
 

 

 

LA COLLANA DELLA SCUOLA DI ALTA FORMAZIONE DOTTORALE ACCOGLIE LE MIGLIORI TESI 

DI DOTTORATO DELL’UNIVERSITÀ DEGLI STUDI DI BERGAMO, INSIGNITE DELLA DIGNITÀ DI 

STAMPA E SOTTOPOSTE A PROCEDURA DI BLIND PEER REVIEW. 
 
 

 
 
This work deals with decision making problems plagued by the 
presence of uncertainty. The first analyzed problem aims at 
separating two sets of points with non-disjoint convex closures. 
To this end, robust and distributionally robust Support Vector 
Machine (SVM) models are formulated and their efficiency is 
evaluated on real-world databases. 
Being distributionally robust models notoriously hard to solve, the 
second chapter of this work proposes approximation techniques 
providing bounds on objective function optimal values. This is 
done through scenario grouping and via 𝜙-divergences and 
Wasserstein distance. 
The last problem this work investigates aims at detecting the 
optimal assortment a retailer shall offer to maximize profits when 
strong preferences among products are observed. A deterministic 
approximation is recovered to solve the original intractable 
stochastic formulation. 

 
 
 

DANIEL FACCINI obtained his PhD in Applied Economics & 
Management (34th cycle) from the University of Bergamo and the 
University of Pavia. His research interests are focused on decision 
making problems under uncertainty, with applications to Machine 
Learning and Revenue Management. He conducted part of his 
research at Georgia Institute of Technology (Atlanta, U.S.A) - 
School of Industrial and Systems Engineering. 

 
 
 
 

 
ISBN: 978-88-97413-71-4 
DOI: 10.13122/978-88-97413-71-4  

 

 

 

 D
a

n
ie

l F
ac

cin
i     M

O
D

E
LS

 A
N

D
 A

P
P

R
O

X
IM

A
T

IO
N

S
 FO

R
 O

P
T

IM
IZ

A
T

IO
N

 P
R

O
B

LE
M

S 

 
Collana della Scuola di Alta Formazione Dottorale 

- 50 - 

 
 
 
 
 
 
 

Daniel Faccini 
 
 

MODELS AND APPROXIMATIONS 
for Optimization Problems 

under Uncertainty 
 
 
 
 
 
 

 
 

2023 

 

 

50

file://///CANIANA03/Dati/biblioteca%20Caniana/Adm/IRIS/SEZIONE%202/collana%20DTS/10.6092/9788897413172


Collana della Scuola di Alta Formazione Dottorale 

- 50 - 

  



Collana della Scuola di Alta Formazione Dottorale 

Diretta da Paolo Cesaretti 

Ogni volume è sottoposto a blind peer review. 

ISSN: 2611-9927 

Sito web: https://aisberg.unibg.it/handle/10446/130100 

  



 

  

 

 

Daniel Faccini 
 

 

 

 

 

 

 

 

 

 

 

 

 
MODELS AND APPROXIMATIONS FOR OPTIMIZATION PROBLEMS 

under Uncertainty with Applications to Support Vector Machine 

and Revenue Management  
 

 

 

 

 

 

 

 

 

 

 

 
______________________________________________________ 

 

Università degli Studi di Bergamo 

 

2023 



Models and Approximations for Optimization Problems under 

Uncertainty with Applications to Support Vector Machine 

and Revenue Management / Daniel Faccini. – Bergamo : 

Università degli Studi di Bergamo, 2023. 

(Collana della Scuola di Alta Formazione Dottorale; 50) 

 

ISBN: 978-88-97413-71-4 

DOI: 10.13122/978-88-97413-71-4  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Questo volume è rilasciato sotto licenza Creative Commons 

Attribuzione - Non commerciale - Non opere derivate 4.0 

 

 
 

 

 

 

 

 

 

 

 

 

 

© 2023 Daniel Faccini 

 

 

Progetto grafico: Servizi Editoriali – Università degli Studi di Bergamo 

© 2018 Università degli Studi di Bergamo 

via Salvecchio, 19 

24129 Bergamo 

Cod. Fiscale 80004350163 

P. IVA 01612800167 

https://aisberg.unibg.it/handle/10446/130115 



Acknowledgments

“Happiness only real when shared”

Christopher McCandless

I would like to express my deepest gratitude towards my Ph.D. supervisor, Prof. Francesca Maggioni,

whose patience and guidance made all of this possible. She has been a wise and trustworthy adviser,

a real mentor to me, and I could not have completed this work without her unwavering support.

There are so many other people I will be forever indebted to. Foremost are my sisters, who thought

me to think critically, dream fearlessly and be excited for new adventures in life. I thank them for their

endless love and encouragement. They have always been my role models and this work is dedicated

to them. Besides, I will never be able to express how grateful I am to my nieces, Veronica and Alice,

who fill my everyday life with happiness and goofiness. No matter how badly I fail, I known they will

always treat me like a winner. Also, I thank my parents. They have sacrificed a lot to bring me up

to this stage of my life and any of my achievement is their achievement. Without their inspiration, I

would not be the person I am today.

I am also immensely obliged to my friends. Lisa, for being all ears to my problems, never judging or

complaining; Greta, for making me feel there is nothing I am not worthy of, even in the darkest hours;

and Sara, for always cheering me up when I am feeling low, making hard times easier or good times

funnier. Another special friend I had the incredible joy and pleasure of working with over this journey

is Irina: thank you for the morning coffee chats and for patiently dealing with my Ph.D. frustration.

Finally, I want to extend my appreciation to all those who could not be mentioned here, yet always

believed in me. We made it, all together.

Daniel





Table of Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 1. Robust and Distributionally Robust Optimization Models for Linear SVM

In collaboration with Francesca Maggioni and Florian A. Potra . . . . . . . . . . . . . . 5

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Basic Facts and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 The Classification Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Robust and Distributionally Robust Support Vector Machine Models . . . . . . 13

1.4.1 Robust Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . 13

1.4.2 Distributionally Robust Support Vector Machine . . . . . . . . . . . . . . 17

1.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Chapter 2. Bounds for Multistage Mixed-Integer Distributionally Robust Optimization
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Introduction

Every day people are asked to make decisions with respect to a future that has yet to be known.

Neglecting this uncertainty, however, may lead to solutions that are far from optimal and exhibiting

remarkable sensitivity to perturbations.

A natural way of addressing the uncertain nature of a decision problem is through Stochastic Pro-

gramming (SP) [27,78,146], which assumes the uncertainty to have a known probabilistic description.

The main difficulty associated with this approach is the need to provide the probability distribution

function of the underlying stochastic parameter, a requirement that creates a heavy burden on the

user because in many real world situations such information is unavailable or hard to obtain. A more

recent approach addressing the uncertain nature of a problem without making specific assumptions

on probability distributions is Robust Optimization (RO) [9], in which instead of seeking to immunize

the solution in some probabilistic sense, the decision-maker builds a solution that is feasible for any

realization of the uncertainty in a given set. The major drawback of RO approaches is their excess of

conservatism.

The mutual need of protecting the decision-maker from the ambiguity of the underlying probability

distribution while avoiding overly conservative solutions is fulfilled by Distributionally Robust Opti-

mization (DRO) [43,67,139,178], in which optimal decisions are sought for the worst-case probability

distribution within a family that is well-described by certain properties. This approach has seen numer-

ous applications for a wide variety of management inspired optimization problems, and in Chapter 1

of this work we provide practical evidence on how successful DRO is in determining well-performing

optimal solutions in the context of Machine Learning (ML). Specifically, in this chapter, our attention

is centered on the study of binary classification problems, whose goal is to categorize data points into

one of two buckets: true or false, healthy or unhealthy, defaulting or not defaulting, to name but a

few. Already gathered observations’ features are exploited to detect the classifier, which should have

a good generalization ability and therefore minimize the misclassification error of new unseen data.

Nonetheless, as highlighted before, assuming such observations to be not corrupted by noise is often

impractical: uncertainty, indeed, may easily manifest due to limited precision of collecting instru-

ments, human measuring mistakes or sampling errors. As a consequence, the problem of designing

classifiers not facing deterioration when there are some perturbations in the data set is an interesting

problem that lately has gained considerable attention. To deal with the binary classification problem

under feature uncertainty of the input data, we propose RO and DRO versions of one of the deter-
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ministic Support Vector Machine (SVM) formulations presented in [96]. We will first consider input

observations to be bounded within hyperrectangles and hyperellipsoids. Secondly, we will formulate

a moment-based distributionally robust counterpart assuming each observation to be unknown but we

will mitigate the degree of conservatism enforcing limits on the observations’ deviations along direc-

tions detected by means of principal component analysis. With experiments crossing many different

applications fields, ranging from business to physical science, we will show that the solutions of robust

and distributionally robust models provide more accurate solutions compared to their deterministic

counterpart. Finally, managerial insights which can be valuable for practitioners will be provided.

Despite its importance and broad applicability, addressing uncertainty through DRO often leads to

computationally intractable models, especially for multistage problems that involve sequences of

decisions over time and suffer from the curse of dimensionality. In these cases, providing bounds

for their optimal objective function values can be very useful in practice, as may help in evaluating

whether the DRO approach is worth the additional computational effort or if simplified approaches

should be preferred. Therefore, Chapter 2 of this work is devoted to the definition of novel bounding

schemes for multistage mixed-integer DRO programs, defined on a finite scenario tree and formed

via ϕ-divergences (i.e., variation distance, Cressie-Read power divergence family, J-divergence, and

χ-divergence of order a > 1) or Wasserstein distance. The approach we suggest divides the whole

sample space into independent subgroups, which being of smaller size can be solved more efficiently.

We then provide conditions on ways to combine the optimal values of the subgroups to obtain lower

bounds on the optimal value of the original problem. Our approach does not require any special

problem structure, such as convexity and linearity, so suggested bounds can be applied to a wide range

of DRO problems including two-stage and multistage, with or without integer variables, nested or

non-nested formulations. The effectiveness of the proposed bounds is investigated on a multistage

mixed-integer production planning problem, providing a discussion of the insights gained.

The third and last chapter of this work is devoted to the study of the assortment planning problem [110],

a critical task faced by many industries operating onto diversified markets and which consists in

determining the optimal subset of products a retailer should offer to potential buyers over a selling

horizon. Uncertainty highly affects this class of management problems too: indeed, one of the major

challenges in assortment planning is to understand which is the “right” demand model to use for

describing the behavioral process that leads customers to choose, and hence to determine products

purchasing probabilities. Classical choice models (e.g., Multinomial Logit, Nested Logit, etc.) have

failed, so far, to properly describe strong substitution behaviors in the form of 100% buydown effects,

exhibited by customers with net preferences over one product with respect to another, thus annulling

2
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the latter purchasing probability whenever the former belongs to the same assortment. Therefore, we

first propose a novel choice model able to capture 100% buydown effects and which we call Dominance

Multinomial Logit (DMNL); then, we use it to formulate the assortment planning problem via Dynamic

Programming (DP). The resulting model, however, suffers from the curse of dimensionality and its

computational burden increases exponentially in the number of products available. For this reason,

we recover a deterministic approximation called DMNL Sales Based Linear Program (DMNL-SBLP)

that captures 100% buydown effects and avoids at the same time the exponential number of variables.

Preliminary numerical experiments using synthetic data compare our novel approach with the classical

discrete choice model.

3





Chapter 1. Robust and Distributionally Robust Optimization

Models for Linear Support Vector Machine

In collaboration with Francesca Maggioni 1 and Florian A. Potra 2. Released in a different version on Computers

& Operations Research.

1.1 Introduction

Binary pattern separation is one of the main Machine Learning (ML) tasks [86]. Its aim is to

classify observations into one of two classes and it is a critical problem in many practical application

fields, such as robotics [35], environmental engineering [42, 118, 119], nutrition [151], neural and

medical image analysis [190] and computer security [23]. From the ML standpoint, a great variety

of algorithms have been devised to address the classification problem: Decision Trees (DT) [136],

Logistic Regression (LR) classifiers [45], k-Nearest Neighbors (NN) classifiers [49], and Support

Vector Machines (SVM), which though simple and intuitive have proved to be one of the most

effective estimation techniques [183]. A recent comparison of ML methods for binary classification

is found in [5].

SVM is a supervised ML algorithm tracing back to the seminal contribution of [169], which has

received significant attention in the optimization literature and has strong orientation towards real-

world applications [101]. Given a set of training observations, each labeled as belonging to one of

two classes, SVM goal is to detect a hyperplane induced from the available examples that is able

to predict the category of new unlabeled observations. The most basic version of the SVM is the

Hard Margin-SVM (HM-SVM) that assumes that there exists a hyperplane geometrically separating

data points into the two classes, such that no observation is misclassified and margins are maximized.

When the data is linearly inseparable, the Soft Margin SVM (SM-SVM) introduces slack variables

into the constraints and aims at finding a separating hyperplane that not only achieves the maximum

margin between the two classes but also minimizes the training error of misclassification [10, 39].

Many variations to the classical SVM approach have been proposed over time to enhance classifiers

predictive power, see for instance [22, 81, 91, 96, 111, 140, 170]. In this chapter, we specifically focus

1Department of Management, Information & Production Engineering, University of Bergamo
Dalmine, BG, IT. Francesca.Maggioni@unibg.it

2Department of Mathematics and Statistics, University of Maryland
Baltimore County, MA, USA. Potra@math.umbc.edu
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our attention on the SVM variant presented in [96], whose computational experience proved to detect

separators with higher levels of accuracy compared to the standard ones.

An underlying assumption of classical SVM approaches is that the input observations are not corrupted

with noise and, therefore, all problem data are known exactly at the moment of classifying [34]. This

assumption, however, is not always practical. Indeed, real-world observations are often plagued by

uncertainty (e.g., due to limited precision of collecting instruments, measurement mistakes in data

gathering, sampling errors, etc.) and disregarding it might lead to solutions that are far from optimal,

as well as to major fluctuations of performances [68]. Therefore, the problem of designing classifiers

not facing deterioration when there are some perturbations in the data set is an interesting problem that

has gained considerable attention from the scientific community. One of the main paradigms to deal

with problems affected with uncertain data is given by Robust Optimization (RO) (see [9] and [12]).

Another way to handle uncertainty is given by Distributionally Robust Optimization (DRO) pioneered

in [139] and [187], which can be regarded as a natural generalization of Stochastic Programming

(SP) and RO. In DRO optimal decisions are sought for the worst-case probability distribution within

a family of possible distributions defined by certain properties. The two most widely used types of

ambiguity sets in the DRO literature are moment-based and statistical distance-based sets. While

moment-based ambiguity sets contain all probability distributions that satisfy certain general moment

conditions, the statistical distance-based approach considers distributions that are close in the sense

of a chosen distance to a nominal distribution (e.g., the empirical one). Popular choices to measure

the dissimilarity between two probability distributions are Wasserstein distance or ϕ-divergences. A

growing literature in these directions both from theoretical and applied points of view can be found

in [1, 6, 43, 65, 67, 145, 147, 178, 185, 192].

In this chapter, we deal with the binary classification problem under feature uncertainty of the input

data, introducing robust and distributionally robust versions of one of the deterministic formulations

presented in [96] (Formulation II), aiming at obtaining a classifier that has good generalization

properties and reduces the error of misclassification of new unseen data. The main contributions of

the chapter are four-fold and can be summarized as follows:

• To develop box and ellipsoidal robust counterparts of the deterministic model associated with

the Formulation II proposed in [96]. We assume each input observation to be bounded within

hyperrectangles and hyperellipsoids.

• To formulate a new moment-based distributionally robust counterpart associated with the For-

mulation II proposed in [96]. We still assume each observation to be unknown but we mitigate

6
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the degree of conservatism enforcing limits on the deviations along directions detected by means

of Principal Component Analysis (PCA) [73].

• To provide extensive numerical experiments based on real-world databases [46] with the aim

of understanding the advantage of explicitly considering the uncertainty versus deterministic

approaches.

• To provide managerial insights on how to choose between robust and distributionally robust

approaches to model uncertainty, depending on the data set dimension.

The chapter is organized as follows. Section 1.2 provides a literature review, while Section 1.3

presents basic facts and notation. In Section 1.4 we introduce new robust and distributionally robust

optimization models for SVM, along with tractable reformulations. Section 1.5 presents experiments

attempting to evaluate the accuracy of the proposed formulations versus deterministic approaches.

Finally, conclusions and future works are provided in Section 1.6.

1.2 Literature Review

The extensive connections among RO, DRO and SVM have been explored by a number of authors.

In [53] a minimax model for data bounded by hyper-rectangles is presented. The model looks for a

linear hyperplane that minimizes the worst-case loss over input data in given intervals, and a tractable

reformulation in the form of Linear Programming (LP) is provided. In [19–21] Second Order Cone

Programming (SOCP) formulations are derived to design linear classifiers when the uncertainty of

input observations is described by multivariate normal distributions. Geometrically, these solutions

correspond to a minimax strategy with hyper-ellipsoids around the training instances, rather than

hyper-rectangles. Similar approaches are provided in [162, 163], where the additive perturbations

of the uncertain data are assumed to be bounded by the general w-norm. A related model is [22]

that, assuming the data to be subject to additive noises bounded by the general w-norm, constructs

classifiers by focusing on the more trust-worthy data that are less uncertain. A more general case for

bounded uncertainty sets is studied in [181], where the linkage between regularization and robustness

is also showed. The authors proved that, even though traditional SVM methods do not explicitly

consider individual data uncertainties, the objective function regularization term aimed at maximizing

the classifier margins represents a kind of intrinsic robustness. Other important insights about stability

of SVM against uncertainty with bounded sets are due to [161], while the work developed in [80,116]

demonstrate how robust classification can be used to handle situations with imbalanced training data.

7
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For other models with polyhedral uncertainty sets see [54, 61]. Detailed reviews of the existing

literature on RO in ML are found in [33].

RO and DRO are also used for solving Chance-Constrained (CC)-SVM, to ensure bounded probabili-

ties of misclassification for the uncertain data. In [87] authors consider the case of binary classification,

where only the mean and covariance matrix of the classes are assumed to be known. The minimax

probabilistic decision hyperplane is then determined by optimizing the worst-case probabilities over

all possible class-conditional distributions. Besides, the model presented in [150] treats all input

observations as random variables for which only finite mean and covariance matrices are known, and

then looks for the hyperplane able to correctly classify the observations, with high probability, even

for the worst distributions. Both of these CC-SVM are relaxed using Chebyshev inequality (see [109])

to yield a SOCP whose solution is guaranteed to satisfy the original problem. In a similar fashion,

the Bernstein bounding scheme (see [125]) is used in [7, 18]. Under the same assumptions of known

moments, equivalent results have been obtained in [175], where authors propose a different proof for

obtaining the equivalent SOCP formulation and also provide reformulations in the form of Semidefi-

nite Programming (SDP) models. Analogously, Pearson divergence distributionally robust CC-SVM

is discussed in [149]. Another related work is [174], which investigates the stochastic sub-gradient

descent method to solve distributionally robust CC-SVM on large-scale data sets.

In [71] risk averse theory is linked to SVM, showing that the minimization of a convex risk functional

in place of the traditional hinge-loss objective function (i.e., minimization of the empirical risk)

straightforwardly treats a class of DRO problems. This corresponds to build an ambiguity set for

the population distribution based on samples, and then searching for the classifier that minimizes the

sum of the regularization term and the hinge-loss function for the worst-case distribution within the

set. Authors also prove that under a specific class of risk functionals the distributionally robustified

models can be reformulated as tractable convex optimization problems. Risk averse SVM is further

investigated in [171] where the authors, instead of using a single measure of risk as SVM objective

function, propose group differentiation by employing a different risk functional for every single class.

Other related studies are [70, 157, 164, 182]. In a similar fashion, DRO for classification problems

with Wasserstein ambiguity set has been investigated in [85, 89]. Instead of solving an optimization

problem minimizing the hinge-losses of misclassified samples, the proposed formulation minimizes

the worst-case expected prediction error with respect to distributions belonging to a Kantorovich

ball, which is centered on the empirical distribution based on samples. Related works are [93, 100].

Learning and classification algorithms have also been proposed under the ϕ-divergence measures, see

8
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for instance [47, 48], and with ambiguity sets measured via maximum mean discrepancy, see [154].

All these approaches for linear SVM models are summarized in Table 1.

While all these approaches have dealt mainly with input data features uncertainty, there have also been

attempts to model uncertainty in observation labels, see [24,33,112,156,179] and [13], where robust

methods are employed to construct a new family of classifiers protecting against uncertainty in both

features and labels for the three most widely used classification algorithms (i.e., SVM, LR, and DT).

RO is also employed in [66] to address the problem of corruption in missing data (see [64]), sensitivity

to outliers in input samples (see [60,79,88,92,183]) and to adversarial training (see [98,141,180,191]),

where it is assumed that data become corrupted during the classification phase.

The approaches presented so far to hedge against uncertainty have also been successfully applied to

many SVM variants. Robust counterparts have indeed been developed for the Twin Support Vector

Machine (T-SVM), firstly proposed by [81]. See, for instance, [31,99,108,126] and references therein.

An alternative formulation, known as ν-Support Vector Machine (ν-SVM), was designed in [140],

and models to hedge against uncertainty are proposed in [158, 176]. Another popular variant of

SVM is the so called One-Class Support Vector Machine (OC-SVM) pioneered in [111], with robust

reformulations that can be found in [97, 165–167]. There also has been a recent surge of interest

in the ML community for developing distributionally robust SVM models aiming at fairness, which

represents the need of a classifier performance to be invariant under certain sensitive perturbations of

the inputs. Fairness in ML goes beyond the scope of this article, so we refer to [72,158,160,177] and

references therein. For a comprehensive survey of RO developments in the field of SVM we refer the

reader to [152, 153].

The approach we propose in this chapter substantially differs from the literature in several perspectives.

Foremost, the deterministic variant we aim at robustifying is the one proposed in [96], which with the

inclusion of a line search step showed to outperform the classical formulation in prediction accuracy.

Besides, two streams of distributionally robust approaches have emerged from the review of SVM

literature. The first poses the SVM problem as a CC program and then looks for bounding schemes

that find solutions guaranteed to satisfy the probabilistic constraint in the worst-case distribution. The

second stream, instead, aims at minimizing in the objective function the worst-case expected prediction

error with respect to distributions belonging to a prespecified ambiguity set. Our proposal does not

fall into any of these branches, since we are not dealing with CC programs or with uncertainty into the

objective function, rather we consider input data to be random variables with unknown distributions,

and then we optimize over the worst one affecting the coefficients of the constraints left-hand sides.

Furthermore, we provide exact reformulations rather than approximations.
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Lanckriet et al. (2002), [87] ✓ ✓ ✓

El Ghaoui et al. (2003), [53] ✓ ✓ ✓

Fung et al. (2003), [61] ✓ ✓

Bhattacharyya et al. (2004, 2005), [19–21] ✓ ✓ ✓

Bi and Zhang (2005), [22] ✓ ✓

Shivaswamy et al. (2006), [150] ✓ ✓ ✓ ✓

Trafalis and Gilbert (2006, 2007), [162, 163] ✓ ✓

Takeda and Kanamori (2009), [157] ✓ ✓

Bhadra et al. (2009), [18] ✓ ✓ ✓

Xu et al. (2009), [181] ✓ ✓

Trafalis and Alwazzi (2010), [161] ✓ ✓

Ben-Tal et al. (2011), [7] ✓ ✓ ✓

Pant et al. (2011), [116] ✓ ✓

Tsyurmasto et al. (2013), [164] ✓ ✓

Fan et al. (2014), [54] ✓ ✓

Gotoh et al. (2014), [70] ✓ ✓

Katsumata and Takeda (2015), [80] ✓ ✓

Lee and Mehrotra (2015), [89] ✓ ✓

Gotoh and Uryasev (2017), [71] ✓ ✓

Wang et al. (2017, 2018), [174, 175] ✓ ✓ ✓

Duchi et al. (2019, 2021), [47, 48] ✓ ✓

Bertsimas et al. (2019), [13] ✓ ✓ ✓

Kuhn et al. (2019), [85] ✓ ✓

Staib and Jegelka (2019), [154] ✓ ✓

Vitt et al. (2019), [171] ✓ ✓

Li at al. (2020), [93] ✓ ✓

Shen at al. (2020), [149] ✓ ✓ ✓

Table 1: Linear SVM Literature Review.
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1.3 Basic Facts and Notation

In the following, all vectors will be column vectors. We use “;” for adjoining elements in a column

and “,” for adjoining elements in a row. Vector components are identified as being subscripted, while

superscripts specify to which observation we are referring to. Vector e of arbitrary dimension has

all entries equal to one, while I and 0 denote, respectively, the identity matrix and the square null

matrix of dimension n. We denote by Rn the n-dimensional real space, by Rn
+ the set of non-negative

vectors of dimension n, by N the set of natural numbers and by diag(a) ∈ Rn×n the matrix whose n

diagonal entries are the elements of vector a and off-diagonal components are all equal to zero. For

any vector a ∈ Rn, |a| ∈ Rn
+ represents the vector of absolute values of the components of a, i.e.,

|a| := [|a1|; |a2|; . . . ; |an|]. For any vector a ∈ Rn and 1 ≤ w < ∞, its w-norm is defined as ∥a∥w

with:

∥a∥w :=
 n∑

p=1
|ap|w

 1
w

and

∥a∥∞ := max
p=1,...,n

|ap|.

Finally, the indicator function 1(α ∈ R) = 1 if α > 0, and 0 otherwise.

1.3.1 The Classification Problem

Let X and Y be two sets of points such that X :=
{
x(1), x(2), . . . , x(I)

}
⊆ Rn and Y :={

y(1), y(2), . . . , y(J)
}
⊆ Rn.

The Hard Margin SVM (HM-SVM) separating hyperplane is defined by a pair (a ∈ Rn, γ ∈ R)

such that all vectors in X lie on one side of the hyperplane, all the vectors in Y lie on the opposite

side and the distance between the separating hyperplane and the nearest data point of each class is

maximized [169]. The HM-SVM optimization problem is defined as follows:

min
a,γ

∥a∥w

s.t. a⊤x(i) ≤ γ − 1 i = 1, . . . , I

a⊤y(j) ≥ γ + 1 j = 1, . . . , J,

(1.1)

whose solution maximizes the distance between the hyperplanes (a, γ − 1) and (a, γ + 1) computed

using the dual norm ∥ · ∥v with 1
v

+ 1
w

= 1. The dual norm of the 1-norm is the infinity norm, and

vice versa.

Soft Margin SVM (SM-SVM) relaxes the condition of perfect separability, introducing slack variables

in the constraints and penalizing in the objective function data points belonging to the wrong side of

11
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the hyperplane. Specifically, let zX := [zx(1) ; . . . ; zx(I) ] ∈ RI
+ and zY := [zy(1) ; . . . ; zy(J) ] ∈ RJ

+ be the

non-negative vectors of errors of group X and Y . Observation x(i) ∈ Rn will be correctly classified if

0 ≤ zx(i) ≤ 1, or misclassified if zx(i) > 1. Similarly, for every observation y(j) ∈ Rn. The SM-SVM

optimization problem is then defined as follows [39]:

min
a,γ,zX ,zY

∥a∥w + ν
(
e⊤zX + e⊤zY

)
s.t. a⊤x(i) ≤ γ − 1 + zx(i) i = 1, . . . , I

a⊤y(j) ≥ γ + 1− zy(j) j = 1, . . . , J

zX ≥ 0, zY ≥ 0,

(1.2)

where the user-defined penalty parameter ν ≥ 0 is introduced to allow a trade-off between the margin

maximization and tolerating misclassification.

In order to achieve superior pattern separation, rather than minimizing the classification error with

respect to a single hyperplane, in [96] it is proposed to separate the sets X and Y by firstly finding

two parallel hyperplanes H1 and H2 that satisfy the following properties:

(P1) all points of X lie on one side of H1;

(P2) all points of Y lie on the opposite side of H2;

(P3) the intersection of convex hulls of X and Y is contained in the region between H1 and H2.

Through line search, hyperplane H3 is then constructed parallel to (and lying between) H1 and H2,

such that most of the points of X lie on the same side of H3 and most of the points of Y lie on

the opposite side of H3. A point that fails to do so is called a misclassified point. Therefore, H3

should be determined so that the number of misclassified points is minimized. In [96] five different

deterministic formulations are proposed for obtaining hyperplane H3, and since Formulation II proves

to outperform the others, we restrict our attention to it. This formulation employs as starting point

the hyperplane separating algorithm detected by model (1.2), in which the hyperplane margins are

measured by means of the∞-norm, and hence requires the minimization of ∥a∥1 into the objective

function:
min

a,γ,zX ,zY
∥a∥1 + ν

(
e⊤zX + e⊤zY

)
s.t. a⊤x(i) ≤ γ − 1 + zx(i) i = 1, . . . , I

a⊤y(j) ≥ γ + 1− zy(j) j = 1, . . . , J

zX ≥ 0, zY ≥ 0.

(1.3)

12
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Once the starting hyperplane (a, γ) of (1.3) is obtained, it is shifted in order to determine hyperplanes

H1 and H2 that satisfy properties (P1)-(P3). Specifically, H1 := (a, γ − 1 + ω1) and H2 :=

(a, γ + 1− ω2), where:

ω1 := max
{
zx(i)

∣∣∣ i = 1, . . . , I
}
, ω2 := max

{
zy(j)

∣∣∣ j = 1, . . . , J
}
. (1.4)

The following minimization problem is finally solved using the line search method (see [114]), with

the aim of obtaining the scalar b ∈ R that defines the hyperplane H3 := (a, b), parallel to and lying

between H1 and H2 and minimizing the overall number of misclassified points:

min
b

I∑
i=1

1
(
a⊤x(i) − b

)
+

J∑
j=1

1
(
b− a⊤y(j)

)
s.t. γ + 1− ω2 ≤ b ≤ γ − 1 + ω1.

(1.5)

Specifically, as the objective of (1.5) is not continuous, we divide the interval [bmin, bmax] := [γ +

1− ω2, γ − 1 + ω1] into kmax sub-intervals of equal length and denote sk := ∑I
i=1 1

(
a⊤x(i) − bk

)
+∑J

j=1 1
(
bk − a⊤y(j)

)
, with bk = bmin + k · bmax−bmin

kmax
, k = 0, . . . , kmax. The final solution of (1.5) is

then given by bk∗ with k∗ ∈ arg min{s0, . . . , sk, . . . , skmax}.

1.4 Robust and Distributionally Robust Support Vector Machine Models

The basic assumption of the deterministic model (1.3)-(1.5) presented in [96] is that all input ob-

servations of both groups X and Y are always provided exactly, ignoring any type of uncertainty

associated with lack of data or with data that cannot be fully trusted. However, when the given values

differ significantly from the true ones, the predictive power of the deterministic classifier might be

unsatisfactory. Therefore in this section, rather than dealing with a countable set of well-defined data

points, we handle data features as uncertain and formulate robust counterparts to model problem (1.3)-

(1.5) with uncertainty sets in the form of hyperrectangles (Section 1.4.1) and hyperellipsoids (Section

1.4.1). Moreover, we propose a distributionally robust counterpart to the deterministic formulation

(1.3)-(1.5) that enforces limits on the observations first-order deviations along directions detected by

means of PCA (Section 1.4.2).

1.4.1 Robust Support Vector Machine

In this section, we assume the uncertainty of every input observation x(i) ∈ X ⊆ Rn, i = 1, . . . , I to

be represented by the uncertainty set U
(
x(i)

)
. Equivalently for every observation y(j) ∈ Y ⊆ Rn, j =

1, . . . , J . Then, the robust counterpart of model (1.3) that optimizes over worst-case realizations on

13
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all possible observations in U
(
x(i)

)
, U
(
y(j)

)
, i = 1, . . . , I , j = 1, . . . , J corresponds to the following

optimization model:

min
a,γ,zX ,zY

∥a∥1 + ν(e⊤zX + e⊤zY )

s.t. max
x∈U(x(i))

[
a⊤x

]
≤ γ − 1 + zx(i) i = 1, . . . , I

min
y∈U(y(j))

[
a⊤y

]
≥ γ + 1− zy(j) j = 1, . . . , J

zX ≥ 0, zY ≥ 0.

(1.6)

The size of the uncertainty sets U
(
x(i)

)
, U
(
y(j)

)
, i = 1, . . . , I , j = 1, . . . , J reflects the degree of

data uncertainty. If:

U
(
x(i)

)
:=
{
x(i)

}
, i = 1, . . . , I and U

(
y(j)

)
:=
{
y(j)

}
, j = 1, . . . , J,

then the robust formulation (1.6) reduces to the deterministic model (1.3).

Robust Support Vector Machine with Interval Data Uncertainty

First, we consider uncertainty sets having the form of hyperrectangles. Let ζx(i) , ζy(j) ∈ Rn
+ define the

perturbation vectors of input observations x(i) and y(j), respectively; further, let ρX , ρY ∈ R+ be global

measures of uncertainty for group X and Y , respectively. Then, the hyperrectangular uncertainty sets

UB
(
x(i)

)
and UB

(
y(j)

)
centered around x(i) and y(j) are defined, respectively, as:

UB
(
x(i)

)
:=
{

x ∈ Rn
∣∣∣ x(i) − ρXζx(i) ≤ x ≤ x(i) + ρXζx(i)

}
i = 1, . . . , I, (1.7)

UB
(
y(j)

)
:=
{

y ∈ Rn
∣∣∣ y(j) − ρY ζy(j) ≤ y ≤ y(j) + ρY ζy(j)

}
j = 1, . . . , J. (1.8)

Depending on how reliable the decision maker considers the available data, parameters ρX and ρY

allow to tailor the degree of conservatism. When uncertainty sets are described by means of (1.7)-

(1.8), model (1.6) can be reformulated by the following linear program (see [53] and derivation in

Appendix A):

min
a,γ,zX ,zY

∥a∥1 + ν(e⊤zX + e⊤zY )

s.t. a⊤x(i) + ρXζ⊤
x(i)|a| ≤ γ − 1 + zx(i) i = 1, . . . , I

a⊤y(j) − ρY ζ⊤
y(j)|a| ≥ γ + 1− zy(j) j = 1, . . . , J

zX ≥ 0, zY ≥ 0,

(1.9)

where the number of continuous variables is n + 1 + I + J and the number of constraints is 2(I + J)

of which I + J are non-negative. As in the deterministic case, once the solution (a, γ, zX , zY ) of (1.9)
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is obtained, the final hyperplane H3 is recovered through line search:

min
b

I∑
i=1

1
(
a⊤x(i) + ρXζ⊤

x(i)|a| − b
)

+
J∑

j=1
1
(
b− a⊤y(j) + ρY ζ⊤

y(j) |a|
)

s.t. γ + 1− ω2 ≤ b ≤ γ − 1 + ω1,

(1.10)

with ω1, ω2 as in (1.4) and where robustness fails for those points whose hyperrectangle intersects the

hyperplane H3. Consequently, all those points either lying on the wrong side of (a, b) or whose hyper-

rectangles intersect H3 will be considered misclassified. To summarize, the geometrical interpretation

of the proposed approach is sketched in Figure 1. For the sake of clarity, we restrict our attention to

the bidimensional case (n = 2). Points of group X are represented by filled black dots, while points

of group Y by empty white circles.

