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MODEL-BASED CLUSTERING WITH SPARSE
MATRIX MIXTURE MODELS

Andrea Cappozzo 1, Alessandro Casa2 and Michael Fop2

1 Deparment of Mathematics, Politecnico di Milano
(e-mail: andrea.cappozzo@polimi.it)
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ABSTRACT: In recent years we are witnessing to an increased attention towards meth-
ods for clustering matrix-valued data. In this framework, matrix Gaussian mixture
models constitute a natural extension of the model-based clustering strategies. Regret-
tably, the overparametrization issues, already affecting the vector-valued framework
in high-dimensional scenarios, are even more troublesome for matrix mixtures. In
this work we introduce a sparse model-based clustering procedure conceived for the
matrix-variate context. We introduce a penalized estimation scheme which, by shrink-
ing some of the parameters towards zero, produces parsimonious solutions when the
dimensions increase. Moreover it allows cluster-wise sparsity, possibly easing the
interpretation and providing richer insights on the analyzed dataset.

KEYWORDS: model-based clustering, penalized likelihood, sparse matrix estimation,
EM-algorithm

1 Introduction

Model-based clustering represents a well established framework to cluster mul-
tivariate data. When dealing with continuous data, the generative mechanism
is routinely described by means of Gaussian Mixture Models (GMMs). Par-
titions are obtained by exploiting the one-to-one correspondence between the
groups and the components of the mixture. This approach has been used in
many different applications; nonetheless GMMs tend to be over-parameterized
in high-dimensional settings where their usefulness might be jeopardized.

This problem complicates even further in three-way data scenarios, where
multiple variables are measured on different occasions for the considered units.
Here matrix-variate distributions have often been used and embedded in the
mixtures framework, thus providing a valid solution when partitions of matri-
ces are required (Viroli, 2011). In spite of its strenght points, this approach

is dramatically over-parameterized even in moderate dimensions. Therefore,
we propose a penalized model-based clustering strategy in the matrix-variate
framework. Our approach reduces the number of parameters to be estimated,
by shrinking some of them towards zero, and possibly leads to a gain in terms
of interpretability. The rest of the paper is organized as follows. In Section 2
we introduce matrix Gaussian mixture models (MGMMs) and we outline our
proposal. An application to real world data is reported in Section 3 alongside
with some concluding remarks and possible future research directions.

2 Penalized matrix-variate mixture model

Let X = {X1, . . . ,Xn} be a set of n matrices with Xi ∈Rp×q. MGMM provides
an extension of the GMM when clustering of matrices are needed. The density
of Xi is then expressed as follows

f (Xi;Θ) =
K

∑
k=1

τkφ(p×q)(Xi;Mk,Ωk,Γk) (1)

where Θ = {τk,Mk,Ωk,Γk}K
k=1, τk’s are the mixing proportions, with τk > 0

and ∑k τk = 1. On the other hand φ(p×q)(Xi;Mk,Ωk,Γk) denotes the density of
a p× q matrix normal distribution where Mk ∈ Rp×q is the mean of the k-th
component while Ωk ∈ Rp×p and Γk ∈ Rq×q represent respectively the rows
and the columns component precision matrices.

In (1) the number of parameters to estimate scales quadratically with both
p and q, endangering the pratical usefulness of the model. Recently some
solutions have been proposed, trying to overcome this issue (see Wang & Mel-
nykov, 2020 and Sarkar et al. , 2020). These approaches present some draw-
backs as they are computationally intensive and as they implement a rigid way
to induce parsimony. Therefore in this work we take a different path, adopting
a penalized estimation approach which implicitly assumes that Mk,Ωk,Γk, for
k = 1, . . . ,K, possess some degree of sparsity.

To this aim, we introduce a penalized likelihood strategy to obtain Θ̂. The
log-likelihood function to be maximized is defined as

!(Θ;X) =
n

∑
i=1

log

{
K

∑
k=1

τkφp×q(Xi;Mk,Ωk,Γk)

}
− pλ1,λ2,λ3(Mk,Ωk,Γk) (2)

with the penalization term pλ1,λ2,λ3(Mk,Ωk,Γk) equals to

pλ1,λ2,λ3(Mk,Ωk,Γk) =
K

∑
k=1

λ1||P1 ∗Mk||1+
K

∑
k=1

λ2||P2 ∗Ωk||1+
K

∑
k=1

λ3||P3 ∗Γk||1
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Table 1. Adjusted Rand Index (ARI) and number of free estimated parameters for three
clustering procedures.

