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Semiclassical limit for generalized KdV equations

before the gradient catastrophe

D. Masoero∗ and A. Raimondo†

Abstract

We study the semiclassical limit of the (generalised) KdV equation,
for initial data with Sobolev regularity, before the time of the gradient
catastrophe of the limit conservation law. In particular, we show that
in the semiclassical limit the solution of the KdV equation: i) converges
in Hs to the solution of the Hopf equation, provided the initial data
belongs to Hs, ii) admits an asymptotic expansion in powers of the
semiclassical parameter, if the initial data belongs to the Schwartz
class. The result is also generalized to KdV equations with higher
order linearities.

Introduction

We consider the following class of partial differential equations

∂tu = a(u) ∂xu+
n
∑

i=1

εi ∂
2i+1
x u, u(x, 0) = ϕ(x), (G)

depending on a family of parameters ε = (ε1, . . . , εn) ∈ R
n. Here a(u)

is a smooth function, x ∈ R, and the initial data is independent of ε.
We call the above family of equations generalized KdV equations, for
it contains as a particular example the KdV equation itself:

∂tu = u ∂xu+ ε ∂3
xu .

Other examples are given by the Kawahara equation [15], which is
obtained by choosing a(u) = u and n = 2, as well as nonlinear gener-
alizations of KdV, for n = 1 and a arbitrary.

We are interested in the behaviour of the solutions of (G) as the
parameters ε vary. In particular, we consider the behaviour when
ε → 0, in which limit, formally, (G) becomes a quasilinear conservation
law, of the form:

∂tu = a(u) ∂xu, u(x, 0) = ϕ(x). (H)
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The case a(u) = u is known as Hopf equation. The problem of study-
ing solutions of equation (G) as ε → 0 is known in the literature as the
semiclassical (or singular, or dispersionless) limit. Since solutions of
equation (H) may develop a singularity at a critical time 0+ ≤ tc < ∞,
we study local-in-time solutions of (G) for those classes of initial data,
to be specified below, for which the Cauchy problem for the generalized
KdV equation is locally well-posed uniformly with respect to ε ∈ R

n.

There is an extensive literature on the initial value problem for
generalized KdV equations, which is based essentially on two distinct
approaches: the first makes use of the inverse scattering and Riemann-
Hilbert methods, and it applies to those equations of the class (G)
which are integrable, such as KdV. The second applies to a more gen-
eral class of equations, and makes use of fix-point arguments for the
associated integral equation

u(t; ε) = W (t; ε)u(0; ε) +

∫ t

0

W (t− s; ε)a(u(s; ε))ux(s; ε)ds , (W)

W (t; ε) = exp
(

t

n
∑

i=1

εi∂
2i+1
x

)

.

Since the seminal paper of Lax and Levermore [18], the method of
inverse scattering has been successfully used to study the semiclassical
limit of the KdV equation, both before and after the critical time tc
of the Hopf equation. For time smaller than tc, rigorous results have
been obtained for those initial data whose scattering transform can
be computed in the semiclassical limit using the WKB analysis. In
this case, the corresponding solutions are proven to converge in L2 to
the solutions of the Hopf equation [18, 22]. If, in addition, the initial
data satisfy some analyticity assumptions, then the powerful nonlinear
steepest-descent analysis [7] applies to the study of the semiclassical
limit. For these initial data, the solutions are known to converge uni-
formly - see [6, 4].

The integral equation (W) has been a major topic of investigation
since it was used by Kenig, Ponce and Vega [16] to establish local
well-posedness of (G) for polynomial nonlinearity a(u) and dispersion
ε 6= 0. In the particular case of the KdV equation, the authors of
[16] have been able to prove local well-posedness in Hs, s > 3

4 . Their
results were then refined by many authors to obtain local and global
well-posedness for low-regular initial data, see for instance [3, 17, 5].

The theory of equation (W) relies heavily on the dispersive charac-
ter of equation (G), being based on the smoothing effects of the linear
evolution operator W . Hence, it may be very difficult to apply it to the
study of the semiclassical limit. Moreover, since the equation (H) may
be ill-posed for s ≤ 3

2 , it seems unreasonable to study the semiclassical
limit for low-regular solutions.

Due to the limitations of the inverse scattering transform and of
the integral equation (W), in order to deal with the semiclassical limit
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of the general equation (G) we choose a different approach, namely
Kato’s theory of quasi-linear equations [13]. This approach turns out
to be particularly suitable to our problem because it allows to treat
equation (G) for all values of ε ∈ R

n on the same footing, and it is
very robust under perturbations.1

Following Kato, we consider (G) as a quasilinear equations on a
Banach space X , of the form

du(ε)

dt
= A(u(ε); ε)u+ f(u(ε); ε), 0 ≤ t ≤ T, u(0) = ϕ. (Q)

Here A(y; ε) is a linear operator, depending on ε ∈ R
n and on some

element y ∈ X . In addition, for any fixed ε and y the operator A(y; ε)
generates a C0−semigroup on X . In our case,

A(y; ε) = a(y) ∂x +

n
∑

i=1

εi ∂
2i+1
x , f = 0,

and we choose X = L2(R) . Kato himself used his theory to construct
local–in–time solutions of equation (G). In particular, he established
local well-posedness for the KdV equation in Hs, s > 3

2 , both when
ε 6= 0 [14] and when ε = 0 [13]. However, he did not consider the
semiclassical limit.

We establish simple conditions, under which the local-in-time solu-
tion of the Cauchy problem (G) with initial datum in Hs is continuous
and N−differentiable with respect to ε.

Essentially, we show that:

• If s ≥ 2n+1, the local-in-time solution u(ε) of (G) is continuous
with respect to ε ∈ R

n .

• Let K =
∑n

i=1 Ni(2i+ 1) and N =
∑n

i=1 Ni. If s−K ≥ 2n+ 1,
then the partial derivative

∂Nu(ε)

∂εN1
1 . . . ∂εNn

n

exists in Hs−K and it is continuous with respect to ε ∈ R
n.

The above results can be applied to the project, proposed by Du-
brovin and Zhang [10, 8], of Hamiltonian perturbations of quasilinear
conservation laws (H). Indeed, any equation the form (H) can be writ-
ten as an infinite dimensional Hamiltonian system; within this theory,
one looks for suitable deformations – depending on arbitrary functions
of u and its derivatives – such that the equation remains Hamiltonian.
One simple example is given by KdV, which can be obtained as a
Hamiltonian perturbation of the Hopf equation.

1An alternative method, which may be suitable for the study of the semiclassical limit,
is given by the Bona-Smith energy method [2].
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In addition to the above problem, the project includes a classifica-
tion of integrable perturbations and a characterization of the solutions
of the perturbed equations, both before the critical time and in a neigh-
borhood of it. It should also be noted that the project applies not only
to single equations, but also to systems of first oder quasilinear PDEs,
[8, 9, 10] .