Figure 1: Input observations of groups X and Y bounded by boxes and separating hyperplanes H1, H2
and H3.

After building boxes around every observation, we detect the starting hyperplane (a, γ) by means of

model (1.9). We then shift it to the right and to the left, by amounts ω1 and ω2 respectively, to detect

H1 and H2 such that all boxes of group X lie on one side of H1 and all boxes of group Y lie on

the opposite side of H2. Through model (1.10), the final classifier H3 is found such that the overall

number of misclassified boxes is minimized.
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Robust Support Vector Machine with Ellipsoidal Data Uncertainty

It is well known that intervals perturbations assumption can lead to overly conservative solutions.

Therefore, to alleviate this drawback, in this section we propose an alternative robust formulation

that considers uncertainty sets having the form of hyperellipsoids. This latter choice turns into less

conservative models with respect to the hyperrectangles case since disregards those situations under

which all features jointly assume extreme interval values. Moreover, this choice does not hinder the

tractability of the associated reformulation, leading to a SOCP.

Let Σx(i) , Σy(j) ∈ Rn×n be positive definite covariance matrices associated to points x(i) and y(j),

respectively; further, let ρX , ρY ∈ R+ denote the radii of the ellipsoids of groups X and Y , respectively.

Then, the ellipsoidal uncertainty sets UE
(
x(i)

)
and UE

(
y(j)

)
centered around x(i) and y(j) are defined,

respectively, as:

UE
(
x(i)

)
:=
{

x ∈ Rn

∣∣∣∣ (x− x(i)
)⊤

Σ−1
x(i)

(
x− x(i)

)
≤ ρ2

X

}
i = 1, . . . , I, (1.11)

UE
(
y(j)

)
:=
{

y ∈ Rn

∣∣∣∣ (y − y(j)
)⊤

Σ−1
y(j)

(
y − y(j)

)
≤ ρ2

Y

}
j = 1, . . . , J. (1.12)

According to [19] (see derivation in Appendix A), when uncertainty sets are described by means of

(1.11)-(1.12), model (1.6) can be reformulated by the following SOCP:

min
a,γ,zX ,zY

∥a∥1 + ν(e⊤zX + e⊤zY )

s.t. a⊤x(i) + ρX∥Σ
1
2
x(i)a∥2 ≤ γ − 1 + zx(i) i = 1, . . . , I

a⊤y(j) − ρY ∥Σ
1
2
y(j)a∥2 ≥ γ + 1− zy(j) j = 1, . . . , J

zX ≥ 0, zY ≥ 0,

(1.13)

where:

∥Σ
1
2
x(i)a∥2 :=

√
a⊤Σx(i)a and ∥Σ

1
2
y(j)a∥2 :=

√
a⊤Σy(j)a.

The number of continuous variables is n + 1 + I + J , while the number of constraints is 2(I + J) of

which I + J are non-negative. From the solution of problem (1.13), we get hyperplanes H1 and H2

which satisfy properties (P1)-(P3) with ω1, ω2 as in (1.4). To find H3 we finally solve the following

minimization problem using line search:

min
b

I∑
i=1

1
(
a⊤x(i) + ρX∥Σ

1
2
x(i)a∥2 − b

)
+

J∑
j=1

1
(
b− a⊤y(j) + ρY ∥Σ

1
2
y(j)a∥2

)
s.t. γ + 1− ω2 ≤ b ≤ γ − 1 + ω1,

(1.14)
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where robustness fails for those points whose hyperellipsoid intersects the decision hyperplane H3.

To summarize, the geometrical interpretation of the proposed approach is sketched in Figure 2. After

building ellipsoids around every observation, we detected the starting hyperplane (a, γ) by means of

model (1.13). We then shift it to the right and to the left, by amounts ω1 and ω2 respectively, to detect

H1 and H2 such that all ellipsoids of group X lie on one side of H1 and all ellipsoids of group Y lie

on the opposite side of H2. Through line search of model (1.14), the final classifier H3 is found such

that the overall number of misclassified ellipsoids is minimized.

Figure 2: Input observations of groups X and Y bounded by ellipsoids and separating hyperplanes H1,
H2 and H3.

1.4.2 Distributionally Robust Support Vector Machine

Solutions obtained considering uncertainty sets having the form of hyperellipsoids can still be too

conservative. One way to overcome this limitation would consist in resorting to other types of

uncertainty sets such as polyhedral, conic, convex constraints (see [69]) or combinations of them

(e.g., box + ellipsoidal, box + polyhedral, box + ellipsoidal + polyhedral, see [94]). However, these

specific approaches would require precise knowledge of the instances under analysis and would be

highly problem-dependent. Moreover, conic uncertainty sets would require the use of conic duality

while convex constraints sets the use of Fenchel duality.
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Therefore, with the aim of providing progressively less conservative models that do not lose general-

ization ability and still protect against uncertainty, in this section we employ the most recent techniques

of moment-based DRO.

In this section we treat all input observations x(i), y(j), i = 1, . . . , I, j = 1, . . . , J as random

variables, for which the exact probability distributions Ptrue
x(i) , i = 1, . . . , I and Ptrue

y(j) , j = 1, . . . , J

are unknown. To hedge against uncertainty, for each input observation x(i) we optimize against the

worst-case expectation under all possible distributions P belonging to the ambiguity set D
(
x(i)

)
.

Equivalently for y(j) and D
(
y(j)

)
. Accordingly, the distributionally robust counterpart of model (1.3)

can be formulated as follows:

min
a,γ,zX ,zY

∥a∥1 + ν(e⊤zX + e⊤zY )

s.t. sup
P∈D(x(i))

EP

[
a⊤x

]
≤ γ − 1 + zx(i) i = 1, . . . , I

inf
P∈D(y(j))

EP

[
a⊤y

]
≥ γ + 1− zy(j) j = 1, . . . , J

zX ≥ 0, zY ≥ 0.

(1.15)

The choice of the specific ambiguity set D when modeling a problem is context dependent. This

decision depends on the data being represented by the set, as well as the needs of the modeler.

Hereby, a formulation that protects against uncertainty not losing generalization ability is sought and

we assume that estimates are easily available from a prior statistical analysis of the uncertain data.

In the following, namely, we will focus on principal directions and variance information since shared

by many different distributions, while disregard higher order moments which are often unavailable

(see [115]).

We consider the general moment-based ambiguity set proposed in [178] where the support and a list

of partial moments describing the uncertainty are available:

D
(
x(i)

)
:=

P ∈ P
n
+

∣∣∣∣∣∣∣∣∣
P
(

x ∈ UB
(
x(i)

))
= 1

EP
[
gp(x)

]
≤
(
ϱX

)
p

p = 1, . . . , n

 i = 1, . . . , I, (1.16)

with Pn
+ representing the set of probabilities distributions on Rn. Specifically, the first constraint

in set (1.16) requires every realization to be constrained within its support set UB
(
x(i)

)
defined

in (1.7). The second group of constraints in (1.16) characterizes the moments information via n

functions gp(·), and enforces the generalized moment EP
[
gp(x)

]
not to exceed a given threshold(

ϱX

)
p
∈ R+, p = 1, . . . , n. While several generalized moment functions to describe moment

information were suggested in the literature, in this chapter we employ the piecewise linear formulation
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proposed by [3], which can be interpreted as the first-order deviations of the uncertain parameter with

respect to the nominal value x(i) along certain projections f
(p)
X ∈ Rn. Namely:

gp

(
x
)

:=
∣∣∣∣f (p)

X

⊤ (
x− x(i)

)∣∣∣∣ p = 1, . . . , n. (1.17)

To determine projections FX :=
[
f

(1)
X , . . . , f

(n)
X

]
∈ Rn×n and thresholds ϱX :=

[
(ϱX)1;

. . . ; (ϱX)n

]
∈ Rn

+ we adopt a strategy based on PCA (see [143]). The same approach holds for

observations of group Y .

1. Given an unbiased estimate of the covariance matrix ΣX :

ΣX :=

(
I∑

i=1
x(i)⊤

x(i)
)
−
(

I∑
i=1

x(i)
)⊤ (

I∑
i=1

x(i)
)

I − 1 , (1.18)

we perform PCA onto ΣX . Performing PCA enables capturing meaningful information about the

available data. Specifically, it enables detecting the directions that manifest the most variations.

We obtain:

ΣX = FX · ΛX · F ⊤
X , (1.19)

where FX ∈ Rn×n stands for the orthogonal transformation matrix and ΛX := diag(λX) ∈ Rn×n
+

is a diagonal matrix including variance information λX after transformation (i.e., along the

principal directions FX).

2. To determine the maximum deviations allowed along the n principal directions given by thresh-

olds ϱX :=
[
(ϱX)1; . . . ; (ϱX)n

]
∈ Rn

+ we set:

(ϱX)p :=
ρX

√
(λX)p

K
p = 1, . . . , n, (1.20)

where λX has been obtained from PCA and K ∈ N \ {0} is a scale parameter.

An attractive feature of this moment-based approach, is that one can control the model degree of

conservatism simply by adjusting values of the limits (ϱX)p, p = 1, . . . , n. So, depending on specific

applications and problem instances, one can opt for a more conservative strategy and tune lower

values for the scale parameter K, or opt for more aggressive approaches setting higher values of K

and allowing less dispersion.

Figure 3 provides a graphical representation of the procedure for a single observation x(i). Given a

starting group X , PCA is performed to detect principal directions FX =
[
f

(1)
X , f

(2)
X

]
∈ R2×2. Then,

for every observation x(i) the box support UB
(
x(i)

)
is defined and limits ϱX =

[
(ϱX)1; (ϱX)2

]
∈ R2

+
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on variations along principal direction f
(1)
X and direction f

(2)
X are enforced. As shown, tuning higher

values for the scale parameter K turns into a less conservative strategy compared to lower values of

K, as allowing less dispersion.

(a) (b) (c)

Figure 3: Given group X (a), principal directions f
(1)
X and f

(2)
X are detected. For every point x(i), limits

(ϱX)1, (ϱX)2 on variations along them are enforced together with the box support; K may be fixed to 1
(b) or 2 (c).

Notice that, although there are no theoretical guarantees to ensure that any moment-based ambiguity set

contains the true distribution with high probability, on this purpose [43] proposed confidence regions

for the mean and covariance matrix of the uncertainty using historical samples. Recently, other methods

adopting data-driven robust optimization have also been suggested (see for instance [14], [113], [142])

employing hypothesis tests to determine the size of the ambiguity sets in order to ensure them to be

statistically interpretable. Confidence regions can also be constructed from historical observations

using resampling techniques, such as jackknifing or bootstrapping [37]. Unfortunately, these strategies

cannot be trivially applied to the ambiguity set used in this work but represent an interesting future

research direction to obtain a probabilistic guarantee for the true distribution to be contained in D.

Tractable Reformulation of the Distributionally Robust Model

Model (1.15) is intractable due to the infinite number of probability distributions contained in every

ambiguity set (1.16); therefore, in this section, we reformulate this problem as a tractable deterministic

optimization model. Introducing the auxiliary random vector φX := [(φX)1; . . . ; (φX)n] ∈ Rn
+ the

ambiguity set given in (1.16) can be equivalently re-formulated as the projection of an extended
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ambiguity set D̄
(
x(i)

)
:

D̄
(
x(i)

)
:=

Q ∈ Pn
+

∣∣∣∣∣∣∣∣
Q
(

x, φX ∈ ŪB
(
x(i)

))
= 1

EQ
[
(φX)p

]
≤
(
ϱX

)
p

p = 1, . . . , n

 i = 1, . . . , I, (1.21)

with lifted support set defined as:

ŪB
(
x(i)

)
:=


(

x, φX

)
∈ Rn × Rn

+

∣∣∣∣∣∣∣∣
x ∈ UB

(
x(i)

)
gp(x) ≤ (φX)p p = 1, . . . , n

 i = 1, . . . , I. (1.22)

Using (1.7) and (1.17) the lifted support set (1.22) can be equally expressed as:

ŪB
(
x(i)

)
=



(
x, φX

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x ≤ x(i) + ρXζx(i)

x ≥ x(i) − ρXζx(i)

(φX)p ≥ 0 p = 1, . . . , n

f
(p)
X

⊤
x− f

(p)
X

⊤
x(i) ≤ (φX)p p = 1, . . . , n

f
(p)
X

⊤
x(i) − f

(p)
X

⊤
x ≤ (φX)p p = 1, . . . , n



i = 1, . . . , I, (1.23)

or equivalently in matrix form:

ŪB
(
x(i)

)
=


(

x, φX

) ∣∣∣∣ CXx + DφX ≤ hx(i)

 i = 1, . . . , I, (1.24)

where:

CX :=



I

−I

0

F ⊤
X

−F ⊤
X


∈ R5n×n, D :=



0

0

−I

−I

−I


∈ R5n×n,

hx(i) :=



x(i) + ρXζx(i)

−x(i) + ρXζx(i)

0

F ⊤
X x(i)

−F ⊤
X x(i)


∈ R5n.
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An analogous reformulation can be performed for every observation of group Y and a distributionally

robust formulation equivalent to (1.15) is then given as follows:

min
a,γ,zX ,zY

∥a∥1 + ν(e⊤zX + e⊤zY )

s.t. sup
Q∈D̄(x(i))

EQ

[
a⊤x

]
≤ γ − 1 + zx(i) i = 1, . . . , I

inf
Q∈D̄(y(j))

EQ

[
a⊤y

]
≥ γ + 1− zy(j) j = 1, . . . , J

zX ≥ 0, zY ≥ 0.

(1.25)

It is worth noticing that the second group of constraints of formulation (1.25) can also be expressed

as:

inf
Q∈D̄(y(j))

EQ

[
a⊤y

]
≥ γ + 1− zy(j) ⇔ sup

Q∈D̄(y(j))
EQ

[
− a⊤y

]
≤ −γ − 1 + zy(j) j = 1, . . . , J.

For every i = 1, . . . , I , the left-hand side of the distributionally robust constraint of model (1.25)

coincides with the optimal value of the following moment problem:

sup
Q∈D̄(x(i))

EQ

[
a⊤x

]
= sup

Q

∫
ŪB(x(i))

q(x, φX)
(

a⊤x
)

dx dφX

s.t.
∫

ŪB(x(i))
q(x, φX) dx dφX = 1

∫
ŪB(x(i))

q(x, φX)φX dx dφX ≤ ϱX ,

(1.26)

where the decision variable is q(x, φX). Introducing the multipliers ηx(i) ∈ R and βx(i) ∈ Rn
+, the

Lagrangian reformulation of (1.26) is:

sup
Q

∫
ŪB(x(i))

q(x, φX)
(
a⊤x− ηx(i) − β⊤

x(i)φX

)
dx dφX + ηx(i) + β⊤

x(i)ϱX . (1.27)

If there exists (x, φX) such that a⊤x − β⊤
x(i)φX ≥ ηx(i) , then (1.27) is unbounded above because

q(x, φX) ≥ 0, ∀(x, φX) ∈ ŪB
(
x(i)

)
. On the contrary, when a⊤x− β⊤

x(i)φX ≤ ηx(i) , then ∀(x, φX) ∈

ŪB
(
x(i)

)
the function admits a solution given by ηx(i) + β⊤

x(i)ϱX . The dual of (1.26) then becomes:

min
η

x(i) , β
x(i) ≥0

ηx(i) + β⊤
x(i)ϱX

s.t. a⊤x− β⊤
x(i)φX ≤ ηx(i) ∀(x, φX) ∈ ŪB

(
x(i)

)
.

(1.28)

The robust set of constraints of model (1.28) can be equivalently reformulated as:

a⊤x− β⊤
x(i)φX ≤ ηx(i) ∀(x, φX) ∈ ŪB

(
x(i)

)
⇔ max

(x,φX) ∈ ŪB(x(i))

[
a⊤x− β⊤

x(i)φX

]
≤ ηx(i)
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where the dual of the left-hand side maximization problem is equal to:

min
π

x(i) ≥0
π⊤

x(i)hx(i)

s.t. C⊤
Xπx(i) ≥ a

D⊤πx(i) ≥ −βx(i) ,

(1.29)

with πx(i) ∈ R5n
+ . Combining (1.28) with (1.29), and repeating for all i = 1, . . . , I and j = 1, . . . , J ,

a tractable distributionally robust formulation of problem (1.3) is:

min
a,γ,zX ,zY ,ηX ,ηY ,βX ,βY ,πX ,πY

∥a∥1 + ν(e⊤zX + e⊤zY )

s.t. ηx(i) + β⊤
x(i)ϱX ≤ γ − 1 + zx(i) i = 1, . . . , I

π⊤
x(i)hx(i) ≤ ηx(i) i = 1, . . . , I

C⊤
Xπx(i) ≥ a i = 1, . . . , I

D⊤πx(i) ≥ −βx(i) i = 1, . . . , I

ηy(j) + β⊤
y(j)ϱY ≤ −γ − 1 + zy(j) j = 1, . . . , J

π⊤
y(j)hy(j) ≤ ηy(j) j = 1, . . . , J

C⊤
Y πy(j) ≥ −a j = 1, . . . , J

D⊤πy(j) ≥ −βy(j) j = 1, . . . , J

zX ≥ 0, zY ≥ 0

πX ≥ 0, πY ≥ 0, βX ≥ 0, βY ≥ 0,

(1.30)

where ηX :=
[
ηx(1) ; . . . ; ηx(I)

]
∈ RI , ηY :=

[
ηy(1) ; . . . ; ηy(J)

]
∈ RJ , βX :=

[
βx(1) ; . . . ; βx(I)

]
∈

RnI
+ , βY :=

[
βy(1) ; . . . ; βy(J)

]
∈ RnJ

+ , πX :=
[
πx(1) ; . . . ; πx(I)

]
∈ R5nI

+ and πY :=
[
πy(1) ; . . . ;

πy(J)

]
∈ R5nJ

+ . The number of variables of linear formulation (1.30) is n + 1 + I(2 + 6n) + J(2 + 6n),

while the number of constraints is n + I(5 + 6n) + J(5 + 6n) of which I(1 + 6n) + J(1 + 6n) are

non-negativity constraints. From the solution of optimization problem (1.30), the hyperplanes H1 and

H2, satisfying properties (P1)-(P3) are obtained. We find H3 solving the minimization problem via

line search:
min

b

I∑
i=1

1
(
ηx(i) + β⊤

x(i)ϱX − b
)

+
J∑

j=1
1
(
b + ηy(j) + β⊤

y(j)ϱY

)
s.t. γ + 1− ω2 ≤ b ≤ γ − 1 + ω1.

(1.31)
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To summarize, Figure 4 provides the geometrical interpretation of the proposed approach. First,

principal directions are detected for group X . Each nominal observation x(i) is therefore bounded by

a box support and limits on x(i) deviations along principal directions are enforced. The same holds

for every observation y(j) of group Y and its principal directions. Then, the starting hyperplane (a, γ)

is detected by means of model (1.30), and it is shifted to the right and to the left by amounts ω1 and

ω2, respectively, to identify H1 and H2. Through line search given by (1.31), the final classifier H3 is

found such that the overall number of misclassified realizations is minimized.

Figure 4: Input observations of groups X and Y and separating hyperplanes H1, H2 and H3.

Notice that in the approaches described above we limited our attention to the the problem of linearly

separating two sets of points; nonetheless, those formulations can be also applied to the multiclass

separation problem (with number of classes κ > 2) by iteratively solving a sequence of two classes

separation problems. Examples of these heuristic methods are the one-versus-all and one-versus-one

schemes (see [2]). While the former approach detects κ − 1 classifiers, each of which solves the

problem of separating points in a particular class from all the points not in that class, the latter

alternative computes κ(κ− 1)/2 classifiers, one for every possible pair of classes.

1.5 Numerical Results

In this section, we evaluate the performance of robust and distributionally robust optimization models

compared to their deterministic counterparts. The proposed SVM formulations are tested on ten
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real-world databases, all of which are publicly available and can be downloaded from [46]. The

data sets used are listed in Table 2, where the number of features n ∈ [4, 279], while the number of

observations considered I + J ∈ [68; 4,435]. For multiclass data sets (i.e., Arrhythmia, Dermatology,

Heart Disease, and Landsat Satellite), we adopted the one-versus-all scheme and detected the classifier

separating the first class from the remaining ones. This was done to ensure a fair comparison with

the results reported in [13], where the same approach was implemented. Clearly, models presented

in Section 4 could be also used to identify the remaining κ− 2 hyperplanes under the one-versus-all

scheme as well as the κ(κ− 1)/2 classifiers of the one-versus-one technique.

The computations have been performed on a 64-bit machine with 8 GB of RAM, a 1.8 GHz Intel

i7 processor, and numerical results are obtained under MATLAB environment using MOSEK solver

(version 8.1.0.72).

Data set Application Field Observations Features Class Balancing
Arrhythmia Life Sciences 68 279 70.59%− 29.41%
Breast Cancer Life Sciences 683 9 65.89%− 34.11%
Breast Cancer Diagnostic Life Sciences 569 30 62.74%− 37.26%
Dermatology Life Sciences 358 34 68.99%− 31.01%
Heart Disease Life Sciences 297 13 53.87%− 46.13%
Parkinson Life Sciences 195 22 75.38%− 24.62%
Climate Model Crashes Physical Sciences 540 18 91.48%− 8.52%
Landsat Satellite Physical Sciences 4,435 36 95.47%− 4.53%
Ozone Level Detection One Physical Sciences 1,848 72 96.92%− 3.08%
Blood Transfusion Business 748 4 76.20%− 23.80%

Table 2: Summary of data sets from UCI Machine Learning Repository.

For every data set, we first split the overall number of observations (I + J) at our disposal into two

disjoint subsets: the former (called training set) contains 75% of the observations (of which Itr belong

to the first class and Jtr to the second), the latter (called testing set) contains what is left (Its + Jts

observations). The observations of the training set are randomly chosen with the only requirement of

maintaining the original class balancing, a partition strategy known in the literature as proportional

(or stratified) random sampling, i.e.:

Itr

Itr + Jtr
= I

I + J
and

Jtr

Itr + Jtr
= J

I + J
.

We refer the reader to [36] for a deeper discussion on proportional random sampling steady perfor-

mances. For the sake of illustration, we show how to construct training sets on the data set “Breast

Cancer Diagnostic”. This database lists in total I +J = 569 observations, of which I = 212 represent

malignant instances and J = 357 are observations of benign tumors. The class balancing is therefore
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62.74% − 37.26%. In the generation of the training set we randomly select Itr + Jtr = 427 obser-

vations (75% of 569), with Itr = 268 belonging to the malignant group and Jtr = 159 to the benign

one. By doing so the class balancing is not altered. It is worth noticing that in our computational

experiments we did not implement any feature reduction algorithm (such as feature selection or feature

extraction), which means that if an observation belongs to the training set, the entirety of its features

will be considered during the training phase. Nonetheless, including such dimensionality reduction

approaches could constitute a promising future research direction. Once the partition procedure is

complete, different final separating hyperplanes are obtained solving, sequentially, the deterministic

(1.2)-(1.5), box robust (1.9)-(1.10), ellipsoidal robust (1.13)-(1.14) and distributionally robust (1.30)-

(1.31) formulations over the training set. Specifically, we first set the user-defined penalty parameter

ν equally distributed in log space from 10−3 to 100 with 5 discretization points, similarly to what done

in [96], and kmax = 104. Then, we solve the deterministic formulation under every candidate value

νi with i ∈ {1, . . . , 5}, record the hyperplane Hνi
3 and compute the associated misclassification error

ενi . The final deterministic hyperplane H3 is chosen to be the one minimizing the misclassification

error ενi , i.e., H3 = Hν∗
3 with ν∗ ∈ arg min{εν1 , . . . , εν5}. The same procedure is repeated for the box

formulation, where we additionally set perturbation vectors ζx(i) and ζy(j) equal to the standard devi-

ation vectors σX and σY of the training groups X and Y , i.e., ζx(i) = σX , i = 1, . . . , Itr and ζy(j) =

σY , j = 1, . . . , Jtr. Similarly, for the ellipsoidal robust formulation where covariance matrices are

given by Σ
1
2
x(i) = diag(σX), i = 1, . . . , Itr and Σ

1
2
y(j) = diag(σY ), j = 1, . . . , Jtr. For the distribu-

tionally robust model, we first perform PCA on the training sets and fix the parameter K ∈ N \ {0} to

tune the maximum deviations allowed along principal directions for each observation. For all our test

problems, the results we get with values of K larger than 2 are worsening in terms of accuracy levels.

Thus, we use K ∈ {1, 2}. It is worth recalling that setting K = 1 allows more dispersion compared

to K = 2. For all the robust and distributionally robust formulations, procedures are repeated consid-

ering increasing levels of ρX , ρY ∈ {0.1, 0.2, 0.3}. After detecting the final separating hyperplanes

using the training data and under the different formulations, we measure their prediction accuracy

by reporting the out-of-sample misclassification error on observations belonging to the testing set

(i.e., computing testing errors). In order to get stable results, the experiments are performed over 100

different compositions of the hold-out 75%-25% and results are averaged. Furthermore, the procedure

is repeated under different hold-outs: 50%-50% and 25%-75%.

These perturbation assumptions for robust and distributionally robust models imply that all the sources

of information about features might follow the same form of uncertainty. This is a simplifying

assumption driven by the unavailability of explicit details on input data gathering, especially in the
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medical field where data often comes from heterogeneous sources (e.g., medical imaging, pathology

reports, physician notes, genetic assays, lab results, etc.). Naturally, precise knowledge of special

structure of input instances would be desired, as would allow taking into account non-homogeneous

sources and would therefore lead to wiser choices of perturbations parameters.

For each formulation and every considered data set, we report in Table 3 mean out-of-sample test-

ing errors and standard deviations3 for the first hold-out 75%-25%. The solutions under our robust

and distributionally robust approaches have intuitive practical appeal, and offer important operational

insights. Foremost, by adjusting the radius parameters ρX , ρY all robust and distributionally robust

formulations are always able to improve prediction accuracies compared to their deterministic counter-

part. Therefore, numerical experiments demonstrate that accounting for uncertainty proves to always

be beneficial in terms of SVM predictive power.

Furthermore, it can be noted that once the optimal degree of conservatism is identified, then departing

from it translates into a progressive worsening of performances. For instance, for the data set

“Breast Cancer” the highest-accuracy model is the distributionally robust with K = 1 (out-of-sample

testing error rate equal to 3.12%). It follows that opting for progressively more conservative models

(ellipsoidal and box robust, in the order) gradually increases out-of-sample testing errors (3.31% and

3.36%, respectively); same conclusion can be drawn solving a less conservative model (distributionally

robust with K = 2, with an out-of-sample testing error rate setting around 3.25%). For ease

of visualization, Figure 5a reports the lowest out-of-sample testing error rate achieved by every

formulation under the “Breast Cancer” data set (data from Table 3). In a similar fashion, for the data

set “Heart Disease” the highest-accuracy model happens to be the ellipsoidal robust (out-of-sample

testing error rate equal to 16.20%) and solving less conservative models (distributionally robust with

K = 1, 2) gradually increases out-of-sample testing errors (16.28% and 16.50%, respectively); same

conclusion can be drawn solving a more conservative model (box robust, with an out-of-sample testing

error rate setting around 16.38%), see Figure 5b. The same trends are confirmed under every data set,

whose plots are reported in Figure 6.

Furthermore, we compare the performance of our models with the accuracy scores reported in [13],

that we consider literature benchmark results for robust classification with feature uncertainty. Such

comparison highlights that our classifiers perform favorably relative to the standard SVM feature-robust

formulation for the majority of the considered problems: 8 out of 10 data sets, as shown in Table 6.

3For each method and every data set, the best result is underlined. Overall, for every single data set, we indicate in bold
the lowest out-of-sample testing error rate achieved.
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Deterministic ρX = ρY

Box

RO

Ellipsoidal

RO

DRO

K = 1
DRO

K = 2

Arrhythmia 25.65%± 0.107
0.1 23.65%± 0.104 24.82%± 0.102 23.65%± 0.097 23.41%± 0.090
0.2 23.53%± 0.092 23.06%± 0.102 23.29%± 0.095 23.65%± 0.093
0.3 23.06%± 0.088 23.00% ± 0.089 23.53%± 0.090 23.65%± 0.090

Average CPU seconds 0.560 0.955 1.338 125.292 104.712

Breast Cancer 3.49%± 0.012
0.1 3.58%± 0.013 3.53%± 0.012 3.34%± 0.011 3.51%± 0.012
0.2 3.47%± 0.012 3.43%± 0.014 3.24%± 0.012 3.33%± 0.011
0.3 3.36%± 0.013 3.31%± 0.012 3.12% ± 0.012 3.25%± 0.012

Average CPU seconds 0.244 0.324 1.118 7.627 7.449

Breast Cancer Diagnostic 4.89%± 0.015
0.1 3.90%± 0.016 4.45%± 0.015 4.66%± 0.016 4.70%± 0.015
0.2 3.97%± 0.015 3.89% ± 0.015 4.06%± 0.016 4.12%± 0.017
0.3 4.04%± 0.015 4.09%± 0.014 4.10%± 0.015 4.23%± 0.015

Average CPU seconds 0.261 0.330 0.622 20.383 17.094

Dermatology 0.56%± 0.008
0.1 0.34%± 0.007 0.34%± 0.008 0.21%± 0.007 0.31%± 0.008
0.2 0.24%± 0.007 0.19%± 0.006 0.21%± 0.007 0.30%± 0.008
0.3 0.20%± 0.006 0.13% ± 0.005 0.29%± 0.008 0.35%± 0.009

Average CPU seconds 0.357 0.608 1.072 9.958 9.331

Heart Disease 16.68%± 0.039
0.1 16.38%± 0.037 16.38%± 0.036 16.28%± 0.039 16.50%± 0.041
0.2 17.81%± 0.045 16.20% ± 0.035 16.61%± 0.039 16.88%± 0.037
0.3 21.57%± 0.043 16.49%± 0.037 18.16%± 0.040 17.32%± 0.040

Average CPU seconds 0.228 0.269 1.002 3.319 3.238

Parkinson 14.13%± 0.043
0.1 13.38%± 0.032 13.00% ± 0.037 14.31%± 0.039 14.29%± 0.039
0.2 14.42%± 0.031 13.21%± 0.033 13.75%± 0.038 14.00%± 0.038
0.3 15.50%± 0.037 13.79%± 0.033 13.60%± 0.035 13.94%± 0.036

Average CPU seconds 0.212 0.314 0.611 2.851 2.811

Climate Model Crashes 4.99%± 0.016
0.1 4.80%± 0.013 4.67%± 0.013 4.34% ± 0.017 4.41%± 0.013
0.2 6.01%± 0.011 4.48%± 0.013 4.38%± 0.016 4.76%± 0.019
0.3 8.50%± 0.004 4.61%± 0.014 5.18%± 0.015 5.62%± 0.021

Average CPU seconds 0.252 0.317 0.540 8.234 8.002

Landsat Satellite 0.43%± 0.001
0.1 0.44%± 0.002 0.42%± 0.001 0.46%± 0.002 0.36% ± 0.001

0.2 0.42%± 0.002 0.39%± 0.001 0.37%± 0.001 0.40%± 0.001
0.3 0.43%± 0.002 0.41%± 0.002 0.37%± 0.001 0.49%± 0.001

Average CPU seconds 0.906 1.041 1.250 1,142.028 1,128.582

Ozone Level Detection One 6.19%± 0.013
0.1 5.32%± 0.012 4.97%± 0.009 4.80%± 0.012 3.15%± 0.001
0.2 4.84%± 0.008 3.86%± 0.007 4.11%± 0.007 3.06%± 0.001
0.3 4.57%± 0.008 3.81%± 0.004 3.72%± 0.006 3.06% ± 0.001

Average CPU seconds 0.628 0.819 0.993 683.121 677.719

Blood Transfusion 23.49%± 0.026
0.1 23.21%± 0.010 23.28%± 0.013 22.87%± 0.013 23.02%± 0.015
0.2 23.43%± 0.007 22.55% ± 0.010 22.78%± 0.014 22.80%± 0.014
0.3 23.53%± 0.008 23.36%± 0.005 23.46%± 0.021 23.09%± 0.016

Average CPU seconds 0.255 0.305 0.927 7.158 7.040

Table 3: Average out-of-sample testing errors and standard deviations over 100 runs of the deterministic,
robust and distributionally robust models, for the different considered data sets. Hold-out 75%-25%.
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Deterministic ρX = ρY

Box

RO

Ellipsoidal

RO

DRO

K = 1
DRO

K = 2

Arrhythmia 26.76%± 0.080
0.1 25.44%± 0.075 25.76%± 0.075 25.44%± 0.075 25.50%± 0.076
0.2 25.12%± 0.072 25.00%± 0.075 25.62%± 0.076 25.59%± 0.075
0.3 24.00% ± 0.069 24.32%± 0.069 25.65%± 0.074 25.59%± 0.073

Average CPU seconds 0.433 0.681 0.792 36.200 32.092

Breast Cancer 3.70%± 0.010
0.1 3.56%± 0.007 3.54%± 0.008 3.42%± 0.008 3.64%± 0.008
0.2 3.43%± 0.007 3.40%± 0.008 3.40%± 0.008 3.55%± 0.008
0.3 3.32%± 0.007 3.29%± 0.008 3.28% ± 0.007 3.38%± 0.008

Average CPU seconds 0.240 0.242 0.846 5.036 4.984

Breast Cancer Diagnostic 5.60%± 0.011
0.1 5.08%± 0.012 4.64%± 0.010 5.18%± 0.013 5.25%± 0.012
0.2 5.19%± 0.014 4.45%± 0.011 5.32%± 0.012 5.42%± 0.012
0.3 5.29%± 0.017 4.41% ± 0.010 5.44%± 0.012 5.39%± 0.012

Average CPU seconds 0.260 0.302 0.593 9.382 9.229

Dermatology 0.90%± 0.008
0.1 0.57%± 0.008 0.81%± 0.012 0.42%± 0.006 0.49%± 0.008
0.2 0.41%± 0.006 0.46%± 0.007 0.46%± 0.007 0.47%± 0.008
0.3 0.32%± 0.005 0.21% ± 0.004 0.47%± 0.008 0.50%± 0.008

