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by Nicholas Valceschini

The model uncertainty is not always taken into account in the engineering fields, notwith-
standing, it plays a key role in practical applications. The importance of the uncertainty
has led to the creation of specific kinds of literature, such as robust control or robust fault
diagnosis. In the beginning, the uncertainty information was given by the knowledge of the
user. Instead, in the last decades, the system identification community has sought different
ways to model the uncertainty. This branch takes the name of Robust identification. The
results of the uncertainty quantification and Robust identification procedures are directly
related to the user’s choices. The wrong choices could lead to a useless robust controller or
robust fault diagnosis algorithm.

This Ph.D. thesis proposes an automatic way to model the uncertainty information by em-
ploying the innovative kernel-based system identification. The resulting data-driven uncer-
tainty model is then applied to the robust control design. Specifically, the mixed-sensitivity
loop-shaping procedure is adopted to develop a robust controller for Single input Single out-
put (SISO) and multi-model dynamic systems. The rationale of these works is that the user
is relieved from difficult choices, such as the model family selection of the uncertainty (as
in Robust identification) or the uncertainty quantification (as in traditional robust control).
The effectiveness of the proposed methodologies is proven by testing them on a bench-
mark problem (for SISO systems) and on a real application (for multi-model systems). The
developed methods show good performance. Furthermore, the proposed data-driven uncer-
taintymodeling is employed to design an algorithm for a robust model-based fault diagnosis
problem. The resulting robust residual generator is evaluated on a benchmark problem. The
proposed technique is able to reduce false alarms and shows good fault detectability. The
other two contributions deal with practical applications. A model-based fault diagnosis sys-
tem is developed for an Electro-Mechanical Actuator employed in a sliding gate system. In
particular, we propose an innovative residual evaluation strategy. This exhibits good perfor-
mance of fault detectability on the real system. Instead, the other practical work is devoted
to study a signal-based fault diagnosis system to detect and isolate some faults of a complex
rotating machine.
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In this last contribution, we develop the residual generation, residual evaluation and de-
cision logic procedures. The proposed technique detects and isolates the faults with high
accuracy.

Keywords. Robust control, Robust fault diagnosis, Model uncertainty, Data-driven un-
certainty, Mixed-sensitivity loop-shaping, kernel-based system identification
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• aij denotes the element of the matrixA, with i-th row and j-th column;

xv



• The set of all real matrices with n rows andm columns: Rn×m;

• Identity matrix with n rows: In ∈ Rn×n;
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Norms
The norms properties are the following:

1. ∥u∥ ≥ 0;

2. ∥u∥ = 0⇔ u(t) = 0 ∀t;

3. ∥au∥ = |a| ∥u∥ ∀a ∈ R;

4. ∥u+ v∥ ≤ ∥u∥+ ∥v∥.

Norms for signals
Consider a signals u(t), where t is the temporal instant. They are assumed to be piecewise
continuos. The norms for these signals are:

• 1-Norm: ∥u∥1 =
∫∞
−∞ |u(t)| dt;

• 2-Norm: ∥u∥2 =
(∫∞

−∞ |u(t)|
2 dt

) 1
2 ;

• ∞-Norm: ∥u∥∞ = supt |u(t)|.

Norms for vector
Given a vector x of length n the most important norms are:

• 1-Norm: ∥x∥1 = |x1|+ ...+ |xn|;

• 2-Norm: ∥x∥2 =
(
|x1|2 + ...+ |xn|2

) 1
2 . It can be seen as the Frobenius norm (in the

vector case);

• ∞-Norm: ∥x∥∞ = max1≤i≤n |xi|.

Figure 1 depicts the norms shape of a two dimensional vector x ∈ R2×1.

Norms for Systems
Consider a system G(s) that is Linear Time-Invariant (LTI) and Single input Single output
(SISO). Two norms of G(s) are:

• 2-Norm: ∥G(s)∥2 =
(

1
2π

∫∞
−∞ |G(jω)|2 dω

) 1
2 ;

• ∞-Norm: ∥G(s)∥∞ = max
ω
|G(jω)|.

Now, let a Linear Time-Invariant (LTI) Multiple inputMultiple output (MIMO) systemG(s).
Two norms ofG(s) are:

• 2-Norm: ∥G(s)∥2 =
√

1√
2

∫∞
0 ∥g(t)∥

2
F dt, where g(t) is the impulse response of the

system and is the Frobenius norm, defined as ∥A∥F =
√
Tr(A ·A) with a generic

matrixA;
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• ∞-Norm: ∥G(s)∥∞ = max
ω

σ̄ (G(jω)), where σ̄(·), denotes the maximum singular
value.

𝑥2

𝑥1

𝒙 ∞ 𝒙 2

𝒙 1

Figure 1: Contours of ∥x∥p, where p = 1, 2,∞ and x = [x1, x2].
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Symbol Description
M model family
β parameters vector
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m number of parameters
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Jn(β) cost function with finite length dataset D
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g non-parametric function
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Φ regression matrix
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x regressors
Kx reproducing kernel
K kernel matrix
K(·) kernel section
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ĉ identified weight vector
η hyperparameters vector
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T (z,ρ) true complementary sensitivity function
Gp(z) random sample form the posterior distribution
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r(t) reference signal
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ε accuracy level
np number of sampled systems Gp(z)

ϵ damping factor
o overshoot
l settling time
ωc critical frequency
ωc,ŴT

critical frequency of ŴT

(O,L) two sets of Pareto-optimal dominant solutions for the overshoot
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CHAPTER 1

Introduction

Since the birth of humankind, the desire to understand the natural phenomena around us
has played a key role in our existence. In the beginning, the representation of nature was
entrusted to artists through their paintings or sculptures. Then, with the advent of the sci-
entific method, the artist was replaced by the scientist. For centuries, the latter drew natural
phenomena with mathematical relations, called models, validated by certain experimental
tests. This method represents reality in an understandable way: however, it is applica-
ble only on simple systems and it requires a great effort. This approach is called white-
box modeling (or first principle approach). Nowadays, thanks to computer, it is still widely
used. Neverthless, scientific research has investigated an alternative way, due to the limited
real-world applications. Leveraging the huge amount of collectable data and exploiting the
statistical literature, the researchers have defined the innovative black-box modeling. This
method develops a model through some algorithms that build a representation of the real
system, starting from the examination of a dataset acquired on the real plant. Doing so, no
prior knowledge is required, but the resulting model has lost any physical interpretation.
A third method, called grey-box modeling relies on a model, made with the first principle
approach, coupled with a black-box modeling that identifies the parameters. This method
funnel themain pros of the other two branches, but it is slower than the black-box approach.

A system is defined as a process that transforms inputs into outputs. The systems can be
static or dynamic. The first represent those systems where the input and output have no
temporal relationships. Systems where the output is explained by the input and the state of
the system, belong to the second type. Dynamic systems are themost spread in themodeling
of natural phenomena. The literature that studies the modeling of dynamic systems takes
the name of system identification [93, 155].

Black-box modeling is useful and widely used, but it conceals a problem that is usually
overlooked. This consists in the uncertainty quantification of the resulting model. Often,
the acquired data are the results of some experiments performed on the true system, where
the input signal is a priori chosen and the output is sensed by a sensor. This setting produces
a noisy dataset, due to the nature of the sensors and actuators. The uncertainty due to

1
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this source is called variance. This is not the only source of the model uncertainty. Often,
the model has a structural mismatch with respect to the real system or even is endowed
with unpredictable events. The latter cannot be assessed during the model identification
procedure, but the former, called bias, depends directly on the identification algorithms.

The most widespread system identification framework is that of Prediction Error Methods
[94, 155]. It assumes to identify a parameters vector (and its variance) of a selected model
family and model complexity. These choices are usually done by the user and therefore
the wrong decisions causes bias. Instead, the Set Membership identification [112, 149], in
addition to the model structure and complexity choices, assumes a unknown but bounded
output noise. It is useful to quantify the variance, but the bias term (if present) cannot be
avoided. However, not all identification algorithms deals with the bias criticality. For in-
stance, the state-of-the-art method, called kernel-based identification [58, 134, 135], identifies
a non-parametric model that has, by definition, low-bias. Due to the Bayesian interpreta-
tion of this methodology, the variance is assessed since the results are given as a model
distribution.

The branch of identification literature that evaluates both bias and variance during system
identification is called Robust identification. Three main approaches are: Stochastic Embed-
ding (SE)[65], Model Error Modeling (MEM)[142] and a variation of Set Membership [169].
Nevertheless, this field is also dependent with respect to the user’s choices. Furthermore,
there are some methods that aim to reduce the bias and/or variance, for instance Akaike
Information Criterion [2], Bayesian Information Criterion[148], Cross Validation [70][156]
and regularization methods, but these do not avoid the uncertainty problem.

The uncertainty quantification is crucial for real-world applications, since the difference
between themodel and the real plant can often cause problems. For instance, themodel may
be used for control purposes: in this situation, a mismatch between model and plant can
cause unexpected actions or even system instability. Therefore, by leveraging the (bounded)
uncertainty information, we have the assurance that the resulting controller performs ever
as we expect. This problem is called robust control synthesis [85, 109, 153, 175]. Another use
of the uncertainty information consists in producing a robust residual generator [28, 128, 129,
130], which estimates the state of a machinery under analysis. This application is widely
spread with the advent of industry 4.0. The model mismatch causes false alarms, therefore
the uncertainty assessment guarantees a reduction of these. This is helpful to reduce the
machine stops and so to minimize the loss of money.

Main contributions
All system identification techniques have their own depiction of uncertainty. These rep-
resentations differ from the uncertainty depiction employed in robust control design or
robust fault detection. Therefore, the first contribution of this Thesis aims to bridge this
representation gap in an automatic way, i.e. design a controller or residual generator with-
out engaging the user in difficult structural choices that translate into poor results when
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the wrong choices are selected. In particular, the entire proposed procedure is data-driven.
It is fundamental since, often in robust control and robust fault diagnosis literature, the un-
certainty is considered a priori known, derived from the user’s knowledge. To quantify the
uncertainty, manual selection is often carried out using a trial and error procedure. This can
cause: an underestimation that produces some unwanted events (such as: system instabil-
ity or false alarm detection) or even an overestimation which is less catastrophic than the
other case. The latter leads to a performance reduction, compared to the real capabilities of
the plant. Instead, with a data-driven method, the uncertainty quantification is estimated
directly from the available dataset, therefore it avoids underestimation and overestimation
phenomena. Furthermore, it is easier to apply since no iterative procedure is needed. The
proposed method exploits the kernel based identification, which allows estimating a low-
bias model without choosing the model family or complexity. Doing so, the uncertainty is
(mostly) only due to variance. Thanks to this characteristic, our method solves the problem
of Robust identification in a simpler and automatic way. This is valid because, in Robust
identification literature, the uncertainty is represented by a parametric model. So, this pro-
cedure needs the selection of the model family of the uncertainty model. We have developed
an algorithm that translates the uncertainty information into an understandable represen-
tation from the robust control and fault detection point of view. The proposed method,
for control design aims, employs the S/T mixed-sensitivity loop-shaping problem to design
a controller that guarantees some robustness and performance requirements [153]. The
proposed technique is developed for Single input Single output for nominal performance,
robust stability and robust performance aims [43, 179, 180]. Furthermore, we have extended
our method to multi-model systems, by considering it as a single uncertain system. The pro-
posed algorithm deals with respect to multiple sources of uncertainty, i.e. the parameters
uncertainty and the model identification uncertainty. Therefore, the resulting closed-loop
system is stable and meets the performance requirements for all systems that belongs to the
general uncertain system.

The second main theoretical contribution consists of using the same uncertainty informa-
tion, adopted in the proposed data-driven robust control design, to produce a model-based
fault detection that is robust with respect to the model uncertainty. In particular, we solve
the Approximate Fault Detection Problem to design the residual generator [40, 167]. When
the uncertainty cannot be completely avoided through the robust residual generator, the
fault is diagnosed through a threshold. This operation is not always straightforward, since
an incorrect threshold selection can cause wrong fault detection, therefore we propose also
a simple threshold selection technique that minimize the false alarms.

Finally, three practical applications are presented. The first is an application of the proposed
data-driven robust control for multi-model system. The plant is a reconfigurable industrial
oven. To characterize the various configurations of the highly complex industrial oven, the
system is considered as a multi-model system. We aim to design a robust controller capable
of handling the uncertainty resulting from the model identification and the uncertainties of
the model parameters.
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The other two practical contributions are fault detection applications for: a rotating ma-
chine and a sliding gate system. The former proposes a signal-based fault detection [107],
where signal processing carries out the core work of the detection algorithm. Specifically,
the system under analysis is a part of an entire PolyEthylene Terephthalate bottles produc-
tion line, sensed with accelerometers. The latter describes a complete model-based fault
detection work, from the Failures Mode, Effects and Criticality Analysis to the final fault
detection algorithm. Also, the fault injection procedure is presented. The considered plant
is an Electro-Mechanical Actuator, which is employed to actuate a sliding gate.

Thesis outline
Chapter 2 gives an overview of the uncertainty representation, usage and design in
the system identification procedure. In particular, the uncertainty representation in
system modeling, the uncertainty in robust control design, the uncertainty in robust
fault detection and the uncertainty in system identification are illustrated. The last
focuses on uncertainty modeling with Prediction Error Method, kernel-based system
identification and Stochastic Embedding approaches. This chapter is endowed with
Appendices A and B, in which some fundamentals of the functional analysis and some
knowledge on the model complexity selection are described.

Chapter 3 shows the proposed methodology for designing a data-driven robust con-
troller. The concept of S/T mixed-sensitivity loop-shaping is introduced and the
transformation from the a priori knowledge approach into the automatic data-driven
methodology are illustrated. Furthermore, the proposed method is tested on a bench-
mark problem.

Chapter 4 describes an extension of the previous chapter’s methodology for multi-
model dynamic systems.

Chapter 5 shows the secondmain theoretical contribution, i.e. the data-driven robust
fault detection design. The effectiveness of the proposed procedure is then shown on
a benchmark problem.

Chapter 6 shows the application of the proposed data-driven S/T mixed-sensitivity
loop-shaping for multi-model systems. The plant is a reconfigurable industrial oven
for heat shrinking.

Chapter 7 describes a signal-based fault detection algorithm applied to a rotating
machine, which belongs to a PolyEthylene Terephthalate (PET) bottle production line.

Chapter 8 describes a model-based fault diagnosis algorithm applied to Electro-
Mechanical Actuator, highlighting the entire design procedure: FailuresMode, Effects
and Criticality Analysis, fault injection, fault detection design and fault isolation.
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CHAPTER 2

State of the art

This chapter reviews the state of the art: uncertainty modeling, uncertainty in robust con-
trol, uncertainty in fault diagnosis and uncertainty in system identification. As can be easily
guessed, the "fil rouge" between all sections is uncertainty information. The first section de-
scribes how the uncertainty in dynamical systems is modeled. Instead, the second and third
sections review how the uncertainty information, coupled with the model, can be used to
design a robust controller or a robust fault diagnosis algorithm. The results of these ro-
bust methods consist of: a controller that operates under different conditions, limited by
the uncertainty specification, and a residual generator that diagnoses a fault, that occurs
to the system, by rejecting the uncertainties, modeled as fictitious noise. The fourth argu-
ment focuses on the generation of uncertainty information during the system identification
step. In this section, we review also two black-box identification methods: the state-of-the-
art method, called kernel-based system identification, and the most popular and traditional
Prediction Error Method (PEM). This recap is helpful to understand better the uncertainty
sources and computation in the identification literature. To complete this literature analysis,
the Robust identification methods are shown. This section is completed by the appendices
A and B, which review the model complexity selection and functional analysis. Notice that
almost all state of the art is described for Single input Single output (SISO) systems, but it
is also scalable for Multiple input Multiple output (MIMO) systems.

2.1 Uncertainty in system modeling
The sources of uncertainty can be grouped into three categories:

• Unpredictable events: they are typically due to some perturbations generated by the
external environment;

• Unmodeled dynamics: the model that represents the system, usually, must be tractable
(for instance, with the aim of: designing a controller, designing a fault detection al-
gorithm and so on). This specifications leads to oversimplified models that neglect
some complex dynamics;
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• Poor available data: the dataset usually is not informative enough for system identi-
fication. In a real-world applications, often, is not possible to design an identification
experiment that identifies a model with the lowest possible estimation uncertainty.
As we will describe in Section 2.4.3, the experiment design is an important step to
produce a model endowed with low uncertainty.

Not all of these categories are assessed during the system identification procedure. Nonethe-
less, it is important to know all possible sources of uncertainty, since this leads to a better un-
derstanding of the limits of the uncertainty representation in system identification. Mainly,
the model uncertainty representations are grouped in two categories [14]:

• Parametric uncertainties or Structured uncertainties: deal with a parametric class of
models (see Section 2.4.1). In this case the uncertainty information is given as bounds
on model’s parameters;

• Non-parametric uncertainties orUnstructured uncertainties: deal with systems inwhich
some complex dynamics are neglected or with systems affected by measurement
noise. The information is provided as a single constraint.

2.1.1 Structured Uncertainty
Assume that the uncertainty is represented by the uncertain parameters vector q(t), defined
as [11, Chapter 2]:

q(t) ≡ [q1(t), q2(t), ..., ql(t)]
⊤ ∈ Rl×1 ∀t ≥ 0 , (2.1)

where t is the time index. This leads to two major parametric uncertainty dynamic system
representations:

• The state space representation:ẋ(t) = A(q(t))x(t) +B(q(t))w(t)

z(t) = C(q(t))x(t) +D(q(t))w(t)
; (2.2)

with A ∈ Rnx×nx , B ∈ Rnx×1, C ∈ R1×nx , D ∈ R, x ∈ Rnx×1 are the state space
matrices, w(t) ∈ R is a generic input, z(t) ∈ R is a generic output and nx ∈ N+

the number of states. In case of this system is an open loop system the notation
becomesw(t) = u(t) and z(t) = y(t), where y(t) is the sensed output and u(t) is the
system input. From now, with a little abuse of notation, we will refer to the uncertain
parameters vector without clarifying the time index t;

• The space of Laplace transforms:

Z(s) = G(s, q)W (s) , (2.3)
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whereG(s, q) is an uncertain rational transfer function. The latter can be written as:

G(s, q)≡C(q)

(
sInx−A(q)

)−1

B(q)+D(q)=
Ng(s, q)

Dg(s, q)
=

∑nn−1
i=0 ngi(q)s

i∑nd−1
j=0 dgj (q)s

j
; (2.4)

where:

– Ng(s, q) is the numerator of order nn;

– Dg(s, q) is the denominator of order nd;

– ngi and dgi are the coefficients of numerator and denominator.

Note that the uncertainty may afflict the numerator and denominator with different
uncertain parameters. In this more general case, the parametric uncertainty becomes:
G(s, q, r) =

Ng(s,q)
Dg(s,r)

, with r ∈ Rlr×1 is the second vector of uncertain parameters.

The parametric uncertainty with linear systems can be rearranged in a more clear repre-
sentation using the so-called ∆ − M model. The structure of this model is represented
in Figure 2.1, where: M(s) ∈ RH(nz∆

+nz)×(nw∆
+nw)

∞ (for SISO systems nz = nw = 1,
which respectively are the number of z signals and w signals) is a transfer function matrix
that represents how the uncertainty affects the system, instead ∆ defines the uncertainty
and it belongs to a block-diagonal structure set C̄:

C̄ ≡
{
∆ ∈ RHnw∆

×nz∆∞ : ∆ = bdiag (Im1q1, ..., Iml
ql)
}

; (2.5)

with: nw∆ ∈ N+ and nz∆ ∈ N+ are the number of signals that connect M(s) with ∆.
Note that the uncertain parameters qu can be repeated with multiplicity mu, u = 1, ..., l.
Usually, they are nw∆ = nz∆ . In this way, the structured uncertainty roughly corresponds
to multiple constraints on the uncertain system.

The spaceRHnw∆
×nz∆∞ is defined in [159, Chapter 3] as:

Definition 2.1:RHr,c
∞

RHr,c
∞ , with generic r, c ∈ Z+, is the space of stable proper real rational r×cmatrix

transfer functions F (s), where exists theH∞ norm of F (s):

∥F (s)∥∞ = sup
ω∈R
|F (jω)| ≡ ess sup

ω∈R
σ̄(F (jω)) , (2.6)

where σ̄(·) denotes the largest singular value of the frequency response of the F (s)

and ess represents the supremum (or least upper bound).

The ∆ − M model establishes the relation w∆(t) = ∆z∆(t), which describes how the
uncertainty acts on the vector of scalar signals z∆ ∈ Rnz∆

×1 to produce w∆ ∈ Rnw∆
×1.
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(s)

∆

∆(s) ∆(s)

W (s) Z(s)

M

W Z

Figure 2.1: ∆−M model resulting from the linear fractional transformation.

By partitioning the transfer function matrixM(s), Figure 2.1 can be written as:
Z∆(s)

Z(s)

 =


M11(s)M12(s)

M21(s)M22(s)



W∆(s)

W (s)

 (2.7)

with M11(s) ∈ RHnz∆
×nw∆ ,M12(s) ∈ RHnz∆

×1, M21(s) ∈ RH1×nw∆ , M22(s) ∈ RH
and Z∆(s), Z(s),W∆(s),W (s) are the Laplace transformation of the respectively signals.
With the representation (2.7), it is possible to employ a mathematical framework called
upper Linear Fractional Transformation (LFT), which allows defining the transfer function
that tiesW (s) with Z(s):

Fu(M(s),∆) ≡M22(s) +M21(s)∆(Inw∆
−M11(s)∆)−1M12(s) . (2.8)

This representation is well-posed if (Inw∆
−M11(jω)∆) is non-singular ∀∆ and with ω =

∞. Furthermore, if (I − M11(s)∆(s))−1 ∈ RHnw∆
×nw∆∞ , then M(s)

∈ RH(nz∆
+1)×(nw∆

+1)
∞ and ∆ ∈ RHnw∆

×nz∆∞ , as defined in (2.5). Hence, the feedback
interconnection of the upper LFT is internally stable [159, Chapter 3]. The definition of the
interanlly stability adjective is:

Definition 2.2: Internally stable

A feedback interconnection is internally stable if all signals in the system are
bounded provided that the injected signals at any location are bounded.

The upper LFT (2.8) is in the space of Laplace transforms, but it is also applicable in the
state space as: 

ẋ(t) = Ax(t) +B1w∆(t) +B2w(t)

z∆(t) = C1x(t) +D11w∆(t) +D12w(t)

z(t) = C2x(t) +D21w∆(t)

w∆(t) = ∆z∆(t)

; (2.9)
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with B1 ∈ Rnx×nw∆ ,B2 ∈ Rnx×1,C1 ∈ Rnz∆
×nx ,D11 ∈ Rnz∆

×nw∆ ,D12 ∈ R1×nz∆ ,

C2 ∈ R1×nx ,D21 ∈ R1×nw∆ [159].

The example 2.1 shows the efficiency of the LFT representation.

Example 2.1: Linear Fractional Transformation (LFT) for pulling out the
parametric uncertainty

Consider an open loop system described by the following transfer function

G(s; q) =
s+ 3 + q1

s2 + (2 + q1)s+ 5 + q2
, (2.10)

where the vector q = [q1, q2]
⊤ ∈ R2×1 represents the parametric uncertainty vec-

tor. The graphical representation of (2.10) is depicted in Figure 2.2. The green area
distinguishes the uncertainty parameters from well-known parts. By employing the
upper LFT, it is possible to redraw the transfer function as depicted in Figure 2.3.
Thus, we obtain:

M(s) =



0 −1
s2+2s+5

−1
s2+2s+5

1
s2+2s+5

0 −s
s2+2s+5

−s
s2+2s+5

s
s2+2s+5

0 −1
s2+2s+5

−1
s2+2s+5

1
s2+2s+5

1 −(s+3)
s2+2s+5

−(s+3)
s2+2s+5

s+3
s2+2s+5


∆ =



q1 0 0

0 q1 0

0 0 q2


. (2.11)

Doing so, we put all the uncertainties in∆ matrix. The lines inM(s) highlight the
sub matrices M11(s),M12(s), M21(s),M22(s).

+

W (s)

1
s

1
s

−2

−5

3

+

+

+

+

+

+

+

+

+ +
+ +

W (s) Z(s)

−q1

−q2

q1

Figure 2.2: Block scheme representation of the considered system.
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(s)

W∆2
(s) Z∆2

(s)

W (s) Z(s)

W∆3
(s)

W∆1
(s) Z∆1

(s)

Z∆3
(s)

q2

q1

q1

∆

M

Figure 2.3: Upper LFT scheme of the example system.

The structure of the uncertainty can be generalized as:

∆(s) =



q1Im1 . . . 0

... . . . ...

0 . . . qlIml

0

0

∆1(s) . . . 0

... . . . ...

0 . . . ∆c(s)



(2.12)

with ∆1(s), ...,∆c(s) ∈ RH∞ represent the bounded (∥∆i(s)∥∞ < 1), stable and proper
transfer functions. This allows considering both linear uncertainty that afflicts the param-
eters and nonlinear uncertainties, represented by∆1(s), ...,∆c(s) with c ∈ N+.

Another more general and complex representation redesigns the state space domain by
replacing the fourth equation of (2.9),with:

w∆(t) = ∆

(
x(·), w(·), t

)
z∆(t) (2.13)

by assuming D11 = 0. This uncertainty representation is admissible for (2.9) if, given a
locally square integrable input w(·) and any corresponding solutions to (2.9), with (2.13)
defined on an existence interval (0, t̄), there exist a sequence t∞i=1 and constants d1 ≥ ... ≥

10



2.1. Uncertainty in system modeling

dnw∆
≥ 0, such that ti → t̄, ti ≥ 1 and

∫ ti

0
|w∆k

(t)|2 dt ≤
∫ ti

0
|z∆k

(t)|2 dt+ dk , (2.14)

where w∆k
(t) and z∆k

(t) are the k-th element of respectively w∆(t) and z∆(t) , with
k = 1, ..., nw∆ (considering nw∆ = nz∆ ). This representation is called IQC uncertainty
description [110, 133]. It is useful to exploit structural information (such as uncertainty of
some parameters) for characterizing the property ofw∆ and z∆ and for studying the non-
linear uncertainties. In particular, there are two ways to implement it: in time domain or
frequency domain. The choice depends on the application under analysis.

Remark 2.1

The structured uncertainty matrix ∆ can be an unknown (real or complex) matrix
subject to a matrix norm bound ∥∆∥ ≤ 1, as defined in (2.5), or even an unknown
transfer function matrix subject to a norm bound ∥∆(s)∥∞ ≤ 1.

2.1.2 Unstructured Uncertainty
The LFT provides also a representation for the unstructured uncertainties. This typology of
uncertainty is defined by a norm that bounds∆I with a single constraint. A type of uncer-
tainty model that belongs to this group is calledNorm bounded uncertainty. This works with
a non-dynamic time-varying nonlinear uncertainty, specified by an induced norm bound,
i.e. ∥∆(x, t)∥2 ≤ 1 ∀t, in state space representation [132]. Instead, a more general un-
structured uncertainty model is defined as a dynamic nonlinear uncertainty, denoted by
the transfer function ∆(s), constrained as ∥∆(s)∥∞ ≤ 1. This type is called Bounded real
uncertainty.

Assume that M(s) represents an open-loop system (i.e. w(t) = u(y) and z(t) = y(t)

of Figure 2.1), the most common types of Bounded real unstructured uncertainty are [180,
Chapter 9] [43, Chapter 4]:

• Additive uncertainty: which is derived from the upper LFT equation (2.8) by letting
M11(s) = 0,M22(s) = G0(s),M12(s) = 1II and by choosing a suitable weight trans-
fer function to defineM21(s), denoted byWa(s). Hence, the output of the uncertain
system is defined as

Y (s) =

[
G0(s) +Wa(s)∆(s)

]
U(s) (2.15)

where G0(s) represents the nominal model. Figure 2.4 depicts the graphical repre-
sentation of the additive uncertainty.

INote that ∆ is written without the bold symbol, because for the unstructured uncertainty in SISO case it
is not a matrix.

IIWith SISO systems M(s) ∈ RH2×2
∞ , since nw∆ = nz∆ = nz = nw = 1, the sub-matrices of M(s) are

all scalars transfer functions.
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G0(s)

Wa(s)

U(s) Y (s)

∆(s)

+
+

Figure 2.4: Graphical representation of additive uncertainty.
.

• Multiplicative input uncertainty: which is derived from (2.8) by setting M11(s) =

0, M21(s) = G0(s), M22(s) = G0(s), and by choosing a suitable weight transfer
function matrix to defineM12(s), denoted byWi(s). Thus

Y (s) = G0(s)

[
1 + ∆(s)Wi(s)

]
U(s) . (2.16)

Figure 2.5 depicts the graphical representation of the multiplicative input uncertainty.

G0(s)

Wi(s)

U(s) Y (s)

∆(s)

+
+

Figure 2.5: Graphical representation of multiplicative input uncertainty.

• Multiplicative output uncertainty: which is derived from (2.8) by imposing M11(s) =

0, M12(s) = G0(s), M22(s) = G0(s), and by choosing suitable weight transfer
function matrix to defineM21(s), denoted byWo(s), so

Y (s) =

[
1 + ∆(s)Wo(s)

]
G0(s)U(s) . (2.17)

Wo(s)

U(s) Y (s)

∆(s)

+
+

G0(s)

Figure 2.6: Graphical representation of multiplicative output uncertainty.

In the SISO case themultiplicative output and input uncertainty coincide, insteadwith
MIMO systems they differ. Figure 2.6 shows the block scheme of the multiplicative
output uncertainty.

• Inverse multiplicative output uncertainty: which is computed from (2.8) by setting

12



2.1. Uncertainty in system modeling

M12(s) = G0(s), M22(s) = G0(s), and by choosing a suitable weight transfer func-
tion matrix to defineM21(s) = M11(s) = WIo(s). Thus

Y (s) =

[
G0(s) +WIo(s)∆(s)

(
1−WIo(s)∆(s)

)−1

G0

]
U(s)

=

[
1 +WIo(s)∆(s)

(
1−WIo(s)∆(s)

)−1]
G0(s)U(s)

=

[
1 +

(
1−WIo(s)∆(s)

)−1

− 1

]
G0(s)U(s)

=

(
1−WIo(s)∆(s)

)−1

G0(s)U(s)

. (2.18)

Figure 2.7 shows the graphic interpretation of the inverse multiplicative output un-
certainty.

WIo(s)

U(s) Y (s)

∆(s)

+
+

G0(s)

Figure 2.7: Graphical representation of inverse multiplicative output uncertainty.

• Left coprime factor uncertainty: by imposing G0(s) = Dlcf (s)
−1Nlcf (s) (see Defi-

nition 2.8) and by having two different ∆n(s),∆d(s) uncertainty transfer functions,
one for Nlcf (s) and one for Dlcf (s), that comply with∥∥∥∥∥

[
∆n(s),∆d(s)

]∥∥∥∥∥
∞

≤ 1 . (2.19)

The input-output relations ofM(s) (see Figure 2.1), considered as an open loop sys-
tem, becomes

Y (s) =

[
Dlcf (s) + ∆d(s)

]−1[
Nlcf (s) + ∆n(s)

]
U(s) (2.20)

by setting

M(s) =



−D−1
lcf −G0(s)

0 1

Dlcf (s)
−1 G0(s)


. (2.21)

13



Chapter 2. State of the art

The uncertainty in left coprime factorization can be also weighted, such as the previ-
ous forms, by settingWd(s),Wn(s). Therefore, the formulation (2.20) becomes

Y (s) =

[
Dlcf (s) +Wd(s)∆d(s)

]−1[
Nlcf (s) +Wn(s)∆n(s)

]
U(s) . (2.22)

These two representations of the left coprime factorization are useful for different aim.
The unweighted form is employed in H∞ loop-shaping design and robust stability
analysis, instead the weighted form is used for the mixed-sensitivity loop-shaping
(see Section 2.2).

+

∆d(s)

U(s) Y (s)

Wd(s)

−
+

D−1
lcf(s)Nlcf(s)

∆n(s)

Wn(s)

+

Figure 2.8: Graphical representation of weighted left coprime factorization uncertainty.

Figure 2.8 illustrates the graphical representation of the weighted left coprime factorization
uncertainty.

There are also other representations of uncertainty, such as inverse multiplicative input
uncertainty, inverse additive uncertainty and right coprime factorization, but they are less
used. The most employed form is the multiplicative output uncertainty. Table 2.1 reports
a recap that shows which types of physical sources are characterized by the corresponding
unstructured uncertainty scheme.

Another two types of unstructured uncertainties, in addition to the norm bounded uncer-
tainty and the bounded real uncertainty, are: Positive real uncertainty and Negative imagi-
nary uncertainty. Positive real uncertainty considers a stable transfer function matrix∆(s)

that complies with the condition:

∆(jω) +∆(jω)∗ ⪰ 0 ∀ω , (2.23)

where A ⪰ 0 denotes that the matrix A is Hermitian and positive semidefinite. Negative
imaginary uncertainty is similar to Positive real uncertainty, but the uncertainty constraint
is:

j(∆(jω) +∆(jω)∗) ⪰ 0 ∀ω > 0 . (2.24)

The equations (2.23) and (2.24) are used mainly with MIMO systems, specifically with me-
chanical systems. For instance, Negative imaginary uncertainty is used when the input-
output data are force and position; instead, Positive real uncertainty is used when the avail-
able data are force and speed [91].

14



2.2. Uncertainty for robust control

Table 2.1: Physical sources of uncertainty accounted by the uncertainty models.

Type of uncertainty
modeling of Section 2.1.2 Uncertainty physical source

Additive (2.15)

• Additive plant errors
• Neglected high frequency dynamics
• Uncertain right half plane zeros

Input multiplicative
(2.16)

• Actuators errors
• Neglected high frequency dynamics
• Uncertain right half plane zeros

Output multiplicative
(2.17)

• Sensors errors
• Neglected high frequency dynamics
• Uncertain right half plane zeros

Inverse output multi-
plicative (2.18)

• Low frequency parameter errors
• Uncertain right half plane poles

Left coprime factoriza-
tion (2.20)

• Low frequency parameter errors
• Neglected high frequency dynamics
• Uncertain right half plane poles and zeros

2.2 Uncertainty for robust control
Models endowed with the uncertainty information, represented by the LFT, as described
in Section 2.1, can be used to design a control that guarantees the robust stability of an
uncertain system. The link between the uncertain model and control design is represented
by the Small gain theorem. Before introducing this, it is necessary to state the definition of
robust stability:

Definition 2.3: Robust stability [133]

Consider the system in Figure 2.1 with M(s) ∈ RH(nz∆
+1)×(nw∆

+1)
∞ and the un-

structured uncertainty ∆(s) ∈ RH∞. This interconnection is said robust stable if
it is stable for all uncertainties∆(s) in a given norm bounded set

B∆(ν) ≡ {∆(s) ∈ RH∞ : ∥∆(s)∥∞ ≤ ν} , (2.25)

where ν is a fixed radius.
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Chapter 2. State of the art

Note that ν is a measure of the robustness of the uncertain system. Usually, the largest value
of ν that guarantees the robust stability of the system is called robustness margin.

