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Abstract
Floods are one of the natural disasters which cause the worst human, social and economic
impacts to the detriment of both public and private sectors. Today, public decision-makers can
take advantageof the availability of data-driven systems that allow tomonitor hydrogeological
risk areas and that canbeused for predictive purposes to dealwith future emergency situations.
Flooding risk exposure maps traditionally assume amount of presences constant over time,
although crowding is a highly dynamic process in metropolitan areas. Real-time monitoring
and forecasting of people’s presences and mobility is thus a relevant aspect for metropolitan
areas subjected to flooding risk. In this respect, mobile phone network data have been used
with the aimof obtaining dynamicmeasure for the exposure risk in areaswith hydrogeological
criticality. In this work, we use mobile phone origin-destination signals on traffic flows
by Telecom Italia Mobile (TIM) users with the aim of forecasting the exposure risk and
thus to help decision-makers in warning to who is transiting through that area. To model
the complex seasonality of traffic flows data, we adopt a novel methodological strategy
based on introducing in a Vector AutoRegressive with eXogenous variable (VARX) model a
Dynamic Harmonic Regression (DHR) component. We apply the method to the case study
of the “Mandolossa”, an urbanized area subject to flooding located on the western outskirt
of Brescia, using hourly-basis data from September 2020 to August 2021. A cross validation
basedon the hit-rate and themean absolute percentage errormeasures showagood forecasting
accuracy.
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1 Introduction

Information and communication technologies (ICT)with big sources of relevant data has been
massively used in the field of modern and smart cities and the study of urban systems (Albino
et al., 2015; Bibri &Krogstie, 2017). According to Caragliu et al. (2011), a city can be defined
as “smart” when “investments in human and social capital and traditional (transport) and
modern (ICT) communication infrastructure fuel sustainable economic growth and a high
quality of life, with a wise management of natural resources”. With respect to this definition,
the methodological approach proposed in this work goes in the direction of ensuring high
quality of life, by developing a framework that can be useful for an early warning detection
of flood exposure risk associated to human presence and people mobility in support of the
broad topic of Disaster Management (see, e.g., Mishra et al. 2019).

Flood events are one of the natural disasters which cause significant social and economic
impacts on human life as, when an area is flooded, many people need to evacuate to a safer
place. This phenomenon may be fast and intense and can develop rapidly. Its predictability is
the subject on ongoing research and the development of early warning systems is a determi-
nant task. The bulletin provided by the italian national weather vigilance collects signals of
relevant weather phenomena for civil protection purposes expected up to the midnight of that
day, for the 24 hours of the following day, and also the tendency of the day after. The document
is published each day at 3 pm at https://www.protezionecivile.gov.it/en/approfondimento/
national-weather-vigilance-bulletins.

A fast response in evacuating people is one of the main flood risk management issues.
Maps of flood risk and exposure generally assume people density constant over time, despite
this is not the case in the “real-life” world, as crowding is a highly dynamic process in urban
areas.

People mobility is thus a relevant aspect for metropolitan areas (Benevolo et al., 2016),
where ICT may be used in support of the optimization of traffic flows or in tracking real-time
citizens’ position. A crucial aspect refers to themonitoring and the forecasting of the dynamic
of people’s presences and movements. Interpretative tools for tracking and modelling the
presences in the metropolitan areas are needed because traditional data sources, such as
census and surveys, have some known limitations like high costs and static nature of the
data. Moreover, it is a matter of fact that typical smart cities present emerging forms of
mobility and time-variations in the use of urban spaces, by both residents and temporary
populations.