Average CPU seconds 0.246 0.255 0.617 8.198 7.283

Heart Disease 18.74%± 0.027
0.1 18.11%± 0.022 18.38%± 0.027 18.23%± 0.029 18.49%± 0.028
0.2 19.37%± 0.033 17.82%± 0.025 18.56%± 0.031 18.41%± 0.029
0.3 24.57%± 0.053 17.82% ± 0.024 19.47%± 0.032 18.68%± 0.029

Average CPU seconds 0.227 0.256 0.521 2.478 2.347

Parkinson 15.62%± 0.036
0.1 14.28%± 0.031 14.55%± 0.027 15.55%± 0.039 15.36%± 0.037
0.2 15.57%± 0.030 14.47%± 0.025 15.05%± 0.035 15.29%± 0.036
0.3 17.26%± 0.041 14.23% ± 0.023 15.22%± 0.037 15.19%± 0.034

Average CPU seconds 0.206 0.244 0.504 1.845 1.788

Climate Model Crashes 5.61%± 0.015
0.1 5.02%± 0.010 5.21%± 0.012 5.34%± 0.014 5.42%± 0.015
0.2 6.19%± 0.011 4.90%± 0.011 5.33%± 0.014 5.52%± 0.014
0.3 8.46%± 0.003 4.87% ± 0.010 5.73%± 0.014 6.37%± 0.011

Average CPU seconds 0.239 0.254 0.517 5.518 5.433

Landsat Satellite 0.51%± 0.002
0.1 0.47%± 0.001 0.44%± 0.001 0.48%± 0.001 0.41% ± 0.001

0.2 0.47%± 0.001 0.43%± 0.001 0.47%± 0.002 0.43%± 0.001
0.3 0.48%± 0.002 0.44%± 0.001 0.42%± 0.001 0.48%± 0.002

Average CPU seconds 0.654 0.684 0.846 522.252 484.864

Ozone Level Detection One 6.27%± 0.018
0.1 5.93%± 0.015 5.81%± 0.014 3.71%± 0.009 5.81%± 0.015
0.2 5.79%± 0.014 5.11%± 0.011 3.07%± 0.001 4.47%± 0.005
0.3 5.71%± 0.014 4.42%± 0.008 3.06% ± 0.001 4.36%± 0.005

Average CPU seconds 0.489 0.502 0.667 310.425 291.384

Blood Transfusion 23.93%± 0.016
0.1 23.15%± 0.005 22.94%± 0.007 23.48%± 0.011 23.53%± 0.009
0.2 23.45%± 0.004 22.88% ± 0.006 23.55%± 0.013 23.59%± 0.008
0.3 23.60%± 0.003 23.44%± 0.005 23.88%± 0.021 23.91%± 0.016

Average CPU seconds 0.216 0.230 0.492 4.952 4.935

Table 4: Average out-of-sample testing errors and standard deviations over 100 runs of the deterministic,
robust and distributionally robust models, for the different considered data sets. Hold-out 50%-50%.
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Deterministic ρX = ρY

Box

RO

Ellipsoidal

RO

DRO

K = 1
DRO

K = 2

Arrhythmia 33.18%± 0.068
0.1 31.12%± 0.074 31.98%± 0.070 32.16%± 0.083 32.06%± 0.082
0.2 29.82%± 0.069 31.37%± 0.073 32.12%± 0.082 32.14%± 0.082
0.3 29.04% ± 0.064 30.29%± 0.075 32.06%± 0.082 32.24%± 0.082

Average CPU seconds 0.423 0.535 0.780 7.646 6.182

Breast Cancer 4.81%± 0.013
0.1 4.35%± 0.011 4.25%± 0.009 4.47%± 0.013 4.35%± 0.010
0.2 3.96%± 0.008 4.03%± 0.009 4.31%± 0.011 4.22%± 0.010
0.3 3.74% ± 0.007 3.81%± 0.008 3.91%± 0.009 3.94%± 0.009

Average CPU seconds 0.226 0.240 0.608 2.621 2.552

Breast Cancer Diagnostic 6.35%± 0.013
0.1 5.16%± 0.009 5.17%± 0.010 6.02%± 0.011 6.02%± 0.011
0.2 5.19%± 0.012 4.96%± 0.009 6.00%± 0.012 6.04%± 0.012
0.3 6.03%± 0.015 4.94% ± 0.009 6.04%± 0.011 6.06%± 0.012

Average CPU seconds 0.250 0.258 0.575 3.586 3.541

Dermatology 2.03%± 0.014
0.1 1.12%± 0.010 1.02%± 0.011 0.66%± 0.007 0.74%± 0.007
0.2 0.76%± 0.008 0.65%± 0.008 0.69%± 0.008 0.74%± 0.008
0.3 0.54%± 0.006 0.46% ± 0.006 0.72%± 0.008 0.76%± 0.007

Average CPU seconds 0.215 0.239 0.590 2.148 2.130

Heart Disease 20.90%± 0.027
0.1 20.50%± 0.030 20.48%± 0.026 20.05%± 0.028 20.22%± 0.027
0.2 21.14%± 0.036 19.72%± 0.025 20.42%± 0.029 20.60%± 0.030
0.3 23.90%± 0.045 19.67% ± 0.025 20.81%± 0.035 20.75%± 0.032

Average CPU seconds 0.222 0.229 0.492 1.414 1.269

Parkinson 17.92%± 0.044
0.1 16.67%± 0.036 16.55%± 0.039 17.87%± 0.041 18.12%± 0.046
0.2 17.87%± 0.039 16.39%± 0.039 18.29%± 0.043 17.92%± 0.042
0.3 19.82%± 0.043 16.26% ± 0.035 18.47%± 0.046 17.87%± 0.041

Average CPU seconds 0.206 0.227 0.461 1.099 1.037

Climate Model Crashes 7.61%± 0.022
0.1 6.40% ± 0.016 7.26%± 0.020 7.50%± 0.024 7.88%± 0.023
0.2 6.61%± 0.012 6.90%± 0.018 7.84%± 0.028 9.04%± 0.032
0.3 8.06%± 0.009 6.55%± 0.015 8.51%± 0.032 9.04%± 0.036

Average CPU seconds 0.226 0.239 0.491 2.352 2.304

Landsat Satellite 0.59%± 0.002
0.1 0.51%± 0.001 0.50%± 0.002 0.51%± 0.002 0.51%± 0.002
0.2 0.49%± 0.001 0.49%± 0.002 0.50%± 0.002 0.50%± 0.002
0.3 0.53%± 0.002 0.48%± 0.002 0.47% ± 0.002 0.49%± 0.002

Average CPU seconds 0.414 0.423 0.701 122.338 118.907

Ozone Level Detection One 6.43%± 0.012
0.1 6.26%± 0.017 6.20%± 0.018 4.25%± 0.010 5.12%± 0.017
0.2 5.08%± 0.014 5.33%± 0.017 3.32%± 0.006 4.74%± 0.017
0.3 5.06%± 0.011 4.70%± 0.010 3.08% ± 0.001 4.73%± 0.019

Average CPU seconds 0.393 0.404 0.612 97.110 96.562

Blood Transfusion 24.09%± 0.014
0.1 23.43%± 0.006 23.17%± 0.005 23.42%± 0.028 23.61%± 0.011
0.2 23.57%± 0.004 23.03% ± 0.008 23.25%± 0.036 24.13%± 0.021
0.3 23.66%± 0.002 23.45%± 0.005 23.43%± 0.045 25.42%± 0.026

Average CPU seconds 0.214 0.223 0.490 2.622 2.587

Table 5: Average out-of-sample testing errors and standard deviations over 100 runs of the deterministic,
robust and distributionally robust models, for the different considered data sets. Hold-out 25%-75%.
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(a) Breast Cancer (b) Heart Disease

Figure 5: Lowest out-of-sample testing error rates over changes of ρX , ρY per formulation under the data
sets: (a) Breast Cancer; (b) Heart Disease. Vertical error bars represents standard errors. Data of Table
3.

Overall, experimental results show that the robustification of the deterministic formulation (1.2)-(1.5)

proposed in [96] leads to more powerful decision boundaries compared to classical approaches.

Data set Table 3 Ref. [13]
Arrhythmia 23.00% 29.23%
Breast Cancer 3.12% 4.26%
Breast Cancer Diagnostic 3.89% 4.04%
Dermatology 0.13% 1.13%
Heart Disease 16.20% 16.61%
Parkinson 13.00% 16.41%
Climate Model Crashes 4.34% 4.07%
Landsat Satellite 0.36% 1.87%
Ozone Level Detection One 3.06% 2.98%
Blood Transfusion 22.55% 23.62%

Table 6: Out-of-sample testing error rates comparison. Data of Table 3 against accuracy scores from [13].
For each data set, we indicate in bold the lowest out-of-sample testing error rate achieved.

In Tables 4 and 5 we present the results under the 50%-50% and 25%-75% hold-outs. We observe

that, with respect to the 75%-25% hold-out, robust and distributionally robust methods significantly

outperform the deterministic formulation in terms of prediction accuracy with improvements that

increase as the training sample size decreases. This confirms that robust and distributionally robust

methods produce high-quality classifiers when the uncertainty increases during the training phase,

and therefore their ability to recover the truth from the data increases. To this end, Table 7 shows the

robust and distributionally robust improvements in out-of-sample testing errors over their deterministic

counterpart. For every data set, we report the best performing model under each hold-out with its

average out-of-sample testing error, which we refer to as τ ∗. We also compute the improvement ratios

δ as follows:

δ := τdet − τ ∗

τdet
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(a) Arrhythmia (b) Breast Cancer Diagnostic

(c) Dermatology (d) Parkinson

(e) Climate Model Crashes (f) Landsat Satellite

(g) Ozone Level Detection One (h) Blood Transfusion

Figure 6: Lowest out-of-sample testing error rates over changes of ρX , ρY per formulation under the data
sets: (a) Arrhythmia; (b) Breast Cancer Diagnostic; (c) Dermatology; (d) Parkinson; (e) Climate Model
Crashes; (f) Landsat Satellite; (g) Ozone Level Detection One; (h) Blood Transfusion. Vertical error bars
represents standard errors. Graphics refer to data of Table 3.

32



Robust and Distributionally Robust Optimization for Linear SVM

75%-25% 50%-50% 25%-75%

BEST MODEL p-value BEST MODEL p-value BEST MODEL p-value

Arrhythmia Ellipsoidal 3.26E-02 Box 5.69E-04 Box 3.60E-09
Breast Cancer DRO K = 1 1.38E-02 DRO K = 1 1.60E-05 Box 3.49E-11
Breast Cancer Diagnostic Ellipsoidal 2.54E-11 Ellipsoidal 1.39E-17 Ellipsoidal 1.54E-15
Dermatology Ellipsoidal 9.50E-06 Ellipsoidal 4.66E-14 Ellipsoidal 1.20E-17
Heart Disease Ellipsoidal 8.73E-02 Ellipsoidal 2.84E-04 Ellipsoidal 2.26E-05
Parkinson Ellipsoidal 2.10E-04 Ellipsoidal 5.15E-05 Ellipsoidal 1.66E-04
Climate Model Crashes DRO K = 1 8.70E-03 Ellipsoidal 1.50E-06 Box 7.51E-07
Landsat Satellite DRO K = 2 6.07E-05 DRO K = 2 6.20E-04 DRO K = 1 1.38E-05
Ozone Level Detection One DRO K = 2 3.30E-43 DRO K = 1 3.98E-32 DRO K = 1 5.52E-47
Blood Transfusion Ellipsoidal 8.02E-05 Ellipsoidal 1.70E-09 Ellipsoidal 1.18E-11

Table 8: p-values of the best performing robust model on hold-outs 75%-25%, 50%-50%, 25%-75%.

with τdet being the average out-of-sample testing error of the deterministic model of each data set.

75%-25% 50%-50% 25%-75%

BEST MODEL τ ∗ δ BEST MODEL τ ∗ δ BEST MODEL τ ∗ δ

Arrhythmia Ellipsoidal 23.00% 10.32% Box 24.00% 10.33% Box 29.04% 12.47%
Breast Cancer DRO K = 1 3.12% 10.54% DRO K = 1 3.28% 11.30% Box 3.74% 22.25%
Breast Cancer Diagnostic Ellipsoidal 3.89% 20.45% Ellipsoidal 4.41% 21.25% Ellipsoidal 4.94% 22.20%
Dermatology Ellipsoidal 0.13% 76.79% Ellipsoidal 0.21% 76.67% Ellipsoidal 0.46% 77.34%
Heart Disease Ellipsoidal 16.20% 2.88% Ellipsoidal 17.82% 4.91% Ellipsoidal 19.67% 5.43%
Parkinson Ellipsoidal 13.00% 7.96% Ellipsoidal 14.23% 8.91% Ellipsoidal 16.26% 9.29%
Climate Model Crashes DRO K = 1 4.34% 13.03% Ellipsoidal 4.87% 13.19% Box 6.40% 15.90%
Landsat Satellite DRO K = 2 0.36% 17.17% DRO K = 2 0.41% 18.58% DRO K = 1 0.47% 20.88%
Ozone Level Detection One DRO K = 2 3.06% 50.52% DRO K = 1 3.06% 51.27% DRO K = 1 3.08% 52.09%
Blood Transfusion Ellipsoidal 22.55% 4.00% Ellipsoidal 22.88% 4.39% Ellipsoidal 23.03% 4.40%

Table 7: Robust improvements with respect to the deterministic model on hold-outs 75%-25%, 50%-
50%, 25%-75%.

To highlight the statistical significance of our results, under each data set, we also display the p-values

for the best performing method against the result of its deterministic counterpart, see Table 8. Reported

p-values are calculated performing a paired-sample t-test under the assumption of the null hypothesis

that the difference in accuracy of the deterministic and robust or distributionally robust classifier is

zero. All results are found to be significant with respect to the typical 5% threshold, except for the

“Heart Disease” with 75%-25% hold-out that starts rejecting the null hypothesis at a significance

level equal to 8.73%. We recall that the smaller the p-value, the more significant is the difference in

accuracy.

In Figure 7, for the considered hold-outs, we report the number of data sets for which every formulation

gave the lowest out-of-sample testing error rate. Histograms clearly underline that for greater training

sets (75% of that overall data) less conservative models tend to perform better with respect to the

most conservative model (i.e., box). Conversely, as the cardinality of the training set progressively

diminishes (down to 25% of that overall data, under the most extreme circumstance) best predictions are
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obtained using more conservative models. We recall, indeed, that distributionally robust formulations

represent more aggressive approaches, since they extract relevant information on the given data and

exploit it to define per group perturbation directions.

Figure 7: Number of data sets for which every formulation gave the lowest out-of-sample testing error
rate. Data of Tables 3, 4, and 5.

To provide advice to final users on when it is valuable to use robust rather than distributionally robust

models in practical applications, Figure 8 plots the best performing method against the dimension of

the training data set (25%, 50%, 75%). Additionally, the circle sizes are proportional to the values of

robust improvements δ from Table 7.

Figure 8: Best performing models versus dimension of the training samples. Data are from Tables 3, 4,
and 5. Horizontal axis is in log-scale.

We observe that distributionally robust models outperform robust formulations for the majority of the

training sets in the region of high dimensionality (i.e., training sample size with more than approxi-

mately 500 observations). On the contrary, robust models beat distributionally robust methods for the

majority of training sets in the region of low dimensionality (i.e., training sample size with less than

approximately 500 observations). It is also insightful to compare distributionally robust formulations

34



Robust and Distributionally Robust Optimization for Linear SVM

with distinct degrees of conservatism. Indeed, we observe that more aggressive distributionally robust

models (obtained setting K = 2) outperform more conservative formulations for the training sets with

more than approximately 1,000 observations. This confirms our previous conclusion related to the

value of the information at disposal during the training phase, which makes opting for more aggressive

models when data might be considered more trustworthy.

Tables 3, 4, and 5 also present the average CPU time (in seconds) required to find a solution for

each method over 500 runs. Numerical results show that solutions for the deterministic and robust

formulations were obtained within a few seconds. Contrariwise, higher computational times are

observed for the distributionally robust formulations, especially for data sets with larger numbers of

observations (e.g., Landsat Satellite and Ozone Level Detection One) or greater number of features

(e.g., Arrhythmia). In these cases, deterministic as well as box and ellipsoidal RO methods are several

orders of magnitude faster. Therefore, we can conclude that a satisfactory trade-off between accuracy

and performing speed is provided by ellipsoidal formulations.

The crucial takeaway message of this work is that hedging against uncertainty in the input observations

via robust and distributionally robust approaches offer substantial benefits compared to deterministic

formulations and can improve the classification accuracy up to 77.34% (see Table 7). Furthermore,

accuracy results recorded by robust and distributionally robust classifiers are more stable, showing

less variability when compared to the separators obtained under the deterministic approach. The

proposed formulations, overall, allow finding a trade-off between increasing the average performance

accuracy and protecting against uncertainty, enabling the decision maker to chose the strategy that is

appropriate for each decision making setting.

1.6 Conclusions

In this work we have presented new optimization models for SVM under uncertainty. Since the

consideration of uncertainty is critical to enhance classifiers predictive power, we have formulated

robust models with uncertainty regions in the form of both box and ellipsoids, and distributionally

robust models that enforce limits on first-order deviations of each input observations along principal

directions. We have conducted extensive computational tests on real-world databases with several

fields of application. The proposed robust and distributionally robust models have proved to have

stronger prediction ability compared to their corresponding deterministic one. Numerical experiments

have also shown that as the information at disposal during the training step increases, better prediction

accuracy is achieved with more aggressive models (such as the distributionally robust) that account for

35



Daniel Faccini, Francesca Maggioni, Florian A. Potra

a higher degree of information. Contrariwise, assuming to have information when such is unreliable

has led to poor results. Indeed, as the training sample size gets smaller and the available amount of

data is scarce, the utility of implementing distributionally robust approaches has decreased and more

conservative models (i.e., box and ellipsoidal robust formulations) have performed better. Overall,

taking uncertainty into account during the training phase –to reasonable extents– has always enhanced

the classifier’s predictive power. Further research activity could be focused on different interesting

directions such as: 1) distributionally robust formulations with ellipsoidal supports for SVM; 2)

consider the use of different kernel functions for non-linear classifiers under uncertainty; 3) consider

the uncertainty in the labels; 4) extend SVM formulations to DRO with different ambiguity sets, such

as the ones induced by ϕ-divergences and Wasserstein distance. On this last regard, the use of distance-

based approaches such the Wasserstein-1 metric [115] and an appropriate choice of robustness level

could guarantee the inclusion of the true distribution within the ambiguity set with a prescribed level

of confidence.
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Chapter 2. Bounds for Multistage Mixed-Integer

Distributionally Robust Optimization

In collaboration with Güzin Bayraksan1, Francesca Maggioni2 and Ming Yang 3. Released in a different version

on SIAM Journal on Optimization.

2.1 Introduction

Multistage stochastic programming has been widely used to solve important problems arising in various

fields including finance [26], transportation [11], energy [120,173] and the environment [189], among

others. Despite their wide applicability, this class of problems suffers from two main issues. First,

traditional models assume that the underlying stochastic process that governs the uncertain parameters

is known. This is rarely true in real life. Second, multistage stochastic programs—particularly

those involving mixed-integer variables and nonlinear terms—are notoriously difficult to solve. To

alleviate the first issue, Distributionally Robust Optimization (DRO) can be used, where the assumed-

known distribution is replaced by an ambiguity set of distributions [144]. Unfortunately, the resulting

multistage problem is still extremely challenging to solve and can become even more challenging

depending on the type of DRO used. Due to the exponential growth of the problem in the number stages,

approximation techniques that provide bounds on the optimal value for multistage DRO problems can

be very useful in practice. In this situation, easy-to-compute bounds and approximations are desirable.

This chapter investigates easy-to-compute lower bounds (for minimization problems) through scenario

grouping and convolution for a class of multistage DRO formed using ϕ-divergences and Wasserstein

distance. Most of the literature on DRO focuses on static, two-stage, or chance-constrained settings

[128], and there is relatively little work on multistage DRO. Many of these works investigate different

ways of forming ambiguity sets in the multistage setting, which can be more complicated relative to the

static/two-stage setting [123, 144]. Moment-based [17, 148, 184], nested Wasserstein [121], modified

χ2 distance [122], general ϕ-divergences [117], L∞-norm [74], Wasserstein [50] and∞-Wasserstein

distance [16] have been examined to form multistage DRO. Most papers assume linear models with
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continuous decision variables, except for [16, 184], which consider mixed-integer decision variables.

Our bounds do not assume any problem structure such as linearity, convexity, and continuity. Majority

of the existing works also focus on solution methods through nested Benders’ decomposition or its

sampling-based variant, stochastic dual dynamic programming [50,74,117,122,184]. Linear decision

rules have also been used to approximately solve these problems [16, 17].

The approach presented in this work divides the sample space into subgroups. The subgroups, being of

smaller size, can be solved more efficiently. They can be solved either by the traditional expected-value

objective approach or a DRO approach. Then, the optimal values of subgroups can be combined,

e.g., using DRO, to form lower bounds on the optimal value. It turns out that not all combinations

of subgroups optimal values yield lower bounds. We provide conditions on ways to combine optimal

values of the subgroups to obtain lower bounds for ambiguity sets formed via many commonly used

ϕ-divergences and Wasserstein distance. The Wasserstein setting is more complicated since requires

an appropriate distance between subgroups. We define such a distance between subgroups to ensure

lower bounds, and discuss how to apply these bounds in the multistage setting.

2.1.1 Related Work

Bounding techniques have a rich history in the stochastic programming literature, and these have been

successfully applied to traditional multistage stochastic programs with expected-value objectives. For

instance, [51] considers two-stage bounds-based distributional approximations for multistage stochas-

tic linear programs (i.e., moment-based approximations derived as solutions to certain generalized

moment problems), relaxing the nonanticipativity constraints. Nonanticipativity is regained progres-

sively via a disaggregation procedure. In [52], the authors propose tight upper and lower bounds to

stochastic convex programs with random right-hand sides. Using a constraint aggregation procedure,

a group of stages from the end of the multistage stochastic program are aggregated to form a sin-

gle stage, and error bounds are developed. In [84], the author elaborates an approximation scheme

that integrates stage-aggregation and discretization through coarsening of sigma-algebras to ensure

computational tractability, while providing deterministic error bounds.

Bounds for multistage stochastic linear programs via scenario tree decomposition were proposed

for the first time in [102], by solving pair subproblems, measuring the quality of the deterministic

solution, and introducing rolling horizon measures. In [103], the authors extend the bounding approach

of [25,102,137] for stochastic multistage mixed-integer linear programs, solving a sequence of group

subproblems made by a subset of reference scenarios plus a subset of scenarios from the finite support.

They show the monotonicity of the chains of lower bounds in terms of the cardinality of reference

38



Bounds for Multistage Mixed-Integer Distributionally Robust Optimization

scenarios and of the remaining scenarios in each subgroup. A scalable bounding framework for

general multistage stochastic programs, extending the work of [137], has been investigated in [138].

This framework scales well with problem size and obtains high-quality solutions within a reasonable

time frame.

An alternative approach to bound the original multistage stochastic program is to construct two

approximating trees, a lower tree and an upper tree, the solutions of which lead to upper and lower

bounds for the optimal value of the original continuous problem. Results in this direction were first

obtained by [59], followed by [58, 83]. In [83], barycentric discretizations are adopted in a more

general setting for convex multistage stochastic programs with a generalized non-convex dependence

on the random variables. In [105], the authors generalize the bounding ideas of [58, 59, 83] to not

necessarily Markovian scenario processes and derive valid lower and upper bounds for the convex

case. They construct new discrete probability measures directly from the simulated data of the whole

scenario process based on the concepts of first order and convex order stochastic dominance.

Bounds for risk-averse multistage mixed-integer stochastic programs via scenario tree decomposition

were first proposed by [104] and [106]. In particular, [104] considers multistage convex problems

with concave risk functional applied to the total cost over the planning horizon. New refinement

chains of lower bounds are constructed, where each bound can be computed by solving sets of group

subproblems less complex than the original one, and recalculating the probabilities of each scenario

in the group accordingly. A monotonically nondecreasing behavior in the cardinality of scenarios of

each subproblem is proved. In [106], the authors consider a dynamic risk functional in the objective

function, formed by a convex combination of mean and Conditional Value-at-Risk (mean-CVaR).

Lower bounds by using convolution of mean-CVaRs with different parameters are obtained through

various scenario partition strategies, and a solution algorithm for mean-CVaR multistage mixed-integer

stochastic problems is provided; see also [107] for algorithmic use of these bounds.

2.1.2 Summary of Contributions

This work, to the best of our knowledge for the first time, introduces new lower-bound (LB) criteria

for multistage DRO through scenario tree decomposition. Upper bounds are also examined. Our

work is similar in spirit to [104, 106], but we consider a large class of DRO formed on finite scenario

trees, where the ambiguity sets are constructed using a ϕ-divergence or Wasserstein distance on a

finite support [50]. We provide conditions on how the optimal values of subgroup problems can be

combined to yield lower bounds by directly using the ambiguity sets. We first present our results in

the two-stage setting and then discuss how to apply these LB criteria in the multistage setting. Finally,
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we investigate the effectiveness of the proposed bounds on a multistage mixed-integer production

planning problem. The proposed approach has the important advantage to split a given problem into

independent scenario groups. This allows to tackle problems for which simple linear relaxations leave

large optimality gaps, problems lacking special structure, and large-scale multistage problems that are

not solvable by commercial solvers.

The chapter is organized as follows. In Section 2.2, basic facts on multistage DRO, the construction

of ambiguity sets via ϕ-divergences and Wasserstein distance as well as their relation to risk-averse

optimization are recalled. Section 2.3 contains the main results of the chapter, namely the LB criteria

for ϕ-divergences and Wasserstein distance, their extension to multistage problems and upper bounds.

Section 2.4 reports numerical results on a multistage mixed-integer production problem and provides a

discussion of insights gained. Section 2.5 concludes the chapter and outlines future research directions.

2.2 Basic Facts and Notation

2.2.1 Multistage DRO

We consider a finite-horizon sequential decision making problem under uncertainty. Decisions are

made at discrete stages t ∈ T := {0, 1, . . . , T}, where T denotes the planning horizon. The decision

process begins with initial decision x0 ∈ Rn0
+ × Zn′

0
+ at stage t = 0, called the first-stage decision,

and is followed by sequential decisions xt ∈ Rnt
+ × Zn′

t
+ at stages t ∈ T \ {0}. The history of

the decision process, at a given point in time, is denoted by xt := (x0, x1, . . . , xt), t ∈ T . The

uncertainty is described by a random process ξ := {ξ0, ξ1, . . . , ξT} ∈ Rd0 × . . . × RdT , where

ξt, t ∈ T is defined on a probability space (Ωt, Ft, Qt) with support Ωt ∈ Rdt , σ-algebra Ft (with

F0 ⊆ F1 ⊆ . . . ⊆ FT = F ) and nominal distribution Qt. We assume ξ0 is a degenerate random

vector (i.e., constant) and ξ is a random parameter evolving as a discrete-time stochastic process with

finite support. The history of the random process up to stage t is denoted by ξt := (ξ0, . . . , ξt), t ∈ T .

The following represents the nested formulation of a multistage DRO (see [144]):

min
x0∈X0(ξ0)

c0(x0, ξ0) + max
P1|ξ0∈P1|ξ0

EP1|ξ0

 min
x1∈X1(x0,ξ1)

c1(x1, ξ1)

+ max
P2|ξ1∈P2|ξ1

EP2|ξ1

[
min

x2∈X2(x1,ξ2)
c2(x2, ξ2)

+ . . .

+ max
PT |ξT −1∈P

T |ξT −1
EPT |ξT −1

[
min

xT ∈XT (xT −1,ξT )
cT (xT , ξT )

]]
(2.1)
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where the mixed-integer first-stage feasibility set is given by X0 ⊆ Rn0
+ × Zn′

0
+ and, for t ∈ T \ {0},

Xt : Rnt−1
+ × Zn′

t−1
+ × Rdt → Rnt

+ × Zn′
t

+ are Ft-measurable mixed-integer point-to-set mappings.

The possibly nonlinear cost functions are given by c0 : Rn0
+ × Zn′

0
+ → R in the first stage and by

ct : Rnt
+ × Zn′

t
+ × Rdt → R in stages t ∈ T \ {0}, which are Ft-measurable. We assume all relevant

optimization problems in the chapter have finite optimal solutions. Set Pt|ξt−1 denotes the conditional

ambiguity set at period t ∈ T \ {0}, conditioned on the history ξt−1, and it is defined as:

Pt|ξt−1 :=
{

Pt|ξt−1 ∈M(Ωt|ξt−1) : ∆(Pt|ξt−1 , Qt|ξt−1) ≤ ρt

}
, (2.2)

where ρt ≥ 0 is a given radius, also called the level of robustness. Above,M(Ωt|ξt−1) represents a

class of probability distributions defined on the support Ωt|ξt−1 , Qt|ξt−1 denotes the nominal conditional

probability measure at stage t, t ∈ T \ {0}, conditioned on the history of the process ξt−1, and ∆(·, ·)

denotes a measure of similarity or distance between Pt|ξt−1 and Qt|ξt−1 . We are interested in building

ambiguity sets using existing data via ϕ-divergences and Wasserstein distance, which we recall in the

next sections. Before we do so, let us define notation that is used throughout the chapter.

2.2.2 Scenario Tree and Nominal Probability Notation

Because we assume ξ has finite support, the information structure can be described in the form of a

scenario tree T with T + 1 levels (stages). Let Ωt be the set of ordered nodes of the tree T at stage

t ∈ T and let Ω := Ω1 × . . . × ΩT . By assumption, we have a discrete number |Ωt| of nodes at

each stage t ∈ T . Each stage-t (t > 0) node n is connected to a unique node at stage t − 1, called

ancestor and denoted a(n). Similarly, each stage-t (t < T ) node n is connected to nodes at stage

t + 1 called successors or children, where B(n) denotes the set of children nodes of n. With qa(n),n

we denote the conditional nominal probability of the random process at node n given its history up

to the ancestor node a(n). A scenario ωi, i = 1, . . . , |ΩT | is a path through nodes from the root

node at t = 0 to a leaf node at t = T . We indicate with qωi
the probability of a scenario ωi passing

through nodes n0, n1, . . . , nT (where nt, t = 0, . . . , T represent generic nodes at stage t), defined as

qωi
:= qn0,n1 · qn1,n2 · . . . · qnT −1,nT

. We also indicate with qn
t the nominal probability of node n at

stage t. So, if node n at stage t is reachable through node n0 at stage 0, node n1 at stage 1, . . . , node

nt−1 at stage t − 1, then qn
t := qn0,n1 · qn1,n2 · . . . · qnt−1,nt . Moreover,

∑
n∈Ωt

qn
t = 1, t ∈ T and∑

m∈B(n) qn,m = 1, n ∈ Ωt, t = 0, . . . , T − 1.

Assumption. For simplicity, from here until Section 2.3.5, we consider two-stage DRO and only point

to changes for multistage case. That is, we set T = 1 in (2.1), drop ξ0 as it is a constant, and let ξ1 ≡ ξ

be defined on a probability space (Ω, F , Q) with finite support Ω := {ω1, ω2, . . . , ω|Ω|}, filtration F
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and probability Q. The probability of scenario ωi ∈ Ω can be specified as qωi
≥ 0 with

∑|Ω|
i=1 qωi

= 1.

Similarly, we simply use P with probability of scenario ωi as pωi
≥ 0 to define ambiguity set (2.2).

So, (2.2) becomes:

P =

P : ∆(P, Q) ≤ ρ,
|Ω|∑
i=1

pωi
= 1, pωi

≥ 0, ωi ∈ Ω

 . (2.3)

From now on, we also use shorthand notation [m] denote the set {1, 2, . . . , m}. So, i ∈ [|Ω|] is

equivalent to i ∈ {1, . . . , |Ω|}.

2.2.3 ϕ-Divergences

For this class of ambiguity sets, ∆ in (2.2) is given by

∆ϕ(P, Q) :=
|Ω|∑
i=1

qωi
ϕ

(
pωi

qωi

)
,

where the convex ϕ-divergence function ϕ(u) ≥ 0 takes value 0 when both pωi
> 0 and qωi

> 0 have

the same value; i.e., ϕ(1) = 0. When qωi
= 0, it holds that 0 · ϕ(pωi

/0) = pωi
lim

u→∞
(ϕ(u)/u) and

0 · ϕ(0/0) = 0. Accordingly, ambiguity set Pt|ξt−1 in (2.2) can be built using some of the well-known

ϕ-divergences described in Tables 9 and 10. These include Variation Distance (VD) and J-divergence,

along with two families of ϕ-divergences, namely, the Cressie-Read (CR) power divergence family

and the χ-divergence family of order a > 1. CR power divergence family includes some of the most

widely used ϕ-divergences as a special case—e.g., the modified χ2 distance and the Kullback-Leibler

(KL) divergence—when its parameter θ takes specific values or when the limit of θ tends to 0 or 1.

These special cases are listed in Table 10.

Divergence ϕ(u) ϕ(u), u ≥ 0 ∆ϕ(P, Q)

Variation Distance ϕv |u− 1| ∑ |pωi
− qωi

|

Cressie-Read Power Divergence ϕθ
CR

1−θ+θu−uθ

θ(1−θ) , θ ̸= 0, 1 1−
∑

pθ
ωi

q1−θ
ωi

θ(1−θ) , θ ̸= 0, 1

J-Divergence ϕJ (u− 1) log u
∑(pωi

− qωi
) log

(
pωi

qωi

)
χ-Divergence of order a > 1 ϕa

χ |u− 1|a ∑
qωi

∣∣∣∣1− pωi

qωi

∣∣∣∣a
Table 9: Common ϕ-divergences.

Equivalence of the well-known divergences in Table 10 and the CR power divergence family in Table 9

is achieved when the radius ρt in the ambiguity set (2.2) formed via a divergence in Table 10 is set

to an adjusted value c · ρθ
t,CR, where ρθ

t,CR is the radius of the CR divergence in Table 9. Values of

coefficient c corresponding to certain θ are listed in the last column of Table 10. For example, when

42



Bounds for Multistage Mixed-Integer Distributionally Robust Optimization

the radius of the modified χ2 distance, denoted ρt,mχ2 , equals 2 · ρθ=2
t,CR, where ρθ=2

t,CR represents the

radius formed via CR power divergence with θ = 2, the two ambiguity sets are equivalent.