Theorem 2.1: Small gain theorem [176]

Consider the system in Figure 2.1 with M(s) ∈ RH(nz∆
+1)×(nw∆

+1)
∞ and an un-

known unstructured uncertainty ∆(s) with ν > 0. The interconnection is well-
posed and internally stable for all∆(s) ∈ RH∞ with:

• ∥∆(s)∥∞ ≤ ν if and only if ∥M(s)∥∞ < 1
ν ;

• ∥∆(s)∥∞ < ν if and only if ∥M(s)∥∞ ≤
1
ν .

It follows that the stability radius for uncertain Linear Time-Invariant (LTI) systems
νLTI (M(s)) is given by:

νLTI (M(s)) ≡ 1

∥M(s)∥∞
, (2.26)

where the stability radius is defined as follows:

Definition 2.4: Stability radius [133]

The stability radius is the smallest value of ν such that exists∆(s) ∈ B∆(ν).

The Small gain theorem, described in Theorem 2.1, establishes an equivalence between the
dynamic uncertainty ∆(s) ∈ RH∞ and static complex uncertainty∆(jω) ∈ C:

Definition 2.5: Static and dynamic uncertainty [133]

Consider the system in Figure 2.1 with M(s) ∈ RH(nz∆
+1)×(nw∆

+1)
∞ with ν >

0. The interconnection is well-posed and internally stable ∀∆(s) ∈ RH∞ with
∥∆(s)∥∞ ≤ ν, if and only if the interconnection is well-posed and internally stable
∀∆(jω) ∈ C with ∥∆(jω)∥ ≤ ν.

So, the robust stability feature of system, depicted in Figure 2.1, with static complex un-
certainty ∆(jω) is necessary and sufficient for having also the robust stability of the same
system under general dynamic uncertainty∆(s) ∈ RH∞.

As described previously in Section 2.1, the LFT with unstructured uncertainty can be de-
clined in various types of uncertainty models. Hence, also the Small gain theorem can be
developed into different robust stability tests:

• Additive uncertainty G(s) = G0(s) + ∆(s)Wa(s): by having a stabilizing controller
K(s) for G0(s), the closed loop is well-posed and internally stable ∀∆(s) ∈ RH∞

with

– ∥∆(s)∥∞ < 1 if and only if ∥Wa(s)K(s)S0(s)∥∞ ≤ 1,

– ∥∆(s)∥∞ ≤ 1 if and only if ∥Wa(s)K(s)S0(s)∥∞ < 1,
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2.2. Uncertainty for robust control

where S0(s) =
1

1+G0(s)K(s) is the nominal sensitivity function.

• Multiplicative uncertainty G(s) =

(
1 + ∆(s)Wo(s)

)
G0(s): by having a stabilizing

controllerK(s) forG0(s), the closed loop is well-posed and internally stable ∀∆(s) ∈
RH∞ with

– ∥∆(s)∥∞ < 1 if and only if ∥WoT0(s)∥∞ ≤ 1,

– ∥∆(s)∥∞ ≤ 1 if ∥WoT0(s)∥∞ < 1,

– ∥∆(s)∥∞ ≤ 1 only if ∥WoT0(s)∥∞ ≤ 1,

where T0(s) = 1−S0(s) is the nominal complementary sensitivity function. Output
and input multiplicative uncertainty modeling share the same robust stability test.

Remark 2.2: [180, Chapter 9]

The robust stability of the closed loop system for all ∀∆(s) ∈ RH∞ with
∥∆(s)∥∞ ≤ 1 does not necessary imply ∥WoT0(s)∥∞ < 1.

• Left coprime uncertainty G(s) =

[
Dlcf (s) + ∆d(s)

]−1[
Nlcf (s) + ∆n(s)

]
: by hav-

ing a stabilizing controllerK(s) for G0(s), the closed-loop system is well-posed and
internally stable ∀∆lfc(s) = [∆d(s),∆n(s)] ∈ RH2×1

∞ with ∥∆lfc(s)∥∞ < 1 if and
only if ∥∥∥∥∥∥∥∥∥∥


K(s)

1

S0(s)D
−1
lcf (s)

∥∥∥∥∥∥∥∥∥∥
∞

≤ 1 . (2.27)

Again, in this uncertain systemmodel, theweight functions, depicted in Figure 2.8, are
considered external from the uncertain model for control design purposes. Therefore,
the robust stability test does not account those weights.

All proofs are reported in [180, Chapter 9]. Table 2.2 resumes a series of robust stability tests
of almost all types of perturbed system, by letting Wa(s),Wo(s),Wi(s) ,WIo(s) ∈ RH∞

and∆(s) ∈ RH∞ with ∥∆(s)∥∞ < 1.

The resulting components of the right coprime factorization ofM(s) are denoted asDrcf (s)

Nrcf (s). Notice that all rows in Table 2.2 can be resumed by the unstructured analysis the-
orem:

Theorem 2.2: Unstructured analysis theorem

Given a uncertain system G(s) and a controller K(s) that stabilizes the nominal
plantG0(s), closed-loop robust stability is achieved if and only if the robust stability
test of the employed uncertainty modeling is valid.
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Chapter 2. State of the art

Table 2.2: Robust stability test at varying the unstructured uncertainty model.

Type of uncertainty modeling Robust stability test

Additive ∥Wa(s)K(s)S0(s)∥∞ ≤ 1

Input multiplicative ∥Wi(s)T0(s)∥∞ ≤ 1

Output multiplicative ∥Wo(s)T0(s)∥∞ ≤ 1

Inverse output multiplicative ∥WIo(s)S0(s)∥∞ ≤ 1

Right coprime factorization
∥∥∥∥D−1

rcf (s)S0(s)

[
K(s), 1

]∥∥∥∥
∞
≤ 1

Left coprime factorization

∥∥∥∥∥∥∥∥
K(s)

1

S0(s)D
−1
lcf (s)

∥∥∥∥∥∥∥∥
∞

≤ 1

Considering the multiplicative uncertaintyIII with ∥∆(s)∥∞ ≤ 1 , it is possible to generalize
the Small gain theorem as the Nyquist criterion for the stability of a feedback system:

∥Wo(s)T0(s)∥∞ < 1⇔
∣∣∣Wo(jω)L0(jω)

1+L0(jω)

∣∣∣ < 1 ∀ω

⇔ |Wo(jω)L0(jω)| < |1 + L0(jω)| ∀ω

, (2.28)

with L0(s) = G0(s)K(s). Notice that the distance between −1 and L0(s) is represented
by |1 + L0(jω)| ∀ω, therefore, thanks to the Nyquist stability theorem, the closed loop sys-
tem is stable if the Nyquist plot does not encircle the critical point −1. So, the system is
robust stable if the distance between −1 and L0(jω) is higher than the absolute value of
Wo(jω)L0(jω). These propositions are true if L0(s) has not right half plane poles. The
graphical representation is depicted in Figure 2.9. For simplicity, L0(jω) and Wo(jω) de-
pendencies with respect to the frequency are not reported.

The literature shows also the possibility of adding some performance requirements to robust
stability, such as:

IIISince for the SISO systems the input multiplicative uncertainty and output multiplicative uncertainty are
equivalent, often the input/output adjectives are omitted.
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2.2. Uncertainty for robust control

Im

Re−1

L0

|1 + L0|

|WoL0|

Figure 2.9: Nyquist representation of robust stability with multiplicative unstructured
uncertainty.

Im

Re−1

L0 |WoL0|

|WS|

Figure 2.10: Nyquist representation of robust performance with multiplicative unstruc-
tured uncertainty.

• Nominal performance: some performance objectives are satisfied for the nominal plant
G0(s);

• Robust performanceIV: some performance objectives are satisfied for every plant in
the uncertainty model G(s), with∆(s) ∈ B∆(ν) and ν = 1.

Usually, the performance requirements are designed with suitable weight functions that
shape open-loop or closed-loop frequency responses [179, Chapter 8]. The robust per-
formance test changes by varying the unstructured uncertainty scheme employed and by
changing the nominal performance test. Figure 2.10 depicts the robust performance rep-
resentation in the Nyquist plot. To obtain a controller which have this property, the two
circles must not have an intersection.

In literature, there is a variation of Small gain theorem called Small µ theorem, used for
systems with structured uncertainty. To describe this theorem, it is necessary to explain the
different structured uncertainty sets. With the more general uncertainty matrix described
in (2.12), the corresponding structured set is:

Ã ≡ {∆(s) = bdiag (Im1q1, ..., Iml
ql,∆1(s), ...,∆c(s))} , (2.29)

IVThe prerequisites of the robust performance are nominal performance and robust stability.
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Chapter 2. State of the art

where qu are real (or complex) uncertain parameters, with multiplicitymu with u = 1, ..., l,
and ∆i(s) with i = 1, ..., c are real (or complex) transfer functions. If we replace the last
c transfer functions with the corresponding static real (or complex) ∆i(jω) for a fixed fre-
quency ω, the structured set becomes:

A ≡ {∆(jω) = bdiag (Im1q1, ..., Iml
ql,∆1(jω), ...,∆c(jω))} . (2.30)

Therefore, the corresponding norm bounded set is equal to:

BA ≡
{
∆(jω) ∈ A : ∥q∥p ≤ 1, σ̄(∆i(jω)) ≤ 1, i = 1, ..., c

}
; (2.31)

with σ̄(·) the largest singular value and ∥·∥p the p-norm.

Furthermore, the Small µ theorem relies on the definition of the Structured singular value:

Definition 2.6: Structured singular value

Letting the complex matrix M(jω) ∈ C(nz∆
+1)×(nw∆

+1), considered as the evalu-
ation of M(s) for s = jω with ω > 0, the structured singular value of M(jω)

with respect to A is:

µA(M(jω)) ≡ 1

min {σ̄(∆(jω)) : det(I −M(jω)∆(jω)) = 0,∆(jω) ∈ A}
.

(2.32)
An alternative expression of (2.32) corresponds to:

µA(M(jω)) ≡ max
∆(jω)∈BA

ρ (M(jω)∆(jω)) , (2.33)

with ρ(·) the maximum modulus of the eigenvalues, called Spectral radius.

Now, it is possible to enunciate the Small µ theorem:

Theorem 2.3: Small µ theorem

Consider the system of Figure 2.1 with M(s) ∈ RH(nz∆
+1)×(nw∆

+1)
∞ and an un-

known structured uncertainty ∆(s) with ν > 0. The interconnection is said inter-
nally stable and well-posed ∀∆(s) ∈ Ã with ∥∆(s)∥∞ ≤ ν if and only if

sup
ω∈R

µA (M(jω)) <
1

ν
. (2.34)

The Small µ theorem, in Theorem 2.3, counterpart explains the same equivalence between
the static and dynamic uncertainty with structured uncertainty, i.e. it establishes an equiv-
alence between the dynamic uncertainty ∆(s) and static complex uncertainty ∆(jω) (see
Definition 2.5).
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2.2. Uncertainty for robust control

Also with structured uncertainty, it is possible to design a controller that complies with the
robust performance specifications. In [45], the authors modeled the performance require-
ments as a fictitious uncertainty ∆f (s). In doing so, the robust performance is shifted as a
robust stability problem by letting:

∆rp(s) =


∆(s) 0

0 ∆f (s)

 ; (2.35)

with ∆f (s) ∈ RH∞
V. This scheme is depicted in Figure 2.11.

M

W (s) Z(s)

∆(s) ∆(s)
∆(s)

∆rp(s)

∆f (s)

(s)

W Z

Figure 2.11: Robust performance represented by fictitious uncertainty for structured un-
certainty systems.

2.2.1 Robust control synthesis
After explaining the connection between the uncertainty system and the robust stability, the
question is: How does the robust controller design work? The general representation of the
upper LFT can be redesigned for robust control synthesis purposes. Again,M(s) can be an
open-loop or closed-loop system VI. If we consider a closed-loop, we denote the open-loop
system as P (s) and the controller K(s)VII, as illustrated in Figure 2.12. By grouping P (s)

with the uncertainty block∆(s), the LFT representation (Figure 2.12) can be considered as
the classical control synthesis scheme, depicted in Figure 2.13. This grouped system is de-
noted asN(s) ∈ RH2×2

∞ (for SISO systems and Unstructured uncertainty). The state space
form (derived from (2.9)) of P (s) becomes: After explaining the connection between the
uncertainty system and the robust stability, the question is: How does the robust controller
design work? The general representation of the upper LFT can be redesigned for robust

V∆f (s) ∈ RHnw×nz
∞ with nw = nz ̸= 1 for MIMO systems.

VIIfM(s) is considered as a closed-loop system,M(s) should be also not inRH∞
VIITherefore, M(s) represents transfer function of the group composed by P (s) andK(s).
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control synthesis purposes. Again,M(s) can be an open-loop or closed-loop system. If we
consider a closed-loop, we denote the open-loop system asP (s) and the controllerK(s)VIII,
as illustrated in Figure 2.12. By grouping P (s) with the uncertainty block ∆(s), the LFT
representation (Figure 2.12) can be considered as the classical control synthesis scheme, de-
picted in Figure 2.13. This grouped system is denoted asN(s) ∈ RH2×2

∞ (for SISO systems
and Unstructured uncertainty). The state space form (derived from (2.9)) of P (s) becomes:

ẋ(t) = Ax(t) +B1w∆(t) +B2u(t) +Bww(t)

z∆(t) = C1x(t) +D11w∆(t) +D12u(t)

y(t) = C2x(t) +D21w∆(t)

z(t) = Czx(t) +Dzu(t)

, (2.36)

where:

• w(t) is the exogenous input, such as disturbance, noise or reference signal;

• z(t) is the exogenous output, which represents the system performance signal, for
instance tracking error or controlled signal;

• u(t) is the control input signal;

• y(t) is the sensed output;

• unstructured uncertainty∆(s);

• A ∈ Rnx×nx ,x ∈ Rnx×1,B1 ∈ Rnx×1,B2 ∈ Rnx×1,Bw ∈ Rnx×1,C1 ∈ R1×nx ,C2 ∈
R1×nx ,Cz ∈ R1×nxDz ∈ R, D11 ∈ R, D12 ∈ R, D21 ∈ R.

In case of structured uncertainty, the uncertainty is a matrix and the signals w∆(t) and
z∆(t) become vectors, as already seen in Section 2.1.1.

Remark 2.3

In this setting, P (s) is coupled with a controller as represented in Figure 2.12, there-
fore z(t) ̸= y(t) and w(t) ̸= u(t).

The robust control literature shows different methodologies to solve the control synthesis:

• H2 optimal control: this type of control design aims to regulate the transfer function
between W (s) and Z(s), defined as the lower Linear Fractional Transformation:

Fl(N(s),K(s)) ≡ N11(s) +N12(s)K(s)(1−N22K(s))−1N21(s) . (2.37)

The robust controller is obtained by finding a stabilizing controller that minimizes
the 2-norm of the lower LFT: ∥Fl(N(s),K(s))∥2. This optimization problem corre-
sponds to minimize the total energy of the impulse response of
Fl(N(s),K(s)). Given w(t) as stationary noise, the H2 optimal control is often

VIIITherefore,M(s) represents transfer function of the group composed by P (s) andK(s).
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(s)

∆(s)

W∆(s) Z∆(s)
W (s) Z(s)

K(s)

U(s) Y (s)

(s)M

P

Figure 2.12: Linear Fractional Trans-
formation for robust control synthesis.

(s)
W (s) Z(s)

K(s)

U(s) Y (s)

N

Figure 2.13: Traditional control syn-
thesis scheme.

called Linear Quadratic Gaussian (LQG) control [47, Chapter 6]. Furthermore,H2 can
be solved by two Riccati equations without iterative procedure and, doing so, the
resulting controller is unique [179, Chapter 13].

• H∞ optimal control: using the representation described with the H2 design, the ro-
bust controller is designed by finding a stabilizing controller that minimizes the in-
finity norm of the lower LFT: ∥Fl(N(s),K(s))∥∞IX. As described in [61], finding
an optimal controller with H∞-norm is usually complicated. Therefore, this control
design is translated into searching the suboptimal controllers that are close, in norm
sense, to the optimal one [109, 179, Chapter 14]. The suboptimal H∞ control is de-
fined as: given a γ > 0, find all stabilizing controllersK(s), if there are any, such that
∥Fl(N(s),K(s))∥∞ < γ.

• H∞ loop-shaping: this method adds a loop shaping design to the H∞ optimization
problem. Usually, to study this methodology the uncertainty is represented as the
unweighted left coprime factorization. Thus, the design procedure corresponds to:

1. Choose, by the user’s knowledge, twoweight functionsW1(s) andW2(s), called
pre-compensator and post-compensator. The aim of this consist of giving a
desired open-loop shape to the system. Doing so, the shaped plant becomes
Gs(s) = W2(s)G(s)W1(s), where G(s) = Y (s)/U(s) and it is defined as in
(2.20);

2. Solve the robust stabilization with theH∞ optimization to obtain νmax, using:

νmax =

 inf
Kstabilizing

∥∥∥∥∥∥∥∥∥∥


K(s)

1

 (1 +Gs(s)K(s))D−1
lcf (s)

∥∥∥∥∥∥∥∥∥∥
∞


−1

. (2.38)

IXThe H∞ norm corresponds to the worst case of the gain of Fl(N(s),K(s)).
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Note that νmax represents the stability margin. Therefore, if νmax is not big
enough, the final controller would be not compatible with the robust stability re-
quirements. If this happens, we should redesign the pre and post-compensator.

3. Select ν ≤ νmax and synthesize a controller K∞(s) by exploiting the robust
stability test;

4. The final controller is made asK(s) = W1(s)K∞(s)W2(s).

With this methodology, ν is used as a design indicator that measures both the closed-
loop stability and the loop shaping specs, drawn by the pre and post-compensator.

A more stringent method of H∞ loop-shaping is S/KS mixed sensitivity loop-shaping
[85]. This employs the weighted left coprime uncertainty model (2.22). Specifically,
the weight functionsWd(s) andWn(s) shape the robustness ofDlcf (s) andNlcf (s).
Often, Wd(s) is also denoted as WS(s), while Wn(s) as WQ(s). By grouping the
left coprime terms and the weight functions together, as depicted in Figure 2.14, we
obtain H(s) ∈ RH2×1

∞ , i.e. the transfer function from z∆ = [z∆1, z∆2]
⊤ ∈ R2×1 to

w∆, where∆lfc(s) = [∆n(s),−∆d( s)]. It corresponds to:

H(s) =
W∆(s)

Z∆(s)
=


Wd(s)S0(s)

Wn(s)Q0(s)

 ; (2.39)

where Q0(s) = K(s)S0(s) is the control sensitivity function. Hence, the controller

+

Z(s)

Wd(s)

∆lfc(s)

Wn(s)

+

Z∆1
(s) Z∆2

(s)

W∆(s)

−
K(s) Nlcf(s) D−1

lcf(s)

H (s)

Figure 2.14: Graphic representation of left coprime factorization uncertainty for mixed-
sensitivity loop-shaping [85].

K(s) is designed with the H∞ optimization of H(s)X. In literature, there are also
some variations of this mixed-sensitivity loop-shaping, such as: S/T mixed-sensitivity
loop-shaping or S/T/KS mixed-sensitivity loop-shaping [153, Chapter 3]. In these alter-
natives, the weight functions represent some desired closed-loop shapes: sensitivity

XIf the designed controllerK(s) does not guarantees ∥H(s)∥∞ ≤ 1, then no controller exists that stabilizes
the system for all perturbations∆.
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function, control sensitivity function or complementary sensitivity function. Further-
more, in these case the weight functions are denoted respectively as: WS(s), WQ(s)

andWT (s) (see Section 3).

• µ synthesis: is a control synthesis that works with structured uncertainty (modeled
as (2.12) or (2.5)). It minimizes the structured singular value of Fl(N(s),K(s)) [44]
by solving theH∞ optimization problem:

K̂(s) = min
K

inf
D(s),D−1(s)∈H∞

∥∥D(s)Fl(N(s),K(s))D(s)−1
∥∥
∞ , (2.40)

where inf is a standard convex optimization problem that can be solved pointwise in
frequency domain. The lower LFT is scaled with a stable and minimum phase transfer
function D(s), called scaling transfer functionXI. The entire optimization problem is
solved iteratively by the D-K iteration technique [179, Chapter 10]. Specifically, the
procedure is composed of: (i) minimize over K(s) with a fixed D(s), (ii) minimize
pointwise overD(s) with a fixedK(s). Figure 2.15 represents the block scheme em-
ployed in the µ-synthesis controller design solved by theD−K iteration procedure.

D(s) N
W (s) Z(s)

K(s)

U(s) Y (s)

D−1(s)(s)

Figure 2.15: Graphical representation of the µ-synthesis employing the scaling transfer
function.

• MixedH2/H∞ orMixedH∞/H∞ optimal control: thesemethods are usedwithMIMO
systems. They split the systemN(s) into two parts, such asN1(s) andN2(s). In this
way, the relationship between the exogenous input w1(t) and the exogenous output
z1(t) (which belong to the subsystemN1(s)) are treated differently from the signals
w2(t) and z2(t) (which belong to the subsystem N2(s)). The general optimization
problem that solves these two types of controller design is:

min
∥∥∥Flw1→z1

(N1(s),K(s))
∥∥∥
a

s.t.:
∥∥∥Flw2→z2

(N2(s),K(s))
∥∥∥
∞

< γ

K(s) stabilize internallyN(s)

, (2.41)

where a = 2,∞ [6].
XIWith MIMO systems, the choice of the scaled transfer function must agree withD(s)∆(s) = ∆(s)D(s).
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For completeness, in literature, there are other control approaches for uncertain systems,
such as: game-theoretic or minimimax [41] , guaranteed-cost control [26], norm uncertainty
[24], quantitative-feedback theory [75], the new polynomial and probabilistic techniques [133].

Often, in robust control design, the resulting controller has high order, typical comparable
with the highly complex uncertain system under analysis. Therefore, for practical pur-
poses, order reduction is widely used since a low-order controller is easily understandable
and implementable in a real process. Another possible way to solve this problem consists
of: identifying a low-order model and then synthesizing a low-order controller using the
identified model. However, this methodology does not guarantee that the controller de-
signed with the low-order model stabilizes also the full-order plant. Hence, the authors of
[179, Chapter 19] report some techniques to reduce the controller order without losing the
robust stability property of the high order controller. Another novel way, proposed in [5],
corresponds to solving the H∞ loop-shaping by adding a constraint that selects the struc-
ture of the controller. This is more conservative than the free control structure synthesis,
but for real application development, it is more practical.

2.3 Uncertainty for robust fault diagnosis
This section briefly reviews some fundamentals of the fault diagnosis literature and its tax-
onomy, with focus on model-based fault diagnosis. Specifically we describe both robust
and not robust residual generation. A fault is a not permitted deviation of at least one
characteristic of a system, from the acceptable, usual, standard condition. A fault causes a
malfunction or a failure. The malfunction is an intermittent irregularity in the fulfillment
of a system’s function. Instead, the failure is a permanent interruption of a component or
of the entire system. Note that the difference between the failure and the malfunction is
represented by the time of the interruption. Figure 2.16 recaps the distinction between the
fault and failure/malfunction definitions.

Fault

Failure

Malfunction

Function

t
0
1

Function

t
0
1

Figure 2.16: Fault evolution scheme [78, 113, chapter 2].

Figure 2.17 depicts three different approaches to fix faults. The upper and middle methods
were applied before the advent of industry 4.0. In particular, the Reactive maintenance per-
spective fixesmalfunctions/failures only when they occur. This method causes a large waste
of time. Instead, with Preventive maintenance, the factories plan a time-based maintenance
schedule. It prevents malfunctions/failures occurrence, but it is not optimal, because this
program is usually more conservative than the machinery necessities. Instead, Predictive
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maintenance exploits some algorithms that generate alarms before the fault occurrence. In
this way, the maintenance intervention is done only when the system needs it.

Reactive maintenance (run to failure)

Start of 

«working life»

Failure 1° Maintenance

intervention

Working again

Time

Predictive maintenance (condition-based)

Failure predicted Time

Preventive maintenance (time-based)

Time

Downtime

1° 2° 3°

1°

Figure 2.17: Representation of some types of maintenance strategies.

The definition of Fault diagnosis is defined as:

Definition 2.7: Fault diagnosis [107, Chapter 3]

Fault diagnosis refers to the usage of techniques to evaluate the status of a system
with respect to possible faults.

Fault diagnosis methods perform the following tasks:

• Fault detection: indicates if a fault arise or not. It also determines the time of the fault
occurrence;

• Fault isolation: determines the location of the fault;

• Fault analysis or identification: estimates the size and nature of the detected fault;

• Fault estimation: reconstructs the behavior of the fault.

The list is ordered by complexity, from the lowest to the highest. The first task is mandatory
to implement a fault diagnosis algorithm, while the others are optional. Often, the last two
are used as synonyms. Notice that the nomenclature is not consistent across the kinds of
literature, such as for industry [120, 138], for control system community [79] [167, Chapter
3] [15, Chapter 1].

Figure 2.18 [107, Chapter 3] reports the scheme of the fault diagnosis taxonomy, specifically:

• Hardware redundancy: which provides the physical replication of the critical compo-
nents of the system, for example: actuators, sensors or even software. These com-
ponents are in parallel with the standard system, they are fed by the same input, but
they work only when a fault occurs. This is useful for those systems that work in a
critical environment, as in electric aircraft [174] or nuclear power plants [69].
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• Analytical redundancy: which solves the fault diagnosis problem by feeding the input
and output signals of the critical system to an algorithm that predicts the status of the
considered system. It is less expensive than the hardware redundancy. Usually, the
algorithm compares the healthy state with respect to the state of the working system.
The healthy state has different representations which depend on the employed algo-
rithm, e.g.: white box model, black box model, a priori known signal pattern, signal
behaviors, a priori known information, and so on. As depicted in Figure 2.18, the ana-
lytical redundancy scheme has a broad range of methodologies. They can be grouped
in [40, Chapter 1]:

1. Plausibility tests: the fault diagnosis is done by checking some physical laws that
govern the system. If the machinery does not pass these tests, it is said that the
system lose its plausibility and therefore it is faulty;

2. Model-based: the healthy system is modeled by a mathematical model. The
model-based procedure is mainly composed of two steps: residual generation
and residual evaluation [34]. A residual is a signal generated by processing the
input and output data with the employment of the mathematical model (during
the residual generation step). The evaluation procedure decides if there is a fault
or not by studying the behaviour of the residual signal. Ideally, if the residual
signal differs from zero, a fault occurs;

3. Signal-based: assumes that the signals carry information about the state of the
system. The fault diagnosis compares some features, called symptoms, extracted
from the acquired signals, with respect to a priori known values which represent
the healthy state;

4. Knowledge-based: assumes that a large amount of historical data is available.
The user does not know any prior knowledge or behaviour of the system. The
only thing that he or she can do is to learn some knowledge from the histor-
ical data and consequentially evaluate the data acquired online by exploiting
the extrapolated information. These two phases are called: training and online
evaluation;

5. Hybrid: is a combination of two or more methods: signal-based, model-based,
plausibility test and knowledge-based. Doing so, the resulting approach takes
the benefits of the considered algorithms;

6. Active: assumes that the input can be chosen and injected, thereby the fault can
be detected more easily.

The most widespread approaches are: model-based and signal based. Specifically, the for-
mer is used with dynamic processes and the latter is employed with steady-state or complex
processes. In light of this, those are reviewed deeply, with more focus on model-based.

Figure 2.19 depicts the signal-based fault diagnosis scheme. From the output signal, the
algorithm generates some features called fault symptoms. The fault diagnosis is done by
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Fault Diagnosis

Hardware redundancy schemes Analytical redundancy schemes

Plasibility

tests

Model

based

Signal
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Figure 2.18: Representation of the taxonomy of the fault diagnosis algorithm.

performing an analysis of the symptoms. In particular, the measured fault symptoms are
compared with a priori known fault symptoms values which represent the healthy state.
Signal-based algorithms are grouped according to the domain to which their symptoms
belong [59], such as:

• Time domain approach: computes the statistics of the signal in the time domain, such
as: mean, variance, peak to peak, Root Mean Square, kurtosis, crest factor and so on.
For instance, these types of symptoms are used with gear fault diagnosis [74], power
converters of switched reluctance motors [27] and permanent magnet synchronous
generators in wind turbine applications [54];

• Frequency domain approach: obtains a more clear representation of the symptoms in
frequency domain and thus designs an efficient symptoms analysis. Nevertheless, it
is also possible to compute some statistical features employed in the time-domain
approach, such as: Root Mean Square, mean and standard deviation. A famous tool
that belongs to this methodology is Motor-Current Signature Analysis (MCSA). It is
used to diagnose the broken rotor bars of an electrical motor by performing the spec-
tral analysis of the stator current [117]. Another well-known approach, described in
[140], is vibration analysis for gearbox faults and bearing faults. Note that, acoustic
signals are also employed with this approach since they are also a vibrational signals.
The authors of [126] propose an example of frequency domain signal-based fault di-
agnosis based on acoustic signals;

• Time-Frequency domain approach: this approach is useful with transient dynamic
conditions. These variable situations cause a time-varying frequency spectrum. The
time-frequency analysis identifies the signal frequency components and reveals their
time-varying characteristics. Some methodologies that employs this approaches are:
STFT [90], WT [68], HHT [173] and WVD [37].

The definition of model-based fault diagnosis is the determination of faults through the
comparison of the available system measurements with respect to a priori information pro-
vided by amathematical model [28, Chapter 1]. Themodel acts as a digital twin of the health
system. Figure 2.20 represents the overall scheme of the model-based fault diagnosis. As
already said, the two major steps of these techniques are: residual generation and residual
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Figure 2.19: Representation of the general signal-based scheme [40, Chapter 1].

evaluation. The residual generator produces the residual signal r(t) by processing the mea-
sured input u(t) and output y(t) signals. The signal r(t) contains the information useful
to diagnose the system state. The residual evaluation strategy helps to enhance the fault
information by performing some signal processing strategies. After that, during the deci-
sion logic step, the processed residual θ(t) is compared with respect to a selected threshold.
The popular approaches of this methodology are: deterministic fault diagnosis and stochas-
tic fault diagnosis. In literature, there are also discrete events and hybrid, networked and
distributed methods, but they are less widespread.
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model

Model based fault diagnosis system

ι(t)

Figure 2.20: Representation of the general model-based scheme [40, Chapter 1].

The deterministic branch replaces the process model with a deterministic model. Specifi-
cally, it can be described by: stable coprime factorization, observers scheme and parity rela-
tions. The stochastic approach models the process with a stochastic method, for instance:
Kalman filter and Parameters estimation. Ideally, the Kalman filter method is the stochas-
tic counterpart of the observers. With this setting, the changes in the distribution of the
residuals represent the fault symptoms. Often, the residual evaluation is made by some
statistical tests, such as: χ2 test, cumulative sum algorithm or multiple hypothesis test.
Furthermore, there exist also some extensions of the Kalman filter that account the system
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non-linearities [51]. In [172], the authors have proposed a residual evaluation based on the
Generalized Likelihood Ratio coupled with a Kalman residual generator.

The parameter estimation, introduced by [10], performs the system identification, which
estimates online the model parameters. The rationale is that the variation of system param-
eters reflects the faults. If the model parameters have an explicit mapping in the physical
coefficients, this procedure can be very efficient and simple, but usually the parameter map-
ping is difficult to obtain, as described in [76]. Furthermore, the fault evaluation is done by
verifying the variations in the parameters vector against the estimated parameters under
healthy conditions [151].

The next subsections describe briefly the deterministic approaches with SISO system and
single-fault, but as before the concepts are easily scalable for MIMO systems and multiple
faults detections.

2.3.1 Stable coprime factorization
This technique relies on the coprime factorization [40, Chapter 3] of a transfer function,
defined as:

Definition 2.8: Coprime factorization

Two discretea transfer functions M̂(z) ∈ RH∞ N̂(z) ∈ RH∞ are called left
coprime overRH∞ if there exist another two transfer functions X̂(z) ∈ RH∞ and
Ŷ (z) ∈ RH∞ such that:

[
M̂(z) N̂(z)

]
X̂(z)

Ŷ (z)

 = 1 . (2.42)

By letting A(z) be a proper real-rational transfer function, the Left Coprime Fac-
torization (LFC) of A(z) results into two stable and coprime transfer functions.
Similarly, there exists a counterpart of the LFC called Right Coprime Factoriza-
tion (RFC). It is defined as:

[
X(z) Y (z)

]
M(z)

N(z)

 = 1 . (2.43)
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Where the transfer functions M(z), N(z), Y (z), X(z) have the same properties as
with the LFC. The relation that ties the model of the system A(z) with the left co-
prime pair

(
M̂(z), N̂(z)

)
is:

A(z) = M̂−1(z)N̂(z) . (2.44)

Instead, the relation with the right coprime pair
(
M(z), N(z)

)
becomes:

A(z) = N−1(z)M(z) . (2.45)

The coprime factorization has also the state space representation. In the robust con-
trol theory, the RFC has a feedback control interpretation, while the LFC has an
observer interpretation [40, Chapter 3].

aThis definition is valid also for continuous transfer functions.

By considering the estimation error r(t) = y(t) − ŷ(t) as the residual signal, the residual
generator is

[
M̂(z) − N̂(z)

]
, computed from the system model G(z). Therefore, r(t) is

computed by:

r(t) =

[
M̂(z) − N̂(z)

]
y(t)

u(t)

 . (2.46)

In literature, this residual generator is also called kernel representation of the system. Usu-
ally, if r(t) is equal to zero then the system is healthy, instead, if r(t) differs from zero
then the system has a fault. This consideration is only ideal because, in real applications,
disturbances and uncertainties arise, therefore this fault diagnosis scheme can reveal false
alarms. This problem is addressed by the robust residual generator, which generates the
residual signal by decoupling disturbances and uncertainties.

Before proceeding to the analysis of the robust residual generator counterpart, the modeling
of faults, disturbance and uncertainties, in the fault diagnosis literature, must be faced.

The disturbances d(t) and noise v(t), which afflict the process under analysis, are usually
designed as unknown input vectors. Thus, the input-output model in the healthy state is:

y(t) = G0(z)u(t) +Gd(z)d(t) +Gv(z)v(t) ; (2.47)

where: G0(z) is the model of the system, Gd(z) is a known transfer function from distur-
bance to output, Gv(z) is a known transfer function from noise to output, d(t) ∈ R is the
deterministic unknown input signal, v(t) ∼ N (0, σv) is a noise signal or represents a ficti-
tious noise which models the uncertainties [167, Chapter 2]. Hence, the input-output model
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in faulty conditions is:

y(t) = G0(z)u(t) +Gd(z)d(t) +Gv(z)v(t) +Gf (z)f(t) ; (2.48)

where: f(t) ∈ R is an unknown signal that represents the fault, while Gf (z) is a known
transfer function from fault to output.

The taxonomy of the fault is:

• Actuator fault : which is a fault that acts on the actuator component;

• Sensor fault : which is a fault that acts on the sensor component;

• Process fault: which is a fault that acts directly on the process.

The sensor fault is considered as an additive term, so the transfer function from output
to fault is set as Gf (z) = 1. Instead, with a process or actuator fault, the fault term is
multiplicative and thus Gf (z) = G0(z). Note that the additive term does not affect the
system stability, while the multiplicative term can cause system instability. As introduced
in [40, Chapter 3], the multiplicative fault can be readapted as an additive fault. For this
reason, a fault is often represented by an additive term.

