interpreted as worst-case expectations from a com-

pact convex set of probability measures through their dual representation: R(η) :=

maxP ∈P EP

[
η
]
. Therefore, it follows that a RASO can be re-written as a DRO

min
x∈X

R
(
c(x, ξ)

)
:= min

x∈X
max
P ∈P

EP

[
c(x, ξ)

]
. (3)

The above conclusion is extended to the multistage setting by recursively using conditional

ambiguity sets, which we recall in Section 3.5; see e.g., [37, 38, 43] for nested coherent

composite risk measures in the multistage setting.

3 Lower bounds for DRO

The aim of this section is to provide LBs for DRO formed by ϕ-divergences and the

Wasserstein distance. For this purpose, instead of dealing with the whole sample space Ω,

whose large cardinality may lead to computational concerns, the LB is achieved by dividing

the sample space Ω into subgroups that can be considered separately and then combining

the optimal values of the subgroups using an ambiguity set with possibly another radius.

To perform such a division, we consider the approaches presented in [23] and summarized
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below. For ease of presentation (of probabilities, computations, etc.), below we set each

subgroup to have the same cardinality. However, subgroups with different cardinalities

are possible.

3.1 Dissecting the scenario tree

We construct a collection of ml subsets, each of cardinality l, of the sample space Ω:

(
Ω(l)

1 , Ω(l)
2 , . . . , Ω(l)

ml

)
,

with the property that their union covers the whole space Ω = ∪g∈[ml] Ω(l)
g . For each Ω(l)

g ,

g ∈ [ml], there corresponds a probability measure Q
(l)
g . Therefore

(
Q

(l)
1 , Q

(l)
2 , . . . , Q(l)

ml

)

represents a dissection of the nominal probability measure Q =
∑

g∈[ml] π
(l)
g Q

(l)
g with∑

g∈[ml] π
(l)
g = 1 and π

(l)
g ≥ 0 for all g ∈ [ml]. For instance, when l = 1, then Ω(1)

g = {ωg},

Q
(1)
g = δωg , g ∈ [|Ω|], where δωg represents the Dirac measure at scenario ωg; hence,

subgroup g has nominal probability equal to one for scenario ωg and nominal probabil-

ity equal to zero for all other scenarios. Each measure Q
(l)
g in the collection is given by

Q
(l)
g =

∑
ωi∈Ω(l)

g
(qωi)

(l)
g · δωi , where (qωi)

(l)
g denotes the nominal probability of scenario ωi

within subgroup g with
∑

ωi∈Ω(l)
g

(qωi)
(l)
g = 1. Below, we provide details of the measures

Q
(l)
g —and hence details of (qωi)

(l)
g —based on different constructions from [23].

Fixed scenarios. We first consider the case where one or more scenarios appear in

all subsets. Without loss of generality, we assume that the first f < l scenarios of Ω

(Ωf = {ω1, . . . , ωf }) are fixed. Consequently the number of subgroups with cardinality l

is ml = |Ω|−f
l−f ∈ N. Notice that since ml represents the number of subgroups of a given

dissection, it must be an integer. Then, the probability measures Q
(l)
g can be calculated

as follows:

Q(l)
g :=

∑
ωi∈Ωf

qωi · δωi +
∑

ωi∈Ω(l)
g \Ωf

qωi

π
(l)
g

· δωi

with weights π
(l)
g :=

∑
ωi∈Ω(l)

g \Ωf
qωi

1 −
∑

ωi∈Ωf
qωi

, for all subgroups g ∈ [ml].

Disjoint partitions. Alternatively, we also consider disjoint partitions: Ω = ∪g∈[ml] Ω(l)
g

with Ω(l)
g1 ∩ Ω(l)

g2 = ∅ for g1 ̸= g2. Consequently, the number of subgroups with cardinality
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l is ml = |Ω|
l ∈ N. In this case, probability measures Q

(l)
g are given by

Q(l)
g :=

∑
ωi∈Ω(l)

g

qωi

π
(l)
g

· δωi

with weights π
(l)
g :=

∑
ωi∈Ω(l)

g
qωi , for all subgroups g ∈ [ml].

In the multistage setting, for every scenario ωi ∈ Ω(l)
g passing through nodes n0,

n1, . . . , nT (with nt, t ∈ T a generic node at stage t), conditional nominal probabilities are

adjusted as follows:

(
qnt−1,nt

)(l)
g

:=

∑
ω∈Ω(l)

g (nt)
(qω)(l)

g

∑
ω∈Ω(l)

g (nt−1)
(qω)(l)

g

t ∈ T \ {0},

where Ω(l)
g (nt) denotes the set of scenarios of subtree Ω(l)

g passing through node nt.

Example 1. Figure 1a displays a sample space Ω = {ωi}15
i=1 with 15 scenarios. We divide

it into 7 subsets Ω(3)
g , g ∈ [7] each of them of cardinality l = 3 with scenario ω1 fixed. That

is, Ωf = {ω1}, Ω(3)
1 = {ω1, ω2, ω3}, Ω(3)

2 = {ω1, ω4, ω5}, and so forth. Assuming equal

nominal probability for each scenario, i.e., qωi = 1
15 , i ∈ [15], the nominal probability

of fixed scenario ω1 within each scenario subgroup g is (qω1)(3)
g = 1

15 and the nominal

probability of other two scenarios in the same subgroup is (qωi)
(3)
g = 7

15 . The weight of

each subgroup is π
(3)
g = 1

7 , g ∈ [7].

Remark. Besides fixing scenarios and disjoint partitions, there are many in-between

cases that can be used to construct subgroups. For instance, one could split the sample

space Ω such that only a finite number of subgroups share common scenarios, or such that

subgroups have different cardinalities. All these kind of dissections are still valid as long

as, given nominal probabilities qωi , conditional nominal probabilities (qωi)g and groups

weights πg are chosen such that

qωi =
∑

g: ωi∈Ωg

πg(qωi)g.

Nonetheless, this way of constructing collection of subgroups requires a specific knowledge

of the problem under investigation that we believe is difficult to asses. For this reason, in

this paper we focus on the disjoint and scenario fixing constructions.
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3.2 Convolution of risk measures to obtain lower bounds

Given a collection of subsets of the scenario tree, our next step is to solve the resulting

subgroup problems and combine them judiciously to form LBs on the optimal value of

DRO. Toward this end, we use convolution (also referred to as composition) of risk measures

induced by the considered ambiguity sets [25]. We describe this process next.

Let G be the σ-algebra generated by the collection of subsets Ω = ∪g∈[ml] Ω(l)
g , where

each subset Ω(l)
g corresponds to an elementary event of G . First, we solve each subgroup g

using DRO given in (3) with intra-group radius ρ̄g. This induces a risk measure denoted

R(l)
ρ̄g

on each subgroup g ∈ [ml], where P(l)
ρ̄g

is the corresponding ambiguity set with radius

ρ̄g. Collectively, we denote these intra-group radii as ρ̄ = {ρ̄g}ml
g=1. Also, combined

together, we represent the one-step conditional risk measure as R̃F |G
ρ̄ and the associated

ambiguity set as P̃F |G
ρ̄ := ∪g∈[ml]P

(l)
ρ̄g

. Note that R̃F |G
ρ̄ can be represented in terms of

R(l)
ρ̄g

, ∀ g ∈ [ml].

Let z∗
g

(l) be the optimal value of subgroup g ∈ [ml]. Consider a G -measurable random

variable ζLB taking values {z∗
g

(l)}ml
g=1 with nominal probabilities π

(l)
g for each g ∈ [ml].

For instance, in Example 1, ζLB has support {z∗
1

(3), z∗
2

(3), . . . , z∗
7

(3)}, consisting of optimal

values of the 7 subgroups, each with nominal probability π
(l)
g = 1

7 . We create an ambiguity

set P̃G
¯̄ρ around this nominal distribution using inter-groups radius ¯̄ρ. We then aim to obtain

a LB on the optimal value of DRO by calculating R̃G
¯̄ρ (ζLB) := max ¯̄P ∈P̃G

¯̄ρ
E ¯̄P
[
ζLB

]
.

This process results in the risk measure R̃ ¯̄ρ,ρ̄(·) :=
(
R̃G

¯̄ρ ◦ R̃F |G
ρ̄

)
(·), which is the con-

volution of the one-step conditional risk measure R̃F |G
ρ̄ : Z → L∞(Ω, G , Q) and the risk

measure on the collection of subsets R̃G
¯̄ρ : L∞(Ω, G , Q) → R. The ambiguity set corre-

sponding to R̃ ¯̄ρ,ρ̄(·) is denoted by P̃ ¯̄ρ,ρ̄ so that for any η ∈ Z, R̃ ¯̄ρ,ρ̄(η) = max
P ′ ∈P̃ ¯̄ρ,ρ̄

EP ′
[
η
]

(see [25]). Above, we focused on how to use convolution of risk measures to obtain LBs

for DRO. This involves an “optimization” step in x in (3). For convolution of risk mea-

sures on random variables, one can consider a “fixed” x in (3). With fixed x, the term

c(x, ξ) in (2.4) becomes only a function of the random variable ξ and hence is a random

variable itself. This induced random variable, denoted ηx, depends on the x used; i.e.,

ηx = c(x, ξ). In the next two sections, we present LB criteria on general random variables

η ∈ Z. These results are directly applicable to static/two-stage DRO because minimiza-

tion preserves the LBs. Their application to multistage DRO will be discussed in Section

3.5.

The ambiguity sets mentioned above can be formulated as follows. First, given the

12
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(a) A graphical representation of the sam-
ple space Ω, with |Ω| = 15 scenarios, di-
vided into m3 = 7 subsets of cardinality
l = 3, with one fixed scenario Ωf = {ω1}.
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(b) Computation of the risk measure R̃G
¯̄ρ (·)

(dashed line) combining the optimal values
of subgroups obtained using risk measures
R(l)

ρ̄g
(·), g ∈ [7] induced by DRO with P(l)

ρ̄g
.

Figure 1: Two-step procedure to compute the convolution risk measure R̃ ¯̄ρ,ρ̄(·) = (R̃G
¯̄ρ ◦ R̃F|G

ρ̄ )(·).

subset Ω(l)
g for subgroup g, the ambiguity set associated with DRO in (3) using intra-

group radius ρ̄g ≥ 0 inducing risk measure R(l)
ρ̄g

on this subgroup is

P(l)
ρ̄g

:=

P̄
(l)
g : ∆(P̄ (l)

g , Q
(l)
g ) ≤ ρ̄g,

∑
ωi∈Ω(l)

g

(p̄ωi)
(l)
g = 1, (p̄ωi)

(l)
g ≥ 0, ∀ωi ∈ Ω(l)

g

 ,

where (p̄ωi)
(l)
g represents the probability P̄

(l)
g assumes for scenario ωi ∈ Ω(l)

g . Hence, the

ambiguity set corresponding to the one-step conditional risk measure R̃F |G
ρ̄ is

P̃F |G
ρ̄ :=

P̄ : ∆(P̄ (l)
g , Q

(l)
g ) ≤ ρ̄g, ∀g∈[ml],

∑
ωi∈Ω(l)

g

(p̄ωi)
(l)
g =1, ∀g∈[ml], (p̄ωi)

(l)
g ≥0, ∀ωi∈Ω(l)

g , ∀g∈[ml]

 .

Above, P̄ := {P̄
(l)
g }ml

g=1. Next, the ambiguity set using inter-groups radius ¯̄ρ ≥ 0 inducing

risk measure R̃G
¯̄ρ on the collection of subsets is

P̃G
¯̄ρ :=

{
¯̄P : ∆( ¯̄P, ¯̄Q) ≤ ¯̄ρ,

∑
g∈[ml]

¯̄p(l)
g = 1, ¯̄p(l)

g ≥ 0, ∀g ∈ [ml]
}

,

where ¯̄Q is the nominal distribution composed of the weights π
(l)
g detailed in Section 3.1

and ¯̄p(l)
g represents the probability ¯̄P assumes for the subgroup g with cardinality l. Finally,

the ambiguity set corresponding to the convolution P̃G
¯̄ρ ◦P̃F |G

ρ̄ with associated risk measure

R̃ ¯̄ρ,ρ̄ becomes

P̃ ¯̄ρ,ρ̄ :=
{

P ′ : p′
ωi,g = ¯̄p(l)

g · (p̄ωi)
(l)
g , ∀ωi ∈ Ωf , g ∈ [ml], p′

ωi
=

∑
g∈[ml]

p′
ωi,g, ∀ωi ∈ Ωf ,

and p′
ωi

= ¯̄p(l)
g · (p̄ωi)

(l)
g , ∀ωi ∈ Ω(l)

g \ Ωf , g ∈ [ml], ¯̄P ∈ P̃G
¯̄ρ , P̄ ∈ P̃F |G

ρ̄

}
.