Before critical time, the Dubrovin-Zhang theory provides a way to
construct solutions of the perturbed equation in terms of solutions of
the unperturbed one. Without going into detail, one looks for solutions
of the perturbed equations as formal power series u = v0 + v1 ε2 + . . . ,
and argues that v0 is a solution of the unperturbed equation, while
the subsequent coefficients can by obtained from v0 by a recursive pro-
cedure. This construction, although extremely powerful in predicting
behaviour of the solutions, is based on formal identities, and requires
rigorous justification.

The paper is organized as follows: after recalling in Section 1 some
basic elements of the theory of C0−semigroups, we consider in Section
2 the results obtained by Kato in [13], which we will use in order to
prove our results.

Sections 3 and 4 are the core of the paper. We first prove the exis-
tence of a positive time T for which the solutions of the problem (G),
with initial data in Hs, s ≥ 2n + 1, are continuous functions of the
parameters ε. In particular, such solutions are continuous as ε → 0,
implying Hs−convergence to the solution of (H) in this limit. This
result generalizes the one obtained by Lax and Levermore (before the
critical time) to equations of type (G) – which are not necessarily in-
tegrable – and to initial data in the Sobolev space Hs.

In Section 4 we consider differentiability of solutions of (G) with
respect to ε. Although our result – with suitable modifications – holds
for every equation of type (G), for simplicity we consider in detail the
KdV example only. We show that if the initial datum of the KdV
equation lies in the Sobolev space Hs, then the solution of the Cauchy
problem is N−times differentiable with respect to ε, for N = ⌊s/3−1⌋.

In Section 5 we present the Dubrovin-Zhang theory of Hamiltonian
perturbations of equation (H), considering those aspects of the theory
which are directly related to the results of the present paper: the clas-
sification results of Hamiltonian perturbations and the construction of
the solutions of the perturbed equations before critical time.

In the last Section we apply the results obtained in Sections 3 and
4 to the Dubrovin’s theory. Since equations of type (G) can be seen
as Hamiltonian perturbations of (H), we provide – for this class of
equations – a rigorous justification to the heuristic results of Section
5. In addition, we find an explicit formula for the coefficient v1 of the
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solution of a generic Hamiltonian perturbation of (H) in terms of the
solution v0 of the unperturbed equation. This is of the form:

v1 =
t

2

∂

∂x

(

(c a′)
′
(v0x)

2 + 2 c a′ v0xx + t c (a′)2v0x v
0
xx + t c′ (a′)2(v0x)

3

(1 + t a′ v0x)
2

)

,

where a = a(v0) is the non-linearity of (H), and c = c(v0) is a function
characterizing the Hamiltonian perturbation.

Notation

Given the real Banach spaces X,Y, . . . , we let ‖ ‖X , ‖ ‖Y , . . . de-
note the corresponding norms. L(Y,X) denotes the Banach space of
bounded linear operators from Y to X , with norm ‖ ‖Y,X , while L(X)
denotes the Banach space of bounded linear operator from X to it-
self with the norm ‖ ‖X . We call D(A) the domain of an operator
A. L2 := L2(R) denotes the Hilbert space of square integrable real
functions and Hs := Hs(R), s ≥ 0 denotes the Sobolev space of order
s. The symbol ∂n

x denotes the n-th derivative with respect to x or the
corresponding operator on L2 with domain Hn.

In the present paper we consider real Banach spaces and real func-
tions only.
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research. A.R. and D.M. thank, respectively, the Grupo de Física
Matemática da Universidade de Lisboa and the SISSA Mathematical
Physics sector for the kind hospitality.

The research was partially supported by the INDAM–GNFM ‘Pro-
getto Giovani 2010’. D.M. is supported by a Postdoc scholarship of the
Fundação para a Ciência e a Tecnologia, project PTDC/MAT/104173-
/2008 (Probabilistic approach to finite and infinite dimensional dynam-
ical systems).

1 C0−semigroups

The theory of C0−semigroup is a standard tool in analysis. Following
[13] and [20], we recall the elements of the theory we will use in the
rest of the paper.

A one parameter family of linear operators {T (t), 0 ≤ t < ∞} on
a Banach space X is a C0−semigroup if it is a strongly continuous
semigroup of bounded linear operators, namely, it satisfies:

• T (0) = I, T (t)T (s) = T (t+ s), t, s ≥ 0,

• limt↓0 T (t)x = x, ∀x ∈ X .

Here I is the identity operator on X . The linear operator defined by

D(A) =

{

x ∈ X : lim
t↓0

T (t)x− x

t
exists

}
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and

Ax = lim
t↓0

T (t)x− x

t
, ∀x ∈ D(A),

is the infinitesimal generator of the C0−semigroup {T (t)}. The oper-
ator A is closed and densely defined.

A standard theorem shows that for any C0−semigroup there exist
two positive constants M ≥ 1 and β ≥ 0 such that

‖T (t)‖X ≤ Meβt, 0 ≤ t < ∞. (1)

In particular, a C0−semigroup with constants M = 1, β = 0 is called
a semigroup of contractions. We denote by G(X,M, β) the set of in-
finitesimal generators of C0−semigroups with constants M , β.

Remark 1. Note that if A ∈ G(X, 1, β), then A− βI ∈ G(X, 1, 0).

Later on we will need a perturbation theorem for generators of
semigroups of contractions; for this purpose we introduce the following
notions.

An operator A on a Hilbert space X is said to be dissipative if for
every x ∈ D(A), we have Re(Ax, x) ≤ 0.

If A and B are operators on a Banach space X , we say that B
is relatively bounded with respect to A with relative bound ρ ≥ 0 if
D(A) ⊂ D(B) and there exists a σ ≥ 0 such that

‖Bx‖X ≤ ρ ‖Ax‖X + σ ‖x‖X , ∀x ∈ D(A). (2)

Theorem 1. Let A ∈ G(X, 1, 0) be the generator of a C0−semigroup
of contractions on a Hilbert space X. Let B be dissipative and relatively
bounded with respect to A with relative bound ρ < 1. Then A + B is
the generator of a semigroup of contractions.

Proof. See [20], Corollary 3.3

The definition of dissipative operator and Theorem 1 can be gener-
alised to any Banach space, with slight modifications. However, such
generalisation is not necessary in our study. The following examples
will be useful in the rest of the paper.

Example 1. Let X be a Banach space and A be an anti-self-adjoint
operator. Due to the Stone Theorem, A generates a C0−group of uni-
tary operators, hence a C0−semigroup of contractions. For instance,
the derivative operator ∂2n+1

x , n ∈ N, with domain D(∂2n+1
x ) = H2n+1,

is an anti-self-adjoint operator on the space L2. More generally, the
operator

D2n+1
ε =

n
∑

i=0

εi∂
2i+1
x , ε = (ε1, . . . , εn) ∈ R

n, (3)

with domain H2n+1 is anti-self-adjoint on L2 for any value of the pa-
rameter ε.
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Example 2. [13] Let f(x) be a bounded differentiable function with
bounded derivative on the whole real axis, take X = L2(R), B = f(x)∂x
and D(B) = H1. The operator B can be decomposed into an anti-self-
adjoint part and a bounded self-adjoint part, B = B1 +B2 with:

B1 = (f∂x +
1

2
fx), B2 = −

1

2
fx .