The new technologyofmobile phone network data suitswith the aimof producing dynamic
information on people’s presences (Metulini & Carpita, 2021) and movements (Tettamanti
& Varga, 2014). Specific applications also regard the monitoring of the impact of social and
cultural events (Carpita & Simonetto, 2014) and the development of dynamic exposure maps
to flooding risk for areas with hydrogeological criticality. According to the latter strand of
research, Balistrocchi et al. (2020) developed dynamic exposure maps using mobile phone
data, while Kong et al. (2022) developed flooding risk maps based on taxi GPS traffic data.
From a prevention perspective, the use of mobile phone technologies applied to flooding risk
could make the identification of preferential traffic flows possible, thus evidencing potential
risks during inundation onsets or emergency situations.

In this work, we use mobile phone data of Telecom Italia Mobile (TIM) retrieving the
Origin-Destination (OD) traffic flows from/to different “census areas” (ACEs) of the “Italian
National Statistical Institute” (ISTAT) on hourly basis for twelve months, from September
2020 to August 2021. The aim is to develop a statistical modelling framework for the fore-
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casting of traffic flows transiting through specific flooding risk areas. It is worth mentioning
that flood risk is a function of the hazard (which is related to the probability of occurrence of
the flooding disaster), the exposure (which is related to the number of people that are present
in the location involved) and the vulnerability (in turn, the lack of resistance to damaging
forces) components (Kron, 2002). Here we work on exposure, in the sense that we are inter-
ested in forecasting the number of people that are present in flooding risk areas of interest.
Once knowing if the amount of people in specific areas (in the near future) is higher than a
pre-specified warning threshold, to alert people transiting through that area may be possible.
In doing so, it is also worth highlighting that TIM does not provide data at “real-time”. It
follows the constraint that data of immediately previous hours are not allowed to be used for
predicting actual data. For this reason, for the dynamic multivariate model proposed in this
study we use lags of 24 hours, so that the model could be used with the actual lags of the
TIM data availability.

Empirical evidence (that will be presented in Sect. 2.3) show a strong similarity among
the different flows considered. This evidence proves that such flows belong to dependent
processes. So, in this work we allow considered flows to be contemporaneously correlated to
each other at the same time, but also correlated to each other’s past value. Empirical evidence
on the temporal dynamic of the OD traffic flows (Sect. 2.3) also highlight the presence of
a regular pattern in which a daily and a weekly seasonality are dominant. These evidences,
which will be extensively showed in the next section, motivate the choice of using a model
with a Dynamic Harmonic Regression (DHR) component (Hyndman & Athanasopoulos,
2018) to deal with a complex seasonality structure, adopting the logic of approximating the
temporal periodicity with the use of some Fourier bases.

To properly take into account for the dependence among the considered processes and for
the seasonal patterns of the processes themselves, a Vector AutoRegressive with eXogenous
variables (VARX)model is proposed in thiswork,where someDHRcomponents are included
among theXpart. Similarmethodological approaches, based on autoregressivemodels for the
analysis of time series data, have been developed for the forecasting of mobile phone traffic.
Guo et al. (2009) proposed the use of a multiplicative seasonal autoregressive integrated
moving average modeling strategy. Tran et al. (2015, 2016), to the same goal, adopted a
generalized autoregressive conditional heteroscedasticity strategy. However, to the best of
our knowledge, this is the first attempt to incorporate a dynamic harmonic term into a vector
autoregressive structure in the context of mobile phone traffic.

The performance of our VARX model with a DHR component in terms of forecasting
accuracy has been tested bymeans of a blocked k-folds cross validation (CV) strategy for time
series (Snijders, 1988; Hyndman & Athanasopoulos, 2018) which considers, as validation
set, folds of 1 day (24 hours) and, as training set, blocks of similar length. We use the Mean
Absolute Percentage Error (MAPE) for the performance evaluation using the validation
sample. Inspired by the famous algorithm for the early detection of outbreaks, proposed by
Farrington et al. (1996) (and developed by Yoneoka et al. (2021)) and based on defining
a cut-off for the intensity of a specific event, we then turn observed and predicted values
into categories using quintiles representing different levels of exposure risk, and we evaluate
predicting performance by means of the Hit-Rate (HR) measure for confusion matrices.