(4)
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Recall Ωf denotes the set of fixed scenarios (Section 3.1), and if Ωf = ∅, disjoint partitions

are used. For any fixed scenario ωi ∈ Ωf , its probability p′
ωi

is found by summing up its

group probabilities p′
ωi,g for all subgroups g ∈ [ml]. For instance, in Example 1, the

probability of scenario ω1 after convolution is found by p′
ω1 =

∑7
g=1 ¯̄p(3)

g · (p̄ω1)(3)
g , whereas

for all other scenarios we have p′
ω2 = ¯̄p(3)

1 · (p̄ω2)(3)
1 , . . . , p′

ω5 = ¯̄p(3)
2 · (p̄ω5)(3)

2 , . . . , p′
ω15 =

¯̄p(3)
7 · (p̄ω15)(3)

7 (see Figure 1b). Notice that in (4) the condition
∑

ωi∈Ω p′
ωi

= 1 always

holds because the respective ambiguity sets P̃G
¯̄ρ and P̃F |G

ρ̄ require
∑

g∈[ml]
¯̄p(l)

g = 1 and∑
ωi∈Ω(l)

g
(p̄ωi)

(l)
g = 1 for all subgroups g ∈ [ml]:

∑
ωi∈Ω

p′
ωi

=
∑

ωi∈Ωf

p′
ωi

+
∑

ωi∈(Ωf )C

p′
ωi

=
∑

ωi∈Ωf

∑
g∈[ml]

¯̄p(l)
g · (p̄ωi)

(l)
g +

∑
g∈[ml]

∑
ωi∈Ω(l)

g \Ωf

¯̄p(l)
g · (p̄ωi)

(l)
g

=
∑

g∈[ml]

∑
ωi∈Ω(l)

g

¯̄p(l)
g · (p̄ωi)

(l)
g =

∑
g∈[ml]

(
¯̄p(l)

g ·
∑

ωi∈Ω(l)
g

(p̄ωi)
(l)
g

)
=

∑
g∈[ml]

(
¯̄p(l)

g · 1
)

= 1,

where the complement set with respect to Ω is denoted by (·)C .

In the rest of this section, we denote the nominal probabilities of the fixed scenarios

after dissection as qωi,g = π
(l)
g · (qωi)

(l)
g , ∀ωi ∈ Ωf , g ∈ [ml], where qωi =

∑
g∈[ml] qωi,g

for any ωi ∈ Ωf . We use ρ̄max to denote the maximal value of intra-group radii ρ̄g

among subgroups g ∈ [ml] (i.e., ρ̄max = maxg∈[ml] ρ̄g). Subscript ϕθ
CR is used to represent

all relevant ambiguity sets and risk measures induced by CR power divergence family

with parameter θ. For instance, Rϕθ
CR(ρ) denotes the risk measure induced by the CR

power divergence with ambiguity set Pϕθ
CR(ρ) using radius ρ of the original DRO, and

R̃ϕθ
CR(¯̄ρ,ρ̄) =

(
R̃G

ϕθ
CR(¯̄ρ) ◦ R̃F |G

ϕθ
CR(ρ̄)

)
denotes the risk measure after convolution using intra-

group radii ¯̄ρ and inter-groups radius ρ̄, and so forth. Similarly, we use subscripts ϕv,

ϕJ , ϕa
χ, and W to denote VD, J-divergence, χ-divergence of order a > 1 and Wasserstein

distance, respectively. These notations are used in the subsequent results and their proofs.

3.3 Lower-bound criteria for ϕ-divergences

We now present LB criteria for DRO formed via commonly used ϕ-divergences listed in

Table 1 through scenario grouping. We begin with CR power divergence family and present

the proof in detail. The LB criteria for the special cases of the CR power divergence family

in Table 2 can be acquired from the below result.

Proposition 1. (LB criteria for CR power divergences). Consider the convolution

formed by CR power divergence with parameter θ ̸= 0, 1. For 0 < θ < 1, suppose the radii

14



ρ, ρ̄g, ¯̄ρ ∈
[
0, 1

θ + 1
(1−θ)

]
, g ∈ [ml]. For θ < 0 or θ > 1, suppose the radii ρ, ρ̄g, ¯̄ρ ≥ 0

and the sample space Ω is dissected by disjoint partitions (i.e., Ωf = ∅). If

¯̄ρ + ρ̄max ≤ ρ when θ ∈ (0, 1),

¯̄ρ + ρ̄max − θ(1 − θ) · ¯̄ρ · ρ̄max ≤ ρ when θ < 0 or θ > 1 and Ωf = ∅,

¯̄ρ + ρ̄max ≤ ρ when θ → 0 or θ → 1,

then R̃ϕθ
CR(¯̄ρ,ρ̄)(η) ≤ Rϕθ

CR(ρ)(η) for all η ∈ Z.

Proof. Let P ′ ∈ P̃ϕθ
CR(¯̄ρ,ρ̄). Then there exists ¯̄P ∈ P̃G

ϕθ
CR(¯̄ρ) and P̄ ∈ P̃F |G

ϕθ
CR(ρ̄) such that∑

g∈[ml]
¯̄p(l)

g = 1,
∑

ωi∈Ω(l)
g

(p̄ωi)
(l)
g = 1 and, by the definition of ∆ϕθ

CR
of Table 1, satisfying

1−
∑

g∈[ml]

(
¯̄p(l)

g

)θ(
π

(l)
g

)1−θ

θ(1−θ) ≤ ¯̄ρ, and

1−
∑

ωi∈Ω(l)
g

(
(p̄ωi )(l)

g

)θ(
(qωi )(l)

g

)1−θ

θ(1−θ) ≤ ρ̄g, ∀g ∈ [ml]. (5)

We now show the steps to find the criteria for ∆ϕθ
CR

(P ′, Q) ≤ ρ:

1. When θ ∈ (0, 1), writing out ∆ϕθ
CR

(P ′, Q), we obtain

1 −
∑

ωi∈Ω

(
p′

ωi

)θ
(qωi)

1−θ

θ(1 − θ) =
1 −

∑
ωi∈Ωf

(
p′

ωi

)θ
(qωi)

1−θ −
∑

ωi∈(Ωf )C

(
p′

ωi

)θ
(qωi)

1−θ

θ(1 − θ)

=
1 −

∑
ωi∈Ωf

( ∑
g∈[ml]

p′
ωi,g

)θ ( ∑
g∈[ml]

qωi,g

)1−θ

−
∑

ωi∈(Ωf )C

(
p′

ωi

)θ
(qωi)

1−θ

θ(1 − θ)

≤
1 −

∑
ωi∈Ωf

∑
g∈[ml]

(
p′

ωi,g

)θ
(qωi,g)1−θ −

∑
ωi∈(Ωf )C

(
p′

ωi

)θ
(qωi)

1−θ

θ(1 − θ) (6)

=

1 −
∑

g∈[ml]

∑
ωi∈Ω(l)

g

(
¯̄p(l)

g (p̄ωi)
(l)
g

)θ (
π

(l)
g (qωi)

(l)
g

)1−θ

θ(1 − θ) +


−

∑
g∈[ml]

(
¯̄p(l)

g

)θ(
π

(l)
g

)1−θ
+

∑
g∈[ml]

(
¯̄p(l)

g

)θ(
π

(l)
g

)1−θ

θ(1 − θ)


(7)

=
1 −

∑
g∈[ml]

(
¯̄p(l)

g

)θ (
π

(l)
g

)1−θ

θ(1 − θ) +
∑

g∈[ml]


(

¯̄p(l)
g

)θ (
π(l)

g

)1−θ

1 −
∑

ωi∈Ω(l)
g

(
(p̄ωi)

(l)
g

)θ (
(qωi)

(l)
g

)1−θ

θ(1 − θ)


≤ ¯̄ρ +

∑
g∈[ml]

[(
¯̄p(l)

g

)θ (
π(l)

g

)1−θ
ρ̄g

]
≤ ¯̄ρ +

∑
g∈[ml]

[(
¯̄p(l)

g

)θ (
π(l)

g

)1−θ
]

· ρ̄max (8)

=¯̄ρ + ρ̄max − θ(1 − θ)
1 −

∑
g∈[ml]

(
¯̄p(l)

g

)θ (
π

(l)
g

)1−θ

θ(1 − θ) · ρ̄max, (9)

where inequality (6) follows from Hölder’s inequality applied on the fixed scenarios. The

15



first inequality in (8) follows from (5) and the second from definition of ρ̄max. Let us denote

the right-hand side of (9) as A. Since −θ(1 − θ) is negative, A ≤ ¯̄ρ + ρ̄max. Therefore, if
¯̄ρ + ρ̄max ≤ ρ, we have P̃ϕθ

CR(¯̄ρ,ρ̄) ⊆ Pϕθ
CR(ρ). This implies that for any η ∈ Z, we obtain

R̃ϕθ
CR(¯̄ρ,ρ̄)(η) = max

P ′∈P̃
ϕθ

CR
(¯̄ρ,ρ̄)

EP ′
[
η
]

≤ maxP ∈P
ϕθ

CR
(ρ)

EP

[
η
]

= Rϕθ
CR(ρ)(η).

2. When θ < 0 or θ > 1, we can no longer apply Hölder’s inequality on the fixed

scenarios in (6). However, when Ωf = ∅ (i.e., disjoint partitions are used), we can directly

start from (7) and follow the steps to (9). Since −θ(1 − θ) is positive, A ≤ ¯̄ρ + ρ̄max −

θ(1 − θ) · ¯̄ρ · ρ̄max by (5). Therefore, if ¯̄ρ + ρ̄max − θ(1 − θ) · ¯̄ρ · ρ̄max ≤ ρ, the result follows.

3. When θ → 1, the CR power divergence is equivalent to Kullback-Leibler divergence.

Detailed proof is provided in Appendix A.1.

4. When θ → 0, the proof is similar to the θ → 1 case and hence omitted.

Proof of Proposition 1 and Appendix A.1 reveal that when θ ∈ (0, 1) or in the limit

cases of Kullback-Leibler divergence (θ → 1) and Burg entropy (θ → 0), the sample space

Ω can be dissected in any way, either using disjoint partitions or fixed scenarios. However,

when θ < 0 or θ > 1, the above result is valid for disjoint partitions.

LB criteria for other ϕ-divergences in Table 1 can be obtained using a similar proof

technique. Below, we provide the results and relegate the proofs to Appendix A.

Proposition 2. (LB criterion for variation distance). Consider the convolution formed

by variation distance, where radii ρ, ρ̄g, ¯̄ρ ∈ [0, 2], g ∈ [ml]. If

¯̄ρ · ρ̄max + ¯̄ρ + ρ̄max ≤ ρ,

then R̃ϕv(¯̄ρ,ρ̄)(η) ≤ Rϕv(ρ)(η) for all η ∈ Z.

Proposition 3. (LB criterion for J-divergence). Consider the convolution formed by

J-divergence, where radii ρ, ρ̄g, ¯̄ρ ≥ 0, g ∈ [ml]. If

¯̄ρ + ρ̄max ≤ ρ,

then R̃ϕJ (¯̄ρ,ρ̄)(η) ≤ RϕJ (ρ)(η) for all η ∈ Z.

Proposition 4. (LB criterion for χ-divergence of order a > 1). Consider the convo-

lution formed by χ-divergence of order a > 1, where radii ρ, ρ̄g, ¯̄ρ ≥ 0, g ∈ [ml] and the

sample space Ω is dissected by disjoint partitions (i.e., Ωf = ∅). If

[( ¯̄ρ) 1
a + (ρ̄max)

1
a +

( ¯̄ρ · ρ̄max
) 1

a

]a

≤ ρ,
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then R̃ϕa
χ(¯̄ρ,ρ̄)(η) ≤ Rϕa

χ(ρ)(η) for all η ∈ Z.

