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Abstract

This paper proposes a new test for the comparison of conditional quantile curves when the outcome

of interest, typically a duration, is subject to right censoring. The test can be applied both in the case

of two independent samples and for paired data, and can be used for the comparison of quantiles at a

fixed quantile level, a finite set of levels or a range of quantile levels. The asymptotic distribution of

the proposed test statistics is obtained both under the null hypothesis and under local alternatives. We

describe a bootstrap procedure in order to approximate the critical values, and present the results of a

simulation study, in which the performance of the tests for small and moderate sample sizes is studied

and compared with the behavior of alternative tests. Finally, we apply the proposed tests on a data set

concerning diabetic retinopathy.
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1 Introduction

Testing for the equality of distributions or quantile curves is a key task in empirical research. Think for

instance of the famous paired t-test, the two sample t-test or the Wilxocon-Mann Whitney test, which

are included in any textbook on basic statistics. In this paper, we want to study the comparison of two

independent samples and the comparison of paired data by allowing for several complexities with respect

to the setting of the aforementioned basic tests. First of all, in our setting covariates are present, and we

will compare the samples conditional on these covariates. Second, we will compare the samples by means of

their conditional quantiles coming from a linear quantile regression model with unknown error distribution.

And third, the response in this quantile model is allowed to be subject to right censoring.

In the literature on the comparison of two independent samples or of paired data, several tests exist

that fulfill partially the constraints of our setting, but to the best of our knowledge no paper exists so far

that considers the setting we are interested in. For instance Koul and Schick (1997), Sun (2006), Dette

et al. (2011), Dette et al. (2013), Delgado and Escanciano (2013), among others, are examples of papers

in which conditional quantile functions are compared. However, these papers assume that the response

is fully observed, which is often not the case in experiments involving duration variables. On the other

hand, in Li et al. (1996) a comparison of quantile curves in the case of censored data is presented, but their

setup does not include covariates. The inclusion of covariates in the comparison of quantile curves, could

lead to significant advances in this area. Finally, Vilar-Fernández and González-Manteiga (2004) present a

nonparametric comparison of curves with dependent errors, but their procedure does not work for quantile

curves or censored data, and the dependency is intended to be present among the observations in each

sample, and not between the samples.

Another important contribution in this area is the paper by Pardo-Fernández and Van Keilegom (2006),

who consider the comparison of regression curves in the case of censored outcomes. However, the location

functional in their regression model belongs to a certain class of L-functionals, which includes certain trun-

cated means as special case, but it does not include any quantiles. Moreover, it is assumed that the error in

their model is independent of the covariates, which we do not want to assume. So again, the framework is

different from the one we want to study. The paper by Lee (2009) presents a method to compare conditional

distributions in case of censored responses, which is again a related but different research question than the

one we want to study. The covariates in this paper do not necessarily have the same distribution in the two

samples, which will also be the case in our setting, but the comparison of distribution functions is different

from the comparison of quantiles for a single or finite set of quantile levels. Also note that the comparison

of quantities like the conditional median, allows to obtain specific insights in the relative behavior of the

two samples. A final somewhat related paper is the one by Sant’Anna (2014), who provides a method to

compare conditional distributions and single quantile curves in the case of censored responses. However, this

method requires the covariates in the two samples to have the same distribution, which could be problematic

in certain practical situations. Moreover, the regression model in this paper is fully nonparametric, whereas

we prefer to work with linear regression models, which are easier to interpret and which do not suffer from

the curse-of-dimensionality problem.

The paper is organized as follows. In Section 2 we present the quantile regression model and introduce
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the null hypothesis we like to test. Section 3 presents the test statistics for the comparison both in the

case of paired data and in the case of independent samples, and the asymptotic distribution of the proposed

tests is shown under high-level conditions on the estimators of the conditional quantiles, both under the null

hypothesis and under local alternatives. In Section 4 these high-level conditions are verified for a number

of specific estimators. In Section 5 a bootstrap procedure is presented to approximate the critical values of

the tests. In Section 6 the performance of the proposed tests is studied by means of simulations, whereas

in Section 7 data on diabetic retinopathy are analyzed using the proposed methodology. Finally, Section 8

concludes the paper and discusses ideas for future research, while the Appendix contains the proofs of the

main results and additional simulation results.

2 The model

We consider a general framework for the comparison of two quantile regression curves, that are estimated

either based on paired data or on independent samples. The framework allows for the comparison of quantile

curves at one quantile level, a finite set of levels, or an interval of quantile levels. We focus on the case

where the response variable in the two samples is subject to random right censoring, but the adaptation

to other types of incomplete data can be handled similarly. Moreover, the proposed approach is based on

generic estimators of the quantile curves in the two samples. The estimators need to satisfy certain high-level

conditions, that can be satisfied for specific estimators.

We need to introduce the following notations. For j = 1, 2, the survival time Tj > 0 satisfies

log Tj = βj0(τ) + βj1(τ)Zj,1 + . . .+ βjp(τ)Zj,p + εj(τ). (2.1)

Here Zj = (1, Zj,1, . . . , Zj,p)
T is a vector of covariates and the distribution of the error εj(τ) is left unspecified

except that P (εj(τ) ≤ 0|Zj) = τ . So the τ -th quantile of the error εj(τ) given Zj equals 0. For a given

τ ∈ (0, 1), let βj(τ) = (βj0(τ), βj1(τ), . . . , βjp(τ))T be the vector of coefficients, so that we can also write

log Tj = ZTj βj(τ) + εj(τ). The log-transformation of the time variable is not strictly required, but it is

common to transform the (positive) response Tj to a variable defined on the whole real line, to obtain a

better fit in practice.

We are interested in testing

H0 : β1(τ) = β2(τ) for all τ ∈ A, (2.2)

versus the general alternative under which there is at least one value of τ in A for which β1(τ) is not equal

to β2(τ). Here, A is either a singleton, a finite set of points, or an interval in (0, 1). Note that adaptations of

the null hypothesis H0 can be considered. For instance, it is possible to test whether Rβ1(τ) = Rβ2(τ) with

R a matrix, or whether γ(β1(τ)) = γ(β2(τ)), where γ is a possibly non-linear but differentiable function.

This implies, in particular, the possibility of testing β1(τ)T z = β2(τ)T z for a fixed covariate vector z, i.e. we

can test whether there is a significant difference between two quantiles for specific values of the covariates.

We will not elaborate further on this, but it is useful to know that this is possible.

Because of random right censoring, instead of observing Tj for j = 1, 2 we observe Xj = min(Tj , Cj)

and ∆j = I(Tj ≤ Cj), where the censoring time Cj is supposed to be independent of Tj given Zj . The data
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consist of two i.i.d. samples (Xji,∆ji, Zji)
nj

i=1 with the same distribution as (Xj ,∆j , Zj) for j = 1, 2, where

n1 and n2 are the sample sizes in case of independent samples, and n1 = n2 = n in the case of paired data.

In the latter case, the data are collected from the same subjects (for instance for two eyes or at two different

time points) and hence (X1i,∆1i, Z1i) and (X2i,∆2i, Z2i) are dependent for each fixed i.

Based on these data, we will estimate the vectors of regression coefficients β1(τ) and β2(τ). The literature

on linear quantile regression with censored data contains a rich collection of papers, for instance Portnoy

(2003), Peng and Huang (2008), Wang and Wang (2009), Portnoy and Lin (2010), Yang et al. (2018),

De Backer et al. (2019) and De Backer et al. (2020). For more details about each of these estimators, we

refer the reader to the recent review by Peng (2021). In this paper we will consider the estimators proposed

by Portnoy (2003), Peng and Huang (2008), Wang and Wang (2009) and De Backer et al. (2019). The last

two estimators can be used for a single value of τ , whereas the estimator of Portnoy (2003) and Peng and

Huang (2008) satisfy certain asymptotic results uniformly over a range of τ -values.

We finish this section with a remark regarding the case of paired data. Our null hypothesis implies that

the difference of the quantiles equals zero, but in the case of paired data it could also be of interest to test

whether the quantile of the difference between two paired data points equals zero. Unlike the case of the

mean function, the quantile function is not linear (in the sense that the quantile of the difference is not the

same as the difference of the quantiles) and hence these two quantities are not equal. We believe that the

difference of the quantiles is more meaningful in our context, since it is the quantity that allows for a general

comparison of distributions.

3 The test and asymptotic theory

In this section we will propose test statistics for testing H0, and we will develop the asymptotic distributions

of these test statistics separately for the two settings (paired samples or independent samples). The test

statistics will be based on certain estimators β̂1(·) and β̂2(·) for the two samples. These estimators depend

on the actual estimation method that is used. In this section we will therefore work with generic estimators

that satisfy certain regularity conditions. In the next section these regularity conditions will be verified for

specific estimators.

Define n = n1+n2 in the case of independent samples, whereas in the case of paired samples n represents

the number of paired data. The proposed test statistics depend on a weight function w(τ) and are given for

the case where the set A is an interval. If A is a finite set of points (or contains just one quantile level), the

integrals below need to be replaced by sums over the elements of A. We consider three test statistics:

• Averaged L2-norm:

TL2
= n1/2

∫
A

‖β̂1(τ)− β̂2(τ)‖2w(τ) dτ, (3.1)

where ‖ · ‖2 is the Euclidean norm in Rp+1.

• Averaged L∞-norm:

TL∞ = n1/2
∫
A

‖β̂1(τ)− β̂2(τ)‖∞w(τ) dτ, (3.2)

where ‖ · ‖∞ is the supremum norm in Rp+1.
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• Averaged absolute value with Bonferroni correction:

TB,k = n1/2
∫
A

|β̂1k(τ)− β̂2k(τ)|w(τ) dτ (3.3)

for k = 0, . . . , p, which consists in rejecting H0 if at least one of the p-values corresponding to the test

statistics TB,0, . . . , TB,p is smaller than α/(p+ 1), where α is the chosen significance level.

Note that other test statistics could have been considered (like for instance the supremum norm

n1/2 supτ ‖β̂1(τ)− β̂2(τ)‖∞), but we opted for the ones presented above because of better simulation results.

Also note that the test statistics can be adapted in an obvious way to the case where one is only interested

in testing whether one of the components of β1 equals the corresponding component of β2. This could be

of interest if only the effect of one specific covariate is of interest.

We now consider the asymptotic theory for these test statistics separately for paired samples and inde-

pendent samples. For both cases, we suppose that the estimators β̂1(·) and β̂2(·) can be written as a sum

of i.i.d. terms plus a remainder term of negligible asymptotic order. The verification of this condition for

specific estimators will be done in the next section.

(A) The estimator β̂j(·) (j = 1, 2) satisfies the following i.i.d. representation for all τ ∈ A and k = 0, . . . , p:

β̂jk(τ)− βjk(τ) = n−1j

nj∑
i=1

gjk(τ,Xji,∆ji, Zji) +Rjk(τ),

for some function gjk satisfying E[gjk(τ,Xj ,∆j , Zj)|Zj ] = 0 depending on the estimator β̂j(τ), where

supτ∈A |Rjk(τ)| = oP (n
−1/2
j ). Moreover, the class Fjk = {(x, δ, z) → gjk(τ, x, δ, z) : τ ∈ A} is Pj-

Donsker, where Pj is the joint probability law of (Xj ,∆j , Zj).

The representation in condition (A) will in general not hold for all 0 < τ < 1. Due to the right censoring

mechanism, the estimation of βj(τ) will not be possible for τ larger than a certain threshold value. See

Section 4 for more details. Hence, the choice of the set A depends on this threshold value.

Let gj = (gj0, . . . , gjp) for j = 1, 2. As we will see in the next section, this condition holds for all the

estimators mentioned in Section 2 for a single value of τ , and also for an interval of τ−values in case of the

estimator of Peng and Huang (2008) and Portnoy (2003).

3.1 Independent samples

In what follows, we will work under the following equal growth (EG) assumption on the sample sizes n1 and

n2:

(EG) n1/n→ p1 and n2/n→ p2 as n tends to infinity, where 0 < p1, p2 < 1.

We then have the following result.

Theorem 3.1. Assume (A) and (EG). Then, under H0, the (p+1)-dimensional process n1/2(β̂1(τ)− β̂2(τ))

indexed by τ ∈ A converges weakly to a zero-mean Gaussian process WI with covariance function

Cov(WI(τ1),WI(τ2)) = p−11 E
[
g1(τ1, X1,∆1, Z1)g1(τ2, X1,∆1, Z1)T

]
,

+ p−12 E
[
g2(τ1, X2,∆2, Z2)g2(τ2, X2,∆2, Z2)T

]
,

for τ1, τ2 ∈ A.
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The proof is given in the Appendix.