We show the effectiveness of our approach by applying it to “inflows”, “outflows”
and “internal” flows of the ACE of “Cellatica” in the Mandolossa area, that is a criti-
cal zone with flood episodes in the north-west outskirt of the city of Brescia, Italy. The
Mandolossa area subjected to flooding, actually, is highly urbanized, with the presence of
roads and bridges, as documented in the report “Adeguamento della componente geolog-
ica, idrogeologica e sismica del PGT al Piano di Gestione del Rischio Alluvioni (P.G.R.A.)”
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https://www.comune.brescia.it/servizi/urbanistica/PGT/Documents/Variante%20Idrogeolog
ica%202017/VI-ALall04l-01c-Relazione%20idrologica%20e%20idraulica%20(Solda-Cana
le-M.pdf of the Municipality di Brescia. This structure highlights the link between flooding
risk and traffic, as also demonstrated by the many flood events that cause traffic flows that
happened in the past, such as the one in May 2010 in the area of S. Eufemia. Nevertheless,
with appropriate generalizations, the proposed approach may be extended to any flooding
risk area of interest.

The paper is structured as it follows. Sect. 2 describes the available mobile phone data
and shows preliminary evidences that motivate the adopted methodological approach; Sect. 3
introduces the modeling framework; Sect. 4 is dedicated to the application of the method to
real data, and Sect. 5 concludes the paper.

2 The origin-destinationmobile phone data

2.1 Data description

Data configures as square OD (Origin-Destination) matrices of dimension N × N , with
N = 235 being the number of ACEs in the province of Brescia - Italy, according to ISTAT
classification (see, e.g., https://www.istat.it/it/archivio/104317). Data are available at inter-
vals of one hour for a total of one year (from September, 1st 2020 to August, 31th 2021)
summing to a total of about 24 × 365 = 8760 different OD matrices.1 Data have been pro-
vided by Olivetti (www.olivetti.com/en/iot-big-data) and FasterNet (www.fasternet.it) for
the MoSoRe Project 2020-2022 (https://ricerca2.unibs.it/?page_id=8548).

A concordance table has also been provided so that tomake the association ofODdatawith
ISTAT cartography (e.g., the shape files provided at https://www.istat.it/it/archivio/104317)
and demographic official data (such as the residential population) possible.

Data can be interpreted as the traffic flow from a specific ACE to another specific ACE
in an hour interval. Flows from a specific ACE to itself (also called “internal” flows) are
also available and displayed in the main diagonal of the above introduced OD matrices. To
make an example, data related to the flow from an ACE (let’s say, ACE1) to another ACE
(let’s say, ACE2) configures as the number of phone SIM that, in that specific hour interval,
were retrieved by the antenna in ACE1 and, after five or more minutes, was retrieved by the
antenna in ACE2. It is possible to separately count the number of human SIM (that, overall,
sums to about 85% of the total SIM) and the number of M2M technology machine SIM (that
counts for about 15% of the total SIM). In this work, we just consider the count of human
SIM in order to avoid duplicates (e.g. a person who has both the mobile phone and the black
box in his/her car). It is worth noting that both Italian and foreigner (in roaming) SIM are
counted.

Since proprietary, the data are provided to us without a precise information about the error
of measurement. We know that the retrieving system in use allows us a good precision in
terms of geolocalization (∼ 100 meters). Since spatial units of aggregations (the ACEs) are
quite large, the geolocalization error is attenuated (Cellatica, the ACE that will be analyzed
in the case study, measures 6.55 km2). Moreover, by the design of the data retrievement, the
position of the car is collected each 5 min. This leads to two considerations: (i) the counts
of traffic flow might be underestimated, because the flow of a person who was recorded in,

1 Actually, for a limited number of intervals, data are not available, due to technical issue. This aspect will be
discussed later in this work.
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let say, ACE1, and after 3 minpassed through ACE2, is not counted; (ii) the count of flows
between two distant ACEs must be zero. Actually, flows between two distant ACEs are, in
rare cases, different from zero. We attribute this fact to an issue related to the bad functioning
of the retrieving system.