Note that Proposition 4 is a general result that applies to all values of a > 1. For

certain values of a, a tighter inequality might be available. For instance, when a = 2,

by directly using ∆ϕa
χ
(P ′, Q) =

∑
ωi∈Ω

(p′
ωi

)2

qωi
− 1 instead of Minkowski’s inequality (see

Appendix A.4), we obtain the LB criterion ¯̄ρ · ρ̄max + ¯̄ρ + ρ̄max ≤ ρ.

3.4 Lower-bound criterion for Wasserstein distance

We now provide a LB criterion for Wasserstein distance through scenario decomposition.

The main idea is the same: to find criteria that guarantee the convoluted ambiguity set

being a subset of the ambiguity set of the original problem. Recall that Wasserstein

distance needs a distance dωi,ωj between any two scenarios ωi and ωj . To apply it to

scenario groups, we need a distance between subgroups as well. We provide such a distance

between subgroups and a criterion for radii ¯̄ρ, ρ̄ to ensure LBs below.

Proposition 5. (LB criterion for Wasserstein distance). Consider the convolution of

DRO formed by Wasserstein distance, where radii ρ, ρ̄g, ¯̄ρ ≥ 0, g ∈ [ml]. Let the distance

between scenario groups be defined as

dg1,g2 :=


max

ωi∈Ω(l)
g1 , ωj∈Ω(l)

g2
{dωi,ωj } when g1 ̸= g2

0 when g1 = g2,

(10)

where g1, g2 ∈ [ml]. If ¯̄ρ + ρ̄max ≤ ρ,

then R̃W (¯̄ρ,ρ̄)(η) ≤ RW (ρ)(η) for all η ∈ Z.

Proof. First assume Ω is dissected using disjoint partitions (i.e., Ωf = ∅). Given P ′ ∈

P̃W (¯̄ρ,ρ̄) formed after scenario grouping and convolution, the Wasserstein distance between

P ′ and Q for the original problem can be written as

∆W (P ′, Q) := min
z≥0

{ ∑
ωi∈Ω

∑
ωj∈Ω

dωi,ωj zωi,ωj :
∑

ωi∈Ω
zωi,ωj = qωj , ∀ωj ∈ Ω,

∑
ωj∈Ω

zωi,ωj = p′
ωi

, ∀ωi ∈ Ω
}

, (11)

and the Wasserstein distance for ambiguity set P̃G
W (¯̄ρ) can be written as

∆W ( ¯̄P, ¯̄Q) := min
y≥0

{ ∑
g1∈[ml]

∑
g2∈[ml]

dg1,g2 yg1,g2 :
∑

g1∈[ml]
yg1,g2 = π

(l)
g2 , ∀g2 ∈ [ml],

∑
g2∈[ml]

yg1,g2 = ¯̄p(l)
g1 , ∀g1 ∈ [ml]

}
. (12)

Similarly, for each subgroup g ∈ [ml], we have
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∆W (P̄ (l)
g , Q

(l)
g ) := min

x≥0

{ ∑
ωi∈Ω(l)

g

∑
ωj∈Ω(l)

g

dωi,ωj (xωi,ωj )g :
∑

ωi∈Ω(l)
g

(xωi,ωj )g=(qωj )(l)
g , ωj ∈ Ω(l)

g ,

∑
ωj∈Ω(l)

g

(xωi,ωj )g=(p̄ωi)
(l)
g , ωi ∈ Ω(l)

g

}
.

(13)

Let us now define one way to obtain zωi,ωj in (11) by using the decision variables yg1,g2

and (xωi,ωj )g in (12) and (13), respectively:

zωi,ωj = yg,g (xωi,ωj )g, ∀ωi, ωj ∈ Ω(l)
g , ∀g ∈ [ml] (14)∑

ωi∈Ω(l)
g1

zωi,ωj = yg1,g2

∑
ωi∈Ω(l)

g2

(xωi,ωj )g2 , ∀ωj ∈ Ω(l)
g2 , ∀g2 ∈ [ml] (15)

∑
ωj∈Ω(l)

g2

zωi,ωj = yg1,g2

∑
ωj∈Ω(l)

g1

(xωi,ωj )g1 , ∀ωi ∈ Ω(l)
g1 , ∀g1 ∈ [ml]. (16)

Above, we also assume z ≥ 0. (This is automatically satisfied for within-subgroup zωi,ωj

by (14) given y ≥ 0 and x ≥ 0.) With the transformation above, we can show that the

constraints in (11) of the Wasserstein distance ∆W (P ′, Q) are all satisfied, even though

zωi,ωj formed through (14)–(16) may not be optimal to ∆W (P ′, Q). For instance, the first

set of constraints in (11) for all ωj ∈ Ω (or equivalently all ωj ∈ Ω(l)
g , g ∈ [ml]) are satisfied

by (15) and the first sets of constraints in (12) and (13):

∑
ωi∈Ω

zωi,ωj =
∑

g1∈[ml]

∑
ωi∈Ω(l)

g1

zωi,ωj

=
∑

g1∈[ml]

(
yg1,g

∑
ωi∈Ω(l)

g

(xωi,ωj )g

)

=
( ∑

g1∈[ml]
yg1,g

)( ∑
ωi∈Ω(l)

g

(xωi,ωj )g

)

=π(l)
g (qωj )(l)

g = qωj ,

where g denotes the subgroup scenario ωj belongs to. The second set of constraints in

(11) can be shown similarly by using (16) and the second sets of constraints in (12) and

(13). Hence, all feasible solutions to constraints in (12) and (13) are also feasible to the

constraints in (11).

Let Z, Y, and X denote the feasible regions given by the constraints in (11), (12), and

(13), respectively, each supplemented with their nonnegativity constraints z ≥ 0, y ≥ 0,

and x ≥ 0. We now show steps to find criteria for ∆W (P ′, Q) ≤ ρ:
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∆W (P ′, Q) = min
z∈Z

∑
ωi∈Ω

∑
ωj ∈Ω

dωi,ωj zωi,ωj

= min
z∈Z

∑
g∈[ml]

∑
ωi∈Ω(l)

g

( ∑
ωj ∈Ω(l)

g

dωi,ωj zωi,ωj +
∑

ωj ∈
(

Ω(l)
g

)C

dωi,ωj zωi,ωj

)

≤ min
z∈Z
y∈Y
x∈X

∑
g∈[ml]

∑
ωi∈Ω(l)

g

( ∑
ωj ∈Ω(l)

g

dωi,ωj yg,g(xωi,ωj )g +
∑

ωj ∈
(

Ω(l)
g

)C

dωi,ωj zωi,ωj

)
(a)

≤ min
z∈Z
y∈Y
x∈X

∑
g∈[ml]

( ∑
ωi∈Ω(l)

g

∑
ωj ∈Ω(l)

g

dωi,ωj yg,g(xωi,ωj )g +
∑

g2∈[ml]

∑
ωi∈Ω(l)

g

∑
ωj ∈Ω(l)

g2

dg,g2 zωi,ωj

)
(b)

≤ min
y∈Y
x∈X

∑
g∈[ml]

(
yg,g

∑
ωi∈Ω(l)

g

∑
ωj ∈Ω(l)

g

dωi,ωj (xωi,ωj )g

)
+
∑

g∈[ml]

∑
g2∈[ml]

dg,g2 yg,g2 (c)

≤
∑

g∈[ml]

(
π(l)

g min
x∈X

∑
ωi∈Ω(l)

g

∑
ωj ∈Ω(l)

g

dωi,ωj (xωi,ωj )g

)
+ min

y∈Y

∑
g∈[ml]

∑
g2∈[ml]

dg,g2 yg,g2 (d)

=
∑

g∈[ml]

π(l)
g ∆W (P̄ (l)

g , Q(l)
g ) + ∆W ( ¯̄P, ¯̄Q) ≤

∑
g∈[ml]

π(l)
g · ρ̄g + ¯̄ρ ≤ ¯̄ρ + ρ̄max, (e)

where (a) follows from (14). Note that this is an inequality because decisions z obtained

through this transformation may not be optimal. Inequality (b) follows (10). By summing

over ωj ∈ Ω(l)
g2 on both sides of (15), we can show yg,g2 =

∑
ωi∈Ω(l)

g

∑
ωj∈Ω(l)

g2
zωi,ωj , ∀g, g2 ∈

[ml]. Then (c) follows. Inequality (d) follows from yg,g ≤ π
(l)
g (see (12)) and the fact that

the resulting problem is separable. Finally, the equality in (e) follows from the definition of

∆W (P̄ (l)
g , Q

(l)
g ) and ∆W ( ¯̄P, ¯̄Q), and the inequality in (e) follows by construction. Therefore,

similar to the statement at the end of the proof of part 1 of Proposition 1, when θ ∈ (0, 1),

if ¯̄ρ + ρ̄max ≤ ρ, then R̃W (¯̄ρ,ρ̄)(η) ≤ RW (ρ)(η) for all η ∈ Z.

We now consider the case when Ω is dissected using fixed scenarios (Ωf ̸= ∅). Recall

in (4), for any fixed scenario ωi ∈ Ωf , we have p′
ωi,g = ¯̄p(l)

g (p̄ωi)
(l)
g , g ∈ [ml] and p′

ωi
=∑

g∈[ml] p′
ωi,g. Hence splitting the two constraints in (11), we have

∑
ωi∈Ω

zωi,ωj = qωj =
∑

g∈[ml]
qωj ,g =

∑
g∈[ml]

π(l)
g (qωj )(l)

g , ωj ∈ Ωf , (17)

∑
ωi∈Ω

zωi,ωj = qωj = π(l)
g (qωj )(l)

g , ωj ∈ (Ωf )C , (18)

∑
ωj∈Ω

zωi,ωj = p′
ωi

=
∑

g∈[ml]
p′

ωi,g =
∑

g∈[ml]

¯̄p(l)
g (p̄ωi)(l)

g , ωi ∈ Ωf , (19)

∑
ωj∈Ω

zωi,ωj = p′
ωi

= ¯̄p(l)
g (p̄ωi)(l)

g , ωi ∈ (Ωf )C . (20)

19



Define a finite expanded space Ω̃ := {ω1(1) , ω1(2) , . . . , ω1(ml) , ω2(1) , ω2(2) , . . . , ω2(ml) , . . . ,

ωf(1) , ωf(2) , . . . , ωf(ml) , ωf+1, ωf+2, . . . , ω|Ω|}, where the fixed scenarios ωi ∈ Ωf = {ω1, . . . , ωf }

in different subgroups are considered to have different “atoms” and the rest of the sce-

narios ωi ∈ (Ωf )C are left as before. We again use the same subgroups Ω(l)
g but on the

expanded space Ω̃. Then, we have the following Wasserstein distance on Ω̃:

∆̃W (P ′, Q) := min
z̃≥0

{ ∑
ωi∈Ω̃

∑
ωj∈Ω̃

dωi,ωj z̃ωi,ωj :
∑

ωi∈Ω̃
z̃ωi,ωj = π

(l)
g (qωj )(l)

g , ∀ωj ∈ Ω̃,

∑
ωj∈Ω̃

z̃ωi,ωj = ¯̄p(l)
g (p̄ωi)

(l)
g , ∀ωi ∈ Ω̃

}
.