In particular, B1 has domain H1 and is anti-self-adjoint, thus, it gen-
erates a C0−semigroup of contractions. On the other hand, B2 is a
bounded self-adjoint operator with norm ‖B2‖L2 = 1

2 supx∈R
|fx(x)|,

and a simple computation shows that B2−‖B2‖L2 I is dissipative. Due
to Theorem 1, we have that B − ‖B2‖L2 I generates a C0−semigroup
of contractions. Therefore, B ∈ G(X, 1, β) with β = ‖B2‖L2 . In ad-
dition, B is relatively bounded with respect to ∂2n+1

x , n ≥ 1 with any
relative bound ρ > 0. Due to Theorem 1 and the above discussion,

B + ε ∂2n+1
x ∈ G(X, 1, β),

for any ε ∈ R.

Example 3. Let g(x) be a continuous bounded function on R, take
X = L2(R), and let C = g(x) be the operator of multiplication by
g, with D(C) = L2. We have that C is a bounded operator, with
norm β′ = supx∈R |g(x)|. Due to Theorem 1, if A ∈ G(X, 1, β) then
A+ C ∈ G(X, 1, β + β′).

2 Kato’s theory on quasilinear equations

In this section we review Kato’s results on quasilinear equations on a
Banach space X , of the form

du

dt
= A(t, u)u+ f(t, u), 0 ≤ t ≤ T, u(0) = ϕ. (4)

Here A(t; y) is a linear operator, depending on the time t and on some
element y ∈ X , and such that for any fixed t and y the operator A(t; y)
generates a C0−semigroup on X . It should be noted that we do not
present these theorems in their strongest form, but in a form adequate
to our purpose. For the reader’s convenience, we follow – as much as
possible – the notation of the original paper [13].

First, we consider the linear case, when the operator A and the
forcing term f do not depend on u.

Theorem 2. The linear non-homogeneous Cauchy problem

du

dt
= A(t)u+ f(t), 0 ≤ t ≤ T, u(0) ∈ Y, (5)

has a unique solution

u(t) ∈ C([0, T ];Y ) ∩ C1([0, T ];X),

provided the following assumptions are satisfied:
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(i) X is a Banach space and Y ⊂ X is another Banach space, con-
tinuously and densely embedded in X. Moreover, there exists an
isomorphism S of Y into X.

(ii) There exists a positive β such that A(t) ∈ G(X, 1, β) ∀t ∈ [0, T ].

(iii) SA(t)S−1 − A(t) = B(t) ∈ L(X), and t 7→ B(t) is a continuous
operator valued function.

(iv) Y ⊂ D(A(t)) so that A(t) ∈ L(Y,X), and t 7→ A(t) is a continu-
ous operator valued function.

(v) u(0) ∈ Y and f ∈ C([0, T ];Y ).

Proof. See [12], Theorem I and II.

The following is a perturbation theorem for the linear equation (5).

Theorem 3. In addition to the assumptions of Theorem 2, consider
the sequence of Cauchy problems

dun

dt
= An(t)un + fn(t), 0 ≤ t ≤ T, un(0) ∈ Y, (6)

and suppose that, for any fixed n, the operator An satisfies conditions
(i) through (v) of Theorem 2. Moreover, suppose that

(vi) An(t) → A(t) strongly in L(Y,X), and supt∈[0,T ] ‖A
n(t)‖Y,X is

uniformly bounded in n.

(vii) Bn(t) → B(t) strongly in L(X), and supt∈[0,T ] ‖B
n(t)‖X is uni-

formly bounded in n.

(viii) un(0) → u(0) in Y and fn → f in C([0, T ], Y ).

Then un(t) → u(t) in C([0, T ], Y ) ∩ C1([0, T ], X), where un(t) is the
unique solution of (6) and u(t) is the unique solution of (5).

Proof. See [12] Theorem V-VI.

We now move to the analogue results for quasilinear equations of
the form (4). For our purposes, it is sufficient to consider only the
homogeneous case, when f = 0, namely:

du

dt
= A(t, u)u, 0 ≤ t ≤ T, u(0) ∈ W ⊂ Y . (7)

Here the set W is a bounded subset of Y . Due to the nonlinearity,
existence of the solutions is not guaranteed on the whole time interval
[0, T ], but – in general – only for a smaller time T ′, with 0 < T ′ ≤ T .
The reason we restrict to a bounded subset W is because we expect
the time of existence to depend on the norm of the initial data.

Following Kato, we make the following assumptions:

(X) X is a reflexive Banach space and Y ⊂ X is another reflexive
Banach space, continuously and densely embedded in X . There
is an isometric isomorphism S of Y into X . Moreover, we fix a
ball W ⊂ Y of radius R and centered in 0.

8



(A1) There exists a positive β such that A(t, y) ∈ G(X, 1, β), for all
t ∈ [0, T ] and y ∈ W .

(A2) For any t, y ∈ [0, T ]×W , we have

SA(t)S−1 −A(t) = B(t) ∈ L(X),

and ‖B(t)‖X ≤ λ1.

(A3) For all t, y ∈ [0, T ]×W , we have A(t) ∈ L(Y,X). Fixed y ∈ W ,
the function t 7→ A(t, y) is a continuous operator-valued function,
and fixed t ∈ [0, T ], y → A(t, y) is Lipschitz continuous, in the
sense that there exists a µ1 such that

‖A(t, y)−A(t, z)‖Y,X ≤ µ1 ‖y − z‖X .

Theorem 4. Suppose conditions (X),(A1),(A2),(A3) are satisfied. Then,
the quasilinear homogeneous Cauchy problem (7) has a unique solution

u(t) ∈ C([0, T ′];W ) ∩C1([0, T ′];X),

for some 0 < T ′ ≤ T. In addition, T ′ has a lower bound uniquely de-
pending on β, λ1, µ1, R and monotonically decreasing in each variable.

Proof. See [13] Theorem 6.

We now state the perturbation theorem in the case of quasilinear
equations of type (7).

Theorem 5. In addition to the assumptions of Theorem 4, consider
the sequence of quasilinear homogeneous Cauchy problems

dun

dt
= An(t, un)un, 0 ≤ t ≤ T, un(0) ∈ W, (8)

and assume that conditions (X), (A1), (A2) and (A3) of Theorem 4
are satisfied for every n, with constants β, λ1, µ1 independent on n.
Moreover, suppose that

(A4) ‖Bn(t, y)−Bn(t, z)‖X ≤ µ2 ‖y − z‖Y , uniformly in n.

(C1) An(t) → A(t) strongly in L(Y,X).

(C2) Bn(t) → B(t) strongly in L(X).

(C3) un(0) ∈ W and un(0) → u(0) in Y , as n 7→ ∞.

Then, there exists a positive time 0 < T ′′ ≤ T , such that there is a
unique solution

un ∈ C([0, T ′′],W ) ∩ C1([0, T ′′], X)

of (8), for every n, and a unique solution u of (7) in the same class.
Moreover

un(t) → u(t) in C([0, T ′′],W ) ∩ C1([0, T ′′], X),

as n 7→ ∞. The time T ′′ has a lower bound uniquely depending on
β, λ1, µ1, µ2, R, and monotonically decreasing in each variable.