2.2 Area of interest

For the sake of our goal, which is related to quantify the traffic flows in flooding risk area,
we need delimiting the area of interest. The method presented in Sect. 3 will be tested in
Sect. 4 over the case study of the Mandolossa region, whose flooding map (with 10 return
years, Balistrocchi et al. 2020) is represented in Fig. 1. The ACEs of interest are those
which intersect with the identified flooding-risk area. Namely, those ACEs are “Gussago”,
“Cellatica”, “Rodengo Saiano” and “BresciaMandolossa” (which is, actually, an aggregation
of two distinct ACEs in the city of Brescia).

We have identified other 38 neighboring ACEs (in turn aggregated, for a sake of represen-
tation, in four macro areas: “Bassa Bresciana”, “Brescia”, “Franciacorta” and “Valtrompia”,
located as in Fig. 1), which fulfil the criteria of counting a minimum flow from or flow to the
four above defined ACEs. The total flows counted between the four ACEs intersecting the
Mandolossa flood risk area and the 38 selected neighboring ACEs counts for about the 84%
of the total flows from and to the four ACEs of the Mandolossa. Overall, we believe worthy
to be considered i) the sixteen flows between the four ACEs of the Mandolossa (actually,
four of them, that we will call “internal” flows, counts the number of flows from an ACE
to the same ACE); ii) the sixteen flows from the four ACEs of the Mandolossa to the four
neighboring macro areas; iii) the sixteen flows from the four neighboring macro areas to the
four ACEs of the Mandolossa.

2.3 Preliminary evidences

Through the use of the above described data, we have studied the characterization of the
dynamic of traffic flows over the time by jointly analyzing (as an example, but with the aim
of generalizing the evidences to other flows inside the Mandolossa) the three following time
series:

1. the flows to Cellatica (purple colored polygon in Fig. 1) from all other 38 neighboring
ACEs (herein after, “inflows”);

2. the flows from Cellatica to all other 38 neighboring ACEs (“outflows”);
3. the flows from Cellatica to Cellatica itself (“internal” flows).

The choice of considering the ACE of Cellatica in this first study is motivated by looking
at Fig. 1: the intersecting portion of the flooding risk area with the area of Cellatica is higher
compared to the intersection with the other ACEs of the Mandolossa.

The choice of considering both inflows and outflows and internal flows is motivated by
the fact that to correctly quantifying street crowding, it is also necessary to consider those
moving within the borders of the considered area.

The Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Test (Kwiatkowski et al., 1992) for both
i) level stationarity and ii) trend stationarity has been performed. The first test does reject
the null hypothesis of stationarity while the second test does not. In other words, the three
original time series are not stationary, but, when filtered by their complex seasonality, the
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Fig. 1 Map of flooding risk area, ACEs of the Mandolossa and neighboring macro-areas

series turn out to be stationary and so they are allowed to be modeled within a traditional
autoregressive setup.

Figure 2 shows a weekly excerpt (i.e., from 22th to 28th February, 2021) of the time
series of inflows, outflows and internal flows in Cellatica. The figure highlights a strong
similarity among the different time series.2 Thismotivates us tomodel suchflows as belonging
to dependent processes. A so strong similarity pattern may be due to the topographical
characterization of a typical urbanized area of interest, where the same ACE presents both
residential and industrial zones nearby located (Fig. 3). This land use structure is well suited
for a dynamics of traffic flows in which, for example, to a certain increase in the amount of
flows entering a certain area in the morning (e.g., to go to work), an associated increase in the
amount of outflow in the same area and at the same time (e.g., to leave the house) is likely.