(21)

For any z̃ ≥ 0 feasible to Wasserstein distance ∆̃W (P ′, Q)—including the optimal z̃—on

the expanded space Ω̃, we can generate a feasible solution z ≥ 0 to (17)–(20). First,

for any non-fixed scenarios ωi, ωj ∈ (Ωf )C , we set zωi,ωj = z̃ωi,ωj and observe the con-

straints in (21) are the same as (18) and (20). Next, for any fixed scenario ωi ∈ Ωf

and non-fixed scenario ωj ∈ (Ωf )C , we set (i) zωi,ωi =
∑

g1∈[ml]
∑

g2∈[ml] z̃ωi(g1) ,ωi(g2)
, (ii)

zωi,ωj =
∑

g∈[ml] z̃ωi(g) ,ωj , and (iii) zωj ,ωi =
∑

g∈[ml] z̃ωj ,ωi(g)
. Then (17) and (19) are also

satisfied. Furthermore, with this z, the objective functions of two Wasserstein distances

coincide:
∑

ωi∈Ω
∑

ωj∈Ω dωi,ωj zωi,ωj =
∑

ωi∈Ω̃
∑

ωj∈Ω̃ dωi,ωj z̃ωi,ωj because any distance in-

volving ωi(g) ∈ Ω̃ is equivalent to distance involving ωi ∈ Ωf , e.g., dωi(g1) ,ωi(g2)
= 0 for all

ωi ∈ Ωf , g1, g2 ∈ [ml]. As a result, ∆W (P ′, Q) ≤ ∆̃W (P ′, Q). Observe ∆̃W (P ′, Q) is ob-

tained as “disjoint” partitions on Ω̃. Then, following similar steps to the disjoint partition,

we show ∆̃W (P ′, Q) ≤ ¯̄ρ + ρ̄max. Therefore, if ¯̄ρ + ρ̄max ≤ ρ the result follows.

Remark. Although the above propositions use ρ̄max, these results can also be obtained

using the individual intra-group radius ρ̄g values for each scenario group g ∈ [ml]. For

instance, the condition for Wasserstein would be ¯̄ρ +
∑

g∈[ml] π
(l)
g · ρ̄g ≤ ρ and the result

for J-divergence would be ¯̄ρ +
∑

g∈[ml]

(
¯̄p(l)

g · ρ̄g

)
≤ ρ. In our numerical results, we use the

same value for each group, i.e., ρ̄g = ρ̄max for all g ∈ [ml].

3.5 Lower bounds for multistage problems

We now extend the LBs obtained in Sections 3.3 and 3.4 to multistage DRO. Due to

the correspondence between DRO and RASO, here we focus on a RASO formulation and

present our results and proofs using the properties of conditional coherent risk measures.

We first recall the results in [37]. For a multistage decision horizon with stages t ∈ T let

Zt := L∞(Ωt, Ft, Qt). The mapping RFt+1|Ft
ρt+1 : Zt+1 → Zt is called one-step conditional

20



risk measure if it satisfies the properties presented in Section 2.4 for corresponding spaces

Zt and Zt+1 for all t ∈ {0, . . . , T −1}. The risk involved in a sequence of random variables

ηt ∈ Zt, t ∈ T adapted to the filtration Ft, t ∈ T can be evaluated by a time-consistent

dynamic risk measure Rρ induced by a measure of similarity between distributions ∆

using radii ρ := (ρ1, . . . , ρT ), defined as follows:

Rρ (η0, . . . ,ηT ) := η0 + RF1|F0
ρ1

(
η1 + RF2|F1

ρ2

(
η2 + . . . + RFT |FT −1

ρT
(ηT )

))
. (22)

In general, it is not necessary to use the same ∆ at each stage of the problem, but we do

so in this paper for simplicity. Also, by changing the radii ρt we can choose how close we

remain to the nominal distributions at different stages. Setting ηt := ct(xt, ξt) at stages

t ∈ T and using (22), the multistage RASO problem can be formulated as

min
x0∈X0(ξ0)

c0(x0, ξ0) + Rρ1

(
Q1
(
x0, ξ0)) (23)

where

Q1
(
x0, ξ0) := min

xt∈Xt(xt−1,ξt), t∈T \{0}
Rρ2,...,ρT (c1(x1, ξ1), . . . , cT (xT , ξT )) . (24)

Let x∗
0 and z∗ be an optimal first-stage solution and the optimal value of (23)–(24),

respectively.

We now introduce two approaches that provide different types of LBs to the original

multistage DRO problem. Our first approach, which we refer to as first-level LB, allows

changes to only the first-stage radius ρ1; hence the name ‘first-level’. This approach applies

to risk measures induced by any ϕ-divergence, and the scenario tree can be dissected in

any form. Our second approach, referred to as multi-level LB, instead allows changes

to several layers of ρt, based on how the scenario tree is dissected, and then applies the

convolution step to combine the subgroups’ optimal values in a nested fashion following

the structure of the scenario tree. Because of the nested application of the convolution

step, the scenario tree needs to be dissected in a specific way. The multi-level LB applies to

both the Wasserstein distance and the ϕ-divergences. We now examine these approaches

and their differences in more detail.

3.5.1 First-level bounding scheme

Our first approach is formed as follows, similar to the two-stage case. Consider the

collection of subsets Ω = ∪g∈[ml]Ω
(l)
g and its induced σ-algebra G . On each subgroup

g ∈ [ml], we solve problem (23)–(24) with sample space Ω(l)
g , where ρ1 is replaced by ρ̄g,

while ρt for t > 1 are unchanged. Let z∗
g

(l) be its optimal value. Also let ζLB := {z∗
g

(l)}ml
g=1

21



be a G -measurable random variable with probabilities π
(l)
g , ∀g ∈ [ml]. A LB on z∗ can be

obtained by applying the LB risk measure R̃G
¯̄ρ introduced in the previous section to ζLB,

hence computing R̃G
¯̄ρ (ζLB). In this approach, only the radius at the first stage is replaced,

and there is no need to change the radii from stage 2 to stage T . Below we show that this

approach provides a valid LB for multistage DRO formed by ϕ-divergences.

Proposition 6.(First-level LB for multistage DRO). Given problem (23)–(24), assume

the risk measure at each stage is induced by a ϕ-divergence. Consider the risk measure R̃G
¯̄ρ :

L∞(Ω, G , Q) → R to combine the subgroups and the one-step conditional risk measure

on the subgroups R̃F |G
ρ̄ : L∞(Ω, F , Q) → L∞(Ω, G , Q) (i.e., R(l)

ρ̄g
: L∞(Ω, σ(Ω(l)

g ), Q) →

R, ∀g ∈ [ml] with σ(Ω(l)
g ) the σ-algebra on Ω(l)

g ), where these risk measures are induced by

the same type of ϕ-divergence. If ¯̄ρ and ρ̄max satisfy the corresponding criteria from one

of the Propositions 1-4 with ρ = ρ1, then z∗ ≥ R̃G
¯̄ρ (ζLB).

Proof. If x∗
0 is an optimal first-stage solution of (23)–(24), then it is a feasible first-stage

solution for each subgroup problem g ∈ [ml]. Thus, we have c0(x∗
0, ξ0)+R(l)

ρ̄g

(
Q1
(
x∗

0, ξ0)) ≥

z∗
g

(l), ∀g ∈ [ml], or equivalently c0(x∗
0, ξ0) + R̃F |G

ρ̄

(
Q1
(
x∗

0, ξ0)) ≥ ζLB. Both sides of this

inequality are G -measurable, and since R̃G
¯̄ρ is a coherent risk measure that satisfies the

monotonicity property (see Section 2.4), we obtain R̃G
¯̄ρ

(
c0(x∗

0, ξ0) + R̃F |G
ρ̄

(
Q1
(
x∗

0, ξ0))) ≥

R̃G
¯̄ρ (ζLB). We can now apply translation equivariance property (see Section 2.4) to the left-

hand side of above inequality to get R̃G
¯̄ρ

(
R̃F |G

ρ̄

(
c0(x∗

0, ξ0) + Q1(x∗
0, ξ0)

))
≥R̃G

¯̄ρ (ζLB). Since

the criteria from Propositions 1-4 are satisfied, we obtain Rρ1

(
c0(x∗

0, ξ0)+Q1(x∗
0, ξ0)

)
≥

R̃G
¯̄ρ
(
ζLB

)
. Using once more the translation equivariance property, we reach the result

z∗ = c0(x∗
0, ξ0)+Rρ1

(
Q1(x∗

0, ξ0)
)

≥ R̃G
¯̄ρ
(
ζLB

)
. See also [25].

In general, first-level LB cannot be applied when the risk measure R̃G
¯̄ρ is induced by the

Wasserstein distance. This is because the distance between subgroups provided in (10) for

the two-stage case does not hold anymore in the multistage setting. Recall that we need

a distance between subgroups to perform the convolution step. Thus, in the following

section, we introduce a multi-level bounding scheme that reduces the computation of the

distance between subgroups in the multistage setting to a recursive application of (10),

which was devised for the two-stage setting.

3.5.2 Multi-level bounding scheme

Our second approach applies to risk measures induced by any ϕ-divergence or Wasserstein

distance. Let us first introduce the following definition of dissecting a scenario tree.
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Definition 1. (Dissected up to stage τ). Let Ω(l)
t,g denote set of nodes of subgroup Ω(l)

g

at stage t ∈ T . A scenario tree T is dissected up to stage τ ∈ T \ {0} if

1. for every subgroup Ω(l)
g , g ∈ [ml] all nodes at stage τ of that subgroup have the same

ancestor, i.e., a(n′) = a(n′′), n′, n′′ ∈ Ω(l)
τ,g, for all subgroups g ∈ [ml];

2. all the children of stage-τ (τ < T ) nodes belong to the same subgroup, i.e., B(n) ⊆

Ω(l)
τ+1,g, for all stage-τ nodes n ∈ Ω(l)

τ,g, τ ̸= T for all subgroups g ∈ [ml];

3. subgroups are disjoint, i.e., Ω(l)
τ,g1 ∩ Ω(l)

τ,g2 = ∅, for any two g1, g2 ∈ [ml], g1 ̸= g2.

According to Definition 1, we split the ambiguity sets up to stage τ while the ambiguity

sets at subsequent stages are not modified. Furthermore, all the subgroups involved in

the splitting of a given ambiguity set at stage τ share the same single path up to stage

τ − 1. For example, in Figure 2b, the scenario tree depicted in Figure 2a is dissected up

to stage τ = 2. Consequently, subgroups Ω(2)
1 and Ω(2)

2 share the same nodes 1 and 2

up to stage τ − 1 = 1. Similarly, subgroups Ω(2)
3 and Ω(2)

4 share the same nodes 1 and

3 up to stage τ − 1 = 1. Furthermore, according to Definition 1, a tree dissected up to

stage τ ∈ T \ {0, 1} forms a refinement of a tree dissected up to stage τ − 1. Compare,

for instance, the dissections in Figure 2b and Figure 2c. Similarly, dissection up to stage

τ = 1 forms a refinement of the tree T.

1

2

4 5 6 7

ρ2

3

8 9 10 11

ρ2

ρ1

z∗ = z∗
1

(8)

(a) Scenario tree T with T := {0, 1, 2}.

1

2

4 5

ρ̄2

ρ̄1

Ω(2)
1 : z∗

1
(2)

1

2

6 7

ρ̄2

ρ̄1

Ω(2)
2 : z∗

2
(2)

1

3

8 9

ρ̄2

ρ̄1

Ω(2)
3 : z∗

3
(2)

1

3

10 11

ρ̄2

ρ̄1

Ω(2)
4 : z∗

4
(2)

(b) Tree T dissected up to stage τ = 2.

1
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4 5 6 7

Ω(4)
1 : z∗

1
(4)

1

3

8 9 10 11

Ω(4)
2 : z∗

2
(4)

(c) Tree T dissected up to stage τ = 1.

z∗
1

(8)

z∗
1

(4)

z∗
1

(2) z∗
2

(2)

¯̄ρ2

z∗
2
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z∗
3

(2) z∗
4

(2)
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¯̄ρ1

St
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1

St
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2

(d) Multi-level LB for dissection in part (b).

Figure 2: Visual representation of the multi-level bounding scheme.
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The multi-level LB scheme works as follows. Any stage-t radii for t ≤ τ can be changed to

the intra-group radii ρ̄1, . . . , ρ̄τ for subgroup problems, but all intra-group radii for stages

t > τ are kept the same as the original problem ρτ+1, . . . , ρT . Then, the optimal values of

the subgroups are combined in a nested fashion, following the structure of the tree, using

the convolution method described in Section 3.2 starting from stage τ up to stage 1 with

inter-groups radii ¯̄ρτ , . . . , ¯̄ρ1. Before we present the theoretical result, let us first illustrate

it with an example.