Proof. See [13], Theorem 7.
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3 Continuity of solutions for generalised KdV

equations

Here we apply Kato’s theory to study local-in-time solutions of the
following family of Cauchy problems:

du

dt
= A(u; ε)u, u(0) ∈ Hs, (9)

A(u; ε) = a(u)∂x +
n
∑

i=1

εi∂
2i+1
x ,

depending on a family of parameters ε = (ε1, . . . , εn) ∈ R
n. Here a(u)

is a smooth function, the initial value u(0) is independent on the εi for
all i, and s ≥ 2n + 1. We call the above equations generalized KdV
equations. We are interested in the behaviour of the solutions of (9) as
the parameters ε vary; in particular, we want to prove the continuity
of the solutions with respect to ε in a suitable Banach space.

To apply the results of the previous section we choose X = L2 and
Y = Hs. Before proving the main result, we collect some known facts
about Sobolev spaces (in one space dimension).

Lemma 1. (0) The map Λs = (1−∂2
x)

s

2 is an isometric isomorphism
of Hs, s ≥ 0 into L2. The inverse of Λs is Λ−s.

(i) Sobolev embedding (particular case): if u ∈ Hs, s > 1
2 + n, then

u is n-times differentiable and there exists a constant c such that

‖∂n
xu‖L∞ ≤ c ‖u‖Hs . (10)

(ii) Algebra property: if u, v ∈ Hs, s > 1
2 , then there exists a constant

c(s) such that

‖u v‖Hs ≤ c(s) ‖u‖Hs ‖v‖Hs . (11)

(iii) Schauder estimate: if a : R → R is a smooth function and s > 1
2 ,

then there exists a constant c(s, a, ‖u‖Hs , ‖v‖Hs) such that

‖a(u)− a(v)‖Hs ≤ c(s, a, ‖u‖Hs , ‖v‖Hs) ‖u− v‖Hs . (12)

(iv) Commutator estimates: let u ∈ Hs, s > 3
2 . Then the operator

Tu = (Λsu∂x − u∂xΛ
s)Λ−s is bounded on L2 and there exists a

constant c(s) such that

‖Tu‖L2 ≤ c(s) ‖u‖Hs . (13)

Proof. For (iv) see [13], Lemma A.2. For all other statements, see [21]
Appendix A.

We prove the following
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Theorem 6. Let W be a ball of radius R in Hs, such that u(0) ∈ W .
There is a time T such that for any ε ∈ R

n the Cauchy problem (9)
has a unique solution

u(t; ε) ∈ C([0, T ],W ) ∩ C1([0, T ], Hs−(2n+1)).

The map ε 7→ u(t; ε) from R
n to C([0, T ],W ) ∩ C1([0, T ], Hs−(2n+1))

is continuous.

Proof. As a first step we prove that u(t; ε) exists and is continuous as
a map from R

n to C([0, T ], Hs) ∩ C1([0, T ], L2). To prove this, it is
sufficient to show that all conditions of Theorems 4 and 5 are satisfied
uniformly in R

n, assuming X = L2(R) and Y = Hs(R).

(X) It is trivially satisfied since X , Y are Hilbert spaces. The required
isometry can be chosen to be Λs.

(A1) Following Example 2 above, we see that A(u; ε) ∈ G(X, 1, β(R)),
with

β(R) =
1

2
sup
u∈W

sup
x∈R

|∂xa(u)| ≤
1

2
R sup

|x|≤R

a′(x) .

(A2) Since Λs commutes with the derivative operator, we have

B(u, ε) := (ΛsA(ε)−A(ε)Λs)Λ−s = Ta(u),

where T is defined as in Lemma 1 (iv). Due to the commutator
estimate and the Schauder estimate, we have that

‖B(u; ε)‖L2(R) ≤ c(s, a, R)R = λ1(R) .

(A3) A(u; ε) is a continuous operator from Hs to H l, for 0 ≤ l ≤
s− (2n+ 1). Indeed,

∑n

i=1 εi∂
2i+1
x is continuous from Hs to H l

and a(u)∂x is continuous from Hs to Hs−1 due to the Schauder
estimate and the algebra property of Sobolev spaces. A simple
computation shows that

‖(A(u; ε)−A(v; ε))‖HS ,L2 ≤ c(s) sup
|x|≤R

|a′(x)| ‖u− v‖L2 ,

for some constant c(s) depending on s only. We choose

µ1(R) = c(s) sup
|x|≤R

|a′(x)| .

(A4) The same reasoning as in (A2) above, shows that property A(4)
is satisfied with µ2(R) = c(s, a, R) for some constant c(s, a, R).

(C1) The operator A(u; ε) depends continuously (in norm) on ε. In-
deed, if ε′ = (ε′1, . . . , ε

′
n), we have

‖(A(u; ε)−A(u; ε′))‖HS ,L2 ≤

n
∑

i=1

|εi − ε′i| .

11



(C2) The operator B(u; ε) does not depend on ε.

(C3) The initial data do not depend on ε.

We have thus proved that there exists a T > 0 such that u(t; ε) exists
and is continuous as a map from R

n to C([0, T ], Hs) ∩ C1([0, T ], L2),
we want to prove that it is continuous also as a map from R

n to
C([0, T ], Hs)∩C1([0, T ], Hs−(2n+1)). Now the time derivative of u sat-
isfies

ut(t; ε) = A(u(t); ε)u(t; ε),

and A(u(t); ε), for fixed t, ε is a continuous operator from Hs to Hs−(2n+1).
To complete the proof, it is enough to prove that the map

A( , ) : W × R
n → L(Hs, Hs−(2n+1))

is continuous. Indeed,

‖A(v, ε′)y −A(u, ε)y‖Hs−(2n+1) ≤ ‖a(v)∂xy − a(u)∂xy‖Hs−(2n+1) +
∥

∥

∥

∥

∥

n
∑

i=1

(ε′i − εi)∂
2i+1
x y

∥

∥

∥

∥

∥

Hs−(2n+1)

.

By Cauchy-Schwarz and the Schauder estimate we have

‖a(v)∂xy − a(u)∂xy‖Hs−(2n+1) ≤ c(s, a, R) ‖u− v‖Hs ‖y‖Hs .

Moreover
∥

∥

∑n

i=1(ε
′
i − εi)∂

2i+1
x y

∥

∥

Hs−(2n+1) ≤
∑n

i=1 |ε
′
i − εi| ‖y‖Hs .

Remark 2. Following [14], it is possible to prove a slightly stronger
version of this theorem. Indeed, we can prove that the Cauchy problem
(9) is uniformly locally well-posed in Hs with s > 3

2 . However, this
stronger result is unnecessary for the purpose of studying the deriva-
tives (with respect to εi) of the solution of the Cauchy problem (9).

Theorem 6 establishes that, fixed the nonlinearity a(u) and the ini-
tial datum ϕ ∈ Hs, there exists a time T > 0 such that the Cauchy
problem (9) is locally well-posed in the time interval [0, T ], continu-
ously with respect to ε ∈ R

n. In particular the life-span of the solution
can be chosen independently on ε.