Note that, in case A is a finite set of points instead of an interval, the Gaussian process reduces to a

multivariate normal random vector. Based on this result and the continuous mapping theorem, we have the

following corollary regarding the asymptotic distribution of the test statistics.

Corollary 3.1. Assume (A) and (EG). Then, under H0,

TL2

d→
∫
A

‖WI(τ)‖2w(τ) dτ, TL∞
d→
∫
A

‖WI(τ)‖∞w(τ) dτ,

TB,k
d→
∫
A

|WI,k(τ)|w(τ) dτ,

for k = 0, . . . , p.

As before, the above result is developed for the case where A is an interval. If A is a finite set of points

it suffices to replace the integrals by sums.

Consider now the limiting behaviour of the test statistics under the following local alternative:

H1 : β1(τ)− β2(τ) = n−1/2b(τ) for all τ ∈ A,

for some continuous and integrable function b. Then, we have the following result:

Corollary 3.2. Assume (A) and (EG). Then, under H1,

TL2

d→
∫
A

‖WI(τ) + b(τ)‖2w(τ) dτ, TL∞
d→
∫
A

‖WI(τ) + b(τ)‖∞w(τ) dτ,

TB,k
d→
∫
A

|WI,k(τ) + bk(τ)|w(τ) dτ,

for k = 0, . . . , p.

The proof is given in the Appendix.

3.2 Paired samples

The results in the case of paired samples can be obtained in a similar way as for independent samples. The

major difference lies in the derivation of the covariance function of the limiting process, as is shown in the

next result.

Theorem 3.2. Assume (A). Then, under H0, the (p+ 1)-dimensional process n1/2(β̂1(τ)− β̂2(τ)) indexed

by τ ∈ A converges weakly to a zero-mean Gaussian process WP with covariance function

Cov(WP (τ1),WP (τ2)) =E
[{
g1(τ1, X1,∆1, Z1)− g2(τ1, X2,∆2, Z2)

}
×
{
g1(τ2, X1,∆1, Z1)− g2(τ2, X2,∆2, Z2)

}T ]
,

for τ1, τ2 ∈ A.

The proof is given in the Appendix.

Similarly as for independent samples we now obtain the following corollary, in which we combine the results

under H0 and H1 (it suffices to take b ≡ 0 under H0):
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Corollary 3.3. Assume (A). Then, under H1,

TL2

d→
∫
A

‖WP (τ) + b(τ)‖2w(τ) dτ, TL∞
d→
∫
A

‖WP (τ) + b(τ)‖∞w(τ) dτ,

TB,k
d→
∫
A

|WP,k(τ) + bk(τ)|w(τ) dτ,

for k = 0, . . . , p.

4 Choice of the quantile regression estimator

In this section we will present some of the quantile estimators that have been proposed in the literature

when the response is censored. We will explain how these estimators are defined, and for which choices of

the set A and the functions gj (j = 1, 2) assumption (A) is satisfied for these estimators. This will then

allow us to conclude that the asymptotic results shown in the previous section are valid for these estimators.

4.1 Estimator of Peng and Huang (2008)

The estimator utilises a martingale structure underlying randomly censored data to construct an estimating

equation for the model in (2.1). In particular, let ΛT (t|Z) = − log(1−P (T ≤ t|Z)) be the cumulative hazard

function of T given Z, N(t) = I(X ≤ t,∆ = 1) and M(t) = N(t)− ΛT (t ∧X|Z). Let Nji(t) and Mji(t) be

the analogue of N(t) and M(t) for observation i of sample j = 1, 2. Then, Mji(t) is the martingale process

associated with the counting process Nji(t). So, E[Mji(t)|Zji] = 0 for t > 0 and

E
{ nj∑
i=1

Zji

[
Nji(exp

(
ZTjiβj(τ))

)
− ΛT

(
exp(ZTjiβj(τ)) ∧Xji|Zji

)]}
= 0

for each τ . Now, ZTjiβj(τ) is monotone in τ , and therefore it can be easily seen that ΛT (exp(ZTjiβj(τ)) ∧

Xji|Zji) =
∫ τ
0
I(Xji ≥ exp(ZTjiβj(u)))dH(u), where H(x) = − log(1− x), provided model (2.1) holds for all

0 ≤ u ≤ τ . These results motivate to solve the estimating equation

Sjnj (βj , τ) = 0, (4.1)

where

Sjnj
(βj , τ) =

1

nj

nj∑
i=1

Zji

[
Nji(exp

(
ZTjiβj(τ))

)
−
∫ τ

0

I
(
Xji ≥ exp(ZTjiβj(u))

)
dH(u)

]
. (4.2)

An estimator β̂j(τ) of βj(τ) can therefore be obtained by approximating the stochastic solution of (4.1).

Under mild conditions (see Section 3 in Peng and Huang (2008)) the estimator is uniformly consistent and

converges weakly to a Gaussian process.

What remains to prove is that assumption (A) is satisfied for A = [τL, τR], where 0 < τL < τR and

τR has to be smaller than the cumulative distribution of Tj at the upper bound of the support of Cj for

j = 1, 2. As shown in the proof of Theorem 2 in Peng and Huang (2008), the class

C =
{
Zji

[
Nji(exp

(
ZTjiβj(τ))

)
−
∫ τ

0

I
(
Xji ≥ exp(ZTjiβj(u))

)
dH(u)

]
: τ ∈ [τL, τR]

}
(4.3)

is Donsker with βj(τ) equal to the true parameter, and moreover,

E
{
Zji

[
Nji
(
exp(ZTjiβj(τ))

)
−
∫ τ

0

I
(
Xji ≥ exp(ZTjiβj(u))

)
dH(u)

]∣∣∣Zji} = 0 (4.4)
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by martingale properties. Therefore, the quantity Sjnj
can be seen as an empirical process evaluated over

the Donsker class (4.3). Now, it is proved in Peng and Huang (2008) that the difference n1/2j (β̂j(τ)−βj(τ))

can be written as

n
1/2
j (β̂j(τ)− βj(τ)) = n

1/2
j φ̃(−Sjnj (βj , τ)) + o[τL,τR](1), (4.5)

where oI(1) is a quantity that converges uniformly to zero in probability for τ ∈ I and φ̃ is a linear map,

and so it preserves the Donsker property (φ̃(·)(τ) is the map B(β(τ))−1φ(·)(τ) defined on page 648 of

Peng and Huang (2008)). Note that (4.3)-(4.5) are equivalent to saying that β̂j satisfies condition (A),

where gjk corresponds to the k-th component of gj(τ,Xj ,∆j , Zj) = Zj
[
Nj(exp

(
ZTj βj(τ))

)
−
∫ τ
0
I
(
Xj ≥

exp(ZTj βj(u))
)
dH(u)

]
.

4.2 Other Estimators

In this section we briefly discuss three other estimators available in the literature, namely the estimators

proposed by Wang and Wang (2009), Portnoy (2003) and De Backer et al. (2019) and we explain why

condition (A) is satisfied for these estimators.

4.2.1 Estimator of Wang and Wang (2009)

The estimator proposed in Wang and Wang (2009) is based on a modification of the standard quantile loss

function by twisting the idea of the self-consistent Kaplan-Meier estimator. This means that the estimator

is constructed by redistributing to the right the probability mass associated with each censored data point

by means of a local weighting scheme. Now, the asymptotic distribution of n1/2j (β̂j(τ)− βj(τ)) is obtained

by showing that this quantity is a sum of i.i.d. random vectors with mean zero, plus an error term of order

oP (1), and then applying the central limit theorem. Therefore, for a single value of τ , n1/2j (β̂j(τ) − βj(τ))

can be seen as an empirical process corresponding to a family composed of a single function, and so it is

Donsker. In conclusion, also the Wang and Wang (2009) estimator satisfies condition (A) when the set A is

a singleton. This estimator does not require that model (2.1) is valid for all quantile levels smaller than τ .

4.2.2 Estimator of Portnoy (2003)

By adapting the idea of redistributing censoring probabilities in the self-consistent Kaplan-Meier estimator,

the estimator of Portnoy (2003) uses an iterative self-consistent algorithm to estimate the globally linear

quantile regression model. The algorithm proposed in the original paper was simplified into a grid-based

sequential estimation procedure by Neocleous et al. (2006), and the corresponding asymptotic study is

reported in Portnoy and Lin (2010). In the latter paper it is shown that n1/2j (β̂j(τ) − βj(τ)) converges

to a normal random variable for fixed τ . Peng (2012) proposed an alternative formulation of the self-

consistent approach based on stochastic integral equations, and showed that the estimator (say β̂P,j(τ))

is asymptotically equivalent to the Peng and Huang (2008) estimator (say β̂PH,j(τ)) in the sense that

supτ∈[τL,τR] ‖n
1/2
j (β̂P,j(τ) − β̂PH,j(τ))‖2 →p 0. In conclusion, to show the validity of condition (A) for the

estimator of Portnoy (2003), an argument as for Wang and Wang (2009) can be used in case the set A is

a singleton. For multiple values of τ , it is not clear how to show condition (A) in a direct way, but the

equivalence with the Peng and Huang (2008) estimator can be used, since we have shown condition (A) for

the latter estimator.
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4.2.3 Estimator of De Backer et al. (2019)

Another possible estimator is proposed in De Backer et al. (2019). The estimator is based on an ad-

justed standard quantile loss function which accommodates randomly censored data. More precisely, define

GC|Z(c|Z) = P(C ≥ c|Z), then the derivative of φτ (t, Y,GC|Z(·|Z)) = (Y − t){τ − I(Y ≤ t)} − (1 −

τ)
∫ t
0
{1 − GC|Z(s|Z)}ds with respect to t, is equal to −{I(Y > t) − GC|Z(t|Z)(1 − τ)}. So, conditional

on Z, the derivative has expectation zero when t = β(τ)>Z under model (2.1). In the aforementioned

paper, this property is used to construct an adjusted loss function for censored quantile regression, namely∑n
i=1 φτ (Z>i β, Yi, ĜC|Z(·|Zi)), with ĜC|Z(·|Zi) a consistent estimator of the survival function of C given

Z. Depending on the dependence between C and T , different choices for ĜC|Z are possible and we refer

to the original paper and to Peng (2021) for further details. Then, by minimizing the non-convex ad-

justed loss function it is possible to obtain a consistent and asymptotically normal estimator β̂(τ) of β(τ).

De Backer et al. (2019) also provide a numerically robust MM algorithm for such minimization. The validity

of condition (A), when the set A is a singleton, is thanks to Theorems 3.1 and 3.2 in De Backer et al. (2019).

5 Bootstrap procedure

We will now develop a general bootstrap approach that can be used to approximate the critical values of

the test statistics described in Section 2, avoiding in this way the estimation of unknown density functions

that appear in the expression of the limiting process, or other functions that are difficult to estimate. The

use of bootstrap techniques to approximate the distribution of test statistics in the context of comparison

of curves has already been explored in the literature, see for instance Vilar-Fernández et al. (2007). The

general approach will be discussed in relation with the quantile estimators available in the literature.

Suppose that we have a bootstrap estimator β̂∗j (·) that satisfies the following condition:

(A∗) The bootstrap estimator β̂∗j (·) (j = 1, 2) satisfies the following i.i.d. representation for all τ ∈ A and

k = 0, . . . , p:

β̂∗jk(τ)− β̂jk(τ) = n−1j

nj∑
i=1

ηjigjk(τ,Xji,∆ji, Zji) +R∗jk(τ),

for some i.i.d. variables ηji, i = 1, . . . , nj , j = 1, 2, with mean zero and variance equal to 1 in the case

of independent samples, and for some i.i.d. variables η1i = η2i, i = 1, . . . , n = n1 = n2, with mean zero

and variance equal to 1 in the case of paired samples. Here, supτ∈A |R∗jk(τ)| = oP∗j (n
−1/2
j ) for almost

all realizations of the data (Xji,∆ji, Zji)
nj

i=1, the functions gjk are the same as in condition (A), and

P ∗j stands for the probability measure of the ηji-variables.

Based on this, we will show that we can use the empirical percentiles of β̂∗1(τ)− β̂∗2(τ)− β̂1(τ) + β̂2(τ) to

approximate those of β̂1(τ)− β̂2(τ)− β1(τ) + β2(τ). Therefore, it will be possible to test H0 by comparing

the bootstrap process with β̂1(τ) − β̂2(τ). The following theorem holds both for the case of independent

samples and paired samples (in which case n1 = n2 = n).