θ Corresponding Divergence ϕ(u) ϕ(u), u ≥ 0 ∆ϕ(P, Q) ϕθ
CR(u) c

2 Modified χ2 Distance ϕmχ2 (u− 1)2 ∑ (pωi −qωi )2

qωi

1
2(u2 − 2u + 1) = 1

2(u− 1)2 2

1
2 Hellinger Distance ϕH (

√
u− 1)2 ∑(√pωi

−√qωi
)2 4(1

2 + 1
2t−

√
u) = 2(1−

√
u)2 1

2

−1 χ2 Distance ϕχ2
1
u
(u− 1)2 ∑ (pωi −qωi )2

pωi

1
2(−2 + u + 1

u
) = 1

2(
√

u− 1√
u
)2 2

→ 1 Kullback-Leibler Divergence ϕKL u log u− u + 1 ∑
pωi

log
(

pωi

qωi

)
u(log u− 1) + 1 1

→ 0 Burg Entropy ϕB − log u + u− 1 ∑
qωi

log
(

qωi

pωi

)
− log u + u− 1 1

Table 10: Some special cases of CR power divergence family. Kullback-Leibler divergence and Burg
entropy are obtained by taking the limit of θ to 1 and 0, respectively.

2.2.4 Wasserstein Distance

Let η ∈ (Ω, F , Q) be a random variable taking values (ηω1 , . . . , ηω|Ω|). We quantify distributions P

close to nominal distribution Q taking values on support Ω via Wasserstein distance (see [50]), where

∆ in (2.2) is defined by

∆W (P, Q) := min
{zωi,ωj }|Ω|

i,j=1

|Ω|∑
j=1

|Ω|∑
i=1

dωi,ωj
zωi,ωj

s.t.
|Ω|∑
i=1

zωi,ωj
= qωj

j = 1, . . . , |Ω|

|Ω|∑
j=1

zωi,ωj
= pωi

i = 1, . . . , |Ω|

zωi,ωj
≥ 0 i, j = 1, . . . , |Ω|

with dωi,ωj
:= ||ηωi

− ηωj
||ς a distance between the two scenarios ωi and ωj using ς-norm (e.g.,

ς ∈ {1, 2,∞}). Ambiguity set Pt|ξt−1 in (2.2) can be built accordingly.

2.2.5 Relation to Risk-Averse Optimization

Because the ambiguity sets considered in this chapter are compact convex subsets of (conditional)

probability measures and optimal values are assumed to be real-valued, DRO is equivalent to Risk-

Averse Stochastic Optimization (RASO) with the objective function expressed by a coherent risk

measure; see e.g., [6, 130, 144]. Let us recall coherent risk measures. Let Z := L∞(Ω, F , Q) be the

space of bounded and F -measurable random variables with respect to sample space Ω and probability

distribution Q, and let η ∈ Z be a random variable with values (ηω1 , . . . , ηω|Ω|). First defined by [4],

a functionR(η) : Z → R is called a coherent measure of risk if it satisfies the following properties:
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1. Convexity: R(λη1 + (1− λ)η2) ≤ λR(η1) + (1− λ)R(η2) for all η1,η2 ∈ Z , λ ∈ [0, 1];

2. Monotonocity: η1 ≥ η2 impliesR(η1) ≥ R(η2) for all η1,η2 ∈ Z;

3. Translation Equivariance: R(η + λ) = R(η) + λ for all η ∈ Z , λ ∈ R;

4. Positive Homogeneity: R(λ · η) = λ · R(η) for all η ∈ Z , λ > 0.

Coherent measures of risk can be interpreted as worst-case expectations from a compact convex set

of probability measures through their dual representation:

R(η) := max
P ∈P

EP

[
η
]
.

Therefore, it follows that a RASO can be re-written as a DRO:

min
x
R
(
c(x, ξ)

)
:= min

x
max
P ∈P

EP

[
c(x, ξ)

]
.

The above conclusion is straightforwardly extended to the multistage setting by recursively using

conditional ambiguity sets, which we recall in Section 2.3.5; see e.g., [134, 135, 144] for nested

coherent composite risk measures in multistage setting.

2.3 Lower Bounds for DRO

The aim of this section is to provide lower bounds for DRO formed by ϕ-divergences and the Wasser-

stein distance. For this purpose, instead of dealing with the whole sample space Ω, whose large

cardinality may lead to computational concerns, the lower bound is achieved by dividing the sample

space Ω into subgroups that can be considered separately and then combining the solutions of the

subgroups using DRO with possibly another radius. To perform such a division, we consider the

approaches presented in [104] and summarized below.

2.3.1 Dissecting the Scenario Tree

We construct a collection of ml subsets, each of cardinality l, of the space Ω:

(
Ω(l)

1 , Ω(l)
2 , . . . , Ω(l)

ml

)
,

with the property that their union covers the whole space Ω = ∪ml
g=1 Ω(l)

g . For each Ω(l)
g , g ∈ [ml], there

corresponds a probability measure Q(l)
g . Therefore:

(
Q

(l)
1 , Q

(l)
2 , . . . , Q(l)

ml

)
,
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represents a dissection of the probability measure Q = ∑ml
g=1 π(l)

g Q(l)
g with

∑ml
g=1 π(l)

g = 1 and π(l)
g ≥ 0

for all g ∈ [ml]. For instance, when l = 1, then Ω(1)
g = {ωg}, Q(1)

g = {δωg}, g ∈ [|Ω|], where {δωg}

represents the Dirac measure at scenario ωg. Hence, Q(1)
g = {δωg} has probability 1 for scenario ωg

and probability zero for all other scenarios. Each measure Q(l)
g in the collection is given by:

Q(l)
g :=

∑
ωi∈Ω(l)

g

(qωi
)(l)

g · δωi
,

where (qωi
)(l)

g denotes the nominal probability of scenario ωi within subgroup g with
∑

ωi∈Ω(l)
g

(qωi
)(l)

g =

1. Below, we provide details of probability measures Q(l)
g —and hence details of (qωi

)(l)
g —based on

different constructions. Collections of subgroups can be constructed principally in two ways: by

keeping one or several scenarios fixed in all subsets, or by choosing them disjoint.

Fixed Scenarios

We first consider the case where one or more scenarios appear in all subsets. Without loss of

generality, we assume that the first f < l scenarios of Ω (Ωf = {ω1, . . . , ωf}) are fixed. Consequently

the number of subgroups with cardinality l is ml = |Ω|−f
l−f
∈ N. Then, the probability measures Q(l)

g

can be calculated as follows:

Q(l)
g :=

f∑
i=1

qωi
· δωi

+
∑

ωi∈Ω(l)
g \Ωf

qωi

π
(l)
g

· δωi
,

with weights

π(l)
g :=

∑
ωi∈Ω(l)

g \Ωf
qωi

1−∑f
i=1 qωi

,

for all g ∈ [ml].

Disjoint Partitions

Alternatively, one may also consider disjoint partitions: Ω = ∪ml
g=1 Ω(l)

g with Ω(l)
g1 ∩ Ω(l)

g2 = ∅ for

g1 ̸= g2. Consequently, the number of subgroups with cardinality l is ml = |Ω|
l
∈ N. In this case,

probability measures Q(l)
g are given by:

Q(l)
g :=

∑
ωi∈Ω(l)

g

qωi

π
(l)
g

· δωi
,

with weights

π(l)
g :=

∑
ωi∈Ω(l)

g

qωi
,

for all g ∈ [ml].
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Let Ω(l)
t,g denote set of nodes of subgroup g at stage t ∈ T . In the multistage setting, under both

dissection strategies, probabilities of non-leaf nodes are adjusted as follows:

(
qn

t−1

)(l)

g
:=

∑
m∈B(n): m∈Ω(l)

t,g

(qm
t )(l)

g n ∈ Ω(l)
t−1,g, t ∈ T \ {0}.

Example

Figure 9 displays a sample space Ω = {ωi}15
i=1 with 15 scenarios. We divide it into 7 subsets

Ω(3)
g , g ∈ [7] each of them of cardinality l = 3 with scenario ω1 fixed. That is, Ωf = {ω1},

Ω(3)
1 = {ω1, ω2, ω3}, Ω(3)

2 = {ω1, ω4, ω5}, and so forth. Assuming equal probability for each scenario,

i.e., qωi
= 1/15, i ∈ [15], the probability of scenario ω1 within each scenario group g is (qω1)(3)

g = 1
15

and the probability of other two scenarios in the same group is (qωi
)(3)

g = 7
15 . The weight of each

group is π(3)
g = 1

7 , g ∈ [7].

13

14

15

1

2

3

4
5

6

7

8

9

10

11

12

Figure 9: A graphical representation of the sample space Ω, with |Ω| = 15 scenarios, divided into m3 = 7
subsets of cardinality l = 3, with one fixed scenario Ωf = {ω1}.

2.3.2 Convolution of Risk Measures Induced by DRO

Given a collection of subsets of the scenario tree, our next step is to solve the resulting subgroup

problems and combine them judiciously to form lower bounds on the optimal value of DRO. Toward

this end, we use convolution of risk measures induced by the considered ambiguity sets [106]. We

describe this process next.

46



Bounds for Multistage Mixed-Integer Distributionally Robust Optimization

We denote as G the σ-algebra generated by the collection of subsets Ω = ∪ml
g=1 Ω(l)

g , where each subset

Ω(l)
g corresponds to an elementary event of G . We solve subgroup g using DRO with radius ρ̄g and

denote these radii collectively by ρ̄ = {ρ̄g}ml
g=1. We then combine the optimal values of subgroups

using DRO with radius ¯̄ρ. We denote the ambiguity set used to combine the subgroups as P̃G
¯̄ρ and the

induced risk measure on this collection of subsets as R̃G
¯̄ρ . Here, we refer to ρ̄ and ¯̄ρ equivalently as

risk parameters. We define:

R̃ ¯̄ρ,ρ̄ (η) :=
R̃G

¯̄ρ ◦ R̃
F |G
ρ̄

 (η)

as convolution of the one-step conditional risk measure R̃F |G
ρ̄ : Z → L∞(Ω, G , Q) and the risk

measure on the collection of subsets R̃G
¯̄ρ : L∞(Ω, G , Q) → R (see [106]). Note that R̃F |G

ρ̄ can be

represented in terms ofR(l)
ρ̄g

: L∞(Ω, σ(Ω(l)
g ), Q)→ R for each subgroup g ∈ [ml] with risk parameter

ρ̄g, σ(Ω(l)
g ) the σ-algebra on Ω(l)

g , and P(l)
ρ̄g

the corresponding ambiguity set. We denote the ambiguity

set associated with the one-step conditional risk measure R̃F |G
ρ̄ as P̃F |G

ρ̄ := ∪ml
g=1P

(l)
ρ̄g

. Similarly, we

denote the ambiguity set corresponding to the convolution as P̃ ¯̄ρ,ρ̄.

The ambiguity sets mentioned above can be formulated as follows. First, given the subset Ω(l)
g for

subgroup g, the ambiguity set associated with DRO using radius ρ̄g ≥ 0 inducing risk measure R(l)
ρ̄g

on this subgroup is:

P(l)
ρ̄g

:=

P̄ (l)
g : ∆(P̄ (l)

g , Q(l)
g ) ≤ ρ̄g,

∑
ωi∈Ω(l)

g

(p̄ωi
)(l)

g = 1, (p̄ωi
)(l)

g ≥ 0, ∀ωi ∈ Ω(l)
g

 ,

where (p̄ωi
)(l)

g represents the probability P̄ (l)
g assumes for scenario ωi ∈ Ω(l)

g . Hence, the ambiguity

set corresponding to the one-step conditional risk measure R̃F |G
ρ̄ is:

P̃F |G
ρ̄ :=

P̄ : ∆(P̄ (l)
g , Q(l)

g ) ≤ ρ̄g,∀g∈[ml],
∑

ωi∈Ω(l)
g

(p̄ωi
)(l)

g =1,∀g∈[ml], (p̄ωi
)(l)

g ≥0,∀ωi∈Ω(l)
g ,∀g∈[ml]

.

Above, P̄ := {P̄ (l)
g }

ml
g=1. Next, the ambiguity set associated with DRO using radius ¯̄ρ ≥ 0 inducing

risk measure R̃G
¯̄ρ on the collection of subsets is:

P̃G
¯̄ρ :=

 ¯̄P : ∆( ¯̄P, ¯̄Q) ≤ ¯̄ρ,
∑

g∈[ml]

¯̄p(l)
g = 1, ¯̄p(l)

g ≥ 0,∀g ∈ [ml]

 ,

where ¯̄Q is the nominal distribution composed of the weights π(l)
g detailed in Section 2.3.1 and ¯̄p(l)

g

represents the probability ¯̄P assumes for the subgroup g at cardinality l. Finally, the ambiguity set

corresponding to the convolution R̃ ¯̄ρ,ρ̄ becomes:

P̃ ¯̄ρ,ρ̄ :=
{

P ′ : p′
ωi,g

= ¯̄p(l)
g · (p̄ωi

)(l)
g , ∀ωi ∈ Ωf , g ∈ [ml], p′

ωi
= ∑

g∈[ml]
p′

ωi,g
, ∀ωi ∈ Ωf ,

and p′
ωi

= ¯̄p(l)
g · (p̄ωi

)(l)
g , ∀ωi ∈ Ω(l)

g \ Ωf , g ∈ [ml], ¯̄P ∈ P̃G
¯̄ρ , P̄ ∈ P̃F |G

ρ̄

}
.

(2.4)
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Recall Ωf denotes the set of fixed scenarios (Section 2.3.1), and if Ωf = ∅, disjoint partitions are used.

For any fixed scenario ωi ∈ Ωf , its probability p′
ωi

is found by summing up its group probabilities p′
ωi,g

for all subgroups g ∈ [ml]. Notice that in (2.4) the condition
∑

ωi∈Ω p′
ωi

= 1 always holds because the

respective ambiguity sets P̃G
¯̄ρ and P̃F |G

ρ̄ require
∑

g∈[ml]
¯̄p(l)

g = 1 and
∑

ωi∈Ω(l)
g

(p̄ωi
)(l)

g = 1:

∑
ωi∈Ω

p′
ωi

= ∑
ωi∈Ωf

p′
ωi

+ ∑
ωi∈(Ωf )C

p′
ωi

= ∑
ωi∈Ωf

∑
g∈[ml]

p′
ωi,g

+ ∑
ωi∈(Ωf )C

p′
ωi

= ∑
ωi∈Ωf

∑
g∈[ml]

¯̄p(l)
g · (p̄ωi

)(l)
g + ∑

g∈[ml]

∑
ωi∈Ω(l)

g \Ωf

¯̄p(l)
g · (p̄ωi

)(l)
g

= ∑
g∈[ml]

∑
ωi∈Ω(l)

g

¯̄p(l)
g · (p̄ωi

)(l)
g = ∑

g∈[ml]

(
¯̄p(l)

g ·
∑

ωi∈Ω(l)
g

(p̄ωi
)(l)

g

)
= ∑

g∈[ml]

(
¯̄p(l)

g · 1
)

= 1,

where the complement set with respect to Ω is denoted by (·)C .

Example, Continued

Figure 10 shows the computation of the convolution R̃ ¯̄ρ,ρ̄(·) =
(
R̃G

¯̄ρ ◦ R̃
F |G
ρ̄

)
(·) induced by

the ambiguity set P̃ ¯̄ρ,ρ̄. Here,
(

¯̄p(3)
1 , . . . , ¯̄p(3)

7

)
∈ R7, and for each subgroup g ∈ [7] we have(

(p̄ω1)(3)
g , (p̄ω2g)(3)

g , (p̄ω2g+1)(3)
g

)
∈ R3. So, the probability measure P ′ = ∑

ωi∈Ω p′
ωi

δωi
in (2.4)

is given by the probabilities
(
p′

ω1 = ∑7
g=1 ¯̄p(3)

g · (p̄ω1)(3)
g , p′

ω2 = ¯̄p(3)
1 · (p̄ω2)(3)

1 , . . . , p′
ω5 =

¯̄p(3)
2 · (p̄ω5)(3)

2 , . . . , p′
ω15 = ¯̄p(3)

7 · (p̄ω15)(3)
7

)
∈ R15.

1

2

3

4
5

6

7

8

9

10

11

12
13

14

15

Figure 10: Computation of the risk measure R̃G
¯̄ρ (·) (dashed line) combining the optimal values of subgroups

obtained using risk measures R(l)
ρ̄g

(·), g ∈ [7] induced by DRO with P(l)
ρ̄g

.
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In the rest of this section, we denote the nominal probabilities of the fixed scenarios after dissection as

qωi,g = π(l)
g · (qωi

)(l)
g ,∀ωi ∈ Ωf , g ∈ [ml], where qωi

= ∑
g∈[ml] qωi,g for any ωi ∈ Ωf . We use ρ̄max to

denote the maximal value of ρ̄g among subgroups g ∈ [ml] (i.e., ρ̄max = maxg∈[ml] ρ̄g). Subscript ϕθ
CR

is used to represent all relevant ambiguity sets and risk measures induced by CR power divergence

family with parameter θ. For instance,Rϕθ
CR(ρ)(η) denotes the risk measure induced by the CR power

divergence with ambiguity set Pϕθ
CR(ρ) using radius ρ, and R̃ϕθ

CR(¯̄ρ,ρ̄)(η) =
(
R̃G

ϕθ
CR(¯̄ρ) ◦ R̃

F |G
ϕθ

CR(ρ̄)

)
(η)

denotes the risk measure after convolution using radii ¯̄ρ and ρ̄, and so forth. Similarly, we use subscripts

ϕv, ϕJ , ϕa
χ, and W to denote VD, J-divergence, χ-divergence of order a > 1 and Wasserstein distance,

respectively. These notations are used in the subsequent results and their proofs.

2.3.3 Lower-Bound Criteria for ϕ-Divergences

We now present LB criteria for DRO formed via some commonly used ϕ-divergences listed in Table

9 through scenario grouping. We begin with CR power divergence family and present the proof in

detail. The LB criteria for the special cases of the CR power divergence family in Table 10 can be

acquired from the below result.

Proposition 1. (LB criteria for CR power divergences). Consider the convolution of DRO formed by

CR power divergence with parameter θ ̸= 0, 1. For 0 < θ < 1, radii ρ, ρ̄g, ¯̄ρ ∈
[
0, 1

θ
+ 1

(1−θ)

]
, g ∈

[ml]; for θ < 0 or θ > 1, ρ, ρ̄g, ¯̄ρ ≥ 0 and we further suppose that the support Ω is dissected by

disjoint partitions (i.e., Ωf = ∅). If



¯̄ρ + ρ̄max ≤ ρ when θ ∈ (0, 1),

¯̄ρ + ρ̄max − θ(1− θ) · ¯̄ρ · ρ̄max ≤ ρ when θ < 0 or θ > 1 and Ωf = ∅,

¯̄ρ + ρ̄max ≤ ρ when θ → 0 or θ → 1,

then R̃ϕθ
CR(¯̄ρ,ρ̄)(η) ≤ Rϕθ

CR(ρ)(η) for all η ∈ Z .

Proof. Let P ′ ∈ P̃ϕθ
CR(¯̄ρ,ρ̄). Then there exists ¯̄P ∈ P̃G

ϕθ
CR(¯̄ρ) and P̄ ∈ P̃F |G

ϕθ
CR(ρ̄) such that

∑
g∈[ml]

¯̄p(l)
g = 1,∑

ωi∈Ω(l)
g

(p̄ωi
)(l)

g = 1 and, by the definition of ∆ϕθ
CR

from Table 9, we have

1 −
∑

g∈[ml]

(
¯̄p(l)

g

)θ (
π

(l)
g

)1−θ

θ(1 − θ) ≤ ¯̄ρ,

1 −
∑

ωi∈Ω(l)
g

(
(p̄ωi )(l)

g

)θ (
(qωi )(l)

g

)1−θ

θ(1 − θ) ≤ ρ̄g. (a)

We now show the steps to find the criteria for ∆ϕθ
CR

(P ′, Q) ≤ ρ.
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1. When θ ∈ (0, 1), writing out ∆ϕθ
CR

(P ′, Q), we obtain

1 −
∑

ωi∈Ω

(
p′

ωi

)θ (qωi )1−θ

θ(1 − θ)

=

1 −
∑

ωi∈Ωf

(
p′

ωi

)θ (qωi )1−θ −
∑

ωi∈(Ωf )C

(
p′

ωi

)θ (qωi )1−θ

θ(1 − θ)

=

1 −
∑

ωi∈Ωf

( ∑
g∈[ml]

p′
ωi,g

)θ( ∑
g∈[ml]

qωi,g

)1−θ

−
∑

ωi∈(Ωf )C

(
p′

ωi

)θ (qωi )1−θ

θ(1 − θ)

≤

1 −
∑

ωi∈Ωf

∑
g∈[ml]

(
p′

ωi,g

)θ (qωi,g)1−θ −
∑

ωi∈(Ωf )C

(
p′

ωi

)θ (qωi )1−θ

θ(1 − θ) (b)

=

1−
∑

g∈[ml]
ωi∈Ωf

(
¯̄p(l)

g (p̄ωi )(l)
g

)θ (
π

(l)
g (qωi )(l)

g

)1−θ

−
∑

g∈[ml]
ωi∈Ω(l)

g \Ωf

(
¯̄p(l)

g (p̄ωi )(l)
g

)θ (
π

(l)
g (qωi )(l)

g

)1−θ

θ(1 − θ)

=

1 −
∑

g∈[ml]

∑
ωi∈Ω(l)

g

(
¯̄p(l)

g (p̄ωi )(l)
g

)θ (
π

(l)
g (qωi )(l)

g

)1−θ

θ(1 − θ) (c)

=
1−

∑
g∈[ml]

(
¯̄p(l)

g

)θ(
π

(l)
g

)1−θ

θ(1 − θ) +

∑
g∈[ml]

(
¯̄p(l)

g

)θ(
π

(l)
g

)1−θ

−
∑

g∈[ml]

∑
ωi∈Ω(l)

g

(
¯̄p(l)

g (p̄ωi )(l)
g

)θ (
π

(l)
g (qωi )(l)

g

)1−θ

θ(1 − θ)

=
1 −

∑
g∈[ml]

(
¯̄p(l)

g

)θ (
π

(l)
g

)1−θ

θ(1 − θ) +
∑

g∈[ml]

( ¯̄p(l)
g

)θ (
π(l)

g

)1−θ

1 −
∑

ωi∈Ω(l)
g

(
(p̄ωi )(l)

g

)θ (
(qωi )(l)

g

)1−θ

θ(1 − θ)


≤ ¯̄ρ +

∑
g∈[ml]

[( ¯̄p(l)
g

)θ (
π(l)

g

)1−θ
ρ̄g

]
≤ ¯̄ρ +

∑
g∈[ml]

[( ¯̄p(l)
g

)θ (
π(l)

g

)1−θ
]

· ρ̄max (d)

=¯̄ρ + ρ̄max − θ(1 − θ)
1 −

∑
g∈[ml]

(
¯̄p(l)

g

)θ (
π

(l)
g

)1−θ

θ(1 − θ) · ρ̄max, (e)

where inequality (b) follows from Hölder’s inequality applied on the fixed scenarios. The first

inequality in (d) follows from (a) and the second from definition of ρ̄max. Let us denote the right-

hand side of (e) as A. Since −θ(1− θ) is negative, A ≤ ¯̄ρ + ρ̄max. Therefore, if ¯̄ρ + ρ̄max ≤ ρ,

the result follows.

2. When θ < 0 or θ > 1, we can no longer apply Hölder’s inequality on the fixed scenarios in (b).

However, when Ωf = ∅ (i.e., disjoint partitions are used), we can directly start from (c) and

follow the steps to (e). Since −θ(1− θ) is positive, A ≤ ¯̄ρ + ρ̄max − θ(1− θ) · ¯̄ρ · ρ̄max by (a).

Therefore, if ¯̄ρ + ρ̄max − θ(1− θ) · ¯̄ρ · ρ̄max ≤ ρ, the result follows.
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3. When θ → 1, the CR power divergence is equivalent to Kullback-Leibler divergence. Detailed

proof is provided in Appendix B.

When θ → 0, the proof is similar to the θ → 1 case and hence omitted.

In Appendix B, we provide a detailed proof of Kullback-Leibler divergence (i.e., θ → 1 limit case).

Proof of Proposition 1 and Appendix B reveal that when θ ∈ (0, 1) or in the limit cases of Kullback-

Leibler divergence (θ → 1) and Burg entropy (θ → 0), the scenario tree Ω can be dissected in any

way, either using disjoint partitions or fixed scenarios. However, when θ < 0 or θ > 1, the above

result is valid for disjoint partitions.

LB criteria for other ϕ-divergences in Table 9 can be obtained using a similar proof technique. Below,

we provide the results and relegate the proofs to the Appendix B.

Proposition 2. (LB criterion for variation distance). Consider the convolution of DRO formed by

variation distance, where radii ρ, ρ̄g, ¯̄ρ ∈ [0, 2], g ∈ [ml].

¯̄ρ · ρ̄max + ¯̄ρ + ρ̄max ≤ ρ,

then R̃ϕv(¯̄ρ,ρ̄)(η) ≤ Rϕv(ρ)(η) for all η ∈ Z .

Proposition 3. (LB criterion for J-divergence). Consider the convolution of DRO formed by

J-divergence, where radii ρ, ρ̄g, ¯̄ρ ≥ 0, g ∈ [ml]. If

¯̄ρ + ρ̄max ≤ ρ,

then R̃ϕJ (¯̄ρ,ρ̄)(η) ≤ RϕJ (ρ)(η) for all η ∈ Z .

Proposition 4. (LB criterion for χ-divergence of order a > 1). Consider the convolution of DRO

formed by χ-divergence of order a > 1, where radii ρ, ρ̄g, ¯̄ρ ≥ 0, g ∈ [ml] and suppose the support

Ω is dissected by disjoint partitions (i.e., Ωf = ∅). If

[(
¯̄ρ
) 1

a + (ρ̄max)
1
a +

(
¯̄ρ · ρ̄max

) 1
a

]a

≤ ρ,

then R̃ϕa
χ(¯̄ρ,ρ̄)(η) ≤ Rϕa

χ(ρ)(η) for all η ∈ Z .

Note that Proposition 4 is a general result that applies to all values of a > 1. For certain values of a, a

tighter inequality might be available (e.g., when a = 2).
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2.3.4 Lower-Bound Criterion for Wasserstein Distance

We now provide a LB criterion for Wasserstein distance introduced in Section 2.2.4 through scenario

decomposition. The main idea is the same: to find criteria that guarantee the convoluted ambiguity

set being a subset of the ambiguity set of the original problem. Recall that Wasserstein distance needs

a distance dωi,ωj
between any two scenarios ωi and ωj . To apply it to scenario groups, we need a

distance between subgroups as well. We provide such a distance between subgroups and a criterion

for radii ¯̄ρ, ρ̄ to ensure lower bounds below.

Proposition 5. (LB criterion for Wasserstein distance). Consider the convolution of DRO formed

by Wasserstein distance, where radii ρ, ρ̄g, ¯̄ρ ≥ 0, g ∈ [ml]. Let the distance between scenario

groups be defined as

dg1,g2 :=


max

ωi∈Ω(l)
g1 , ωj∈Ω(l)

g2

{dωi,ωj
} when g1 ̸= g2

0 when g1 = g2,

(2.5)

where g1, g2 ∈ [ml]. If
¯̄ρ + ρ̄max ≤ ρ,

then R̃W (¯̄ρ,ρ̄)(η) ≤ RW (ρ)(η) for all η ∈ Z .

Proof. First assume the support Ω is dissected using disjoint partitions (i.e., Ωf = ∅). Given P ′ ∈

P̃W (¯̄ρ,ρ̄) formed after scenario grouping, the Wasserstein distance between P ′ and Q for the original

problem can be written as

∆W (P ′, Q) := min
z≥0

{ ∑
ωi∈Ω

∑
ωj ∈Ω

dωi,ωj zωi,ωj :
∑

ωi∈Ω
zωi,ωj = qωj , ωj ∈ Ω,

∑
ωj ∈Ω

zωi,ωj = p′
ωi

, ωi ∈ Ω

}
,

(f)

and the Wasserstein distance for ambiguity set P̃G
W (¯̄ρ) can be written as

∆W ( ¯̄P, ¯̄Q) := min
y≥0

{ ∑
g1∈[ml]

∑
g2∈[ml]

dg1,g2 yg1,g2 :
∑

g1∈[ml]
yg1,g2 = π

(l)
g2 , g2 ∈ [ml],

∑
g2∈[ml]

yg1,g2 = ¯̄p(l)
g1 , g1 ∈ [ml]

}
.

(g)

Similarly, for each subgroup g ∈ [ml], we have

∆W (P̄ (l)
g , Q

(l)
g ) := min

x≥0

{ ∑
ωi∈Ω(l)

g

∑
ωj ∈Ω(l)

g

dωi,ωj (xωi,ωj )g :
∑

ωi∈Ω(l)
g

(xωi,ωj )g=(qωj )(l)
g , ωj ∈ Ω(l)

g ,

∑
ωj ∈Ω(l)

g

(xωi,ωj )g=(p̄ωi )(l)
g , ωi ∈ Ω(l)

g

}
.

(h)
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Let us now define one way to obtain zωi,ωj
in (f) by using the transportation decisions yg1,g2 and

(xωi,ωj
)g in (g) and (h), respectively:

zωi,ωj = yg,g (xωi,ωj )g, ωi, ωj ∈ Ω(l)
g , g ∈ [ml] (i)

∑
ωi∈Ω(l)

g1

zωi,ωj = yg1,g2

∑
ωi∈Ω(l)

g2

(xωi,ωj )g2 , ωj ∈ Ω(l)
g2 , g2 ∈ [ml] (j)

∑
ωj ∈Ω(l)

g2

zωi,ωj = yg1,g2

∑
ωj ∈Ω(l)

g1

(xωi,ωj )g1 , ωi ∈ Ω(l)
g1 , g1 ∈ [ml]. (k)

With the transformation above, we can show that the constraints in (f) of the Wasserstein dis-

tance ∆W (P ′, Q) are all satisfied, even though zωi,ωj
formed through (i)–(k) may not be optimal

to ∆W (P ′, Q). For instance, the first set of constraints in (f) for all ωj ∈ Ω (or equivalently all

ωj ∈ Ω(l)
g , g ∈ [ml]) are satisfied by (j) and the first sets of constraints in (g) and (h):∑

ωi∈Ω
zωi,ωj =

∑
g1∈[ml]

∑
ωi∈Ω(l)

g1

zωi,ωj

=
∑

g1∈[ml]

(
yg1,g

∑
ωi∈Ω(l)

g

(xωi,ωj )g

)

=

( ∑
g1∈[ml]

yg1,g

)( ∑
ωi∈Ω(l)

g

(xωi,ωj )g

)

= π
(l)
g (qωj )(l)

g

= qωj ,

where g denotes the subgroup scenario ωj belongs to. The second set of constraints in (f) can be

shown similarly by using (k) and the second sets of constraints in (g) and (h). Hence, all feasible

solutions to constraints in (g) and (h) are also feasible to the constraints in (f).

Let Z, Y, and X denote the feasible regions given by the constraints in (f), (g), and (h), respectively,

each supplemented with their nonnegativity constraints z ≥ 0, y ≥ 0, and x ≥ 0. We now show steps

to find criteria for ∆W (P ′, Q) ≤ ρ:

min
z∈Z

∑
ωi∈Ω

∑
ωj ∈Ω

dωi,ωj zωi,ωj

= min
z∈Z

∑
g∈[ml]

∑
ωi∈Ω(l)

g

( ∑
ωj ∈Ω(l)

g

dωi,ωj zωi,ωj +
∑

ωj ∈
(

Ω(l)
g

)C

dωi,ωj zωi,ωj

)

≤ min
z∈Z
y∈Y
x∈X

∑
g∈[ml]

∑
ωi∈Ω(l)

g

( ∑
ωj ∈Ω(l)

g

dωi,ωj yg,g(xωi,ωj )g +
∑

ωj ∈
(

Ω(l)
g

)C

dωi,ωj zωi,ωj

)
(l)

53
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≤ min
z∈Z
y∈Y
x∈X

∑
g∈[ml]

( ∑
ωi∈Ω(l)

g

∑
ωj ∈Ω(l)

g

dωi,ωj yg,g(xωi,ωj )g +
∑

g2∈[ml]

∑
ωi∈Ω(l)

g

∑
ωj ∈Ω(l)

g2

dg,g2 zωi,ωj

)
(m)

≤ min
y∈Y
x∈X

∑
g∈[ml]

(
yg,g

∑
ωi∈Ω(l)

g

∑
ωj ∈Ω(l)

g

dωi,ωj (xωi,ωj )g

)
+
∑

g∈[ml]

∑
g2∈[ml]

dg,g2 yg,g2 (n)

≤ min
y∈Y
x∈X

∑
g∈[ml]

(
π(l)

g

∑
ωi∈Ω(l)

g

∑
ωj ∈Ω(l)

g

dωi,ωj (xωi,ωj )g

)
+
∑

g∈[ml]

∑
g2∈[ml]

dg,g2 yg,g2 (o)

=
∑

g∈[ml]

(
π(l)

g min
x∈X

∑
ωi∈Ω(l)

g

∑
ωj ∈Ω(l)

g

dωi,ωj (xωi,ωj )g

)
+ min

y∈Y

∑
g∈[ml]

∑
g2∈[ml]

dg,g2 yg,g2 (p)

=
∑

g∈[ml]

π(l)
g ∆W (P̄ (l)

g , Q(l)
g ) + ∆W ( ¯̄P, ¯̄Q) (q)

≤
∑

g∈[ml]

π(l)
g · ρ̄g + ¯̄ρ

≤ ¯̄ρ + ρ̄max, (r)

where (l) follows from (i). Note that this is an inequality because decisions z obtained through this

transformation may not be optimal. Inequality (m) follows (2.5). By summing over ωj ∈ Ω(l)
g2 on both

sides of (j), we can show yg,g2 = ∑
ωi∈Ω(l)

g

∑
ωj∈Ω(l)

g2
zωi,ωj

, ∀g, g2 ∈ [ml]. Then (n) follows. Inequality

(o) follows from yg,g ≤ π(l)
g (see (g)). Equality (p) is due to the fact that the resulting problem is

separable. Finally, the equality in (q) follows from the definition of ∆W (P̄ (l)
g , Q(l)

g ) and ∆W ( ¯̄P, ¯̄Q),

and the following inequalities follows by construction. Therefore, similar to the statement at the end

of the proof of Proposition 1, when θ ∈ (0, 1), if ¯̄ρ + ρ̄max ≤ ρ, then R̃W (¯̄ρ,ρ̄)(η) ≤ RW (ρ)(η) for all

η ∈ Z .