The natural problem is to find the supremum of all the positive
times such that the Cauchy problem is locally well-posed and continu-
ous with respect to ε ∈ U for some open U ⊂ R

n. We denote this time
TU . Suppose that for some a(u) and some ϕ, there exists a U ⊂ R

n,
such that the Cauchy problem is globally well-posed for all ε ∈ U . In
this case, it follows that TU = ∞. For example, if n = 1, ε1 6= 0, and

limc→∞
a(c)
c4

= 0, then the Cauchy problem is globally well-posed in
Hs, for s > 3

2 [14]. On the other hand, if for instance a(u) = u4, some
solutions do blow-up at a finite time [19].

Since the general pattern is unknown, here we analyze the KdV
Cauchy problem

ut = uux + εuxxx, u|t=0 = ϕ ∈ Hs, s ≥ 3. (14)

12



If ε = 0, the solution of above Cauchy problem develops a gradient
catastrophe singularity at a finite time t = tc > 0. Here tc coincides
with the supremum of the positive time t for which the solution of the
Cauchy problem can be continued. Conversely, if ε 6= 0 the Cauchy
problem is globally well-posed [14].

We now show that the solution of the Cauchy problem of KdV is
continuous with respect to ε in any time interval [0, T ], with T strictly
smaller than the critical time tc. This is a simple corollary of Theorem
6:

Theorem 7. Let T be any positive time smaller than the critical time
T < tc and let u(t; ε) ∈ C([0, T ], Hs) ∩ C1([0, T ], Hs−3) be the unique
solution of the KdV Cauchy problem (14). Then ε → u(t; ε) is a
continuous map from R to C([0, T ], Hs) ∩ C1([0, T ], Hs−3).

Proof. The proof follows from Theorem 6 and a standard continuation
argument.

Corollary 1. Let s ≥ 3, T be any positive time smaller than the
critical time T < tc and let u(t; ε) be the unique solution of the KdV
Cauchy problem (14). Then

limε→0

∥

∥u(t; ε)− v0(t)
∥

∥

Hs
, uniformly in t ∈ [0, T ]. (15)

Here, v0 is the unique solution of the Cauchy problem for the Hopf
equation

v0t = v0v0x, v0|t=0 = ϕ.

4 The ε-expansion of KdV solutions

This section is devoted to study the differentiability of solutions of
equation (9) with respect to ε. For simplicity, we consider in detail the
case of KdV only; as explained in Theorem 9 below, there is no trouble
in extending the results to the whole class (9).

We show that if s ≥ 3N + 3, then the solution of the Cauchy
problem of KdV (14) is N -times differentiable with respect to ε in any
time interval [0, T ], with T strictly smaller than the critical time tc.
Before our main theorem, state a technical lemma.

Lemma 2. Let f : R → C([0, T ], H
1
2 ) and g : R → C([0, T ], H

3
2 ) be

two functions, and take X = L2, Y = Hs, with s ≥ 3. Then, the
family of linear operators

A(ε1, ε2, ε3) = f(ε1)∂x + g(ε2) + ε3∂
3
x (16)

satisfy the conditions (i) through (iv) of Theorem 2. Moreover, if
(εn1 , ε

n
2 , ε

n
3 ) → (ε1, ε2, ε3) is any converging sequence, then the sequence

of operators An = A(εn1 , ε
n
2 , ε

n
3 ) satisfy conditions (vi) and (vii) of The-

orem 3.

13



Proof. The operator A(ε1, ε2, ε3) was considered in Examples 2 and
3 above, where it was shown that it belongs to G(X, 1, β + β′) with
β = 1

2 supx∈R
|fx| and β′ = supx∈R

|g|. The verification of conditions
(i) through (vii) follows the same steps as the proof of Theorem 6.

Theorem 8. Let N = ⌊s/3−1⌋ and [0, T ] be a time interval such that
0 < T < tc. Let

u : R → C([0, T ], Hs) ∩ C1([0, T ], Hs−3)

be the map that associates to ε ∈ R the unique solution of the KdV
Cauchy problem (14). Then, there exist and are continuous the maps

u(k) : R → C([0, T ], Hs−3k) ∩ C1([0, T ], Hs−3(k+1)),

for k = 1, . . . , N, defined as

u(k)(ε) =
dku(ε)

dεk
.

Fixed ε ∈ R and k ∈ N, 1 ≤ k ≤ N , then the function u(k)(ε) satisfies
the following Cauchy problem

u
(k)
t = Aεu

(k) +

k−1
∑

j=1

(

k

j

)

u(j)u(k−j)
x + k u(k−1)

xxx , (17)

u(k)|t=0(ε) = 0, (18)

where the linear operator Aε is defined as

Aε = u(ε)∂x + ux(ε) + ε∂3
x, (19)

and we use the convention u(0)(ε) = u(ε).

Note that (17) is a linear non-homogeneous differential equation.

Proof. If N = 0, then the first part of the theorem follows from Theo-
rem 7, while the second part is empty. Assume N ≥ 1, we now prove
differentiability. To this aim we introduce the difference quotient

u(1)(ε, h) =
u(ε+ h)− u(ε)

h
,

and a simple computation shows that u(1)(ε, h) satisfies the equation

u
(1)
t (ε, h) = A(ε, h)u(1)(ε, h) + uxxx(ε+ h), u(1)(ε, h)|t=0 = 0 ,

where A(ε, h) = u(ε)∂x + ux(ε + h) + ε ∂3
x. In the limit h → 0,

the above equation converges to (17), with k = 1. This is a linear
non-homogeneous equation, with forcing term uxxx(ε). From The-
orem 7, we have that uxxx(ε) is a continuous function from R to
C([0, T ], Hs−3).

Hence, we can prove the convergence of limh→0 u
1(ε, h) using the

perturbation Theorem 3, provided that: i) we look for solutions of (17)

14



lying in the same space of the forcing term, namely Hs−3, and ii) the
forcing term belongs to D(Aε). The latter condition holds since s ≥ 6
by hypothesis.

Due to Theorems 2 and 3 and to Lemma 2, we conclude that

u(1)(ε) := lim
h→0

u(1)(ε, h)

solves (17) and maps R continuously to C([0, T ], Hs−3)∩C1([0, T ], L2).
Moreover, we have that the function u(1) maps R continuously into

C([0, T ], Hs−3) ∩ C1([0, T ], Hs−6).

Indeed, u
(1)
t (ε) equals Aεu

(1) + uxxx(ε), and the operator Aε maps
any continuous function R → C([0, T ], Hs−3) to a continuous function
R → C([0, T ], Hs−6). The last statement can be proved in a similar
way as in the proof of Theorem 6.