Theorem 5.1. Assume (A∗), and assume the hypotheses of Theorem 3.1 in the case of independent samples

and those of Theorem 3.2 in the case of paired samples. Then, n1/2(β̂1 − β̂2 − β1 + β2)(τ) converges to a
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Gaussian process W (τ) indexed by τ ∈ A, and n1/2(β̂∗1 − β̂∗2 − β̂1 + β̂2)(τ) converges to the same Gaussian

process W (τ) for τ ∈ A conditionally on the data, a.s.

The proof is given in the Appendix.

5.1 Estimator of Peng and Huang (2008)

To show the validity of condition (A∗) for the Peng and Huang (2008) estimator, we define

S∗jnj
(β, τ) =

1

nj

nj∑
i=1

η̃jiZji

[
Nji
(
exp(ZTjiβ(τ))

)
−
∫ τ

0

I
(
Xji ≥ exp(ZTjiβ(u))

)
dH(u)

]
, (5.1)

where η̃ji (i = 1, . . . , nj , j = 1, 2) are i.i.d. with a unit exponential distribution in the case of independent

samples, and η̃1i = η̃2i (i = 1, . . . , n) are i.i.d. with a unit exponential distribution in the case of paired

samples. Peng and Huang (2008) define the bootstrap estimator β̂∗j (τ) as an approximate solution of the

equation S∗jnj
(β, τ) = 0 in β. They show in Appendix C that β̂∗j (τ) satisfies

n
1/2
j S∗jnj

(β̂∗j , τ) = o[τL,τR](1) a.s. (5.2)

n
1/2
j {β̂

∗
j (τ)− β̂j(τ)} = φ̃(−n1/2j S∗jnj

(β̂j , τ)) + o[τL,τR](1), (5.3)

where again o[τL,τR](1) is a quantity converging to zero in probability, uniformly in [τL, τR], and φ̃ is the

same linear map that appears in (4.5).

We showed in Section 4.1 that the k-th component of φ̃(−n1/2j Sjnj
(β̂j , τ)) is equivalent to the sum that

appears on the right hand side of condition (A), and moreover we specified the functions gjk. Since φ̃ is

linear, it is easy to see that the k-th component of the quantity φ̃(−n1/2j S∗jnj
(β̂j , τ)) corresponds to the k-th

component of φ̃(−n1/2j Sjnj
(β̂j , τ)) with gjk replaced by ηjigjk and ηji = η̃ji − 1. Hence, condition (A∗)

follows. The implementation of this re-weighting bootstrap procedure is described in Section 4.1 of Peng

and Huang (2008).

5.2 Other estimators

In the papers by Wang and Wang (2009), Portnoy (2003), and De Backer et al. (2019) the asymptotic

validity of a bootstrap procedure has not been shown. As suggested in these papers, we will work with a

naive bootstrap method, that consists in the case of independent samples of resampling with replacement

the triplets {(Xji,∆ji, Zji)}
nj

i=1 separately for j = 1 and j = 2, whereas in the case of paired samples we

draw resamples with replacement from the joint sample {(X1i,∆1i, Z1i, X2i,∆2i, Z2i)}ni=1. Note that this

bootstrap procedure can be justified by classical bootstrap theory and we refer to Section 3.3 of Wang and

Wang (2009), Section 6.1 of Portnoy (2003) and Section 3 of De Backer et al. (2019) for more information.

6 Simulations

In this section we report the results of simulations in order to evaluate the finite sample performance of the

proposed test statistics for testing H0. For both the cases of independent and paired samples, we test the

equality of a single quantile curve, specifically the median, and the equality over a range of quantile levels.

We study the performance of the test statistics described in Section 3 and of the estimators discussed in

Section 4.
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For testing the equality of the medians the set A = {0.5} is a singleton, and so any of the four estimators

described in Section 4 can be used. Instead, for testing the equality over a range of quantile levels (or

testing the equality of the corresponding distributions over a range of time points), only the estimator of

Peng and Huang (2008) and Portnoy (2003) can be used, since the validity of the asymptotic results for a

set of τ -values is only shown for these two estimators. However, we decide to also include the results of the

Wang and Wang (2009) and De Backer et al. (2019) estimators in order to compare the test performance.

The proposed tests consist in accepting or rejecting the null hypothesis based on the bootstrap approach

presented in Section 5. Specifically, let t∗a be the quantile of level 0 < a < 1 of the bootstrap test statistic,

for any of the test statistics defined in Section 3. Then, the test consists in rejecting the null hypothesis if

the test statistic for the given sample is outside the interval [t∗α/2, t
∗
1−α/2]. However, the performance of the

test statistics can be improved by standardizing the process n1/2(β̂1 − β̂2) and the corresponding bootstrap

process. More precisely, we will work with n1/2Σ̂(τ)−1/2(β̂1 − β̂2)(τ) , where Σ̂(τ) is a bootstrap estimator

of the covariance matrix. The corresponding bootstrap process is n1/2Σ̂(τ)−1/2[(β̂∗1 − β̂1)(τ)− (β̂∗2 − β̂2)(τ)].

The proposed standardization does not change the asymptotic properties of the test, but turns out to be

particularly appropriate in order to increase the power. This can be explained observing that, when the

components of β1 − β2 have different scales, the differences in the smaller components are not observable

when the norm of the non-standardized process is considered.

In order to optimize the computation time of the simulation studies, we approximate the rejection

probabilities using the method proposed in Giacomini et al. (2013). For a study with (say) N simulation

runs, the method works as follows. For each of the N samples we compute the process β̂1(τ) − β̂2(τ)

and we compute the corresponding bootstrap version β̂∗1(τ) − β̂∗2(τ) − β̂1(τ) + β̂2(τ) for a single bootstrap

sample drawn from that given sample. All the N simulations contribute in the estimation of the rejection

probability. We refer to the aforementioned paper for further details.

6.1 Independent samples

We first consider the case of independent samples, taking into account three different models reported in

Table 1. The error εj follows a normal distribution with mean zero and variance 0.25 (N(0, 0.25)), which is

independent of the covariate vector Zj = (Zj,1, Zj,2), j = 1, 2. Note that Model 1 can also be written as in

equation (2.1), where βj0(τ) = βj0+Φ−1(τ)0.5, βj1(τ) = βj1, βj2(τ) = βj2 and εj(τ) = εj−Φ−1(τ)0.5, where

Φ−1(τ) is the quantile function of the standard normal distribution. In this way, the error εj(τ) satisfies

P (εj(τ) ≤ 0|Zj) = τ as is required in (2.1). In a similar way, Model 3 in Table 1 can be written in the form

of (2.1). Finally, for Model 2 we have that βj0(τ) = βj0 + βj2Φ−1(τ)0.5, βj1(τ) = βj1, βj2(τ) = Φ−1(τ)0.5

and εj(τ) = (βj2 +Zj,2)(εj −Φ−1(τ)0.5), which satisfies P (εj(τ) ≤ 0|Zj) = τ provided βj2 +Zj,2 > 0, since

εj is independent of Zj,2.

Model 1 log Tj = βj0 + βj1Zj,1 + βj2Zj,2 + εj

Model 2 log Tj = βj0 + βj1Zj,1 + (βj2 + Zj,2)εj

Model 3 log Tj = βj0 + βj1Zj,1 + βj2Zj,2 + 1
2εj

Table 1: Specification of the models used in the simulations (j = 1, 2).

For each model the coefficients β10 = β20 = 0, β11 = −0.5, β12 = β22 = 0.5 are fixed, whereas the value
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of β21 varies, namely β21 = −0.5,−0.3 or −0.1. So the null hypothesis H0 : β1(τ) = β2(τ) will be satisfied

when β21 = −0.5 and fails in the two other cases. Moreover, we fix the size of the first sample to n1 = 200

and vary the second sample size by taking n2 = 100, 200, 400. The censoring time Cj is uniformly distributed

on the interval [0, cj ] and is independent of (Tj , Zj), where cj is chosen in order to have on average 20% and

40% of censored data in each sample j = 1, 2.

As already noticed, our method does not require the distribution of the covariates to be equal in the

two samples. In order to allow comparisons with competing methods, we will include simulations for both

equally distributed and not equally distributed covariates.

In the first setting, the covariates have the same distribution in the two samples: Zj,1 has a uniform

distribution U [0, 1], and Zj,2 has a Bernoulli distribution B(0.5) with success parameter 0.5, for each j = 1, 2.

The covariates Z1,1, Z1,2, Z2,1 and Z2,2 are mutually independent. In this setting, we make a comparison of

distributions, choosing as set A the interval [τL, τR] = [0.1, 0.6], and step size equal to 0.01. We compare

the performance of our method with the one proposed in Sant’Anna (2014). In that paper, a nonparametric

method is developed for the comparison of two conditional distributions corresponding to two independent

samples with equally distributed covariates. The method depends on a propensity score p(·), which we

estimate with a series logit estimator using a power series of order 1 for n2 = 100, of order 3 for n2 = 200

and of order 5 for n2 = 400, as suggested in Section 5 of Sant’Anna (2014). Since the method of Sant’Anna

(2014) does not assume that the quantiles are linear in the covariates, some loss of power can be expected

with respect to our procedure.

In the second setting the covariates have different distributions in the two samples: Z1,1 ∼ U [0, 1], Z2,1 ∼

U [0, 1.2], Z1,2 ∼ B(0.5) and Z2,2 ∼ B(0.7). In this case we compare the quantiles of the two samples for

τ = 0.5, corresponding to the median, under the three models given above. To the best of our knowledge,

no competitor exists in the case of independent samples with unequal covariate distributions. A summary

of the two simulation settings can be found in Table 2.

Setting Z1,1 Z1,2 Z2,1 Z2,2 Performed comparison
1 U [0, 1] B(0.5) U [0, 1] B(0.5) Distribution (τ ∈ [0.1, 0.6])
2 U [0, 1] B(0.5) U [0, 1.2] B(0.7) Quantile function (τ = 0.5)

Table 2: Specification of the distribution of the covariates Zi,j for i = 1, 2, j = 1, 2 in Settings 1 and 2 together with the
performed comparison. Here, B(p) and U [a, b] indicate the Bernoulli distribution with parameter p and the uniform distribution
on the interval [a, b], respectively.

For both settings, we use the estimators discussed in Section 4, that are De Backer et al. (2019), Peng and

Huang (2008), Portnoy (2003) and Wang and Wang (2009), and the test statistics TL2 , TL∞ and TB,k given

in (3.1), (3.2) and (3.3). We repeat the simulations 500 times for each model, and calculate the rejection

probabilities based on a significance level of α = 0.05 (and α = 0.05/3 for the Bonferroni correction). The

critical values of the tests are calculated based on the weighted bootstrap method described in Section 5.1

for the method of Peng and Huang (2008), and a naive bootstrap method with replacement for the other

estimators (see Section 5.2). The method of Sant’Anna (2014) is based on a multiplier-type bootstrap

procedure, that is somewhat similar to the bootstrap described in Section 5.1. The number of bootstrap

iterations for all bootstrap methods is N = 500.
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The simulation results for Setting 1 are reported in Table 3 and, included in the Appendix, in Table

9, for the case of 20% and 40% of censored data, respectively. The proposed method is able to detect the

equality of the distributions, with the following specifications. When the H0 hypothesis holds, the type

I error for the estimator of Peng and Huang (2008) is close to the theoretical value of 5%. This is not

always true for the estimators of Portnoy (2003) and Wang and Wang (2009). Interestingly, the results of

the estimator of De Backer et al. (2019) are comparable with those of Peng and Huang (2008). Among

the proposed test statistics (Bonferroni, TL2
and TL∞), the results are comparable when the alternative

hypothesis holds. However, the Bonferroni statistic has a higher rejection rate under H0. Also note that

the power of the tests correctly increases when one of the following occurs: the sample size n2 increases,

the difference β21 − β11 increases, or the percentage of censored data decreases. The method of Sant’Anna

(2014) obtains comparable or worse results for all cases. This can be explained by the fact that that method

does not use the assumption of linearity of the quantiles, which is used by our method. As Model 3 is equal

to Model 1 except that the error term has smaller variance, it is interesting to compare the results. We

notice that under Model 3 the rejection rates under the alternative hypothesis (β21 − β11 = 0.2 or 0.4) are

larger than under Model 1, as can be expected.