The residual generation, described with (2.46), does not decouple the model uncertainties,
therefore the latter input-output model needs of a further filter, called post-filter Q(z) ∈
RH∞, which makes robust the residual generator with respect to the uncertainties. Figure
2.21 represents the robust residual generation obtained by the stable coprime factorization
scheme, where GT (z) is the true system. It corresponds to write:

r(t) = Q(z)
(
M̂(z)y(t)− N̂(z)u(t)

)
. (2.49)

This equation is called implementation form and it has an equivalent and alternative form
called internal form. The former is used to generate the residual signal online, instead the
latter is used to design the post-filter. The internal form is equal to:

r(t) = Q(z)M̂(z)Gv(z)v(t) +Q(z)M̂(z)Gf (z)f(t) +Q(z)M̂(z)Gd(z)d(t) . (2.50)

The proof of the equivalence between the internal and the implementation forms are re-
ported in the following.

Proof 2.1: Internal form and implementation form are equivalent

By substituting the input-output model (2.48) into the implementation form (2.49)
[40, Chapter 5], we get:

r(t)=Q(z)

(
M̂(z)

(
G0(z)u(t)+Gd(z)d(t)+Gv(z)v(t)+Gf (z)f(t)

)
−N̂(z)u(t)

)
.

(2.51)
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Then, by applying the coprime factorization G0(z) = M̂(z)−1N̂(z) → N̂(z) =

G0(z)M̂(z), the equation (2.51) becomes:

r(t)=Q(z)

(
((((((((
M̂(z)G0(z)u(t)+M̂(z)

(
Gd(z)d(t)+Gv(z)v(t)+Gf (z)f(t)

)
−((((((((
G0(z)M̂(z)u(t)

)
.

(2.52)
Thus, the internal form (2.49) is obtained.

GT (z)
u(t) y(t)

N̂(z) M̂(z)

− +

Q(z)
r(t)

Figure 2.21: Representation of the robust residual generator scheme with stable coprime
factorization.

Post filter design goals are to decouple the residual signal from u(t) and d(t). These re-
quirements are called decoupling conditions. Note that, with the presented formulation, the
decoupling of u(t) is automatically obtained, indeed in (2.49) the residual signal does not
depend on u(t). So the latter condition is:

Gd(z)M̂(z)Q(z) = 0 . (2.53)

The author in [167] have described two different methods to design

Q̃(z) =

[
Q̂(z)M̂(z),−Q̂(z)N̂(z)

]
:

• Exact Fault Detection Problem (EFDP): which develops a suitable and stable Q(z) in
absence of v(t), such that:

– The residual is sensitive to fault;

– The decoupling conditions are hold;

– The detection condition is Gf (z)M̂(z)Q(z) ̸= 0;

– Gf (z)M̂(z)Q(z) is stable.

• Approximate Fault Detection Problem (AFDP): which develops a suitable and stable
Q(z) such that:

– The residual is sensitive to a fault and noise input because v(t) can not be fully
decoupled but negligible;
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– The decoupling conditions are hold;

– The detection condition are Gf (z)M̂(z)Q(z) ̸= 0 and Gv(z)M̂(z)Q(z) ≈ 0;

– Gf (z)M̂(z)Q(z) and Gv(z)M̂(z)Q(z) are stable.

Since Q(z) ensures that the contribution of the disturbances and the control input
are null, the implementation form (2.49) in the case of AFDP becomes:

r(t) = Q(z)M̂(z)Gv(z)v(t) +Q(z)M̂(z)Gf (z)f(t) . (2.54)

The cost function for designing Q(z) is defined as [28, 167, Chapter 3]:

Q̂(z) = max
Q(z)

∥∥∥Q(z)M̂(z)Gf (z)
∥∥∥
a∥∥∥Q(z)M̂(z)Gv(z)
∥∥∥
a

; (2.55)

where a = 2,∞. Doing so, the post filter enhances the sensibility of the residual
signal r(t) with respect to the fault signal and reduces the influences of the fictitious
noise in the residual signal. A similar robust fault residual generator that solves AFDP
is derived from theH∞ theory, defined as:

Q̂(z) = min
Q(z)

∥r(t)− f(t)∥2
∥v(t)∥2

. (2.56)

These two optimization procedures take also the nameH∞ robust fault diagnosis [56].

There exists a variation of (2.56) where the f(t) signal is replaced by ro(t) = R(z)f(t),
where ro(t) represents the desired behavior of the residual signal, modeled by R(z)XII.
This problem is solved as a robust controller synthesis. Doing so the resulting controller is
considered as the residual generator, as depicted in Figure 2.12. The input is composed of

w(t) =

[
f(t), d(t), v(t)

]⊤
, respectively: fault, noise and input signals. Instead, the output

of the general system is z(t) = ro(t)− r(t) and the output of the filter Q(z) (that replaces
K(z)) is the residual signal r(t) [101]. With this representation, the cost function becomes
J = supw(t)

∥z(t)∥2
∥w(t)∥2

= ∥Gzw(z)∥∞, thus the filter design can be done by µ or H∞ synthe-
sis. This method does not work with all applications: therefore, two functions that weight
the signals w(t) and z(t) are designed to avoid this problem. In [56, 116], the authors have
proposed an extension of this approach by coupling the filter Q(s) with a controllerK(z),
where the general output is composed of ro(t)− r(t) and a performance signal, denoted by
ye(t). This scheme is depicted in Figure 2.22. The choice of the Q(z) structure and weight
functions are critical and done by the userXIII.

XIIThe structure of R(z) must contain the filter Q(z).
XIIIR(z) can be derived from Q(z)nom, which represents the filter computed with the nominal model [55,

Chapter 6].
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Figure 2.22: Representation of the robust control scheme for robust residual generator
synthesis with stable coprime factorization.

2.3.2 Observer schemes
The second scheme exploits the so-called output observer. Notice that the output observer
differs from the state observer employed in the control literature, nevertheless in the his-
tory usually are considered as the same object, but as reported in [40, Chapter 2] this is a
mistake. Furthermore, the state observer is not always applicable since it assumes that all
states x(t) are measurable. Thus, the output observer is useful to perform fault diagnosis
by comparing the measured output with respect to the observed output. In the last three
decades, the observer schemes have achieved certain popularity for being able to decouple
residual signals from certain disturbances and modelling errors (uncertainties). This robust
method is called Unknown input observer [29].

The precursor of the observer-based residual generation is the Fault Detection Filter, pro-
posed by [12, 80]. The well-known full-order state observer is defined as:

ˆ̇x(t) = Ax̂(t) +Bu(t) +L

(
y(t)−Cx(t)−Du(t)

)
ŷ(t) = Cx̂(t) +Du(t)

, (2.57)

with A ∈ Rnx×nx ,B ∈ Rnx×1,C ∈ R1×nx , D ∈ R and L ∈ Rnx×1 is a suitable chosen
matrix that ensures a limited difference between the real output y(t) ∈ R and the estimated
ŷ(t) ∈ R. The symbol x̂(t) ∈ Rnx×1 denotes the estimated states. The observer acts as a
feedback loop that ensures:

• r(t) = y(t)− ŷ(t) = y(t)−Cx̂(t)−Du(t) = 0 ∀u(t);

• Unbiased estimation limt→∞

(
x(t)− x̂

)
= 0, withA−LC stable.
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The matrix L is the only degree of freedom of this procedure, indeed usually the output
estimation error is weighted with a designed weight V , as:

r(t) = V

(
y(t)− ŷ(t)

)
. (2.58)

The choice of L and V must be done to ensure the stability of the full-order observer.

The advantage of thismethod consists of the simplicity of implementation, but the drawback
is due to the difficulty to develop the full-order observer in an online application. This is
the reason why a lot of work has been done to propose an evolution of the Fault detection
filter, calledDiagnostic Observer. The construction of the diagnostic observer-based residual
generator is well-known and explicated in [40, Chapter 5]. Specifically, the procedure is
quite similar, but by employing a Luenberger output observer a reduced order observer is
obtainable [36]. The Diagnostic Observer offers a greater degree of design freedom than the
older Fault Detection Filter.

Remark 2.4

The system composed by (2.57) and (2.58) can be seen as a state space representation
of (2.46).

As for the previous scheme, we also present the robust counterpart of the Fault detection
filter approach. It models disturbances, time-varying term and parameter variation, noise,
non-linear terms and model reduction error with the additive terms Evv(t)

XIV, as:

ẋ(t) = Ax(t) +Bu(t) +Evv(t) +Eff(t)

y(t) = Cx(t) +Du(t) + Fff(t)

; (2.59)

where the terms Fff(t) andEff(t) (Ef ∈ Rnx×1) represent the impact of the fault on the
system.

By employing the Fault Detection filter ((2.57) and (2.58) equations), the Unknown input
decoupling is obtained by a suitable choice of V and L, such as:

• The Fault Detection Filter is stable;

• VC

(
sInx −A+LC

)−1

Ev = 0 is guaranteed;

• V

(
C(sInx −A+LC)−1(Ef −LFf ) + Ff

)
̸= 0 is hold.

Two algorithms are studied to solve this design problem: eigenstructure assignment and ge-
ometric approach. The former is explained in [130]. It develops a linear state space feedback
XIVThis representation does not consider the influence of the noise applied to the input.
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system by exploring its: eigenvalues, left and right eigenvectors. Instead, the geometric ap-
proach seeks L which makes (A−LC,Ev,C)maximally uncontrollableXV by v(t) [102].
There exist also the Unknown Input Diagnostic Observer [29] that shares the same goal with
the Unknown Input Fault Detection Filter with a reducer order observer, such for the not
robust counterpart.

2.3.3 Parity eqation schemes
The parity space framework has the peculiarity of presenting the residual signals in the form
of algebraic equations, therefore the solutions can be achieved with linear algebra tools. By
considering the state space model (2.59), with: v(t) = f(t) = 0 and b ≥ 0, the output can
be seen as:

y(t− b) = Cx(t− b) +Du(t− b)

y(t− b+ 1) = CAx(t− b) +CBu(t− b) +Du(t− b+ 1)

y(t− b+ 2) = CA2x(t− b) +CABu(t− b) +CBu(t− b+ 1) +Du(t− b+ 2)

.

(2.60)

By generalizing, it becomes:

y(t) = CAbx(t− b) +CAb−1Bu(t− b) + ...+CBu(t+ 1) +Du(t) . (2.61)

It corresponds to write:

yb(t) = Ho,bx(t− b) +Hu,bub(t) ; (2.62)
XVMaximally uncontrollable means the uncontrollable subspace with the maximal dimension.
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where:

yb(t) =



y(t− b)

y(t− b+ 1)

...

y(t)


, ub(t) =



u(t− b)

u(t− b+ 1)

...

u(t)



Ho,b =



C

CA

...

CAb


, Hu,b =



D 0 . . . 0

CB D
. . . ...

... . . . . . . 0

CAb−1B . . . CB D



; (2.63)

with: yb(t) ∈ R(b+1)×1,ub(t) ∈ R(b+1)×1,Ho,b ∈ R(b+1)×nx ,Hu,b ∈ R(b+1)×(b+1). Notice
that the equation (2.62) is called parity relation, which describes the input-output relation-
ship by exploiting the past state vector x(t− b). Furthermore, Ho,b, Hu,b, yb(t) and ub(t)

are known, therefore the only unknown vector is x(t − b). For nx ≤ b, where nx is the
number of states, the following ranking condition holds:

rank(Ho,b) ≤ nx ≤ number of rows ofHo,b . (2.64)

Therefore, there exists a vector V ⊤
b ∈ R1×(b+1), Vb ̸= 0, called parity vector such that:

V ⊤
b Ho,b = 0 . (2.65)

The parity vector can be found by solving (2.65). However, Vb is not guaranteed unique.
The residual generator is designed as:

r(t) = V ⊤
b

(
yb(t)−Hu,bub(t)

)
. (2.66)

The set Pb = {Vb|VbHo,b = 0} is called parity space.

To complete the parity space algorithm analysis, we need to consider the influences of f(t)
and v(t) by modeling the output as: y(t) = Cx(t) +Du(t) +Fvv(t) +Fff(t). Therefore,
(2.62) becomes:

yb(t) = Ho,bx(t− b) +Hu,bub(t) +Hf,bfb(t) +Hv,bvb(t) ; (2.67)
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with:

fb(t) =



f(t− b)

f(t− b+ 1)

...

f(t)


, Hf,b =



Ff 0 . . . 0

CEf Ff
. . . ...

... . . . . . . 0

CAb−1Ef . . . CEf Ff



vb(t) =



v(t− b)

v(t− b+ 1)

...

v(t)


, Hv,b =



Fv 0 . . . 0

CEv Fv
. . . ...

... . . . . . . 0

CAb−1Ev . . . CEv Fv



; (2.68)

with: fb(t) ∈ R(b+1)×1,Hf,b ∈ R(b+1)×(b+1),vb(t) ∈ R(b+1)×1,Hv,b ∈ R(b+1)×(b+1). The
residual generator (2.66) becomes:

rb(t) = Vb

(
Hf,bfb(t)−Hv,bvb(t)

)
, Vb ∈ Pb . (2.69)

The diagnosis detects a fault when the residual signal differs from zero. This condition
arises when there is a fault or due to the noise, therefore this is not robust. Furthermore,
this form is not ideal for online implementation.

The robust counterpart is achieved if there exists a parity vector, such that:

V ⊤
b Hf,b ̸= 0 and V ⊤

b Hv,b = 0 . (2.70)

This treatise is exposed in state space, but it is also applicable to transfer function models.
The main difference with respect to the observer methods lies in no output error correction.
Furthermore, the parity space leads to a discrete-time observer, such as dead-beat observer
[128]. The parity space design can be solved by AFDP, which exploits the parity equations
to minimize a cost function similar to the optimization problem (2.55) [40, Chapter 7].

2.3.4 Passive robustness in fault diagnosis
The above presented three robust methods belong to active robustness in fault diagnosis,
in which the robustness is guaranteed by the residual generation procedure. Nevertheless,
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the robustness can be handled also by the residual evaluation step, called passive robustness
in fault diagnosis. Again, the residual evaluation is a composition of residual processing
and decision logic. The residual processing procedure consists of producing θ(t) from r(t),
which improves the fault detectability. Instead, the decision logic is a comparison between
the processed residual with respect to a selected threshold τ . For fault detection aim, this is
structured as: f(t) = 0 for θ(t) < τ

f(t) ̸= 0 for θ(t) > τ
. (2.71)

Instead, for fault isolation goal, as:fi(t) = 0 for θi(t) < τi

fi(t) ̸= 0 for θi(t) > τi
and i = 1, ..., a ; (2.72)

where: fi(t) represent the a faults, θi(t) are preprocessed residual signals produced by the
residuals generator and τi is the i-th suitable threshold. The presented decision logic belongs
to the norm-based approach, but in literature there is also the statistical-based decision logic
[40, Chapter 2].

Passive robustness develops a robust threshold coupled with a non-robust residual gener-
ator. This methodology has been introduced in [50], where the authors develops the RMS
norm and derived a sort of adaptive threshold via a mechanism called threshold selector. An-
other examples of passive robustness are proposed in [53] and [52] which employ a fuzzy
logic procedure to make a robust decision logic.

Remark 2.5

These methodologies are also applicable when the unknown input cannot be exactly
decoupled, but only approximate decoupled. Therefore, to reduce further the false
alarms probability, we can couple the approximate decouple residual generator with
a passive robust fault evaluation. This is true especially with unstructured uncer-
tainties [129].

2.4 Uncertainty in system identification
This section briefly reviews the system identification literature. Sections 2.4.1 reports the
black-box traditional approach Prediction Error Method (PEM), which identifies a paramet-
ric model with a chosen model structure and a fixed model order. As described in Appendix
A, the model structure selection is done by the user’s knowledge, while the model order
selection can be obtained by some techniques that define a "hard threshold" or with regu-
larization approaches. Sections 2.4.2 describes the state-of-the-art technique, called kernel-
based identification. In particular, we will show the time-domain non-parametric approach,
based on the Reproducing Kernel Hilbert Space (RKHS) framework. Kernel-based identifica-
tion identifies a model without any prior knowledge of the model structure. This technique
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derives from the machine learning literature. Specifically, the problem casts from a system
identification problem to a function estimation perspective. As for the parametric method,
in Section 2.4.2, the regularization technique for non-parametric system identification will
be described. A briefly functional analysis framework review is described in Appendix B:
for more details see [145].

All black-box models are endowed by the identification uncertainties, but these pieces of
information are not always taken into account. The last part of this section describes the
sources of the identification uncertainties and the different methods to represents these
information. Primarily, the identification uncertainties are composed of two terms, called
bias and variance. The Section 2.4.3 describes various methods that represent uncertainties
without bias or with bias.

2.4.1 Prediction Error Method (PEM)
Prediction Error Method (PEM) is a parametric system identification approach that relies
on a model class and selected orders. Both are represented by the model familyM that
corresponds to a set of models that describe the relationship between the input u(t), fed to
the plant, and the output y(t), produced by the plant. The set of parameters of the model
family are denoted as β ∈ Rm×1, where m is the number of parameters. The variable m
represents the model order, called also model complexity.

The general model is depicted in Figure 2.23. The represented model is an Linear Time-
Invariant (LTI) and Single input Single output (SISO) dynamic system. The taxonomy of
the dynamic systemmodels are well-known in the system identification literature, for more
information about that see [155, Chapter 6].

H(z,β)

G(z,β)

+
+

e(t)

u(t) y(t)

v(t)

Figure 2.23: General model of an Linear Time-Invariant (LTI) Single input Single output
(SISO) dynamic system.

The model familyM, parametrized by its parameters vector β, is denoted byM(β) ∈M.
The general model, represented in Figure 2.23, can be expressed in the following form:

M(β) : y(t) = G(z,β)u(t) +H(z,β)e(t) ; (2.73)

where:

• e(t) represents the zero mean withe noise;

• G(z,β) is the transfer function from input to output;
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• H(z,β) is the transfer function from e(t) to the output additive noise v(t).

Usually, the transfer functions are chosen to be rational, as:

G(z,β) =
B(z,β)

F (z,β)
, H(z,β) =

C(z,β)

D(z,β)
; (2.74)

where B(z), F (z), C(z), D(z) are polynomials functions. The measured output y(t) cor-
responds to the real output model plus the uncertainties and disturbances which the model
G(z,β) cannot explain. They are accounted by the signal v(t). The impulse responses of
both systems, by employing the inverse of the shift operatorXVI, are:

G(z,β) =
∞∑
k=1

gkz
−k , (2.75)

H(z,β) = h0 +
∞∑
k=1

hkz
−k , with h0 = 1 ; (2.76)

where hk and gk belongs to β. By substituting the rational form of the transfer functions
and by explicating the output signal, the general model becomes:

y(t) =
B(z,β)

F (z,β)
u(t− k) +

C(z,β)

D(z,β)
e(t) . (2.77)

The first term is called deterministic term, while the second stochastic term, since H(z,β)

is fed by white noise e(t); therefore, v(t) is seen as as a stationary stochastic process. This
interpretation is derived from the spectral factorization theorem [155, Chapter 6].

Definition 2.9: Stochastic process, Strictly stationary

A stochastic process v(t, c) is a sequence of random variables produced by the same
random experiment c. Usually, c is omitted. Furthermore, a stochastic process is
strictly stationary if its joint probability distribution does not change when shifted
in time.

The model classes are reported in table 2.3. All of these are well-known in the system
identification literature. For instance: AR contains an AutoRegressive term described by the
polynomial A(z,β) = 1 + a1z

−1 + ...+ anaz
−na , ARX corresponds to the composition of

an AR model with an eXogenous part defined as B(z,β)
A(z,β) or even ARMAX is the composition

of MA with ARX.

The standard approach to identify the parameters vectorβ from a set of measured dataD =

{u(1), ..., u(n), y(1), ..., y(n)}, is known as Prediction Error Method (PEM). It minimizes
the difference between the measured output and the estimated output. The estimation is
performed by an one-step-ahead predictor. This model representation aims of performing
XVIThe transfer functions are represented in the discrete time domain using z as the shift operator, i.e. y(t+

1) = z · y(t).
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Table 2.3: Model classes.

Name Structure

Moving Average (MA) y(t) = C(z,β)e(t)

AutoRegressive (AR) y(t) = 1
A(z,β)e(t)

AutoRegressive with an eXoge-
nous variable (ARX)

y(t) = B(z,β)
A(z,β)u(t− k) + 1

A(z,β)e(t)

AutoRegressive Moving Average
with an eXogenous variable (AR-
MAX)

y(t) = B(z,β)
A(z,β)u(t− k) + C(z,β)

A(z,β)e(t)

Output Error (OE) y(t) = B(z,β)
F (z,β)u(t− k) + e(t)

Finite Impulse Response (FIR) y(t) = B(z,β)u(t− k) + e(t)

Box-Jenkins (BJ) y(t) = B(z,β)
F (z,β)u(t− k) + C(z,β)

D(z,β)e(t)

the prediction of the future output and it corresponds to write [92, Chapter 7]:

ŷ(t|t− 1,β) =
H(z,β)− 1

H(z,β)
y(t) +

G(z,β)

H(z,β)
u(t) ; (2.78)

This is valid under the assumption of the inverse stability of H(z,β). Furthermore, given
a dataset D, the parameters vector is obtained by optimizing:

β̂ = arg min
β

Jn(β) , (2.79)

where the cost function takes the form of:

Jn(β) =
n∑

t=1

(y(t)− ŷ(t|t− 1,β))2 . (2.80)

Note that the parameters vector is obtained by exploiting a finite length datasetD, however
the goal is to learn amodel that performswell on unseen data. To estimate this performance,
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the so-called out-of-sample error is evaluated. This corresponds to:

Eout = E

( 1

H(z, β̂)
ỹ(t)− G(z, β̂)

H(z, β̂)
ũ(t)

)2
 . (2.81)

Eout cannot be computed using D, therefore a new dataset, called test set, is needed. This
is denoted as Dtest = {ũ(i), ỹ(i)}nT

i=1, with nT is the number of the data in the test set.
The higher nT is, the more accurate the estimate of Eout will be. The counterpart of the
out-of-sample error is in-sample-error, computed with Ein = Jn(β̂), by exploiting D. This
indicator, taken alone, is a bad estimation of the out-of-sample performance.

Figure 2.24 depicts the out-of-sample error and the in-sample error curves. As can be seen,
these errors vary as the complexity of the model increases. In particular, by fixing a model
class, when the model complexity is:

• High: the estimated model, usually, approximates the plant well. This means Ein is
low. However, the complex model fits also the observed error dynamicsXVII which do
not belong to the true system. This results into a high Eout since the error dynamics
depend on the realizations of themeasured data. Thus, changing the dataset,Eout >>

Ein. This phenomenon is called variance.

• Low: the estimated model, usually, misses the relevant dynamics of the plant and
therefore it results in an high Ein. This phenomenon is called bias.

The minimization of the out-of-sample error takes the name of bias-variance trade-off. Un-
fortunately, the bias and variance cannot be computed, because they depend on the input
and target probability distribution [1, Chapter 2]. Appendix A reports a conceptual tool
called bias-variance decomposition, which explains the connection between bias, variance
and the expected Eout. Specifically, this trade-off helps us to avoid the so-called overfitting
phenomenon. This occurs when, as the complexity of the model increases, Eout increases
and Ein decrease. Figure 2.24 highlights in red the overfitting area. The main cause of
overfitting is model variance [1, Chapter 4].

The main idea behind the bias-variance trade-off is that the model complexity must be cor-
related with the number of data in D and not with the target dynamic system complexity.
In light of this, there is a heuristics rule which ties the number of data that the PEM needs
n with respect to the number of parametersm:

n ≥ 10 ·m . (2.82)

This is simple, but shows a lot of limits. In literature, there are more reliable methods which
solve the bias-variance trade-off, such as: Akaike Information Criterion (AIC), Bayesian In-
formation Criterion (BIC), Cross Validation (CV) and regularization. These are described
in Appendix A. Specifically, the first two methods obtain a threshold that selects the best
XVIIRemember that the measured data are noisy (see (2.73)).
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Figure 2.24: Out-of-sample error vs in-sample error curves, the red area highlights the
overfitting phenomenon.

model complexities, by comparing some indicators between a pool of different model com-
plexity, but with same model class. Instead, the Regularization is a constrained version of
(2.79), that reduce drastically the variance at the cost of an introduction of a small bias.

Remark 2.6

Note that, if we assume that e(t) is a Gaussian white noise, PEM coincides with the
Maximum Likelihood (ML) approach [94].

2.4.2 Kernel-based system identification
The main problem of the parametric model estimation is to choose the model family, which
can cause unintended phenomena. The Reproducing Kernel Hilbert Space (RKHS) framework
is employed to perform a time-domain non-parametric identification that ties input and
output signals as y = g(x), where g is not constrained into a specific parametric structure
gβ ∈ Rm×1, but it is searched in a infinite-dimensional function space Γ , which defines the
hypothesis space.

By considering a function g ∈ Γ , a static non-parametric learning problem is defined as:

ĝ0 ≡ arg min
g∈Γ

(
n∑

i=1

(yi − g(xi))
2 + λJ(g)

)
, (2.83)

where the dataset of length n ∈ N+ is composed of (xi, yi) ∈ Γ ⊆ R, with xi = x(ti) ∈
Rn×1 and yi = y(ti) ∈ R. These are the i-th observed data which belong, respectively, to
the regression matrixΦ ∈ Rm×n and output vector y ∈ Rn×1. The regression matrix is the
composition of the observed regressors x stacked inm rows. This formulation is similar to
(A.10), indeed: the hyperparameter λ ∈ R+ modulates the regularization strength, J(g) is
the regularization term and the first termmeasures the function’s fit to data. If Γ is a RKHS,

46



2.4. Uncertainty in system identification

the problem (2.83) becomes:

ĝ0 = arg min
g∈H

(
n∑

i=1

(yi − g(xi))
2 + λ ∥g∥2H

)
. (2.84)

To understand this equality, the RKHS definition must enunciated [8]:

Definition 2.10: Reproducing Kernel Hilbert Space (RKHS)

AReproducing Kernel Hilbert Space (RKHS) is a Hilbert spaceH (its definition
is reported in Appendix B) where its element g : Ω → R are functions, such that the
pointwise evaluations are continuous linear functional Lx on H , i.e.:

∀x ∈ Ω, ∃Lx <∞ : |g(x)| ≤ Lx ∥g∥H , ∀g ∈H ; (2.85)

with Ω is a non-empty set.

The term ∥g∥2H is computable since that the Hilbert space is endowed with an inner prod-
uct ⟨·, ·⟩H , which is complete with respect to the induced norm ∥g∥2H = ⟨g, g⟩H ( see
Appendix B).

An important property that help us to solve the problem (2.84), is that a RKHS is linked with
a reproducing kernel, defined in Definition 2.11.

Definition 2.11: Positive semidefinite kernel, Reproducing kernel and Ker-
nel section

Let Ω denote a non-empty set. A symmetric function K : Ω ×Ω → R is a positive
semidefinite kernel, if, for any finite p ∈ N, it holds:

p∑
i=1

p∑
j=1

bibjK(xi,xj) ≥ 0, ∀(xk, bk) ∈ (Ω,R), k = 1, 2, ..., p . (2.86)

If a semidefinite positive kernel holds the reproducing property:

g(x) = ⟨g,Kx⟩H , ∀(x, g) ∈ (Ω,H ) . (2.87)

The kernel is called Reproducing kernel.
The notation Kx ∈H represents the kernel section centered in x. It corresponds
to Kx(a) = K(x, a),∀a ∈ Ωa.

aThe kernel section will be written as Kx(a) or Kx.

In particular, the following theorem describes the connection between RKHS and a repro-
ducing kernel [39]:
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Theorem 2.4: Moore-Aronszajn theorem

A RKHS corresponds to a unique reproducing kernel. Conversely, given a reproduc-
ing kernel defines a unique RKHS.

The Moore-Aronszajn theorem, in Theorem 2.4, explains that, if we define a reproducing
kernel, we also know that exists a related RKHS, and by encoding the desired characteristic
to the kernel function, we also define the properties of the functions that belong to the
RKHS.

If we define g in a RKHS, the functions that belong to this space are infinite since the space
is infinite-dimensional. The so-called Representer theorem defines how the regularization
problem (2.84), that exploits the RKHS, admits a solution with a finite-dimensional repre-
sentation [83]:

Theorem 2.5: Representer theorem

If H is a RKHS, the minimizer of (2.84) is:

ĝ0 =
n∑

i=1

ciKxi , (2.88)

where c = [c1, c2, ..., cn]
⊤ ∈ Rn×1

Thus, the minimizer corresponds to a linear combination of Kxi , called also basis functions.
Hence, by applying the Representer theorem, the kernel choice defines also the resulting
functions properties. Note that c is a vector of lengthn, therefore the problem of the infinite-
dimensional estimation boils down to a n coefficients estimation. The estimator (2.88) is also
called as regularization network [136] or least square support vector machine [157].

The Representer theorem (2.88) gives us a reformulation of ∥g∥2H :

∥g∥2H = ⟨g, g⟩H

= ⟨
∑n

i=1 ciKxi ,
∑n

j=1 cjKxj ⟩H

=
∑n

i=1

∑n
j=1 cicj⟨Kxi ,Kxj ⟩H

= c⊤Kc

(2.89)
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K ∈ Rn×n is a positive semidefinite matrix, such that Kij = K(xi,xj). This is called
Kernel matrix (or Gram matrix). Thus:

g = [g(x1), g(x2), ..., g(xn)]

= [
∑n

i=1 ciKxi(x1), ...,
∑n

i=1 ciKxi(xn)]

= [
∑n

i=1 ciK(xi, x1), ...,
∑n

i=1 ciK(xi, xn)]

= c⊤K

(2.90)

Thanks to (2.89) and (2.90), the problem (2.84) can be rewrite as:

ĉ = arg min
c∈Rn×1

∥∥∥y − c⊤K
∥∥∥2
2
+ λc⊤Kc . (2.91)

This is a quadratic optimization problem that can be solved in closed form. Specifically, the
problem (2.91) can be rewritten by exploiting the partial derivatives with respect to c to
zero, i.e.:

(K + λIn)ĉ = y . (2.92)

Furthermore, if the kernel is non-degenerate, then K is positive definite and therefore in-
vertible. Thus, we can write the final form of the estimator as:

ĉ = (K + λIn)
−1y . (2.93)

As already mentioned, the reproducing kernel choice is a very crucial step to perform a
correct estimation. Some examples of reproducing kernels are reported in Table 2.4.

Table 2.4: Some examples of reproducing kernel structure.

Name Structure

Constant kernel K(x, z) = 1

Linear kernel K(x, z) = x⊤ · z

Gaussian kernel K(x, z) = e−
∥x−z∥2

2σ2

Polynomial kernel K(x, z) = (x⊤ · z + 1)d
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If the employed kernel is a linear one, i.e. K(x, z) = x⊤ ·z and if the kernel matrix is chosen
as K = Φ⊤PΦ with P ∈ Rm×m is symmetric semidefinite positive, then, by employing
the theorem 2.4, the space RKHS contains only linear functions g : Rm×1 → R. Thus, the
problem (2.91) becomes:

ĉ = arg min
c∈Rn×1

∥∥∥y − c⊤Φ⊤PΦ
∥∥∥2
2
+ λc⊤Φ⊤PΦc . (2.94)

Furthermore, by defining β ≡ c⊤Φ⊤P , we obtain:

β̂ = arg min
β∈Rm×1

∥y − βΦ∥22 + λβΦc (2.95a)

= arg min
β∈Rm×1

∥y − βΦ∥22 + λβP−1β (2.95b)

This problem is equal to Regularized Least Squares (ReLS) (A.15), therefore has the same
closed forms, i.e.:

β̂ = PΦ
(
Φ⊤PΦ+ λIn

)−1
y or (2.96a)

=
(
PΦΦ⊤ + λIm

)−1
PΦy (2.96b)

Remark 2.7

The solution of RKHS regularization via linear kernel (2.96) corresponds to the solu-
tion of regularized FIR estimation (A.15) and the MAP (A.17b) of the Bayesian linear
model problem with Gaussian prior on the parameters. Specifically, the RKHS is a
generalization of the FIR regularized estimation.

The kernel and the regularization parameters usually are contained in a hyperparameters
vector η. This can be estimated using the Marginalized Likelihood (MargLik) (A.18), as for
the regularized parametric estimation. This operation is the counterpart of the model order
selection in the classical parametric approach [135].

2.4.3 Model estimation uncertainty
The identified models are affected by an error composed of variance and bias (see Appendix
A). The method which accounts for both variance and bias is Robust identification. This is
described in the next subsection. By choosing the correct model family, a full-order model
and a sufficiently exciting input signal, the estimated model has zero bias. As already de-
scribed, the model family is defined by the order and the model class (for PEM). Since, the
model class is chosen by the user, PEM does not always guarantee the identified model has
not some bias, instead the regularized kernel methods return a low bias model. Thus, the
uncertainties derived from the bias are not considered in this subsection. In this way, we
assume that the unmodeled dynamics do not arise and therefore the remaining sources of
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uncertainty are: unpredictable events and poor quality of the available data, see Section 2.1.
Unpredictable events cannot be considered since they are not identifiable from the available
information. Instead, the last source of uncertainty is highly tied with the variance error.
In fact, in literature, the variance error is called also the noise-induced error. Usually, this
error is introduced by the sensors that measure the signals. If the data are noiseless or the
number of data is infinite, the variance error is equal to zero. Some system identification
methodologies assume that the dataset is noise-free, therefore the uncertainty estimation
with these cannot be evaluated. As described in [96], the uncertainty estimation methods
assume different prior information, for instance: the so-called H∞ identification needs of
some frequency data at certain frequencies, with their confidence intervals, acquired by
the real system [71, 72]. Another example is PEM, it finds a "soft" uncertainty bound, with
given probability confidence and some assumption on the cost function. Instead, by apply-
ing the Set membershipmethodology, the main assumption is that the noise is unknown but
bounded.

The uncertainty analysis in the system identification literature is well known for the PEM
and therefore we proceed to review the uncertainty with this standard approach. In light
of this, the relationship between the other identification methods and the model estimation
uncertainty is reviewed. To obtain a bias free model we should impose some assumptions,
these are described in Assumption 2.1.

Assumption 2.1: Bias-free assumptions

As already sad, we assume that:
• ST ∈M, with ST denotes the plant family:

ST : y(t) = GT (z)u(t) +HT (z)e(t) , (2.97)

where GT (z), HT (z) are the true system’s transfer functions
• Number n of the sensed data is finite;
• e(t) ∼ (0, σ2

e) is a white noise;
• An unique global minimum of (2.79) exists.

The experimental design plays an important role to guarantee the last assumption. The
input signal must be enough exciting to prevent the bias phenomenon. Even if ST ∈M(β),
but the experimental design is poor, the identified model is endowed of bias. For instance,
the main relationship between the input signal and the PEM cost function is:

Proposition 2.1: Experimental design rule

If a signal is sufficiently exciting, then the applied identification criterion (such as:
PEM) has an unique solution βideal = βT , when ST ∈ M(β). A signal u(t) is said
sufficiently exciting if ns ≥ m, where ns is the order of the input signala and m is
the number of parameters. Usually, the order ns is computed by plotting the power
spectrum of u(t).
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aFor instance: white noise has order ns = ∞ and a sinusoidal signal ns = 2.