We continue the proof by induction on the order of the derivative.
Suppose the thesis is valid for i = 1, . . . , k < N . As before, we define
the difference quotient

u(k+1)(ε, h) =
u(k)(ε+ h)− u(k)(ε)

h
,

that satisfies the non-homogeneous linear equation

u
(k+1)
t (ε, h) = A(ε, h)u(k+1)(ε, h) + u(k)

xxx(ε+ h) + fk+1(ε, h)

+u(1)(ε)u(k)
x (ε) + u(1)

x (ε)u(k)(ε), (20)

u(k+1)(ε, h)|t=0 = 0,

where

fk+1(ε, h) =
1

h





k−1
∑

j=1

(

k

j

)

u(j)(ε+ h)u(k−j)
x (ε+ h) + k u(k−1)

xxx (ε+ h)−

k−1
∑

j=1

(

k

j

)

u(j)(ε)u(k−j)
x (ε) + k u(k−1)

xxx (ε)



 . (21)

The non-homogeneous term of equation (20) belongs to C([0, T ], Hs−3(k+1)),
and it continuously depends on ε. In the limit h → 0, the quantity
fk+1(ε, h) converges in C([0, T ], Hs−(3k+3)), continuously with respect
to ε, to

fk+1
ε (ε) :=

d

dε





k−1
∑

j=1

(

k

j

)

u(j)(ε)u(k−j)
x (ε) + k u(k−1)

xxx (ε)



 .

Hence, the same reasoning as in the case of u(1)(ε) shows that

u(k+1)(ε) := lim
h→0

u(k)(ε, h)
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solves the equation

u
(k+1)
t (ε) = A(ε)u(k+1)(ε) + u(k)

xxx(ε) + fk+1
ε (ε)

+u(1)(ε)u(k)
x (ε) + u(1)

x (ε)u(k)(ε), (22)

u(k+1)(ε)|t=0 = 0,

and it maps R continuously to C([0, T ], Hs−3(k+1))∩C1([0, T ], Hs−3(k+2)).
It is a simple computation to show that (22) coincides with (17).

Theorem 8 shows that if the initial datum of the KdV equation lies
in the Sobolev space Hs, then the solution of the Cauchy problem is
N−times differentiable with respect to ε, for N = ⌊s/3 − 1⌋. Con-
sequently, if the initial datum lies in all the Sobolev space – e.g. it
belongs to the Schwartz class – then the solution of the Cauchy prob-
lem is smooth with respect to ε. In particular, the solution admits an
asymptotic expansion in power series of ε. More precisely, we have the
following corollary of Theorem 8.

Corollary 2. Let ϕ ∈ H∞ = ∩s≥0H
s, T > 0 be any positive time

smaller than the critical time T < tc and u : R → C([0, T ], H∞) be the
solution of the Cauchy problem (14). Then

(i) u : R → C([0, T ], H∞) is a smooth function (of ε).

(ii) In ε = 0, u admits an asymptotic expansion in power series of ε:

u(ε) ∼

∞
∑

k=0

vk εk. (23)

where v0 = u(0) is the solution of the Cauchy problem

v0t = v0v0x (24)

v0|t=0 = ϕ, (25)

for the Hopf equation, and vk = u(k)(0) is the solution of the k-th
linear Cauchy problem (17) when ε = 0, that is:

vkt =

k
∑

j=0

(

k

j

)

vjvk−j
x + k vk−1

xxx , (26)

vk|t=0 = 0, k ≥ 1. (27)

Note that a similar Theorem was proven for the defocusing Non-
linear Schrödinger equation [11].

Below, we state the analogue of Theorem 8 for the general equation
(9) and we give a sketch the proof. The details of the full proof, which
is rather long, will be given elsewhere.

Theorem 9. Let U be an open subset of Rn, [0, T ] be a time interval
such that the Cauchy problem is locally well-posed and continuous with
respect to ε ∈ U and let

u : R → C([0, T ], Hs) ∩ C1([0, T ], Hs−(2n+1))
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be the map that associates to ε ∈ U the unique solution of the Cauchy
problem for (9). Moreover, let K =

∑n
i=1 Ni(2i+1) and N =

∑n
i=1 Ni.

If s−K ≥ 2n+ 1, then the partial derivative

∂Nu(ε)

∂εN1
1 . . . ∂εNn

n

exists in C([0, T ], Hs−K) ∩C1([0, T ], Hs−K−(2n+1)) and is continuous
with respect to ε ∈ U .

Proof. The Theorem can be proven along the very same lines of the
proof of the analogue Theorem 8 for KdV. More precisely, it is possible
to prove existence and continuity of the partial derivative, by showing
that it satisfies a linear non-homogeneous equation. Note that the
condition s−K ≥ 2n+ 1 implies that the forcing term belongs to the
domain of ∂2n+1

x .

5 Hamiltonian perturbation of quasilinear

conservation laws

We now consider the results of the previous sections in the setting of
the general construction, proposed by Dubrovin and Zhang [8, 9, 10],
of Hamiltonian regularization of the quasilinear conservation law:

ut = a(u)ux, u|t=0 = ϕ, (28)

where a and the initial value ϕ are assumed to be smooth functions,
and ϕ is either periodic or rapidly decreasing at infinity. We discuss
the aspects of the Dubrovin-Zhang construction which are more related
with the present paper; in the next section we will show how the results
obtained in Section 3 and 4 provide a rigorous justification to this
method for a particular class of equations of type (9).

Let us consider equation (28). It is well known that this equation
can formally be written as a Hamiltonian system

ut = {u,H} = ∂x
δH

δu(x)
, (29)

with Hamiltonian

H =

∫

R

h(u(x)) dx, h′′(u) = a(u),

and where the Euler-Lagrange operator is defined as

δH

δu(x)
=
∑

k≥0

(−1)k
dk

dxk

∂ h

∂u
(k)
x

,

for any local functional H =
∫

h(u, ux, uxx, . . . ) dx. The above Poisson
bracket is given by

{H1, H2} =

∫

R

δH1

δu(x)
∂x

δH2

δu(x)
dx,
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for any pair of functionals Hi =
∫

hi(u, ux, uxx, . . . ) dx, i = 1, 2.

Following Dubrovin, by Hamiltonian regularization (or perturba-
tion) of the quasilinear conservation law (28) we mean an expression

ut =
{

u, H̃
}

= ∂x
δH̃

δu(x)
, u|t=0 = ϕ, (30)

where the Hamiltonian is given by a formal series

H̃ = H +
∑

k≥1

Hk ε
k, Hk =

∫

hk(u;ux, . . . , u
(k)
x ) dx, k ≥ 1,

for some hk, which are assumed to be differential polynomials in the
derivatives. In addition, the solutions of equation (30) are sought to
be of the form

u(x, t) =
∑

i≥0

vi(x, t) ε 2i, (31)

with coefficients vi smooth functions of x and t. Within this setting,
all identities are understood in the sense of formal power series in ε
- they are assumed to hold identically at every order in ε. Therefore,
the perturbed Hamiltonian and the solutions are not required to be
convergent (neither asymptotic) series. Note, however, that the initial
values of the perturbed and the unperturbed equations are assumed
to be the same. In particular, the function ϕ is independent of ε, and
from the expansion (31) we deduce the identities

v0(x, 0) = ϕ(x), vi(x, 0) = 0, ∀ i ≥ 1. (32)