Bonf. TL2 TL∞ Bonf. TL2 TL∞ Bonf. TL2 TL∞ Bonf. TL2 TL∞

Mod. n2 Diff. De Backer et al. (2019) Peng and Huang (2008) Portnoy (2003) Wang and Wang (2009) SA
1 100 0 0.070 0.040 0.042 0.040 0.022 0.024 0.012 0.004 0.010 0.024 0.010 0.006 0.066

0.2 0.202 0.150 0.160 0.144 0.108 0.128 0.018 0.032 0.032 0.197 0.165 0.133 0.148
0.4 0.636 0.608 0.548 0.654 0.608 0.572 0.462 0.520 0.470 0.597 0.647 0.565 0.516

200 0 0.052 0.024 0.034 0.054 0.032 0.034 0.076 0.034 0.034 0.050 0.034 0.030 0.032
0.2 0.282 0.290 0.278 0.300 0.280 0.236 0.214 0.228 0.216 0.322 0.314 0.294 0.254
0.4 0.836 0.868 0.854 0.860 0.902 0.858 0.870 0.918 0.880 0.864 0.898 0.866 0.702

400 0 0.046 0.040 0.036 0.034 0.026 0.032 0.030 0.018 0.020 0.056 0.038 0.036 0.022
0.2 0.350 0.382 0.344 0.406 0.380 0.380 0.198 0.230 0.206 0.372 0.406 0.374 0.358
0.4 0.902 0.936 0.922 0.926 0.960 0.934 0.860 0.890 0.858 0.902 0.958 0.916 0.792

2 100 0 0.032 0.022 0.018 0.040 0.028 0.034 0.018 0.006 0.010 0.016 0.008 0.016 0.032
0.2 0.370 0.402 0.346 0.288 0.280 0.232 0.204 0.214 0.162 0.253 0.257 0.204 0.106
0.4 0.938 0.956 0.948 0.918 0.950 0.912 0.820 0.912 0.840 0.948 0.954 0.908 0.556

200 0 0.052 0.036 0.028 0.052 0.054 0.046 0.030 0.024 0.026 0.046 0.022 0.026 0.050
0.2 0.474 0.498 0.430 0.546 0.546 0.524 0.570 0.572 0.520 0.630 0.524 0.500 0.222
0.4 0.998 0.998 0.998 0.990 0.990 0.986 0.998 0.998 0.996 0.998 1.000 1.000 0.752

400 0 0.032 0.020 0.020 0.056 0.024 0.040 0.026 0.012 0.018 0.072 0.038 0.042 0.050
0.2 0.660 0.714 0.666 0.678 0.730 0.676 0.506 0.582 0.512 0.654 0.656 0.620 0.350
0.4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 1.000 1.000 1.000 0.844

3 100 0 0.048 0.034 0.034 0.030 0.012 0.016 0.016 0.000 0.000 0.028 0.014 0.018 0.048
0.2 0.606 0.600 0.580 0.574 0.666 0.604 0.358 0.386 0.316 0.677 0.649 0.629 0.162
0.4 0.996 0.998 0.996 0.998 1.000 0.998 1.000 1.000 1.000 1.000 1.000 1.000 0.752

200 0 0.034 0.032 0.030 0.030 0.034 0.024 0.058 0.042 0.056 0.046 0.014 0.022 0.046
0.2 0.860 0.866 0.852 0.830 0.872 0.830 0.796 0.858 0.804 0.844 0.870 0.830 0.306
0.4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.934

400 0 0.036 0.022 0.026 0.036 0.026 0.026 0.010 0.006 0.008 0.010 0.008 0.006 0.040
0.2 0.958 0.966 0.942 0.944 0.964 0.942 0.834 0.890 0.808 0.936 0.938 0.924 0.490
0.4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.970

Table 3: Simulation results for the comparison of quantile curves (range of τ -values) for two independent samples for percentage
of censoring equal to 20%. The size of the first sample is n1 = 200, the significance level is α = 0.05 and Diff = β21 − β11, so
the null hypothesis is satisfied for Diff = 0. The abbreviation SA stands for the test statistic of Sant’Anna (2014), and Bonf,
TL2

and TL∞ stand for the test statistics defined in (3.3), (3.1) and (3.2), respectively.

The results of Setting 2 are reported in Table 4 and, included in the Appendix, in Table 10, for 20% and

40% of censored data, respectively. When H0 holds, the type I error for the estimator of Peng and Huang
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(2008), De Backer et al. (2019) and Wang and Wang (2009) is close to the theoretical value of 5%. Instead,

for the Portnoy (2003) estimator, we again obtain a worse result. The fact that the type I error is not exactly

equal to 0.05 also for the case n2 = 400, can be explained by the fact that the value of n1 remains fixed

(n1 = 200). We also simulated the case where n1, n2 both increase, and in that case all the test statistics

reached the theoretical type I error. Again, the power of the tests correctly increases when the sample size

n2 increases, the difference β21 − β11 increases, or the percentage of censored data decreases. Finally, we

note that, not surprisingly, the power of the tests considering a range of τ -values is higher than the power for

a single quantile curve. This can be observed by comparing Table 3 and Table 4 (although the distributions

of the covariates are not exactly the same, the large difference in p-values gives quite convincing evidence).

Bonf TL2 TL∞ Bonf TL2 TL∞ Bonf TL2 TL∞ Bonf TL2 TL∞

Mod. n2 Diff. De Backer PengHuang Portnoy WangWang
1 100 0 0.006 0.006 0.006 0.016 0.006 0.012 0.006 0.002 0.008 0.008 0.014 0.010

0.2 0.064 0.096 0.072 0.072 0.056 0.056 0.018 0.032 0.016 0.072 0.070 0.082
0.4 0.304 0.388 0.282 0.424 0.422 0.394 0.128 0.302 0.178 0.330 0.460 0.350

200 0 0.016 0.012 0.020 0.022 0.010 0.020 0.042 0.042 0.038 0.006 0.006 0.004
0.2 0.098 0.124 0.086 0.168 0.224 0.186 0.108 0.188 0.122 0.112 0.130 0.108
0.4 0.596 0.712 0.614 0.576 0.626 0.596 0.738 0.774 0.720 0.686 0.766 0.714

400 0 0.038 0.030 0.040 0.024 0.012 0.028 0.002 0.006 0.002 0.028 0.016 0.024
0.2 0.246 0.266 0.242 0.180 0.228 0.182 0.096 0.110 0.092 0.260 0.280 0.258
0.4 0.794 0.870 0.816 0.830 0.878 0.794 0.718 0.768 0.684 0.684 0.784 0.688

2 100 0 0.028 0.026 0.022 0.010 0.006 0.010 0.014 0.016 0.010 0.012 0.004 0.010
0.2 0.112 0.150 0.142 0.134 0.198 0.138 0.062 0.098 0.072 0.124 0.156 0.142
0.4 0.734 0.832 0.740 0.784 0.786 0.738 0.614 0.752 0.588 0.651 0.782 0.685

200 0 0.028 0.026 0.024 0.032 0.038 0.026 0.038 0.028 0.038 0.020 0.014 0.016
0.2 0.322 0.374 0.318 0.372 0.376 0.336 0.406 0.448 0.422 0.372 0.438 0.348
0.4 0.956 0.978 0.946 0.942 0.960 0.942 0.946 0.976 0.948 0.954 0.976 0.944

400 0 0.020 0.026 0.022 0.016 0.020 0.022 0.006 0.002 0.006 0.006 0.006 0.006
0.2 0.558 0.606 0.552 0.292 0.322 0.266 0.308 0.414 0.318 0.460 0.560 0.528
0.4 0.996 0.998 0.998 1.000 1.000 1.000 0.980 0.994 0.980 0.996 0.998 0.996

3 100 0 0.020 0.012 0.022 0.014 0.018 0.016 0.006 0.000 0.006 0.004 0.002 0.008
0.2 0.282 0.426 0.324 0.330 0.394 0.326 0.266 0.308 0.230 0.334 0.424 0.364
0.4 0.984 0.992 0.984 0.988 0.994 0.988 0.960 0.982 0.960 0.978 0.990 0.980

200 0 0.026 0.022 0.026 0.008 0.002 0.008 0.026 0.016 0.022 0.030 0.022 0.024
0.2 0.676 0.774 0.660 0.598 0.688 0.582 0.636 0.688 0.638 0.652 0.752 0.646
0.4 0.996 1.000 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

400 0 0.024 0.020 0.024 0.020 0.020 0.022 0.004 0.000 0.004 0.042 0.024 0.030
0.2 0.838 0.842 0.818 0.792 0.878 0.804 0.648 0.752 0.668 0.748 0.772 0.734
0.4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 4: Simulation results for the comparison of the median (τ = 0.5) for two independent samples subject to 20% censoring.
The size of the first sample is n1 = 200, the significance level is α = 0.05 and Diff = β21−β11, so the null hypothesis is satisfied
for Diff = 0. The abbreviations Bonf, TL2 and TL∞ stand for the test statistics defined in (3.3), (3.1) and (3.2), respectively.

6.2 Paired samples

We report here the simulation results in the case of paired samples, where the three different models specified

in Table 1 are considered. As before, for each model the coefficients β10 = β20 = 0, β11 = −0.5, β12 = β22 =

0.5 are fixed, whereas the value of β21 varies, namely β21 = −0.5,−0.3 or −0.1. The covariates have the

same values among the samples, and are distributed as Z1,1 = Z2,1 ∼ U [0, 1] and Z1,2 = Z2,2 ∼ B(0.5). The
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errors ε1 and ε2 for the two samples are now dependent and have a bivariate normal distribution, specifically( ε1

ε2

)
∼ N2

(( 0

0

)
,
( 0.5 η

η 0.5

))
, (6.1)

where η = 0.2, 0.4 denotes the covariance between ε1 and ε2. Note that, for j = 1, 2, the marginal distribution

of εj is N(0, 0.5). Therefore, with the same arguments as in the previous section, we can express each model

as in (2.1).

The sample size n1 = n2 = n is equal to n = 100, 200, 400. The censoring time Cj is equal among the

two samples (so, C1 = C2 = C), and C has as uniform distribution on the interval [0, c], where c is chosen

in order to obtain on average 20% and 40% of censored data in the first sample. Note that equal censoring

times among the two samples are not required by the proposed method, but we opt for this choice since it

is often the case, in empirical experiments, that the censoring occurs simultaneously for paired individuals.

The same argument holds for the chosen covariate values Z1,j = Z2,j for j = 1, 2.

As before we include the results regarding the comparison of distributions and single quantile curves

(τ = 0.5). In this case it was not possible to compare our method with alternative ones, since, as far as

we know, no competitor exists for the comparison of quantile curves based on paired censored data. We

include the results for the test statistics presented in Section 3 and the estimators discussed in Section 4.

We repeat the simulations 500 times for each model, and calculate the rejection probabilities based on a

significance level of α = 0.05 (and α = 0.05/3 for the Bonferroni correction). The critical values of the tests

are calculated based on the paired weighted bootstrap method described in Section 5.1 for the method of

Peng and Huang (2008), and a paired naive bootstrap method with replacement for the other estimators

(see Section 5.2). For the distribution comparison, the set A is again the interval [τL, τR] = [0.1, 0.6] with

step size equal to 0.01.

The results for the comparison of distributions for paired samples are reported in Table 5 and, included

in the Appendix, in Table 11, for 20% and 40% of censored data, respectively. The type I error is close to

the theoretical value of 5% for the estimators of Peng and Huang (2008) and Portnoy (2003), which satisfy

condition (A) also when A is different from a singleton, but the first obtains, in general, better results. On

the other hand, the estimators of Wang and Wang (2009) and De Backer et al. (2019) obtain a worse type

I error rate when n = 400. Note that when the sample size n or the difference β21 − β11 increases, or the

percentage of censored data decreases, the power of the test correctly increases. This occurs also when the

covariance between the errors increases, as can be expected. In general, the test is conservative: the type I

error rate is close to the theoretical value of 5% only for large sample sizes. This shows the difficulty of the

comparison of distributions in case of dependent data.

The results for the comparison of a single quantile curve, specifically, the median (τ = 0.5), are reported

in Table 6 and, included in the Appendix, in Table 12, for 20% and 40% of censored data, respectively. The

proposed method is able to detect correctly the equality of the quantile curves, where, as before, the power of

the test increases with increasing values of β21−β11 and n, or with decreasing percentages of censored data.