We now consider the case when the support Ω is dissected using fixed scenarios (Ωf ̸= ∅). Recall in

(2.4), for any fixed scenario ωi ∈ Ωf , we have p′
ωi,g

= ¯̄p(l)
g (p̄ωi

)(l)
g , g ∈ [ml] and p′

ωi
= ∑

g∈[ml] p′
ωi,g

.

Hence splitting the two constraints in (f), we have
∑

ωi∈Ω

zωi,ωj = qωj =
∑

g∈[ml]

qωj ,g =
∑

g∈[ml]

π(l)
g (qωj )(l)

g , ωj ∈ Ωf , (s)

∑
ωi∈Ω

zωi,ωj = qωj = π(l)
g (qωj )(l)

g , ωj ∈ (Ωf )C , (t)

∑
ωj ∈Ω

zωi,ωj = p′
ωi

=
∑

g∈[ml]

p′
ωi,g =

∑
g∈[ml]

¯̄p(l)
g (p̄ωi )(l)

g , ωi ∈ Ωf , (u)

∑
ωj ∈Ω

zωi,ωj = p′
ωi

= ¯̄p(l)
g (p̄ωi )(l)

g , ωi ∈ (Ωf )C . (v)

Define a finite expanded support Ω̃ := {ω1(1) , ω1(2) , . . . , ω1(ml) , ω2(1) , ω2(2) , . . . , ω2(ml) , . . . ,

ωf(1) , ωf(2) , . . . , ωf(ml) , ωf+1, ωf+2, . . . , ω|Ω|}, where the fixed scenarios ωi ∈ Ωf = {ω1, . . . ,
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ωf} in different subgroups are considered to have different “atoms” and the rest of the scenarios

ωi ∈ (Ωf )C are left as before. We again use the same subgroups Ω(l)
g but on the expanded support Ω̃.

Then, we have the following Wasserstein distance on Ω̃:

∆̃W (P ′, Q) := min
z̃≥0

{ ∑
ωi∈Ω̃

∑
ωj ∈Ω̃

dωi,ωj z̃ωi,ωj :
∑

ωi∈Ω̃

z̃ωi,ωj = π
(l)
g (qωj )(l)

g , ∀ωj ∈ Ω̃,

∑
ωj ∈Ω̃

z̃ωi,ωj = ¯̄p(l)
g (p̄ωi )(l)

g , ∀ωi ∈ Ω̃
}

.

(w)

For any z̃ ≥ 0 feasible to Wasserstein distance ∆̃W (P ′, Q)—including the optimal z̃—on the expanded

support Ω̃, we can generate a feasible solution z ≥ 0 to (s)–(v). First, for any non-fixed scenarios

ωi, ωj ∈ (Ωf )C , we set zωi,ωj
= z̃ωi,ωj

and observe the constraints in (w) are the same as (t) and

(v). Next, for any fixed scenario ωi ∈ Ωf and non-fixed scenario ωj ∈ (Ωf )C , we set (i) zωi,ωi
=∑

g1∈[ml]
∑

g2∈[ml] z̃ωi(g1) ,ωi(g2)
, (ii) zωi,ωj

= ∑
g∈[ml] z̃ωi(g) ,ωj

, and (iii) zωj ,ωi
= ∑

g∈[ml] z̃ωj ,ωi(g)
. Then (s)

and (u) are also satisfied. Furthermore, with this z, the objective functions of two Wasserstein distances

coincide:
∑

ωi∈Ω
∑

ωj∈Ω dωi,ωj
zωi,ωj

= ∑
ωi∈Ω̃

∑
ωj∈Ω̃ dωi,ωj

z̃ωi,ωj
because any distance involving ωi(g) ∈

Ω̃ is equivalent to distance involving ωi ∈ Ωf , e.g., dωi(g1) ,ωi(g2)
= 0 for all ωi ∈ Ωf , g1, g2 ∈ [ml].

As a result, ∆W (P ′, Q) ≤ ∆̃W (P ′, Q). Observe ∆̃W (P ′, Q) is obtained as “disjoint” partitions on Ω̃.

Then, following similar steps to the disjoint partition, we show ∆̃W (P ′, Q) ≤ ¯̄ρ + ρ̄max. Therefore, if
¯̄ρ + ρ̄max ≤ ρ the result follows.

Remark. Although the above propositions use ρ̄max, these results can also be obtained using the

individual ρ̄g values for each scenario group g ∈ [ml]. For instance, the condition for Wasserstein

would be ¯̄ρ+∑g∈[ml] π(l)
g · ρ̄g ≤ ρ and the result for J-divergence would be ¯̄ρ+∑g∈[ml]

(
¯̄p(l)

g · ρ̄g

)
≤ ρ.

In our numerical results, we use the same value for each group, i.e., ρ̄g = ρ̄max for all g ∈ [ml].

2.3.5 Lower Bounds for Multistage Optimization Problems

We now extend the LBs obtained in Sections 2.3.3 and 2.3.4 to multistage DRO. Due to the correspon-

dence between DRO and RASO, here we focus on a RASO formulation and present our results and

proofs using the properties of conditional coherent risk measures. We first recall the results in [134].

For a multistage decision horizon with stages t ∈ T let Zt := L∞(Ωt, Ft, Qt) with F0 = {ΩT , ∅}.

The mappingRFt+1|Ft
ρt+1 : Zt+1 → Zt is called one-step conditional risk measure if it satisfies properties

presented in Section 2.2.5 for corresponding spaces Zt and Zt+1 for all t ∈ {0, . . . , T − 1}. The risk

involved in a sequence of random variables ηt ∈ Zt, t ∈ T adapted to the filtration Ft, t ∈ T can be

evaluated by a time-consistent dynamic risk measure Rρ induced by a measure of similarity between

55
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distributions ∆ using radii ρ, defined as follows:

Rρ (η0, . . . ,ηT ) := η0 +RF1|F0
ρ1

η1 +RF2|F1
ρ2

(
η2 + . . . +RFT |FT −1

ρT

(
ηT

)), (2.6)

where ρ := (ρ1, . . . , ρT ). It is not necessary to use the same measure of distribution distance ∆ at

each stage of the problem. Also, by changing the radii ρt we can choose how close we remain to the

nominal distributions at different stages. Setting ηt := ct(xt, ξt) at stages t ∈ T and using (2.6), the

multistage RASO problem can be formulated as

min
x0∈X0(ξ0)

c0(x0, ξ0) +Rρ1(Q(x0, ξ)) (2.7)

where

Q(x0, ξ) := min
xt∈Xt(xt−1,ξt), t∈T \{0}

Rρ2,...,ρT

(
c1(x1, ξ1), . . . , cT (xT , ξT )

)
. (2.8)

Let x∗
0 and z∗ be an optimal first-stage solution and the optimal value of (2.7)–(2.8), respectively.

Our first approach, which we refer to as first-level LB, is formed as follows. Consider the collection

of subsets Ω = ∪ml
g=1Ω(l)

g and its induced σ-algebra G . We solve problem (2.7)–(2.8) with sample

space Ω(l)
g whereRρ1 is replaced byR(l)

ρ̄g
and let z∗

g
(l) be its optimal value. Also let ζLB := {z∗

g
(l)}ml

g=1

be a G -measurable random variable with probabilities π(l)
g , g ∈ [ml]. A LB on z∗ can be obtained

by applying the LB risk measure R̃G
¯̄ρ introduced in the previous section to ζLB, hence computing

R̃G
¯̄ρ (ζLB). There is no need to make any changes to the radii from stage 2 to stage T ; hence the name

‘first-level’ LB. Observe that the scenario tree can be dissected at finer partitions than just the first

stage (e.g., a single scenario at every stage t ∈ T ), but the convolution is performed only at the first

stage.

Proposition 6. (First-level LB criteria for multistage problems). Given problem (2.7)–(2.8), assume

that the risk measure at each stage is induced by a ϕ-divergence. Consider risk measure R̃G
¯̄ρ :

L∞(Ω, G , Q)→ R and the one-step conditional risk measure R̃F |G
ρ̄ : L∞(Ω, F , Q)→ L∞(Ω, G , Q)

(i.e., R(l)
ρ̄g

: L∞(Ω, σ(Ω(l)
g ), Q) → R, Ω(l)

g , g ∈ [ml]), where these risk measures are induced by the

same type of measure of similarity ∆. If ¯̄ρ and ρ̄max satisfy the criteria from one of the Propositions

1–4 with ρ = ρ1, then z∗ ≥ R̃G
¯̄ρ (ζLB).

Proof. If x∗
0 is an optimal first-stage solution of (2.7)–(2.8), then it is a feasible first-stage solution for

each subgroup problem, g ∈ [ml]. Thus, we have

c0(x∗
0, ξ0) + R(l)

ρ̄g
(Q(x∗

0, ξ)) ≥ z∗
g

(l)
, g ∈ [ml],

or equivalently
c0(x∗

0, ξ0) + R̃F|G
ρ̄ (Q(x∗

0, ξ)) ≥ ζLB .
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Both sides of this inequality are G -measurable, and since R̃G
¯̄ρ is a coherent risk measure that satisfies

the monotonicity property (see Section 2.2.5), we obtain

R̃G
¯̄ρ

(
c0(x∗

0, ξ0) + R̃F|G
ρ̄

(
Q(x∗

0, ξ)
))

≥ R̃G
¯̄ρ (ζLB).

We can now apply translation equivariance property (see Section 2.2.5) to the left-hand side of above

inequality to get

R̃G
¯̄ρ

(
R̃F|G

ρ̄

(
c0(x∗

0, ξ0) + Q(x∗
0, ξ)

))
≥ R̃G

¯̄ρ (ζLB).

Since the criteria from Propositions 1–4 are satisfied, we obtain

Rρ1

(
c0(x∗

0, ξ0) + Q(x∗
0, ξ)

)
≥ R̃G

¯̄ρ

(
R̃F|G

ρ̄

(
c0(x∗

0, ξ0) + Q(x∗
0, ξ)

))
≥ R̃G

¯̄ρ
(
ζLB

)
.

Using once more the translation equivariance property, we reach

z∗ = c0(x∗
0, ξ0) + Rρ1

(
Q(x∗

0, ξ)
)

≥ R̃G
¯̄ρ
(
ζLB

)
,

which concludes the proof. See also [106].

First-level bounding scheme cannot be applied to the Wasserstein distance case because we do not

have a distance between subgroups in a multistage setting. Thus, we introduce the following definition

which will allow us to reduce the computation of the distance between subgroups in a multistage

setting only to a single stage, in a recursive way.

Definition 1. Let Ω(l)
t,g denote set of nodes of subgroup Ω(l)

g at stage t ∈ T . We say the scenario tree

T is dissected up to stage τ ∈ T \ {0} if:

1. for every subgroup Ω(l)
g , g ∈ [ml] all nodes at stage τ have the same ancestor, i.e., a(n′) =

a(n′′), n′, n′′ ∈ Ω(l)
τ,g, g ∈ [ml];

2. all the successors of stage-τ nodes belong to the same subgroup, i.e., B(n) ∈ Ω(l)
τ+1,g, n ∈

Ω(l)
τ,g, g ∈ [ml], τ ̸= T ;

3. subgroups are disjoint, i.e., Ω(l)
τ,g1 ∩ Ω(l)

τ,g2 = ∅, g1, g2 ∈ [ml], g1 ̸= g2.

Notice that according to Definition 1 we split the ambiguity sets at stage τ while the ambiguity sets

at subsequent stages are not modified. Furthermore, all the subgroups involved in the splitting of a

given ambiguity set at stage τ share the same path up to stage τ − 1. For example, in Figure 11b the

scenario tree depicted in Figure 11a is dissected up to stage τ = 2. Consequently, subgroups Ω(2)
1

and Ω(2)
2 share the same nodes 1 and 2 up to stage τ − 1 = 1. Similarly, for subgroups Ω(2)

3 and Ω(2)
4 .

Analogously, Figure 11c shows a dissection up to stage τ = 1.

57
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(b) Tree T dissected up to stage τ = 2.
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(d) Multi-level LB criteria.

Figure 11: Visual representation of the multi-level bounding scheme.

Notice that Proposition 6 can also be applied to the Wasserstein distance case if the scenario tree

is dissected at τ = 1 according to Definition 1. In this situation, we are able to compute distances

among subgroups because the ambiguity sets of the subsequent stages are unchanged. For the other

situations, we propose the following multi-level LB scheme, which works for both ϕ-divergences and

the Wasserstein distance.

Proposition 7. (Multi-level LB criteria for multistage problems). Let the scenario tree T be

dissected up to stage τ in subgroups Ω(l)
g , g ∈ [ml], according to Definition 1. Let z∗

g
(l), g ∈ [ml]

be the optimal values of problem (2.7)–(2.8) with sample space Ω(l)
g , where ρt is replaced by ρ̄t,g,

t = 1, . . . , τ and ρ̄t,max := maxg∈[ml] ρ̄t,g. Also let ζLB := {z∗
g

(l)}ml
g=1 be a G -measurable random

variable with probabilities π(l)
g , g ∈ [ml]. If ρ̄t,g = ρt, g ∈ [ml] for all t = τ + 1, . . . , T and ¯̄ρt, ρ̄t,max

satisfy the criteria from one of the Propositions 1–5 with respect to ρt for all t = 1, . . . , τ , then

R̃F1|F0
¯̄ρ1

(
R̃F2|F1

¯̄ρ2

(
· · ·

(
R̃G |Fτ−1

¯̄ρτ
(ζLB)

)))
≤ z∗

where

R̃G |Fτ−1
¯̄ρτ

(ζLB) :=
{
R̃S s

¯̄ρτ
(ζs

LB)
}|Ωτ−1|

s=1
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with Ω(k)
s , s ∈ [|Ωτ−1|] dissection of the scenario tree T up to stage τ − 1, S s the σ-algebra induced

by the collection of subsets Ω(k)
s = ⋃

Ω(l)
g ⊆Ω(k)

s
Ω(l)

g and ζs
LB := {z∗

g
(l)}Ω(l)

g ⊆Ω(k)
s

.

Proof. Let Ω(l)
g , g ∈ [ml] be a dissection of the scenario tree T up to stage τ and let Ω(k)

s , s ∈ [|Ωτ−1|]

be a dissection of the scenario tree T up to stage τ − 1. Let x∗
i,s, i = 0, . . . , τ − 1 optimal solutions

of a group Ω(k)
s be given. Then, they are a feasible solution for each subgroup problem Ω(l)

g ⊆ Ω(k)
s .

Thus, for all Ω(l)
g ⊆ Ω(k)

s we have

c0(x∗
0,s, ξ0) + R(l)

ρ̄1,g

(
c1(x∗

1,s, ξ1) + R(l)
ρ̄2,g

(
. . . + R(l)

ρ̄τ,g

(
Q(x∗

τ−1,s, ξ)
)))

≥ z∗
g

(l)

with
Q(x∗

τ−1,s, ξ) := min
xτ ∈Xτ (x∗

τ−1,s,ξt)
xt∈Xt(xt−1,ξt), t∈{τ+1,...,T }

Rρτ+1,...,ρT (cτ (xτ , ξτ ), . . . , cT (xT , ξT ))

or equivalently defining ζs
LB := {z∗

g
(l)}Ω(l)

g ⊆Ω(k)
s

, ρ̄s
t = {ρ̄t,g}Ω(l)

g ⊆Ω(k)
s

and S s the σ-algebra induced

by the collection of subsets Ω(l)
g such that Ω(k)

s = ⋃
Ω(l)

g ⊆Ω(k)
s

Ω(l)
g :

c0(x∗
0,s, ξ0) + R̃(k)|S s

ρ̄s
1

(
c1(x∗

1,s, ξ1) + R̃(k)|S s

ρ̄s
2

(
. . . + R̃(k)|S s

ρ̄s
τ

(
Q(x∗

τ−1,s, ξ)
)))

≥ ζs
LB

Both sides of the inequality are S s-measurable. Then, since R̃S s

¯̄ρτ
is a coherent risk measure that

satisfies the monotonicity property, we obtain

R̃S s

¯̄ρτ

(
c0(x∗

0,s, ξ0) + R̃(k)|S s

ρ̄s
1

(
c1(x∗

1,s, ξ1) + R̃(k)|S s

ρ̄s
2

(
. . . + R̃(k)|S s

ρ̄s
τ

(
Q(x∗

τ−1,s, ξ)
))))

≥ R̃S s

¯̄ρτ
(ζs

LB).

Because of translation equivariance property we have

τ−1∑
i=0

ci(x∗
i,s, ξi) + R̃S s

¯̄ρτ

(
R̃(k)|S s

ρ̄s
τ

(
Q(x∗

τ−1,s, ξ)
))

≥ R̃S s

¯̄ρτ
(ζs

LB) := z∗
s

(k)

and since by hypothesis ¯̄ρτ , ρ̄τ,max satisfy the criteria from one of the Propositions 1–5 with respect to

ρτ , we get

z∗
s

(k) =
τ−1∑
i=0

ci(x∗
i,s, ξi) + R(k)

ρτ

(
Q(x∗

τ−1,s, ξ)
)

≥ z∗
s

(k)
.

Repeating for all s ∈ [|Ωτ−1|] leads to[
z∗

1
(k), . . . , z∗

|Ωτ−1|
(k)
]⊤

≥
[
z∗

1
(k), . . . , z∗

|Ωτ−1|
(k)
]⊤

= R̃G |Fτ−1
¯̄ρτ

(ζLB) .

Let Ω(j)
d , d ∈ [|Ωτ−2|] be a dissection of the scenario tree T up to stage τ −2. Let x∗

i,d, i = 0, . . . , τ −2

optimal solutions of group Ω(j)
d be given. Then, they are a feasible solution for each subproblem

Ω(k)
s ⊆ Ω(j)

d . Following the steps above and defining ζd
LB

:= {z∗
s

(k)}Ω(k)
s ⊆Ω(j)

d

and Dd the σ-algebra

induced by the collection of subsets Ω(j)
d = ⋃

Ω(k)
s ⊆Ω(j)

d

Ω(k)
s we have:

z∗
d

(j) =
τ−2∑
i=0

ci(x∗
i,d, ξi) + R(j)

ρτ−1

(
Q(x∗

τ−2,d, ξ)
)

≥ R̃Dd

¯̄ρτ−1 (ζd

LB
) := z∗

d
(j)

.
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Repeating for all d ∈ [|Ωτ−2|] leads to
[
z∗

1
(j), . . . , z∗

|Ωτ−2|
(j)
]⊤

≥
[
z∗

1
(j), . . . , z∗

|Ωτ−2|
(j)
]⊤

= R̃Fτ−1|Fτ−2
¯̄ρτ−1

(
R̃G |Fτ−1

¯̄ρτ
(ζLB)

)
.

Repeating the same procedure going backwards for other τ − 2 times, the thesis follows.

See Figure 11d for a graphical representation of the multi-level bounding approach where the tree of

Figure 11a has been dissected at stage τ = 2 and, subsequently, at stage τ − 1 = 1.

Remark. When the multi-level LB scheme is applied to the Wasserstein case, the distance at time τ

between groups g1, g2 is computed as follows:

dg1,g2 =


max

i∈Ω(l)
τ,g1 , k∈Ω(l)

τ,g2

{di,k} when g1 ̸= g2

0 when g1 = g2

where g1 and g2 are chosen such that ∀n1 ∈ Ω(l)
τ,g1 , n2 ∈ Ω(l)

τ,g2 : a(n1) = a(n2) and di,k is the distance

between nodes i and k.

Remark. The bounding methodology just described is also applicable for the case where the risk

measure is applied to the whole scenario cost as a time-inconsistent objective function, given as:

Rwhole
ρ (η0, . . . ,ηT ) := η0 +Rρ(η1 + η2 + . . . + ηT ).

In this case we would apply the first-level bounding scheme.

2.3.6 Upper Bounds for Multistage Optimization Problems

Finding an upper bound of an optimization problem is of critical importance when an optimal solution

is not available.

In general, upper bounds are obtained by constraining some decision variables to be equal to pre-

determined fixed values. In this work, upper bounds are obtained by using optimal solutions of single

scenario subproblems. Using the procedure described in Section 2.3.1, we solve each single scenario

group Ω(1)
g , g ∈ [|ΩT |] obtaining (x̂0,g, . . . , x̂T,g) as optimal solution. Let UBt

g, t ∈ T be the optimal

value of the original problem (2.1) where the variables up to stage t are set to x̂i,g for i = 0, . . . , t.

From an algorithmic perspective, this approach requires us to solve problems of smaller dimension

than the original one. The best available upper bound is obtained by taking the minimum value of

UBt
g over all g ∈ [|ΩT |], i.e., UBt := ming∈[|ΩT |] UBt

g. See [103] for the formal definition and the

proof.
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2.4 Case Study: a Multistage Production Problem

2.4.1 Formulation

To show the effectiveness of the proposed approach, we consider a mixed-integer variant of the inven-

tory management problem introduced in [105]. The problem can be summarized as follows. Consider

a single product inventory system, comprised of a warehouse and a factory equipped with production

machinery. At each time step t = 0, . . . , T − 1, production can be performed by starting up machin-

ery. Random demands coming from customers have to be satisfied from the existing inventory. If

the random demand exceeds the stock, it will be satisfied by rapid orders from a different source that

come at a higher price. The goal is to minimize the total costs of the factory for the entire planning

period. In addition to the scenario tree and nominal probability notation defined in Section 2.2.1 (re-

call qn
t denotes nominal probability of node n at stage t), we use the following notation for this problem.

Deterministic parameters

ct : unit production cost at the factory at time t ∈ T \ {T};

kt : machinery start-up up cost at time t ∈ T \ {T};

bt : unit procurement cost from another retailer at time t ∈ T \ {0};

st : unit selling price at time t ∈ T \ {0};

ht : unit inventory holding cost from time t to t + 1, t ∈ T \ {T};

o : unit final value of the inventory;

et : maximal production capacity of factory at time t ∈ T \ {T};

v1 : amount of the product in the warehouse at root node 1.

Stochastic parameters

ξn : stochastic demand for the product at node n ∈ Ωt, t ∈ T .

Decision variables

xn ∈ R+ : amount to be produced by the factory at node n ∈ Ωt, t ∈ T \ {T};

yn ∈ {0, 1} : machinery start-up indicator at node n ∈ Ωt, t ∈ T \ {T};

vn ∈ R : amount of the product in the warehouse at node n ∈ Ωt, t ∈ T \ {0};

v+
n /v−

n ∈ R+ : positive/negative part of vn;

Fn ∈ R : auxiliary cost variable at node n ∈ Ωt, t ∈ T \ {0}.
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For every node n ∈ Ωt, t ∈ T \ {T}, if vn is positive (i.e., vn = v+
n ) an inventory holding cost htv

+
n

is paid to carry the stock to the next period. Otherwise, for every node n ∈ Ωt, t ∈ T \ {0}, if vn is

negative (i.e., vn = v−
n ) a procurement cost btv

−
n to buy extra stock from another retailer is incurred.

Finally, for every leaf node n ∈ ΩT , the final stock is valued at ov+
n . The multistage mixed-integer

risk-neutral stochastic model is

min c0x1 + k0y1 + h0v1 +
T∑

t=1

∑
n∈Ωt

qn
t Fn (2.9)

s.t. Fn = ctxn + ktyn + htv
+
n + btv

−
n − stξn, n ∈ Ωt, t ∈ T \ {0, T} (2.10)

Fn = bT v−
n − sT ξn − ov+

n , n ∈ ΩT (2.11)

0 ≤ xn ≤ etyn, n ∈ Ωt, t ∈ T \ {T} (2.12)

vn = v+
a(n) + xa(n) − ξn, n ∈ Ωt, t ∈ T \ {0} (2.13)

vn = v+
n − v−

n , n ∈ Ωt, t ∈ T \ {0} (2.14)

v+
n ≥ 0, v−

n ≥ 0, n ∈ Ωt, t ∈ T \ {0} (2.15)

yn ∈ {0, 1}, n ∈ Ωt, t ∈ T \ {T}. (2.16)

The objective function (2.9) and constraints (2.10) and (2.11) denote the expected total cost obtained

from production, procurement cost from external retailers, and inventory holding, as well as the profits

from selling and the final value of the inventory. Constraint (2.12) imposes lower and upper levels on

the factory production. Constraints (2.13), (2.14), and (2.15) define the dynamics of the inventory.

Finally, constraint (2.16) defines the binary decision variables related to starting up the machinery.

We assume that the distribution of the scenario process is described by a six-stage (T = 5) scenario

tree with 5 branches from the root, 4 from each of the second stage nodes, and 3 from each of the

third, fourth, fifth stages nodes, resulting in |ΩT | = 5× 4× 3× 3× 3 = 540 scenarios and 806 nodes;

see [104] for details on scenario tree generation.

The value of the process at the root node (n = 1) is ξ1 = 65. At each period t = 0, 1, 2, 3, 4, the

maximal production capacity of the factory is et = 567 units and the setup cost is kt = 75. The

initial inventory is v1 = 10, the final value of the inventory is o = 2 per unit, and the values of

production price ct, selling price st, inventory holding cost ht and procurement cost bt at time period

t are presented in Table 11.
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t 0 1 2 3 4 5

ct 3.5 3.6 2.3 2.8 3 -

st - 10.7 10.5 10.9 10.6 10

ht 2 1.9 2.1 2.2 2.1

bt - 4 3.1 4.9 7 7.5

Table 11: Production price ct, selling price st, holding cost ht from time t to time t + 1, and procurement
cost bt for extra stock from another retailer at time t.

2.4.2 Computation of Bounds

This section presents computational results on a DRO version of the production problem described

above, considering different ambiguity sets using ϕ-divergences (VD and the modified χ2 distance)

and the Wasserstein distance. All the considered multistage DRO are implemented in a nested fashion,

and we use the same value of the radii ρt = 0.50 over all stages t ∈ T \{0}. The problems derived from

our case study were solved under AMPL environment using the CPLEX solver 12.8.0.0. Computations

have been performed on a 64-bit machine with 8 GB of RAM and a 1.8 GHz Intel i7 processor.

Variation distance case

Table 12 lists the LBs obtained by applying Proposition 6(first-level LB) using VD. We choose subsets

Ω(l)
g to be disjoint with l = 1, 3, 9, 27, 54, 108. The instance l = 540 refers to the original problem,

which we report as a benchmark. The first group of bounds (l = 108, ml = 5) has been obtained by

solving ml = 5 subproblems, each composed of l = 108 consecutive scenarios. The group of bounds

mainly follow the structure of the scenario tree. Only at l = 54, we split the 5 scenarios at t = 1

individually and group the 4 scenarios at t = 2 two by two consecutively. When l = 1 and ml = 540,

each subgroup forms a deterministic problem with only one scenario. According to Proposition 2,

we set ρ̄g = ρ̄max, g ∈ [ml] and choose the combinations (¯̄ρ, ρ̄max) with ¯̄ρ ∈ {0.00, 0.25, 0.50} and

ρ̄max = ρ1− ¯̄ρ
1+¯̄ρ . The overall problem, i.e., the full tree with 540 scenarios, is solved within 14.125

seconds and with optimal value z∗ = −1523.49. To measure the quality of the obtained LBs (LB),

an optimality gap information is computed as %GAP = z∗−LB
z∗ · 100. In the following, for each

dissection with given cardinality l, the best lower bound is highlighted in bold.

From numerical results of Table 12 obtained considering disjoint subgroups, we observe that the

tightest bounds are achieved for greater values of ¯̄ρ and l, at the cost of increasing CPU running times.

Indeed, overall, the best calculated LB is given by −1528.74 (obtained setting ¯̄ρ = 0.50, ρ̄max = 0.00

when l = 108 and ml = 5), while the worst LB is given by −1836.90 (obtained setting ¯̄ρ = 0.00,

63
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ρ̄max = 0.50 when l = 1 and ml = 540, which is the partition into atoms). Results show monotonic

increases in CPU time per subproblem with both the dimension of each subproblem (cardinality l) and

the values of ¯̄ρ. These results also show that very high-quality LBs can be obtained saving considerable

time with respect to the original DRO problem. For example, when l = 54 a %GAP = −0.50% can

be achieved with about 4 times faster overall computation time.

l ml
¯̄ρ ρ̄max LB

CPU time

overall

CPU time

per subpr.
%GAP

540 1 0.00 0.50 −1523.49 14.125 14.250 -

108 5

0.00 0.50 −1544.66 5.469 1.094 −1.39%

0.25 0.20 −1536.16 5.797 1.159 −0.83%

0.50 0.00 −1528.74 5.938 1.188 −0.34%

54 10

0.00 0.50 −1591.31 3.281 0.328 −4.45%

0.25 0.20 −1557.46 3.478 0.348 −2.23%

0.50 0.00 −1531.07 3.563 0.356 −0.50%

27 20

0.00 0.50 −1623.40 2.063 0.103 −6.56%

0.25 0.20 −1575.28 2.344 0.117 −3.40%

0.50 0.00 −1543.54 2.656 0.133 −1.32%

9 60

0.00 0.50 −1703.05 3.266 0.054 −11.79%

0.25 0.20 −1632.46 3.625 0.060 −7.15%

0.50 0.00 −1581.98 4.109 0.068 −3.84%

3 180

0.00 0.50 −1780.91 8.484 0.047 −16.90%

0.25 0.20 −1690.56 9.563 0.053 −10.97%

0.50 0.00 −1622.65 13.359 0.074 −6.51%

1 540

0.00 0.50 −1836.90 20.336 0.038 −20.57%

0.25 0.20 −1735.04 22.266 0.041 −13.89%

0.50 0.00 −1656.70 27.141 0.050 −8.74%

Table 12: Collections of LBs with disjoint subsets Ω(l)
g obtained by applying Proposition 6 (first-level LB)

to the multistage inventory problem with VD.

Table 13 provides detailed results obtained by keeping fixed the worst scenario (ω1) in all subsets

Ω(l)
g . VD focuses on a convex combination of CVaR and the worst case [77, 127]. So when the

worst-case scenario is fixed at each subgroup, we may get better LBs. The cardinality l of each

subproblem has been chosen to have the ratio ml = 540−1
l−1 ∈ N and, specifically, we consider the

values ml ∈ {2, 8, 12, 50, 78}. The combinations (¯̄ρ, ρ̄max) are chosen as for the disjoint case. Results
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l ml
¯̄ρ ρ̄max LB

CPU time

overall

CPU time

per subpr.
%GAP

540 1 0.00 0.50 −1523.49 14.125 14.250 -

78 7

0.00 0.50 −1544.10 4.844 0.692 −1.35%

0.25 0.20 −1544.43 5.469 0.781 −1.37%

0.50 0.00 −1548.96 5.734 0.819 −1.67%

50 11

0.00 0.50 −1564.61 4.453 0.405 −2.70%

0.25 0.20 −1562.56 4.859 0.442 −2.57%

0.50 0.00 −1571.56 5.031 0.457 −3.16%

12 49

0.00 0.50 −1624.06 4.500 0.092 −6.60%

0.25 0.20 −1608.13 4.844 0.099 −5.56%

0.50 0.00 −1583.24 5.563 0.114 −3.92%

8 77

0.00 0.50 −1642.35 6.641 0.086 −7.80%

0.25 0.20 −1624.56 7.563 0.098 −6.63%

0.50 0.00 −1594.00 7.672 0.100 −4.63%

2 539

0.00 0.50 −1724.44 30.609 0.057 −13.19%

0.25 0.20 −1695.82 38.453 0.071 −11.31%

0.50 0.00 −1650.21 39.500 0.073 −8.32%

Table 13: Collections of LBs obtained by keeping the worst scenario (ω1) fixed in all subsets Ω(l)
g and

applying Proposition 6 (first-level LB) to the multistage inventory problem with VD.

Figure 12: Percentage gaps from the optimal value z∗ versus CPU time (per subproblem, in seconds)
for VD for different combinations of (¯̄ρ, ρ̄max) under disjoint partitions (black lines) with cardinality
l = 1, 3, 9, 27, 54, 108 (results refer to Table 12) and under subgroups with scenario ω1 fixed (red lines)
and cardinality l = 2, 8, 12, 50, 78 (results refer to Table 13).
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show that fixing the worst scenario improves the quality of the LB for those partitions with small

cardinalities l and greater values of ρ̄max (see for instance l = 1, 3, 9 in Table 12 and l = 2, 8 in Table

13). It is also interesting to notice that when the worst scenario is fixed, although the tightest bounds

are still obtained for greater values of l, tighter bounds are obtained setting progressively smaller value

of ¯̄ρ and larger ρ̄max (see, for instance, l = 50 and l = 78 in Table 13).

Figure 12 shows the LBs of Tables 12 and 13 versus increasing complexity measured in CPU seconds

per subproblem for different combinations of
(

¯̄ρ, ρ̄max

)
. From the results we observe that the LBs

improve monotonically in the number of scenarios l in each subproblem for the studied problem.

Modified χ2 case

In Table 14, we construct collections of LBs applying Proposition 6 (first-level LB) to the multistage

inventory problem with modified χ2 distance. Subsets Ω(l)
g are chosen to be disjoint, following the

structure of the scenario tree with l = 1, 3, 9, 27, 54, 108 as before. According to Proposition 1 we

set ρ̄g = ρ̄max, g ∈ [ml] and choose the combinations (¯̄ρ, ρ̄max) with ¯̄ρ ∈ {0.00, 0.25, 0.50} and

ρ̄max = ρ1− ¯̄ρ
1+¯̄ρ . The overall problem, i.e., the full tree with 540 scenarios, was unsolvable within a

time limit of 86400 CPU seconds (or 24 hours) and values of percentage deviations (%GAP ) with

respect to the optimal value could not be explicitly computed. Therefore, to measure the quality of

the obtained LB, a new optimality gap is computed as follows: %GAP ∗ = LB∗−LB
LB∗ · 100, with LB∗

representing the best observed lower bound. Being a problem too large to be solved exactly within

the prespecified time limit, the bounding methodology proposed in this chapter is particularly helpful.

It is worth noting that when l = 108 the solver also could not solve the subproblems within the time

limit, and therefore l = 108 results are not reported for ease of presentation.