Remember that, by having a stochastic noise e(t), which corrupts the output data, β̂, ex-
plicated in (2.79), is a random variable. Hence, changing the dataset D, β̂ changes too.
Since the estimated model has no bias, the average parameters estimation is asymptotically
E
[
β̂
]
= βT , where βT ∈ Rm×1 represents the real parameters vector. Therefore, the

distribution of β̂, obtained with the PEM estimation, converges asymptotically to:

β̂ ∼ N
(
βT , P̄β

)
. (2.98)

P̄β ∈ Rm×m is the covariance matrix of the parameters vector, defined as:

P̄β ≡ E
[(

β̂ − βT

)(
β̂ − βT

)⊤]
=

σ2
e

n
R̄−1

β . (2.99)

R̄β ∈ Rm×m represents the asymptotic autocorrelation of βT , computed by:

R̄β = E
[
Ψ(t,βT )Ψ(t,βT )

⊤
]
. (2.100)

Ψ(t,βT ) ∈ Rm×1 is the partial derivative of the one step identification error ϵ1(t,β) =

y(t)− ŷ(t|t− 1,β):

Ψ(t,βT ) = −
d

dβ
ϵ1(t,β)

∣∣∣∣
β=βT

. (2.101)

If v(t) = HT (z)e(t) is a gaussian noise, PEM is asymptotically statistically efficient, there-
fore the equation (2.99) corresponds to the Cramer-Rao lower bound [155, Chapter 7]. All el-
ements that compose the equation (2.99) depend on the real parameters vectorβT , therefore
in practice (2.99) is not computable. Thus, an approximation is necessary, so R̂β becomes:

σ̂e
2 =

1

n

n∑
t=1

(
y(t)− ŷ(t|t− 1, β̂)

)2
; (2.102)

R̂β =
1

n

n∑
t=1

Ψ(t, β̂)Ψ(t, β̂)⊤ . (2.103)

Furthermore, in [155, Chapter 7], it is proven that:

P̄β ≈
σ̂e

2

n
R̂−1

β . (2.104)

Notice that:

• By increasing n decrease P̄β ;

• By increasing σ̂2
e increase P̄β .

To clarify these two observations, the Example 2.2 explains this phenomenon.
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Example 2.2: Example of covariance in PEM identification at varying the
properties of dataset D

Given the true system:

ST : y(t) =
0.6z−1

1 + 0.4z−1
u(t) +

1

1 + 0.4z−1
e(t) (2.105)

and ARX model of order ARX(1, 1, 1):

M : G(z,β) =
bz−1

1 + az−1
H(z,β) =

1

1 + az−1
; (2.106)

with: β = [a, b]⊤, u(t) and e(t) are white noise signals. All assumptions to neglect
the bias are respected. We feed the systemwith different numbers of data n and noise
variance σ2

e . Then, we estimate the parameters vector 50 times for each conditions,
by varying the u(t) and e(t) realizations. To perform the system identification, we
employ the PEM method and the dataset is cut off from the transient data. Further-
more, the sampling time is Ts = 1 and the variance of the input is σ2

u = 0.4. The
next figures depict the true values of a and b, denoted by the red circle and the blue
crosses represent the 50 estimations. In particular:

• Figure 2.25 represents β̂ with n = 200 and σ2
e = 0.4;

• Figure 2.26 represents β̂ with n = 200 and σ2
e = 1;

• Figure 2.27 represents β̂ with n = 1300 and σ2
e = 0.4;

• Figure 2.28 represents β̂ with n = 1300 and σ2
e = 1.

As we expect, the variance increases by increasing σ2
e and decreases with high n.

Figure 2.25: β̂ estimation with low
number of data and low variance of

noise.

Figure 2.26: β̂ estimation with low
number of data and high variance of

noise.

The Example 2.2 reports the solutions in the parameters space. The confidence interval in
the parameter space is defined as:

Cβ(α) =
{
β ∈ Rm×1

∣∣∣ (β − β̂
)⊤

P̄−1
β

(
β − β̂

)
≤ α

}
; (2.107)
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Figure 2.27: β̂ estimation with high
number of data and low variance of

noise.

Figure 2.28: β̂ estimation with high
number of data and high variance of

noise.

with:

• α is the size of the confident region and it is such that Pr(X 2(m) ≤ α) = pβ ;

• pβ is the probability that the confidence interval contains βT ;

• X 2 ∼
(
β − β̂

)⊤
P̄−1
β

(
β − β̂

)
, where X 2(m) is the chi-square probability density

function withm degrees of freedom.

Cβ in the parameters space is an ellipsoid centered at the identified parameters vector β̂ and
shaped by P̄β . Usually pβ = 0.95: it means that the real parameters vector is in Cβ with a
probability of 95%. An example of this variance representation is described in 2.3.

Example 2.3: Cont’d of Example 2.2

The confidence interval of the previous example with pβ = 0.95, represented in the
parameters space, is depicted in:

• Figure 2.29 represents β̂ with n = 200 and σ2
e = 1;

• Figure 2.30 represents β̂ with n = 1300 and σ2
e = 0.4.

The cross represents the identified parameters and so the center of the ellipsoid.

The uncertainty of PEM can be also represented in the frequency domain by exploiting the
transfer function space. This is possible since the parameters vector β̂ is a random variable
vector, therefore also the transfer function G(ejω, β̂) = Ĝ0(e

jω) is a random variable. So,
the covariance matrix of the transfer function in frequency domain is:

P̄β(ω) = Cov
(
G
(
ejω, β̂

))
= E

[∣∣∣G(ejω, β̂)−G(ejω,βT )
∣∣∣2] . (2.108)

Also in this domain, the covariance matrix of transfer function can be estimated using P̄β

and β̂:
Cov

(
G
(
ejω, β̂

))
≈ ΛG

(
ejω, β̂

)
P̄βΛ

∗
G

(
ejω, β̂

)
; (2.109)
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Figure 2.29: Confidence interval in the
parameters space with low number of

data and high variance of noise.

Figure 2.30: Confidence interval in the
parameters space with high number of

data and low variance of noise.

with Λ⊤
G

(
ejω, β̂

)
= d

dβG(ejω, β̂) ∈ Cm×1. The same considerations of parameters do-
main are valid in frequency domain.

By assuming: ST ∈ M(β), u(t) and e(t) are uncorrelated, the authors in [92, Chapter 9]
proposed an approximation of (2.108) as:

Var(G(ejω)) ≈ nx

n

Γv(ω)

Γu(ω)
; (2.110)

with:

• Γv(ω) is the power spectral density of noise v(t);

• Γu(ω) is the input density spectrum;

• nx is the number of states of the system G(z,β).

This is valid only if nx is large, the real system can be described as a piecewise constant
function of frequency ω and these constants are independent over the different frequency
intervals. Due to these considerations, often, the approximation (2.110) cannot be applica-
ble. An improvement of (2.110) is proposed by [63].

As for the covariance of the parameters, the transfer function covariance has a graphical
representation. By denoting the frequency response of the model G(z,β) as:

a
(
ejω,β

)
≡


Re
(
G
(
ejω,β

))
Im
(
G
(
ejω,β

))
 (2.111)

and by using the same assumptions as before, the distribution of a
(
ejω,β

)
is Gaussian:

a
(
ejω, β̂

)
∼ N

(
a
(
ejω,βT

)
, P̄β(ω)

)
. (2.112)
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So, the confidence region can be easily built by drawing an ellipse Cβ(α, ω) for each fre-
quency ofa(ejω,βT ) in theNyquist plane. This guarantees thata(ejω,βT ) is inside Cβ(α, ω),
∀ω, with probability pβ . The confidence region in frequency domain becomes:

Cβ(α, ω) =
{
a
∣∣∣ (a− a(ejω, β̂)

)⊤
P̄−1
β

(
a− a(ejω, β̂)

)
≤ α

}
. (2.113)

The Example 2.3 shows the confidence interval representation of the problem described in
Example 2.2.

Example 2.4: Cont’d of Example 2.2

The confidence interval of the previous example with pβ = 0.95, represented in
frequency response space, is depicted in:

• Figure 2.31 represents β̂ with n = 200 and σ2
e = 1;

• Figure 2.32 represents β̂ with n = 1300 and σ2
e = 0.4.

The true system is represented in red line, the identified model in blue line and the
uncertainty region in black lines.

Figure 2.31: Confidence interval in fre-
quency domain with low number of

data and high variance of noise.

Figure 2.32: Confidence interval in fre-
quency domain with high number of

data and low variance of noise.

The authors of [16] have shown that this methodology does not maintain the probability
level of the region Cβ(α, ω) with respect to the parameters domain. They have proposed a
two steps projection to obtain the uncertainty in the Nyquist space that maintains the cor-
rect membership probability of the real transfer function. Instead, the authors of [17] have
explained how the variance changes by choosing a general model (such as Box Jenkins) or
by varying the signal-to-noise ratio and not only the noise variance. This leads to selecting
a correct input variance, during the experimental design, by the noise variance knowledge.

Kernel system identification, as for PEM, suffers from the variance of the identification since
the available dataset is noised. By assuming:

• β is a Gaussian random variableβ ∼ N (0,Σ), with zeromean and covariancematrix
Σ ∈ Rm×m,
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• e(t) is Gaussian and independent from β,

• e(t) and Φ are known,

the y and β are jointly Gaussian variable [35, Chapter 2], as described in A, therefore the
parameters vector can be seen as a posterior distribution β|y ∼ N

(
β̂, Σ̂

)
. Mean and

variance are compute respectively by the closed forms (A.17b) (A.17c). In this way, kernel-
based identification is endowed with the uncertainty represented by the variance of the
posterior distribution. This representation is enough even if we consider all uncertainty
sources (bias and variance) since the resulting model has low bias.

As for PEM, the input design can induce a variation in the covariance of the posterior Σ̂
(A.17c). In [57], the authors have explained how the input can be shaped when the kernel
choice is known before the experiment design step. This is reasonable since most kernel
methods employ the Empirical Bayes Method to tune the hyperparameters (Appendix A).
The same is done in frequency domain, in [58].

Notice that PEM and kernel based produce a noise-induced bound called soft bounds (or
probabilistic bounds), this is defined as:

Var(G(ejω)) ∈ N (0,W ) , (2.114)

A further bound is the so-called hard bounds:∥∥Var(G(ejω))
∥∥
l
≤ O , (2.115)

where l = 1, 2,∞ and O is a finite number or a transfer function evaluated in frequency
domain.

A system identification methodology that produces a hard bound of the variance is called
Set Membership estimation [149]. Themain assumption is that e(t) is unknown but bounded.
the signal e(t) can be energy bounded or component-wise bounded. Specifically, the norm
applied to e(t) shapes the uncertainty set Be in the error space. The two most used norm
choices are:

• ∞-norm: which shapes B∞e as a cube, in the measurement spaces. The formalization
of the uncertainty space is:

B∞e =
{
e ∈ Rn×1 : ∥e∥∞ ≤ ϵ

}
. (2.116)

where e = [e(1), e(2), ..., e(n)] and the cube side is equal to 2ϵ.

• 2-norm: which shapes B2e as a sphere, in the measurement spaces. It is defined as:

B2e =
{
e ∈ Rn×1 : ∥e∥2 ≤ ϵ

}
. (2.117)

The sphere radius is ϵ.
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The uncertainty space Be is represented in measurement space by placing the center of Be
in the measured values y and by constructing a sphere or cube according to the type of
norm. This representation is called Measurement Uncertainty Set (MUS). Another graphical
portrayal of Be, called Estimated Uncertainty Set (EUS), corresponds to a projection into
the parameters spaces [112]. This is done by employing a function A : Rn → Rm that
makes the projection. The norm choice has also an implication in the form of MUS and
EUS, therefore, we highlight the distinction with:

• ∞-norm: the sets are denotedMUS∞ and EUS∞;

• 2-norm: the sets are denotedMUS2 and EUS2.

The first type is depicted in Figure 2.33, as illustrated at the left of the image, highlighted
in red, is reported MUS∞, its shape is a cube centered in y, instead EUS∞ is a polytope.
The second type is reported in Figure 2.34,MUS2 is in the left graph, highlighted in green.
As we expected, the shape of MUS2 is a sphere, instead EUS2 is an ellipse. The EUS size
gives us an indication of the "quality" of the estimation. The blue arrow, in both MUS∞ and
MUS2, represents the noise vector e = yT −y, where yT represents the true output values.

The range of each parameter βj is defined as β̂l
j ≤ βTj ≤ β̂u

j , since the real parameters
vector is βT ∈ EUS, by assuming zero bias and by defining the Estimate Uncertainty Interval
(EUI) as:

EUIaj =

[
min

β∈EUSa
βj , max

β∈EUSa
βj

]
=
[
β̂l
j , β̂

u
j

]
⊂ R, j = 1, ...,m , (2.118)

with a = 2,∞. The upper bound of the estimation error of the parameters is:

∣∣∣β̂j − βTj

∣∣∣ ≤ β̂u
j − β̂l

j

2
. (2.119)

Therefore, the symmetric center of EUS is β̂, i.e. the mean of the set. This highlights that if
yT is in MUS, the corresponding EUS contains βT .

The EUS is not the smallest set in the parameters domain that contains βT . To find this, we
have to construct a further set that is consistent with both prior knowledge and measured
data, called Feasible Parameter Set (FPS). If the parameter estimation is computed through
the Least Square optimization, therefore the output is y = Φ⊤β̂ + e and A becomes A =(
Φ⊤Φ

)−1
Φ⊤. Doing so, FPS is defined as:

FPSa =
{
β ∈ Rm×1 :

(
y −Φ⊤β

)
∈ Bae

}
, (2.120)

where a = 2,∞. Hence, a general parameters vector β, that is in FPS, is said to be feasible.
The relationship that ties the Estimated Uncertainty Set with the Feasible Parameter Set is
FPSa ⊆ EUSa [170]. From FPS, it is possible to create its parameters interval by computing:

PUIaj =

[
min

β∈FPSa
βj , max

β∈FPSa
βj

]
=
[
βl
j , β

u
j

]
∈ R, j = 1, ...,m , (2.121)
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with a = 2,∞.

Since FPSa ⊆ EUSa, therefore PUIaj ⊆ EUIaj . Thank to this, it is demonstrable that FPS
contains βT , since:

β̂l
j ≤ βl

j ≤ βTj ≤ βu
j ≤ β̂u

j . (2.122)

βl
j and βu

j can be found by a linear programming problem.

The optimal estimation β̂opt of the Set membership identification is given by the minimiza-
tion of the estimated error ϵ(β̂) with an estimated β̂, defined as:

ϵ(β̂) = sup
β∈FPS

∥∥∥β − β̂
∥∥∥ . (2.123)

In particular, β̂opt is such that ϵ(β̂opt) ≤ β̂ ∀β̂ ∈ Rm×1. So, the optimal estimation is the
central estimation of FPS , i.e. the mean β̂opt

j = β̂C
j =

βu
j −βl

j

2 .
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Figure 2.33: Graphical representations of B∞e in the measurements space and parameters
space.
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Figure 2.34: Graphical representations of B2e in the measurements space and parameters
space.

Often, the bound choice for linear systems is 2-norm, since the ellipse is easier to handle
than the polytope [18].
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Figure 2.35 represents the shape of the distribution in the stochastic case and the Set mem-
bership. The Set membership probability density of the noise e(t) is unknown but bounded,
instead using the stochastic model is unbounded, but assumed known (in this case Gaus-
sian). In [119], a combination of the probability densities between the stochastic identifica-
tion and the Set membership identification is studied, to model a multi-sensor system.

PEM / Kernel-based Set Membership

𝑝𝑑𝑓 𝑒

𝑒 𝑒

𝑝𝑑𝑓 𝑒

Figure 2.35: Analysis of the probability density function of all possible values of the noise.

Remark 2.8

The uncertainty sources are mainly the same between the robust control world and
the system identification literature, but there is a gap between the uncertainty rep-
resentations of the two kinds of literature.

Robust identification
The Robust identification identifies the nominal model and error model, i.e. a model that rep-
resents both bias and variance. The most famous robust modeling approaches are: Stochas-
tic Embedding (SE), Model Error Modeling (MEM) and Set Membership [142]. Note that
kernel-based system identification is not applied in this literature because the main assump-
tion is low bias, therefore the error model is approximated by the variance error.

Stochastic Embedding [66] defines the true system frequency response GT (jω) as a ran-
dom variable: GT (jω) = Ĝ0(jω) + ∆G(jω), where ∆G(jω) is the true model error model
(i.e. the bias term) designed as a random variable independent from the identified nominal
model Ĝ0(jω). The uncertainty region of the model error model is the variance term. If we
consider that the data are noisy, the model of the true system, evaluated in frequencies ωk

is ˆ̂
G(jωk) = GT (jωk) + ek, k = 1, ...,m, with ek is the noise of the frequency response

observations independent from GT (jω) and∆G(jω). Hence, by combining the noise term
and the bias term, the model can be represented as:

ˆ̂
G(jωk) = Ĝ0(jωk) + ∆G(jωk) + ek, k = 1, ...,m . (2.124)
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The authors of [65] use the linear regression to parametrize the nominal model as Ĝ0(β) =∑m
i=1 oiβi, where: O = [o1, ..., om] are m-dimensional vector of orthonormal basis func-

tions and β ∈ Rm is the parameters vector. Furthermore, the magnitude of model error
model is greater as ω increases. This is accounted by the basis functions. Hence, the bias
error can be modeled as Oβ̄Λ, where Λ is a random walk process over ω and β̄ ∈ Rm×1 a
priori known parameters.

In light of this, the identification procedure is composed of:

• Perform a pointwise Least-Squares, which delivers ˆ̂
G(jωk), where: k = 1, ..., nf

XVIII

and the input signal is enough exciting for the system;

• Compute the statistical properties of the output noise ek, usually assumed Gaussian;

• Choose a set of basis functionsO;

• Estimate β and Λ, with ˆ̂
G(jωk,β) = Oβ +Oβ̄Λ+ ek and chosen O. Specifically:

– β̂ is found based on the knowledge of ˆ̂
G(jωk). So, the nominal model is a least-

square approximation of ˆ̂G(jωk) in the subspace spanned by the basis functions;

– When no a priori information on the bias term is available, the model error
model parameters vector is chosen as β̄ = β̂;

– Λ is chosen in such a way that the variance of ∆G(jω) increases linearly after
a chosen critical frequency. Doing so, the undermodeling can be represented as
a multiplicative error;

– Compute the statistical properties ofOβ̄Λ.

The second approach, MEM, estimates the nominal model by adopting PEM method [93].
After, the model error modeling is done by computing the residual signal as:

ϵ(s) = Y (s)− Ĝ0(s)U(s) . (2.125)

Then, the model error model Ge(s) is identified using input and error observations. This
represents the model of the bias term. The confidence region ofGe(s) is given by exploiting
the uncertainty region of Ĝ0(s), identified by PEM (see Section 2.1), centered in Ge(s) and
truncated at 99% percentile. This is valid only if the model is unfalsified, which means:

Definition 2.12: Unfalsified model

A falsifying test is a test where the measured real system output is compared with
the signal estimated by the identified model and fed by the same chosen inputa. If
this difference is low, then the model is called unfalsified. Thus, if the model error
model is unfalsified, the model explains correctly the relation between the residual
and the input signal.

aThe dataset employed to perform this test differs from the system identification dataset.

XVIIInf is the number of frequency samples.
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The final model, i.e. the identified model that accounts also the bias and the variance, is
computed by frequency sampling the model error model and after that, these are added to
the model Ĝ0(s) (sampled with the same frequency vector). The construction of the final
model uncertainty region can be done in two ways [142]:

• The uncertain region of the final model corresponds to the uncertainty region of
model error model centered in the final model, depicted in Figure 2.36;

• Endowing the frequency response of the final model with a symmetric uncertain re-
gion. It is more conservative than the first option. The values of the uncertainty re-
gion boundary correspond the maximum value between the distances from the lower
and upper uncertainty boundary of the uncertainty region, found with the first way,
to the final model. This is done for each sampled frequency.

Note that the nominal model is unfalsified only if this is inside the final model uncertainty
region. It corresponds to saying that the uncertainty region centered in the model error
model contains the 0 value.

Magnitude

Frequency

Ĝ0(s) +Ge(s)

Ĝ0(s)

Figure 2.36: Graphical final model (nominal model plus model error model) endowed of
the uncertainty region (dashed lines).

Another observation is that, as already said, the residual can be seen as a sum of bias and
variance terms, as:

ϵ(s) = ∆G(s)U(s) + E(s) . (2.126)

where E(s) is the laplace transform of the signal e(t). Therefore, the model error model
Ge(s) endowed with its uncertainty is an estimation of ∆G(s). The model family must be
enough flexible to obtain an unbiased model, but the flexibility must be not unnecessary
flexible to avoid the overfitting phenomenon. Hence, the model family choice is not trivial.

The third methodology employs the Set membership estimation in a model error modeling
framework [169]. The procedure assumes the unknown but bounded of both residual and
noise signals. The strategy relies on: identifying the nominal model using the Set member-
ship estimation, then computing the residual as in (2.125). The third step is critical because it
chooses the noise bound and themodel error model structure. After that, the nominal model
error Ge(s) is identified. Specifically, if Ge(s) is parametrized as: Ge

(
s; ¯̄β

)
=
∑ ¯̄m

i=1
¯̄oi
¯̄βi,

then the Feasible Parameter Set of the model error model is given by:

FPSae =
{
¯̄β ∈ R ¯̄m×1

∥∥∥ϵ(s)−Ge

(
s; ¯̄β

)∥∥∥
a
≤ ν

}
; (2.127)
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where:

• ∥e∥a ≤ ν for a given ν > 0;

• ¯̄O = [¯̄o1, ..., ¯̄o ¯̄m] is the vector of basis function of the model error model;

• ¯̄β ∈ R ¯̄m×1 is the parameters vector of the model error model;

• a = 2,∞.

Thus, the model error model is identified using optimal or suboptimal estimator based on
(2.127). The last step consists of mapping the nominal model plus the model error model
onto the frequency domain [142].

A huge problem in practical applications is that the bound ν is set by the knowledge of the
user, so it may be too conservative or too small, leading to an empty FPSae .

Remark 2.9

The Robust identification allowsmodeling the bias error and the variance error terms
in an undermodeling setting. Some critical choices, such as the model family of the
model error model in SE or MEM or even the bound of the input noise in model
error modeling, with the Set membership method, make this methodology heavily
dependent on the prior knowledge of the real system.

2.5 Conclusions
Different kinds of literature are reviewed focusing on the role of the uncertainty, from the
modeling to the usage passing through the representation. Figure 2.37 depicts a scheme of
the concepts described in the Chapter 2. The straight arrows and lines represent a direct
connection between the terms/nodes, instead the dashed arrows represent a conceptual con-
nection. Specifically, the upper arrow between the uncertainty and LFT corresponds to the
uncertainty derived from the user’s knowledge, whereas the lower dashed arrow represents
the connection between the uncertainty derived from the identificationmethodologies. This
distinction means that the representation of the upper case is well defined in the literature,
instead the lower case has a gap between the two uncertainties representations. The other
dashed line represents the connection between the signal-based fault detection and robust
fault detection: these are not directly connected, but the signal-based one belongs to the
more general fault detection approach.
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Figure 2.37: Graphical resume of the state of the art.
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CHAPTER 3

Data-driven mixed-sensitivity control of LTI systems with
automated weighting functions selection

In this chapter, we present our theoretical contribution. The idea is to design a robust
controller through H∞ loop-shaping, specifically using a declination called S/T mixed-
sensitivity approach. The aim is to bridge the gap between system identification and robust
control synthesis, where uncertainty regions provided by the estimation methods can be
used to define an uncertainty set for robust stability. Typically, a model error model is used
to represent the modeling bias along with its variance (see 2.4.3). Instead, we propose to
employ kernel-system identification to perform a low-bias Robust identification. Doing so,
the user is relieved from:

• The model family and complexity selection;

• The model error modeling choices;

• The weights functions design of the S/T mixed-sensitivity algorithm.

Furthermore, the weight functions are data-driven designed with the aim to obtain both
robust stability-nominal performance and robust performance. For both design problems,
we compare our approach with PEM in a simulation benchmark. Results show how kernel
methods provide a more reliable uncertainty representation for robust control, due to their
low bias modeling capability. Finally, we describe also an extension of the proposedmethod,
where the goal becomes to deal with multiple uncertainty sources.

3.1 Motivation
Mixed-sensitivity control design [85] refers to a class of optimization based control problems
where the sensitivity function is shaped along with other closed-loop transfer functions
[153, Chapter 9]. Standard results in robust control theory [180] link the mixed-sensitivity
problem to the design of controllers that guarantee robust stability and performance under
bounded uncertainties [43, Chapter 4].
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However, the S/T mixed-sensitivity approach requires the selection of stable and proper
transfer functions that define stability and performance requirements of the feedback system,
and finding suitable instances of such weights is known to be the most critical task within
this framework. To this purpose, some general guidelines for the tuning of such weights
are given in the reference texts [67, 99], while specific ones for second-order plants and for
tracking sinusoidal signals are provided, respectively, in [13] and [123]. A common sugges-
tion is to first define the weighting transfer function for robust stability WT (z) based on
such guidelines, and then manually aim for an adequate weight WS(z) for control perfor-
mance [81, 98].

Although this rationale might sometimes lead to acceptable results in practice, its draw-
back is that WS(z) depends on the previously fixed WT (z), so that - if this weight is too
conservative- the designed controller will exhibit poor performance. The authors of [124]
faced the problem of tuning WT (z) based on the discrepancy among the models identified
at several operating regimes. The uncertainty information provided by the identification
approach is not leveraged, and the selection of the number and type of operating points
is a user choice. The weight WS(z) is still manually tuned based on the reconstructed
WT (z). The joint optimization of WT (z) and WS(z), along with the controller, is faced in
[87, 88, 125] under a robust performance constraint.

All the above approaches are based on the key assumption that a mathematical descrip-
tion of the system is available for control design. When this is not the case, a model is
usually identified from data through black-box approaches using some collections of mea-
surements. Since identification is here motivated by robust-control design, the model order
is usually selected to be relatively low [142] in order to keep the complexity of the controller
limited. However, in this way, undermodeling errors become usually not negligible and in-
put/output data prefiltering has to be employed to shape the arising bias error, although the
tuning of the prefilter band is nontrivial [168]. If not properly taken into account, the mod-
eling bias can compromise the uncertainty region that might not contain the true system,
thus jeopardizing the design of robust controllers. As an alternative solution, kernel-based
learning methods can be employed to identify an high-order low-bias modelKernel-based
methods are regularized approaches endowed with the Bayesian interpretation of Gaus-
sian Processes (GP), so that a posterior Gaussian distribution on the plant impulse response
can be obtained. The use of the kernel/GP approach allows one to get rid of the bias er-
ror (which is still present but practically negligible) and of its modeling, only assuming a
Gaussian output noise distribution (see also the recent works [95, 97]).

This work investigates the use of kernel-based learning methods for S/T mixed-sensitivity
H∞ control design as well as the opportunities offered by this approach for the selection
of the weighting functions, see Figure 3.1. More specifically, the derived uncertainty mea-
sure is used to determine the stability weight WT (z), based on which WS(z) is tuned by
a multi-objective optimization for maximum attainable control performance. In the pro-
posed approach, the data-driven design of the mixed-sensitivity weights has thus been au-
tomated and made non-iterative by reducing the user choices to the minimum. Specifically,
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3.1. Motivation

only some configuration parameters must be selected by the user. The automated design of
WT (z) relies on a randomized algorithm rationale that depends on an accuracy and confi-
dence levels for the reconstruction of the uncertainty bound. The design is first performed
non-parametrically in the frequency domain, so that it is necessary to specify a discrete
frequency grid for the transfer function evaluation. Then, a parametric model for WT (z)

is fit by specifying a model order. The automated design of WS(z) is performed solving
an optimization problem requiring the specification of the maximum allowed settling time
and minimum allowed overshoot, in terms of closed-loop step-response. The optimization
problem is considered feasible depending on a slack threshold.

Differently from the reviewed literature:

• We jointly consider a robust stability/nominal performance (or robust performance)
control objective, without limiting the use of the uncertainty set provided by identi-
fication to the robust stability aim. Rather, it serves for the purpose of WS(z) opti-
mization;

• As little as possible conservatism is encoded in WT (z), since it directly derives from
the kernel-based identification, where bias is negligible, so that only WS(z) is opti-
mized for the maximum attainable performance without affecting robust stability.

Prefiltering
Parametric
estimator

yF

uF

y

u

Model
error
estimator

Ĝ Ĝ±∆
Robust
control
design

WS(z)

K(z)

ŴT (z)a)

Kernel
estimator

y

u

Robust
control
design

K(z)

b)

E [f |y]

Var [f |y]
Projection
into FIR

Ĝ±∆ Weights
design

ŴT (z)

ŴS(z)

configuration parameters

Figure 3.1: (a) Identification for robust control approach common to many benchmark
methodologies, like stochastic embedding (SE) [64], model-error modeling (MEM) [92] and
Set membership (SM). The system input and output are denoted by u(t) and y(t) respec-
tively, with uF (t), yF (t) being their filtered versions. Ĝ0(z) denotes an estimatedmodel of
the plant, while ∆(z) is the estimated model uncertainty. (b) Our approach. E [f(t)|y(t)]
and Var [f(t)|y(t)] denote respectively the posterior mean and autocovariance of the im-
pulse response. WT (z) and WS(z) are weights functions in the S/T mixed-sensitivity
rationale, and K(z) is the designed robust controller. Blue lines indicate the information

needed from the user.

Remark 3.1

Note that, as said by Hjalmarsson in [73], for the separation principle when the iden-
tification procedure is done to obtain a controller, the user should first try to model
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as well as possible. After that any simplification can be performed without jeop-
ardizing the statistical accuracy. So, by the kernel-based system identification, the
best accurate model is identified and then the resulting non parametric function is
projected into an high-order Finite Impulse Response model to obtain a finite order
model without loosing any statistical accuracy.

Usually, theH∞ approaches lead to a controller of the same order of the augmented model
(nominal model and weighting filters). Note that by exploiting the kernel-based system
identification the resulting model is an high-order low-bias model, so it could jeopardizing
the applicability of the proposed method to a real world problem. To solve this, we have
employed the hinfstruct optimization method, doing so the user fixes the control struc-
tures as desired.

3.1.1 S/T mixed-sensitivity loop-shaping
Consider the unknown stable LTI SISO plantGT (z), where z−1 denotes the backward shift
operator, and two stable proper scalar weighting functionsWS(z),WT (z). The control aim
considered in this work is to design a LTI fixed-order controller K(z,ρ), parametrized by
the parameters vector ρ ∈ Rnρ×1, so as to minimize

J(ρ, GT ) := ∥H(z,ρ)∥∞ =

∥∥∥∥∥∥∥∥∥∥
WS(z)S(z,ρ)

WT (z)T (z,ρ)

∥∥∥∥∥∥∥∥∥∥
∞

, (3.1)

where S(z,ρ) = [1 +K(z,ρ)GT (z)]
−1 is the sensitivity function and T (z,ρ) = 1 −

S(z,ρ) is the complementary sensitivity function of the closed-loop system. The choice of
WS(z),WT (z) is critical and directly influencesK(z,ρ).

The S/T mixed-sensitivity problem (3.1) is often employed in robust control design for ro-
bust stability against multiplicative uncertainty at plant output [153, Chapter 9]. Let ∆(z)

a stable transfer function that satisfies the bounded real condition ∥∆(z)∥∞ ≤ 1, and con-
sider a multiplicative output uncertainty model set:

G(z) :=
(
1 + ∆(z)Wo(z)

)
GT (z) , (3.2)

where G(z) denotes a the perturbed SISO plant model and ∆(z) describes a normalized
bounded frequency-domain uncertainty withWo(z) its frequency magnitude [153, Chapter
7],[180, Chapter 9] (for further information see Section 2.1). As described in Section 2.2, this
method is declined from more generalH∞ loop-shaping.

The cost function (3.1) is similar to (2.39) by letting Wd(z) = WS(z)
I. This represents the

IThis description is written with discrete time systems, but is also valid for continuos time system.
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performance test. Instead, the robust stability test for the multiplicative uncertainty (de-
scribed in Section 2.1) is obtained as ∥WT (z)T (z,ρ)∥∞, this results by choosing Wo(z) =

WT (z) = Wn(z)GT (z) (where Wn(z) is defined in (2.39) and Wo(z) is defined in (2.17)).
With this representation: WT (z) shapes the uncertainty andWS(z) shapes the performance
requirements.

If, in (3.1), we consider also the ∥WQ(z)Q(z)∥∞ term, the problem shifts to S/T/KS

mixed-sensitivity loop-shaping. Doing so, we can shape some desired control performance
requirements by choosing properlyWQ(z).