We analyze the AutoCorrelation Function (ACF) and the Partial ACF (PACF), displayed
in Fig. 4 for time lags up to one week (168 hours). ACF and PACF highlights a strong
daily pattern. The left charts clearly show a daily periodicity, where the pick of positive

2 This similarity emerges even if we consider different excerpt of the yearly time series. We have decided to
show only one week for greater clarity.
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Fig. 2 Outflows from Cellatica
(in red), inflows to Cellatica
(blue), internal flows within
Cellatica (green). Hourly data
from 22th to 28th of February,
2021
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autocorrelation is in correspondence of 24, 48, 72, ... hours of delay, the pick of negative
autocorrelation is in correspondence of 12, 36, 60, ... hours of delay. Right charts show
that partial autocorrelation is strong only at exactly 24, 48, 72, ... hours of delay. Moreover,
autocorrelationpatterns are very similarwhen considering inflows (Fig. 4a), outflows (Fig. 4b)
and internal flows (Fig. 4c).

We have also performed an additive decomposition of the time series in trend, daily and
weekly seasonality, obtained using Seasonal-Trend decomposition with locally estimated
scatter plot smoothing (STL with LOESS, Cleveland et al. 1990). Analyses are performed
by R packages for time series (Hyndman, 2022). According to Fig. 5, the original time
series (top chart) of inflows (Fig. 5a), outflows (Fig. 5b) and internal flows (Fig. 5c) is
additively decomposed in trend (trend), daily seasonal pattern (season_24), weekly
seasonal pattern (season_168) and a residual term (remainder). The heights of the grey
bars help to quantify the importance of each component. Consistently on the three analyzed
time series, it emerges that the daily pattern (season_24) is more important than theweekly
pattern. However, it seems that both daily and weekly seasonalities deserve to be accounted
for adequately modelling traffic flows. A confirmation comes from the decomposition of
the total variance of the original series in trend, daily pattern, weekly pattern and remainder
term (according to the STL additive decomposition). Table 1 shows that the two seasonal
components, consistently over the three time series, sum to ∼ 95% of the total variance.

Motivated by empirical evidence, in order to account for the dependence among the three
processes and for the daily and weekly seasonalities in the processes themselves, the VARX
model with DHR components as described in Sect. 3.1 will be adopted. Here, it is worth
mention that possible multicollinearity issues related to jointly modeling such a similar time
series through a vector autoregressive strategy are mitigated by the fact that such similarity,
as demonstrated above, is mostly attributed to daily and weekly patterns that will not be
modeled through the mutual interdependence among the time series themselves but through
the Fourier bases of the DHR component. Moreover, similarities in the three time series
attributed to the average levels by month and by weekday (see trend series in Fig. 5) will
be captured by two set of dummies included among the exogenous variables. It follows that
the vector autoregressive part will model the remainder component, which is supposed not
to be extremely similar among the three time series.
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Fig. 3 Mapof theACEofCellatica, by destination of use. Residential areas are depicted in blue, industrial areas
in red. Source: Destinazione d’Uso dei Suoli Agricoli e Forestali (DUSAF) 6.0 2018, last update 14/09/2021.
https://www.dati.lombardia.it/Territorio/Dusaf-6-0-Uso-del-suolo-2018/7rae-fng6

123

https://www.dati.lombardia.it/Territorio/Dusaf-6-0-Uso-del-suolo-2018/7rae-fng6


Annals of Operations Research

0 50 100 150

−0
.5

0.
0

0.
5

1.
0

Lag

AC
F

0 50 100 150

−0
.5

0.
0

0.
5

1.
0

Lag

PA
C

F

(a) Inflows.
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(b) Outflows.
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(c) Internal flows.

Fig. 4 ACF (left) and PACF (right) for time lags up to one week (168 hours). From top to bottom: Inflows,
Outflows, Internal flows
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(b) Outflows.
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(c) Internal flows.