Example 2. Consider the scenario tree T in Figure 2a, which is dissected up to stage

τ = 2 in Figure 2b. Viewing subgroups Ω(2)
1 and Ω(2)

2 in Figure 2b as a dissection of the

first subset Ω(4)
1 in Figure 2c, we apply the convolution method in Section 3.2 using ρ̄2

and ¯̄ρ2. If these radii satisfy the criteria presented in Sections 3.3 and 3.4, we obtain a

LB on the optimal value of the first subset Ω(4)
1 in Figure2c: z∗

1
(4) ≤ z∗

1
(4). In the case

of Wasserstein distance, the distance between the subgroups Ω(2)
1 and Ω(2)

2 is obtained by

max{d46=d64, d47=d74, d56=d65, d57=d75}, where dij denotes the distance between ξτ

in nodes i and j. The same procedure is performed on the other two subgroups Ω(2)
3 and

Ω(2)
4 , obtaining a LB for the second subset Ω(4)

2 in Figure 2c: z∗
2

(4) ≤ z∗
2

(4). Now, instead

of z∗
1

(4), z∗
2

(4), using their LBs z∗
1

(4), z∗
2

(4), the convolution is applied once again to the

subsets Ω(4)
1 and Ω(4)

2 in Figure 2c, which form a dissection of the tree T in Figure 2a.

Here, the distance between subgroups Ω(4)
1 and Ω(4)

2 is given by d23 = d32. Figure 2d shows

a graphical representation of this process.

Proposition 7. (Multi-level LB for multistage DRO). Let scenario tree T be dissected

up to stage τ in subgroups Ω(l)
g , g ∈ [ml], according to Definition 1. Let z∗

g
(l), g ∈ [ml]

be the optimal values of problem (23)–(24) with sample space Ω(l)
g , where ρt is replaced

by ρ̄t,g, t = 1, . . . , τ and ρ̄t,max := maxg∈[ml] ρ̄t,g. Also let ζLB := {z∗
g

(l)}ml
g=1 be a G -

measurable random variable with probabilities π
(l)
g , g ∈ [ml]. If ρ̄t,g = ρt, g ∈ [ml],

for all t = τ + 1, . . . , T and ¯̄ρt, ρ̄t,max satisfy the corresponding criteria from one of the

Propositions 1-5 with respect to ρt for all t = 1, . . . , τ , then

R̃F1|F0
¯̄ρ1

(
R̃F2|F1

¯̄ρ2

(
· · ·
(
R̃G |Fτ−1

¯̄ρτ
(ζLB)

)))
≤ z∗,

with R̃G |Fτ−1
¯̄ρτ

(ζLB) :=
{

R̃ ¯̄ρτ
(ζs

LB)
}|Ωτ−1|

s=1
and ζs

LB := {z∗
g

(l)}Ω(l)
g ⊆Ω(k)

s
, with k > l and

Ω(k)
s , s ∈ [|Ωτ−1|] dissection of the scenario tree T up to stage τ − 1.

Proof. Recall Ω(l)
g , g ∈ [ml] is a dissection of the scenario tree T up to stage τ and Ωτ−1
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denotes the set of nodes in the original tree T at stage τ − 1. Let Ω(k)
s , s ∈ [|Ωτ−1|] be a

dissection of the scenario tree T up to stage τ − 1. Fix an s. Let x∗
i,s, i = 0, . . . , τ − 1, the

optimal solutions of subgroup Ω(k)
s , be given. Then, they form a feasible solution for each

subgroup problem Ω(l)
g ⊆ Ω(k)

s at stages 1, . . . , τ−1. Thus, for all Ω(l)
g ⊆ Ω(k)

s ,

c0(x∗
0,s, ξ0) + R(l)

ρ̄1,g

(
c1(x∗

1,s, ξ1) + R(l)
ρ̄2,g

(
. . . + R(l)

ρ̄τ,g

(
Qτ (x∗

τ−1,s, ξτ−1)
)))

≥ z∗
g

(l)

with Qτ (x∗
τ−1,s, ξτ−1) := min

{
Rρτ+1,...,ρT (cτ (xτ , ξτ ), . . . , cT (xT , ξT )) : xτ ∈ Xτ (x∗

τ−1,s, ξt), xt ∈

Xt(xt−1, ξt), for t = τ + 1, . . . , T
}
. Equivalently defining ζs

LB := {z∗
g

(l)}Ω(l)
g ⊆Ω(k)

s
,

ρ̄s
t := {ρ̄t,g}Ω(l)

g ⊆Ω(k)
s

and H s the σ-algebra induced by the collection of subsets Ω(k)
s =⋃

Ω(l)
g ⊆Ω(k)

s
Ω(l)

g , we have c0(x∗
0,s, ξ0)+R̃(k)

ρ̄s
1

(
c1(x∗

1,s, ξ1)+R̃(k)
ρ̄s

2

(
. . .+R̃(k)

ρ̄s
τ

(
Qτ (x∗

τ−1,s, ξτ−1)
)))

≥

ζs
LB, where we removed notation like Fτ−1|H s on R̃(k) for simplicity. Both sides of the

inequality are H s-measurable. Then, since R̃H s

¯̄ρτ
is a coherent risk measure that satisfies

monotonicity, we obtain

R̃H s

¯̄ρτ

(
c0(x∗

0,s, ξ0) + R̃(k)
ρ̄s

1

(
c1(x∗

1,s, ξ1) + R̃(k)
ρ̄s

2

(
. . . + R̃(k)

ρ̄s
τ

(
Qτ (x∗

τ−1,s, ξτ−1)
))))

≥ R̃H s

¯̄ρτ
(ζs

LB).

Since by hypothesis ¯̄ρτ , ρ̄τ,max satisfy the criteria from one of the the Propositions 1-5

with respect to ρτ , by translation equivariance, and since by Definition 1 there is a single

path up to stage τ − 1, we get

z∗
s

(k) =
τ−1∑
i=0

ci(x∗
i,s, ξi) + R(k)

ρτ

(
Qτ (x∗

τ−1,s, ξτ−1)
)

≥ R̃H
¯̄ρτ

(ζs
LB) := z∗

s
(k).

Repeating for all s ∈ [|Ωτ−1|], we obtain
[
z∗

1
(k), . . . , z∗

|Ωτ−1|
(k)
]⊤

≥
[
z∗

1
(k), . . . , z∗

|Ωτ−1|
(k)
]⊤

=

R̃G |Fτ−1
¯̄ρτ

(ζLB) , where [·]⊤ denotes transpose. Let Ω(j)
d , d ∈ [|Ωτ−2|] be a dissection of the

scenario tree T up to stage τ −2. Let x∗
i,d, i = 0, . . . , τ −2, the optimal solutions of subgroup

Ω(j)
d , be given. Then, they form a feasible solution for each subproblem Ω(k)

s ⊆ Ω(j)
d . Fol-

lowing the steps above and defining ζd
LB

:= {z∗
s

(k)}Ω(k)
s ⊆Ω(j)

d

and Dd the σ-algebra induced

by the collection of subsets Ω(j)
d =

⋃
Ω(k)

s ⊆Ω(j)
d

Ω(k)
s we reach

z∗
d

(j) =
τ−2∑
i=0

ci(x∗
i,d, ξi) + R(j)

ρτ−1

(
Qτ−1(x∗

τ−2,d, ξτ−2)
)

≥ R̃Dd

¯̄ρτ−1
(ζd

LB
) := z∗

d
(j).

Repeating for all d ∈ [|Ωτ−2|], we obtain
[
z∗

1
(j), . . . , z∗

|Ωτ−2|
(j)
]⊤

≥
[
z∗

1
(j), . . . , z∗

|Ωτ−2|
(j)
]⊤

=

R̃Fτ−1|Fτ−2
¯̄ρτ−1

(
R̃G |Fτ−1

¯̄ρτ
(ζLB)

)
. Repeating the same procedure going backward for other

τ − 2 times, the result follows.
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Remark. When the multi-level LB scheme is applied to the Wasserstein case, the

distance at time t = τ, . . . , 1 between groups g1, g2 is computed as follows:

dg1,g2 =


max

i∈Ω(l)
t,g1

, k∈Ω(l)
t,g2

{dik} when g1 ̸= g2

0 when g1 = g2,

where g1 and g2 are chosen such that ∀n1 ∈ Ω(l)
t,g1 , n2 ∈ Ω(l)

t,g2 : a(n1) = a(n2) and dik is the

distance between nodes i and k.

Remark. The first-level LB has only two parameters that can be tuned: ¯̄ρ and ρ̄max.

For the multi-level LB, however, as τ grows (i.e., as l decreases), the parameters that can

be tuned are ¯̄ρt and ρ̄t,max for t = 1, . . . , τ . We expect that this second approach can allow

to obtain better results for small subgroup cardinalities l due to having more degrees of

freedom to strengthen the LBs. In terms of computations, given the same dissection of

a scenario tree, the multi-level LB is only marginally more expensive. This is because

the computational bottleneck lies in the solution of subproblems, and the convolution of

subgroups’ optimal values is computationally very cheap.

3.6 Upper bounds for multistage problems

Finding an UB of an optimization problem is of critical importance when an optimal

solution is not available. In general, UBs are obtained by constraining some decision

variables to be equal to pre-determined fixed values. In this paper, UBs are obtained by

using optimal solutions of scenario subproblems. Using the procedure described before, we

solve each single scenario group Ω(1)
g , g ∈ [|ΩT |] obtaining (x̂0,g, . . . , x̂T,g) as its optimal

solution. Let UBt
g, t ∈ T be the optimal value of the original problem (1) where the

variables up to stage t are set to x̂i,g for i = 0, . . . , t. From an algorithmic perspective,

this approach requires us to solve problems of smaller dimension than the original one.

The best available UB is obtained by taking the minimum value of UBt
g over all g ∈ [|ΩT |],

i.e., UBt := ming∈[|ΩT |] UBt
g. See [21] for the formal definition and the proof.

4 Case study: a mixed-integer production problem

4.1 Problem description

To show the effectiveness of the proposed approach, we consider a mixed-integer variant of

the inventory management problem introduced in [24], which now includes binary variables
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to indicate machinery start-ups. The problem can be summarized as follows. Consider a

single product inventory system, comprised of a warehouse and a factory equipped with

production machinery. At each time step t = 0, . . . , T − 1, production can be performed

by starting up machinery. Random demands coming from customers have to be satisfied

from the existing inventory. If the random demand exceeds the stock, it will be satisfied by

rapid orders from a different source that come at a higher price. The goal is to minimize

the total costs of the factory for the entire planning period.

The problem formulation is similar to the one presented in [24], except for (i) the

binary variables at each node of the scenario tree indicating machine start-ups, (ii) the

corresponding start-up costs, and (iii) the typical changes in the constraints that ensure

no production takes place if machinery is not started in that period. In the following,

we first assume a two-stage (T = 1) scenario tree with 100 scenarios. Later, we deal

with a six-stage (T = 5) scenario tree with 5 branches from the root, 4 from each of the

second stage nodes, and 3 from each of the third, fourth, fifth stages nodes, resulting in

|ΩT | = 5×4×3×3×3 = 540 scenarios and 806 nodes. The scenario tree and the nominal

distribution are generated as a dependent process across stages; see [23] for details. The

value of the demand at the root node (n = 1) is ξ1 = 65. At each period t = 0, . . . , T − 1,

the maximal production capacity of the factory is 567 units and the machinery start-up

cost is kt = 15 for the two-stage problem or kt = 75 for the six-stage one. The initial

inventory is 10, the final value of the inventory is 2 per unit, and the values of production

price ct, selling price st, inventory holding cost ht and procurement cost bt at time period

t are presented in Table 3 (data for t > 1 are disregarded for the two-stage problem).

t 0 1 2 3 4 5 t 0 1 2 3 4 5
ct 3.5 3.6 2.3 2.8 3 - ht 2 1.9 2.1 2.2 2.1 -
st - 10.7 10.5 10.9 10.6 10 bt - 4 3.1 4.9 7 7.5

Table 3: Production price ct, selling price st, holding cost ht from time t to time t + 1, and
procurement cost bt for extra stock from another retailer at time t.