Sparsemixmat Sarkar et al. , 2020 GMM
ARI 0.7883 0.7772 0.3841
# of parameters 218 275 850

P1,P2,P3 are matrices with non-negative entries, ||A||1 = ∑ jh |A jh|, λ1,λ2,λ3
are the penalization parameters while ∗ denotes the element-wise product.
To estimate Θ, we devise an ad-hoc EM-algorithm which maximizes the pe-
nalized complete data log-likelihood associated with (2). The E-step computes
class membership a posteriori probabilities via the standard updating formula.
On the other hand the M-step consists of three partial optimization cycles. An
estimate for Mk is obtained by means of a cell-wise coordinate ascent algorithm
while, to estimate Ωk and Γk, we propose a suitable modification of the graphi-
cal LASSO (Friedman et al. , 2008). The resulting model, inducing sparsity in
the precision matrices, accounts for cluster-wise conditional independence pat-
terns, which might ease the interpretation of the results, and possibly provides
indications about irrelevant variables. Moreover the number of parameters is
reduced without imposing rigid structures.

3 Application and concluding remarks

We employ the procedure outlined in Section 2 to obtain a partition of the
Landsat satellite data, where n = 845 matrices, with dimensions 4× 9, com-
ing from three different classes are available (see Viroli, 2011 for a detailed
description). In Table 1 we report the results obtained with the proposed pro-
cedure (Sparsemixmat) and with two plausible competitors being the approach
by Sarkar et al. , 2020 and the standard GMM applied to the unfolded two-way
representation of the data. Our model outperforms the competitors, when re-
covering the true clustering structure is the aim. Furthermore, we provide the
most parsimonious solution, displaying the lowest number of non zero esti-
mated parameters. The retrieved sparse matrix structures are graphically dis-
played, for the three classes, in Figure 1. While the clustering is mainly driven
by the different patterns in Mk’s, the Γk’s are the ones showing the highest
degree of sparsity, with different intensities for the three classes.

The promising results obtained in the application demonstrate how the pe-
nalized matrix-variate mixture model proposed in this work might alleviate
the flaws of standard three-way data clustering in high-dimensional scenarios.
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Figure 1. Sparsely estimated Mk (upper plots), Ωk (middle plots) and Γk (lower plots)
for k = 1,2,3. Entries that are shrunk to 0 by the estimator are highlighted with an×.

Our proposal is able to effectively reduce the number of parameters to esti-
mate while, at the same time, flexibly accounting for different relationships
among the variables and for different level of sparsity across the groups. Fu-
ture research directions would focus on the derivation of an appropriate model
selection procedure, determining jointly reasonable values for the penalty co-
efficients as well as for the number of mixture components.
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clustering procedures.
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are the penalization parameters while ∗ denotes the element-wise product.
To estimate Θ, we devise an ad-hoc EM-algorithm which maximizes the pe-
nalized complete data log-likelihood associated with (2). The E-step computes
class membership a posteriori probabilities via the standard updating formula.
On the other hand the M-step consists of three partial optimization cycles. An
estimate for Mk is obtained by means of a cell-wise coordinate ascent algorithm
while, to estimate Ωk and Γk, we propose a suitable modification of the graphi-
cal LASSO (Friedman et al. , 2008). The resulting model, inducing sparsity in
the precision matrices, accounts for cluster-wise conditional independence pat-
terns, which might ease the interpretation of the results, and possibly provides
indications about irrelevant variables. Moreover the number of parameters is
reduced without imposing rigid structures.

3 Application and concluding remarks

We employ the procedure outlined in Section 2 to obtain a partition of the
Landsat satellite data, where n = 845 matrices, with dimensions 4× 9, com-
ing from three different classes are available (see Viroli, 2011 for a detailed
description). In Table 1 we report the results obtained with the proposed pro-
cedure (Sparsemixmat) and with two plausible competitors being the approach
by Sarkar et al. , 2020 and the standard GMM applied to the unfolded two-way
representation of the data. Our model outperforms the competitors, when re-
covering the true clustering structure is the aim. Furthermore, we provide the
most parsimonious solution, displaying the lowest number of non zero esti-
mated parameters. The retrieved sparse matrix structures are graphically dis-
played, for the three classes, in Figure 1. While the clustering is mainly driven
by the different patterns in Mk’s, the Γk’s are the ones showing the highest
degree of sparsity, with different intensities for the three classes.

The promising results obtained in the application demonstrate how the pe-
nalized matrix-variate mixture model proposed in this work might alleviate
the flaws of standard three-way data clustering in high-dimensional scenarios.
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Figure 1. Sparsely estimated Mk (upper plots), Ωk (middle plots) and Γk (lower plots)
for k = 1,2,3. Entries that are shrunk to 0 by the estimator are highlighted with an×.

Our proposal is able to effectively reduce the number of parameters to esti-
mate while, at the same time, flexibly accounting for different relationships
among the variables and for different level of sparsity across the groups. Fu-
ture research directions would focus on the derivation of an appropriate model
selection procedure, determining jointly reasonable values for the penalty co-
efficients as well as for the number of mixture components.
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