The same holds when the covariance between the errors increases. The results for the different estimators

and test statistics are comparable. As before, the test is conservative: the type I error is smaller than the

theoretical value of 5% in most cases. This is even more pronounced than for the comparison of distribution

functions. Despite this conservative behavior, the tests have good power properties.
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Bonf TL2 TL∞ Bonf TL2 TL∞ Bonf TL2 TL∞ Bonf TL2 TL∞

De Backer et al. (2019) Peng and Huang (2008) Portnoy (2003) Wang and Wang (2009)
Mod. n Diff. η = 0.2

1

100
0 0.028 0.014 0.020 0.040 0.036 0.030 0.048 0.032 0.034 0.054 0.014 0.023
0.2 0.060 0.022 0.028 0.076 0.038 0.052 0.044 0.022 0.026 0.100 0.043 0.048
0.4 0.230 0.178 0.184 0.171 0.114 0.094 0.162 0.218 0.168 0.179 0.173 0.179

200
0 0.034 0.024 0.016 0.030 0.020 0.024 0.046 0.030 0.030 0.029 0.016 0.016
0.2 0.116 0.084 0.082 0.134 0.098 0.104 0.152 0.138 0.124 0.092 0.104 0.086
0.4 0.454 0.476 0.448 0.470 0.512 0.486 0.458 0.540 0.482 0.495 0.503 0.461

400
0 0.048 0.034 0.034 0.046 0.046 0.040 0.036 0.016 0.032 0.052 0.032 0.026
0.2 0.296 0.248 0.236 0.266 0.268 0.234 0.266 0.282 0.266 0.242 0.246 0.212
0.4 0.862 0.864 0.858 0.794 0.838 0.792 0.826 0.896 0.864 0.816 0.872 0.790

2

100
0 0.030 0.024 0.018 0.032 0.024 0.024 0.024 0.020 0.014 0.022 0.014 0.014
0.2 0.132 0.092 0.090 0.080 0.074 0.078 0.108 0.072 0.084 0.144 0.103 0.106
0.4 0.508 0.482 0.452 0.461 0.445 0.373 0.295 0.321 0.259 0.278 0.312 0.253

200
0 0.048 0.022 0.032 0.038 0.014 0.016 0.066 0.038 0.038 0.029 0.017 0.019
0.2 0.318 0.226 0.218 0.208 0.200 0.184 0.224 0.286 0.212 0.224 0.212 0.202
0.4 0.834 0.858 0.798 0.850 0.890 0.858 0.856 0.864 0.828 0.844 0.834 0.741

400
0 0.046 0.020 0.030 0.060 0.044 0.034 0.058 0.038 0.050 0.064 0.032 0.042
0.2 0.528 0.466 0.488 0.508 0.554 0.514 0.604 0.566 0.536 0.472 0.518 0.474
0.4 0.988 0.996 0.988 0.996 0.998 0.998 0.992 0.996 0.994 0.996 0.992 0.994

3

100
0 0.036 0.022 0.028 0.032 0.010 0.012 0.030 0.016 0.016 0.036 0.024 0.028
0.2 0.192 0.110 0.120 0.210 0.176 0.170 0.198 0.140 0.152 0.211 0.188 0.176
0.4 0.830 0.814 0.792 0.748 0.806 0.756 0.776 0.772 0.742 0.723 0.762 0.739

200
0 0.048 0.040 0.042 0.036 0.028 0.024 0.058 0.036 0.052 0.040 0.026 0.024
0.2 0.354 0.460 0.398 0.542 0.504 0.468 0.440 0.510 0.478 0.428 0.392 0.432
0.4 0.992 0.992 0.992 0.988 0.994 0.988 0.988 0.996 0.986 0.984 0.990 0.982

400
0 0.050 0.016 0.028 0.060 0.044 0.048 0.040 0.036 0.044 0.036 0.034 0.038
0.2 0.836 0.860 0.820 0.822 0.874 0.838 0.838 0.856 0.820 0.784 0.854 0.844
0.4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

η = 0.4

1

100
0 0.046 0.010 0.014 0.042 0.020 0.026 0.016 0.002 0.010 0.018 0.005 0.009
0.2 0.082 0.056 0.046 0.072 0.060 0.054 0.056 0.054 0.050 0.073 0.068 0.073
0.4 0.190 0.206 0.176 0.242 0.228 0.186 0.293 0.315 0.267 0.325 0.247 0.226

200
0 0.028 0.020 0.020 0.026 0.010 0.014 0.036 0.022 0.022 0.053 0.024 0.032
0.2 0.212 0.184 0.174 0.186 0.146 0.148 0.170 0.118 0.156 0.162 0.133 0.131
0.4 0.740 0.670 0.648 0.676 0.728 0.670 0.678 0.694 0.666 0.563 0.569 0.523

400
0 0.072 0.032 0.040 0.050 0.036 0.038 0.036 0.024 0.018 0.026 0.026 0.018
0.2 0.428 0.388 0.372 0.348 0.320 0.286 0.374 0.410 0.376 0.342 0.346 0.344
0.4 0.940 0.946 0.920 0.976 0.984 0.962 0.968 0.976 0.968 0.954 0.976 0.962

2

100
0 0.038 0.004 0.014 0.022 0.012 0.008 0.024 0.010 0.012 0.022 0.007 0.005
0.2 0.110 0.106 0.068 0.092 0.076 0.068 0.082 0.064 0.062 0.120 0.074 0.066
0.4 0.518 0.484 0.434 0.628 0.604 0.519 0.490 0.566 0.474 0.473 0.482 0.430

200
0 0.046 0.022 0.022 0.038 0.026 0.028 0.028 0.012 0.020 0.047 0.025 0.023
0.2 0.306 0.276 0.218 0.320 0.274 0.276 0.418 0.394 0.352 0.352 0.305 0.293
0.4 0.940 0.944 0.922 0.958 0.966 0.954 0.948 0.964 0.948 0.909 0.938 0.922

400
0 0.046 0.030 0.026 0.044 0.028 0.032 0.042 0.026 0.034 0.030 0.016 0.016
0.2 0.720 0.710 0.690 0.722 0.706 0.684 0.770 0.798 0.756 0.734 0.720 0.692
0.4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

3

100
0 0.036 0.008 0.016 0.016 0.004 0.014 0.024 0.010 0.010 0.024 0.006 0.008
0.2 0.354 0.280 0.264 0.318 0.288 0.270 0.234 0.218 0.216 0.310 0.239 0.237
0.4 0.886 0.912 0.876 0.928 0.912 0.872 0.922 0.942 0.916 0.915 0.943 0.929

200
0 0.056 0.040 0.042 0.028 0.012 0.014 0.042 0.042 0.034 0.026 0.012 0.018
0.2 0.586 0.650 0.572 0.730 0.720 0.632 0.592 0.632 0.596 0.554 0.502 0.488
0.4 0.998 1.000 0.998 1.000 1.000 1.000 0.998 1.000 0.996 1.000 1.000 0.998

400
0 0.034 0.020 0.034 0.052 0.032 0.034 0.044 0.032 0.032 0.046 0.020 0.022
0.2 0.952 0.960 0.956 0.904 0.944 0.914 0.960 0.966 0.940 0.954 0.960 0.954
0.4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 5: Simulation results for the comparison of quantile curves (range of τ -values) for two paired samples for percentage of
censoring equal to 20%. The sample size is n = 100, 200, 400, the significance level is α = 0.05 and Diff = β21 − β11, so the
null hypothesis is satisfied for Diff = 0. The covariance between the errors is indicated by η, see (6.1). The abbreviations Bonf,
TL2

and TL∞ stand for the test statistics defined in (3.3), (3.1) and (3.2), respectively.
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Bonf TL2 TL∞ Bonf TL2 TL∞ Bonf TL2 TL∞ Bonf TL2 TL∞

De Backer et al. (2019) Peng and Huang (2008) Portnoy (2003) Wang and Wang (2009)
Mod. n Diff. η = 0.2

1

100
0 0.022 0.024 0.022 0.010 0.004 0.010 0.020 0.016 0.020 0.020 0.012 0.016
0.2 0.018 0.018 0.014 0.024 0.028 0.028 0.008 0.012 0.016 0.034 0.030 0.020
0.4 0.136 0.118 0.136 0.082 0.064 0.074 0.112 0.106 0.128 0.088 0.078 0.056

200
0 0.010 0.012 0.008 0.014 0.012 0.014 0.020 0.028 0.020 0.016 0.016 0.014
0.2 0.058 0.056 0.062 0.074 0.090 0.082 0.086 0.084 0.086 0.038 0.050 0.040
0.4 0.276 0.298 0.228 0.200 0.248 0.236 0.302 0.310 0.290 0.260 0.392 0.288

400
0 0.040 0.034 0.042 0.024 0.036 0.028 0.020 0.018 0.014 0.014 0.014 0.014
0.2 0.158 0.168 0.124 0.140 0.148 0.122 0.138 0.164 0.152 0.154 0.114 0.158
0.4 0.620 0.710 0.640 0.562 0.636 0.554 0.658 0.682 0.652 0.508 0.616 0.510

2

100
0 0.016 0.022 0.010 0.020 0.006 0.020 0.014 0.014 0.008 0.024 0.012 0.024
0.2 0.022 0.028 0.020 0.024 0.018 0.024 0.036 0.032 0.030 0.065 0.062 0.056
0.4 0.172 0.196 0.152 0.156 0.182 0.188 0.270 0.282 0.276 0.181 0.301 0.161

200
0 0.032 0.024 0.030 0.022 0.020 0.022 0.018 0.024 0.018 0.012 0.014 0.012
0.2 0.062 0.068 0.060 0.110 0.134 0.110 0.140 0.168 0.152 0.110 0.094 0.112
0.4 0.572 0.652 0.560 0.606 0.678 0.598 0.616 0.654 0.616 0.522 0.626 0.540

400
0 0.022 0.020 0.022 0.042 0.042 0.038 0.024 0.020 0.022 0.028 0.036 0.030
0.2 0.346 0.380 0.272 0.392 0.420 0.352 0.278 0.282 0.260 0.268 0.282 0.208
0.4 0.948 0.962 0.940 0.950 0.986 0.944 0.958 0.976 0.954 0.884 0.944 0.896

3

100
0 0.020 0.012 0.018 0.006 0.000 0.000 0.010 0.008 0.016 0.014 0.010 0.004
0.2 0.072 0.082 0.080 0.170 0.142 0.156 0.120 0.080 0.120 0.100 0.096 0.086
0.4 0.422 0.552 0.470 0.516 0.562 0.534 0.500 0.584 0.484 0.456 0.554 0.444

200
0 0.038 0.024 0.040 0.014 0.020 0.018 0.020 0.020 0.018 0.022 0.022 0.024
0.2 0.148 0.204 0.146 0.224 0.252 0.238 0.228 0.262 0.224 0.294 0.346 0.298
0.4 0.838 0.906 0.860 0.896 0.944 0.918 0.890 0.972 0.910 0.870 0.948 0.880

400
0 0.030 0.018 0.028 0.018 0.036 0.022 0.012 0.014 0.010 0.032 0.028 0.032
0.2 0.546 0.662 0.564 0.580 0.642 0.584 0.538 0.664 0.566 0.592 0.644 0.560
0.4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

η = 0.4

1

100
0 0.010 0.012 0.012 0.006 0.006 0.004 0.008 0.004 0.008 0.014 0.014 0.014
0.2 0.044 0.030 0.036 0.024 0.016 0.024 0.014 0.022 0.014 0.022 0.030 0.032
0.4 0.050 0.060 0.062 0.064 0.082 0.084 0.070 0.056 0.076 0.186 0.184 0.188

200
0 0.010 0.018 0.010 0.022 0.012 0.016 0.026 0.016 0.016 0.026 0.014 0.016
0.2 0.040 0.088 0.046 0.076 0.056 0.072 0.062 0.078 0.062 0.074 0.074 0.072
0.4 0.350 0.416 0.342 0.252 0.274 0.220 0.260 0.406 0.306 0.328 0.340 0.334

400
0 0.026 0.018 0.022 0.026 0.014 0.028 0.018 0.010 0.014 0.006 0.012 0.006
0.2 0.242 0.242 0.240 0.146 0.200 0.164 0.218 0.282 0.214 0.270 0.212 0.252
0.4 0.716 0.720 0.712 0.760 0.818 0.792 0.722 0.804 0.722 0.696 0.796 0.732

2

100
0 0.012 0.008 0.014 0.012 0.010 0.006 0.006 0.014 0.012 0.012 0.008 0.010
0.2 0.044 0.022 0.034 0.042 0.042 0.038 0.026 0.040 0.028 0.026 0.020 0.022
0.4 0.174 0.236 0.224 0.152 0.210 0.182 0.188 0.186 0.172 0.205 0.313 0.215

200
0 0.030 0.022 0.032 0.010 0.010 0.010 0.014 0.008 0.018 0.028 0.010 0.028
0.2 0.190 0.216 0.190 0.092 0.124 0.094 0.166 0.164 0.174 0.128 0.150 0.128
0.4 0.690 0.808 0.720 0.674 0.752 0.648 0.802 0.840 0.778 0.696 0.764 0.724