Under these settings, the problem (3.1) is solved imposing that [43, Chapter 4]

J(ρ, GT (z)) < 1, for robust stability and nominal performance (3.3a)

J(ρ, GT (z)) < 1/
√
2, for robust performance (3.3b)

The demonstration is the following proposition:

Proposition 3.1: Design a robust performance controller by employing the
mixed-sensitivity cost function (3.1)

Before explaining how the robust performance can be obtainedwith the employment
of the mixed-sensitivity loop-shaping, we recap the sufficient and necessary condi-
tions of the stability and performance aims with multiplicative output uncertainty:

• Robust stability test:

∥WT (z)T (z,ρ)∥∞ < 1, ∥∆(z)∥∞ ≤ 1 , (3.4)

this corresponds to:
∣∣T (ejω,ρ)∣∣ < ∣∣∣ 1

WT (ejω)

∣∣∣ ∀ω.
• Nominal performance test:

∥WS(z)S(z,ρ)∥∞ < 1 , (3.5)

• Robust stability and nominal performance test:

∥WT (z)T (z,ρ)∥∞ < 1 & ∥WS(z)S(z,ρ)∥∞ < 1, ∥∆(z)∥∞ ≤ 1 , (3.6)

• Robust performance testa:∥∥H(ejω,ρ)
∥∥
1
=
∣∣WT (e

jω)T (ejω,ρ)
∣∣+ ∣∣WS(e

jω)S(ejω,ρ)
∣∣ < 1 ∀ω , (3.7)

this is a sufficient and necessary condition resulting from:

∥WT (z)T (z,ρ)∥∞< 1 &

∥∥∥∥ WS(z)S(z,ρ)

1 + ∆(z)WT (z)T (z,ρ)

∥∥∥∥
∞
< 1, ∥∆(z)∥∞ ≤ 1

(3.8)
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where the second inequality is found by considering the uncertain system in
the sensitivity functions:

1

1 +

(
1 + ∆(z)WT (z)

)
GT (z)K(z,ρ)

=
S(z)

1 + ∆(z)WT (z)T (z,ρ)
(3.9)

By minimizing the cost function (3.1), the resulting controller K(z, ρ̂) guarantees
the robust stability and nominal performance ifK(z, ρ̂) comply with:

∥H(z, ρ̂)∥∞ < 1 . (3.10)

This equation (3.10) corresponds to guarantee (3.6).
The robust performance test is quite similar to the cost function (3.1), since the only
variation consists of the type of the norm. So, the general relationships between
the norms help us to understand how to translate the inequality (3.10) for robust
performance aim.
By considering the Cauchy-Schwartz inequality [62, Chapter 2], the norms inequal-
ities can be written as:

∥d∥∞ ≤ ∥d∥2 ≤ ∥d∥1 ≤
√
l ∥d∥2 , (3.11)

where d ∈ Cl×1. Figure 3.2 shows the rationale of the norm inequalities. In light of
this, the robust performance test

∥∥H(ejω,ρ)
∥∥
1
< 1 ∀ω can be approximated by

employing the 2-norm as:

∥∥H(ejω,ρ)
∥∥
2
<

1√
2
∼= 0.707 ∀ω . (3.12)

where H(ejω,ρ) ∈ C2×1. Furthermore, to tie the equation approximate robust
stability test (3.12) with the mixed sensitivity cost function (3.1), we need to consider
the computation of the infinity norm for a dynamic system, computed as:

∥H(z,ρ)∥∞ = max
ω

σ̄
(
H(ejω,ρ)

)
, (3.13)

where (H(ejω,ρ) returns a vector of complex number evaluated in ω. By consider-
ing SISO systems, the infinity norm computation (3.13) becomes:

∥H(z,ρ)∥∞ = max
ω

∥∥H(ejω,ρ)
∥∥
2
. (3.14)

This resolution shows a direct relation between the infinity norm and the 2-norm
of a SISO dynamic system. Thus, by considering the equations (3.14) and (3.12), the
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robust performance controller can be obtained with the S/T mixed-sensitivity loop-
shapingb, ifK(z, ρ̂) comply with:

∥H(z,ρ)∥∞ <
1√
2
. (3.15)

Note that, this is a conservative approximation of the real robust performance test,
because there exist some solutions that meet the robust performance test (3.7), but
not agree with (3.15), as depicted in Figure 3.2.

aThe robust performance test shows that the prerequisites are nominal performance and robust
stability.

bWith S/T/KS mixed-sensitivity the robust performance is obtained by bounding the cost func-
tion with 1√

3
.

Figure 3.2: Comparison between ∥d∥1 < 1 and ∥d∥2 < 1/
√
2, where d ∈ C2.

Since GT (z) is assumed to be unknown, practical use of (3.1) for robust control under the
uncertainty description (3.2) requires the development of a plant model. Here we focus on
the case where a data-driven model Ĝ(z) is identified from a set of n input/output data
D = {u(t), y(t)}nt=1 collected from an open-loop experiment on the plat, so that

y(t) = GT (z)u(t) + e(t), (3.16)

where n is the number of measurements and e(t) is a randommeasurement noise satisfying
the following assumption.

Assumption 3.1: Bounded noise assumption

The noise e(t) in (3.16), acting at plant output, is possibly stochastic and norm-
bounded with |e(t)| < δ̄e, ∀t.

The randomness in e(t) influences the estimate of Ĝ0(z), thereby acting as a source ofmodel
uncertainty. We describe such uncertainty as in (3.2), where the boundedness of∆(z)W (z)

73



Chapter 3. Data-driven mixed-sensitivity control of LTI systems with automated weighting
functions selection

derives from the bounded nature of e(t). The aim of this work is to provide an automatic
data-driven tuning of the weight functions WS(z),WT (z) to design a controller K(z,ρ)

by minimizing the mixed-sensitivity cost J(ρ, Ĝ0) in (3.1), with Ĝ0(z) in place of GT (z),
so that the feedback system T (z) is robust to the modeling uncertainty endowed in the
identification process under Assumption 3.1, described by the uncertain model (3.2).

+ y(t)

WT (z)

+

z1(t)

−
K(z,ρ) Ĝ0(z) WS(z)

H

u(t) z2(t)

w(t)

(z)

Figure 3.3: S/T mixed-sensitivity scheme with multiplicative uncertainty and identified
model Ĝ0(z) for the design of the controller K(z,ρ). The term WT (z) represents the
uncertaintyweight function in the identification of Ĝ0(z). Instead, the termWS(z) depicts

the performance specification.

Figure 3.3 depicts the considered feedback system model with output multiplicative uncer-
tain systems. This model can be employed to design a controller which:

• Attenuates the disturbance d(t), withw(t) = d(t) = ∆(z)z1(t). In this configuration
the reference signal is r(t) = 0 ∀t;

• Tracks a reference signal, with w(t) = −r(t).

In our work, we consider the tracking problem.

Proof 3.1: Lower LFT representation for S/T mixed-sensitivity loop-shaping

By considering the lower LFT equation (2.37) and by studying the resulting tradi-
tional control synthesis scheme (depicted in Figure 2.13):

N(z) =



WS(z) −WS(z)Ĝ0(z)

0 WT (z)Ĝ0(z)

1 −Ĝ0(z)


. (3.17)

By substituting the elements of the matrixN(z) in the lower LFT form, we obtain:
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Fl(N(z),K(z)) =


WS(z)

0

+

−WS(z)Ĝ0(z)

WT (z)Ĝ0(z)

K(z)
(
1+Ĝ0(z)K(z)

)
−1

=


WS(z)

0

+

−WS(z)Ĝ0(z)K(z)Ŝ0(z)

WT (z)Ĝ0(z)K(z)Ŝ0(z)



=


WS(z)

(
1− T̂0(z)

)
WT (z)T̂0(z)



=


WS(z)Ŝ0(z)

WT (z)T̂0(z)


(3.18)

where Ŝ0(z) =
1

1+K(z)Ĝ0(z)
and T̂0(z) =

K(z)Ĝ0(z)

1+K(z)Ĝ0(z)
.

This is equal to the cost function of the S/T mixed-sensitivity loop-shaping.

Assumption 3.1 would call for a Set membership identification approach, in this framework
there is no guarantee that Ĝ0(z) is close to GT (z) in L2-norm [142], which is required for
the minimization of J(ρ, Ĝ0) to lead to the required robust control design, since modeling
bias might still be present. Thus, we investigate the research problem using stochastic ap-
proaches, were Ĝ0(z) ≈ GT (z) if the model is flexible enough. We focus our description
on low-bias kernel-based methods, where the only assumption is on the gaussianity of the
output noise e(t).

Assumption 3.2: Data-generating system and model assumptions

In Assumption 3.1 we assume a bounded-amplitude noise, this prior information is
not leveraged by standard kernel methods, which instead assume a Gaussian output
noise. However, the price paid for ignoring this information is way lower than the
price paid by using amodel with high bias in robust control design routines, as shown
in Section 3.3.
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3.2 Data-driven design of mixed-sensitivity
weights

This section shows the automatic design of mixed-sensitivity weights. Specifically, it em-
ploys the uncertainty information given by regularized kernel identification from aBayesian
regression point of view considering finite impulse response (FIR) models. The methodol-
ogy is well described in sections 2.4.2, 2.4.3 and A.3; but we resume the methodology setup.

Consider (3.16) with d(t) ∼ N
(
0, σ2

)
, where σ2 is the Gaussian noise variance, and the

FIR model of orderm

Ĝ0(z,β) =
m∑
i=1

giz
−i, β = [g1 g2 . . . , gm]⊤ . (3.19)

Assume that a prior distribution β ∼ N (0,K) is placed on β ∈ Rm×1, whereK ∈ Rm×m

is chosen as a tuned-correlated kernel [135], where the (i, o) element of K is defined as
Kio := δ · αmax(i,o) with δ > 0, 0 ≤ α < 1 are the kernel hyperparameters (for further info
see Table A.1). The posterior distribution β|y ∼ N

(
β̂, Σ̂

)
where β̂ and Σ̂ are computed

by the closed forms, respectively, (A.17b) and (A.17c). Where:

Φ := [x(1), x(2), . . . x(n)]⊤ ∈ Rm×n, (3.20a)

x(t) := [u(t− 1), . . . u(t−m)]⊤ ∈ Rm×1 (3.20b)

y := [y(1), y(2), . . . y(n)]⊤ ∈ Rn×1. (3.20c)

The kernel’s hyperparameters η = [α, δ]⊤ (along with the noise variance σ2
e ) can be esti-

mated by employing an Empirical Bayes scheme, bymaximizing the log-marginal likelihood
of the data, see (A.18).

The parameters β̂ are identified by (A.17b). The nominal model is denoted as Ĝ0(z) :=

G0(z, β̂). Relying on (A.17c) to estimate the modeling uncertainty set, the next section
presents the proposed scheme for data-driven tuning ofWT (z) andWS(z).

Remark 3.2

The result of the kernel-based identification is the posterior distribution θ|y, defined
by the mean θ̂ and variance Σ̂. These will be used in Section 3.2. Specifically, θ̂
defines the nominal model Ĝ(z), while Σ̂ allows to design ŴT (z) by estimating the
uncertainty bound through a random sampling of the posterior distribution θ|y.
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3.2.1 Design of the stability weight
Let Gp(z) := G(z,βp), with βp a random sample drawn from the posterior distribution
β|y ∼ N

(
β̂, Σ̂

)
. Define

Ω
(
ejω
)
:= max

p

∣∣∣∣∣Gp

(
ejω
)

Ĝ0 (ejω)
− 1

∣∣∣∣∣ , (3.21)

where Ĝ0(z) := Ĝ(z, β̂) is the nominal identified model. Robust stability against the mul-
tiplicative uncertainty model (3.2) requires that [180, Chapter 9]

Ω
(
ejω
)
≤
∣∣WT

(
ejω
)∣∣ , ∀ω ∈ [0, πfs] , (3.22)

where ω is specific pulse in rad/s and fs is the sampling frequency. The magnitude of the
least conservative WT (z) can be estimated evaluating (3.21) in a discrete grid of nm ∈ N+

frequenciesW = {ω1, ω2, . . . ωnm} ⊆ [0, πfs] for a set of np ∈ N+ samples. A nonpara-
metric sampled estimate of the magnitude ofWT (z) is thus∣∣∣ŴT

(
ejωm

)∣∣∣ = Ω
(
ejωm

)
, ∀ωm ∈ W . (3.23)

A stable and proper parametric model ŴT (z) can then be obtained by fitting a model of
adequate order to the magnitude frequency points (3.23), taking care that the magnitude of
the fitted model lies above (or is equal to) (3.23), see Section 3.4 for practical details.

The following proposition suggests how to select np
II.

Proposition 3.2: Uncertainty bound reconstruction

Define a fixed confidence level ζ ∈ (0, 1) and accuracy level ε ∈ (0, 1). Let

np ≥
1

2ε2
log

(
2

ζ

)
. (3.24)

Then, with probability ≥ 1− ζ , it holds that∣∣∣ŴT

(
ejωm

)
−WT

(
ejω
)∣∣∣ < ε, ∀ω, ωm ∈ W .

Figure 3.4 represents a snippet of the lower bound curve of np with ζ = ε =

[0.001, 0.002, ..., 0.05]. The red highlighted point represents the chosen values in
Section 3.3. The proof of this proposition is reported in Proof 3.2.

IIThe choice of nm is not critical. It suffices for the frequency grid to be resolute enough.

77



Chapter 3. Data-driven mixed-sensitivity control of LTI systems with automated weighting
functions selection

Figure 3.4: Lower bound curve of np with a subset of ε and ζ .

Proof 3.2: Chernoff bound

The proof of the Proposition 3.2 is a direct application of the Hoeffding inequality
[159, Chapter 8]. Let np independent random variables x1, ..., xnp , defined as:

xi = IBG

(
∆(i)(z)

)
(3.25)

where:
• IBG

(
∆(i)(z)

)
is an indicator function associated with the good value set:

IBG

(
∆(i)(z)

)
=

1 if∆(i)(z) ∈ BG
0 otherwise

; (3.26)

• Good value set is BG = {∆(z) ∈ BA : ∥Fu(M(z),∆(z))∥∞ < ϖ}a, where:
BA is described in (2.31), Fu(M(z),∆(z)) is the upper LFT defined in (2.8)
and ϖ is a performance level;

• ∆(i)(z) are the uncertainty samples;
• i = 1, ..., np.

Since xi ∈ [0, 1], letting snp =
∑np

i=1 xi, E [·] the average operator and ap-
plying the two-sided Hoeffding inequality, we get the bound of the probability
P
{∣∣snp − E

[
snp

]
)
∣∣ ≥ ε

}
as:

P
{∣∣snp − E

[
snp

]
)
∣∣ ≥ ε

}
≤ 2e

−2ε2

np . (3.27)
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where ε and np are defined in Proposition 3.2. Instead, putting ŴT

(
ejωm

)
=

snp

np

and WT

(
ejω
)
= E

[
snp

np

]
, the inequality (3.27) becomes:

P
{∣∣∣ŴT

(
ejωm

)
−WT

(
ejω
)∣∣∣ ≥ ε

}
≤ 2e−2ε2np . (3.28)

Since ζ = P
{∣∣∣ŴT

(
ejωm

)
−WT

(
ejω
)∣∣∣ ≥ ε

}
(as defined in Proposition 3.2), the

inequality is:
ζ ≤ 2e−2ε2np . (3.29)

Doing so, the Chernoff bound follows straightforwardly.
aThis set is valid for non-linear structured uncertainties, but in SISO systems with a single non-

linear uncertainty it coincides to an unstructured uncertainty.

Algorithm 3.1 summarizes the steps for the design of the uncertainty weight ŴT (z).

Algorithm 3.1: Design of ŴT (z)

Input: β̂, Σ̂,W , np

1 p = 0
2 while p < np do
3 Draw βp ∼ N

(
β̂, Σ̂

)
using β|y

4 Set Gp = G(z,βp) as in (3.19)
5 end while

6 Compute
∣∣∣ŴT

(
ejωm

)∣∣∣ from (3.21) and (3.23) usingW
7 Fit a stable proper parametric model ŴT (z) on frequency domain magnitude data

in Step 7
Output: ŴT (z)

3.2.2 Design of the performance weight for nominal
performance

As described in Section 3.2, the proposed method is applicable to a general class of systems.
However, in practical applications, a second-order reference model is often sufficient to
express the main dynamics of a desired closed-loop behaviour, in terms of step-response
settling time and overshoot. For this reason, we consider a continuous-time second-order
reference model Td(s) for the closed-loop system T (s)

Td(s) :=
ω2
n

s2 + 2ξωns+ ω2
n

. (3.30)
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where ωn is the natural frequency of the poles and ξ is their damping factor, that can also
be expressed as

ξ =
|ln (o)|√

π2 + ln2 (o)
, (3.31a)

ωn =
ωc√√

4ξ4 + 1− 2ξ2
=

4

ξℓ
, (3.31b)

with o, ℓ denoting the step response overshoot and settling time of T (s), respectively, and
ωc denotes its critical frequency.

A simple approach to define the performance weightWS(s) in continuous time is to employ
the inverse of the sensitivity function from the reference model (3.30), so that

WS(s) := (1− Td(s, o, ℓ))
−1 . (3.32)

Then,WS(z) can be obtained by discretization of (3.32).

Remark 3.3

Doing so, we obtain a correspondence between the frequency domain and the time
domain. Thus, the nominal performances of the resulting robust controller can be
easily evaluated in both domains.

Since
∣∣S (ejω)+ T

(
ejω
)∣∣ = 1 ∀ω, the robust performance condition under (3.2), see [180],

max
ω

∣∣WS

(
ejω
)
S
(
ejω
)∣∣+ ∣∣WT

(
ejω
)
T
(
ejω
)∣∣ < 1 (3.33)

implies that [43]

min
(∣∣WS

(
ejω
)∣∣ , ∣∣WT

(
ejω
)∣∣) < 1 ∀ω ∈ [0, πfs] . (3.34)

Given ωc,ŴT
∈ [0, πfs] the critical frequencyIII of ŴT (z) attained from Algorithm 3.1,

relation (3.34) poses a performance limit on the bandwidth ofWS(z), that cannot exceed of
ŴT (z). The automatic design ofWS(z) aims to find the best values of (o, ℓ) so thatWS(z)

is stable and (3.3), (3.34) are satisfied.

Let omin ̸= 0 be a user-definedminimum allowable overshoot level. Theminimum allowable
settling time ℓmin can be computed from (3.31) using omin in (3.31a) and subsequently ωc,ŴT

in (3.31b). Then, the following multi-objective optimization problem is solved to design
ŴS(z):

IIIWith the term “critical frequency” we denote the frequency where the magnitude of a transfer function
crosses the 0 dB axis.
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(O,L) = arg min
o,ℓ

(o, ℓ) (3.35a)

s.t.min
ρ

J
(
ρ, Ĝ0, ŴT ,WS(o, ℓ)

)
< 1 + γ , (3.35b)

omin < o < 1 , (3.35c)

ℓmin < ℓ < ℓmax , (3.35d)

where (O,L) are two sets of Pareto-optimal dominant solutions for the overshoot and set-
tling time, respectively. Problem (3.35) is subject to the following constraints:

• (3.35b) requires the satisfaction of the robust stability and nominal performance con-
dition (3.3a), based on the nominalmodel Ĝ0(z) and the tuned stabilityweight ŴT (z).

Remark 3.4

The sensitivity function has the property of: S(ejω) → 1 with ω → πfs,
therefore, WS(e

jω) has the same behavior. Hence, the robust stability con-
straint is not feasible for frequencies near to πfs. The constraint (3.35b) solves
this problem by introducing a small positive slack quantity γ ∈ R+. This guar-
antees the feasibility of the optimization problem, also in spite of numerical
inaccuracies.

• (3.35c) and (3.35d) bound the overshoot and settling time in feasible ranges. The value
ℓmax can be defined by the user and it is not critical.

The estimates (ô, ℓ̂) ∈ (O,L) are chosen as the point closest (in Euclidean distance) to
(omin, ℓmin) in the space defined by overshoot and settling time, see Figure 3.5. Thus, the
tuned performance weight ŴS(s) is set as

ŴS(s) =
(
1− Td(s, ô, ℓ̂)

)−1
(3.36)

and ŴS(z) follows from discretization of (3.36). Algorithm 3.2 summarizes the steps for the
tuning of the performance weight ŴS(z). Finally, the designed controller K̂(z) := K(z, ρ̂)

is found by solving (3.1) using Ĝ0(z), ŴT (z) and ŴS(z).

Remark 3.5: Performance weight stability

Each iteration of (3.35b), as well as discretization of (3.36), requires a stable and
proper WS(z, o, ℓ). To guarantee this, the following steps are followed:

• A continuous-time reference model Td(s) as in (3.30) is computed using the
current values of (o, ℓ),

• The magnitude of (3.32) is evaluated into the frequencies grid inW ,
• A stable and proper parametric model is fit on frequency magnitude data, as
in Step 8. of Algorithm 3.1.
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Figure 3.5: Multi-objective optimization with Pareto frontier and selection of the chosen
solution in the set of dominant ones.

See Section 3.4 for details.

Algorithm 3.2: Estimation of ŴS(z) for nominal performance and robust stability
Input: ŴT (z), γ,W , omin, ℓmax

1 Set ωc,ŴT
as the critical frequency of ŴT (z). If ŴT (z) does not cross 0 dB, we set

ωc,ŴT
= πfs

2 Set ξ =
|ln (omin)|√

π2 + ln2 (omin)
, ωn =

ωc,ŴT√√
4ξ4 + 1− 2ξ2

, ℓmin =
4

ξωn
using (3.31)

3 Solve (3.35) to get (O,L), considering Remark 3.5
4 Select point estimates (ô, ℓ̂) ∈ (O,L) closest to (omin, ℓmin)

5 Compute ξ̂ =
− ln (ô)√
π2 + ln2 (ô)

, ω̂n =
4

ξ̂ℓ̂
using (3.31)

6 Set the reference model Td(s) =
ω̂2
n

s2 + 2ξ̂ω̂ns+ ω̂2
n

7 Set ŴS(s) = (1− Td(s))
−1 as in (3.36)

8 Evaluate
∣∣∣ŴS (jωm)

∣∣∣ usingW
9 Fit a stable proper parametric model ŴS(z) on frequency domain magnitude data

in Step 8
Output: ŴS(z)

3.2.3 Design of the performance weight for robust
performance

The weight function ŴS(z), designed with (3.36), cannot be used with robust performance
aims, since the performance requirements will be too stringent. This is due to the feasibility
problem explained in Remark 3.4. Thus, the performance requirements must be embedded
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inWS(s) in a different way. Another simple technique directly defines: low-frequency gain
lg , critical frequencyωc and high-frequency gainhg of a discrete filter with amonotonic gain
profile. Specifically, we bound the domain of the high frequency gain and critical frequency
by: hg ∈ [hg_min, hg_max] and ωc ∈

[
ωc_min, ωc,ŴT

]
, where: ωc_min, lg, hg_max, hg_min are

user-definedIV.

Furthermore, a robust performance controller designed with S/T mixed-sensitivity loop-
shaping usually guarantees J(z,ρ) < 1/

√
2, but this is an approximation and it overcon-

straints the problem, as described in Proposition 3.1. Our proposed method instead employs
directly the sufficient and necessary condition ∥H(z,ρ)∥1 < 1.

Doing so, the optimization problem (3.35) becomes:

(Z,Q) = arg min
ωc,hg

(−ωc,−hg) (3.37a)

s.t. ∥H(z,ρ)∥1 < 1, (3.37b)

ωc_min < ωc < ωc,ŴT
, (3.37c)

hg_min < hg < hg_max. (3.37d)

Remark 3.6

or each iteration of (3.37), the controller parameters ρ are obtained by minimizing
J(ρ, Ĝ0(z)).

Where:

• (Z,Q) are respectively critical frequency and high-frequency gain sets of Pareto-
optimal dominant solutions;

• The constraint (3.37b) guarantees robust performance feature.

• The cost functions aim to find the highest feasible values of high-frequency gain and
critical frequency, therefore the objective functions become the minimization of−ωc

and −hg . Remember that the inverse of the uncertainty weight shapes the band and
gain of the sensitivity function since the constraint |1/ŴS(e

jω)| <
∣∣∣Ŝ0(e

jω)
∣∣∣ must be

guaranteed for all frequencies. Therefore, if 1/ŴS(z) has an high gain profile, then
the allowable gain profile of Ŝ0(z) is high, otherwise with low values of |1/ŴS(e

jω)|,
the
∣∣∣Ŝ0(e

jω)
∣∣∣ is low (under the gain profile of the inverse of the uncertainty weight).

Since the ideal choice of a controller aims to shape the sensitivity function asS(z) = 0

[122], the goal is to obtain the highest values of hg and ωc.

Finally, the estimates (ω̂c, ĥg) ∈ (Z,Q) are found trough the minimum Euclidean distance
from (ωc,ŴT

, hg_max), then the performance weight is defined as a filter with a monotonic

IVlg has a high value as desired. hg_max, hg_min < 0dB, where the max value is near to 0dB. Instead, hg_min
and ωc_min are low as desired. Their choices are not critical if the two domains are big enough.
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gain profile, defined by: lg , ω̂c and ĥg . The practical aspects to design WS(z), from ω̂c lg

and ĥg , will be shown in 3.4.

Algorithm 3.3: Estimation of ŴS(z) for robust performance
Input: ŴT (z), γ,W , hg_max, hg_min, ωc_min, lg

1 Compute ωc,ŴT
, the critical frequency of ŴT (z). If ŴT (z) does not cross 0 dB, we

set ωc,ŴT
= πfs

2 Solve (3.37) to get (Z,Q), considering Remark 3.5 and Remark 3.6
3 Select the couple (ω̂c, ĥg) ∈ (Z,Q) closest to (ωc,ŴT

, hg_max)

4 Set ŴS(z) as a filter with monotonic gain profile, defined by: lg , ω̂c and ĥg

Output: ŴS(z)

Remark 3.7

Both multi-objective problems (3.35) and (3.37) can be cast to a single-objective prob-
lem by multiplying the less important cost function by zero. This leads to high cus-
tomization according to user needs. For instance, if the user would like to obtain a
controller that guarantees robust stability and nominal performance and minimize
the settling time without caring about overshoot the cost functions of (3.35) becomes
arg min

o,ℓ
(o, 0 · ℓ). Doing so, the Pareto-front will be composed of a single point and

so step 4 of Algorithm 3.2 or step 3 of Algorithm 3.3 are negligible.

3.3 Numerical example

3.3.1 Experimental setup
Consider the following benchmark system [86]

GT (z) =
0.28261z + 0.50666

D(z)
, (3.38a)

y(t) = GT (z)u(t) + e(t) = yT (t) + e(t), (3.38b)

D(z) = z4−1.41833z3+1.58939z2−1.31608z+0.88642, sampled at Ts = 1/fs = 0.01 s.
We simulated n = 5000 data from (3.38) using a zero mean white noise input and a bounded
zero mean white noise disturbance e(t) with SNR = var [yT (t)] /var [e(t)] = 25. The
boundaries were set so that no saturation in e(t) was present. The first 1000 data are dis-
carded to remove the transient effects from the data. The FIR order for kernel identification
is set as m = 100.

We compared kernel identification with PEM using an Output Error (OE) model set G, con-
sidering two cases:

• GT /∈ G (PEM undermodeling): the OE orders are chosen from 1 to 3 selected by
Akaike Information Criterion (AIC);
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• GT ∈ G (PEM full): the OE orders are chosen from 1 to 10 selected by AIC;

In the PEM cases, we follow the same procedure devised in Section 3.2 for estimating the
uncertainty weight WT (z). In both PEM and kernel cases, we assume to know the true
value of the noise varianceV.

By selecting ζ = 0.05 and ε = 0.05 the number of sampled system is set as np = 738

following (3.24), and the number of sampled frequencies is set to nm = 600, logarithmically
spaced in the range

[
10−3, πfs

]
rad/s.

For all the three identification settings, we test the following weights design strategies:

• DS1). Manual design ofWS(z) andWT (z);

• DS2). Manual design of WS(z) and automatic design of WT (z) using the approach
of Section 3.2.1;

• DS3 - Proposed). Automatic design of WS(z) andWT (z).

For the design strategy DS1), we use the following settings: the WT (z) shape is set as a
discrete filter with a gain monotonic profile, made by low-frequency gain of 10 dB and a
high-frequency gain of 40 dB. The cut off frequency is fixed to a bit less than the first reso-
nant peak of GT (z), i.e. 40 rad/s. The manual setting of WS(z) is established by imposing
a settling time of ℓ = 1 s and an overshoot of o = 0.01.

The chosen controller structure is :

K(z,ρ) = kp + ki
Ts

z − 1
+ kd

1

Nd +
Ts
z−1

, (3.39)

where ρ = [kp, ki, kd, Nd]
⊤ ∈ R4×1 and Ts is the sampling time. The performance of the

controllers K̂(z), designed by solving problem (3.35) with γ = 0.1, omin = 0.01, ℓmax = 5 s
in all the aforementioned conditions, are evaluated by drawing nv = 200 random open-loop
systems from the Gaussian distributionsN (β̂, Σ̂) of PEM and kernel parameters estimates,
centered at the respective estimate Ĝ0(z)

VI.

3.3.2 Robust stability and nominal performance results and
discussion

Figure 3.6 shows the estimate Ĝ0(z) of the open-loop transfer function GT (z). The PEM-
undermodeling (denoted as PEM u.m.) case is able to fit only the first resonance peak, while
the full PEM and kernel identifications attain almost perfect results.

The images of Figure 3.7 depict frequency responses of some Gp(z) extracted from the
estimated distributions of all three identified systems.

VThis assumption is not critical since the noise variance can be estimated with good accuracy from data.
VIFor the PEM case, this assumes that GT ∈ G.
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Figure 3.6: Identification of the transfer function GT (z). The PEM undermodeling ap-
proach cannot model the second resonance peak. The PEM full approach perfectly rep-
resents the true system due to its exact structure selection. The kernel approach attains
almost perfect results, apart of a slight bias at low frequencies due to its regularized nature.

(a) Gp(z) extracted from PEM with undermodeling
identification.

(b) Gp(z) extracted from PEM-full identification.

(c) Gp(z) extracted from kernel identification.

Figure 3.7: Frequency response of 50 Gp(z).

The images of Figure 3.8 show the estimates of the uncertainty weight ŴT (z), using a

86



3.3. Numerical example

(a) ŴT (z) obtained with PEM with undermodeling
identification.

(b) ŴT (z) obtained with PEM-full identification.

(c) ŴT (z) obtained with kernel identification.

Figure 3.8: Uncertainty weight WT (z) estimation. (Continuous line) Magnitude of the
parametric model ŴT (z). (Dots) Nonparametric estimate Ω(ejωm). (Dashed line) The
gain of the frequency response of Gp(z)

Ĝ0(z)
−1, where the systemsGp(z) are drawn from the

sampling distribution of the parameters estimates. The dashed lines are a subset of the np

systems for graphical purposes.

second order proper transfer function model. In all the cases, the estimate lies above (or it is
equal to) the upper bound Ω(ejωm) in (3.23), which is computed considering np extractions
of systems from the respective parameters distribution of each identification method. We
notice how PEM-undermodeling attains a similar uncertainty level as PEM-full; however,
in the former case also a bias contribution is present in the identified model. The bias is
negligible in the PEM-full and kernel cases, the latter of whose attains the highest modeling
uncertaintyVII.

The images of Figure 3.9 show:

• Left: a comparison of the complementary sensitivity function T̂0(z, K̂(z)) obtained
with the designed controller K̂(z) against its bound 1/ŴT (z) with margin γ defined
in problem (3.35);

• Right: a comparison of the sensitivity function Ŝ0(z, K̂(z)) against its bound 1/ŴS(z)

with margin γ.
VIIWe remark here that the PEM-full case is able to perfectly represent the true system GT (z).
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(a) Constraints analisys of PEM undermodeling.

(b) Constraints analisys of PEM-full.

(c) Constraints analisys of kernel identification.

Figure 3.9: (Left) (continuous line) Closed-loop complementary sensitivity function T̂0(z)
using the estimated controller K̂(z). (Dashed line) Inverse of the uncertainty weight
ŴT (z), that should lie above T̂0(z) for robust stability with margin γ. (Right) (continuous
line) Closed-loop sensitivity function Ŝ0(z) using the estimated controller K̂(z). (Dashed
line) Inverse of the performance weight ŴS(z), that should lie above Ŝ0(z) for nominal

performance with margin γ.

First, we note how all the controllers provide robust stability and nominal performance.
Second, the controller designed in the PEM-undermodeling case lead to a closed-loop sys-
temwith higher bandwidth with respect to the PEM-full and kernel cases. This derives from
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3.3. Numerical example

Figure 3.10: Integral Absolute Error of the closed-loop unit step response, over nv = 200
randomly sampled systems from the estimated parameters distribution. PEM u.m. stands
for PEM undermodeling. (Left) Design strategy DS1): manual design ofWS(z) andWT (z).
(Center) Design strategy DS2): manual design of WS(z) and automatic design of WT (z).

(Right). Design strategy DS3): automatic design of WS(z) andWT (z).

(a) Settling time index analisys. (b) Overshoot index analisys.

Figure 3.11: Performance indices analysis of the closed-loop unit step response, over nv =
200 randomly sampled systems from the estimated parameters distribution. PEM u.m.
stands for PEM undermodeling. (Left) Design strategy DS1): manual design ofWS(z) and
WT (z). (Center) Design strategy DS2): manual design of WS(z) and automatic design of

WT (z). (Right). Design strategy DS3): automatic design of WS(z) and WT (z).

constraint (3.35d), where the lack of the second resonance peak in the PEM-undermodeling
nominal model makes possible to the controller to attain an higher control bandwidth.

Figure 3.10 evaluates nv closed-loop unit step responses ŷstep(t) in terms of the Integral
Absolute Error (IAE) over a period of 4 s:

IAE =

4·Ts∑
t=1

|1− ŷstep(t)| . (3.40)

No relevant difference in performance can be observed in the design conditions DS1) and
DS2). In the DS3) design, all the identification approaches lead to a significantly better
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closed-loop performance. As already noticed, the PEM undermodeling case is the best one,
due to its higher control bandwidth. The PEM-full design performs slightly better than the
kernel method, but it has access to the true system parametrization.

Remark 3.8

The automatic ŴT (z) design leads to a high performance ŴS(z), since the manual
choice ofWT (z) usually is more conservative than the real system needs.

Results in Figure 3.10 might suggest that it is better to have a model with modeling bias
for robust control design. However, these performance are evaluated to systems sampled
from the parameters distribution centered on the Ĝ0(z) found by each respective identifi-
cation method. Instead good, if a modeling bias is present, the true system GT (z) might
not be included in the uncertainty set considered for robust control. Figure 3.12 compares
the closed-loop unit step responses of the design strategy DS3) using each identification
scheme. The PEM-undermodeling scheme performs fine on the nominal model Ĝ0(z), but
it is unstable on GT (z). The PEM full and kernel methods, instead, performs equally good
on the respective Ĝ0(z) and o GT (z). Again, the PEM-full approach has an advantage in
having access to the true system parameterization.

Remark 3.9: Bias and model error modeling

The presence of a large bias in the PEM-undermodeling and of a low bias in the
kernel cases should bring to the employment of a model error model approach to
describe the modeling uncertainty set (see Section 2.4.3). However, the main use of
kernel methods is exactly to avoid this bias modeling due to its negligible nature with
respect to the modeling variance. In the PEM-undermodeling case, an uncertainty
region that considers also a model error model would bring ŴT (z) to increase con-
siderably, thus attaining a lower critical frequency ωc,ŴT

that would have impacted
negatively the design of the performance weight ŴS(z), leading to a not adequate
controller tuning.

3.3.3 Robust performance results and discussion
The robust performance simulation is done with the same setup of the robust stability
and nominal performance. Furthermore, the parameters of the robust performance multi-
objective problem is set as: lg = 120dB, hg_min = −50dB and ωc_min = 1rad/s. We simu-
lated only our proposed method with the three identification setup, since the disadvantages
of manual design are already explained in the robust stability and nominal performance
simulation.

The images of Figure 3.13 show the ∥H(z,ρ)∥1 (straight line) resulting from the robust per-
formance design with data-driven S/T mixed-sensitivity loop-shaping. All colored curves
are below to the constraint (dashed line), this means that the three controllers (one of each
identification setup) guarantee that all systems, that belong to the uncertainty model, agree
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3.3. Numerical example

(a) Closed-loop step responses of PEM with under-
modeling.

(b) Closed-loop step responses of PEM-full.

(c) Closed-loop step responses of kernel.

Figure 3.12: (Continuous line) Closed-loop unit step responses on nominal model Ĝ0(z).
(Dotted line) Closed-loop unit step responses on the true system GT (z). (Dashed
lines) Performance requirements (ô, ℓ̂) estimated from problem (3.35). In the PEM-
undermodeling case the designed controller makes the true system unstable. In the PEM-

full case, the response on the nominal model and true system overlap.

with the performance requirements. For a further analysis, the images of Figure 3.17 illus-
trate the robust performance tests (3.8) for all three cases by using ŴT (z). As we expect, all
solutions meet the two robust performance constraints. Another graphical representation
of the robust performance condition is depicted in the images of Figure 3.14: these show
the sensitivity function of all dynamic systems of the validation set. Since the controller has
the robust performance aim, all sampled curves are less than ŴS(z). Nevertheless, due to
the bias in the PEM undermodeling identification, this is misleading, since the performance
of GT (z) in the time domain are different respect to the identified uncertain model.