From the numerical results given in Table 14 and plotted in Figure 13, we observe that regardless

of the cardinality l of each subproblem, the best strategy to get tighter LBs is to set the cardinality

l and ¯̄ρ as large as possible. Indeed, overall, the best calculated LB is given by −1497.95 (obtained

setting ¯̄ρ = 0.50, ρ̄max = 0.00 when l = 54 and ml = 10), although it requires considerable effort

in terms of CPU time (25395.048 seconds overall). A drastic reduction in computation time can be

obtained by using smaller subgroups of cardinality l = 27 without sacrificing the quality of the LB

too much. Again by setting ¯̄ρ = 0.50, ρ̄max = 0.00, a LB within 1.82% of the best LB is obtained in

approximately 23.5 times faster overall computation time. On the other hand, the worst lower bound

is given by −1836.90 (obtained setting ¯̄ρ = 0.00, ρ̄max = 0.50 when l = 1 and ml = 540 in just

211.031 CPU seconds. Results also show monotonic increases in CPU time per subproblem with both

the dimension l of each subproblem and the values of ¯̄ρ.
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l ml
¯̄ρ ρ̄max LB

CPU time

overall

CPU time

per subpr.
%GAP ∗

540 1 0.00 0.50 - - - -

54 10

0.00 0.50 −1559.56 25231.639 2523.164 −4.11%

0.25 0.20 −1514.99 25392.418 2539.242 −1.14%

0.50 0.00 −1497.95 25395.048 2539.505 -

27 20

0.00 0.50 −1597.77 962.151 48.108 −6.66%

0.25 0.20 −1543.95 1019.859 50.993 −3.07%

0.50 0.00 −1525.26 1078.266 53.913 −1.82%

9 60

0.00 0.50 −1686.68 118.181 1.970 −12.60%

0.25 0.20 −1607.16 163.063 2.718 −7.29%

0.50 0.00 −1577.86 165.172 2.753 −5.33%

3 180

0.00 0.50 −1774.09 115.151 0.640 −18.43%

0.25 0.20 −1678.34 196.344 1.091 −12.04%

0.50 0.00 −1642.55 203.219 1.129 −9.65%

1 540

0.00 0.50 −1836.90 211.031 0.391 −22.63%

0.25 0.20 −1732.42 253.547 0.470 −15.65%

0.50 0.00 −1693.06 299.313 0.554 −13.03%

Table 14: Collections of LBs with disjoint subsets Ω(l)
g obtained by applying Proposition 6 (first-level LB)

to the multistage inventory problem with modified χ2 (time limit = 86400 CPU sec.s).

Figure 13: LBs versus CPU time (per subproblem, in seconds) for modified χ2 for different combinations
of (¯̄ρ, ρ̄max) and under disjoint partitions with cardinality l = 1, 3, 9, 27, 54 (results refer to Table 14).
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We now apply the bounding scheme proposed in Proposition 7 (multi-level LB) to the multistage

inventory problem with modified χ2 distance. The results are reported in Table 15. Following this

partition method, regardless of the cardinality l of each subproblem and given τ , the last stage where

the scenario tree is partitioned, the best strategy to get tighter LBs is to set ¯̄ρt = ρt, t = 1, . . . , τ − 1

(which are therefore the only results we report, for ease of exposition). We allow, instead, changes in
¯̄ρτ and ρ̄τ,max taking values 0.00, 0.25 and 0.50. Overall, the best lower bound is given by −1504.41,

obtained setting ¯̄ρ2 = 0.25 and ρ̄2,max = 0.20 when l = 54, ml = 10 and τ = 2. Comparing

these results with bounds of Table 14, we conclude that this multi-level bounding technique becomes

particularly useful by allowing to get tighter LBs as partitions progressively contain smaller-dimension

subproblems. For instance, at lower values of l better LBs are obtained with approximately similar

overall computation times.

l ml τ { ¯̄ρt}τ−1
t=1 {ρ̄t,max}τ−1

t=1 ¯̄ρτ ρ̄τ,max LB
CPU time

overall

CPU time

per subpr.
%GAP ∗

540 1 - - - - - - - - -

54 10 2 0.50 0.00

0.00 0.50 −1536.64 27231.188 2723.119 −2.58%

0.25 0.20 −1504.41 28557.600 2855.760 −0.43%

0.50 0.00 −1505.45 30232.425 3023.243 −0.50%

27 20 2 0.50 0.00

0.00 0.50 −1571.74 1002.295 50.115 −4.93%

0.25 0.20 −1523.02 1051.172 52.559 −1.67%

0.50 0.00 −1506.41 1112.942 55.647 −0.56%

9 60 3 0.50 0.00

0.00 0.50 −1593.95 155.574 2.593 −6.41%

0.25 0.20 −1538.46 157.103 2.618 −2.70%

0.50 0.00 −1518.76 161.375 2.690 −1.39%

3 180 4 0.50 0.00

0.00 0.50 −1602.07 158.351 0.880 −6.95%

0.25 0.20 −1555.76 158.932 0.883 −3.86%

0.50 0.00 −1538.21 160.105 0.889 −2.69%

1 540 5 0.50 0.00

0.00 0.50 −1597.22 254.552 0.471 −6.63%

0.25 0.20 −1560.59 255.380 0.473 −4.18%

0.50 0.00 −1547.23 256.578 0.475 −3.29%

Table 15: Collections of LBs with disjoint subsets Ω(l)
g obtained by applying Proposition 7 (multi-level

LB) to the multistage inventory problem with modified χ2 (time limit = 86400 CPU sec.s).

Given that the problem was too large to be solved exactly, to evaluate the quality of obtained lower

bounds, we resort to the upper bounding methodology described in Section 2.3.6. The only upper

bounds we were able to compute were UB3 = −1453.29 (within 72131.000 CPU seconds) and

UB4 = −1411.91 (within 125.844 CPU seconds). Although UB3 performs better than UB4, it
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requires a considerable larger computational effort. All the other upper bounds (UBt, t = 0, 1, 2)

went out of memory because the number of fixed variables was not enough to reduce the dimension of

the scenario tree to a computationally tractable size. The difference between the best upper and lower

bounds obtained, respectively −1453.29 and −1497.95, is 44.66 (i.e., of 2.98% of the LB) and gives

information about the range where we should expect to find the total cost of the full DRO problem.

Results confirm the goodness of the proposed lower bounds.

Wasserstein distance case

In Table 16, we construct collections of LBs by applying Proposition 7 (multi-level LB) for the

Wasserstein distance. Given τ , the last stage where the tree is dissected, according to Proposition 7 we

set ¯̄ρt = ρt, t = 1, . . . , τ − 1 and choose the combinations (¯̄ρτ , ρ̄τ,max) with ¯̄ρτ ∈ {0.00, 0.25, 0.50}

and ρ̄τ,max = ρτ − ¯̄ρτ . For t = τ + 1, . . . , T we set ρ̄t,g = ρt, g ∈ [ml]. When τ = 1 we work directly

with (¯̄ρ1, ρ̄1,max), see for instance Table 16 with l = 108 and ml = 5. The overall problem, i.e., the

full tree with 540 scenarios, is solved within 85.810 seconds and with optimal value z∗ = −1706.63.

From the results in Table 16, we observe that, overall, the best calculated LB is given by −1711.93

(obtained setting ¯̄ρ1 = 0.50, ρ̄1,max = 0.00 when l = 108 and ml = 5). On the contrary, the worst LB

is given by −1808.79 (obtained setting ¯̄ρ5 = 0.00, ρ̄5,max = 0.50 when l = 1 and ml = 540). Results

still show monotonic increases in CPU time with both the dimension l of each subproblem and the

values of ¯̄ρτ for this problem.

Figure 14 shows the percentage deviation of the LBs reported in Table 16 versus increasing complexity

measured in CPU seconds per subproblem and different combinations of (¯̄ρτ , ρ̄τ,max). We observe

that LBs improve monotonically in the number of scenarios l in each subproblem.

2.4.3 Discussions

Some insights gained from the numerical experiments are as follows.

• Generally, the greater the number of scenarios per subproblem, the sharper the obtained LBs.

• For the first-level bounding scheme, when subtrees have a single node at time t = 1, it is best

not to waste any of the robustness budget ρ1 on ρ̄max. This is because, for the subproblem at

time t = 1 there is not really an ambiguity set of distributions. Thus, in this case, the best

LBs are obtained by setting ρ̄max = 0 and using the largest possible value of ¯̄ρ. This can be

seen, e.g., in Tables 12, 14 where the 5 scenarios of the original tree at stage t = 1 are always

split in a single-scenario manner. More generally, when subtrees have multiple nodes at time
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l ml τ { ¯̄ρt}τ−1
t=1 {ρ̄t,max}τ−1

t=1 ¯̄ρτ ρ̄τ,max LB
CPU time

overall

CPU time

per subpr.
%GAP ∗

540 1 - - - - - −1706.63 85.810 85.810 -

108 5 1 - -

0.00 0.50 −1724.33 9.000 1.800 −1.04%

0.25 0.25 −1718.13 9.797 1.959 −0.67%

0.50 0.00 −1711.93 9.984 1.997 −0.31%

54 10 2 0.50 0.00

0.00 0.50 −1725.08 5.569 0.557 −1.08%

0.25 0.25 −1726.07 5.840 0.584 −1.14%

0.50 0.00 −1727.02 6.183 0.618 −1.20%

27 20 2 0.50 0.00

0.00 0.50 −1737.88 4.455 0.223 −1.83%

0.25 0.25 −1735.05 4.672 0.234 −1.67%

0.50 0.00 −1732.22 4.946 0.247 −1.50%

9 60 3 0.50 0.00

0.00 0.50 −1763.31 9.075 0.151 −3.32%

0.25 0.25 −1760.22 9.164 0.153 −3.14%

0.50 0.00 −1757.12 9.414 0.157 −2.96%

3 180 4 0.50 0.00

0.00 0.50 −1792.85 12.216 0.068 −5.05%

0.25 0.25 −1790.31 12.261 0.068 −4.90%

0.50 0.00 −1787.78 12.351 0.069 −4.75%

1 540 5 0.50 0.00

0.00 0.50 −1808.79 28.082 0.052 −5.99%

0.25 0.25 −1807.04 28.173 0.052 −5.88%

0.50 0.00 −1805.29 28.305 0.052 −5.78%

Table 16: Collections of LBs with disjoint subsets Ω(l)
g (l = 1, 3, 9, 27, 54, 108) obtained applying Propo-

sition 7 (multi-level LB) to the multistage inventory problem with Wasserstein distance.

Figure 14: Percentage gaps from the optimal value z∗ versus CPU time (per subproblem, in seconds)
for Wasserstein distance for different combinations of (¯̄ρτ , ρ̄τ,max) and under partitions with cardinality
l = 1, 3, 9, 27, 54, 108 (results refer to Table 16).
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t = 1, numerical results show that more importance should be assigned to ¯̄ρ at the expense of

ρ̄max as the cardinality l of subgroups decreases (see, e.g., Table 13 when l = 2, 8, 12), while

progressively more importance should be assigned to ρ̄max at the expense of ¯̄ρ as the cardinality

l of subgroups increases (see, e.g., Table 13 when l = 50, 78).

• Similarly, for the multi-level bounding scheme, when subtrees have a single node at time τ , it is

best not to waste any of the robustness budget ρτ on ρ̄τ,max and use the largest possible value of
¯̄ρτ . This can be seen, e.g., in Tables 15, 16 when l = 1, 3, 9, 27, 108. Contrariwise, when there

are multiple nodes at time τ more importance should be assigned to ρ̄τ,max at the expense of ¯̄ρτ

(see, e.g., Tables 15, 16 when l = 54). For dissections with smaller cardinality l, the multi-level

bounding scheme described in Proposition 7 appears to be more effective than the first-level

bounding scheme described in Proposition 6, which is instead more useful when the number of

scenarios in each subgroup is larger.

• We observe some gains in fixing a worst-case scenario using VD at small cardinalities l and

higher values of ρ̄max, with a slight increase in computation time due to having slightly larger

subproblems to solve. This strategy can be useful, e.g., when using ϕ-divergences that can

pop scenarios [6]. Divergences that can pop scenarios (like the CR power divergence with

θ < 1 and θ → 1) can make the worst-case scenarios to have positive probabilities even if

they have a nominal probability of zero. Thus, in large-scale versions of such problems, due

to computational bottleneck when small cardinalities l are needed, it may be possible to obtain

better LBs by fixing worst-case scenarios.

• Finally, even though above we empirically observe monotonicity of LBs in the subgroups’

cardinality l for fixed values of (¯̄ρ, ρ̄max), we found cases (not shown here for brevity) where

monotonicity in l is not satisfied. This is in contrast to the risk-neutral stochastic optimization

setting, where the monotonicity of the LBs in l is guaranteed [103].

2.5 Conclusions

In this work new LB criteria for multistage mixed-integer DRO problems—formed by creating am-

biguity sets associated with various commonly used ϕ-divergences and the Wasserstein distance on

a finite scenario tree—are derived. Conditions on the way the scenario tree is dissected and the

convolutions are formed to ensure a LB on the optimal value are established. The scenario tree can be

dissected either by disjoint partitions or by fixing certain scenarios in each subgroup, except for CR
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power divergences with θ < 0 and θ > 1 and χ-divergence of order a > 1, for which the results are

established under disjoint partitions. A comparison with classical upper bounds shows the effective-

ness of the proposed LB criteria. Our results do not require any structural properties, and thus they are

applicable to a broad class of problems. Numerical results on a multistage production problem show

that high-quality LBs can be obtained with a small computation time using the proposed bounding

methodology.

Future work could include combining the proposed bounds with sampling-based bounds (see, e.g.,

[124]). Devising new hybrid sampling-based algorithms that could utilize the proposed bounds to be

used within Stochastic Dual Dynamic Programming (SDDP) type algorithms (see, e.g., [122]) merit

further research. It would also be interesting to investigate if the concept of ineffective and effective

scenarios, defined in [127], can be used to further increase the efficiency of the proposed bounding

methods. Ineffective scenarios can be removed from the problem without altering the optimal value.

Therefore, if such scenarios can be identified, these can significantly speed up the proposed bounds.

Finally, it should be highlighted that the proposed approach has the important advantage of dividing a

given problem into subproblems, the solution of which are independent from one another and might

be easily parallelized. Such parallel implementations might significantly decrease running times and

therefore merit further computational research.
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Chapter 3. Assortment Optimization & Revenue Management

with Dominated Alternatives

In collaboration with Anton J. Kleywegt1.

3.1 Introduction

We consider a seller who has a set of products with fixed attributes, and who can offer any subset of

these products in the market. The seller’s Assortment Optimization (AO) problem is the problem of

choosing a single subset (assortment) of these products to offer in the market with the objective of

maximizing his/her expected profit. The considered AO problem applies in a setting in which each

product has a given revenue and the supply (or inventory) of each product is not constraining. On

the other hand, the seller’s Revenue Management (RM) problem is the problem of choosing, over a

given time horizon, what subset of these products to offer in the market at each point in time with

the objective of maximizing the expected profit over the time horizon. Similar to the assortment

optimization problem, the revenue management problem considered applies in a setting in which

each product has a given profit per unit. Unlike the assortment optimization problem, in the revenue

management problem it may be optimal to change the offered assortment over time. A possible reason

is that the supplies of products are limited (i.e., the inventory is constraining). See [110] and [168] for

a comprehensive overview.

Modern AO and RM problems include a model of demand for each product as a function of the

assortment that is offered. This model of demand (also known as discrete choice model) given any set

of products that is offered, specifies the probability that a customer will choose each product in the set

(or the fraction of customers who will choose each product in the set), as well as the probability that a

customer chooses no product in the set. Various discrete choice models have been studied. Important

characteristics of such discrete choice models are (a) how well their expressive abilities match the

choice behavior being modeled (too little expressive ability is too restrictive to obtain a good model,

whereas too much expressive ability often results in intractability and overfitting), (b) how easy it is

to interpret the model, (c) how much data are needed to calibrate a useful model, (d) how tractable the

model calibration problem is, and (e) how tractable the resulting assortment optimization and revenue

management problems are. Of course, there are trade-offs between these model characteristics. One

1H. Milton Stewart School of Industrial & Systems Engineering, Georgia Institute of Technology
Atlanta, GA, USA. Anton@isye.gatech.edu
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of the most widely used discrete choice models is the Multinomial Logit (MNL) model. The MNL

model has many of the desirable properties (see [28]): it is easy to interpret the MNL model; the

MNL model needs less data for calibration than more general models such as the nested logit model,

the Markov chain choice model, and the mixed logit model; the model calibration problem is an

unconstrained convex optimization problem that is much easier to solve than the calibration problems

for the other models mentioned; and the resulting assortment optimization and revenue management

problems are relatively easy to solve.

However, the MNL model also has shortcomings. Its major drawback arises when the structure that

it imposes does not accurately fit the choice behavior being modeled. For example, one property of

its structure is called Independence from Irrelevant Alternatives (IIA). This is the property that the

relative choice probabilities of two alternatives do not depend on the presence or absence in the choice

set of other alternatives (see [129]).

In this work we are concerned with another structural property that is shared by many discrete choice

models, including the MNL model. This is the property that if the assortment contains products i

and j, where i dominates j, then according to the model the probability that a customer chooses j is

positive, whereas the desired model would set the probability that a customer chooses j to be zero

when a dominating product i is in the assortment (100% buydown effect of i over j). For example,

consider a setting with 3 alternatives, i, j, and k. Suppose that these alternatives have 2 relevant

attributes, say price and quality, and suppose that i has slightly lower price and slightly better quality

than j, whereas j has both higher price and better quality than k, such that (1) if the assortment contains

only j and k, then each is chosen with probability 1/2, (2) if the assortment contains only i and k,

then i is chosen with probability 2/3 and k is chosen with probability 1/3, and (3) if the assortment

contains only i and j, then i is chosen with probability 1. Suppose an MNL model is chosen to satisfy

conditions (1) and (2). Then it follows from the IIA property that the model will predict that if the

assortment contained only i and j, then i would be chosen with probability 2/3 and j would be chosen

with probability 1/3, which is very different from the desired choice probabilities of i being chosen

with probability 1 and j being chosen with probability 0. More general choice models such as the

nested logit model and the Markov chain choice model exhibit the same structural shortcoming.

Electronic commerce offers many examples in which a seller’s assortment contains pairs of products

with one dominating the other, and real-life examples of 100% buydowns are given below.

• Bimbo Store sells infant care products. As shown in Figure 15, the same wipes (Huggies Pure

Baby Wipes — 56 pieces per bag) were offered both in a box with 10-bags (15a) and in a box

with 12-bags (15b). Both boxes were sold for 11.99 euros each at the same time.
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• Fitvia sells nutritional products online. As shown in Figure 16, the same snack (“Chocolate

Protein Snack” — 50 grams per bag) was offered both in a single pack (16a) or as part of a

three-pack combo (16b). The single pack was sold for 5.90 euros each, and at the same time the

three-pack combo was sold for 4.90 euros each.

• Lyft sells urban transportation services, including ride-hailing services, mostly through its

mobile phone app. As shown in Figure 17, at the same point in time, Lyft offered several

ride-hailing alternatives for the same origin-destination pair (from 836 Juniper St., Atlanta to

Westside Provisions, Atlanta). Both the Shared Saver service and the Shared service may

require the rider to share the car with riders who made separate trip requests. The Shared Saver

service may require the rider to wait longer before a car is assigned to the rider (to give Lyft

extra time to find a better match between rider and car), and may require the rider to walk a

small distance to a better pickup spot. With the “Shared” service, the pickup spot is the rider’s

current location. The “Lyft” service can be regarded as the full-service alternative; the rider

does not share the car with riders who made separate trip requests, and a car is assigned to the

rider after a very short time. In the example, the Shared Saver had a price of 6.00 dollars and

the estimated arrival time was between 9:28PM and 9:30PM, the “Shared” service had a price

of 6.19 dollars and the estimated arrival time was 9:28PM, and the “Lyft” service had a price

of 6.00 dollars and the estimated arrival time was 9:24PM. In this example, the “Lyft” service

dominated both of the other alternatives.

• Marionnaud is a retailer of beauty products that sells both in stores as well as online. Figure 18

shows a setting in which Marionnaud offered the same fragrance (Yves Saint Laurent: Libre

— eau de parfum, 50 milliliter) both as a single bottle (18a) and as part of a gift set that also

included a lipstick and an eyeliner (18b). The single bottle was sold for 102.00 euros and at the

same time the gift set was sold for 73.85 euros.

With the purpose of overcoming all of these limitations, sophisticated modifications to the original

formulation are proposed within the AO and RM literature (see [32, 40, 63]) and our work falls into

this novel stream of research. In this chapter we propose a more flexible variant of the classical AO

and RM models under MNL, able to capture dominance relations in the form of 100% buydown

effect. Starting from a Dynamic Programming (DP) formulation and appraising that its computational

burden increases exponentially in the problem dimension, we will work with a compact and tractable

deterministic approximation. We strongly believe that our research would provide a preliminary

exploration on a wide class of extensions to the standard MNL model, helping in depicting consumers
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(a) Wipes 10 packs. (b) Wipes 12 packs.

Figure 15: Huggies example.

(a) Single pack. (b) 3-pack combo.

Figure 16: Fitvia example.

(a) Lyft Shared Saver. (b) Lyft regular ride.

Figure 17: Lyft example.

(a) Fragrance bottle. (b) Fragrance gift set.

Figure 18: YSL example.

choice behaviors that –as shown– apply to many different realities (the beauty, fitness, and service

industry to name but a few). The result of this study, therefore, will be valuable both for the academic

literature and the industry practitioners, who will be able to develop better tools aimed at taking more

intelligent decisions.

The chapter is organized as follows. We start in Section 3.2 with a brief review of related work.

Section 3.3 introduces the problems set-up, defines the dominance structures (Subsection 3.3.1) as

well as the AO and RM problems (Subsections 3.3.2 and 3.3.3, respectively). Section 3.4 provides
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a deterministic AO and RM tractable reformulation, along with a conversion algorithm proving its

equivalence with the original model. In Section 3.5 the obtained solutions are used to construct a

booking limit policy. Section 3.6 presents preliminary numerical experiments using synthetic data to

compare our novel approach with the classical discrete choice model. Finally, we conclude in Section

3.7, highlighting some directions for future research.

3.2 Literature Review

The extensive connections between Operations Research (OR), AO and RM have been explored by a

number of authors. See surveys by [82] and [75] for comprehensive overviews of this literature.

Traditional demand models assume that each customer arrives into a system with the intention of

purchasing a specific product; if this product is available, then the customer makes the purchase,

otherwise he/she leaves the system. This modeling assumption is known as the independent demand

model (see [110]). In many applications, however, the potential buyer observes a set of available

products (i.e., the assortment) before making his/her selection. The independent demand model does

not account for this customer choice behavior and, therefore, its use during seller’s decision making

process may lead to progressive deterioration of revenue performance (see [38]), especially when

products in the offer sets are close substitutes (see [76]). For this reason, moving from independent to

choice-based demand models has been a trend both in the academic literature and in industry practice,

and several studies have validated empirically the significant leverage that is obtained when accounting

for choice behaviors in highly competitive markets: see, e.g., [90, 172, 186]; etc.

Loosely speaking, a choice model can be thought of as a conditional probability distribution that for

any offer set yields the probability that an arriving customer purchases a given product in that set

(see [55]). Therefore, the specification of a choice model –either parametric or non-parametric– is

a critical task to make accurate revenues and sale predictions. While non-parametric models may

be interpreted as data-driven approaches, by parametric choice models we mean that the family of

underlying distributions is described by a fixed number of parameters, being independent of the

training data set volume.

Several parametric choice-based demand models have been active object of investigation, including

the MNL (see [63,95,159]); the MNL robust variants (see [131,133]); the mixed MNL (see [30,132]);

the spiked-MNL model (see [29]); the nested logit (see [41, 56]); the Markov chain choice model

(see [57]); and rank-based choice models (see [15, 55]). Among these models, the MNL model is

widely used in the literature as a benchmark, because of the desirable properties it possesses, and

which were mentioned in the Introduction.
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Choice-based demand models are used in AO and RM with the aim of helping the decision maker (i.e.,

seller) in choosing which assortments of products to offer to customers during a given selling horizon.

The problem is formulated through DP, whose computational burden however increases exponentially

due to the curse of dimensionality. A possible solution to this limitation was proposed by [188],

who suggested to approximate the DP value functions with affine functions, and proposed a column

generation algorithm to solve the resulting approximated DP problem. Another well-known way to

deal with the intractability of the DP formulation was devised by [62], who formulated a Choice-Based

Deterministic Linear Program (CDLP) as an approximation of the original DP, whose solutions were

proved by [95] to be asymptotically optimal for the original DP problem. Nonetheless, although the

CDLP problem size is smaller compared to the starting DP, its number of decision variables could

still be exponential in the input number of products. This motivated the suggestion by [95] of solving

the CDLP using column generation. In a different fashion, [159] proposed a new approach called

Segment-based Deterministic Concave Program (SDCP), which is a concise relaxation of the CDLP.

Most recently, [63] presented a linear program with a polynomial number of variables proved to be

equivalent to the CDLP under the standard MNL model, called the Sales-Based Linear Program

(SBLP). The authors also proved that an optimal solution of the SBLP can be converted in polynomial

time to an optimal solution of the CDLP under MNL, and vice versa. Analogously, [32, 40, 44]

proposed different SBLP variants, all demonstrating to be equivalent to the CDLP under the spiked-

MNL model. Our research falls into this novel promising application field and aims at devising, first,

a choice-based demand model incorporating strong dominance effects (which we call DMNL), which

violating the IIA property cannot be represented by the standard MNL choice model. Secondly, we

aim at proposing a new SBLP variant, proving to be equivalent to the CDLP under the DMNL model.

3.3 Model Formulations

Let J := {1, . . . , n} denote the seller’s set of candidate products. The seller can offer any subset

A ⊆ J in the market. The subset that the seller offers is called its assortment. Each potential

customer chooses one product from the assortment or chooses to buy nothing from the assortment. If

assortment A is offered, then each customer chooses product j ∈ A with probability P true
j:A , or chooses

nothing from the assortment (the no-purchase alternative or outside alternative) with probability P true
0:A .

Each product j ∈ J contributes a profit per unit of rj . Thus, if assortment A is offered, then the

seller’s expected profit per customer is equal to
∑

j∈A rjP
true
j:A . For any two products j, j′ ∈ J , if

product j′ dominates product j, we write j′ ≻ j.
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3.3.1 Dominance Structure

We make the following assumptions regarding the dominance relation:

1. The dominance relation is irreflexive, that is, no product j dominates itself, j ̸≻ j.

2. The dominance relation is antisymmetric, that is, there are no distinct products j, j′, j ̸= j′, such

that j dominates j′ and j′ dominates j.

3. The dominance relation is transitive, that is, if product j dominates product j′, and product j′

dominates product j′′, then product j also dominates product j′′.

Note that properties 1 and 2 imply that the dominance relation is asymmetric, that is, there are no

products j, j′ (distinct or not), such that j ≻ j′ and j′ ≻ j.

The dominance relation can be represented with a directed graph as follows: for each product j ∈ J ,

the graph has a node, also called j. For every pair of products j, j′ ∈ J such that j ≻ j′, there

is an initial arc (j, j′) in the graph (some of these arcs are redundant, and will be removed). Note

that properties 1, 2, and 3 imply that this (initial) graph contains no cycles. Therefore, without loss

of generality, we assume that the products (and nodes) are indexed and that the nodes are sorted in

topological order. Specifically, the nodes are indexed such that for every arc (i, j) in the graph, it holds

that i > j. Figure 19 shows an example of such an initial graph for a setting with J = {1, . . . , 6}.

6 4
↓ ↙ ↓ ↘
5 1 2 ← 3

Figure 19: Example of initial dominance graph with n = 6 products.

It is convenient to remove unnecessary arcs. Specifically, for any two products j and j′, if the initial

graph contains a path from j to j′ with more than one arc, then we remove the direct arc from j to j′.

The resulting parsimonious graph is denoted with G. Figure 20 shows the parsimonious graph for the

same example as in Figure 19.

6 4
↓ ↙ ↘
5 1 2 ← 3

Figure 20: Example of parsimonious dominance graph G.

A graph G can have multiple components. For example, the graphs in Figures 19 and 20 have a

component containing nodes 1 to 4 and a component containing nodes 5 and 6.
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For each product j ∈ J , let D−(j) denote the set of products that dominate product j, so,

D−(j) := {j′ ∈ J : j′ ≻ j}

and let D+(j) denote the set of products dominated by product j, that is,

D+(j) := {j′ ∈ J : j′ ≺ j}.

Thus, for each j ∈ J and j′ ∈ D−(j), there is at least one path from j′ to j in G, and for each j ∈ J

and j′ ∈ D+(j), there is at least one path from j to j′ in G. The notation P for a path in G will also

be used for the nodes (products) in the path, including the start node and the end node of the path. A

path may be a singleton, that is, P = {j} is a valid path. For example, if P is a path from j to j′ in G,

where j may be equal to j′, and j′′ ∈ P , then j′′ = j or j′′ ∈ D+(j). Let P denote the set of maximal

paths in G, that is,

P :=

 ⋃{
j∈J :

D−(j)=∅

} ⋃{
j′∈D+(j) :
D+(j′)=∅

}
{

paths P in G from j to j′
} ⋃{

j∈J :
D−(j)=∅,
D+(j)=∅

}
{
{j}

}
.

For the graph G in Figure 20, P =
{
{4, 1}, {4, 3, 2}, {6, 5}

}
. For the graph G in Figure 21,

P =
{
{8, 1}, {8, 6, 5, 3, 2}, {8, 6, 4, 3, 2}, {7, 5, 3, 2}, {7, 4, 3, 2}

}
.

8 → 6 → 4
↓ ↘↗ ↘
1 7 → 5 → 3 → 2

Figure 21: Example of a non-arborescence dominance graph G.

An important property of the dominance graph G is the number |P| of maximal paths. Next we give

an example that shows that |P| may be exponential in the number |J | of nodes, and in the Appendix

C we establish that |P| ≤ exp (|J |/e). Thereafter we point out that for a class of dominance graphs

that is important in applications, it holds that |P| ≤ |J |.

Example 1. Suppose thatJ = {1, 2, . . . , 2n}. In general, each maximal path goes from a j ∈ J such

that D−(j) = ∅ to a j′ ∈ J such that D+(j′) = ∅. Let {j ∈ J : D−(j) = ∅} = {2n− 1, 2n}, and

{j ∈ J : D+(j) = ∅} = {1, 2}. For each i ∈ {2, . . . , n}, there are arcs (2i−1, 2i−3), (2i−1, 2i−2),

(2i, 2i− 3), and (2i, 2i− 2). Figure 22 shows the resulting dominance graph G for n = 6. Note that

for each sequence (bn, . . . , b1) ∈ {0, 1}n, there is a maximal path (2n − bn, . . . , 2i − bi, . . . , 2 − b1)

in G. Thus, |P| = 2n.
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11 → 9 → 7 → 5 → 3 → 1
↘↗ ↘↗ ↘↗ ↘↗ ↘↗

12 → 10 → 8 → 6 → 4 → 2

Figure 22: Dominance graph G of Example 1 for n = 6.

Many of the dominance graphs in applications have the property that each component is either an

arborescence or an anti-arborescence.

Definition 2. An arborescence is a directed and acyclic graph with a node r, called the root, such that

for any other node i, the graph has exactly one directed path from r to i. An anti-arborescence is a

directed and acyclic graph with a node r, called the root, such that for any other node i, the graph has

exactly one directed path from i to r.

If each component is either an arborescence or an anti-arborescence, then the number of maximal

paths is at most |J |.

3.3.2 Assortment Optimization Problem

In the assortment optimization problem, the set J of candidate products, the unit profits rj for all

products j ∈ J , and the expected number of customers are input. Hence the assortment optimization

problem is

max

∑
j∈A

rjP
true
j:A : A ⊆ J

 . (3.1)

Next we consider two demand-based choice models for estimating P true
j:A .

1. In the Multinomial Logit (MNL) model, each product j ∈ J has a preference weight vj > 0,

and the no-purchase alternative has preference weight v0 > 0. For any assortment A ⊆ J and

any product j ∈ J , the MNL model specifies the probability P̂j:A that a customer chooses j if

A is offered, as follows:

P̂j:A :=



vj

v0 +∑
j′∈A vj′

if j ∈ A

0 if j /∈ A

(3.2)

and

P̂0:A := v0

v0 +∑
j′∈A vj′

. (3.3)
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The corresponding assortment optimization problem is

max

∑
j∈A

rjP̂j:A : A ⊆ J

 (3.4)

with AMNL ∈ argmax
{∑

j∈A rjP̂j:A : A ⊆ J
}

optimal assortment under the MNL model.

2. The MNL model has many desirable properties, but a serious shortcoming of the MNL model

is that P̂j:A > 0, even when j, j′ ∈ A and j′ ≻ j. Hence, we propose a discrete choice model

with the property that if j, j′ ∈ A and j′ ≻ j, then the probability of choosing j from assortment

A is zero. We call this choice model the Dominance Multinomial Logit (DMNL) model. This

choice model retains the desirable properties of the MNL model: it is as easy to interpret the

DMNL model as the MNL model; the DMNL model has the same number of parameters as the

MNL model; the model calibration problems for the DMNL model and the MNL model are the

same. In addition, the DMNL model overcomes one of the most serious structural shortcomings

of the MNL model.

For any assortment A ⊆ J and any product j ∈ J , the DMNL model specifies the probability

Pj:A that a customer chooses j if A is offered, as follows2:

Pj:A :=



vj1{j′′ ̸≻ j ∀ j′′ ∈ A}
v0 +∑

j′∈A vj′1{j′′ ̸≻ j′ ∀ j′′ ∈ A}
if j ∈ A

0 if j /∈ A

(3.5)

and

P0:A := v0

v0 +∑
j′∈A vj′1{j′′ ̸≻ j′ ∀ j′′ ∈ A}

. (3.6)

The corresponding assortment optimization problem is

max

∑
j∈A

rjPj:A : A ⊆ J

 (3.7)

with ADMNL ∈ argmax
{∑

j∈A rjPj:A : A ⊆ J
}

optimal assortment under the DMNL model.

An alternative formulation of problem (3.7) that sometimes is easier to use is the following. Let

A :=
{

A ⊆ J : j′ ̸≻ j ∀ j, j′ ∈ A
}

denote the collection of assortments consisting only of products that do not dominate each other.

Then the assortment optimization problem (3.7) is equivalent to

max
A∈A

∑
j∈A

rjP̂j:A. (3.8)

2The indicator function 1{event} takes value 1 if the event happens (true statement) and 0 otherwise.
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Note that the choice model in (3.8) is the MNL choice model. Problems (3.7) and (3.8) are

equivalent, because every A ∈ A has the same objective value in (3.7) and (3.8), and for

every A ⊆ J , there is an A′ = {j ∈ A : j′ ̸≻ j ∀ j′ ∈ A} ∈ A, obtained by removing all the

dominated products from A, such that the objective value of A in (3.7) is equal to the objective

value of A′ in (3.8).