Fig. 5 STL with LOESS, with trend, daily and weekly patterns and remainder component. 1 year of data:
from September 1st, 2020 to August 31st, 2021. From top to bottom: Inflows, Outflows, Internal flows
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Table 1 Total variance decomposition according to STL decomposition (expressed in %)

Series Trend Season_24 Season_168 Remainder

Outflows 2.355 87.455 7.296 2.894

Inflows 2.282 87.818 7.107 2.792

Internal flows 2.734 90.016 4.291 2.956

3 Modeling strategy

As explained in the introduction, tomodel and to forecast traffic flows in areaswith hydrogeo-
logical criticality, we adopt a newmodeling approach that include in a Vector AutoRegressive
with eXogenous variables (VARX) model a Dynamic Harmonic Regression (DHR) compo-
nent, justified by the evidence on the temporal pattern on traffic flows’ time series and on the
similarity among inflows, outflows and internal flows displayed in Sect. 2.3.

The model is applied to hourly data but, due to the constraint to avoid using recent data
that are unavailable, the lags of the AutoRegressive (AR) part cannot be those of the last 23
hours. They are instead either i) the values at the same hour of the previous day, or ii) the
value at the same hour and the same weekday of the previous week.

3.1 Model specification

Vector AutoRegressive models (VAR, Hamilton 1994, chapters 11-12), and more in general
multivariate time series models have been mainly developed and adopted for the analysis
of financial data (Stock & Watson, 2001). In our context, the VAR model with eXogenous
variables (VARX, Tsay 2014, chapter 6) seems to be adequate to describe the desired depen-
dence structure where flows display strong correlation patterns. The general VARX model,
for time t = 1, ..., T , is defined as follows:

yt = ν +
p∑

h=1

Ahyt−h + Bxt + εt (1)

where yt is the m × 1 vector of dependent variables at time t , and yt−h is the vector of
dependent variables at time t − h, ν is a constant vector of length m, Ah is an m × m matrix
of coefficients to be estimated; xt represents the l × 1 vector of the l exogenous variables,
where B is the related m × l matrix of coefficients. In our case, we model inflows, outflows
and internal flows, so m = 3. Furthermore, by adopting a VARXmodel, we are assuming that
the realizations of the three processes in vector yt are related to each others.

To model the complex seasonality of traffic flows correlated processes, we employ a DHR
structure inside the VARX model by considering in xt the vector of selected sin and cosine
Fourier bases related to the daily and the weekly patterns. The DHR model (Hyndman &
Athanasopoulos, 2018) is based on the principle that a combination of sine and cosine
functions can approximate any periodic function related to seasonal patterns. Given yt the
realization of a stochastic process Y evaluated at time t , the DHR model is defined as:

yt = β0 +
K∑

k=1

[αksk(t) + γkck(t)] + εt (2)
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where β0 is a constant term, sk(t) = sin( 2πkt
m ) and ck(t) = cos( 2πkt

m ) are, respectively, the
sine and cosine functions, with m being the seasonal period (e.g., if t are hours, the weekly
period is m = 24 × 7 = 168), αk and γk , for k = 1, ..., K , are regression coefficients to
be estimated and εt is the residual component, generally modeled as a standard ARI M A
process. The optimal model is the one with the lowest Akaike Information Criteria (AIC), so
the process for choosing the optimal value of K is to start with K = 1 and increase K until
the AIC is no longer decreasing, by considering the constraint that, by model construction,
K cannot be greater than m/2.

Actually, DHR model may account for more than one periodic function. According to the
preliminary evidence in Sect. 2.3, we want to account for both daily and weekly periodic
functions, and we do so by using the following two summation terms:

1.
∑Kd

kd=1[αkd skd (t) + γkd ckd (t)], with skd (t) = sin( 2πkt
md

) and ckd (t) = cos( 2πkt
md

), where
2 × Kd is the number of parameters to be estimated for the daily pattern and md = 24
hours.