Figure 3.15 reports the IAE (see equation (3.40)) distribution for the PEM undermodeling
(left), PEM full (center) and kernel (right) of the nv closed-loop unit step responses ŷstep(t).
The black and green stars represent the IAE of the closed-loop unit step responses of the real
system coupled with the controllers resulted from the three mixed sensitivity loop-shaping,
one for each identification setting. Using the kernel and PEM full identification methods,
the star belongs to the validation distribution of the nv closed-loop system. Instead, with
the PEM undermodeling the star does not belongs to the distribution, since the bias cause the
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Figure 3.13: Analysis of the robust performance test
∣∣∣ŴS(z)Ŝ0(z, K̂(z))

∣∣∣ +∣∣∣ŴT (z)T̂0(z, K̂(z))
∣∣∣ < 1 with all identification methods. Specifically, the images repre-

sent the results obtained with the three identification methods: (Left) PEM undermodeling
(Center) PEM-full and (Right) kernel-based.

Figure 3.14: Performance analysis of the sensitivity functions computed by the sampled
system from the validation set, denoted as Sp(z, K̂(z)) = 1

1+Gp(z)K̂(z)
. All sampled sys-

tems are compared to the inverse of the performance weight. Specifically, the images
represent the results obtained with the three identification methods: (Left) PEM under-

modeling (Center) PEM-full and (Right) kernel-based.

instability of the true closed-loop system and so the overshoot and settling time of the true step
response is out of scale. The images of Figure 3.16 depict the same representation of Figure
3.15, but considering the settling time (Figure 3.16a) and overshoot (Figure 3.11b) indices.

Remark 3.10

The proposed method for the robust performance problem gives an automatic design
of the performance requirements, found by the optimization problem (3.37). These
are not so interpretable as in the nominal performance and robust stability setting.
Indeed, we cannot check if whole distribution complies with some time domain con-
straints.
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Figure 3.15: Integral Absolute Error of the closed-loop unit step response, over nv = 200
sampled systems from the estimated parameters distributions. PEM u.m. stands for PEM
undermodeling. The black and green stars correspond to the performance indices obtained

with GT (z). The PEM u.m. star is out of scale.

(a) Settling time index analisys. (b) Overshoot index analisys.

Figure 3.16: Performance indices analysis of the closed-loop unit step response, over nv =
200 randomly sampled systems from the estimated parameters distribution. PEM u.m.
stands for PEM undermodeling. The black and green stars correspond to the performance

indices obtained with GT (z). The PEM u.m. stars are out of scale.

3.4 Computational aspects
This section describes practical aspects that might be of interest to the practitioner. The
results were obtained using Matlab software packages.

3.4.1 Computation of Ĝ0(z)

In the PEM cases, we fixed an OE(nb, nf ) model structure with nb, nf the numerator and
denominator orders, respectively, with 0 pure input/output delay. The search for the optimal
model is performed by fixing the same noe = nb = nf value for both the model orders.

In the kernel identification, first the kernel hyperparameters are estimated by optimizing the
marginal likelihood developed with the Cholesky decomposition (A.19), assuming a known
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(a) Constraints analisys of PEM undermodeling.

(b) Constraints analisys of PEM-full.

(c) Constraints analisys of kernel identification.

Figure 3.17: (Left) (continuous line) Closed-loop complementary sensitivity function
T̂0(z) using the estimated controller K̂(z). (Dashed line) Inverse of the uncertainty weight
ŴT (z), that should lie above T̂0(z). (Right) (continuous line) Uncertain closed-loop sensi-
tivity function Ŝ0(z)

1+ŴT (z)T̂0(z,K̂(z))
. (Dashed line) Inverse of the performanceweight ŴS(z),

that should lie above the uncertain closed-loop sensitivity function.

noise variance. The optimization is performed by fmincon where positiveness bound are
placed on the hyperparameters. Then, a FIR model of orderm = 100 is estimated.
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3.4.2 Computation of ŴT (z)

The uncertainty weight estimation is based on fitting the frequency domain data Ω(ejωm)

in (3.21) with the function fitmagfrd, that estimates a stable proper continuous time
transfer function model, solving a log-Chebyshev magnitude filter design [20, Chapter 6].
The function allows constraints on the filter magnitude, so we imposed that |ŴT (s)| >
Ω(ejωm)+ϵ, with ϵ = 2.2·10−16. We also weighted 100 times more the fit to the frequencies
in the range

[
10−3, 100

]
rad/s. The order of ŴT (s) is fixed to 2. Then, ŴT (s) is converted

to discrete time using the ’matched’ option of the c2d command.

3.4.3 Computation of ŴS(z)

The estimation of the performance weight is the most computational cumbersome part of
the proposed algorithm, The resolution of robust stability and nominal performance prob-
lem (3.35) is implemented using the functiongamultiobjwith a limit of 50 iterations. The
nonlinear constraint (3.35b) requires to solve an H∞ control design problem with ŴT (z)

the actual value of ŴS(z). This is solved by the hinfstruct function, considering 10
different initializations of the optimization procedure. This command solves theH∞ norm
with a fixed controller structure.

The design of ŴS(z) follows this rationale. First, a continuous time reference model Td(s)

(3.30) is defined using the actual values of (ô, ℓ̂). The magnitude of WS(s) = 1 − Td(s)

is sampled in the frequency grid W . Then, a continuous-time transfer function of order
20 is fit with the fitmagfrd command (with default options). This guarantees that the
resulting transfer function is stable and proper. Note that the samples are injected to the
function as lower bound data. The function is then converted to discrete time obtaining
ŴS(z), using the ’matched’ option of the c2d command.

The robust performance problem (3.37) is solved with the computational aspects as the
nominal performance and robust stability, while the design of ŴS(z) from lg, hg, ωc is done
with the makeweight command specifying the sampling time and default options.

For both problems the final designed controller is again fit with the hinfstruct com-
mand, with Ĝ(z), ŴT (z) and ŴS(z).

3.5 Conclusion
We presented a data-driven mixed-sensitivity control design approach for SISO LTI sys-
tems embedded with automated tuning of the weighting functions. The approach leverages
concepts from Robust identification and methods for assessing the bias and variance of the
estimated model. We show how kernel methods can cope well with the bias problem, al-
lowing an estimation of the model uncertainty region without the explicit need for building
a model error model as in standard literature. We propose two multi-objective optimization
problems for tuning the performance weight: one that guarantees the nominal performance
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and robust stability and another that designs a robust performance controller. The former
optimization problem allows to design the performance weight whose requirements are in-
terpretable for the designer and given in terms of closed-loop unit step response overshoot
and settling time. The performance weight resulting from the latter is less interpretable
since the requirements are given in terms frequency parameters of a monotonic gain pro-
file filter.
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CHAPTER 4

Data-driven mixed-sensitivity loop-shaping for multi-model
systems

This chapter presents an extension of the proposed method explained in Chapter 3. In par-
ticular, the data-driven S/T mixed-sensitivity loop-shaping deals only with the uncertainty
introduced by the measurement noise. In some practical applications, the proposed method
is not enough flexible. This extension aims to design a robust controller which guarantees
robust stability to deal with multiple sources of uncertainties.

Remark 4.1

This chapter describes the theoretical contributions of the proposedmethod. Instead,
the practical application will be described in Section 6.

4.1 Motivation
Often, some complex systems are afflicted by multiple sources of uncertainty, in addition to
the plant model uncertainty. These translate into a large variation of the model parameters
or of the model structure. Usually, in the control theory literature, this typology of models
is designed as amulti-model dynamic system. Specifically, this is defined as the combination
of a finite number of simple local models endowed by an uncertainty region [163, Chaper
9]. This region is called validity region and it is defined by choosing an upper bound that
constraints the euclidean norm of the model error. To assess which validity region contains
the local model, a validity function is defined. This can be modeled as a probability function
or as a fuzzy function. The latter is applicable if the validity regions are seen as fuzzy sets
[19]. Note that, the fuzzy logic theory is useful with a priori qualitative knowledge.

The multi-model can be casted to a single global model by using an interpolation technique.
This procedure is complex and it needs of local models with samemodel structure. However,
it allows to simplify the control design, since the global model is more easy to handle than
the multi-model.
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In literature, the multi-model design is also used to represent the nonlinear systems with
multiple linear local models that approximates the true systems in different operational
points [163, Chaper 9].

Note that each local model, endowed by its validity region, can be seen as an uncertain
system (Section 2.1), so the multi-model dynamic system can be represented also as an
∆−M model by using the Linear Fractional Transformation. The elements of the diagonal
of the matrix ∆ contain the information of the validity region. Instead, M(s) is a matrix
in which each element of the diagonal is the nominal transfer function of a local model.
In doing so, the robust control techniques can be used. An example of this methodology
applied to a flight control system is described in [89]. The main disadvantage of this method
is to select the weighting filters for each local model. An alternative technique is to design
a matrix of controllers, i.e. one for each local model. This is called nonlinear structured
controller. The so called two-stage interpolation algorithm is employed to limit the usage of
the active controllers. It selects which controllers are active in accordance with which local
models are currently used [163, Chaper 9]. The latter control design technique is closely
related to the gain-scheduling controller design. Typically, these methods employ a fixed
single or multi-loop control structures. The gain values of the controllers are embedded in
lookup tables and the functions that selects the gain values are called scheduling variables.
A withdraw of the gain scheduling control is that it does not guarantee any stability or
performance during a rapid change of the variables [150].

Our proposedmethod identifies a single system endowedwith a global outputmultiplicative
unstructured uncertainty, which assesses the variability region of all local models, through
multiple kernel-based identifications. In particular, it avoids the design on multiple weight-
ing filters and it simplifies also the interpolation technique of local models. The resulting
single robust controllers avoids the usage of the scheduling variables.

4.2 Data-driven weights design for S/T

mixed-sensitivity loop-shaping for
multi-model systems

Consider amulti-model system, the goal is to design a fixed-order controllerK(z,ρ), parametrized
by the parameters vector ρ ∈ Rnρ×1, by minimizing the S/T mixed-sensitivity cost func-
tion (3.1), as described in Section 3.1.1.

With multi-model systems, the problem shifts from unstructured uncertainty modeling to
structured uncertainty modeling with linear and nonlinear uncertainties. As suggested by
[153, Chaper 7], this general structured uncertainty can be also represented as a general out-
put multiplicativeI unstructured uncertainty, provided that the uncertainty poles (if exist),

IThemultiplicative uncertainty is preferred to the additive uncertaintymodel because their numerical values
are more informative.
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which belong to the uncertainty set, do not change the half-planes (from right half plane to
left half plane and vice-versa)II. This consideration plays a key role to cast the multi-model
dynamic system into a single general system endowed with unstructured uncertainty that
models both parameter variations andmodel variance. Thus, the innovation aims to identify
this general model by exploiting the low-bias kernel-based identification.

Note that, the experimental design is fundamental. Thus, we assume that the user only
knows the boundary configurations, i.e. the configurations which are considered as the limit
operational point. This assumption is not essential but allows us to handle the problem in
a simpler way.

Remark 4.2

From a practical point of view, the boundary configurations knowledge is more com-
mon to recognize with respect to the traditional approach, where the parametric
model is evaluated by its parameters range.

Figure 4.1 shows the frequency response of the boundary configurations. The boundary
configurations are denoted with GBU (z) the highest condition, represented in the red line,
and GBL(z) for the lowest condition, depicted in the blue line. The highlighted yellow
region contains the other configurations.
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Figure 4.1: Example of the boundary conditions frequency response.

The experimental design involves two experiments, one for each condition, linked by a
transient sector. The overall dataset is chosen as:

Dc=

{
u(1), ..., u(n), 0, ..., 0, u(1), ..., u(n), yBU (1), ..., yBU

(
n+

b

2

)
, yBL(1), ..., yBL

(
n+

b

2

)}
, (4.1)

where b is the number of samples that belong to the null sector. The transient sector is set up
as a null sector, which avoids possible discontinuities between the two configurations. The
input given to the two conditions is quite similar since the only variation is that: the upper
boundary condition input ends with half of the null sector, instead the lower boundary
condition begins with the half of the null sector.

Thus, using the kernel-based identification, the following dynamic systems are identified:
IIIf the system has this characteristic, the unstructured uncertainty should be designed as inverse multiplica-

tive output model.
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• ĜBU (z) by employing the sub-dataset Du = {u(1), ..., u(n), yBU (1), ..., yBU (n)};

• ĜBL(z) by employing the sub-dataset Dl = {u(1), ..., u(n), yBL(1), ..., yBL(n)};

• Ĝ0g(z) by employing the dataset Dc. This represents the average dynamic system
between the boundary conditionsIIIIV.

Remark 4.3

If the boundary conditions are not known, this procedure is easily scalable to design a
single huge experiment which contains all configurations. Then, the above multiple
identification procedures can be adapted.

A nonparametric sampled estimation of the magnitude of the overall uncertainty is com-
puted by exploiting the equations (3.21) (3.23), where:

• The parameters vector of the high-order FIRGp(z) is sampled from the two posterior
distributions:
βBU |yBU ∼ N

(
β̂BU , Σ̂BU

)
and βBL|yBL ∼ N

(
β̂BL, Σ̂BL

)
;

• The number of extraction np (see the proposition 3.2) are equally sampled between
the two distributions;

• The nominal dynamic system used in (3.21) is replaced by the mean dynamic system
Ĝ0g(z).

Therefore, the computation of the overall nonparametric sampled estimate of themagnitude
ofWT (z) becomes:

∣∣∣ŴT (e
jωm)

∣∣∣ = max
p

∣∣∣∣∣ Gp(e
jωm)

Ĝ0g(ejωm)
− 1

∣∣∣∣∣ , ∀ωm ∈ W . (4.2)

After, as for SISO systems, a stable and proper parametric model is obtained by fitting a
model to the resulting magnitude, as in Section 3.2.1.

Remark 4.4

The proposed procedure is convenient due to the low-bias nature of the kernel-based
identification, otherwise, in presence of bias, the construction of the general distri-
bution is not reliable and therefore, the resulting robust controller is useless.

Finally, the automatic design of the performanceweight for nominal performance (described
in Section 3.2.2) or robust performance (described in Section 3.2.3) is applied using the av-
erage dynamic system Ĝ0g(z) and the overall uncertainty ŴT (z).

IIIThe kernel-based identification applied to a dataset composed of two experiments performed on two dif-
ferent systems returns a model that is the average of the two systems.

IVNote that the average model shouldn’t represent real systems, but this is used only as a mathematical tool.
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Algorithm 4.1: Design of ŴT (z) and ŴS(z) for multi-model systems
Input: Ĝ0g(z), β̂BU , Σ̂BU , β̂BL, Σ̂BLW , np

1 p = 0
2 while p < np/2 do
3 Draw βp ∼ N

(
β̂BU , Σ̂BU

)
using βBU |yBU

4 Set Gp = G(z,βp) as in (3.19)
5 end while
6 while p < np/2 do
7 Draw βp ∼ N

(
β̂BL, Σ̂BL

)
using βBL|yBL

8 Set Gp = G(z,βp) as in (3.19)
9 end while

10 Compute
∥∥∥ŴT

(
ejωm

)∥∥∥ from (4.2) usingW
11 Fit a stable proper parametric model ŴT (z) on frequency domain magnitude data

obtained in Step 12
12 Perform Algorithm 3.2 or Algorithm 3.3 to compute ŴS(z) for robust stability and

nominal performance or robust performance
Output: ŴT (z), ŴS(z)

Remark 4.5

This methodology is also applicable to designing a fault-tolerant controller. The
two boundary configurations represent the healthy and faulty states. It is possible
since the fault condition is a priori known. Therefore, the robust controller works
in both states, without any unexpected behaviour. The main advantage of a robust
methodology employed to design a fault-tolerant controller is that the resulting ro-
bust controller does not change according to plant conditions [78, 121].

4.3 Conclusion and final remarks
We presented an extension of the methodology described in the previous chapter. The ro-
bust controller deals with the control of multi-model systems. The rationale consists of de-
signing a general experiment, which contains information about the boundary conditions
(given by the knowledge of the system). The boundary conditions allow to simplify the
problem, but their knowledge is not mandatory. Then, the automatic uncertainty weight
is given by multiple kernel-based system identification. Doing so, the multi-model sys-
tem can be represented as an uncertain LTI SISO system, where the uncertainty contains
both variance uncertainty and parameters uncertainty. This general uncertain system is em-
ployed to automatically design the weight functions employed in the S/T mixed-sensitivity
loop-shaping since the overall uncertainty is converted into an unstructured output mul-
tiplicative uncertainty. In Chapter 6, our proposed method is tested in a real multi-model
system.
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CHAPTER 5

Data-driven robust residual generator

This chapter presents another theoretical contribution. The idea is to design a robust resid-
ual generator based on the model uncertainty information, designed by the automatic un-
certainty weight design, proposed in Chapter 3. The robust residual generator is modeled
by the stable coprime factorization methodology. Specifically, we employ the Approximate
Fault Detection Problem (AFDP) [167]. Finally, we test the proposed method on a bench-
mark problem to evaluate the diagnosis performances.

5.1 Motivation
Model-based fault diagnosis employs a model that acts as a digital twin of the fault-free
plant. The model is developed by a model identification procedure. In this way, the model
uncertainties are implicitly accepted, as described in Section 2.1. Usually, in literature, the
uncertainties can be seen as an additive fictitious noiseI. With this insight, the robust coun-
terparts of the three fault diagnosis methods, described in Section 2.3, can be employed to
generate a robust residual generator which decouples the noise with respect to the residual
signal. Note that, the robustness of a residual generator is important because allows for
reducing false alarms.

In fault diagnosis literature, the uncertainty information is considered known and modeled
in Gv(z) (the transfer function from noise v(t) to the output y(t)). In this setting, the
so-called Approximate Fault Detection Problem (AFDP) is applicable, since v(t) ̸= 0. This
method guarantees that the generated residual is insensitive to disturbance and low sensible
to noise. As reviewed in Section 2.3.1, AFDP designs a filter by minimizing a cost function
which is proportional to the sensitivity of the residual to a fault and inversely proportional
to the uncertainties, described as unknown input noise. In [101], the authors solved AFDP
by employing the robust synthesis method. Instead, in [56] and [116], the robust residual
generator is coupled with a robust controller both designed with robust control synthesis.

IThe authors of [40] models the uncertainty as fictitious disturbance, but the meaning does not change,
since the only difference is that the disturbance can be fully decoupled from the residuals, instead the input
noise cannot be fully decoupled, but only reduced.
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By modeling the uncertainties as unknown but bounded noise, the Set membership identi-
fication can be used to develop a robust fault diagnosis technique, as proposed in [38, 137].
Specifically, these solve the problem of robustness by the passive technique (see Section
2.3.4). The paper [82] proposes a method that reconstructs the input and output signals of
∆(z) block in an LFT representation. In particular, by assuming that the uncertainty block
is bounded by 1, the output signal must be less than the input in a fault-free case, otherwise,
the system has a fault.

We propose a method which exploits the kernel-based identification to obtain a nominal
model endowed by its uncertainty quantity. Therefore, using the LFT representation, i.e.
modeling the uncertainty as an unstructured output multiplicative uncertainty, the Ap-
proximate Fault Detection Problem is solved by employing the identified uncertainty. The
resulting robust residual generator is obtained without exploiting any user’s knowledge.
Furthermore, we propose an automatic threshold design to compensate for the remaining
noise components in the residual signal.

5.2 Data-driven robust residual design
Let a SISO LTI dynamic system by considering an additive output noise term and the fault:

y(t) = GT (z)u(t) +Gf (z)f(t) + e(t) , (5.1)

with:

• f(t) represents the unknown fault signal;

• Gf (z) is a stable transfer function which describes the relation between the fault
and the output y(t) signals. Usually, with a sensor fault Gf (z) = 1, instead with an
actuator faultGf (z) = GT (z). SinceGT (z) is not availableGf (z) is chosen equal to
the identified nominal model Ĝ0(z);

• e(t) is the bounded additive noise signal (see Remark 3.1).

If we consider an uncertain system modeled by an output multiplicative uncertainty, the
equation (5.1) becomes:

y(t) = Ĝ0(z)

(
1 + ∆(z)WT (z)

)
u(t) +Gf (z)f(t) + e(t) , (5.2)

where: ∥∆∥ (z) ≤ 1 represents the uncertainty (unknown and bounded),WT (z) is a proper
and stable transfer function which describes the uncertainty weight function and Ĝ0(z) is
the nominal transfer function.

As described in [167, Chapter 2], the uncertainties are modeled as a fictitious noise v(t), so
the output signal can be written as:

y(t) = Ĝ0(z)u(t) +Gv(z)v(t) +Gf (z)f(t) , (5.3)
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where Gv(z) is a transfer function between the unknown noise v(t) and y(t).

By matching the two output representations (5.2) and (5.3), we implicitly impose the fol-
lowing equality:

Gv(z)v(t) = Ĝ0(z)∆(z)WT (z)u(t) + e(t) , (5.4)

where the noise term contains both output noise and fictitious noise. Our proposed method
employs the kernel-based identification to estimate Ĝ0(z) and ŴT (z), through the algo-
rithm 3.1 from the dataset D = {u(1), ..., u(n), y(1), ..., y(n)} modeled by (5.1), where:
n number of measured sampled, y(t) noisy measurements in healthy state and u(t) is the
input signal.

We estimate the uncertainty weight ŴT (z) as in 3.2.1, thus the equality (5.4) becomes:

Gv(z)v(t) = Ĝ0(z)ŴT (z)u(t) + e(t) . (5.5)

Thanks to this equality, we set Gv(z) =
[
Ĝ0(z)ŴT (z) , 1

]
and v(t) = [u(t) , e(t)]⊤. In

light of this, the robust residual generator can be designed by rewriting the cost function of
AFDP (2.55), as:

Q̂(z) = max
Q(z)

∥∥∥Q(z)M̂(z)Gf (z)
∥∥∥
∞∥∥∥Q(z)M̂(z)

[
Ĝ0(z)ŴT (z) , 1

]∥∥∥
∞

, (5.6)

where M̂(z) is derived from the left coprime factorization of Ĝ0(z) and Q(z) ∈ RH∞ is
the post filter.

The optimization problem (5.6) can be solved as proposed in [167, Chapter 5.3]. The authors
assume that the denominator is infinity norm bounded, this meets our Assumption 3.1 on
the additive noise applied to y(t). Specifically, the filter synthesis goal is to find the optimal
Q̄(z) that maximizes the fault sensitivity, given:∥∥∥Q(z)M̂(z)

[
Ĝ0(z)ŴT (z) , 1

]∥∥∥
∞
≤ γ , (5.7)

with a priori known γ ≥ 0. Thus, the optimal filter produces β > 0, such that:

β = max
Q̄(z)

{∥∥∥Q̄(z)M̂(z)Gf (z)
∥∥∥
∞

∣∣∣∣∣ ∥∥∥Q(z)M̂(z)
[
Ĝ0(z)ŴT (z) , 1

]∥∥∥
∞
≤ γ

}
. (5.8)

The value β/γ is a decoupling performance index, with γ = 0 the AFDP corresponds to
EFDP. This means that if β/γ is high, the decoupling performancewill be better. The solution
of the optimization problem (5.6), proposed in [167, Chapter 5.3], returns the least order
robust residual generator filter Q̂(z). Specifically, the resulting residual generator filter is
composed as Q̃(z)=[Q̂(z)M̂(z),−Q̂(z)N̂(z)].
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Remark 5.1

Due to the low bias of the kernel-based system identification the model uncertainty
corresponds to the noise-induced uncertainty, therefore the generated robust resid-
ual generator works also with the true plant.

Algorithm 5.1: Synthesis of Q̃(z) with automatic design of ŴT (z)

Input: β̂, Σ̂,W , np, γ
1 Compute ŴT (z) by using the Algorithm 3.1
2 Synthesis of the least-order robust residual generator filter Q̃(z) by optimizing

Q̂(z) = max
Q(z)

∥Q(z)M̂(z)Gf (z)∥∞
∥Q(z)M̂(z)[Ĝ0(z)ŴT (z) , 1]∥∞

. This is done through the algorithm

proposed in [167, Chapter 5.3], by setting γ. This algorithm returns also the
performance indicator β/γ.
Output: Q̃(z),β/γ

Since the fictitious noise in our case is well known, we propose also an automatic threshold
selection method, in line with the advice of [167, Chapter 5]:

τ = γ ·max (∥u(t)∥∞ , ∥e(t)∥∞) . (5.9)

This is useful since the optimization of (5.6) reduces the impact of the fictitious noise, but
does not avoid it entirely. So, the residual signal can be different from zero when the sys-
tem is healthy. As described in Section 2.3, there is a necessity to implement a thresh-
old that further reduces false alarms. Our choice is devoted to detecting the worst case of
the residual signal in healthy conditions. Therefore, by multiplying the maximum measur-
able peak of the input and measurement noise signals with respect to the peak gain γ of
Q̂(z)M̂(z)Gv(z), the worst case of the residual signal in the healthy state is computed and
it is set as the threshold value. Finally, if the residual signal overtakes the selected threshold
τ , the system is considered faulty.

Note that the knowledge of the fictitious noise is not employed during the post filter es-
timation, but in the threshold selection, therefore we exploit all the information gathered
during the system identification procedure.

Algorithm 5.2: Fault detection algorithm
Input: Q̃(z), Ĝ0(z), γ, u(t), y(t)

1 Compute the threshold τ using (5.9)
2 Compute the residual signal r(t) = Q̂(z)M̂(z)y(t)− Q̂(z)N̂(z)u(t)
3 Compare τ with respect to |r(t)|:

• If |r(t)| > τ then f(t) = 1;
• If |r(t)| < τ then f(t) = 0.

Output: f(t)
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5.3 Experimental results
The proposed method is tested on a benchmark plant, proposed in [40, Chapter 3]:

GT (s) =
47619

s3 + 234.0136s2 + 6857.1s+ 5442.2
. (5.10)

The identification is done with a white noise input signal with mean 0, variance 1, sam-
ple time Ts = 0.1s and n = 5000 samples. The output signal is corrupted with additive
bounded noise e(t). The signal to noise ratio of the output signal is
SNR = var [yT (t)] /var [e(t)] = 9. The first 1000 samples are not considered to avoid
the trasitory effect. The FIR order for the kernel-based identification ism = 100.

The automatic design of ŴT (z) is done by choosing ζ = 0.05 and ε = 0.01, the number of
sampled system is set as np = 18445 by following (3.24). Instead, the number of sampled
frequencies is set to nm = 600, logarithmically spaced in the range

[
10−3, πfs

]
rad/s.

Figure 5.1 shows on the left image the identification results and on the right image the
uncertainty weight resulting from the automatic design.

Figure 5.1: (Left) Identification results, where: the dashed line is the true system instead
the straight line represents the identified discrete model by using the kernel based identi-
fication (Right) Uncertainty weight WT (z) estimation, where: the continuous line is the
magnitude of the parametric model ŴT (z), the dots line is the nonparametric estimate
Ω(ejωm) and the dashed lines represent The gain of the frequency response of Gp(z)

Ĝ0(z)
− 1,

where the systems Gp(z) are drawn from the sampling distribution of the parameters es-
timates. The dashed lines are a subset of the np systems for graphical purposes.

Figure 5.2 depicts the resulting filter Q̂(z) generated from theAlgorithm 5.1. The filter, aswe
expect, has the inverse frequency response of the uncertainty weight ŴT (z). This means
that Q̂(z) filters out the components of the residual signal that belong to the most relevant
frequencies in the frequency response of the uncertainty weight.

The threshold is chosen as the proposed automatic method (5.9). Since all required infor-
mation to produce the threshold should be a priori known, the computation is very trivial.
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Figure 5.2: Comparison between ŴT (z) and the resulting Q̂(z).

The resulting residual generator is compared with the non-robust stable coprime factor-
ization residual generator, modeled as: r(t) = M̂(z)u(t) − N̂(z)y(t). To proof of the
robustness of the proposed methodology, we have applied a sensor fault modeled as an ad-
ditive step fault signal that arises at time 250 swith two different amplitudes: 30 and 3. The
images of Figure 5.3 depict:

• On the top plot the output healthy signal (black dashed line) compared with the faulty
output signal (red line);

• On the middle plot the absolute value of the residual generated by the non-robust
residual generator;

• On the bottom the absolute value generated by the robust residual generator, resulting
by our proposed method, compared to the threshold, selected as in (5.9).

The results show the robustness of our proposed methodology with respect to the non-
robust method. Specifically, both robust and not robust residual signals can detect f(t) =
30 · step(t + 2500Ts). However, the robust residual generator decouples better the noise
w.r.t |r(t)| since the sector of signal |r(th)| (with th < 250s) differs little with respect to the
sector |r(tf )| (with tf > 250s) computed with the not robust residual generator. Instead,
the second simulation shows that the not robust residual generator cannot detect the fault,
while the robust proposed technique detects correctly the fault.

5.4 Conclusions
The proposed method aims to design a data-driven robust residual generator using the sys-
tem identification results. The algorithm exploits a kernel-based system identification to
model the uncertainty information as an unstructured multiplicative uncertainty. Further-
more, the uncertainty information is used to design the least order filter that decouples the
uncertainty from the residual signal. The filter design is done by solving the Approximate
Fault Detection Problem (AFDP), since the uncertainty model is translated as an additive
fictitious noise. Furthermore, we propose also an automatic threshold design. The effec-
tiveness of the proposed method is shown on a benchmark dynamic system. The results

108



5.4. Conclusions

Not robust residual generator

Proposed robust residual generator

(a) Analisys of residual signal with fault step amplitude as 30

Not robust residual generator

Proposed robust residual generator

(b) Analisys of residual signal with fault step amplitude as 3

Figure 5.3: Comparison between robust and not robust stable coprime factorization vary-
ing the amplitude of the fault signal. The top image depicts healthy (black line) and faulty
(red line) sensed output signals. The bottom image shows the module of the residual signal
computed with the not robust residual generator. The bottom image illustrates the module
of the residual signal computed with the proposed robust residual generator (black line)

and the proposed threshold (red dashed line).

prove that the data-driven robust residual generation detects a sensor fault with the both
proposed fault signals, modeled as an additive step signal. Instead, with low amplitude fault,
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the not robust technique fails. Furthermore, the proposed threshold detects correctly the
faults.
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CHAPTER 6

Robust control design for a reconfigurable industrial oven

This chapter describes a real application that exploits the methodology proposed in Chap-
ter 4. The rationale is to design a robust controller through the data-driven S/T mixed-
sensitivity loop-shaping for multi-model systems. The plant under analysis is an oven for
heat shrinking. This system is complex and configurable. The aim is to design a controller
that guarantees robust stability for all configurations and nominal performance of some
requirements automatically designed. The results are evaluated by comparing the step re-
sponse of the closed-loop system obtained with the proposed method and with a manual
choice of the uncertainty weight.

6.1 Motivation
The industrial world is a competitive field. This industrial "race" leads to building the
cutting-edge machinery, which often translates into the development of customizable ma-
chines. This phenomenon is not trivial for the control community since these configurations
require a complex controller to guarantee that the plant works with all configurations.

Often, these configurable systems are translated into multi-model systems by the controls
engineers. These multi-model systems can be controlled in different ways, such as gain
scheduling control, Model Predictive Control (MPC) of even by robust control. As already
said in Chapter 4, the former does not guarantee any stability or performance during a rapid
change of the variables [150]. Instead, MPC controls the plant by solving an online opti-
mization problem in real-time [21]. Always, in the industrial context, the hardware is not
sufficient to solve real-time problems. The robust control literature helps us to avoid these
problems by guaranteeing stability and some performance requirements. We develop a con-
troller which stabilizes the plant under all configurations by solving an offline optimization
problem.

In this work, we apply the methodology presented in Chapter 4 to an industrial oven for
shrinking plastique films.
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6.2 Application context
The industrial oven context is considered part of the thermal engineering literature. The
thermal systems taxonomy ismainly: Heat, ventilation and air conditioning system (HVAC),
industrial furnace and industrial oven. HVAC controls the temperature, humidity, and pu-
rity of the air in an enclosed space. The authors of [4] and [177] have developed a mixed-
sensitivity loop-shaping for an HVAC. In both works, the weight functions are designed
manually. Specifically, the first work models the HVAC with a MIMO dynamic system.
These systems are complex to control with mixed-sensitivity loop-shaping because it leads
to a high number of manually tuned weight functions. The second work exploits a robust
control design for an HVAC system applied to an automotive air conditioning system. The
same robust control loop-shaping approach is developed for a thermoforming oven field
[60].

Notwithstanding the cons of the gain scheduling and MPC, in [178] and [118], the authors
have developed an MPC controller to regulate the temperature for a different types of fur-
nace. In [84], a Gain scheduling control is applied to control an HVAC.

Before evaluating the proposed method’s performance, in the next subsection, we describe
the properties of the oven under analysis.

6.3 Oven for heat shrinking
The plant under analysis is an industrial oven. This item is developed for heat shrinking
of plastique film. The plastique film cover different typologies of products, for instance:
plastique bottles, glass bottles or tin cans, etc.

1 2

3

4

5

Figure 6.1: The industrial oven for heat shrinking with the highlighted hot and cold air
flows.

The oven is composed of:

• Main hole: which is the biggest part of the system. It covers all the length of the
oven. The products, wrapped with the film, pass through it and thanks to the high
temperature the plastique film shrinks;
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6.3. Oven for heat shrinking

• Three internal fans: which are positioned on the top and equidistantly spaced. Two
of these are powered by a fixed signal, instead the third is controllable;

• Conveyor belt: which feeds the oven with the products wrapped by the plastique film.
Mainly, it is inside the main holeI. The height position is about at 1/4 (from the floor
of the main hole) of the total main hole height;

• Four external fans: two out of four cool the conveyor beltII, instead, the other two are
positioned over the oven entrance and exit, which cool the products;

• The oven temperature is measured by a single thermocouple positioned at the top
center of the main hole;

• The main hole is flanked by two cavities. They are two parallelepipeds which have the
same height and length as the main hole. These cavities are connected to the main
hole with some lateral slots positioned at 3/4 (from the floor of the main hole) of the
total main hole height. They share the area between the floor of the main hole and
the conveyor belt. The slots of the cavities can be totally closed or totally open;

• Some air deflectors: which are positioned inside the area shared between the cavities
and the main hole shared (under the conveyor belt and over the floor oven). These
direct the airflow without changing the amount of flow;

• Six thermoresistances: which heat the oven. They are powered by the same Pulse-
Width Modulation (PWM) signal. Their positions are into the concavities, three for
each. Their lengths are long as the main hole size;

• Input and output PVC strip curtains: which allow isolating the hot air inside the oven
with respect to the colder ambient air. If the industrial oven is in manufacturing, then
the PVC strip curtains remain open almost all the time (since the wrapped products
enter and exit), otherwise, in the "out of the production" condition, the curtains are
closed. They are positioned on the oven exit and oven entrance.