We will show in the Numerical Experiments (Section 3.6) that using an MNL model instead of a DMNL

in the presence of dominance relations can lead to arbitrarily bad relative revenue performances.

3.3.3 Revenue Management Problem

We consider the revenue management problem with the same data as the assortment optimization

problem. Additionally, there is a set R of resources used to produce the products. The seller has an

initial supply of br units of resource r. Each unit of product j consumes arj ∈ {0, 1, . . . , br} units

of resource r. For each j ∈ J , let aj := (arj, r ∈ R). The resources can be used to sell products

over a selling horizon with discrete periods indexed by t = 0, 1, . . . , T − 1. The seller chooses an

assortment At ⊆ J at the beginning of each period t. In each period t, either one customer arrives

with probability 0 ≤ λ ≤ 1, or no customer arrives. The customer chooses from the assortment At

according to a choice model Pj:A, as described in (3.5)-(3.6).

The revenue management problem can be formulated as a Markov Decision Process (MDP), as

follows: At the beginning of any period t, let yr(t) ≥ 0 denote the amount of resource r that

the seller still has available, and let y(t) := (yr(t), r ∈ R) denote the state at the beginning of

period t. For any given state y = (yr, r ∈ R), let J (y) := {j ∈ J : arj ≤ yr ∀ r ∈ R} denote

the set of products that can be produced with the available resources. At the beginning of period t,

the seller chooses an assortment At ⊆ J (y(t)) to maximize the seller’s expected revenue over

the selling horizon. Let b := (br, r ∈ R) denote the seller’s initial supply of resources, that is,

y(0) = b. Let Y := {y ∈ N|R| : yr ≤ br ∀ r ∈ R} denote the state space of the MDP, and let

V : Y × {0, 1, . . . , T} 7→ R denote the optimal value function3, with V (y, T ) = 0 for all y ∈ Y .

Then V satisfies the following optimality equation for all y ∈ Y and t ∈ {0, . . . , T − 1}:

V (y, t) = maxA⊆J (y)

{∑
j∈A λPj:A

[
rj −

(
V (y, t + 1)− V (y − aj, t + 1)

)]}
+ V (y, t + 1). (3.9)

Problem (3.9) is intractable for instances with a large number of resources, due to curse of dimen-

sionality. Therefore, we recover a fluid approximation often used in the RM literature, called the

Choice-based Deterministic Linear Program (CDLP) in which customer arrivals and choices are
3We denote by Nn the n-dimensional natural space and by R the set of real numbers.
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replaced by their means, and resource supplies are real-valued rather than integer valued. For any

assortment A ⊆ J , let α(A) denote the fraction of time T that assortment A is offered. Then the

CDLP is given by:

max λT
∑

A⊆J
α(A) ∑

j∈A
rjPj:A

s.t. ∑
A⊆J

α(A) ≤ 1

λT
∑

A⊆J
α(A) ∑

j∈A
arjPj:A ≤ br ∀ r ∈ R

α(A) ≥ 0 ∀ A ⊆ J .

(CDLP)

The objective function is the expected total revenue over the time horizon. The first constraint specifies

that the sum of the fractions of time that different assortments are offered is less than 1. The capacity

constraints for every resource follow, and we finally enforce non-negativity on all decision variables.

Note that problem (3.7) happens to be a special case of problem (CDLP). We recall indeed that an

AO problem consists in looking for a single assortment A, with products not constrained in capacity.

Hence, removing the resource constraint from formulation (CDLP) leads to the same solution as of

problem (3.7). For this reason, from now on, we focus our attention on the CDLP problem only.

3.4 The DMNL Sales-Based Linear Program

The number of decision variables in problem (CDLP) is exponential in the number of products |J |.

This motivates the development of an equivalent linear program –much smaller in size and easier to

solve– which we call the DMNL Sales-Based Linear Program (SBLP). For each j ∈ J , let xj ≥ 0

denote the total amount of product j that is sold over the time horizon [0, T ], and let x := (xj, j ∈ J ).

Then the SBLP is as follows:

max
x

∑
j∈J

rjxj

s.t. x0 + ∑
j∈J

xj ≤ λT

∑
j∈J

arjxj ≤ br ∀ r ∈ R

∑
j∈P

xj

vj

≤ x0

v0
∀ P ∈ P

x0 ≥ 0, xj ≥ 0 ∀ j ∈ J .

(SBLP)

The objective function aims at maximizing total expected revenues from the sale of all products. The

first constraint is the so called balance constraint and represents the fact the number of no-purchase
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customers plus the overall number of sales does not exceed the number of arrivals (i.e., λT denotes the

expected number of arriving customers). The capacity constraints for every resource follow. The third

set of constraints, named dominating alternatives constraints, requires that no products dominating

each other are jointly offered. We finally enforce non-negativity on all decision variables.

The overall number of variables in problem (SBLP) is |J | + 1. The objective function and the

constraints are linear functions of the decision variables. The number of dominating alternative

constraints is at most exp (|J |/e). However, if each graph component is either an arborescence or an

anti-arborescence, then the number of such constraints is at most |J |.

3.4.1 Conversion of SBLP Feasible Solutions into CDLP Feasible Solutions

We now provide an Algorithm that converts a feasible solution x of problem (SBLP) into a feasible

solution α(A), A ⊆ J of problem (CDLP). A practical example illustrates the algorithm in the

Appendix C.

Algorithm 1: Converting a SBLP solution into a CDLP solution.
Data: SBLP solution x

1 Set k ← 0, α(A) = 0 for all A ⊆ J
2 while {j ∈ J : xj > 0} ≠ ∅ do
3 Set k ← k + 1
4 Set Ak ← {j ∈ J : xj > 0}
5 Set Dk ← {j ∈ Ak : D−(j) ∩ Ak = ∅}
6 Set Yk ← min

{
xj

vj
: j ∈ Dk

}
7 Set jk ∈ argmin

{
xj

vj
: j ∈ Dk

}
8 Set α(Ak)←

v0+
∑

j∈Dk
vj

λT
Yk

9 for all j ∈ Dk do
10 xj ← xj − λTα(Ak) vj

v0+
∑

j′∈Dk
vj′

11 end
12 end

Result: Output α(A) for all A ⊆ J

Before we establish that given an optimal solution of the SBLP the output of Algorithm 1 is an optimal

solution of the CDLP, we note some basic properties of Algorithm 1 in Lemma 1.

Lemma 1. The output of Algorithm 1 satisfies the following properties:

1. For each iteration k, the following holds:

a) The sales quantity of product j ∈ Ak \ Dk while assortment Ak is offered for Tα(Ak)

units of time is 0.
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b) The sales quantity of product j ∈ Dk while assortment Ak is offered for Tα(Ak) units of

time is λTα(Ak) vj

v0+
∑

j′∈Dk
vj′

, which is equal to the amount subtracted from xj in Step 10.

2. The total sales quantity of each product j ∈ J resulting from the CDLP solution α produced

by Algorithm 1 is equal to

xj = λT
∑

{k : j∈Dk}
α(Ak) vj

v0 +∑
j′∈Dk

vj′

= λT
∑

{k : j∈Ak}
α(Ak)Pj:Ak

= λT
∑

A⊆J
α(A)Pj:A. (3.10)

3. Consider any path P∗ ∈ argmax
{ ∑

j∈P

xj

vj

: P ∈ P

}
. Then |P∗ ∩Dk| = 1 for each k, that is,

for each offered assortment Ak, one product on path P∗ is being sold while assortment Ak is

offered.

Proof. Properties of Lemma 1 are proven as follows.

1. The sales quantity of j ∈ Ak while Ak is offered for Tα(Ak) units of time is

λTα(Ak)Pj:Ak
= λTα(Ak) vj1{j′′ ̸≻ j ∀ j′′ ∈ Ak}

v0 +∑
j′∈Ak

vj′1{j′′ ̸≻ j′ ∀ j′′ ∈ Ak}

=


λTα(Ak) vj

v0+
∑

j′∈Dk
vj′

if j ∈ Dk

0 if j ∈ Ak \Dk.

2. We show by induction that at the end of each iteration k it holds that xj ≥ 0 for all j ∈ J , and

that in Step 10 of each iteration k, at least one component xj is reduced to zero. Note that at

the beginning of iteration 1 it holds that xj ≥ 0 for all j ∈ J . Assume that at the beginning of

iteration k it holds that xj ≥ 0 for all j ∈ J . Note that for any j ∈ J \Dk, xj does not change

during iteration k, and thus it holds that xj ≥ 0 at the end of iteration k. Next note that for each

j ∈ Dk the calculation in Step 10 results in

xj − λTα(Ak) vj

v0 +∑
j′∈Dk

vj′
= xj − λT

v0 +∑
j∈Dk

vj

λT
Yk

vj

v0 +∑
j′∈Dk

vj′

= xj − Ykvj ≥ xj −
xj

vj

= 0.
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where the first equality follows from Step 8, and the inequality follows from Step 6. Therefore

it holds that xj ≥ 0 at the end of iteration k for all j ∈ J . Specifically, note that for each

jk ∈ argmin
{

xj

vj
: j ∈ Dk

}
the calculation in Step 10 reduces to

xjk
− λTα(Ak) vjk

v0 +∑
j′∈Dk

vj′
= xjk

− Ykvjk
= xjk

− xjk

vjk

vjk
= 0

where the first equality follows from Step 8, and the third equality follows from Steps 6 and 7.

Since Algorithm 1 stops when all xj have been reduced to 0, it follows that the total sales

quantity of each product j ∈ J resulting from the CDLP solution α produced by Algorithm 1

is given by (3.10).

3. We show by induction on k that at the beginning of each iteration k it holds that
∑

j∈P∗

xj

vj

≥ ∑
j∈P

xj

vj

for all paths P , and that P∗ ∩ Dk ̸= ∅ for each k. It follows from the definition of P∗ that∑
j∈P∗

xj

vj

≥ ∑
j∈P

xj

vj

for all paths P at the beginning of iteration 1. Assume that
∑

j∈P∗

xj

vj

≥ ∑
j∈P

xj

vj

for all paths P at the beginning of iteration k. Note that there is an iteration k only if {j ∈ P∗ :

xj > 0} ̸= ∅. Let j∗ := max{j ∈ P∗ : xj > 0}. We show by contradiction that j∗ ∈ Dk.

Suppose that j∗ /∈ Dk, that is, D−(j∗) ∩ Ak ̸= ∅. Thus, there is a j′ ∈ D−(j∗) ∩ Ak, that is,

j′ ≻ j∗, xj′ > 0, and j′ /∈ P∗. Let P ′ be the path from j′ to j∗ and from there P ′ coincides

with P∗. Then
∑

j∈P∗

xj

vj

<
∑

j∈P∗

xj

vj

+ xj′

vj′
≤ ∑

j∈P ′

xj

vj

, which contradicts the induction hypothesis.

Thus P∗ ∩Dk = {j∗}.

Next we show that
∑

j∈P∗

xj

vj

≥ ∑
j∈P

xj

vj

for all paths P at the end of iteration k. Note that for all

j ∈ Dk, Algorithm 1 reduces
xj

vj

by the same amount λTα(Ak) 1
v0+
∑

j′∈Dk
vj′

= Yk = xjk

vjk

in

Step 10 of iteration k. Also, note that for each pathP such thatP∩Dk ̸= ∅, there is exactly one

product in P ∩Dk, and thus Algorithm 1 reduces both
∑

j∈P∗

xj

vj

and
∑

j∈P

xj

vj

by the same amount
xjk

vjk

in Step 10 of iteration k. Thus, at the end of iteration k it holds that
∑

j∈P∗

xj

vj

≥ ∑
j∈P

xj

vj

for all paths P such that P ∩ Dk ̸= ∅. Next consider any path P such that P ∩ Dk = ∅. If

{j ∈ P : xj > 0} = ∅, then
∑

j∈P∗

xj

vj

≥ ∑
j∈P

xj

vj

= 0 at the end of iteration k. Otherwise, let

j′′ := max{j ∈ P : xj > 0}. Since j′′ /∈ Dk, there is a j′ ∈ D−(j′′) ∩ Ak, that is, j′ ≻ j′′,

xj′ > 0, and j′ /∈ P . Let P ′ be the path from j′ to j′′ and from there P ′ coincides with P . Note

that if j′ /∈ Dk, then the argument can be repeated, and therefore we can assume without loss

of generality that j′ ∈ Dk. At the beginning of iteration k it holds that
∑

j∈P ′

xj

vj

≥ ∑
j∈P

xj

vj

+ xj′

vj′
,

and Algorithm 1 reduces
∑

j∈P ′

xj

vj

by
xjk

vjk

≤ xj′

vj′
in Step 10 of iteration k, and

∑
j∈P

xj

vj

remains

unchanged in iteration k. Thus at the end of iteration k it holds that
∑

j∈P ′

xj

vj

≥ ∑
j∈P

xj

vj

. Since

P ′∩Dk ̸= ∅, at the end of iteration k it holds that
∑

j∈P∗

xj

vj

≥ ∑
j∈P ′

xj

vj

, and thus
∑

j∈P∗

xj

vj

≥ ∑
j∈P

xj

vj

.
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Theorem 2. Given any feasible solution for the SBLP, Algorithm 1 computes a feasible solution for

the CDLP, such that the two solutions represent the same sales amount for each product and have the

same objective value.

Proof. First we show that given a feasible solution x for the SBLP, Algorithm 1 computes a feasible

solution α for the CDLP. It follows from the SBLP capacity constraint and from (3.10) that∑
j∈J

arjxj ≤ br ⇒ λT
∑

A⊆J
α(A)

∑
j∈A

arjPj:A ≤ br

for all r ∈ R, and thus the solution α from Algorithm 1 satisfies the capacity constraint of the CDLP.

Recall the SBLP demand constraint

x0 +
∑
j∈J

xj ≤ λT. (3.11)

It follows from the SBLP scale constraint

∑
j∈P

xj

vj

≤ x0

v0
∀ P ∈ P (3.12)

and from (3.10) that the left side of (3.11) satisfies

x0 +
∑
j∈J

xj ≥ v0
∑

j∈P∗

xj

vj

+
∑
j∈J

xj

=
∑

j∈P∗

v0

vj

λT
∑

{k : j∈Dk}
α(Ak) vj

v0 +∑
j′∈Dk

vj′
+
∑
j∈J

λT
∑

A⊆J
α(A)Pj:A

= λT

∑
j∈P∗

∑
{k : j∈Dk}

α(Ak) v0

v0 +∑
j′∈Dk

vj′
+
∑

A⊆J
α(A)

∑
j∈A

Pj:A


= λT

∑
k

∑
j∈P∗∩Dk

α(Ak)P0:Ak
+
∑

A⊆J
α(A)

∑
j∈A

Pj:A


= λT

∑
k

α(Ak)P0:Ak
+
∑

A⊆J
α(A)

∑
j∈A

Pj:A


= λT

∑
A⊆J

α(A)P0:A +
∑

A⊆J
α(A)

∑
j∈A

Pj:A


= λT

∑
A⊆J

α(A)
P0:A +

∑
j∈A

Pj:A

 = λT
∑

A⊆J
α(A) (3.13)

where the fourth equality follows from the result in Lemma 1 that |P∗ ∩Dk| = 1 for all k. It follows

from (3.11) and (3.13) that

λT
∑

A⊆J
α(A) ≤ x0 +

∑
j∈J

xj ≤ λT ⇒
∑

A⊆J
α(A) ≤ 1
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and thus the solution α from Algorithm 1 satisfies the time constraint of the CDLP. It follows from (3.10)

that
∑
j∈J

rjxj =
∑
j∈J

rjλT
∑

A⊆J
α(A)Pj:A = λT

∑
A⊆J

α(A)
∑
j∈A

rjPj:A

and thus the objective values of the SBLP solution x and the CDLP solution α output by Algorithm 1

are the same.

3.4.2 Conversion of CDLP Feasible Solutions into SBLP Feasible Solutions

Given any feasible solution α for the CDLP, let

xj = λT
∑

{A⊆J : j∈A}
α(A)Pj:A (3.14)

for all j ∈ J , and let

x0 = λT

∑
A⊆J

α(A)P0:A +
1−

∑
A⊆J

α(A)
 . (3.15)

Theorem 3. Given any feasible solution α for the CDLP, x computed in (3.14)–(3.15) is a feasible

solution for the SBLP, and the two solutions represent the same amount of sales for each product and

have the same objective value.

Proof.

x0 +
∑
j∈J

xj = λT

∑
A⊆J

α(A)P0:A +
1−

∑
A⊆J

α(A)
+

∑
j∈J

λT
∑

{A⊆J : j∈A}
α(A)Pj:A

= λT

1−
∑

A⊆J
α(A)

+
∑

A⊆J
α(A)

P0:A +
∑
j∈A

Pj:A

 = λT.

and thus x satisfies the SBLP demand constraint. Next, note that ∀ r ∈ R it holds that

∑
j∈J

arjxj =
∑
j∈J

arjλT
∑

{A⊆J : j∈A}
α(A)Pj:A = λT

∑
A⊆J

α(A)
∑
j∈A

arjPj:A ≤ br

where the inequality follows from the CDLP capacity constraint, and thus x satisfies the SBLP capacity

constraint. Also, for any A ⊆ J and P ∈ P, if P ∩ A ̸= ∅, let j(P , A) := max{j ∈ P ∩ A}. Then,
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for any P ∈ P it holds that
∑
j∈P

xj

vj

=
∑
j∈P

1
vj

λT
∑

{A⊆J : j∈A}
α(A)Pj:A

= λT
∑
j∈P

1
vj

∑
{A⊆J : j∈A}

α(A) vj1{j′′ ̸≻ j ∀ j′′ ∈ A}
v0 +∑

j′∈A vj′1{j′′ ̸≻ j′ ∀ j′′ ∈ A}

= λT
∑

{A⊆J : P∩A ̸=∅}

1
vj(P,A)

α(A) vj(P,A)1{j′′ ̸≻ j(P , A) ∀ j′′ ∈ A}
v0 +∑

j′∈A vj′1{j′′ ̸≻ j′ ∀ j′′ ∈ A}

= λT
∑

{A⊆J : P∩A ̸=∅}

1
v0

α(A) v01{j′′ ̸≻ j(P , A) ∀ j′′ ∈ A}
v0 +∑

j′∈A vj′1{j′′ ̸≻ j′ ∀ j′′ ∈ A}

≤ λT
∑

{A⊆J : P∩A ̸=∅}

1
v0

α(A)P0:A ≤ 1
v0

λT
∑

A⊆J
α(A)P0:A ≤ x0

v0

where the last inequality follows from the CDLP time constraint
∑

A⊆J
α(A) ≤ 1. Thus x satisfies the

SBLP scale constraint. Last, note that
∑
j∈J

rjxj =
∑
j∈J

rjλT
∑

{A⊆J : j∈A}
α(A)Pj:A = λT

∑
A⊆J

α(A)
∑
j∈A

rjPj:A

and thus the objective values of the SBLP solution x and the CDLP solution α are the same.

3.5 Revenue Management Policies

In this section we construct policies based on a SBLP solution x∗ and/or a CDLP solution α∗.

3.5.1 Time-Based Policy

A time-based policy can be obtained from a CDLP solution α as follows. Consider any

time t ∈ [0, T ], and as before let yr(t) ≥ 0 denote the amount of resource r that the seller

has available at time t, let y(t) := (yr(t), r ∈ R), and let J (y(t)) := {j ∈ J : arj ≤ yr(t)

∀ r ∈ R} denote the set of products that can be produced with the available resources. Let k(t)

be such that

T
k(t)−1∑

k=1
α∗(Ak) ≤ t < T

k(t)∑
k=1

α∗(Ak).

Then the time-based policy offers assortment ATB(t) := J (y(t)) ∩ Ak(t) at time t. Note that Algo-

rithm 1 produces a nested sequence of assortments A1 ⊃ A2 ⊃ · · · ⊃ AK , and thus ATB(t1) ⊃ ATB(t2)

for all t1 < t2, that is, the time-based policy offers a nested sequence of assortments for every sample

path.
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3.5.2 Booking Limit Policy

Consider any time t ∈ [0, T ], and let xj(t) ≥ 0 denote the amount of product j that the seller has

sold during time (0, t), and let x(t) := (xj(t), j ∈ J ). The booking limit policy offers assortment

ABL(t) :=
{
j ∈ J : xj(t) < x∗

j

}
at time t. Since xj(t) is nondecreasing in t, it follows that for each

product j there is a random time τj ∈ [0, T ] such that product j is offered during time interval (0, τj],

and thus ABL(t1) ⊃ ABL(t2) for all t1 < t2, that is, the booking limit policy offers a nested sequence

of assortments for every sample path. Also note that since xj(t) ≤ x∗
j for all t, it follows that∑

j∈J arjxj(t) ≤ br for all t, that is, the booking limit policy does not exceed the capacity constraint.

3.6 Preliminary Numerical Results

In this section, we first demonstrate the hazard of using an MNL model when the true underlying model

is actually a DMNL. Then, we conduct additional experiments with synthetic data. The computations

have been performed on a 64-bit machine with 8 GB of RAM, a 1.8 GHz Intel i7 processor, and

numerical results are obtained under MATLAB environment using MOSEK solver (version 8.1.0.72).

3.6.1 Relative Revenue Performance of the MNL and DMNL Models

We first consider a simple two-product example and show that a non-negligible gap in the relative

revenue performance can be observed solving an AO problem using an MNL model instead of DMNL

model when the universe of products J contains pairs of dominating/dominated alternatives. Hence,

we show that the relative revenue performance

ρ :=

∑
j∈ADMNL

rjP
true
j:ADMNL∑

j∈AMNL
rjP true

j:AMNL

can be arbitrarily large. We consider the following instance, very similar to the worst-case instance

considered in [32]. Consider any ε ∈ (0, 1). A seller can offer two products L and H , that

is, J = {L, H}. The products L and H are sold at prices rL and rH respectively, such that

0 < rL/rH < ε. Suppose that L ≻ H , that is, if both L and H are offered, then customers buy only

L. The preference parameters are v0 = 1 and 0 < vL = vH < rL/(rH − rL).

• Using the DMNL model, we have A =
{
∅, {L}, {H}

}
. Since vL = vH and rL < rH it holds

that

rLPL:{L} = rL
vL

v0 + vL

< rHPH:{H} = rH
vH

v0 + vH

and thus assortment ADMNL = {H} is always optimal.
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Setting 1. First, consider a setting in which the MNL model is used with the correct parameter values.

For what concerns the MNL model, the feasible assortments are ∅, {L}, {H}, and {L, H}. Since

vH = vL and rL < rH it holds that

rLP̂L:{L} = rL
vL

v0 + vL

< rHP̂H:{H} = rH
vH

v0 + vH

and thus, based on the MNL model, assortment {H} is preferred over {L}. Moreover, since vH <

rL/(rH − rL) it holds that

rHP̂H:{H} = rH
vH

v0 + vH

< rLP̂L:{L,H} + rHP̂H:{L,H} = rLvL + rHvH

v0 + vL + vH

and thus, based on the MNL model, assortment AMNL = {L, H} is preferred over {H}.

Let us assume that P true
H:{H} = P true

L:{L} = P true
L:{L,H} and that P true

H:{L,H} = 0 because of the dominance

relation between H and L. Then it holds that:

ρ =

∑
j∈ADMNL

rjP
true
j:ADMNL∑

j∈AMNL
rjP true

j:AMNL
=

rHP true
H:{H}

rLP true
L:{L,H} + rHP true

H:{L,H}
= rH

rL

>
1
ε

⇐⇒ ρ >
1
ε

.

Therefore, in this instance ρ→∞ for ε→ 0.

Figure 23: Relative revenue performance ρ versus ε. Vertical axis in log-scale.

Setting 2. Next, consider a setting in which the MNL model is used with parameter values calibrated

with data and maximum likelihood estimation. Customers arrive one at a time, indexed with k =

1, 2, . . ., and each customer arrival is observed, whether the customer chooses to buy or not (that is,

no-purchase customers are observed). Customer choices are independent according to the DMNL
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model. After each customer arrival, the data are updated with the customer’s choice, parameter

estimates are updated, and an updated assortment is chosen. Specifically, to each customer k,

the seller offers one assortment A(k) ⊂ {L, H}. The empty assortment is clearly inferior, and as

shown in [159][Proposition 6], an optimal assortment under the MNL model is nested-by-revenue,

and therefore it suffices to consider {H} or {L, H} for each A(k). Let N
(k)
H = 1 if customer k

chooses product H , and let N
(k)
0 = 1 if customer k chooses not to purchase. After each customer

arrival, the seller calibrates the MNL model (3.2) using maximum likelihood estimation (MLE) with

the historical data. Let v̂
(k)
H , v̂

(k)
L , and v0 = 1 denote the estimated parameters after customer k.

Regardless of the assortments offered, the MLE estimated parameter of product H is given by

v̂
(k)
H = ∑k

k′=1 N
(k′)
H /

∑k
k′=1 N

(k′)
0 (the denominator will be zero for the first few customers, but never

for infinitely many customers, so set the denominator to some positive constant if
∑k

k′=1 N
(k′)
0 = 0).

According to the estimated MNL model, it is optimal to next offer assortment A(k+1) = {H} if

ṽ
(k)
H ≥ rL/(rH − rL); otherwise, it is optimal to offer assortment A(k+1) = {L, H}. Thus, if for

any k it holds that v̂
(k)
H < rL/(rH − rL), then A(k+1) = {L, H}, hence N

(k+1)
H = 0, and thus

v̂
(k+1)
H = ∑k+1

k′=1 N
(k′)
H /

∑k+1
k′=1 N

(k′)
0 ≤ ∑k

k′=1 N
(k′)
H /

∑k
k′=1 N

(k′)
0 = v̂

(k)
H < rL/(rH − rL), and hence

A(k′) = {L, H} for all k′ > k. As shown in Setting 1, if A(k) = {L, H} then the relative revenue

performance is greater than 1/ε.

Next, we show that if the seller uses the MNL model, then A(k) = {L, H} for all but finitely many

customers, with probability one. We consider two cases.

Case 1: The seller offers assortment A(1) = {L, H} to the first customer. Due to dominance, it

follows that N
(1)
H = 0. Then the estimated parameter v̂

(1)
H = N

(1)
H /N

(1)
0 = 0 < rL/(rH − rL). It

follows that the seller will offer assortment A(k) = {L, H} and v̂
(k)
H = 0 for all k.

Case 2: The seller offers assortment A(1) = {H} to the first customer. As pointed out above, either

there is a K such that A(k) = {L, H} for all k > K, or v̂
(k)
H ≥ rL/(rH − rL) and A(k) = {H} for all k.

Next we show that, w.p.1, there is a K such that A(k) = {L, H} for all k > K. Suppose that A(k) =

{H} for all k. Then, by the Strong Law of Large Numbers, w.p.1,
∑k

k′=1 N
(k′)
H /k → vH/(v0 + vH)

and
∑k

k′=1 N
(k′)
0 /k → v0/(v0 + vH) as k →∞. Thus, if A(k) = {H} for all k, then, w.p.1,

v̂
(k)
H =

∑k
k′=1 N

(k′)
H∑k

k′=1 N
(k′)
0

→ vH

v0
<

rL

rH − rL

.

Therefore, the event that v̂
(k)
H ≥ rL/(rH − rL) and A(k) = {H} for all k has probability 0.
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3.6.2 Experiments with Synthetic Data

In this section, we use synthetic data to compare the performance of DMNL and MNL choice models

applied to RM problems with dominated alternatives. We assume that whenever an assortment

A ⊆ J is offered, then the true probability of purchasing a product j ∈ A (that is, P true
j:A ) is uniformly

distributed among the non-dominated alternatives belonging to A (including the null alternative). This

hypothesis reflects the 100% buydown effect, according to which if two products are jointly offered

and one dominates the other, then the latter purchasing probability equals zero.

In what follows we conduct several experiments keeping unaltered the universe of products J =

{1, . . . , 30} but progressively enforcing new dominance relations, each representing a 100% buydown

effect and depicted via edges in graphs of Figure 24. Recall that the dominance relation is transitive,

so if j ≻ j′ ≻ j′′ then j ≻ j′′ and we only highlight parsimonious graphs accordingly. At the most

extreme case (see “Instance a”, Figure 24a) no dominance relations exist among products (i.e., no

buydown effects are assumed), while at the other extreme (see “Instance f”, Figure 24f) there exists

a product dominating all the others (i.e., product j = 30). Details on the number of buydown effects

assumed for every instance are provided in Table 17.

Instance a b c d e f

Number of buydown effects 0 20 50 74 98 170

Table 17: Number of dominance relations (buydown effects) among products of universe J for instances
a to f of Figure 24.

Problem data are as follows:

• There is a single resource |R| = 1 with b1 = 1,000 and a1j = 1 for all j ∈ J ;

• Products unitary profits are r = [14, 15, 19, 11, 14, 10, 14, 17, 11, 17, 13, 16, 11, 14, 10,

12, 12, 15, 12, 13, 18, 14, 10, 14, 15, 19, 13, 19, 16, 10];

• Dominance relations change for every instance and are graphically visualized via Figure 24.

For every instance, we solve the DMNL-SBLP presented in Section 3.4 and then detect the CDLP

optimal assortments ADMNL by means of Algorithm 1. Similarly, we solve the standard SBLP

presented in [63] and detect the corresponding CDLP optimal assortments AMNL. For both models

we set preference parameters vj = v0 = 1 for all j ∈ J . Finally, given CDLP optimal assortments

of both DMNL and MNL models, and knowing the true underlying purchasing probabilities P true
j:A ,

we compute and compare out-of-sample total revenues, respectively, zDMNL and zMNL. Results are

summarized in Table 18.
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(f) Instance f : one dominant product.

Figure 24: Dominance instances for the universe of products J = {1, . . . , 30}.
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Instance α
(
ADMNL

)
zDMNL α

(
AMNL

)
zMNL ∆

a α ({3, 8, 10, 12, 21, 26, 28, 29}) = 1 $ 16,920.00 α ({3, 8, 10, 12, 21, 26, 28, 29}) = 1 $ 16,920.00 -

b α ({3, 8, 10, 21, 26, 28, 29}) = 1 $ 16,875.00 α ({3, 8, 10, 12, 21, 26, 28, 29}) = 1 $ 16,740.00 $ 135.00

c α ({3, 10, 18, 21, 25, 26, 29}) = 1 $ 16,065.00 α ({3, 8, 10, 12, 21, 26, 28, 29}) = 1 $ 15,840.00 $ 225.00

d α ({3, 10, 21, 25, 26}) = 1 $ 15,840.00 α ({3, 8, 10, 12, 21, 26, 28, 29}) = 1 $ 15,120.00 $ 720.00

e α ({3, 10, 21, 25, 26}) = 1 $ 15,840.00 α ({3, 8, 10, 12, 21, 26, 28, 29}) = 1 $ 15,120.00 $ 720.00

f α ({3, 5, 7, 8, 14, 21, 25}) = 1 $ 14,985.00 α ({3, 8, 10, 12, 21, 26, 28, 29}) = 1 $ 12,600.00 $ 2,385.00

Table 18: Optimal assortments and out-of-sample revenues for DMNL and MNL models, with improve-
ments ∆.

From Table 18 we observe that out-of-sample revenues scored by the DMNL model (zDMNL) are always

greater than (or equal to) the MNL out-of-sample results (zMNL). The DMNL model successfully

identifies optimal assortments that change across different instances to reflect and encode 100%

buydown effects, demonstrating greater capacity to capture existing dominance relations among

products. On the other hand, the MNL model –being unable to properly adapt to dominance relations–

identifies optimal assortments that are unchanged across instances. Specifically, we notice that the

relative revenue improvement

∆ := zDMNL − zMNL

increases in the number of considered buydown effects, see Figure 25.

Indeed, under “Instance a”, which is the situation with no dominance relations, the two models

perform the same. However, the relative improvement ∆ progressively grows as new dominance

relations are gradually enforced. Finally, ∆ registers the highest value ($ 2,385.00) under “Instance

f”, the situation with more dominance relations among products belonging to the universe (highest

number of buydown effects, see Table 17).

Figure 25: Relative improvement ∆ versus number of buydown effects.
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Overall, in our synthetic setting that deals with customers who reveal 100% buydown effects in their

purchasing behavior, the DMNL model has proved to significantly outperform the MNL model in

terms of out-of-sample accuracy. Therefore, it demonstrated to have greater generalization ability in

suggesting assortments closer to the underlying truth.

3.7 Conclusions

In this work we propose a DMNL demand-based choice model, variant of the traditional MNL

model. The proposal is motivated by the inability of traditional choice models to capture the recurrent

phenomenon known as 100% buydown effect, which is the complete dominance of a product over

another one and that annuls the purchasing probability of the latter. In this setting, under DMNL,

we propose a deterministic approximation of the intractable dynamic revenue management problem,

known as DMNL-SBLP. In the numerical experiments section we compare performance of RM

problems under MNL and DMNL models, using synthetic data. An interesting future research

direction would be evaluating the models using real-life data.
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Appendix A

Appendix to Chapter 1

Box Robust Formulation

We now derive the box robust counterpart of formulation (1.3). Consider the problem:

min
a,γ,zX ,zY

∥a∥1 + ν(e⊤zX + e⊤zY )

s.t. a⊤x ≤ γ − 1 + zx(i) ∀x ∈ UB
(
x(i)

)
, i = 1, . . . , I

a⊤y ≥ γ + 1− zy(j) ∀y ∈ UB
(
y(j)

)
, j = 1, . . . , J

zX ≥ 0, zY ≥ 0,

(A.1)

with:

UB
(
x(i)

)
:=
{

x ∈ Rn
∣∣∣ x(i) − ρXζx(i) ≤ x ≤ x(i) + ρXζx(i)

}
, (A.2)

UB
(
y(j)

)
:=
{

y ∈ Rn
∣∣∣ y(j) − ρY ζy(j) ≤ y ≤ y(j) + ρY ζy(j)

}
, (A.3)

where ζx(i) ∈ Rn
+ and ζy(j) ∈ Rn

+ define the perturbation vectors of observations x(i) and y(j),

respectively, while ρX ∈ R+ and ρY ∈ R+ are global measures of uncertainty. Formulation (A.1) can

be equivalently re-stated as follows:

min
a,γ,zX ,zY

∥a∥1 + ν(e⊤zX + e⊤zY )

s.t. max
x∈UB(x(i))

[
a⊤x

]
≤ γ − 1 + zx(i) i = 1, . . . , I

min
y∈UB(y(j))

[
a⊤y

]
≥ γ + 1− zy(j) j = 1, . . . , J

zX ≥ 0, zY ≥ 0.