2.
∑Kw

kw=1[αkw skw (t)+γkw ckw (t)], with skw (t) = sin( 2πkt
mw

) and ckw (t) = cos( 2πkt
mw

), where
2 × Kw is the number of parameters to be estimated for the weekly pattern and mw =
24 × 7 = 168 hours.

Summarizing, we aim at modelling inflows, outflows and internal flows together by com-
bining VARX with DHR approaches and by allowing the realizations of the three processes
to affect one each other.

Since in our work the three processes yt are represented by directed origin-destination
flows evaluated at different hours’ intervals, herein after we call its realization at time t from
the i − th ACE of origin to the j − th ACE of destination Flowi j,t . We furthermore call the
realization at time t of the process related to internal flows Flowi i,t .

The adopted model is defined as:

Flowt = ν +
p∑

h=1

AhFlowt−h + Bxt + εt (3)

whereFlowt = [Flow j i,t , Flowi j,t , Flowi i,t ]′, xt is the 2×(Kd +Kw) vector [s1d (t), c1d (t),
..., sKd (t), cKd (t), s1w (t), c1w (t), ..., sKw (t), cKw (t)]′ andB is the 3×[2×(Kd +Kw)]matrix
of α and γ parameters in formula 2.

Here it is worth remarking that order p is not referring to hours. Due to data availability
constrain, it is instead to be considered either as i) days, or ii) weeks.

Actually, in the application a proper set of dummies related to the month and to the day
of the week is also included among the exogenous variables, as will be explained in Sect. 4.

3.2 Forecasting and performance evaluation

In this subsection, we describe the methodological strategy adopted for the performance
evaluation. Specifically, the performance of the model needs to be evaluated in terms of the
ability of forecasting the amount of traffic flows (both inflows and outflows and internal
flows) in a specific year’s day.

To this aim, we split the data in the training and the validation set by adopting a blocked k-
folds cross validation strategy for time series (Hyndman & Athanasopoulos, 2018; Snijders,
1988), where k equals to one day (24 observations) and the training set if 2 months length
(60 days). To validate the last 24 hours of the dataset (i.e., the day of August, 31th, 2021)
we base on a training set made by the previous two months of data (i.e. from July, 1st, 2021
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to August, 30th, 2021). In order to evaluate the performance consistently over all the days
of the year, we decide to replicate the performance evaluation using different set of training
and validation samples. With a rolling window procedure, to validate the day of August 30th,
2021 the training set refers to the data from June 30th, 2021 to August 29th, 2021, and so on
and so forth. We use the validation set for performance evaluation purposes, by comparing
predicted versus observed values. (i.e., for each fold). However, since i) the available data
are related to exactly 1 year, ii) the training set is 2 month length, and iii) the model is based
on lag values up to a certain numbers of weeks, more than 60 days can not be validated.

The RMSE is traditionally adopted for performance evaluation. A disadvantage of the
RMSE is that it suffers for being dependent from the unit of measure. In this work, we
adopt the MAPE (Hyndman & Koehler, 2006; Tofallis, 2015), which solves that problem by
measuring the accuracy as a percentage. TheMAPE can be calculated as the average absolute
percent error between observed and predicted values using the following formula:

M AP E = 100 × 1

nv

nv∑

t=1

| Yt − Ŷt |
Yt

(4)

where nv is the number of validation points, Yt is the observed value at time t of inflows,
outflows or internal flows, Ŷt is the predicted value at time t of inflows, outflows or internal
flows.

A second way to evaluate accuracy of prediction is based on HR, which is a metric for
categorical data traditionally adopted for the classification of customers in credit scoring
(see, e.g., Bensic et al. 2005). Simply speaking, HR is nothing more the ratio of times the
values are correctly predicted by such a method. First both observed and predicted values of
the validation set are assigned to the categories using distribution percentiles, then this ratio
is computed:

H R = 1

nv

nv∑

t=1

I ( Yt and Ŷt belong to same category) (5)

where I (ct ) is the indicator variable that is 1 if the condition ct is true and 0 otherwise.
The interest in adopting such a measure arises if we consider as an alternative criteria

for the model’s performance the ability to predict whether the traffic level is high, moderate
or low. In light of this, we will assign observed and predicted values to 5 categories, from
“very high” to “very low” flows, using distribution quintiles, whereas a classification in 7
categories has also been tried for comparison purposes.