Figure 6.1 illustrates the industrial oven. The hot air flows are represented in red arrows
and the cold air flows in blue arrows. The following list explains the meaning of each arrow.
Specifically, each list item number corresponds to the number depicted in Figure 6.1. The
main air flows are:

1. The air inside the oven heats up in the concavities and it flows into the main hole
through the lower shared area. If the lateral slots are open the air recycling is higher
since the internal fans feed the concavities with the main hole air through the slots;

2. The hot air goes out of the oven through the input and output PVC strip curtains.
Obviously, if the oven is in production, then the quantity of this flow is higher than
the "out of the production" condition because the position of the curtains changes;

3. The three internal fans move down the hot air;
IA small part of the belt is outside the oven, specifically at the oven entrance and exit.
IIThey are positioned under the external part of the conveyor belt.
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4. The movement of the conveyor belt brings the outside air into the oven;

5. The external fans move up the clod air next to the PVC strip curtains.

A robust controller is needed to control all the oven configurations. A non-robust controller
can be ineffective, because the huge configuration variability can lead to undesired oven
behaviors.

The main assumptions of the proposed methodology are valid since the boundary config-
urations are known and the input and output dataset can be acquired in both conditions.
Table 6.1 reports the best and worst configurations.

Table 6.1: Boundary conditions features.

Worst Best

Conveyor belt ON ON

Conveyor belt fans ON OFF

Power frequency internal fans 50Hz 50Hz

Lateral slots Open Closed

Input and output PVC strip curtains Open Closed

Remark 6.1

The air deflector configurations are not considered in the analysis of the boundary
conditions, because their impact is much less than the effect of the other features
since they direct the flows without changing the quantity.

6.4 Experimental setup
The input and output signals are acquired through a simulator that simulates both condi-
tions, where the input is the duty cycle of the PWM of the six thermoresistances and the
output is the sensed temperature. The input signal can vary between 0% to 100%. The
simulator is developed to represents all possible configurations and it faithfully represents
the real plant.
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According to the experimental design, described in Section 4.2, Figure 6.2 shows the mea-
sured output data, sampled with sampling time Ts = 60 s. Specifically:

• We simulated n = 4800 samples for each configuration;

• The first and the last 400 samples for both configurations are acquired with null input;

• The first and last 1000 data of the general dataset are discarded to remove initial and
final transitory effects.

Note that the first sector corresponds the output of the industrial oven in the worst condi-
tion, instead, the second represents the output of the best condition. Since the most used
duty cycle values are between the 30% and 90%, the chosen input is an amplitude bounded
noise with mean 60 and standard deviation 30 for both segments.

Remark 6.2

It is important to highlight that the output signal does not contain some discontinu-
ities. This is fundamental to identifying the mean dynamic system with the kernel-
based identification.

Figure 6.2: The measured output signal of the general experiment.

The FIR order is set asm = 100.

The chosen controller structure is :

K(z,ρ) = kp + ki
Ts

z − 1
+ kd

1

Nd +
Ts
z−1

, (6.1)

where ρ = [kp, ki, kd, Nd]
⊤ ∈ R4×1. The multi-objective problem (3.35) is solved by setting

γ = 0.15, omin = 0.01, ℓmax = 10000 s.
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6.5 Experimental results
The design of ŴS(z) is designed for robust stability and nominal performance, however
the entire procedure is also applicable for the robust performance aim.

Figure 6.3a depicts the results of the identification procedure: the best condition is high-
lighted in orange, the worst condition in light blue and the average system in grey.

Figure 6.3b depicts the overall uncertainty ŴT (z) estimated by the Algorithm 4.1.

(a) Frequency response of the boundary condi-
tions ĜBU (z) (in orange), ĜBL(z) (in light blue)

and the average system Ĝ0g(z) (in grey).

(b) Overall uncertainty weight WT (z) estima-
tion. (Continuous line) Magnitude of the para-
metric model ŴT (z). (Dots) Nonparametric es-
timate Ω(ejωm). (Dashed line) The gain of the
frequency response of Gp(z)

Ĝ0g(z)
−1, where the sys-

tems Gp(z) are drawn from the sampling distri-
bution of the parameters estimates, in particular,
the orange lines depict the frequency responses
withGp(z) drawn from the best condition distri-
bution, instead, the light blue lines illustrate the
frequency responses withGp(z) drawn from the
worst condition distribution. The dashed lines
are a subset of the np systems for graphical pur-

poses.

Figure 6.3: Kernel-based identification and estimation of ŴT (z) results.

The controller parameters are estimated by exploiting the Algorithm 3.2. The images of Fig-
ure 6.4 show the graphical representation of robust stability and nominal performance con-
straints. The resulting controller guarantees the nominal performance and robust stability
since the inverse of the weight functions plus γ stay-over, respectively, the complementary
sensitivity function and the sensitivity function computed using the average model Ĝ0g(z).

The performance evaluation are done by random sampling the open-loop systems from the
Gaussian distributions N (β̂BU , Σ̂BU ) and N (β̂BL, Σ̂BL), specifically nv = 200 for both.
The step responses of the resulting 2 · nv closed loop systems are depicted in Figure 6.5.
Observe that the performance constraints (black dashed lines) are valid only for the closed-
loop of the system Ĝ0g(z) denoted as T̂0g(z) (grey dashed line) and, as we expect, both
constraints are respected.
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Figure 6.4: (Left) (Continuous line) Closed-loop complementary sensitivity function
T̂0g(z) using the estimated controller K̂(z) and the average system. (Dashed line)
1+γ/ŴT (z), that should lie above T̂0g(z). (Right) (Continuous line) Uncertain closed-loop
sensitivity function Ŝ0g(z), computed with the estimated controller K̂(z) and the average
system. (Dashed line) 1+γ/ŴS(z), that should lie above the uncertain closed-loop sensitiv-

ity function.

The performances of the resulting controller obtainedwith the data-drivenmixed-sensitivity
loop-shaping are compared to the performances of a controller synthesized with a manual
choice ofWT (z). Usually, the manual weight function is defined by three parameters: crit-
ical frequency ωc, high-frequency gain hg and low-frequency gain lg . In this application
example, we consider that:

• WS(z) is equal to the ŴS(z), i.e. the performance weight resulting from the auto-
matic weight function design;

• The critical frequency of the manual uncertainty weight is assumed equal to the crit-
ical frequency of ŴT (z).

In this way, we greatly simplify the real problem, since we reduce the tuning parameters
from 6 (three for each weight) to 2. Furthermore, we reproduce the trial and error design
for the last two tunable parameters by testing the S/T mixed-sensitivity loop-shaping on
all pairs of a test grid, structured as hg chosen from the vector [10, 20, 30, ..., 100] and lg

chosen from the vector [−50,−45,−40, ...,−5].

Figures 6.6 represents the cost function J(ρ̂, Ĝ0g(z)) resulting from the manual design for
all combinations of hg and lg . The red curve represents 1 + γ: the constraint of the data-
driven mixed-sensitivity loop-shaping. As depicted, only a small subset of the considered
manual choices ofWT (z) agrees with the constraint.

The images of Figure 6.7 represent respectively the curves of the indices: IAE, settling time
and overshoot. In all images, the green curve illustrates the performance of the proposed
design, instead the colored curve depicts the performance obtained with the controller de-
signed with the manual choice of WT (z). Both curves illustrate the average performance
indices obtainedwith the sampled 2·nv closed-loop systems. Specifically, the colored curves
in:
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Figure 6.5: Step responses of the 2 ·nv (nv for each boundary condition) sampled systems
coupled with the resulting controller K̂(z), compared to the step response of the average
dynamic system denoted as T̂0g(z). The black dashed lines represent the performance

constraints for Ĝ0g(z).

• The left images represent the curve obtained with the manual design for all couples
of hg and lg ,

• The right images depict a sections of the colored curves represented in the left images.
The couples hg and lg compose the right curves, if the corresponding cost functions
J(ρ̂, Ĝ0g(z)) computed with the manual WT (z) (designed with hg and lg) are less
than 1+ γ. Since the couples that agree with the cost function constraint are six and
all of these share the same hg value, the right curves are a represented as lines.

For all performance indices, the proposed method behave better than the manual design con-
sidering that WS(z) and the critical frequency of WT (z) are chosen by employing the results
of our automatic weights design.

6.6 Conclusions
The automatic weight functions design via kernel-based system identification applied to the
mixed-sensitivity loop-shaping, proposed in Chapter 3, is adapted to handle multi-model
systems. To do so, a general distribution, which embeds all parameters uncertainties and
model identification uncertainties, is developed. A key role is played by the experimental
design, as described in Chapter 4.

The proposed methodology is applied to an industrial oven which shrinks plastique films.
This application is complex since the oven hasmany configurations to operate with different
types of films and wrapped products. The result demonstrates that the data-driven weight
functions design:

• Avoids the trial and error procedure;
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Figure 6.6: Graphical representation of J(ρ̂, Ĝ0g(z)) by varying hg and lg . The red curve
depicts the relaxed constraint value 1 + γ.

• Outperforms all combinations of manual design of WT (z), despite, in this case, the
degrees of freedom of the problem of weight functions selection are reduced to sim-
plify the comparison.

As alreadymentioned, the overall uncertain system can be employed to control aims, thanks
to the low bias property of kernel-based identification. On the other hand, if we use a para-
metric identification with a wrong selected model family, the resulting overall distribution
is biased and thus the uncertain multi-model system does not represent the real plant. This
phenomenon leads to a useless controller that works with the model, but not with the real
plant.
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(a) Graphical representation of the average of IAE index.

(b) Graphical representation of the average of settling time index.

(c) Graphical representation of the average of overshoot curve index.

Figure 6.7: All images depict the average values of the performance indices computed on
the closed-loop system obtained by K̂(z) and the sampled 2 · nv dynamic systems. The
colored curves represent the results obtained with the manual design, instead the green
curve the results obtained with the proposed design. Specifically: (Left) Illustrates the
performance indices obtained with all couples of hg and lg , (Right) Report a portion of the
curves depicted in left images. This section is composed of the couples that meet with the

constraint J(ρ̂, Ĝ0g(z)) < 1 + γ (see Figure 6.6).
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CHAPTER 7

Experimental fault detection of input gripping pliers in
bottling plants

This chapter presents a signal-based fault detection scheme for input gripping pliers of the
blow molding machine in plastic bottling plants, using accelerometers data. The focus of
the diagnosis is on the bearings that support the pliers movements on their mechanical cam.
The rationale of the algorithm lies in interpreting the pliers’ bearings as the balls in a tra-
ditional rolling bearing. Then, strategies inspired by bearing diagnosis are employed and
adapted to the specific case of this work. The developed algorithm is validated with exper-
imental tests, following a fault injection step, directly on the real blow molding machine

7.1 Introduction
A bottling plant is a complex system that manages the entire production cycle for the sale
of beverages. These plants can be large, distributed, and have a complex layout, see [131].
This work focuses on the production process of PolyEthylene Terephthalate (PET) plastic
bottles. In this case, the input material is usually a rigid plastic preform. The process is
composed by a series of sequential operations, covering e.g.: (i) preform feeding; (ii) heat-
ing; (iv) blowing; (iv) bottles filling and capping; (v) labeling; (vi) transportation along the
production line; (vii) packaging and (viii) palletizing, see Figure 7.1. Each one of these pro-
cessing steps is performed by a specialized machine, with their respective mechanical and
electrical components. These machines are most of the times independently controlled, and
their synchronization is performed during the first setup of the plant by an expert operator.

The entire process stops if a machine or a component fails in one the main production steps,
often causing large wastes of wrecked bottles, liquid and caps. Furthermore, if e.g., bottles
get stuck in the blow molding machine, the operator has to manually extract them from
the molds or from the pliers, wasting a lot of useful production time. As an example, the
filling and capping machine stops if there is a lack of bottles from the input pliers, or if
there is a tailback of filled bottles at output pliers. The works of [25, 165] showed how
the unscheduled downtime in bottling plants can vary between 10% and 60% of the total
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production time. Thus, a fault diagnosis system is highly envisaged to reduce (and prevent)
the time wastes in this kind of production lines.

HEATING

Oven
Input conveyor

(preforms feeding)

Blow molding

BLOWING
FILLING &

CAPPINGLABELING

4 Input pliers4 Output pliers

PACKAGING

PALLETIZING

Conveyor belt

Figure 7.1: Example of a bottling plant with main machines. The blow molding machine
is highlighted as the main machine considered in this work.

The concept of fault diagnosis refers to the general usage of specific techniques to assess
the status of a system with respect to its possible faults (for further information see Section
2.3).

Fault diagnosis approaches in bottling plants have been relatively little addressed in the
literature. Models of chained production lines can be found in the queuing theory of [127].
In [162], the authors focused on the diagnosis of the filling machine, by employing a type of
model-based fault diagnosis known as consistency-based approach. Here, the whole plant
has been modeled with a set of components, and anomalies in the bottle transport flows are
detected. An alternative modeling of the plant is proposed in [143], where Petri-nets are
employed for the detection of bottle overflows, improver filling valve operation and Infra-
Red (IR) sensors monitoring. A decision-tree expert system is employed in [164], where
transition time data are used for detecting faults in a brewery plant.

This work presents a signal-based FD scheme for gripping pliers in bottling plants. The pli-
ers are present in the blow molding machine. The aim of the input and output pliers is to
carry the preforms and the bottles, respectively, from the input conveyor belt into the blow
molding machine and from the blow molding machine to further processing. The presented
literature investigated the modeling the entire production process, mainly with an higher-
level outlook and a focus on the flow of the bottles material. Instead, we focus our attention
on a specific component and on its working behavior. The aim of this work is to detect the
degradation of the posterior bearings used for the movement of pliers that carry the heated
preforms from the oven into the molds of the blow molding machine. The devised FD al-
gorithm interprets the pliers’ bearing like the ball element in a traditional rolling bearing.
Thanks to this interpretation, signal processing techniques can be employed on accelerom-
eters data to extract diagnostic information. The application of the proposed diagnostic
algorithm on experimental data shows the goodness of the method.
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7.2 Experimental setup
This section shows: the machinery description, the fault injection design, the testing pro-
cedure and the characteristics of the employed sensors.

7.2.1 System description
The bottling plant under consideration is composed by the following components, see also
Figure 7.2:

1. Input conveyor, that feeds the raw plastic preforms into the plant;

2. Oven, used to heat the plastic preforms;

3. A set of input gripping pliers, that take the overheat preforms and bring them into the
blow molding stage;

4. Blow molding machine, that blows the preforms, now fixed in a mold, into the final
bottle format;

5. A set of output gripping pliers, that take the blown bottles from the blow molding
machine and bring them into the filling stage;

6. Filling and capping machine, that fills the blown bottles with a liquid and put the caps;

7. Conveyor belt, that transports the filled and capped bottles;

8. Packing and palletizing machines, that create bottles packs and arrange them for load-
ing and transportation.

Oven

S

S
S

S

S

S
S

S
Carousel

4 Output pliers 4 Input pliers

Motor

Motor Motor

Heater

Heater

Heater

Heater

Heater

Heater

Conveyor belt

8 Stations
• mold

• blowing

• rod

From Input conveyor

(preforms feeding)

To filling and 

capping

Blow molding
Focus of the study 1

2

3

4

5

6 7 8

Figure 7.2: Schematic of the oven and blow molding machines for a plastic bottling plant.
The steps of the production process, from (1) to (8), are highlighted with respect to the

components responsible for each step.
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In this work, we consider only the blow molding machine, see Figure 7.2. This machine is
composed by three important components:

• Carousel, a rotating component that supports one or more stations;

• Stations, i.e. the main component for blowing the preforms. Each station is made up
of:

– Mold, that defines the form of the blown bottle;

– Rod, which is used to stretch the heated preform prior to its blowing;

– the blowing system;

• The output and input gripping pliers (the main focus of this study).

The blowmolding machine under consideration has 8 stations and 4 input/output pliers. An
example of a gripping plier is depicted in Figure 7.3-(left). The pliers lie on amechanical cam
via two sets of bearings: two posterior and a frontal one. The arms of the plier, responsible
for the gripping, are connected to the frontal bearing. The two sets of bearings (posterior
and frontal) are connected by two springs. The cam is made in such a way that, when the
springs stretch (i.e. when the distance between the two set of bearings is large), the plier
arms open due to the retracting of the springs. When this happens, the preform can enter
between the arms. Then, the cammechanics release the tension on the springs and the arms
close, this time holding the preform. This behaviour is schematized in Figure 7.4.

Posterior

bearings

Front bearing

Front bearing

Cam inner race

Figure 7.3: (Left) Upper-view of an input gripping plier with front bearing detail. (Right)
Upside down side-view with posterior bearings, springs and cam detail.

When the springs are stretched and the pliers arms open, the posterior and frontal bearings
are tightly attached to the cam structure. In all other cases, the bearings may not be always
in contact with the cam. Thus, we expect to detect a damage on the posterior bearings in
the first case, i.e. when the plier arms are fully open. From Figure 7.4 we observe that the
pliers arms are open when the plier has to take a preform from the oven, or when it has to
release a preform inside the mold of a station.

7.2.2 Fault injection and testing procedure
A damage was injected on posterior bearings in the plier mechanism, by partially removing
material from the bearing surface, see Figure 7.5.
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Pliers arms closed

Inner cam

race

Outer cam

race

Pliers arms open

Motor

From oven

S

To carousel

station

Springs

Figure 7.4: Opening and closing mechanism of the pliers arms as function of the plier
position on the cam.

Injected fault

Figure 7.5: Fault injection of posterior pliers bearings.

The blow molding machine operates at a set of production rates. We performed experi-
ments at 1800 rph (revolutions per hour), where each test lasts about 3min. The tests were
performed both with all healthy pliers and a faulty one. The first preform arrives at the
input pliers after 40 s, since they need to travel inside the oven. Thus, the first 40 s of the
input pliers operation are without the load given by the heated preform.

As can be seen in Figure 7.5, the fault on the plier bearings can be interpreted as a fault
on rolling balls inside a mechanical bearing. Thus, accelerometers are the best candidate
sensor to monitor this specific kind of fault, see [140].

7.2.3 Sensors and data acqisition
We employed a single axis Hansford HS-170S piezoelectric accelerometer to measure the
vibrations produced by the pliers during their operation. The accelerometer sense over the
Z axis, which is the one orthogonal to the rotation axis of the pliers bearings. Since the pliers
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rotate, it was necessary to insert the accelerometer on the fixed structure that supports the
pliers mechanics, see Figure 7.6. The accelerometers data are then acquired at 12.8 kHz
using a NI CompactDAQ hardware.

Z axis

Y

Z X

Figure 7.6: Considered accelerometer over the Z axis and its positioning on the pliers
structure.

The blow molding machine is able to store variables related to the motors that actuate the
input/output pliers and the carousel. Specifically, it is possible to measure the following
motor-related variables: (i) quadrature current, proportional to their torque; (ii) reference
and measured positions; (iii) temperature.

Furthermore, a binary indicator signal i(t) is present, that changes logical status (from 0 to
1) when a plier passes in front of a Infrared Sensor sensor, where t is the time index. Thus,
there are 4 impulses of this indicator signal for each complete round of the input/output
pliers. These machine-related signals are sampled sampled at 1 kHz.

Due to the fact that the accelerometers and the machine-related signals are sampled with
different sampling frequencies, a synchronization signal has been devised to synchronize
the accelerometer and motors measurements.

7.3 Fault detection of gripping pliers
The accelerometer signals a(t) can be divided into segments relying on the indicator sig-
nal i(t). Each segment contains the data between two consecutive impulses in i(t). Each
complete round of the pliers is thus divided into four segments, that correspond to the four
“working quadrants” of the gripping plier mechanism, see Figure 7.7.

Suppose that the damaged plier is the third one (P3). The bearings of the damaged plier
are in close contact with the inner race of the cam where the springs of the damaged plier
are stretched and its arms are open. This happens in the in the Q3 and Q4 quadrants. So,
we expect the accelerometer measurements to be sensitive to the fault in these operating
conditions.
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Figure 7.7: Schematic of the pliers mechanism. The plier P3 is supposed to have damaged
posterior bearings.

The main idea behind the fault detection algorithm is to consider the entire gripping pliers
machinery as like as a rolling bearing structure. The analogies between these twomechanical
systems are:

• Posterior bearings that support the pliers are thought as a ball inside a rolling bearing;

• Inner race of mechanical cam of the pliers is thought as the inner race of the bearing;

• Outer race of mechanical cam of the pliers is thought as the outer race of the bearing.

Using this abstraction, the accelerometer signals are processed with techniques inspired
from bearing fault diagnosis.

Remark 7.1

As in standard bearing diagnosis, the accelerometer data are relative to a constant
rotation speed.

7.3.1 Fault detection algorithm
Inspired from bearing diagnosis, see [139], the proposed algorithm for posterior bearings
fault detection in input gripping pliers involves the following steps: (i) filtering the raw
accelerometer data; (ii) envelope analysis; (iii) computation of fault indicators.

Data filtering
As a first processing step, it is often useful to bandpass-filter the raw vibration signal, in or-
der to enhance the fault symptomswith respect to background noise and normal operational
vibrations. The Spectral Kurtosis (SK) provides a mean to determine which frequency bands
contain a signal of “highest impulsiveness”. These impulsive behaviours are supposed to be
originated from a fault. The SK algorithm divides the spectrogram of the signal in frequency
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bands. For each of these frequency bands, the kurtosis with respect to time is computed.
The result is a kurtosis as function of the frequency. The kurtogram plot allows to evaluate
the kurtosis for different frequencies and frequency resolutions (length of the frequency
window considered for the computation). The kurtogram is used to select the frequency
band [fc−bf , fc+bf ] for filtering the raw vibration signal a(t) into its filtered version r(t).

Envelope computation
A consolidated technique is that of envelope analysis, where the signal is amplitude de-
modulated to form the envelope re(t), that can be more suitable for diagnostic purposes.
In standard bearing analysis, the spectrum of the envelope is computed to look for specific
fault frequencies. In our case, time-domain indicators are more useful since, due to the low
rotation speed, it is hard to distinguish frequency components sensitive to the fault.

Fault indicators extraction
We propose two indicators to monitor the posterior bearings of the pliers:

1. The kurtosis valuesK of the envelope signal re(t);

2. The Root Mean Square (RMS) value R of re(t).

The steps for computing the indicators are summarized in Algorithm 7.1. Then, fault de-
tection is achieved by comparing one or more of the indicators with specified thresholds
defined on healthy data.

Algorithm 7.1: Fault indicators for gripping pliers
Input: a(t), fc, bf

1 r(t)← Filter the signal a(t) in [fc − bf , fc + bf ] Hz
2 re(t)← Compute the envelope signal of r(t)
3 K ← Extract the Kurtosis of re(t)
4 R← Extract the RMS of re(t)
5 Rq ← Extract the RMS of each quadrant q of re(t)
Output: K,R

7.4 Experimental results
The experimental campaign, as described in Section 7.2.2, is conducted only on the input
gripping pliers. Figure 7.8 represents the first 40 s of healthy and faulty vibration signals.
Although a difference is already visible on raw data, the proposed processing steps allow to
enhance the diagnostic capabilities of the extracted indicators.

To this end, the raw signal a(t) is bandpass filtered after bandwith selection with the kur-
togram method. Figure 7.9 depicts the kurtogram of a faulty signal, where the optimal
bandwith with fc = 1533Hz and bf = 133Hz is highlighted.
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Figure 7.10 depicts the computed envelope re(t) of the filtered vibration signal r(t). Based
on this, the kurtosis and RMS indicators are computed on two healthy experiments (testH1
and test H2) and a faulty one (test F). The results, summarized in Table 7.1, indicate that
the kurtosis is particularly sensitive to the fault, with a percentage variation of about 1617%
between healthy and faulty tests. This variation is computed (both for K and R) between
the average value of the indicators from the two healthy tests, and the indicator from the
faulty test.

Figure 7.8: Example of healthy and faulty vibration signals.

K
max

 = 64.2457 at level , Optimal Window Length = 96, 

 Center Frequency = 1.5333 kHz, Bandwidth = 0.13333 kHz

Figure 7.9: Kurtogram on faulty data, with indication of the best filtering bandwith.

To better assess the validity of the proposed rationale, we selected the segments of data
over one full round of the pliers, for one healthy and one faulty test. These segments were
aligned over a common time axis for visualization purposes in Figure 7.11.

First, it can be noticed that the envelope signal presents a very high repeatability. Second,
the faulty envelope clearly presents fault symptoms when the damaged plier P3 passes
in the quadrants Q3 and Q4. We detect higher spikes when P3 steps over Q3 since the
accelerometer is placed closer to Q3. When P3 steps over Q4, we detect a lower spike.
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Figure 7.10: Envelope of healthy and faulty vibration signals.

Table 7.1: Kurtosis and RMS of re(t) for each tests.

H1 H2 F % variation

Kurtosis 6.1 5.7 101.3 +1617%

RMS 0.0075 0.0075 0.0165 +120%

Faulty

test

Healthy

test

P3 over Q1 P3 over Q2 P3 over Q3 P3 over Q4

Figure 7.11: Overlapped portions of data for each full round of the pliers. The indicator
signal i(t) groups the data into the four operating quadrant of the pliers. The passages of

the faulty plier P3 over the quadrants are showed.
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Thus, a further possibility would be to compute the kurtosis or the RMS indicators only in
the quadrants Q3 orQ4, i.e. where the springs stretches and fault is more detectable. Figure
7.12 shows the boxplots of RMS value of the signal portions depicted in Figure 7.11, in each
one of the four quadrants. The plot suggests the same conclusions of Figure 7.11, i.e. the
fault is mainly detectable in Q3, due to the proximity of the accelerometer to the regions of
the plier mechanics that are most sensible to the fault.

Q3P1 Q3P2 Q3P3 Q3P4 Q3P1 Q3P2 Q3P3 Q3P4 Q3P1 Q3P2 Q3P3 Q3P4

Figure 7.12: Boxplots of the RMS of the envelope signal over each quadrant.

Remark 7.2

Fault isolation, that is, to understand which plier is faulty, can be accomplished by
an additional sensor able to differentiate the passage of one plier with respect to the
others, e.g. by generating an impulsive signal with a different pulse length for one
of the pliers.

7.5 Conclusions
We presented a signal-based approach for detecting the fault of the posterior bearings in an
input plier mechanism for a blow molding machine in a bottling system. The approach em-
ploys accelerometers data, processed with a workflow inspired by the diagnostic of mechan-
ical bearings. Experimental data validated the effectiveness of the fault detection method.
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CHAPTER 8

Model-based fault diagnosis of sliding gates
electro-mechanical actuators transmission components
with motor-side measurements

This chapter presents a model-based fault detection and isolation scheme for the transmis-
sion components of Electro-Mechanical Actuator (EMA), applied to the actuation of sliding
gates. The most important failures are investigated by a Failures Mode, Effects and Crit-
icality Analysis (FMECA) procedure. Following FMECA, the components selected for the
development of the diagnostic algorithm are the nylon gear and pinion of the EMA, and the
rack of the gate. The proposed diagnostic algorithm is able to isolate two out of the three
types of faults. The overall procedure is validated by experimental results.

8.1 Introduction
The present work is devoted to the development of a model-based fault detection and iso-
lation algorithm for the transmission components of Electro-Mechanical Actuator (EMA).
Specifically, we mainly focus on the diagnosis of gear wheels-like transmission components.
The proposed diagnostic scheme is applied to an experimental setup of EMAs that actu-
ate sliding gates, where components, and their failures, have been selected using a Failures
Mode, Effects and Criticality Analysis (FMECA). This applicative context is characterized
by the employment of low-cost components. Thus, a major challenge is to detect faults
without additional measurements.

The diagnosis of gears has been the focus of many studies in the literature, see [140, Chapter
5.4]. Starting from [154], who proposed a number of indicators for gearbox diagnostics
based on Time Synchronous Averaging (TSA) and frequency analysis of a vibration signal,
many other works followed with same diagnostic rationale, see [108, 171]. In [42], the
author introduces the use of Hilbert transformation to demodulate the vibration signal for
a diagnostic purpose. The computation of a signal envelope by amplitude demodulation is
one of the main techniques for detecting faults also in rolling bearings [107, 140, 147]. The
aforementioned works consider the measurement of a vibration signal. Other methods for
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gear diagnosis make use of the so-called transmission error signal [140, Chapter 5.4], and
then analyze its envelope in frequency domain, as in [46]. The transmission error represents
the difference between the angular motion of a driven gear and that which it would have if
the transmission were perfectly conjugate, that is constant speed out for constant speed in.

However, as in our application, it is not possible to compute this signal, since e.g. only a
single encoder is present (usually motor-side), and it is not possible to add accelerometers
due to the low-cost of the EMA equipments and envelope constraints, see [166]. The use of
only motor-related measurements to perform diagnosis of EMA has been previously inves-
tigated in the literature, especially for critical applications such as the aerospace industry
[103, 105]. Contrary to signal-based or knowledge-based methods for fault diagnosis, as in
[104, 106], here we propose amodel-based fault detection and isolation scheme for EMA, that
relies only on common motor-side measurements such as input voltage and motor speed.

The main contribution of this work relies in the residual evaluation: after the residual sig-
nal has been generated, it is processed by an envelope analysis to highlight the main fault
frequencies that can raise when a component of the transmission chain is damaged. Then,
a classifier is trained on features extracted on the frequency representation of the resid-
ual signal envelope. The designed classifier isolates two out of three faults, along with the
healthy condition.

8.2 Failure Mode, Effects, and Criticality
Analysis

In this work, we applied a Failures Mode, Effects and Criticality Analysis (FMECA) to in-
vestigate the failures of the EMA and gate system. The FMECA is a reliability procedure
that determines all potential failure modes of the various system’s components, their ef-
fects, causes and degree of criticality. The criticality analysis in the FMECA aids to define
the so-called criticality matrix, used to classify the failures into a severity and frequency of
occurrence levels, see [141]. This classification will be used to guide the selection of which
failures should be considered by the proposed diagnostic algorithm.

The most occurring failures, appearing in years of maintenance reports, are: (1) Rack with
broken tooth; (2) Pinion with broken tooth; (3) Broken shaft; (4) Broken nylon gear; (5)
Short circuit of Direct Current Motor; (6) Corrupted wheel. The resulting criticality matrix
is depicted in Figure 8.1. By using this representation, each failure is allocated to a matrix
cell, with assigned probability level (frequency of occurrence) and a severity level (critical-
ity). The probability level is qualitatively defined as (A) probable, (B) remote, (C) extremely
remote, (D) extremely improbable. The severity level is qualitatively described as indicating
(I) catastrophic, (II) hazardous, (III) major and (IV) minor consequences, respectively. These
qualitative levels should be understood as dependent on the specific system considered, see
[107, 111, 141].
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Figure 8.1: Criticality matrix resulting from FMECA on the considered actuation system.

The (3) Broken shaft failure is classified in the cell (C-I) in the probability/severity table,
since it occurs with extremely remote frequency and, moreover, it is a catastrophic phe-
nomenon, because the shaft is disrupted into two pieces. Thus, in this condition, the EMA
does not work. Another catastrophic event, that compromises the electronic of Direct Cur-
rent Motor (DCM), is the failure (5) Short circuit of the DCM. Since this failure happens
remotely, it was classified as (B-I).

Two failures that are not catastrophic, but still have major consequences on the system,
are: (4) broken gear, classified as (C-III) and (6) corrupted wheel, classified as (B-III). These
failures do not stop the EMA operation, but they make difficult the sliding of the gate. The
operators common knowledge is that a broken nylon gear is the result of a natural notch on
the gear that breaks through the entire gear radius. Due to this, the gear structure becomes
weaker. After somemovements, the less solid gear causes amisalignment that induces other
cracks in the gear structure, leading to its disruption. Instead, the (6) corrupted wheel fault
is due to the environmental corrosion that exhausts the wheel bearing. The failures that
have minor consequences on the system are: (1) Rack broken tooth and (2) Pinion broken
tooth, both classified as (D-IV). These are failures of the same type, i.e. a tooth breaks totally,
on two different but connected components, see Figure 8.4. The EMA works properly with
these failures.

The criticality matrix is used to assign a qualitative risk level for each failure, denoted by
the cell color in Figure 8.1. Green and yellow cells contain the failures that do not require
redesign of the actuation system. Instead, the red cells indicate the failures that can be
prevented only by a system redesign, since those failures are too critical and/or too probable.
The focus of the diagnostic algorithms will therefore be on the failures that are not at the
maximum risk level, i.e. those in the green and yellow cells of the criticality matrix: (1) Rack
with broken tooth, (2) Pinion with broken tooth and (4) Broken nylon gear.
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8.3 Experimental setup
The system setup consists of a sliding gate actuated by a Direct Current Motor (DCM) with
nominal voltage of V0 = 24V. The control of the DCM is made possible by a Pulse-Width
Modulation (PWM) at 100Hz of the input voltage signal. The gate moves by means of
steel wheels on a steel rail. The motor is connected to the gate through a transmission that
converts the DCM rotation to a linear movement. The transmission is composed of: (i) a
worm gear, (ii) a nylon gear, (iii) a shaft, (iv) a pinion and (v) a rack. We denote with the
term Electro-Mechanical Actuator (EMA) the connection of the DCMwith the transmission
elements (i)-(iv), while the rack is a component that belongs to the gate.

R ack

Pinion

DC motor

Worm

Gear

Shaft

Gear

Figure 8.2: Schematic representation of the overall system.

Figure 8.2 depicts how these elements are connected. In particular, the worm gear is welded
to the rotor of the DCM and it is coupled to the nylon gear with a primitive radius of r =

28 · 10−3m, that consists of 44 teeth, see Figure 8.3-(left). Since the rack is external to
the EMA cover, a shaft connects the gear to the pinion, which in turn it is paired with the
gate’s rack. The rotation at the output of the EMA is transformed into linear motion by
the pinon and the rack. The pinion is made of stainless steel and it has 14 teeth, see Figure
8.3-(right). An encoder measures the motor speed ωM (t). The conversion from ωM (t) to
axial speed vM (t) can be made by the transmission ratio τ̄ = 1/47 ·r. The motor resistance
is R = 0.7473Ω, and kt = ke = K = 0.0696 are the mechanical and electrical constants
of the motor, respectively.

8.4 Fault injection and test protocol

8.4.1 Fault Injection
A fault injection procedure has been devised in order to collect measurements from a faulty
system, considering the rack, pinion and nylon gear components. The rack and pinion
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Figure 8.3: Healthy nylon gear (left) and pinion (right).

faults were injected by removing a tooth using a vise, see Figure 8.4-(left) and 8.4-(right)
respectively.

Figure 8.4: Faulty rack (left) and pinion (right).

To reproduce the break of the nylon gear, we performed about one hundred gate movements
(opening and closing) to break-in the component. After that, the fault is injected by carving
perpendicularly the 80% of the total gear radius using a saw. Thewidth of this notch is about
1mm, see Figure 8.5-(left) where the area that contains the injected notch is highlighted in
blue. In Figure 8.5-(left), it is possible to notice four mechanical housings, which aim is to
hold the shaft joint. These are the most critical parts of the gear because they are subject
to the force applied by the shaft through its joint. Thus, the fault is injected in this area. In
this notched condition, the inner ring of the gear, i.e. the part that delimits the shaft slot, is
still not broken. Thus, to induce its breakage, the carved gear is mounted on the EMA and
about fifty openings and fifty closings are performed.