A primary task in the Dubrovin-Zhang approach is the classifica-
tion of Hamiltonian perturbations, which is performed by considering
equations (30) modulo quasi-Miura transformation. These are trans-
formations of the form:

u 7−→ v =
∑

k≥0

εkFk(u;ux, . . . , u
(k)
x ), (33)

where the functions Fk are rational with respect to the derivatives. A
partial result is given by the following

Theorem 10. [8] Any Hamiltonian perturbation of equation (28) of
order ε4 can be reduced by a Miura-type transformation to an equation
of the form (30), with Hamiltonian

H̃ =

∫

h̃(u;ux, uxx, ε)dx, h′′ = a, (34)

h̃ = h−
ε2

2
c h′′′ u2

x + ε4
[(

p h′′′ +
3

10
c2 h(4)

)

u2
xx

−

(

c c′′

8
h(4) +

c c′

8
h(5) +

c2

24
h(6) +

p′

6
h(4) +

p

6
h(5) − s h′′′

)

u4
x

]

,

for arbitrary functions c(u), p(u), s(u).
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Let us now consider in more detail the solutions of the perturbed
equation (30), which – after Theorem 10 – we will consider together
with a Hamiltonian of the form (34). By expanding both sides of
equation (30) according to the Ansatz (31), in first approximation one
obtains

v0t = a(v0) v0x, (35)

which says that v0 must be a solution of the unperturbed equation (28).
Accordingly, from the higher order coefficients one obtains an infinite
set of linear non-homogeneous equations (or transport equations) for
the coefficients vk(x, t), which can be solved recursively starting from
the solution of (35). For instance, the equation for v1 turns out to be

v1t = ∂x

(

a v1 + c a′ v0xx +
1

2
(c a′′ + c′ a′)

(

v0x
)2
)

, v1|t=0 = 0 (36)

where a = a
(

v0
)

, c = c
(

v0
)

.

Remark 3. In the class of initial data considered in the present paper,
any solution of equation (35) develops a singularity at a finite time
t = tc > 0, known as time of gradient catastrophe. An important
aspect of Dubrovin’s theory is concerned with the study of the solution
of (30) in a neighborhood of the critical time tc, in order to show how
the singularity is regularized by the dispersive perturbations [8].

This, however, is out of the scope of our present method of investi-
gation. In what follows we study the series (31) for any time interval
[0, T ] strictly smaller than the critical time: T < tc.

Example 4. The KdV equation

ut = u ux + ε2 uxxx

is obtained from (30), (34) by choosing h(u) = 1
6u

3, c(u) = 1, and
p(u) = s(u) = 0. In this case, a simple computation shows that the
Cauchy problems for the transport equations are given by

vkt =

k
∑

j=0

(

k

j

)

vjvk−j
x + k vk−1

xxx , k ≥ 0,

v0|t=0 = ϕ, vk|t=0 = 0.

One can – in principle – solve these equations recursively. Note that
these Cauchy problems coincide with (24), (26).

From the above discussion it follows that – at least in principle –
all coefficients of the expansion (31) can be obtained once a solution v0

of equation (35) is known. The method followed in [8, 9] (see also the
older result [1]) to find solutions of the perturbed equation (30) is to
construct a quasi-Miura transformation, relating the solution v0(x, t) of
the unperturbed equation (35) to the the solution u(x, t) of perturbed
equation (30). The required transformation has been suggested in [8]
to be of the form:

v0 7−→ u = v0 − ε
{

v0(x),K
}

+ ε2
{{

v0(x),K
}

,K
}

+ . . . (37)
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where the functional K, up to order 4 in ε, is given by

K = −

∫

[

ε
c(v0)

2
v0x log v

0
x + ε3

(

c(v0)2

40

(

v0xx
v0x

)3

−
p(v0)

4

(

v0xx
)2

v0x

)]

dx.

(38)
This in particular implies

v1 =
1

2
∂x

(

c(v0)
v0xx
v0x

+ c′(v0) v0x

)

, (39)

and a direct substitution shows that the above function satisfies equa-
tion (36), provided v0 satisfies (35). Note, however, that the function
(39) is bounded only for monotone solutions of equation (35). Further-
more, (39) does not satisfy the required initial condition (32).

6 Solutions of the transport equations

The classification problem of Hamiltonian perturbations, together with
the quasi-Miura transformation discussed above, are main ingredients
of the Dubrovin–Zhang constructions before the critical time, which is
the time-span we are interest in the present paper. As already noticed,
this approach is mainly based on identities of formal power series, and
indeed, if for a given Hamiltonian the corresponding equation (30) is
just a formal series, then the only way to construct a (formal) solution
seems to be through the use of a formal series, for instance like (31).

However, if the Hamiltonian perturbation (30) is well-defined – for
example if the Hamiltonian H̃ is given by (34) – then the resulting
equation may happen to be locally well-posed in some function space,
say Hs, for s big enough. At the same time, the solution may be
N−differentiable with respect to ε and the formal series (30) may just
be – up to order N – the Taylor expansion of the actual solution.

Using the results of Section 3 and 4 we can show that this is true
if the Hamiltonian perturbation (30) coincides with a generalised KdV
equation (9). This is the case for the general equation (9), provided
n ≤ 2. Indeed, the following Lemma holds:

Lemma 3. The equation

ut = a(u)ux + ε2 αuxxx + ε4 β uxxxxx, (40)

which is obtained by (9) in the case n = 2 and ε1 = α ε2, ε2 = β ε4, co-
incides with the Hamiltonian perturbation (30) with Hamiltonian (34),
provided the coefficients are chosen in the following way:

c =
α

a′
, p =

β

2 a′
−

3α2

10

a′′

(a′)3
, (41)

s = α2

(

2

5

(a′′)3

(a′)5
−

7

20

a′′ a′′′

(a′)4
+

1

24

a′′′′

(a′)3

)

−
β

12

(

(a′′)2

(a′)3
−

a′′′

(a′)2

)

.
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Theorem 11. Let ϕ ∈ Hs, s ≥ 11, U a neighborhood of ε = 0, u(ε) be
the solution of the Cauchy problem (40) with initial data ϕ and [0, T ]
be a time interval such that the Cauchy problem is locally well-posed
for any ε ∈ U and continuous with respect to ε ∈ U . Moreover, let
s ≥ 5 + 6N . Then u(ε) has a Taylor expansion in ε = 0, up to order
4N , of the form

u(ε) =
2N
∑

k=0

vk ε2k + r(ε), (42)

where

vk ∈ C([0, T ], Hs−3k), r(ε) ∈ C([0, T ], Hs−6N).

Here v0 = u(0) is the solution of the Cauchy problem for unperturbed
equation (35), while v1 satisfies the first transport equation (36) with
parameters (41), vk, k > 1 is the solution of the higher transport equa-
tions. The remainder term r is o(ε4N ).

Moreover, if α = 0 then the same is true, under weaker hypothesis.
Namely, if s ≥ 5 + 5N , then vk = 0 for k odd, v2l ∈ C([0, T ], Hs−5l),
and r : R → C([0, T,Hs−5N ]) is continuous, with r = o(ε4N ).

Proof. The proof follows from Theorem 9.