400
0 0.016 0.006 0.012 0.028 0.016 0.026 0.002 0.008 0.006 0.018 0.010 0.016
0.2 0.464 0.534 0.488 0.422 0.434 0.432 0.430 0.480 0.430 0.394 0.420 0.400
0.4 0.968 0.982 0.968 0.988 0.998 0.988 0.978 0.990 0.972 0.950 0.992 0.954

3

100
0 0.018 0.014 0.014 0.006 0.004 0.006 0.012 0.010 0.014 0.016 0.010 0.016
0.2 0.094 0.122 0.080 0.116 0.154 0.118 0.098 0.110 0.106 0.084 0.070 0.092
0.4 0.614 0.652 0.620 0.490 0.616 0.514 0.618 0.678 0.598 0.466 0.536 0.406

200
0 0.012 0.028 0.012 0.032 0.020 0.022 0.038 0.030 0.036 0.012 0.010 0.012
0.2 0.334 0.454 0.350 0.324 0.406 0.336 0.318 0.374 0.354 0.306 0.396 0.302
0.4 0.952 0.984 0.960 0.960 0.994 0.974 0.958 0.990 0.974 0.938 0.970 0.938

400
0 0.018 0.016 0.018 0.032 0.036 0.032 0.030 0.010 0.030 0.018 0.014 0.014
0.2 0.682 0.782 0.692 0.700 0.792 0.688 0.688 0.798 0.682 0.690 0.814 0.714
0.4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 6: Simulation results for the comparison of the median (τ = 0.5) for two paired samples subject to 20% censoring. The
sample size is n = 100, 200, 400, the significance level is α = 0.05 and Diff = β21 − β11, so the null hypothesis is satisfied for
Diff = 0. The covariance between the errors is indicated by η, see (6.1). The abbreviations Bonf, TL2 and TL∞ stand for the
test statistics defined in (3.3), (3.1) and (3.2), respectively.
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7 Data analysis

In this section we present an application of the proposed method using a dataset regarding diabetic retinopa-

thy, see Therneau (2022). Studying this dataset is particularly interesting, since it will require the application

of our testing procedure both in the cases of independent and paired samples. Moreover, it corresponds to

a well-known case studied in the literature, which makes it possible to compare our results with previous

results. Specifically, we will refer to Huster et al. (1989).

Diabetic retinopathy is a complication associated with diabetes mellitus consisting of abnormalities in

the microvasculature within the retina of the eye. The Diabetic Retinopathy Study (DRS) begun in 1971 to

study the effectiveness of laser photocoagulation in delaying the onset of blindness in patients with diabetic

retinopathy. Patients with diabetic retinopathy in both eyes and visual acuity of 20/100 were eligible for the

study. One eye of each patient was randomly selected for treatment and the other eye was observed without

treatment. For each eye, the event of interest is the time from initiation of treatment to the time when visual

acuity dropped below 5/200 two visits in a row. Thus there is a built-in lag time of approximately 6 months

(visits were every 3 months). Survival times in this dataset are therefore the actual time to blindness in

months, minus the minimum possible time to event (6.5 months). Censoring is caused by death, dropout,

or end of the study. The dataset includes n = 197 high-risk patients, as defined by DRS criteria.

It is important to notice that diabetes can be classified into two general groups by the age at onset:

juvenile and adult diabetes. The two diseases have, in general, very different courses. The primary question

of the DRS study was to assess the effectiveness of the laser photocoagulation treatment. Moreover, we

would like to know whether the effect of the treatment depends on the type of diabetes. Lastly, since for

the treated eyes xenon and argon lasers were randomly used, we would also like to understand which laser

therapy is most effective.

We now use our method for finding answers to these questions. In order to assess the effectiveness of the

laser treatment, we apply our method in the case of paired samples. We compare the distributions of two

samples which include, respectively, the data regarding the treated eyes and the control eyes (not treated

eyes) of the 197 patients. Due to the specifications of the experiment, the censoring times for the two eyes

are equal. The samples contain 60% of censored data, which limits the range of quantile levels we can use

in our analysis. Therefore, we compare the quantiles for τ ∈ [0.1, 0.3], with step size equal to 0.01. For the

comparison, we chose the estimator of Peng and Huang (2008), and we use the same standardization of the

test statistics as in the simulation study.

For inference purposes, we use the same percentile bootstrap procedure as in the simulation study, where

the number of bootstrap resamples is N = 10000. We use the re-weighting bootstrap method discussed in

Section 5. We include the juvenile covariate, which equals 1 for juveline diabetes and 0 otherwise, and

the risk covariate, which indicates the risk level of a patient as specified by the criteria of RDS and takes

discrete values from 6 to 12. We present the results both graphically and numerically, respectively in Figure

1 and Table 7.
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(a) (b)

(c)

Figure 1: The process {β̂treated − β̂control}(τ) for each coefficient (in red), together with 2.5% and 97.5% percentiles of the
distribution of the bootstrap process {(β̂∗

treated− β̂
∗
control)− (β̂treated− β̂control)}(τ) (black solid lines) and the mean bootstrap

process (dotted black line). Subfigures (a), (b) and (c) show the estimated intercept and the estimated coefficients of juvenile
and risk respectively, for a range of τ -values.

τ = 0.10 τ = 0.15 τ = 0.20 τ = 0.25 τ = 0.30

β̂treated

intercept 4.64 3.78 5.71 7.36 6.61
juvenile -0.37 -0.67 -0.81 -1.27 -0.85
risk -0.21 -0.05 -0.21 -0.29 -0.22

β̂control

intercept 4.09 4.85 4.68 5.01 5.45
juvenile -0.08 0.43 0.22 0.20 0.50
risk -0.27 -0.30 -0.24 -0.25 -0.28

β̂treated − β̂control

intercept 0.55 -1.07 1.04 2.34 1.15
juvenile -0.29 -1.10 -1.02 -1.47 -1.35
risk 0.06 0.26 0.03 -0.04 0.06

Table 7: Values of the components intercept, juvenile and risk of the processes β̂treated(τ), β̂control(τ) and their difference,
for τ ∈ {0.10, 0.15, ..., 0.30}.

We can assess the effectiveness of the laser treatment by testing the hypothesis H0 : βtreated(τ) =

βcontrol(τ) for τ ∈ A = [0.1, 0.3], using the test statistics presented in Section 3. For any of the test
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statistics TL2
, TL∞ and Bonferroni, the respective p-value is less than 0.05. Therefore, we can conclude (at

level of confidence 0.95) that there is statistical evidence of difference between the treatment and control

groups. We can also conclude that the quantiles for the treated eyes are larger than the quantiles for the

control eyes. Indeed, we can observe that for each fixed covariate vector Z = (ZIntercept, Zjuvenile, Zrisk) ∈

{1} × {0, 1} × {6, ..., 12}, we have β̂treated(τ)Z ≥ β̂control(τ)Z.

Using the Delta method we can also verify whether there exists a component k = 1, 2, 3 for which the

null hypothesis H0 : βtreated,k(τ) = βcontrol,k(τ) for τ ∈ A is rejected (at level 0.05). Such null hypothesis

is rejected only for the juvenile component (with p-value equal to 0.02), and so we can conclude that there

is a significant difference in the effectiveness of the treatment for young and adult types of diabetes. Since

β̂treated,juvenile(τ) < 0, we can also note that the treatment is more effective for the adult type of diabetes.

All our conclusions agree with Huster et al. (1989).

Finally, we can verify if there is a difference in quantiles between the treatment with the argon and the

treatment with the xenon laser. For that purpose, we consider only the data regarding the treated eyes.

There are nargon = 100 patients who received the treatment with the argon laser and nxenon = 97 who were

treated with the xenon laser. For such comparison we use our method in the framework of independent

samples (with different sample sizes) and test H0 : βargon(τ) = βxenon(τ) for τ ∈ A, including the same

covariate variables as before. In order to avoid undetermined values, we set A = [0.1, 0.2], and step size

equal to 0.01. The number of bootstrap resamples and the choice of the estimator is the same as before.

We include graphical and numerical results of the estimators in Figure 2 and Table 8, respectively. For

any choice of the test statistic the p-value is greater than 0.05. Therefore, we conclude that no significant

difference (at level of confidence 0.95) can be revealed between the quantiles for the two types of laser

treatments. These results agree with specific studies on laser treatments reported, for instance, in Plumb

et al. (1982).

τ= 0.10 τ = 0.15 τ = 0.20
β̂argon

intercept 2.57 6.11 5.92
juvenile -0.48 -0.94 -0.82
risk -0.03 -0.25 -0.23

β̂xenon

intercept 3.36 3.64 2.60
juvenile -0.92 -0.66 -1.18
risk -0.01 -0.04 0.14

β̂argon − β̂xenon

intercept -0.79 2.47 3.31
juvenile 0.44 -0.27 0.37
risk -0.02 -0.22 -0.36

Table 8: Values of the components intercept, juvenile and risk of the processes β̂argon(τ), β̂xenon(τ) and their difference, for
τ ∈ {0.10, 0.15, 0.20}.
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(a) (b)

(c)

Figure 2: The process {β̂argon − β̂xenon}(τ) for each coefficient (in red), together with 2.5% and 97.5% percentiles of the
distribution of the bootstrap process {(β̂∗

argon − β̂∗
xenon) − (β̂argon − β̂xenon)}(τ) (black solid lines) and the mean bootstrap

process (dotted black line). Subfigures (a), (b) and (c) show the estimated intercept and the estimated coefficients of juvenile
and risk respectively, for a range of τ -values.

8 Conclusions

This paper contributes to the literature regarding the comparison of two populations in the presence of

covariates, by allowing the response to be right censored and by comparing the two populations by means

of quantile curves, which are supposed to be linear in the covariates. Both the case of independent samples

and of paired samples is considered. This setup has never been considered before in the literature, although

it has many applications in practice.

The paper can be extended in many directions. First of all, it would be interesting to extend the

methodology to the case where there are more than two populations. This extension should be possible,

although definitely not straightforward. See e.g. Pardo-Fernández and Van Keilegom (2006), who considers

the case of more than two populations in a different context. Second, we did not use all existing quantile

regression estimators in our simulation study. A thorough simulation study in which all existing estimators

are compared, would shed light on the relative performance of the tests based on these estimators. And

finally, the extension to other types of incomplete data would also be a useful development.
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A Proofs

Proof of Theorem 3.1. From assumption (A) and the Donsker theorem we know that n1/2j (β̂j −

βj)(τ) converges weakly to a tight Gaussian process Gj(τ) with mean 0 and covariance function given

by Σj(τ1, τ2) = E[gj(τ1, Xj ,∆j , Zj)gj(τ2, Xj ,∆j , Zj)
T ]. Then, by Slutsky’s theorem and assumption (EG),

we have that n1/2(β̂j − βj)(τ) converges weakly to p−1/2j Gj(τ), and so the limiting covariance function is

given by p−1j Σj(τ1, τ2). Finally, from the independence of the two samples, we can conclude that under H0,

n1/2(β̂1− β̂2)(τ) = n1/2(β̂1−β1)(τ)−n1/2(β̂2−β2)(τ) converges weakly to p−1/21 G1(τ)−p−1/22 G2(τ), which

is a tight Gaussian process with mean 0 and covariance function given by p−11 Σ1(τ1, τ2) + p−12 Σ2(τ1, τ2). 2

Proof of Corollary 3.2. Under the local alternative H1, which takes also the form β2(τ) = β1(τ) −

n−1/2b(τ), the process n1/2(β̂1 − β̂2)(τ) can be written as n1/2(β̂1 − β1)(τ)− n1/2(β̂2 − β2)(τ) + b(τ). Since

b(τ) is deterministic, the limiting process is a non-centred Gaussian process with covariance function given

as in Theorem 3.1. This means that

n1/2(β̂1 − β̂2)(τ) −→d WI(τ) + b(τ),

where WI is the same Gaussian process as in Theorem 3.1. Since TL2
, TL∞ and TB,k are continuous maps,

by the continuous mapping theorem we obtain the result. 2

Proof of Theorem 3.2. From assumption (A) it follows that under H0,

n1/2(β̂1(τ)− β̂2(τ))

= n1/2(β̂1(τ)− β1(τ))− n1/2(β̂2(τ)− β2(τ))

= n−1/2
n∑
i=1

[g1(τ,X1i,∆1i, Z1i)− g2(τ,X2i,∆2i, Z2i)] + oP (1),

uniformly in τ ∈ A. Since the difference of two Donsker classes is Donsker (see Example 2.10.7 in Van der

Vaart and Wellner (1996)), we can conclude that n1/2(β̂1(τ) − β̂2(τ)) converges weakly to a zero-mean

Gaussian process with covariance function given in the statement of the theorem. 2

Proof of Theorem 5.1. First we consider the two samples separately. By classical results on empirical

process theory (see e.g. Theorem 3.2 in Giné (1996)), condition (A∗) assures that n1/2(β̂∗j − β̂j) converges

to a tight Gaussian process and moreover, since ηji has mean zero and variance equal to 1, the asymptotic

covariance operator of the process n1/2(β̂∗j − β̂j) conditional on the data equals

E(η2j )
n

n2j

nj∑
i=1

gj(τ1, Xji,∆ji, Zji)gj(τ2, Xji,∆ji, Zji)
T

a.s.→ p−1j E[gj(τ1, Xj ,∆j , Zj)gj(τ2, Xj ,∆j , Zj)
T ],

and this is the asymptotic covariance of the process n1/2(β̂j − βj).