Figure 8.5-(right) represents the condition of the gear after the 100movements. As depicted,
the width of the natural notch is less than the width of the artificial one (highlighted in blue).
It is important to remark that if the inner ring is completely broken by an artificial carve,
e.g. with depth 100% of the gear radius, the structure would be too weak to perform any
useful experiment.
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Figure 8.5: Faulty nylon gear without breaking the inner ring (left); natural notch that
breaks the inner ring (right).

8.4.2 Test protocol
The experimental protocol is composed of five different test plans: (i) healthy tests; (ii) gear
fault tests; (iii) pinion fault tests; (iv) rack fault tests. All experiments share the same gate,
binary and environment, but the fault injected is different. Only one fault at a time has been
considered. In order to validate the diagnostic algorithm, the test protocol is performed
twice with two different EMA.

Each test plan consist in opening and closing gate movements, interspersed with a break
of 7 seconds, in order to not overheat the motor. The motor is commanded in open-loop
with trapezoidal voltage profiles, that define acceleration, constant speed, and deceleration
phases. The rise and fall times of the acceleration and deceleration phases have been set
to 1 s (the minimum settable acceleration/deceleration time). This choice is motivated by
two ideas: the first one is that we wanted to perform movements that were stressful for the
system (to enhance the fault detectability); the second reason regards the practical use of
the gates, where the fastest opening and closing movements (but within laws regulations)
are usually desirable.

The EMA hardware allows the acquisition of the following measurements with a sampling
frequency of fs = 5000Hz:

1. Motor speed ωM (t), measured by the motor encoder;

2. Motor working phase p(t), showing which working phase the motor is currently per-
forming (acceleration phase, constant velocity phase, deceleration phase);

3. Motor current i(t), flowing in the DCM coils;

4. Motor voltage V (t), powering the motor.
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8.5 Model-based fault detection and isolation
algorithm

This section describes the procedures employed to design the fault detection algorithm.
Since, the chosen fault detection methodology is model-based, the first part describes the
modeling and identification procedures. Instead the second part focus on the residual gen-
eration, evaluation and decision logic.

8.5.1 Modeling and identification
Amathematical model of the DCM is presented in Figure 8.6, where: FL(t) is the load force
opposing to the motor; L is the motor inductance;R is the motor resistance;D is the motor
equivalent friction coefficient; J is the motor equivalent inertia; τ̄ is the transmission ratio;
K = kt = ke represents the motor mechanical and electrical constants; V (t), î(t), T̂M (t),
ω̂M (t), v̂M (t) are the applied voltage input and simulated current, torque, motor rotational
speed and load axial speed, respectively.

1
Ls+R K

τ̄

1
Js+D

K

τ̄
V (t) î(t) T̂M(t)

FL(t)

ω̂M(t) v̂M(t)

+ +

−

−

Figure 8.6: Blocks scheme of the DC motor model.

Ŵd(s)

V (t) vc(t) r(t)
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−

Fault

v̂d(t)

Residual generation

Pass-band filtering

Envelope

Select constant speed data

Fast Fourier Transform

+

+

+

θ(f) Classification

algorithm

Residual evaluation

Decision logic

Fault isolation

Figure 8.7: Proposed model-based fault diagnosis scheme.

It is interesting to notice that most of the parameters of this model are known from the
motor datasheet or can be computed. The motor equivalent inertia can be expressed, in
this rigid model, as J = JM + τ̄2 ·m, where JM is the motor inertia and m is the weight
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of the gate. Both are known and correspond to JM = 3.5 · 10−5 kg · m and m = 608 kg,
respectively. To obtain the simplest possible model, we set L = D = 0.

From these hypotheses, it is possible to compute the complete transfer function from the
input V (t) to the output v̂M (t) as:

Ŵ (s) =
(
Ĝ(s)− Â(s)

)
· τ̄ (8.1a)

=

(
K

JR · s+K2
− Rτ̄

JR · s+K2

)
· τ̄ , (8.1b)

where:

• Ĝ(s) = ΩM (s)
V (s) is the estimated transfer function from voltage V (t) to motor speed

ωM (t);

• Â(s) = ΩM (s)
FL(s)

is the estimated transfer function from the load force FL(t) to motor
speed ωM (t).

The force FL(t) = m · g · csteel represents the sliding friction force of steel wheels on steel
rail, with friction coefficient csteel = 3 · 10−4 (see [9]), and g is the gravitational force. We
assume F (t) to be a constant force equal to FL(t) = F̄L = 0.19N.

The model (8.1) is thus completely known, but experimental data reveal the presence of an
input-output delay. Thus, we identified a model of the form:

Ĝd(s) =
µ

T · s+ 1
· e−s·d , (8.2)

where µ is the gain of Ĝ(s), T is the time constant of Ĝ(s) and d is the delay of the systemI.
A gray-box simulation error minimization is performed by minimizing the cost

J(d) =
1

N

N∑
i=1

(
vc(t)− v̂d(t)

)2
, (8.3)

where the computed load axial speed vc(t) is obtained as vc(t) = ωM (t) · τ̄ (by considering
the transmission as rigid), and v̂d(t) is the simulated output of the model

Ŵd(s) = Ĝd(s)− Â(s) . (8.4)

The behaviour of the model in (8.4), for a opening gate movement not used for the identifi-
cation, is depicted in Figure 8.8, where good simulation results can be observed.

IIn the literature there exists a fault diagnosis method that detect faults through recursive parameter estima-
tions, see [77]. This approach needs an input that excites the system sufficiently. Therefore, it is not applicable
to this problem, because the available step input is not enough exciting to be used in black-box identification
procedures.
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Figure 8.8: Computed axial speed vc(t) from measurements and simulated axial speed
v̂d(t) by the model Ŵd(s).

8.5.2 Model-based fault detection and isolation scheme

Residual generation
Figure 8.7 shows the proposed model-based fault detection strategy. The residual r(t) is
computed by an output-error based scheme, see [78, Chapter 10], that compares the com-
puted axial speed vc(t) (computed from the measure of ωM (t)), with the simulated output
v̂d(t) of model (8.4), given the same input V (t):

r(t) = vc(t)− v̂d(t) . (8.5)

The employment of the model in (8.4) allows to generate a residual signal that is able to
compensate for variations in speed, even in the constant speed phase where speed oscillations
are visible, see Figure 8.8. The disturbance FL(t) can not be decoupled from the residual
since we only use one output measurement to perform fault detection. Instead, there exists
diagnostic schemes that try to reduce the effect of disturbances on the residuals, see [40,
Chapter 7], in our application the effect of FL(t) on the true axial speed vM (t) is negligible
since the gain of Â(s) can be found to be µA = R·τ̄2/K2 ≈ 5 ·10−4, so that the signal FL(t),
filtered through Â(s), as an amplitude in the order of 10−5m/s, which is negligible with
respect to the amplitude of vM (t) (around 10−1m/s).

Residual evaluation
The proposed residual evaluation scheme, that is the main methodological contribution of
this work, allows to detect all three fault types and to isolate them in two categories. The
starting point is the observation that the mechanical transmission components of interest
(e.g. rack, pinion and nylon gear) behave as a single component, since they are all con-
nected together and also linked to the motor through the nylon gear. We thus expect that
faults on the selected transmission components can be detected by using the same set of
input/output measurements. Furthermore, the nylon gear and the pinion are basically gear
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wheels, where a tooth is removed by the fault injection procedure. As stated in the intro-
duction, the envelope analysis of the transmission error can be employed to diagnose faults
in gears.

The main idea of this work is to apply the envelope analysis on the residual signal r(t) in
(8.5). In this view, the signal v̂d(t) can be effectively interpreted as the axial speed that one
would have if the transmission were perfectly health and rigid, thus acting as a ”virtual
load encoder” signal. The true axial speed vM (t) will be affected by faults, but since the
components are all linked together, we expect that also the computed axial speed vc(t) (or
equivalently, the measured motor speed ωM (t)) will be affected.

The aim of the envelope analysis is to look for specific fault frequencies, as commonly done
for rolling bearings [140, 147]. Here, we look for the fault frequency ffault that may appear
on the shaft that connects the nylon gear to the steel pinion (which is then linked to the
rack of the gate). Since, in our experiments, the rotational motor speed is known and it is
about ωM (t) = 4100 rpm, the shaft rotational speed is 4100 rpm/44 ≈ 93 rpm, where 44 is the
ratio reduction from motor to shaft (i.e. the number of teeth of the nylon gear). Hence, the
fault frequency of the components that are coupled to the shaft is about ffault = 1.55Hz.

The envelope analysis of the residual signal r(t) proceeds as follows. First, a bandpass fil-
tering with bandwidth [0.5, 10]Hz is employed to remove the continuous frequency and
high-frequency noise. Then, the envelope of the filtered r(t) signal (amplitude demodula-
tion) is computed and constant phase speed data are retained for frequency analysis. The
use of constant speed data allows to focus on a single fault frequency without employing
advanced techniques like orders trackingII, see [140, Chapter 3.6]. The constant speed phase
is always available in our application. A Fast Fourier Transform (FFT) of the envelope signal
is then computed, and its modulus θ(f) analyzed for fault detection and isolation.

Finally, it is important to remark that the nylon gear fault and pinion fault (missing tooth)
can be observed many times during the gate motion, but the faulty portion of the rack is
visible only one time per gate movement (so that a frequency analysis is of limited utility
in this case).

Decision logic
A linear Support Vector Machines (SVM) classification algorithm is used to perform fault
isolation. To this end, two features are computed from θ(f):

F1 =
3∑

k=1

θ(k · ffault) ; F2 =
3∑

k=1

k·ffault·1.05∑
j=k·ffault·0.95

θ(j) . (8.6)

IIThe importance of employing a model of the system relies in the fact that the residual signal in the constant
speed phase, contrary to the axial speed vM (t), is much less subject to little variations due to external factors,
so that the effects due to the faults can be better assessed.
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The indicators in (8.6) extract the frequency amplitude at the first three harmonics of the
fault frequency ffault and the area in their neighborhoods, respectively. This idea is inspired
from [115], where those features are computed on the motor current signal.

The SVM algorithm classifies the features in (8.6) into three classes: health, pinion fault +
nylon gear fault, rack fault. The nylon gear and pinion faults are difficult to isolate since
these components are connected to the same shaft, so their rotation frequency is the same.
Thus, a single “fault condition” has been considered for their isolation.

8.6 Experimental results
As stated in Section 8.4, we have at disposal two datasets, from two exemplars of the same
EMAmodel. The first dataset is used to tune the parameters of the proposed procedure, such
as the filtering band for the bandpass filter in the residual evaluation state. The training of
the FFT classifier makes use of both the first and second datasets.

An example of FFT of the residual envelope θ(f) is depicted in Figure 8.9, where the fault fre-
quency ffault appear visible for the nylon gear and pinion fault. As expected, this frequency
is not visible in the case of the rack fault, but a general increase of the frequency content is
visible. Figure 8.10 depicts the 2D-plane composed of F1 and F2 features, computed using

Figure 8.9: Frequency analysis of the residual envelope of all EMA conditions.

both datasets. The classifier performance have been evaluated by 10-fold cross-validation,
resulting in an average cross-validation accuracy of 86.18% and variance of 0.33%. The
classification boundaries, of the classifier trained on all the data, show a good capability of
isolating the various kind of faulty conditions (considering the gear and pinion faults as a
unique category), with an accuracy of 96.15%III. Table 8.1 presents the confusion matrix of
this classifier, using all the data.

IIIThemodel trained on all the data, its accuracy and confusion matrix should be considered as only a mean to
highlight its decision boundaries and to represent the feature space. A more correct evaluation of the classifier’s
performance is given by the cross-validation routine.
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Figure 8.10: Features plane and classification boundaries.

Table 8.1: Confusion matrix of the classifier trained on all the data.

Real EMA state

Healthy Pinion and
gear faults

Rack fault

Estimated EMA state

Healthy 130 1 2

Pinion and
gear faults

0 89 4

Rack fault 1 2 31

8.7 Conclusions
We presented a model-based fault detection and isolation algorithm for the transmission
components of electro-mechanical actuators. The considered failures were chosen by a
FMECA procedure, and specific faults were artificially injected or induced. The procedure
employs only the input voltage and the motor speed, and it is based on the output speed
residuals generated by a model of the DCM. By adequately considering the type of faults to
be diagnosed, we proposed a residual evaluation strategy based on the envelope analysis of
the residual signal. Based on its frequency content, specific features have been extracted.
An experimentally validated classifier trained on those features was shown to perform fault
isolation of two out of three fault with good accuracy.
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CHAPTER 9

Conclusions and future developments

This Thesis proposed three theoretical and three applicative contributions. Chapter 3 in-
troduced a data-driven robust control. We studied how to link robust control and system
identification worlds. In literature, there are some techniques, such as Robust identifica-
tion, which tie these two kinds of literature, but their developments are highly related to
the user’s choices. Instead, we proposed an automatic data-driven methodology that pro-
duces a robust controller without requiring any user’s knowledge. The kernel-based system
identification played a key role in this procedure, since it builds a low-bias model without
choosing the model family. Furthermore, it gives a posterior distribution that represents the
model variance. Therefore, we exploited these two characteristics to make a robust control
through the S/T mixed-sensitivity loop-shaping approach. The proposed methodology can
be applied to robust stability-nominal performance and robust performance aims. We tested
the method to a well-known benchmark dynamic system. The results proved the efficiency
with respect to the traditional method, where the uncertainty information is modeled man-
ually. Furthermore, a comparison with respect to the PEM is done. Specifically, this identi-
fication method was developed with a wrong and a correct model family, to show how the
user’s knowledge, applied to the identification procedure, affects the performance of the
resulting robust controller. The simulations showed that a wrong model family choice can
cause a catastrophic impact to the closed loop system obtained with the true plant coupled
with the robust controller.

An extension of the proposed method was described in Chapter 4. This dealt with multiple
uncertainty sources, in particular with respect to: the model identification uncertainty and
some parametric uncertainties considered as a multi-model dynamic system. The experi-
mental design was fundamental in the extended method, since, as with the identification
procedure of multi-model dynamic systems, it allows to gather the necessary information
to model correctly the plant. We proposed an experimental design with the aim to obtain
a nominal model endowed with a multiplicative unstructured uncertainty that represents
all multiple uncertainties. In this way, we designed a robust control that works with all the
systems that belong to the modeled uncertain system. In Chapter 6, we described a practical
application of the data-driven robust control procedure for multi-model dynamic systems.
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This contribution showed the performance of the second theoretical contribution applied
to a real system. Furthermore, a comparison between the trial and error modeling (the
traditional weight functions design) with respect to the proposed method showed that the
obtainable performances, with the manual setting, were always worse than our proposed
method.

The last theoretical contribution was described in Chapter 5. We proposed a procedure
that exploits the uncertainty information derived from the model identification to the ro-
bust fault detection problem. In particular, the uncertainty information was considered as
a fictitious noise. So the uncertainty transfer function, derived from the kernel-based iden-
tification, was employed to define the impact of the fictitious noise to the residual signal.
Furthermore, we designed the robust residual generator through the Approximate Fault De-
tection Problem (AFDP). Also, we proposed a simple threshold tuning to further reduce the
false alarms. Our method was tested on a benchmark problem and the results were com-
pared to a not robust method. The goal was achieved since the robust detector avoided false
alarms and also detected those faults that were invisible to the not robust detector.

The other two applicative contributions was written in Chapters 7 and 8. Those showed
two proposed fault detection methodologies. The former was based on the signal-based
branch. In particular, we adapted an algorithm, developed for detecting the bearing faults,
to diagnose a fault of some gripping pliers belonging to a rotating machine. Instead, the
latter, described in Chapter 8, was based on the model-based fault diagnosis. We illustrated
the entire process of fault diagnosis: from the Failures Mode, Effects and Criticality Analysis
to the fault diagnosis algorithm, through the fault injection procedure. Furthermore, we
proposed a residual evaluation strategy based on the envelope analysis of the residual signal.
The experimental results validated our method.

The future developments, identified by the authors, are devoted to investigate the employ-
ment of kernel-based identification to model the uncertainty given by the residual signal
computed as the difference between the estimated output and the measured data, as in the
Model Error Modeling (MEM) problem. Doing so, we would like to avoid the user’s choices
to model the dynamic system that ties the input of the system to the residual signal. This
proposal should be an alternative way to our developed method. Another future develop-
ment is to design our proposed data-driven robust control, presented in Section 3, for MIMO
systems. Furthermore, we would like to replace the Chernoff bound with a more efficient
theorem, explained in [158]. It allows to obtain an uncertainty bound reconstruction with
minor number of samples. Instead, for the robust fault diagnosis theme, future works are
dedicated to comparing the proposed method with respect to another robust fault diagno-
sis procedure. Furthermore, we would like to expand the proposed robust fault detection
methodology to fault identification and fault estimation.
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APPENDIX A

Model complexity selection in parametric dynamic system
identification

The bias-variance decomposition defines the relationship between bias, variance and the
expected Eout, see [35, Chapter 3] [1, Chapter 2]. The latter is defined by:

ED

[
Eout

(
G(D)

) ]
= ED

[
Ex

[(
G(D)(x)−GT (x)

)2] ]
= Ex

[
ED

[(
G(D)(x)−GT (x)

)2] ]
=Ex

[
ED
[
G(D)(x)2

]
−2ED

[
G(D)(x)

]
GT (x) +GT (x)

2

]
, (A.1)

where:

• Ex denotes the expected value with respect to all possible points x ∈ Rn×1, where x
is the input vector employed in the train phase;

• D is the training dataset;

• ED denotes the expected value with respect to all possible datasets D;

• G ∈M is a model that belongs to a chosen model familyM;

• G(D) are the identified model on different realizations of D;

• GT represents the true plant.

If we consider the conceptual tool: ED
[
G(D)(x)

]
as Ḡq (i.e. the mean model obtained by

averaging q models trained on q different dataset.), the equation (A.1) can be rewrite as:
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ED

[
Eout

(
G(D)

)]
=Ex

[
ED
[
G(D)(x)2

]
− 2Ḡq(x)GT (x) +GT (x)

2

]
=Ex

[
ED
[
G(D)(x)2

]
−Ḡq(x)

2+Ḡq(x)
2−2Ḡq(x)GT (x)+GT (x)

2

]
=Ex

[
variance(x) + bias(x)2

]
=variance+ bias2

,

(A.2)
with:

bias(x)2 = Ḡq(x)
2 − 2Ḡq(x)GT (x) +GT (x)

2 = (Ḡq(x)−GT (x))
2 . (A.3)

This term measures the distance between the true model and the average model Ḡq . Specif-
ically, it contains bothmodel bias and estimation bias [70, Chapter 7]. The model bias is due
to the poor complexity of the model family, instead the estimation bias represents the esti-
mation error of the model parameters. Specifically, the conceptual tool Ḡq may not belong
toM. Since Ḡq is made by averaging the q models that belong toM, the only limit of Ḡq

are the bounds imposed byM therefore, if q → ∞. Thus, the bias represents how much
the model family can approximate the real model.

The variance is:

variance(x) = ED

[
G(D)(x)2

]
− Ḡq(x)

2 = ED

[(
G(D)(x)− Ḡq(x)

)2]
. (A.4)

This term corresponds to a measure of the deviation between Ḡq and the trained model
estimated with a defined D.

A graphical representation of bias and variance is reported in Figure A.1. The left image
shows the graphical concept of bias, i.e. the model familyM is too small and soM does
not include the real model GT . Instead, the right image depicts the variance, i.e. the area
highlighted in red. Note that the real model stands in the model family space, but since the
model family is too high, the obtainable model changes by varyingD. The set of obtainable
models represents the variance.

ℳ

Bias

Variance

GT GT

ℳ

Figure A.1: The graphical representation of the bias and variance concepts.
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A.1. Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC)

Bias-variance decomposition is a conceptual tool and it is not applicable to a real problem,
since it requires the true plantGT , which is usually unknown. Hence, this technique cannot
be used for the model complexity selection. In literature, there are different methodologies
that are usable with a real plant. Some of these are:

• Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC),

• Cross Validation (CV),

• Regularization.

A.1 Akaike Information Criterion (AIC) and
Bayesian Information Criterion (BIC)

The model order selection can be performed by exploiting a metric which is proportional to
the complexity of the model, if the model family is fixed and the available dataset is limited.
The Akaike Information Criterion (AIC) is a metric term employed to penalize the model
complexity [3], i.e.:

AIC = ln (Jn(β)) + 2
m

n
, (A.5)

with:

• β ∈ Rm×1 is the parameters vector,

• n is the number of available data,

• Jn(β) is the cost function of the employed method (for instance: the cost function of
PEM (2.80)).

The employment of this criteria is basically a comparison between the AIC values computed
on a pool of models which share the same model class, but have different model complex-
ity. Thus, the smallest AIC value corresponds to the model with the best selectable model
complexity.

Another metric is called Bayesian Information Criterion (BIC) [148] and it is defined as:

BIC = ln
(
Jn(β̂)

)
+ ln(n)

m

n
. (A.6)

The model complexity selection with BIC is identical to the procedure employed with AIC.
This criteria is also known as Rissanen’s Minimum Description Length (MDL) [144].

Both information criteria are evaluated by exploiting the train set, therefore the model se-
lection procedure and the model parameters estimation share the same dataset. This aspect
is the main advantage of these methods, since they works also with a small number of data.
Instead, the main con is that these methods are not accurate if the out-of-sample data are
too different from the training dataset. To overcome this phenomenon an estimation ofEout
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can be obtained by applying the so-called Cross Validation (CV) approach. It is applicable
only if the dataset has a huge number of samples.

A.2 Cross-Validation (CV)
The Cross Validation (CV) is one of the most widespread method for estimating Eout of a
learning model [70, 156, Chapter 7]. This technique splits the dataset into K parts, called
folds. Iteratively, the model is trained on K − 1 folds and the out-of-sample error is esti-
mated on the held-out fold, i.e. the fold not employed during the model training. The final
estimation ofEout consists of averaging theK estimations. The model complexity selection
is done by selecting the lowest value in a set of Eout obtained by performing P times the
Cross Validation method, i.e. one for each model complexity [7].

CV is also applied in the machine learning literature to execute model performance eval-
uation and model selection. In [166], we have proposed a new CV method under dataset
shift, i.e. a condition where the train set is acquired on different items, which have different
statistical properties [114]. To solve this issue, we developed a variation of the CV, that we
named Object-wise Cross Validation (OCV). The main innovation is that the OCV composes
the folds with data that comes from a specific item, see Figure A.2, instead the traditional
method makes the folds randomly from the train set, thus, under the dataset shift condi-
tion, the model performance evaluation and model selection are problematic. Formally, let
δ : {1, . . . , n} → {1, . . . ,K} be an indexing function that indicates the item that generated
the j-th observation, withK number of folds. Then, the error is computed as:

OCV(f̂ ,β) = 1

n

n∑
j=1

ℓ
(
yj , f̂

−δ(j) (xj ,β)
)
, (A.7)

where:

• x ∈ Rn×1 corresponds to the feature vector;

• y is the result of the machine learning algorithm;

• ℓ(·) is the loss function;

• f̂ is the trained machine learning model endowed with β ∈ Rm×1 parameters.

An alternative of CV are the Bootstrap methods. An example of these is the "632+" estimator
[48].

A.3 Regularization methods
Regularization is a methodology that differs from the information criterion and CVmethods,
because this does not perform a comparison between some metrics computed on a pool of
model complexities. Instead, this method reduces the variance by introducing a small bias.
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m1 m2 m3 m4 m5 m6
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Training data Validation data

1st iteration

2nd iteration

3rd iteration

4th iteration

5th iteration

6th iteration

Figure A.2: Example of fold extraction using the Object-wise Cross Validation with six
items, denote with mi, i = 1, ..., 6.

Consider a generic Finite Impulse Response (FIR) model:

y(t) = G(z,β) + e(t)

=
∑m−1

k=0 βku(t− k) + e(t)

y = Φ⊤β + e

, (A.8)

where:

• βk are the impulse response coefficients. The parameters vector is denoted as β ∈
Rm×1;

• m is the order of the FIR model;

• n is the number of acquired data;

• e(t) is the additive noise (assumed independent from Φ). The corresponding vector
is denoted by e ∈ Rn×1;

• y(t) is the output data. The corresponding vector is denoted as y ∈ Rn×1;

• u(t) is the input data;

• Φ ∈ Rm×n is the regression matrixI;
IThe regression matrix is the composition of n observed u(t) stacked inm rows.

155



Appendix A. Model complexity selection in parametric dynamic system identification

This can be cast as a linear regression problem. In particular, we assume to exploit the PEM
method, with a FIR model:

β̂ = arg min
β

E
[
y −Φ⊤β

]2
= arg min

β

∥∥y −Φ⊤β
∥∥2
2
.

(A.9)

Regularization aims to consider the impact of β directly in the optimization problem by
adding a term to the cost function. Thus, the result will be a solution which considers not
only themismatch between themeasured and the estimated values, but also the penalization
of β. Therefore, the optimization problem becomes [152]:

β̂ = arg min
β

(∥∥∥y −Φ⊤β
∥∥∥2
2
+ λl(β)

)
, (A.10)

with: λ ∈ R+ is a hyperparameter that modulates the regularization impact and l(β) rep-
resents the regularization term.

The most common regularization terms are: Ridge regression and Lasso regression [160]. The
former considers the regularization term as a 2-norm squared, i.e.:

l(β) = ∥β∥22 =
m−1∑
j=0

β2
j . (A.11)

Instead,the latter corresponds to:

l(β) = ∥β∥1 =
m−1∑
j=0

|βj | . (A.12)

Figure A.3 depicts the graphical representation of both methods from a geometrical point
of view with m = 2. The resulting regularized parameters are highlighted with the yellow
star. These are the intersection between the cost functionII, represented by the red level
curves , and the bounded region defined by the applied regularization term, highlighted in
light blue. Ridge regression, depicted in the left image, allows to tighten β to low values,
instead Lasso regression, illustrated in the right image, aims to set some parameters to zero.
The center of the level curves, depicted as a red dot, is the estimation without regularization.

Another difference between the two regularization terms lies in the resolution because the
Ridge regression has a closed form [70, Chapter 3], instead the Lasso regression is solved
by quadratic programming [49].

IIThe cost function is supposed to be convex.
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2
β
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β

1
β

1
β

Ridge Lasso

Figure A.3: Geometric representation of Lasso and Ridge regression.

Note that the regularized optimization problem (A.10) can be cast into a constrained opti-
mization problem, as:

β̂ = arg min
β

∥∥y −Φ⊤β
∥∥2
2

s.t. : l(β) ≤ C

, (A.13)

where C is inverse proportional of λ.

Another typology of regularization is called Tikhonov regularization [161]. This is defined
as:

l(β) = β⊤K−1β . (A.14)

Tikhonov regularization corresponds to a more general formulation of the Ridge regression.
It is straightforwardly demonstrable by setting K ∈ Rm×m, called Kernel matrix, equal to
Im. The optimization problem (A.10) regularized with (A.14) is often referred as Regularized
Least Squares (ReLS) [135]. ReLS is solvable by the following closed forms:

β̂ = arg min
β

(∥∥y −Φ⊤β
∥∥2
2
+ λβ⊤K−1β

)
= KΦ

(
Φ⊤KΦ+ λIn

)−1
y or

=
(
KΦΦ⊤ + λIm

)−1
KΦy

(A.15)

The choice of K defines some priors of the problem. The priors are mainly the properties
that β must have. Table A.1 reports some types of Kernel matrices.

Since we considers a FIR model, the priors reflect the property of the impulse response
coefficients βk. For instance, it is possible to assume that:

• The system is exponentially stable, therefore βk should decay exponentially;

• The impulse response is smooth, hence the neighbouring values of βk should have a
positive correlation.
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Table A.1: Some types of Kernel matrix.

Name Structure Characteristics

DC Kij(η) = δα
i+j
2 ϱ|i−j| δ ≥ 0, 0 ≤ α < 1, |ϱ| ≤ 1,η = [δ, α, ϱ]

TC Kij(η) = δαmax(i,j) δ ≥ 0, 0 ≤ α < 1,η = [δ, α]

SS Kij(η) = δ
(
αi+j+max(i,j)

2 − α3max(i,j)

6

)
δ ≥ 0, 0 ≤ α < 1,η = [δ, α]

The Diagonal-Correlated Kernel (DC) [32] fits perfectly with these prior since α defines the
exponential decay of the impulse response coefficients, instead ϱ describes the correlation
between neighbouring impulse response coefficients [135].

Note that, the Tuned/Correlated Kernel (TC) (or First-order Stable Spline) is equal to DCKernel
by setting ϱ =

√
α, therefore TC Kernel is a special case of DC Kernel [22, 31]. Therefore,

also the TC Kernel can be used to model the prior of a FIR system.

The procedure to estimate the kernel matrix hyperparameters η ∈ Rnη×1 (with nη ∈ N+ is
the number of hyperparameters) can be defined by exploiting the Bayesian interpretation
of the Tikhonov regularization. This framework is applicable by assuming:

• β is a Gaussian random variableβ ∼ N (0,Σ), with zeromean and covariancematrix
Σ ∈ Rm×m;

• e(t) is Gaussian and independent from β with e ∼ N (0, σ2
eIn);

• e and Φ are known.

Thus, y and β will be jointly Gaussian variable [35, Chapter 2], therefore:


β

y

 ∼ N


0

0

 ,


Σ ΣΦ

Φ⊤Σ Φ⊤ΣΦ+ σ2
eIn


 . (A.16)

Exploiting this property, the posterior distribution β|y ∼
(
β̂, Σ̂

)
can be computed by:

β̂ = ΣΦ
(
Φ⊤ΣΦ+ σ2

eIn

)−1
y (A.17a)

=
(
ΣΦΦ⊤ + σ2

eIm

)−1
ΣΦy (A.17b)

Σ̂ = Σ−ΣΦ
(
Φ⊤ΣΦ+ σ2

eIn

)−1
Φ⊤Σ (A.17c)
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A.3. Regularization methods

If we choose the regularization matrix asK = Σ and the regularization term as λ = σ2
e the

mean of the posterior distribution (Maximum A Posteriori (MAP) estimate) matches with
the ReLS closed form (A.15).

Finally, since y is a Gaussian random vector, as denoted in (A.16), the hyperparameters η
can be estimated bymaximizing theMarginalized Likelihood (MargLik) (called also Empirical
Bayes):

η̂ = arg min
η

(
y⊤Z(η)−1y + log |Z(η)|

)
, (A.18)

where Z(η) = Φ⊤Σ(η)Φ+ σ2
eIn is the covariance matrix of y.

By solving optimization problem (A.18), some numerical errors can occur. This is due to
the computation of the log |Z(η)| term. Since Z(η) is positive definite, we can employ
the Cholesky decomposition, see [62, Chapter 4]. This method decomposes Z(η) ∈ Rn×n

into TT⊤ = Z(η) such that: T ∈ Rn×n is lower triangular matrix with positive diagonal
elements, called Cholesky factor. Doing so, it is possible to replace the log |Z(η)| term with
2
∑n

i=1 log(Tii). Thus, the Empirical Bayes problem (A.18) becomes:

η̂ = arg min
η

(
y⊤ĉ+ 2

n∑
i=1

log(Tii)

)
, (A.19)

By performing the Cholesky decomposition we obtain the Cholesky factor, then we can
compute ĉ by solving two triangular systems:

Ta = y

T⊤ĉ = a

(A.20)

The efficient computing of the MargLik estimation is explained in [23, 30].

In this description, the noise variance is assumed to be known, but usually it is unknown.
Nevertheless, it can be estimated in multiple ways. As suggested by [32], if a FIR model
is estimated using Least Squares the sample variance is equal to the estimation of σ2

e . The
authors of [134] have explained that it is also possible to do so with a low bias ARX. Another
way is to consider σ2

e as an additional hyperparameter and estimating it by maximizing the
MargLik (A.18), e.g. see [33, 100].
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APPENDIX B

Functional analysis fundamentals

This appendix reports some definitions of functional analysis. This literature can be found
in [145, 146].

Definition B.1: Vector Space

A vector space over the real field R is a set V endowed with two operations:
1. Sum: V × V → V ;
2. Inner product: R× V → V ;

and that satisfies the following axioms:
• u+ (v + w) = (u+ v) + w, ∀u, v, w ∈ V ;
• u+ v = v + u;
• ∃0 ∈ V : v + 0 = v, ∀v ∈ V ;
• ∃(−v) ∈ V : v + (−v) = 0, ∀v ∈ V ;
• λ1(λ2v) = (λ1λ2)v, ∀λ1, λ2 ∈ R, v ∈ V ;
• ∃1 ∈ V : 1 · v = v, ∀v ∈ V ;
• λ1(u+ v) = λ1u+ λ1v, ∀λ1 ∈ R, u, v ∈ V ;
• (λ1 + λ2)v = λ1v + λ2v, ∀λ1, λ2 ∈ R, v ∈ V .

By supposingV andW are two vector spaces, it is possible to define the following definition:

Definition B.2: Linear operator, Linear functional

F : V → W is a linear operator if, ∀λ1, λ2 ∈ R one has that F (λ1u1 + λ2u2) =

λ1F (u1) + λ2F (u2), ∀u1, u2 ∈ V . If W is R the linear operator is called linear
functional.

Definition B.3: Bilinear form, Symmetric

A bilinear form is a function a : V × V → R that is a linear in both arguments,
that is: a(u, ·) : V → R and a(·, v) : V → R are linear functionals where the former
has fixed u and ∀u ∈ V and the latter has fixed v and ∀v ∈ V . If the bilinear form a
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is a(u, v) = a(v, u), ∀u, v ∈ V , then it is said symmetric.

Definition B.4: Norm, Normed space

By letting a vector space V , the norm over V is a function ∥·∥ : V → R that holds:
• ∥u∥ ≥ 0; ∥u∥ = 0⇐⇒ u = 0 ∀u ∈ V ;
• ∥λ1u∥ = |λ1| · ∥u∥ , ∀u ∈ V,∀λ1 ∈ R;
• ∥u+ v∥ ≤ ∥u∥+ ∥v∥ , ∀u, v ∈ V .

In this case (V, ∥·∥) is called normed space.

Definition B.5: Convergent, Cauchy sequence

A sequence un is:
• Convergent: if ∃u ∈ V s.t. un → u, that is limn→∞ ∥un − u∥ = 0;
• Cauchy sequence: if ∥un − um∥ < ϵ with ϵ ∈ R+ and when n,m→∞;

with the normed space (V, ∥·∥). Observe that: every convergent sequence is a
Cauchy sequence in a normed space.

Definition B.6: Complete, Banach space

A normed space is said to be complete if every Cauchy sequence converges (in the
same space). A Banach space is a complete normed space.

Definition B.7: Pre-Hilbert space, Induced norm, Hilbert space

A Pre-Hilbert space is a vector space V endowed with a inner product of a bilinear
symmetric form ⟨·, ·⟩ : V × V → R, subject to: ⟨u, u⟩ > 0 ∀u ̸= 0.
The induced norm is defined as ∥u∥ =

√
⟨u, u⟩. Furthermore, the following propo-

sitions hold:
• Schwarz inequality: |⟨u, v⟩| ≤ ∥u∥ · ∥v∥ ∀u, v ∈ V ;
• The induced norm is effectively a norm.

An Hilbert space is a complete pre-Hilbert space.
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