4.2 Computation of lower bounds

This section presents computations of LBs on a DRO version of the production problem

described above, considering different ambiguity sets using the ϕ-divergences VD and

the modified χ2 distance, and the Wasserstein distance. In addition to dissections of

the scenario tree formed either by disjoint partitions or fixed scenarios, we also consider

three possible partition strategies to form subgroups (see [25]): sequential, similar, and
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different. The strategy sequential follows the structure of the scenario tree, so that the

first scenarios are assigned to the first group and so on until last scenarios are assigned to

the last group. Under the strategy similar we assign scenarios having the largest values

of the uncertain parameter to the first group; then, scenarios having the second largest

values of the uncertain parameter are assigned to the second group, and so on. Under

this strategy the dispersion within each group is low while the dispersion among groups

is high. Under the strategy different, we assign the scenario with the largest uncertain

parameter to the first group, the scenario with the second largest uncertain parameter to

the second group, and so on. Under this partition strategy, the dispersion within each

group is high.

We first study the two-stage variant of the production problem to examine in detail

the three partition strategies sequential, similar, and different. Then, we consider the

multistage variant to investigate the proposed bounds in the multistage setting. For both

variants, we obtain results using Proposition 6 (first-level LB) by setting the intra-group

radii ρ̄g = ρ̄max, g ∈ [ml], selecting the inter-groups radius ¯̄ρ to be either the smallest

value (0), a middle value, or the largest value (i.e., radius ρ1 of the original problem), and

choosing the combinations (¯̄ρ, ρ̄max) satisfying the corresponding criteria from Proposition

1, Proposition 2, and Proposition 5 at equality. For the multistage variant, we adopt a

similar setup for using Proposition 7 (multi-level LB), with further details provided in

Section 4.2.2. Note that for modified χ2 distance, we use its typical form presented in

Table 2, not its equivalent Cressie-Read form. In experiments where the worst scenario is

fixed in all subgroups, the cardinality l of each subproblem is chosen to have the number

of subgroups ml = |ΩT |−1
l−1 to be an integer. The worst scenario is defined as the one with

maximal objective function of single-scenario problems, i.e., ω ∈ argmax{z
∗(1)
ωi : ωi ∈ Ω}.

When presenting the results, to measure the quality of the obtained LBs, an optimality

gap information is computed as %GAP := LB−z∗

|z∗| · 100. The problems derived from

our case study were solved under AMPL environment using the CPLEX solver 12.8.0.0.

Computations have been performed on a 64-bit machine with 8 GB of RAM and a 1.8

GHz Intel i7 processor.

4.2.1 Two-stage case

LBs obtained under the subgroup configurations sequential, similar, and different de-

scribed above and considering disjoint partitions or dissections with fixed scenarios are
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depicted in Figure 3 and Figure 4. The ambiguity sets are built via VD or modi-

fied χ2 with radius ρ = 0.10 and Wasserstein distance with radius ρ = 1.50. These

radii are selected so that the optimal objective function values of all DROs are similar

(−446.50, −445.21, −445.43 for VD, mod. χ2 and Wasserstein distance, respectively) to

enable a fair comparison. Figure 3a and Figure 3b plot the best performing LBs for dis-

joint and fixed dissections, respectively, and Figure 3c depicts the best intra-group radii

ρ̄max that lead to these best performing LBs as the cardinality l and the number ml of

subgroups vary for the two-stage production problem with VD (top row) and Wasserstein

distance (bottom row). Figure 4 plots the same for modified χ2 distance, except that, by

Proposition 1, we only consider disjoint partitions.

Sequential

Similar

Different

Sequential

Similar

Different

(a) Best LB – Disjoint

Sequential

Similar

Different

Sequential

Similar

Different

(b) Best LB – Fixed

Sequential

Similar

Different

Sequential

Similar

Different

Sequential

Similar

Different

Sequential

Similar

Different

(c) Best ρ̄max

Figure 3: Best LBs for the two-stage production problem obtained under different strategies and
for disjoint (Figure 3a) or worst-scenario fixed (Figure 3b) partitions. Figure 3c compares the best
ρ̄max for disjoint (above) or worst-scenario fixed partitions (below). Top row: VD. Bottom row:
Wasserstein distance.

Examining the best performing LBs, we make the following observations. First, among

the three partition strategies, the strategy similar generally records the poorest perfor-

mances, and the strategies different and sequential behave similarly and often lead to sig-
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Sequential

Similar

Different

(a) Best LB – Disjoint

Sequential

Similar

Different

(b) Best ρ̄max

Figure 4: Best LBs for the two-stage production problem obtained under different strategies
(Figure 4a), and the ρ̄max values that lead to these best performing LBs (Figure 4b) for disjoint
partitions with mod. χ2 distance.

nificantly better LBs than the strategy similar. For our problem, the strategy sequential

also increases the dispersion within each subgroup, so it performs like different; however,

this may not be true for all problems. Second, as the size of subgroups l increases, better

LBs are obtained. Note that as l increases, the dispersion within each subgroup increases

regardless of the partition strategy chosen. Third, adding the worst scenario typically im-

proves the LBs for VD and Wasserstein distance. Overall, opting for larger cardinalities

of subgroups with high levels of intra-group dispersion and when possible strengthening

the subgroups with the worst scenario raises the quality of the obtained LBs.

With respect to the (¯̄ρ, ρ̄max) combinations that led to the best performing LBs, we

observe that when subgroups are constructed such that the dispersion within each of them

is high yet the dispersion among them is low (as in strategy different and larger values

of cardinality l), then more weight should be assigned to the intra-group radius ρ̄max at

the expense of the inter-groups radius ¯̄ρ. Contrariwise, when collections are built such

that the dispersion within subgroups is low but the dispersion among them is high (as

in strategy similar and low values of cardinality l), then more weight should be assigned

to the inter-groups radius ¯̄ρ at the expense of the intra-group radius ρ̄max. Since the

considered problems are risk-averse, fixing the worst scenario typically strengthens the

subgroups. Therefore, to utilize the strengthened subgroups for dissections with worst

scenarios fixed, it is favorable to assign more weight to the intra-group radius ρ̄max.

These results imply that increasing the diversity of the scenarios within the subgroups

(either by choosing different or sequential strategies or by increasing the cardinality l) or
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strengthening the subgroups by incorporating the worst scenarios improves the LBs. Note

that increasing the size of the subgroups l comes at a computational cost because larger

problems need to be solved. We will investigate computation time, which poses a heavier

burden on multistage problems, in the next section.

4.2.2 Multistage case

For the multistage case we restrict our attention to the strategy sequential that, for the

two-stage case, proved to generate sharp LBs with no undue effort. We choose instead

not to implement neither the strategy similar as leading to the poorest results, nor the

strategy different as requiring additional effort on scenario listing with no remarkable

improvements. To form the ambiguity sets, we use the same value of the radii ρt over

all stages t ∈ T \ {0}, and set ρt = 0.50 for VD or modified χ2 distance and ρt = 4 for

Wasserstein distance. Again, these radii are selected so that the optimal objective values

of all multistage DROs are similar. We compute bounds for ten different realizations of

the scenario tree, and present averages over these multiple randomly generated instances.

In the subsequent tables, for each cardinality l, the best %GAPs are highlighted in bold.

Variation distance case. Table 4 lists the LBs obtained by applying Proposition 6 (first-

level LB) using VD. We choose subgroups Ω(l)
g to be disjoint with l = 1, 3, 9, 27, 54, 108.

The instance l = 540 refers to the original problem, which we report as a benchmark. The

overall problem, i.e., the full tree with 540 scenarios, is solved on average within 15.235

seconds.

From numerical results of Table 4 obtained considering disjoint subgroups, we observe

that the tightest bounds are achieved for greater values of ¯̄ρ and l, at the cost of increasing

CPU running times. Indeed, overall, the best calculated LB on average is given at ¯̄ρ = 0.50,

ρ̄max = 0.00 when l = 108 and ml = 5, while the worst LB on average is given at ¯̄ρ = 0.00,

ρ̄max = 0.50 when l = 1 and ml = 540, which is the partition into atoms. Results show

monotonic increases in average CPU time per subproblem with both the dimension of each

subproblem (cardinality l) and the values of inter-group radius ¯̄ρ. These results also show

that very high-quality LBs can be obtained, saving considerable time with respect to the

original DRO problem. For example, when l = 54 an average %GAP = −0.83% can be

achieved with about 4 times faster overall computation time.

Table 4 shows that the best (¯̄ρ, ρ̄max) combinations always assign ρ̄max = 0 regardless

of the size of the subgroups l. At first glance, this seems to contradict the two-stage
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results from Section 4.2.1. However, recall that in the multistage setting, the scenario tree

has 5 scenarios in the first stage, and each first-stage node has 4 children, followed by

each subsequent stage-t node for t = 3, 4, 5 having 3 children. Therefore, for every case

of “l” reported in Table 4, all dissections have only one scenario at the first stage, where

the first-level LB is applied. So, all cases in Table 4 essentially correspond to cardinality

“l = 1” in the two-stage setting. Furthermore, with only 1 scenario present, there is not

really an ambiguity set of distributions, and so it is best not to waste any of the robustness

budget ρ1 on the intra-group radius ρ̄max. Thus, in this case, the best LBs are obtained

by setting (¯̄ρ, ρ̄max) = (ρ1, 0).

l ml ¯̄ρ ρ̄max
Avg. CPU

time overall
Avg. CPU

time/subpr. Avg. %GAP

540 1 0.00 0.50 15.235 15.235 -

108 5
0.00 0.50 4.748 0.950 −1.80%
0.25 0.20 5.514 1.103 −0.96%
0.50 0.00 6.114 1.223 −0.28%

54 10
0.00 0.50 3.178 0.318 −4.82%
0.25 0.20 3.482 0.348 −2.64%
0.50 0.00 3.623 0.362 −0.83%

27 20
0.00 0.50 1.975 0.099 −7.00%
0.25 0.20 2.290 0.114 −3.89%
0.50 0.00 2.575 0.129 −1.70%

l ml ¯̄ρ ρ̄max
Avg. CPU

time overall
Avg. CPU

time/subpr. Avg. %GAP

9 60
0.00 0.50 3.355 0.056 −12.42%
0.25 0.20 3.562 0.059 −7.67%
0.50 0.00 3.800 0.063 −3.96%

3 180
0.00 0.50 8.631 0.048 −17.56%
0.25 0.20 10.351 0.058 −11.45%
0.50 0.00 12.849 0.071 −6.78%

1 540
0.00 0.50 22.224 0.041 −21.32%
0.25 0.20 24.501 0.045 −14.25%
0.50 0.00 26.785 0.050 −8.71%

Table 4: Average %GAPs of LBs with disjoint subsets obtained by Proposition 6 (first-level LB)
to the multistage inventory problem with VD.

Table 5 provides detailed results obtained by keeping the worst scenario fixed in all

subsets Ω(l)
g . VD focuses on a convex combination of CVaR and the worst case [16, 34].

So when the worst-case scenario is fixed at each subgroup, as we saw in Section 4.2.1, we

may get better LBs. Results show that fixing the worst scenario in the multistage setting

improves the quality of the LB for those partitions with small cardinalities l and greater

values of intra-group radius ρ̄max (see for instance l = 1, 3, 9 in Table 4 and l = 2, 8 in Table

5). As already observed for the two-stage case, when the worst scenario is fixed, although

the tightest bounds are still obtained for greater values of l, tighter bounds are obtained by

setting progressively smaller value of inter-groups radius ¯̄ρ and larger intra-group radius

ρ̄max (see, for instance, l = 50 and l = 78 in Table 5). Note that the subgroups in the fixed

dissections reported in Table 5, unlike the ones reported in Table 4, can have multiple

scenarios at stage t = 1.