The extension to two samples is similar to what was done in the proof of Theorem 3.1 for independent

samples and Theorem 3.2 for paired samples. The two processes to consider are now n1/2(β̂∗j − β̂j)(τ) for

j = 1, 2. Note that in the case of independent samples, the two bootstrap processes are independent, since
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the ηji are all i.i.d. It is therefore straightforward to show that the asymptotic covariance of n1/2(β̂∗1(τ) −

β̂∗2(τ) − β̂1(τ) + β̂2(τ)) converges to the one of the original process. In the case of paired samples instead,

the bootstrap asymptotic covariance conditional on the data equals (with Vji = (Xji,∆ji, Zji), j = 1, 2)

E(η21)
1

n

n∑
i=1

[g1(τ1, V1i)− g2(τ1, V2i)][g1(τ2, V1i)− g2(τ2, V2i)]
T

a.s.→ E{[g1(τ1, V1)− g2(τ1, V2)][g1(τ2, V1)− g2(τ2, V2)]T },

and this is the asymptotic covariance of n1/2(β̂1 − β̂2 − β1 + β2), from which the assertion follows. 2

B Simulation Results

We include additional simulation results for 40% of censoring.

Bonf. TL2 TL∞ Bonf. TL2 TL∞ Bonf. TL2 TL∞ Bonf. TL2 TL∞

Mod. n2 Diff. De Backer et al. (2019) Peng and Huang (2008) Portnoy (2003) Wang and Wang (2009) SA

1

100
0 0.038 0.014 0.020 0.034 0.022 0.024 0.010 0.006 0.004 0.030 0.018 0.022 0.066
0.2 0.118 0.110 0.122 0.135 0.131 0.110 0.039 0.031 0.033 0.110 0.064 0.092 0.148
0.4 0.506 0.502 0.456 0.586 0.609 0.582 0.433 0.435 0.352 0.570 0.568 0.524 0.516

200
0 0.046 0.038 0.036 0.050 0.042 0.034 0.028 0.024 0.024 0.048 0.026 0.028 0.032
0.2 0.248 0.204 0.238 0.236 0.212 0.200 0.180 0.182 0.160 0.220 0.224 0.218 0.254
0.4 0.772 0.824 0.740 0.836 0.857 0.859 0.764 0.810 0.762 0.828 0.876 0.786 0.702

400
0 0.046 0.044 0.038 0.030 0.022 0.020 0.018 0.002 0.006 0.032 0.018 0.026 0.022
0.2 0.376 0.366 0.348 0.298 0.292 0.286 0.124 0.086 0.080 0.292 0.270 0.252 0.358
0.4 0.932 0.952 0.904 0.878 0.910 0.880 0.762 0.830 0.782 0.882 0.906 0.884 0.792

2

100
0 0.032 0.026 0.024 0.030 0.020 0.024 0.024 0.008 0.012 0.036 0.004 0.018 0.032
0.2 0.216 0.230 0.184 0.362 0.284 0.270 0.112 0.137 0.102 0.204 0.172 0.160 0.106
0.4 0.888 0.938 0.896 0.888 0.914 0.876 0.830 0.865 0.804 0.884 0.892 0.856 0.556

200
0 0.060 0.034 0.038 0.038 0.028 0.022 0.038 0.036 0.026 0.034 0.028 0.032 0.050
0.2 0.556 0.446 0.454 0.470 0.450 0.396 0.442 0.476 0.422 0.458 0.426 0.402 0.222
0.4 0.998 0.996 0.994 0.984 0.998 0.990 0.986 0.990 0.986 0.978 0.990 0.982 0.752

400
0 0.036 0.022 0.026 0.056 0.046 0.048 0.018 0.008 0.010 0.060 0.036 0.038 0.050
0.2 0.564 0.684 0.638 0.640 0.642 0.618 0.474 0.464 0.436 0.596 0.662 0.578 0.350
0.4 0.998 1.000 1.000 1.000 1.000 1.000 0.996 0.996 0.994 1.000 1.000 1.000 0.844

3

100
0 0.016 0.012 0.016 0.036 0.016 0.036 0.016 0.004 0.012 0.030 0.018 0.026 0.048
0.2 0.476 0.470 0.480 0.512 0.510 0.510 0.261 0.261 0.180 0.520 0.538 0.530 0.162
0.4 0.996 0.998 0.996 0.996 1.000 1.000 0.982 0.990 0.978 1.000 1.000 1.000 0.752

200
0 0.032 0.028 0.026 0.046 0.026 0.024 0.028 0.024 0.026 0.034 0.030 0.026 0.046
0.2 0.790 0.796 0.762 0.774 0.780 0.736 0.664 0.754 0.674 0.748 0.772 0.740 0.306
0.4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 1.000 1.000 0.934

400
0 0.052 0.034 0.038 0.048 0.030 0.030 0.016 0.008 0.006 0.036 0.018 0.016 0.040
0.2 0.910 0.916 0.892 0.918 0.926 0.916 0.716 0.794 0.752 0.878 0.874 0.860 0.490
0.4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.970

Table 9: Simulation results for the comparison of quantile curves (range of τ -values) for two independent samples for percentage
of censoring equal to 40%. The size of the first sample is n1 = 200, the significance level is α = 0.05 and Diff = β21 − β11, so
the null hypothesis is satisfied for Diff = 0. The abbreviation SA stands for the test statistic of Sant’Anna (2014), and Bonf,
TL2 and TL∞ stand for the test statistics defined in (3.3), (3.1) and (3.2), respectively.
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Bonf TL2 TL∞ Bonf TL2 TL∞ Bonf TL2 TL∞ Bonf TL2 TL∞

Mod. n2 Diff. De Backer et al. (2019) Peng and Huang (2008) Portnoy (2003) Wang and Wang (2009)

1

100
0 0.016 0.008 0.014 0.028 0.022 0.030 0.004 0.004 0.004 0.020 0.018 0.022
0.2 0.054 0.070 0.056 0.044 0.044 0.034 0.014 0.016 0.016 0.040 0.030 0.040
0.4 0.344 0.358 0.316 0.200 0.234 0.206 0.202 0.166 0.200 0.234 0.288 0.262

200
0 0.022 0.024 0.020 0.018 0.012 0.018 0.020 0.012 0.020 0.024 0.016 0.024
0.2 0.118 0.146 0.106 0.108 0.122 0.106 0.122 0.104 0.118 0.080 0.082 0.076
0.4 0.640 0.694 0.628 0.470 0.516 0.458 0.586 0.616 0.600 0.530 0.586 0.442

400
0 0.010 0.014 0.012 0.012 0.020 0.014 0.010 0.014 0.010 0.004 0.004 0.006
0.2 0.252 0.288 0.264 0.122 0.122 0.110 0.068 0.058 0.068 0.168 0.182 0.150
0.4 0.660 0.828 0.718 0.674 0.772 0.676 0.498 0.666 0.488 0.756 0.826 0.756

2

100
0 0.024 0.018 0.024 0.010 0.010 0.010 0.004 0.002 0.006 0.028 0.022 0.028
0.2 0.086 0.102 0.088 0.084 0.114 0.086 0.068 0.078 0.074 0.114 0.144 0.116
0.4 0.754 0.842 0.800 0.566 0.658 0.606 0.569 0.645 0.577 0.736 0.804 0.744

200
0 0.028 0.014 0.024 0.030 0.028 0.026 0.026 0.022 0.024 0.022 0.014 0.016
0.2 0.326 0.380 0.286 0.232 0.266 0.222 0.326 0.360 0.308 0.306 0.328 0.284
0.4 0.952 0.980 0.954 0.892 0.944 0.880 0.930 0.962 0.926 0.812 0.914 0.828

400
0 0.022 0.024 0.022 0.022 0.010 0.022 0.002 0.002 0.000 0.026 0.036 0.026
0.2 0.418 0.468 0.424 0.310 0.450 0.368 0.224 0.296 0.232 0.294 0.450 0.366
0.4 0.992 0.998 0.988 0.984 0.996 0.984 0.948 0.976 0.940 0.974 0.996 0.982

3

100
0 0.010 0.004 0.010 0.024 0.016 0.020 0.000 0.000 0.000 0.012 0.014 0.012
0.2 0.342 0.394 0.322 0.273 0.333 0.248 0.126 0.106 0.118 0.214 0.276 0.210
0.4 0.960 0.970 0.962 0.958 0.980 0.954 0.870 0.940 0.868 0.910 0.966 0.930

200
0 0.030 0.028 0.024 0.026 0.020 0.022 0.022 0.012 0.020 0.042 0.028 0.050
0.2 0.514 0.628 0.506 0.504 0.572 0.512 0.440 0.612 0.482 0.472 0.622 0.472
0.4 0.996 0.998 0.994 0.998 1.000 0.998 0.998 1.000 0.998 0.998 1.000 0.996

400
0 0.014 0.012 0.016 0.006 0.004 0.006 0.004 0.008 0.004 0.008 0.010 0.008
0.2 0.660 0.724 0.648 0.716 0.750 0.704 0.512 0.526 0.474 0.672 0.754 0.632
0.4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 10: Simulation results for the comparison of the median (τ = 0.5) for two independent samples subject to 40% censoring.
The size of the first sample is n1 = 200, the significance level is α = 0.05 and Diff = β21−β11, so the null hypothesis is satisfied
for Diff = 0. The abbreviations Bonf, TL2 and TL∞ stand for the test statistics defined in (3.3), (3.1) and (3.2), respectively.
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Bonf TL2 TL∞ Bonf TL2 TL∞ Bonf TL2 TL∞ Bonf TL2 TL∞

De Backer et al. (2019) Peng and Huang (2008) Portnoy (2003) Wang and Wang (2009)
Mod. n Diff. η = 0.2

1

100
0 0.026 0.018 0.016 0.013 0.007 0.009 0.026 0.011 0.009 0.044 0.014 0.018
0.2 0.098 0.058 0.080 0.108 0.068 0.066 0.069 0.041 0.037 0.090 0.046 0.058
0.4 0.196 0.204 0.184 0.156 0.098 0.111 0.245 0.182 0.200 0.238 0.170 0.172

200
0 0.032 0.018 0.018 0.051 0.018 0.028 0.047 0.029 0.029 0.034 0.014 0.016
0.2 0.118 0.128 0.108 0.119 0.092 0.098 0.095 0.082 0.086 0.088 0.072 0.078
0.4 0.428 0.468 0.386 0.483 0.496 0.448 0.383 0.358 0.286 0.370 0.382 0.358

400
0 0.038 0.032 0.032 0.042 0.018 0.014 0.032 0.014 0.008 0.036 0.026 0.022
0.2 0.202 0.212 0.198 0.291 0.222 0.194 0.232 0.222 0.222 0.276 0.224 0.226
0.4 0.820 0.842 0.816 0.802 0.838 0.796 0.831 0.880 0.835 0.750 0.756 0.732

2

100
0 0.024 0.010 0.016 0.030 0.015 0.017 0.025 0.021 0.025 0.018 0.008 0.006
0.2 0.080 0.036 0.044 0.077 0.060 0.045 0.048 0.035 0.050 0.084 0.040 0.048
0.4 0.274 0.292 0.236 0.375 0.330 0.292 0.336 0.351 0.347 0.261 0.246 0.204

200
0 0.036 0.030 0.026 0.050 0.018 0.018 0.026 0.024 0.030 0.030 0.026 0.024
0.2 0.230 0.258 0.202 0.240 0.236 0.192 0.160 0.148 0.130 0.200 0.168 0.130
0.4 0.808 0.778 0.770 0.670 0.796 0.686 0.782 0.739 0.731 0.748 0.732 0.702

400
0 0.042 0.024 0.020 0.052 0.048 0.042 0.036 0.024 0.024 0.034 0.020 0.024
0.2 0.356 0.362 0.354 0.533 0.561 0.509 0.511 0.511 0.481 0.554 0.486 0.462
0.4 0.992 0.992 0.992 0.982 0.990 0.984 0.982 0.986 0.984 0.996 0.996 0.990