(A.4)

The left-hand side of the first constraint in (A.4) can be re-written as follows:

max
x

a⊤x

s.t. x ≤ x(i) + ρXζx(i)

x ≥ x(i) − ρXζx(i)

with dual given by:

min
a+, a−

(
x(i) + ρXζx(i)

)⊤
a+ −

(
x(i) − ρXζx(i)

)⊤
a−

s.t. a+ − a− = a

a+ ≥ 0, a− ≥ 0,

101



Daniel Faccini

with a+, a− non-negative dual variables. The dual can equivalently be expressed as:

min
a+, a−

(a+ − a−)⊤x(i) + ρXζ⊤
x(i)(a+ + a−)

s.t. a+ − a− = a

a+ ≥ 0, a− ≥ 0,

which corresponds to min
a

a⊤x(i)+ρXζ⊤
x(i)|a|. Therefore the robust linear problem (A.4) now becomes:

min
a,γ,zX ,zY

∥a∥1 + ν(e⊤zX + e⊤zY )

s.t. a⊤x(i) + ρXζ⊤
x(i)|a| ≤ γ − 1 + zx(i) i = 1, . . . , I

min
y∈UB(y(j))

[
a⊤y

]
≥ γ + 1− zy(j) j = 1, . . . , J

zX ≥ 0, zY ≥ 0.

(A.5)

Exploiting the following equivalence:

min
y∈UB(y(j))

[
a⊤y

]
≥ γ + 1− zy(j) ⇔ max

y∈UB(y(j))

[
− a⊤y

]
≤ −γ − 1 + zy(j) j = 1, . . . , J, (A.6)

the same procedure can be followed for the second group of constraints of (A.4), leading to the

following final robust formulation that corresponds to (1.9):

min
a,γ,zX ,zY

∥a∥1 + ν(e⊤zX + e⊤zY )

s.t. a⊤x(i) + ρXζ⊤
x(i) |a| ≤ γ − 1 + zx(i) i = 1, . . . , I

a⊤y(j) − ρY ζ⊤
y(j)|a| ≥ γ + 1− zy(j) j = 1, . . . , J

zX ≥ 0, zY ≥ 0.

(A.7)

Ellipsoidal Robust Formulation

We now derive the ellipsoidal robust counterpart of formulation (1.3). Let the problem:

min
a,γ,zX ,zY

∥a∥1 + ν(e⊤zX + e⊤zY )

s.t. a⊤x ≤ γ − 1 + zx(i) ∀x ∈ UE
(
x(i)

)
, i = 1, . . . , I

a⊤y ≥ γ + 1− zy(j) ∀y ∈ UE
(
y(j)

)
, j = 1, . . . , J

zX ≥ 0, zY ≥ 0,

(A.8)

be given, with:
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UE
(
x(i)

)
:=

x ∈ Rn

∣∣∣∣∣∣
x = x(i) + Σ

1
2
x(i)u

∥u∥2 ≤ ρX

 , (A.9)

UE
(
y(j)

)
:=

y ∈ Rn

∣∣∣∣∣∣
y = y(j) + Σ

1
2
y(j)u

∥u∥2 ≤ ρY

 , (A.10)

where Σx(i) ∈ Rn×n and Σy(j) ∈ Rn×n are positive definite covariance matrices for, respectively, x(i)

and y(j), and with the scalars ρX , ρY ∈ R+ denoting the radii of the ellipsoids centered in x(i) and

y(j). Equivalently, uncertainty sets (A.9) and (A.10) may be expressed as follows:

UE
(
x(i)

)
:=
{

x ∈ Rn

∣∣∣∣ (x− x(i)
)⊤

Σ−1
x(i)

(
x− x(i)

)
≤ ρ2

X

}
, (A.11)

UE
(
y(j)

)
:=
{

y ∈ Rn

∣∣∣∣ (y − y(j)
)⊤

Σ−1
y(j)

(
y − y(j)

)
≤ ρ2

Y

}
. (A.12)

Once again, we can formulate our problem as:

min
a,γ,zX ,zY

∥a∥1 + ν(e⊤zX + e⊤zY )

s.t. max
x∈UE (x(i))

[
a⊤x

]
≤ γ − 1 + zx(i) i = 1, . . . , I

min
y∈UE (y(j))

[
a⊤y

]
≥ γ + 1− zy(j) j = 1, . . . , J

zX ≥ 0, zY ≥ 0.

(A.13)

The left-hand side of the first constraint in (A.13) can be re-written as follows:

max
x

a⊤x

s.t. x ∈ UE
(
x(i)

)
which is equivalent to:

a⊤x(i) + max
u

[
a⊤Σ

1
2
x(i)u

]

s.t. ∥u∥2 ≤ ρX .

(A.14)

Applying the Cauchy-Schwarz inequality (see [155]) we get: |a⊤Σ
1
2
x(i)u| ≤ ∥a⊤Σ

1
2
x(i)∥2 · ∥u∥2.

Therefore, since ∥u∥2 ≤ ρX , problem (A.14) becomes:

a⊤x(i) + ∥a⊤Σ
1
2
x(i)∥2 · ∥u∥2 ⇔ a⊤x(i) + ρX∥Σ

1
2
x(i)a∥2. (A.15)

Exploiting the equivalence:

min
y∈UE (y(j))

[
a⊤y

]
≥ γ + 1− zy(j) ⇔ max

y∈UE (y(j))

[
− a⊤y

]
≤ −γ − 1 + zy(j) j = 1, . . . , J, (A.16)
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the same procedure can be followed for the second group of constraints of (A.13), leading to the final

ellipsoidal robust formulation given by:

min
a,γ,zX ,zY

∥a∥1 + ν(e⊤zX + e⊤zY )

s.t. a⊤x(i) + ρX∥Σ
1
2
x(i)a∥2 ≤ γ − 1 + zx(i) i = 1, . . . , I

a⊤y(j) − ρY ∥Σ
1
2
y(j)a∥2 ≥ γ + 1− zy(j) j = 1, . . . , J

zX ≥ 0, zY ≥ 0.

(A.17)
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Appendix to Chapter 2

Proof of LB Criterion for Kullback-Leibler Divergence

Recall from Section 2.2.3 that Kullback-Leibler (KL) divergence is a special case of the CR power

divergence family when the parameter of this family θ → 1. We now prove the LB criteria ¯̄ρ+ρ̄max ≤ ρ

for KL divergence in Proposition 1 by directly working with the ambiguity set of KL divergence. We

use subscript ϕKL P and ∆ specific to KL.

Proof. Let P ′ ∈ P̃ϕKL(¯̄ρ,ρ̄). Then there exists ¯̄P ∈ P̃G
ϕKL(¯̄ρ) and P̄ ∈ P̃F |G

ϕKL(ρ̄) such that
∑

g∈[ml]
¯̄p(l)

g = 1,∑
ωi∈Ω(l)

g
(p̄ωi

)(l)
g = 1 and

∑
g∈[ml]

[
¯̄p(l)

g log
( ¯̄p(l)

g

π
(l)
g

)]
≤ ¯̄ρ,

∑
ωi∈Ω(l)

g

[
(p̄ωi )(l)

g log
(

(p̄ωi )(l)
g

(qωi )(l)
g

)]
≤ ρ̄g.

We now show the steps to find the criteria for ∆ϕKL
(P ′, Q) ≤ ρ. We have:

∑
ωi∈Ω

[
p′

ωi
log
(

p′
ωi

qωi

)]

=
∑

ωi∈Ωf

[
p′

ωi
log
(

p′
ωi

qωi

)]
+

∑
ωi∈(Ωf )C

[
p′

ωi
log
(

p′
ωi

qωi

)]

=
∑

ωi∈Ωf

[ ∑
g∈[ml]

p′
ωi,g log

(∑
g∈[ml] p′

ωi,g∑
g∈[ml] qωi,g

)]
+

∑
ωi∈(Ωf )C

[
p′

ωi
log
(

p′
ωi

qωi

)]

≤
∑

ωi∈Ωf

∑
g∈[ml]

[
p′

ωi,g log
(

p′
ωi,g

qωi,g

)]
+

∑
ωi∈(Ωf )C

[
p′

ωi
log
(

p′
ωi

qωi

)]

=
∑

ωi∈Ωf

∑
g∈[ml]

[
¯̄p(l)

g (p̄ωi )(l)
g log

( ¯̄p(l)
g (p̄ωi )(l)

g

π
(l)
g (qωi )(l)

g

)]
+
∑

g∈[ml]

∑
ωi∈(Ωf )C

[
¯̄p(l)

g (p̄ωi )(l)
g log

( ¯̄p(l)
g (p̄ωi )(l)

g

π
(l)
g (qωi )(l)

g

)]

=
∑

g∈[ml]

∑
ωi∈Ω(l)

g

[
¯̄p(l)

g (p̄ωi )(l)
g

(
log
( ¯̄p(l)

g

π
(l)
g

)
+ log

(
(p̄ωi )(l)

g

(qωi )(l)
g

))]

=
∑

g∈[ml]

[
¯̄p(l)

g log
( ¯̄p(l)

g

π
(l)
g

) ∑
ωi∈Ω(l)

g

(p̄ωi )(l)
g

]
+
∑

g∈[ml]

[
¯̄p(l)

g

∑
ωi∈Ω(l)

g

(
(p̄ωi )(l)

g log
(

(p̄ωi )(l)
g

(qωi )(l)
g

))]

≤
∑

g∈[ml]

[
¯̄p(l)

g log
( ¯̄p(l)

g

π
(l)
g

)
1
]

+
∑

g∈[ml]

[ ¯̄p(l)
g ρ̄g

]
≤ ¯̄ρ +

∑
g∈[ml]

[ ¯̄p(l)
g

]
· ρ̄max

=¯̄ρ + ρ̄max
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where the first inequality follows from the log sum inequality applied to fixed scenarios ωi ∈ Ωf

and the last set of inequalities follow from the facts that ∆ϕKL
(P̄ (l)

g , Q(l)
g ) ≤ ρ̄g for all subgroups

g ∈ [ml], the definition of ρ̄max, ∆ϕKL
( ¯̄P, ¯̄Q) ≤ ¯̄ρ, and

∑
ωi∈Ω(l)

g
(p̄ωi

)(l)
g = ∑

g∈[ml]
¯̄p(l)

g = 1. Therefore,

if ¯̄ρ + ρ̄max ≤ ρ, the result follows.

Proof of LB Criterion for Variation Distance

Proof. Let P ′∈P̃ϕv(¯̄ρ,ρ̄). Then there exists ¯̄P∈P̃G
ϕv(¯̄ρ) and P̄∈P̃F |G

ϕv(ρ̄) such that
∑

g∈[ml]
¯̄p(l)

g = 1,∑
ωi∈Ω(l)

g
(p̄ωi

)(l)
g = 1 and ∑

g∈[ml]

| ¯̄p(l)
g − π(l)

g | ≤ ¯̄ρ,
∑

ωi∈Ω(l)
g

|(p̄ωi )(l)
g − (qωi )(l)

g | ≤ ρ̄g

We now show the steps to find the criteria for ∆ϕv(P ′, Q) ≤ ρ. We have:∑
ωi∈Ω

∣∣p′
ωi

− qωi

∣∣
=
∑

ωi∈Ωf

∣∣∣∣ ∑
g∈[ml]

p′
ωi,g −

∑
g∈[ml]

qωi,g

∣∣∣∣ +
∑

ωi∈(Ωf )C

∣∣p′
ωi

− qωi

∣∣
≤
∑

ωi∈Ωf

∑
g∈[ml]

∣∣p′
ωi,g − qωi,g

∣∣+
∑

ωi∈(Ωf )C

∣∣p′
ωi

− qωi

∣∣
=
∑

g∈[ml]

∑
ωi∈Ω(l)

g

∣∣ ¯̄p(l)
g (p̄ωi )(l)

g − π(l)
g (qωi )(l)

g

∣∣

≤
∑

g∈[ml]

∑
ωi∈Ω(l)

g

(∣∣ ¯̄p(l)
g − π(l)

g

∣∣ ∣∣(p̄ωi )(l)
g − (qωi )(l)

g

∣∣+ ∣∣( ¯̄p(l)
g − π(l)

g

)
(qωi )(l)

g

∣∣+ ∣∣π(l)
g

(
(p̄ωi )(l)

g − (qωi )(l)
g

)∣∣)

=
∑

g∈[ml]

(∣∣∣ ¯̄p(l)
g − π(l)

g

∣∣∣ ∑
ωi∈Ω(l)

g

∣∣∣(p̄ωi )(l)
g − (qωi )(l)

g

∣∣∣)+
∑

g∈[ml]

(∣∣∣ ¯̄p(l)
g − π(l)

g

∣∣∣ ∑
ωi∈Ω(l)

g

(qωi )(l)
g

)

+
∑

g∈[ml]

(
π(l)

g

∑
ωi∈Ω(l)

g

∣∣∣(p̄ωi )(l)
g − (qωi )(l)

g

∣∣∣)

≤
∑

g∈[ml]

(∣∣ ¯̄p(l)
g − π(l)

g

∣∣ ρ̄g

)
+ ¯̄ρ +

∑
g∈[ml]

(
π(l)

g ρ̄g

)
≤ ¯̄ρ · ρ̄max + ¯̄ρ + ρ̄max,

where the equality on the second line above follows from the way p′
ωi,g

, qωi,g for fixed and p′
ωi

, qωi
for

non-fixed scenarios are defined in set (2.4) and in Sections 2.3.1 and 2.3.2. The second inequality

follows from, for any numbers a, b, c, d, that we have |ac−bd| = |(a−b)(c−d)+(a−b)d+b(c−d)| ≤

|(a − b)||(c − d)| + |(a − b)d| + |b(c − d)|. The last two sets of inequalities follow from the facts

that ∆ϕv(P̄ (l)
g , Q(l)

g ) ≤ ρ̄g for all subgroups g ∈ [ml], the definition of ρ̄max, ∆ϕv( ¯̄P, ¯̄Q) ≤ ¯̄ρ, and∑
ωi∈Ω(l)

g
(qωi

)(l)
g = ∑

g∈[ml] π(l)
g = 1. Therefore, if ¯̄ρ · ρ̄max + ¯̄ρ + ρ̄max ≤ ρ the result follows.
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Proof of LB Criterion for J-Divergence

Proof. J-divergence is the sum of KL divergence and Burg entropy [8]. Burg entropy is similar to the

KL divergence with qωi
and pωi

exchanged (see Table 9). Therefore, the proof of Burg entropy follows

along the same lines as KL divergence. Splitting the J-divergence as sum of KL divergence and Burg

entropy, following along the lines of the proof above and setting

aωi = log

(
(p̄ωi )(l)

g

(qωi )(l)
g

)

we obtain

∆ϕJ (P ′, Q) ≤ ¯̄ρ +
∑

g∈[ml]

[
¯̄p(l)

g

∑
ωi∈Ω(l)

g

(
(p̄ωi )(l)

g aωi

) ]
−
∑

g∈[ml]

[
π(l)

g

∑
ωi∈Ω(l)

g

(
(qωi )(l)

g aωi

) ]

= ¯̄ρ +
∑

g∈[ml]

[
¯̄p(l)

g

∑
ωi∈Ω(l)

g

([
(p̄ωi )(l)

g − (qωi )(l)
g

]
aωi

) ]
+
∑

g∈[ml]

[( ¯̄p(l)
g − π(l)

g

) ∑
ωi∈Ω(l)

g

(
(qωi )(l)

g aωi

) ]

≤ ¯̄ρ +
∑

g∈[ml]

¯̄p(l)
g ρ̄g +

[
max

g

∑
ωi∈Ω(l)

g

(
(qωi )(l)

g aωi

) ] ∑
g∈[ml]

( ¯̄p(l)
g − π(l)

g

)
≤ ¯̄ρ +ρ̄max · 1 + 0,

where the inequalities on the last line follow from the facts that ∆ϕJ
(P̄ (l)

g , Q(l)
g ) ≤ ρ̄g for all subgroups

g ∈ [ml], the definition of ρ̄max, and
∑

g∈[ml]
¯̄p(l)

g = ∑
g∈[ml] π(l)

g = 1. Therefore, if ¯̄ρ + ρ̄max ≤ ρ, the

result follows.

Proof of LB Criterion for χ-Divergence of a > 1

Proof. Set x(l)
g = 1− ¯̄p(l)

g

π
(l)
g

and (yωi
)(l)

g = 1− (p̄ωi )(l)
g

(qωi )(l)
g

. Let P ′ ∈ P̃ϕa
χ(¯̄ρ,ρ̄). Then there exists ¯̄P ∈ P̃G

ϕa
χ(¯̄ρ)

and P̄ ∈ P̃F |G
ϕa

χ(ρ̄) such that

∑
g∈[ml]

π(l)
g |x(l)

g |a ≤ ¯̄ρ,
∑

ωi∈Ω(l)
g

(qωi )(l)
g |(yωi )(l)

g |a ≤ ρ̄g

for all subgroups g ∈ [ml]. Since the scenario tree Ω is dissected using disjoint partitions (i.e.,

Ωf = ∅), we have qωi
= π(l)

g (qωi
)(l)

g , for all ωi ∈ Ω(l)
g and g ∈ [ml]. Then:

∑
ωi∈Ω

qωi

∣∣∣∣1 −
p′

ωi

qωi

∣∣∣∣a

=
∑

g∈[ml]

∑
ωi∈Ω(l)

g

qωi

∣∣∣∣1 −
¯̄p(l)

g (p̄ωi )(l)
g

π
(l)
g (qωi )(l)

g

∣∣∣∣a

=
∑

g∈[ml]

∑
ωi∈Ω(l)

g

qωi

∣∣∣x(l)
g + (yωi )(l)

g − x(l)
g (yωi )(l)

g

∣∣∣a
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≤

[( ∑
g∈[ml]

∑
ωi∈Ω(l)

g

qωi

∣∣∣x(l)
g

∣∣∣a) 1
a

+

( ∑
g∈[ml]

∑
ωi∈Ω(l)

g

qωi

∣∣∣(yωi )(l)
g

∣∣∣a) 1
a

+

( ∑
g∈[ml]

∑
ωi∈Ω(l)

g

qωi

∣∣∣x(l)
g (yωi )(l)

g

∣∣∣a) 1
a
]a

=

[( ∑
g∈[ml]

π(l)
g

∣∣∣x(l)
g

∣∣∣a ∑
ωi∈Ω(l)

g

(qωi )(l)
g

) 1
a

+

( ∑
g∈[ml]

π(l)
g

∑
ωi∈Ω(l)

g

(qωi )(l)
g

∣∣∣(yωi )(l)
g

∣∣∣a) 1
a

+

( ∑
g∈[ml]

π(l)
g

∣∣x(l)
g

∣∣a ∑
ωi∈Ω(l)

g

(qωi )(l)
g

∣∣∣(yωi )(l)
g

∣∣∣a) 1
a
]a

≤

[( ∑
g∈[ml]

π(l)
g

∣∣∣x(l)
g

∣∣∣a) 1
a

+
( ∑

g∈[ml]

π(l)
g ρ̄g

) 1
a

+
( ∑

g∈[ml]

π(l)
g

∣∣∣x(l)
g

∣∣∣aρ̄g

) 1
a

]a

≤
[
(¯̄ρ)

1
a +(ρ̄max)

1
a +(¯̄ρ · ρ̄max)

1
a

]a

,

where the first inequality follows from Minkowski inequality and the last two set of inequalities follow

from the facts that ∆ϕa
χ
( ¯̄P, ¯̄Q) ≤ ¯̄ρ and ∆ϕa

χ
(P̄ (l)

g , Q(l)
g ) ≤ ρ̄g for all subgroups g ∈ [ml], the definition

of ρ̄max, and
∑

ωi∈Ω(l)
g

(qωi
)(l)

g = ∑
g∈[ml] π(l)

g = 1. Therefore, if
[(

¯̄ρ
) 1

a + (ρ̄max)
1
a +

(
¯̄ρ · ρ̄max

) 1
a

]a

≤ ρ

the result follows.
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Appendix to Chapter 3

Upper Bound on Number of Maximal Paths

First we show that a dominance graph with a maximal number of maximal paths has the same structure

as the dominance graph in Example 1. Consider any dominance graph G with set P of maximal paths.

For each j ∈ J , let ℓ(j) denote the least number of arcs along any path in G from any j′ ∈ J

such that D−(j′) = ∅ to j. Let L := max{ℓ(j) : j ∈ J } + 1. For each ℓ ∈ {0, . . . , L − 1}, let

J (ℓ) := {j ∈ J : ℓ(j) = ℓ}. Next, let G′ denote the dominance graph with node set J , and with an

arc (j′, j) from each j′ ∈ J (ℓ− 1) to each j ∈ J (ℓ), for each ℓ ∈ {1, . . . , L− 1}. Let P′ denote the

set of maximal paths in G′. Note that |P′| ≥ |P|, and that |P′| = |J (0)| × · · · × |J (L− 1)|.

Next, we determine an upper bound on |J (0)|×· · ·×|J (L−1)| subject to |J (0)|+· · ·+|J (L−1)| =

|J |, by relaxing the integrality requirement on each |J (ℓ)|. For any ℓ ∈ {1, 2, . . .} and any y ≥ 0, let

fℓ(y) := max {x1 × · · · × xℓ : x1 + · · ·+ xℓ = y, x1, . . . , xℓ ≥ 0} .

Note that f1(y) = y and fℓ+1(y) = max {x× fℓ(y − x) : x ∈ [0, y]} for all ℓ ∈ {1, 2, . . .} and all

y ≥ 0. Next, we show by induction on ℓ that fℓ(y) = (y/ℓ)ℓ. Note that the induction hypothesis holds

for ℓ = 1. Consider

fℓ+1(y) = max {x× fℓ(y − x) : x ∈ [0, y]} = max
{

x×
(

y − x

ℓ

)ℓ

: x ∈ [0, y]
}

.

Note that g(x) := x ×
(

y−x
ℓ

)ℓ
is maximized at x∗ = y/(ℓ + 1) ∈ [0, y], and thus fℓ+1(y) =

(y/(ℓ + 1))ℓ+1, and hence the induction hypothesis has been established. In words, this result shows

that, ignoring integrality requirements, a dominance graph with a maximal number of maximal paths

has the same number of nodes in each level ℓ.

Next, we determine the number of levels that maximizes the number of maximal paths for a given

total number of nodes. For any y > 0, consider

max
{

fℓ(y) =
(

y

ℓ

)ℓ

: ℓ > 0
}

Note that
(

y
ℓ

)ℓ
is maximized at ℓ∗ = y/e, and that

max
{

fℓ(y) =
(

y

ℓ

)ℓ

: ℓ > 0
}

= exp(y/e).

Thus, given product set J , the number of maximal paths is less than exp(|J |/e).
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Conversion of an SBLP Solution into a CDLP Solution: A Practical Example

This example is used to explain Algorithm 1. Suppose universeJ has three products, soJ = {1, 2, 3},

whose profits per unit are r1 = 283, r2 = 276, and r3 = 286. There is a single available resource

(so |R| = 1) with b1 = 560, and it holds that a1 = a2 = a3 = 1. Preference weight parameters are

v1 = 10, v2 = 7, v3 = 2, and v0 = 2. Finally, T = 1,080 and λ = 0.59. The dominance relations

between products are described by the following graph.

1 3 → 2

Solving problem (SBLP) leads to the following solution: x1 = 433.33, x2 = 56.00, x3 = 70.66,

and x0 = 86.66 with an objective function value of $158,300. With this solution as input, we invoke

Algorithm 1 to recover optimal solutions of problem (CDLP).

• We begin by setting k ← 0, α(A) = 0 for all A ⊆ J (Step 1).

• Since there exists at least a product j ∈ J such that xj > 0 (namely, j = 1, 2, 3), we enter the loop and

set k ← 1 (Step 3).

• We build set A1 = {1, 2, 3} (Step 4).

• We build set D1 = {1, 3} (Step 5).

• We set Y1 = min
{

x1
v1

, x3
v3

}
= min

{
433.33

10 , 70.66
2

}
= 35.33 (Step 6).

• We set j1 = 3 (Step 7).

• We set α(A1) = v0+v1+v3
λT · Y1 = 2+10+2

646.66 · 35.33 = 0.7649 (Step 8).

• We set x1 = 433.33− 646.66 · 0.7649 · 10
2+10+2 = 80.00 (Step 10).

• We set x3 = 70.66− 646.66 · 0.7649 · 2
2+10+2 = 0 (Step 10).

• Since there exists at least a product j ∈ J such that xj > 0 (namely, j = 1, 2), we stay in the loop and

set k ← 2 (Step 3).

• We build set A2 = {1, 2} (Step 4).

• We build set D2 = {1, 2} (Step 5).

• We set Y2 = min
{

x1
v1

, x2
v2

}
= min

{
80.00

10 , 56.00
7

}
= 8.00 (Step 6).

• We set j2 = 2 (Step 7).

• We set α(A2) = v0+v1+v2
λT · Y2 = 2+10+7

646.66 · 8 = 0.2351 (Step 8).
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• We set x1 = 80− 646.66 · 0.2351 · 10
2+10+7 = 0 (Step 10).

• We set x2 = 56− 646.66 · 0.2351 · 7
2+10+7 = 0 (Step 10).

• Since {j ∈ J : xj > 0} = ∅ Algorithm 1 stops.

Output: α(A1) = 0.7649, α(A2) = 0.2351, and α(A) = 0 for all remaining A ⊆ J .

111





List of Figures

Figure 1: Input observations of groups X and Y bounded by boxes and separating hyper-

planes H1, H2 and H3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 2: Input observations of groups X and Y bounded by ellipsoids and separating

hyperplanes H1, H2 and H3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 3: Given group X (a), principal directions f
(1)
X and f

(2)
X are detected. For every point

x(i), limits (ϱX)1, (ϱX)2 on variations along them are enforced together with the

box support; K may be fixed to 1 (b) or 2 (c). . . . . . . . . . . . . . . . . . . . 20

Figure 4: Input observations of groups X and Y and separating hyperplanes H1, H2 and H3. 24

Figure 5: Lowest out-of-sample testing error rates over changes of ρX , ρY per formulation

under the data sets: (a) Breast Cancer; (b) Heart Disease. Vertical error bars

represents standard errors. Data of Table 3. . . . . . . . . . . . . . . . . . . . . 31

Figure 6: Lowest out-of-sample testing error rates over changes of ρX , ρY per formulation

under the data sets: (a) Arrhythmia; (b) Breast Cancer Diagnostic; (c) Dermatol-

ogy; (d) Parkinson; (e) Climate Model Crashes; (f) Landsat Satellite; (g) Ozone

Level Detection One; (h) Blood Transfusion. Vertical error bars represents stan-

dard errors. Graphics refer to data of Table 3. . . . . . . . . . . . . . . . . . . . 32

Figure 7: Number of data sets for which every formulation gave the lowest out-of-sample

testing error rate. Data of Tables 3, 4, and 5. . . . . . . . . . . . . . . . . . . . . 34

Figure 8: Best performing models versus dimension of the training samples. Data are from

Tables 3, 4, and 5. Horizontal axis is in log-scale. . . . . . . . . . . . . . . . . . 34

Figure 9: A graphical representation of the sample space Ω, with |Ω| = 15 scenarios, divided

into m3 = 7 subsets of cardinality l = 3, with one fixed scenario Ωf = {ω1}. . . 46

Figure 10: Computation of the risk measure R̃G
¯̄ρ (·) (dashed line) combining the optimal values

of subgroups obtained using risk measures R(l)
ρ̄g

(·), g ∈ [7] induced by DRO with P(l)
ρ̄g

. 48

Figure 11: Visual representation of the multi-level bounding scheme. . . . . . . . . . . . . 58

Figure 12: Percentage gaps from the optimal value z∗ versus CPU time (per subproblem,

in seconds) for VD for different combinations of (¯̄ρ, ρ̄max) under disjoint par-

titions (black lines) with cardinality l = 1, 3, 9, 27, 54, 108 (results refer to Ta-

ble 12) and under subgroups with scenario ω1 fixed (red lines) and cardinality

l = 2, 8, 12, 50, 78 (results refer to Table 13). . . . . . . . . . . . . . . . . . . . 65

113



Daniel Faccini

Figure 13: LBs versus CPU time (per subproblem, in seconds) for modified χ2 for dif-

ferent combinations of (¯̄ρ, ρ̄max) and under disjoint partitions with cardinality

l = 1, 3, 9, 27, 54 (results refer to Table 14). . . . . . . . . . . . . . . . . . . . . 67

Figure 14: Percentage gaps from the optimal value z∗ versus CPU time (per subproblem, in

seconds) for Wasserstein distance for different combinations of (¯̄ρτ , ρ̄τ,max) and

under partitions with cardinality l = 1, 3, 9, 27, 54, 108 (results refer to Table 16). 70

Figure 15: Huggies example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 16: Fitvia example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 17: Lyft example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 18: YSL example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 19: Example of initial dominance graph with n = 6 products. . . . . . . . . . . . . . 79

Figure 20: Example of parsimonious dominance graph G. . . . . . . . . . . . . . . . . . . 79

Figure 21: Example of a non-arborescence dominance graph G. . . . . . . . . . . . . . . . 80

Figure 22: Dominance graph G of Example 1 for n = 6. . . . . . . . . . . . . . . . . . . . 81

Figure 23: Relative revenue performance ρ versus ε. Vertical axis in log-scale. . . . . . . . 92

Figure 24: Dominance instances for the universe of products J = {1, . . . , 30}. . . . . . . . 95

Figure 25: Relative improvement ∆ versus number of buydown effects. . . . . . . . . . . . 96

114



List of Tables

Table 1: Linear SVM Literature Review. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Table 2: Summary of data sets from UCI Machine Learning Repository. . . . . . . . . . . 25

Table 3: Average out-of-sample testing errors and standard deviations over 100 runs of the

deterministic, robust and distributionally robust models, for the different considered

data sets. Hold-out 75%-25%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Table 4: Average out-of-sample testing errors and standard deviations over 100 runs of the

deterministic, robust and distributionally robust models, for the different considered

data sets. Hold-out 50%-50%. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Table 5: Average out-of-sample testing errors and standard deviations over 100 runs of the

deterministic, robust and distributionally robust models, for the different considered

data sets. Hold-out 25%-75%. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Table 6: Out-of-sample testing error rates comparison. Data of Table 3 against accuracy

scores from [13]. For each data set, we indicate in bold the lowest out-of-sample

testing error rate achieved. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Table 8: p-values of the best performing robust model on hold-outs 75%-25%, 50%-50%,

25%-75%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Table 7: Robust improvements with respect to the deterministic model on hold-outs 75%-

25%, 50%-50%, 25%-75%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Table 9: Common ϕ-divergences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Table 10: Some special cases of CR power divergence family. Kullback-Leibler divergence

and Burg entropy are obtained by taking the limit of θ to 1 and 0, respectively. . . 43

Table 11: Production price ct, selling price st, holding cost ht from time t to time t + 1, and

procurement cost bt for extra stock from another retailer at time t. . . . . . . . . . 63

Table 12: Collections of LBs with disjoint subsets Ω(l)
g obtained by applying Proposition 6

(first-level LB) to the multistage inventory problem with VD. . . . . . . . . . . . 64

Table 13: Collections of LBs obtained by keeping the worst scenario (ω1) fixed in all subsets

Ω(l)
g and applying Proposition 6 (first-level LB) to the multistage inventory problem

with VD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

115



Daniel Faccini

Table 14: Collections of LBs with disjoint subsets Ω(l)
g obtained by applying Proposition 6

(first-level LB) to the multistage inventory problem with modified χ2 (time limit =

86400 CPU sec.s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Table 15: Collections of LBs with disjoint subsets Ω(l)
g obtained by applying Proposition 7

(multi-level LB) to the multistage inventory problem with modified χ2 (time limit

= 86400 CPU sec.s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Table 16: Collections of LBs with disjoint subsets Ω(l)
g (l = 1, 3, 9, 27, 54, 108) obtained

applying Proposition 7 (multi-level LB) to the multistage inventory problem with

Wasserstein distance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Table 17: Number of dominance relations (buydown effects) among products of universe J

for instances a to f of Figure 24. . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Table 18: Optimal assortments and out-of-sample revenues for DMNL and MNL models,

with improvements ∆. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

116



References

[1] B. Analui and G. C. Pflug. On distributionally robust multiperiod stochastic optimization.

Computational Management Science, 11(3):197–220, 2014.

[2] Y. Anzai. Pattern recognition and machine learning. Elsevier, 2012.

[3] A. Ardestani-Jaafari and E. Delage. Robust optimization of sums of piecewise linear functions

with application to inventory problems. Operations Research, 64(2):474–494, 2016.

[4] P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath. Coherent measures of risk. Mathematical

Finance, 9(3):203–228, 1999.

[5] P. Baumann, D. S. Hochbaum, and Y. T. Yang. A comparative study of the leading machine

learning techniques and two new optimization algorithms. European Journal of Operational

Research, 272(3):1041–1057, 2019.

[6] G. Bayraksan and D. K. Love. Data-driven stochastic programming using phi-divergences. In

The Operations Research Revolution, pages 1–19. INFORMS, 2015.

[7] A. Ben-Tal, S. Bhadra, C. Bhattacharyya, and J. S. Nath. Chance constrained uncertain classi-

fication via robust optimization. Mathematical Programming, 127(1):145–173, 2011.

[8] A. Ben-Tal, D. Den Hertog, A. De Waegenaere, B. Melenberg, and G. Rennen. Robust solutions

of optimization problems affected by uncertain probabilities. Management Science, 59(2):341–

357, 2013.

[9] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust optimization, volume 28. Princeton

University Press, 2009.

[10] K. P. Bennett and O. L. Mangasarian. Robust linear programming discrimination of two linearly

inseparable sets. Optimization Methods and Software, 1(1):23–34, 1992.

[11] L. Bertazzi and F. Maggioni. A stochastic multi-stage fixed charge transportation problem:

Worst-case analysis of the rolling horizon approach. European Journal of Operational Research,

267(2):555–569, 2018.

[12] D. Bertsimas, D. B. Brown, and C. Caramanis. Theory and applications of robust optimization.

SIAM Review, 53(3):464–501, 2011.

117



Daniel Faccini

[13] D. Bertsimas, J. Dunn, C. Pawlowski, and Y. D. Zhuo. Robust classification. INFORMS Journal

on Optimization, 1(1):2–34, 2019.

[14] D. Bertsimas, V. Gupta, and N. Kallus. Data-driven robust optimization. Mathematical Pro-

gramming, 167(2):235–292, 2018.
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