Modified χ2 case. In Table 6, we construct collections of LBs applying Proposition 6

(first-level LB) using modified χ2 distance and disjoint subsets Ω(l)
g . For all 10 instances,

the overall problem, i.e., the full tree with 540 scenarios, was unsolvable within a time

limit of 86400 CPU seconds (or 24 hours) and values of percentage deviations (%GAP )
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l ml ¯̄ρ ρ̄max
Avg. CPU

time overall
Avg. CPU

time/subpr. Avg. %GAP

78 7
0.00 0.50 5.149 0.736 −1.35%
0.25 0.20 5.381 0.769 −1.58%
0.50 0.00 5.630 0.804 −1.93%

50 11
0.00 0.50 4.573 0.416 −2.52%
0.25 0.20 4.746 0.431 −2.46%
0.50 0.00 4.945 0.450 −2.47%

l ml ¯̄ρ ρ̄max
Avg. CPU

time overall
Avg. CPU

time/subpr. Avg. %GAP

12 49
0.00 0.50 4.524 0.092 −6.44%
0.25 0.20 4.718 0.096 −5.49%
0.50 0.00 4.988 0.102 −4.12%

8 77
0.00 0.50 6.818 0.089 −7.75%
0.25 0.20 7.186 0.093 −6.53%
0.50 0.00 7.737 0.100 −4.71%

2 539
0.00 0.50 32.560 0.060 −13.10%
0.25 0.20 35.682 0.066 −11.10%
0.50 0.00 37.304 0.069 −8.01%

Table 5: Average %GAPs of LBs obtained by keeping the worst scenario fixed in all subsets and
applying Proposition 6 (first-level LB) to the multistage inventory problem with VD.

with respect to the optimal value could not be explicitly computed. Therefore, to measure

the quality of the obtained LB, a new optimality gap is computed as follows: %GAP ∗ :=
LB−LB∗

|LB∗| · 100, with LB∗ representing the best observed LB for that instance. Being a

problem too large to be solved exactly within the prespecified time limit, the bounding

methodology proposed in this paper is particularly helpful. It is worth noting that when

l = 108 the solver also could not solve the subproblems within the time limit, and therefore

l = 108 results are not reported for ease of presentation.

Once again, all dissections reported in Table 6 have only one scenario at stage t = 1.

Therefore, the best strategy to get tighter LBs is to set the cardinality l and the inter-

groups radius ¯̄ρ as large as possible. Indeed, overall, the best calculated LB is obtained

at ¯̄ρ = 0.50, ρ̄max = 0.00 when l = 54 and ml = 10, although it requires considerable

effort in terms of CPU time (24482.303 sec.s overall on average). A drastic reduction

in computation time can be obtained by using smaller subgroups of cardinality l = 27

without sacrificing the quality of the LB too much. By setting ¯̄ρ = 0.50, ρ̄max = 0.00,

a LB within 2.11% of the best LB is obtained in approximately 24.8 times faster overall

computation time. On the other hand, the worst LB is obtained at ¯̄ρ = 0.00, ρ̄max = 0.50

when l = 1 and ml = 540 in just 208.287 average CPU seconds.

l ml ¯̄ρ ρ̄max
Avg. CPU

time overall
Avg. CPU

time/subpr. Avg. %GAP ∗

540 1 0.00 0.50 - - -

54 10
0.00 0.50 24015.705 2401.571 −4.54%
0.25 0.20 24221.180 2422.118 −1.29%
0.50 0.00 24482.303 2448.230 -

27 20
0.00 0.50 930.780 46.539 −7.16%
0.25 0.20 964.556 48.228 −3.47%
0.50 0.00 986.520 49.326 −2.11%

l ml ¯̄ρ ρ̄max
Avg. CPU

time overall
Avg. CPU

time/subpr. Avg. %GAP ∗

9 60
0.00 0.50 115.022 1.917 −13.23%
0.25 0.20 128.926 2.149 −7.85%
0.50 0.00 140.064 2.334 −5.84%

3 180
0.00 0.50 130.976 0.728 −19.07%
0.25 0.20 158.267 0.879 −12.63%
0.50 0.00 174.913 0.972 −10.20%

1 540
0.00 0.50 208.287 0.386 −23.36%
0.25 0.20 231.623 0.429 −16.32%
0.50 0.00 243.876 0.452 −13.66%

Table 6: Average %GAPs of LBs with disjoint subsets obtained by Proposition 6 (first-level LB)
to the multistage inventory problem with mod. χ2 (time limit = 86400 CPU sec.s).

We now apply the bounding scheme proposed in Proposition 7 (multi-level LB) to the

multistage inventory problem with modified χ2 distance. The results are reported in Table
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l ml τ { ¯̄ρt}τ−1
t=1 {ρ̄t,max}τ−1

t=1
¯̄ρτ ρ̄τ,max

Avg. CPU
time overall

Avg. CPU
time/subpr. Avg. %GAP ∗

540 1 - - - - - - - -

54 10 2 0.50 0.00
0.00 0.50 27940.491 2794.049 −2.85%
0.25 0.20 28316.308 2831.631 −0.56%
0.50 0.00 28927.738 2892.774 −0.92%

27 20 2 0.50 0.00
0.00 0.50 1024.180 51.209 −5.39%
0.25 0.20 1050.987 52.549 −2.01%
0.50 0.00 1081.875 54.094 −0.77%

9 60 3 0.50 0.00
0.00 0.50 143.759 2.396 −6.61%
0.25 0.20 148.468 2.474 −2.99%
0.50 0.00 152.087 2.535 −1.64%

3 180 4 0.50 0.00
0.00 0.50 160.423 0.891 −7.20%
0.25 0.20 162.355 0.902 −4.04%
0.50 0.00 166.230 0.923 −2.88%

1 540 5 0.50 0.00
0.00 0.50 246.403 0.456 −7.00%
0.25 0.20 252.071 0.467 −4.46%
0.50 0.00 256.903 0.476 −3.53%

Table 7: Average %GAPs of LBs with disjoint subsets obtained by Proposition 7 (multi-level LB)
to the multistage inventory problem with mod. χ2 (time limit = 86400 CPU sec.s).

7. Due to the way the scenario tree is dissected for the multi-level LB, for t = 1, . . . , τ − 1,

all stage-t ambiguity sets contain only one scenario in all subgroups at any τ > 1 and any

cardinality l. Therefore, the best strategy to get tighter LBs is to set inter-groups radii
¯̄ρt = ρt for all t = 1, . . . , τ − 1 (which are therefore the only results we report, for ease of

exposition). We allow, instead, changes in inter-groups radius ¯̄ρτ (and hence intra-group

radius ρ̄τ,max) at stage τ , taking values 0.00, 0.25 and 0.50. When l = 54, there are 2

scenarios present in all subgroups at stage τ = 2 and all other cases reported in Table 7

contain a single scenario at stage τ . Overall, the best LB is obtained by setting ¯̄ρ2 = 0.25

and ρ̄2,max = 0.20 when l = 54, ml = 10 and τ = 2.

Comparing these results with bounds of Table 6, we conclude that the multi-level

bounding technique becomes particularly useful by allowing to get tighter LBs as partitions

progressively contain smaller-dimensional subproblems. For instance, at lower values of

l, better LBs are obtained with similar overall computation times. This is because with

the first-level LB, regardless of the size l of the subgroups, the only two parameters that

can be tuned are ¯̄ρ and ρ̄max. On the other hand, with the multi-level LB the number of

robustness parameters that can be adjusted gradually increases with the stage τ—namely,
¯̄ρt and ρ̄t,max for t = 1, . . . , τ . Therefore, as τ grows (i.e., as l decreases, being the scenario

tree dissected further) the degree of freedom of the multi-level bounding scheme increases

too and there are more opportunities to strengthen the bounds in a nested fashion. This

supports the evidence that sharper LBs are obtained under the multi-level scheme for

dissections with smaller cardinalities.

Wasserstein distance case. In Table 8, we construct collections of LBs by applying

Proposition 7 (multi-level LB) for the Wasserstein distance. Given τ , the last stage where
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the tree is dissected, according to Proposition 7 we set inter-groups radii ¯̄ρt = ρt, t =

1, . . . , τ − 1 and choose the combinations (¯̄ρτ , ρ̄τ,max) with ¯̄ρτ ∈ {0, 2, 4} and the intra-

group radius ρ̄τ,max = ρτ − ¯̄ρτ . For t = τ +1, . . . , T we set ρ̄t,g = ρt, g ∈ [ml]. When τ = 1,

we work directly with (¯̄ρ1, ρ̄1,max). Note that the first-level and multi-level LB schemes

coincide when the decision tree is dissected up to stage τ = 1 according to Definition 1

(see Table 8 with τ = 1). The overall problem, i.e., the full tree with 540 scenarios, is

solved on average within 93.492 seconds.

From the results in Table 8, overall, the best calculated LB on average is obtained by

setting ¯̄ρ1 = 4, ρ̄1,max = 0 when l = 108 and ml = 5. On the contrary, the worst LB

on average is given at ¯̄ρ5 = 0, ρ̄5,max = 4 when l = 1 and ml = 540. Results still show

monotonic increases in average CPU time per subproblem with both the dimension l of

each subproblem and the values of ¯̄ρτ for this problem.

l ml τ { ¯̄ρt}τ−1
t=1 {ρ̄t,max}τ−1

t=1
¯̄ρτ ρ̄τ,max

Avg. CPU
time overall

Avg. CPU
time/subpr. Avg. %GAP

540 1 - - - - - 93.492 93.492 -

108 5 1 - -
0 4 10.222 2.044 −3.20%
2 2 10.489 2.098 −1.21%
4 0 10.801 2.160 −0.18%

54 10 2 4 0
0 4 6.290 0.629 −1.35%
2 2 6.625 0.662 −1.72%
4 0 7.019 0.702 −2.27%

27 20 2 4 0
0 4 5.351 0.268 −4.14%
2 2 5.655 0.283 −2.53%
4 0 5.997 0.300 −1.03%

9 60 3 4 0
0 4 9.067 0.151 −5.63%
2 2 9.684 0.161 −4.05%
4 0 10.234 0.171 −2.49%

3 180 4 4 0
0 4 11.788 0.065 −7.08%
2 2 12.237 0.068 −5.78%
4 0 12.679 0.070 −4.51%

1 540 5 4 0
0 4 28.427 0.053 −7.69%
2 2 30.241 0.056 −6.77%
4 0 31.191 0.058 −5.85%

Table 8: Average %GAPs of LBs with disjoint subsets obtained by Proposition 7 (multi-level LB)
to the multistage inventory problem with Wasserstein distance.

4.2.3 Lower bounds benchmarking

We now benchmark our LBs with other approaches available. We consider the following
relation applied to a time-consistent dynamic risk measure given in (22)

η0 + RF1|F0
ρ1

(
η1 + RF2|F1

ρ2

(
. . . + RFT |FT −1

ρT (ηT )
))

(25)

≥ η0 + RF1|F0
ρ1

(
η1 + RF2|F1

ρ2

(
. . . + RFi−1|Fi−2

ρi−1

(
ηi−1 + EQi|ξi−1 (. . . + EQT |ξT −1 (ηT ))

)))
with i ∈ T \{0}. Relation (25) is obtained by noting that expectation with respect to the

nominal distribution is always less than or equal to the maximization over an ambiguity
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set of distributions that contains that nominal distribution, and a recursive application of

the monotonicity property of coherent risk measures (see [42]).

We report in Table 9 the %GAPs obtained by applying relation (25) to the multistage

VD case, where for every instance the %GAP is computed with respect to the optimal

value of the full problem. Comparing these results with the ones proposed in our paper,

which appear in Table 4 and Table 5, we observe that our bounding techniques enable

strengthening even the sharpest LB obtained in Table 9 (i.e., Avg. %GAP = −0.28%

vs. Avg. %GAP = −2.54%) with less computational effort (6.114 Avg. CPU seconds

vs. 13.517). The same conclusions can be drawn for the Wasserstein distance case:

Avg. %GAP = −0.18% obtained within 10.801 Avg. CPU seconds with the proposed

methods vs. Avg. %GAP = −1.93% obtained within 85.488 seconds on average using

(25). For the modified χ2 case, inequality (25) allows us to compute LBs only when i = 1;

for all the other instances, we cannot solve any of the problems to optimality within a

time frame of 86400 CPU seconds. As before, Avg. %GAP ∗ of the incumbent objective

function are computed with respect to the best LB obtained overall. Once again, our

methods prove to be very effective in computing sharper bounds in reasonable time.

Variation Distance Modified χ2 Wasserstein Distance
Avg. CPU time Avg. %GAP Avg. CPU time Avg. %GAP ∗ Avg. CPU time Avg. %GAP

i = 5 13.517 −2.54% 86400 - 85.488 −1.93%
i = 4 10.418 −5.58% 86400 - 12.465 −4.59%
i = 3 8.989 −9.34% 86400 - 8.955 −7.88%
i = 2 8.294 −13.16% 86400 - 8.538 −10.68%
i = 1 8.132 −14.89% 8.132 −16.82% 8.132 −13.49%

Table 9: Average %GAPs of LBs obtained by inequality (25) for various values of i ∈ T \ {0} to
the multistage inventory problem with VD, mod. χ2, and Wasserstein distance.