3

100
0 0.030 0.022 0.018 0.042 0.034 0.034 0.016 0.016 0.014 0.024 0.010 0.008
0.2 0.170 0.136 0.136 0.182 0.117 0.115 0.139 0.139 0.129 0.226 0.150 0.172
0.4 0.540 0.636 0.492 0.705 0.600 0.575 0.648 0.650 0.616 0.568 0.580 0.514

200
0 0.042 0.024 0.026 0.056 0.038 0.040 0.042 0.034 0.034 0.030 0.018 0.014
0.2 0.406 0.408 0.380 0.368 0.364 0.308 0.321 0.379 0.303 0.368 0.390 0.358
0.4 0.956 0.982 0.960 0.976 0.984 0.972 0.952 0.974 0.948 0.964 0.986 0.978

400
0 0.072 0.064 0.066 0.070 0.042 0.042 0.026 0.008 0.018 0.030 0.012 0.018
0.2 0.786 0.806 0.758 0.810 0.824 0.818 0.758 0.846 0.738 0.746 0.780 0.762
0.4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

η = 0.4

1

100
0 0.046 0.022 0.016 0.023 0.011 0.006 0.017 0.004 0.011 0.012 0.004 0.008
0.2 0.090 0.058 0.060 0.079 0.051 0.056 0.035 0.012 0.021 0.086 0.058 0.064
0.4 0.234 0.230 0.184 0.257 0.161 0.176 0.215 0.185 0.180 0.226 0.158 0.146

200
0 0.036 0.032 0.032 0.044 0.036 0.038 0.052 0.047 0.043 0.020 0.010 0.016
0.2 0.162 0.144 0.148 0.116 0.089 0.081 0.164 0.130 0.134 0.124 0.102 0.110
0.4 0.656 0.604 0.582 0.518 0.471 0.438 0.693 0.663 0.633 0.502 0.494 0.490

400
0 0.030 0.022 0.020 0.052 0.030 0.042 0.036 0.018 0.022 0.028 0.016 0.022
0.2 0.392 0.306 0.320 0.359 0.399 0.347 0.395 0.393 0.391 0.330 0.274 0.256
0.4 0.918 0.936 0.910 0.921 0.943 0.921 0.931 0.951 0.945 0.926 0.950 0.924

2

100
0 0.008 0.008 0.008 0.019 0.008 0.012 0.032 0.022 0.028 0.024 0.012 0.012
0.2 0.090 0.058 0.044 0.117 0.077 0.092 0.092 0.058 0.066 0.092 0.056 0.042
0.4 0.530 0.458 0.386 0.471 0.348 0.342 0.464 0.457 0.365 0.449 0.377 0.315

200
0 0.048 0.020 0.022 0.032 0.036 0.016 0.024 0.020 0.020 0.066 0.022 0.030
0.2 0.312 0.228 0.230 0.236 0.234 0.201 0.242 0.202 0.169 0.276 0.206 0.176
0.4 0.890 0.950 0.896 0.918 0.924 0.892 0.912 0.929 0.904 0.940 0.912 0.880

400
0 0.036 0.016 0.016 0.048 0.008 0.022 0.048 0.032 0.032 0.042 0.030 0.034
0.2 0.582 0.562 0.524 0.588 0.606 0.560 0.673 0.707 0.669 0.584 0.598 0.548
0.4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998

3

100
0 0.020 0.014 0.012 0.028 0.006 0.006 0.022 0.006 0.010 0.022 0.012 0.012
0.2 0.214 0.178 0.172 0.181 0.161 0.159 0.226 0.188 0.162 0.168 0.132 0.132
0.4 0.820 0.814 0.746 0.819 0.832 0.799 0.754 0.813 0.770 0.710 0.742 0.726

200
0 0.024 0.014 0.012 0.040 0.018 0.030 0.018 0.010 0.020 0.036 0.022 0.022
0.2 0.644 0.646 0.594 0.560 0.542 0.500 0.646 0.588 0.566 0.626 0.614 0.576
0.4 0.998 0.996 0.996 0.994 0.996 0.994 0.998 0.998 0.998 1.000 1.000 0.998

400
0 0.024 0.024 0.020 0.050 0.034 0.034 0.056 0.034 0.036 0.036 0.014 0.012
0.2 0.886 0.914 0.904 0.942 0.936 0.904 0.888 0.920 0.898 0.936 0.930 0.898
0.4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 11: Simulation results for the comparison of quantile curves (range of τ -values) for two paired samples for percentage of
censoring equal to 40%. The sample size is n = 100, 200, 400, the significance level is α = 0.05 and Diff = β21 − β11, so the
null hypothesis is satisfied for Diff = 0. The covariance between the errors is indicated by η, see (6.1). The abbreviations Bonf,
TL2

and TL∞ stand for the test statistics defined in (3.3), (3.1) and (3.2), respectively.
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Bonf TL2 TL∞ Bonf TL2 TL∞ Bonf TL2 TL∞ Bonf TL2 TL∞

De Backer et al. (2019) Peng and Huang (2008) Portnoy (2003) Wang and Wang (2009)
Mod. n Diff. η = 0.2

1

100
0 0.010 0.000 0.010 0.012 0.006 0.012 0.004 0.008 0.004 0.006 0.002 0.006
0.2 0.038 0.040 0.034 0.012 0.008 0.010 0.016 0.012 0.014 0.028 0.030 0.028
0.4 0.086 0.102 0.088 0.025 0.046 0.042 0.052 0.073 0.058 0.042 0.070 0.046

200
0 0.020 0.018 0.026 0.016 0.022 0.022 0.026 0.020 0.018 0.016 0.018 0.016
0.2 0.042 0.044 0.054 0.024 0.022 0.026 0.101 0.064 0.091 0.048 0.048 0.058
0.4 0.216 0.238 0.198 0.157 0.131 0.141 0.243 0.225 0.211 0.170 0.214 0.162

400
0 0.062 0.038 0.046 0.012 0.018 0.010 0.022 0.026 0.014 0.042 0.028 0.036
0.2 0.092 0.090 0.088 0.110 0.132 0.102 0.078 0.086 0.072 0.126 0.154 0.146
0.4 0.496 0.586 0.486 0.466 0.518 0.456 0.544 0.606 0.540 0.410 0.506 0.448

2

100
0 0.014 0.008 0.016 0.012 0.006 0.014 0.018 0.016 0.016 0.012 0.006 0.012
0.2 0.050 0.048 0.052 0.032 0.032 0.045 0.028 0.024 0.030 0.040 0.042 0.040
0.4 0.128 0.166 0.122 0.090 0.157 0.136 0.166 0.186 0.180 0.140 0.194 0.158

200
0 0.026 0.014 0.022 0.028 0.012 0.030 0.020 0.028 0.014 0.024 0.032 0.024
0.2 0.100 0.138 0.106 0.122 0.130 0.120 0.090 0.102 0.084 0.126 0.122 0.130
0.4 0.384 0.488 0.418 0.444 0.478 0.448 0.354 0.444 0.352 0.504 0.550 0.474

400
0 0.022 0.032 0.030 0.036 0.040 0.038 0.026 0.026 0.022 0.024 0.030 0.030
0.2 0.234 0.260 0.220 0.276 0.290 0.276 0.268 0.322 0.260 0.260 0.360 0.254
0.4 0.806 0.900 0.846 0.834 0.904 0.842 0.902 0.948 0.892 0.882 0.950 0.888

3

100
0 0.018 0.012 0.014 0.028 0.032 0.028 0.008 0.014 0.012 0.018 0.014 0.016
0.2 0.022 0.028 0.038 0.076 0.082 0.090 0.026 0.034 0.036 0.042 0.036 0.046
0.4 0.360 0.496 0.392 0.204 0.270 0.208 0.306 0.396 0.348 0.326 0.384 0.370

200
0 0.022 0.026 0.020 0.010 0.004 0.010 0.016 0.016 0.022 0.020 0.010 0.020
0.2 0.190 0.282 0.202 0.176 0.216 0.206 0.296 0.288 0.274 0.194 0.264 0.202
0.4 0.778 0.828 0.818 0.792 0.868 0.798 0.780 0.894 0.768 0.838 0.866 0.834

400
0 0.020 0.022 0.024 0.022 0.012 0.018 0.020 0.016 0.022 0.016 0.020 0.018
0.2 0.352 0.520 0.394 0.374 0.476 0.402 0.508 0.580 0.504 0.546 0.566 0.548
0.4 0.994 0.998 0.994 0.992 0.994 0.988 0.988 0.998 0.992 0.992 0.994 0.990

η = 0.4

1

100
0 0.032 0.022 0.032 0.006 0.016 0.010 0.016 0.008 0.016 0.016 0.006 0.012
0.2 0.026 0.022 0.024 0.004 0.016 0.006 0.017 0.012 0.017 0.020 0.018 0.022
0.4 0.034 0.060 0.068 0.050 0.033 0.042 0.039 0.039 0.028 0.058 0.046 0.056

200
0 0.010 0.012 0.010 0.016 0.006 0.008 0.018 0.012 0.016 0.004 0.000 0.006
0.2 0.078 0.076 0.076 0.060 0.058 0.072 0.020 0.034 0.026 0.032 0.046 0.036
0.4 0.254 0.256 0.232 0.175 0.236 0.171 0.233 0.337 0.275 0.190 0.246 0.168

400
0 0.022 0.022 0.022 0.032 0.030 0.030 0.024 0.016 0.022 0.024 0.032 0.020
0.2 0.168 0.206 0.170 0.104 0.116 0.136 0.080 0.082 0.084 0.140 0.154 0.144
0.4 0.528 0.676 0.582 0.532 0.612 0.518 0.462 0.632 0.494 0.506 0.576 0.504

2

100
0 0.012 0.010 0.016 0.008 0.004 0.006 0.006 0.010 0.006 0.008 0.004 0.008
0.2 0.066 0.066 0.060 0.026 0.049 0.030 0.040 0.051 0.047 0.030 0.036 0.030
0.4 0.202 0.232 0.188 0.147 0.183 0.139 0.162 0.193 0.162 0.124 0.160 0.126

200
0 0.026 0.016 0.022 0.012 0.014 0.016 0.016 0.018 0.014 0.012 0.010 0.010
0.2 0.136 0.142 0.120 0.108 0.128 0.106 0.080 0.100 0.088 0.092 0.094 0.108
0.4 0.594 0.732 0.644 0.504 0.660 0.494 0.654 0.732 0.676 0.498 0.674 0.506

400
0 0.028 0.028 0.026 0.048 0.030 0.052 0.026 0.016 0.018 0.020 0.016 0.020
0.2 0.338 0.384 0.306 0.312 0.352 0.300 0.216 0.274 0.236 0.356 0.428 0.344
0.4 0.934 0.954 0.946 0.944 0.984 0.964 0.972 0.988 0.966 0.974 0.988 0.972

3

100
0 0.014 0.000 0.014 0.012 0.006 0.014 0.004 0.000 0.006 0.008 0.002 0.010
0.2 0.078 0.062 0.088 0.104 0.062 0.110 0.036 0.054 0.050 0.040 0.084 0.066
0.4 0.454 0.548 0.472 0.325 0.431 0.341 0.324 0.439 0.360 0.320 0.444 0.364

200
0 0.010 0.008 0.012 0.032 0.012 0.022 0.012 0.012 0.016 0.010 0.006 0.008
0.2 0.326 0.352 0.320 0.284 0.320 0.284 0.240 0.332 0.216 0.206 0.214 0.210
0.4 0.882 0.914 0.892 0.872 0.916 0.848 0.818 0.924 0.826 0.716 0.858 0.730

400
0 0.008 0.008 0.008 0.016 0.016 0.014 0.020 0.016 0.020 0.014 0.008 0.016
0.2 0.622 0.714 0.618 0.578 0.668 0.502 0.708 0.782 0.700 0.446 0.618 0.432
0.4 0.996 1.000 0.996 0.996 0.998 0.996 1.000 1.000 1.000 1.000 1.000 1.000

Table 12: Simulation results for the comparison of the median (τ = 0.5) for two paired samples subject to 40% censoring. The
sample size is n = 100, 200, 400, the significance level is α = 0.05 and Diff = β21 − β11, so the null hypothesis is satisfied for
Diff = 0. The covariance between the errors is indicated by η, see (6.1). The abbreviations Bonf, TL2 and TL∞ stand for the
test statistics defined in (3.3), (3.1) and (3.2), respectively.
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