Remark 4. Due to Theorem 6, TQ > 0 for any Q ⊂ R. If, for
(ε, α, β) 6= (0, 0, 0) the Cauchy problem is globally well-posed [16], then
the time TQ in the above theorem can be chosen to be any positive time
smaller than the critical time tc of the unperturbed equation (35). This
is the case, for instance, if a(u) = u.

In the following theorem we provide a correction to the formula
(39) for the first coefficient v1. Our formula turns out to be valid
for solutions of (35) which are not monotone, and satisfies the correct
initial value.

Theorem 12. Consider the Cauchy problem for equation (35) with
initial datum v0(0) = ϕ ∈ Hs, s ≥ 3, denote by tc be the associated
critical time, and let v0(x, t), with (x, t) ∈ R × [0, tc), be its unique
classical solution. Then, the solution of the linear transport equation
(36), with v0 given above and initial datum v1(0) = 0 is

v1(x, t) =
∂

∂x

(

δK̃t[u]

δu(x) |u=v0(x,t)

)

, (x, t) ∈ R× [0, tc),

where the family of functionals K̃t, with t ∈ R, is defined by

K̃t[u] := −
1

2

∫

R

c (u)ux log
(

1 + t a′ (u)ux

)

dx,

for every u ∈ Hs, with ‖u‖Hs small enough.
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Proof. The explicit form of the function v1 stated in the theorem is
given by

v1 =
t

2

∂

∂x

(

(c a′)
′
(v0x)

2 + 2 c a′ v0xx + t c (a′)2v0x v
0
xx + t c′ (a′)2(v0x)

3

(1 + t a′ v0x)
2

)

,

(43)
where the functions a, c, and the corresponding derivatives are eval-
uated at u = v0(x, t). A direct calculation shows that this function
satisfies equation (36) with the correct initial value.

Remark 5. Note that the above theorem holds for any choice of the
functions a and c. This fact suggests that similar results of the one
obtained in Theorem 11 remain true for a generic Hamiltonian pertur-
bation of the quasilinear conservation law (28).

Remark 6. Formula (43) has been obtained making use of the so called
‘string equation’, introduced in the setting of Hamiltonian perturbations
of nonlinear PDEs by Dubrovin [8]. Although heuristic, the use of the
string equation turns out to be a very powerful method for describing
solutions of the perturbations both before the critical time and in a
neighborhood of it.
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[1] V. A. Băıkov, R. K. Gazizov, and N. Kh. Ibragimov. Approximate
symmetries and formal linearization. Zh. Prikl. Mekh. i Tekhn.
Fiz., 2:40–49, 1989.

[2] J. L. Bona and R. Smith. The initial-value problem for the
Korteweg-de Vries equation. Philos. Trans. Roy. Soc. London
Ser. A, 278(1287):555–601, 1975.

[3] J. Bourgain. Fourier transform restriction phenomena for certain
lattice subsets and applications to nonlinear evolution equations.
II. The KdV-equation. Geom. Funct. Anal., 3(3):209–262, 1993.

[4] T. Claeys and T. Grava. Universality of the break-up profile for
the KdV equation in the small dispersion limit using the Riemann-
Hilbert approach. Comm. Math. Phys., 286(3):979–1009, 2009.

[5] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao.
Sharp global well-posedness for KdV and modified KdVon R and
T. J. Amer. Math. Soc., 16(3):705–749 (electronic), 2003.

[6] P. Deift, S. Venakides, and X. Zhou. An extension of the steepest
descent method for Riemann-Hilbert problems: the small disper-
sion limit of the Korteweg-de Vries (KdV) equation. Proc. Natl.
Acad. Sci. USA, 95(2):450–454 (electronic), 1998.

[7] P. Deift and X. Zhou. A steepest descent method for oscillatory
Riemann-Hilbert problems. Asymptotics for the MKdV equation.
Ann. of Math. (2), 137(2):295–368, 1993.

[8] B. Dubrovin. On Hamiltonian perturbations of hyperbolic systems
of conservation laws. II. Universality of critical behaviour. Comm.
Math. Phys., 267(1):117–139, 2006.

22



[9] B. Dubrovin. Hamiltonian PDEs: deformations, integrability, so-
lutions. J. Phys. A, 43(43):434002, 20, 2010.

[10] B.A. Dubrovin and Y. Zhang. Normal forms of hierarchies of
integrable PDEs, Frobenius manifolds and Gromov - Witten in-
variants. arXiv:math/0108160v1.

[11] E. Grenier. Semiclassical limit of the nonlinear Schrödinger equa-
tion in small time. Proc. Amer. Math. Soc., 126(2):523–530, 1998.

[12] T. Kato. Linear evolution equations of “hyperbolic” type. II. J.
Math. Soc. Japan, 25, 1973.

[13] T. Kato. Quasi-linear equations of evolution, with applications
to partial differential equations. In Spectral theory and differen-
tial equations (Proc. Sympos., Dundee, 1974; dedicated to Konrad
Jörgens), pages 25–70. Lecture Notes in Math., Vol. 448. Springer,
Berlin, 1975.

[14] T. Kato. On the Cauchy problem for the (generalized) Korteweg-
de Vries equation. In Studies in applied mathematics, volume 8
of Adv. Math. Suppl. Stud., pages 93–128. Academic Press, New
York, 1983.

[15] T. Kawahara. Oscillatory solitary waves in dispersive media. J.
Phys. Soc. Japan, 33:260–264, 1972.

[16] C. E. Kenig, G. Ponce, and L. Vega. Well-posedness of the initial
value problem for the Korteweg-de Vries equation. J. Amer. Math.
Soc., 4(2):323–347, 1991.

[17] C. E. Kenig, G. Ponce, and L. Vega. A bilinear estimate with
applications to the KdV equation. J. Amer. Math. Soc., 9(2):573–
603, 1996.

[18] P. D. Lax and C. D. Levermore. The small dispersion limit of the
Korteweg-de Vries equation. I, II, III. Comm. Pure Appl. Math.,
36(3, 5, 6):253–290, 571–593, 809–829, 1983.

[19] Y. Martel and F. Merle. Review on blow up and asymptotic dy-
namics for critical and subcritical gKdV equations. In Noncompact
problems at the intersection of geometry, analysis, and topology,
volume 350 of Contemp. Math., pages 157–177. Amer. Math. Soc.,
Providence, RI, 2004.

[20] A. Pazy. Semigroups of linear operators and applications to par-
tial differential equations, volume 44 of Applied Mathematical Sci-
ences. Springer-Verlag, New York, 1983.

[21] T. Tao. Nonlinear dispersive equations, volume 106 of CBMS
Regional Conference Series in Mathematics. Published for the
Conference Board of the Mathematical Sciences, Washington, DC,
2006. Local and global analysis.

[22] S. Venakides. The zero dispersion limit of the Korteweg-de Vries
equation for initial potentials with nontrivial reflection coefficient.
Comm. Pure Appl. Math., 38(2):125–155, 1985.

23


	1 C0-semigroups
	2 Kato's theory on quasilinear equations
	3 Continuity of solutions for generalised KdV equations
	4 The -expansion of KdV solutions
	5 Hamiltonian perturbation of quasilinear conservation laws
	6 Solutions of the transport equations