4.3 Computation of upper bounds

This section presents computations of UBs on the multistage production problem under

the methodology described in Section 3.6. Results are reported in Table 10. Percentage

gaps have been calculated as %GAP := UB−z∗

|z∗| · 100, and for the modified χ2 distance

as %GAP ∗ := UB−LB∗

|LB∗| · 100. These values are particularly insightful for the modified χ2

distance case since the problem was too large to be solved exactly.
Variation Distance Modified χ2 Wasserstein Distance

Avg. CPU time Avg. %GAP Avg. CPU time Avg. %GAP ∗ Avg. CPU time Avg. %GAP

t = 0 4613.639 0.01% 86400 - 44132.710 0.01%
t = 1 2908.818 0.20% 86400 - 34063.400 0.23%
t = 2 1245.456 1.20% 86400 - 9666.558 0.96%
t = 3 424.866 2.59% 68849.500 2.60% 532.211 2.73%
t = 4 10.541 5.53% 130.324 5.55% 10.530 5.64%

Table 10: UBs for multistage inventory problem with VD, mod. χ2 and Wasserstein distance.
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For VD and Wasserstein distance, all the UBs are obtained within the time limit and

show improvements by fixing solutions at earlier stages only, although at larger computa-

tional costs. For the modified χ2 case, the only UBs we were able to compute are UB3

(within 68849.500 CPU seconds on average) and UB4 (within 130.324 CPU seconds on

average). Although UB3 performs better than UB4, it requires a considerably larger

computational effort. All the other UBs (UBt, t = 0, 1, 2) exceeded the set time limit

(86400 CPU seconds) because the number of fixed variables was not enough to reduce the

dimension of the scenario tree to a computationally tractable size. The difference between

the best obtained UB and LBs (2.60% of the LB on average) gives information about the

range where we should expect to find the total cost of the full DRO problem. Results

confirm the effectiveness of the proposed LBs for this case.

4.4 Discussion

Some insights gained from the numerical experiments are as follows. Generally, increasing

the dispersion within subgroups raises the quality of the LBs, and the greater the number

of scenarios per subproblem, the sharper the obtained LBs.

The stages where the bounding procedure is applied play an important role. For the

first-level LB, which pertains to both two-stage and multistage DRO, the LB procedure

is applied at stage t = 1, and for the multi-level LB, at stages t = 1, . . . , τ . When there is

only a single scenario present in the subgroups at the stage where the bounding procedure

is applied, then the best LBs are obtained by setting the intra-group radius ρ̄max = 0 and

using the largest possible value of inter-groups radius ¯̄ρ at that stage (see, e.g., Figure

3c and Figure 4b when l = 1, Table 4, Table 6, and Tables 7-8 when l = 1, 3, 9, 27, 108).

This is because, with a single scenario, increasing ρ̄max has no effect on the subgroup

problem but takes away from the value of ¯̄ρ. For the multi-level LB, by Definition 1, this

means that for all stages before the last stage of dissection, i.e., for all t = 1, . . . , τ − 1,

it is best to set (¯̄ρ, ρ̄t,max) = (ρt, 0). Otherwise, when there are multiple scenarios at

stage t = 1 for the first-level LB or stage t = τ for the multi-level LB, as the dispersion

within subgroups increases and the dispersion among subgroups decreases (e.g., when

using different or sequential strategies or when there are smaller number of subgroups to

be convoluted), then progressively more importance should be assigned to the intra-group

radius ρ̄max at the expense of the inter-groups radius ¯̄ρ (see, e.g., Figure 3c and Figure

4b with these strategies and when l is relatively large, Table 5 when l = 50, 78, and Table
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7-8 when l = 54). Contrariwise, when there is less dispersion within subgroups and more

dispersion among subgroups (e.g., when using similar strategy or when there are relatively

large number of subgroups to be convoluted), then more importance should be assigned

to inter-groups radius ¯̄ρ at the expense of the intra-group radius ρ̄max (see, e.g., Figure 3c

and Figure 4b with similar strategy and/or when l is relatively small, and Table 5 when

l = 2, 8, 12).

For dissections with smaller cardinality l, the multi-level bounding scheme described in

Proposition 7 appears to be more effective than the first-level bounding scheme described

in Proposition 6, which is instead more useful when the number of scenarios in each

subgroup is larger. At smaller cardinalities l (hence larger values of τ), the multi-level

scheme provides more opportunities to improve the LB, instead of only once as in the

first-level scheme.

We observe some gains in fixing the worst scenario in the two-stage case using VD

and Wasserstein distance and in the multistage case using VD at small cardinalities l and

higher values of intra-group radius ρ̄max, with a slight increase in computation time due

to having slightly larger subproblems to solve. This strategy can be useful, e.g., when

using measures of similarity that can pop scenarios [3]. Measures of similarity that can

pop scenarios (like VD, CR divergence with θ < 1, θ → 0, and Wassertein distance) can

make the worst-case scenarios to have positive probabilities even if they have a nominal

probability of zero. Thus, in large-scale versions of such problems, it may be possible to

obtain better LBs by fixing the worst-case scenarios. Finally, even though we empirically

observe monotonicity of LBs in the subgroups’ cardinality l for fixed values of (¯̄ρ, ρ̄max),

we found cases (not shown here for brevity) where monotonicity in l is not satisfied. This

is in contrast to the risk-neutral stochastic optimization setting, where the monotonicity

of the LBs in l is guaranteed [21].

5 Conclusions

In this paper new LB criteria for multistage mixed-integer DRO problems—formed by

creating ambiguity sets associated with various commonly used ϕ-divergences and the

Wasserstein distance on a finite scenario tree—are derived. Conditions on the way the

scenario tree is dissected and the convolutions are formed to ensure a LB on the optimal

value are established. The scenario tree can be dissected either by disjoint partitions or by
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fixing certain scenarios in each subgroup, except for CR power divergences with θ < 0 and

θ > 1 and χ-divergence of order a > 1, for which the results are established under disjoint

partitions. Two ways to implement these results in the multistage setting are devised: first-

level and multi-level. A comparison with classical UBs and an alternative LB scheme shows

the effectiveness of the proposed LB approach. Our results do not require any structural

properties, and thus they are applicable to a broad class of problems. Numerical results

on a multistage production problem show that high-quality LBs can be obtained with a

small computation time using the proposed bounding methodology.

Future work includes combining the proposed bounds with sampling-based bounds

(e.g., [32]) or using them within solution algorithms (e.g., [26]). Devising new hybrid

sampling-based algorithms that could utilize the proposed bounds to be used within SDDP

type algorithms (e.g., [10, 30]) merit further research. It would also be interesting to inves-

tigate the concept of ineffective and effective scenarios, defined in [34, 33], in this context.

Ineffective scenarios can be removed from the problem without altering the optimal value.

Therefore, if such scenarios can be identified, these might significantly speed up the pro-

posed bounds. Effective scenarios might be used as fixed scenarios on each subgroup

to improve the bounds. Another area of future research includes identifying an optimal

method for partitioning a given scenario tree (see [39]) and create optimized chains of LBs.

Finally, it should be highlighted that the proposed approach has the important advantage

of dividing a given problem into subproblems, the solution of which are independent from

one another and might be easily parallelized. Such parallel implementations might signif-

icantly decrease running times and therefore merit further computational research.
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[25] A. İ. Mahmutoğulları, Ö. Çavuş, and M. S. Aktürk. Bounds on risk-averse mixed-

integer multi-stage stochastic programming problems with mean-CVaR. Eur. J. Oper.

Res., 266(2):595–608, 2018.
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A. Ruszczyński and A. Shapiro, editors, Stochastic Programming, volume 10 of Hand-

books in Operations Research and Management Science, pages 637–677. Elsevier, 2003.

[46] X. Yu and S. Shen. Multistage distributionally robust mixed-integer programming

with decision-dependent moment-based ambiguity sets. Math. Program., 2020.

[47] W. Zhang, H. Rahimian, and G. Bayraksan. Decomposition algorithms for risk-averse

multistage stochastic programs with application to water allocation under uncertainty.

INFORMS J. Comput., 28(3):385–404, 2016.

A Proofs

A.1 Proof of LB criterion for Kullback-Leibler divergence (Part of Propo-

sition 1)

We prove the LB criteria for Kullback-Leibler (KL) divergence in Proposition 1 by directly

working with the ambiguity set of KL divergence.

Proof. Let P ′ ∈ P̃ϕKL(¯̄ρ,ρ̄). Then there exists ¯̄P ∈ P̃G
ϕKL(¯̄ρ) and P̄ ∈ P̃F |G

ϕKL(ρ̄) such that∑
g∈[ml]

[
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g log
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· ρ̄max = ¯̄ρ + ρ̄max

where the first inequality (on the third line) follows from the log sum inequality applied

to fixed scenarios ωi ∈ Ωf and the last set of inequalities follow from the facts that

∆ϕKL
(P̄ (l)

g , Q
(l)
g ) ≤ ρ̄g for all subgroups g ∈ [ml], the definition of ρ̄max, ∆ϕKL

( ¯̄P, ¯̄Q) ≤ ¯̄ρ,

and
∑

ωi∈Ω(l)
g

(p̄ωi)
(l)
g =

∑
g∈[ml]

¯̄p(l)
g = 1. Therefore, if ¯̄ρ + ρ̄max ≤ ρ, the result follows.

A.2 Proof of Proposition 2 (LB criterion for variation distance)

Proof. Let P ′∈P̃ϕv(¯̄ρ,ρ̄). Then there exists ¯̄P∈P̃G
ϕv(¯̄ρ) and P̄∈P̃F |G

ϕv(ρ̄) such that
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≤ ¯̄ρ · ρ̄max + ¯̄ρ + ρ̄max,

where the equality on the second line above follows from the way p′
ωi,g, qωi,g for fixed

and p′
ωi

, qωi for non-fixed scenarios are defined in set (4) and in Sections 3.1 and 3.2.

The inequality on the third line follows from, for any numbers a, b, c, d, that we have

|ac − bd| = |(a − b)(c − d) + (a − b)d + b(c − d)| ≤ |(a − b)||(c − d)| + |(a − b)d| + |b(c − d)|.

The final set of inequalities follow from the facts that ∆ϕv (P̄ (l)
g , Q

(l)
g ) ≤ ρ̄g for all subgroups

g ∈ [ml], the definition of ρ̄max, ∆ϕv ( ¯̄P, ¯̄Q) ≤ ¯̄ρ, and
∑

ωi∈Ω(l)
g

(qωi)
(l)
g =

∑
g∈[ml] π

(l)
g = 1.

Therefore, if ¯̄ρ · ρ̄max + ¯̄ρ + ρ̄max ≤ ρ the result follows.

44



A.3 Sketch of Proof of Proposition 3 (LB criterion for J-divergence)

J-divergence is the sum of KL divergence and Burg entropy [4], and Burg entropy is similar

to the KL divergence with qωi and pωi exchanged (see Table 1). Therefore, the proof of

Burg entropy follows by first splitting the J-divergence as sum of KL divergence and Burg

entropy and then following along similar lines as the proof for KL divergence in Appendix

A.1. Hence, it is skipped for brevity.

A.4 Proof of Proposition 4 (LB criterion for χ-divergence of a > 1)

Proof. Set x
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g = 1− ¯̄p(l)

g

π
(l)
g
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for all subgroups g ∈ [ml]. Since the scenario tree Ω is dissected using disjoint partitions

(i.e., Ωf = ∅), we have qωi = π
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where the first inequality (on the third line) follows from Minkowski inequality and the

last set of inequalities follow from the facts that ∆ϕa
χ
( ¯̄P, ¯̄Q) ≤ ¯̄ρ and ∆ϕa

χ
(P̄ (l)

g , Q
(l)
g ) ≤ ρ̄g

for all subgroups g ∈ [ml], the definition of ρ̄max, and
∑

ωi∈Ω(l)
g
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(l)
g =

∑
g∈[ml] π

(l)
g = 1.

Therefore, if
[( ¯̄ρ) 1
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1
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( ¯̄ρ · ρ̄max
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]a

≤ ρ the result follows.
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