4 Results of the analysis

In this section, we show the application of our approach to the traffic flows related to the
ACE of Cellatica (Fig. 3).

4.1 Modeling

To jointly modeling the traffic flows in both directions of the ACE of Cellatica (inflows and
outflows) and the internal traffic flows, it is determinant to find the optimal number of the
Fourier bases of the DHR components and then the optimal order for the AR term to be
considered in the VARX model.
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Fig. 6 Surface plot of the AIC of
the VARX model with Fourier
bases (Kd = 7, Kw = 4), month,
weekday dummies, for
pd = 1, 2, ..., 5 and
pw = 1, 2, ..., 5
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23.40
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Operationally, first the optimal number of Fourier bases, Kd = 7 and Kw = 4, have been
determined using the method suggested in previous studies for the case of single (Hyndman
& Athanasopoulos, 2018) and multiple ([26], Sect. 3) seasonal pattern. We also include
monthly dummies among exogenous variables to control for the possible presence of changes
in average levels among months (e.g., higher traffic flows inMarch, as emerged by looking at
the trend series of the STL decomposition in Fig. 5a–c) and weekdays dummies to control
for the possible presence of changes in average levels among weekdays.

For the identification of the AR order, as explained in the introduction and in Sect. 3, we
cannot use the latest 23 hours, so that here the lag of order 1, that with hourly data should be
the previous hour, has two definitions: i) the value at the same hour of the previous day, ii)
the value at the same hour and the same weekday of the previous week. An approach based
on AIC and the “elbow” method has been applied to find the optimal orders pd (the number
of lags related to the same hour of previous days) and pw (the number of lags related to the
same hour of previous weeks). More precisely, by means of a surface plot we evaluate the
AIC for each combination of pd and pw in the range of integer values from 1 to 5, based on a
VARXmodel with Fourier bases (Kd = 7, Kw = 4) = (7d , 4w), month and weekday dummies
(see Fig. 6).

The surface plot highlights how, for pd > 3 and pw > 4, the AIC does not decrease
significantly. So, the chosen model turns out to be a VARX (pd = 3, pw = 4) = (3d , 4w)

model with the DHR(7d , 4w) components among exogenous variables.
Estimation results of the finalVARXmodelwithHDRcomponents, computed over the full

sample of 365 days where data for September, 2nd, 2020 (not available) have been replaced
by the data for September, 9th, 2020 and performed in R based on VARX and VARXpred
functions in MTS package (Tsay, 2014),3 are reported in Table 2.

The PACF (see bottom left charts in Fig. 7a–c) displays the presence of significant auto-
correlation of first order in estimated residuals. This might be due to the fact that first 23 lags
are not allowed to be used. Moreover, the histogram of the residuals does not follow a normal
distribution. Bottom right charts of Fig. 7a–c highlight that residuals exhibit a leptokurtic
distribution with heavy tails. This is the price to pay for does not including traditional lag
terms (i.e., the previous hours) in the model.4 Stationarity on the time series of estimated

3 We have assumed that traffic flows for these two days are similar.
4 As a robustness check, the same VARX model has been also estimated replacing the dependent variables
with a Box-Cox power transformation of original values via maximum likelihood estimation (Box & Cox,
1964). Residuals do not show a significant improvement in the adherence to normal distribution (results are
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Table 2 Results of the VARX(3d , 4w) with a DHR(7d , 4w) component

Endogenous variable Inflow (s.e.) Outflow (s.e.) Internal flow (s.e.)

Inflow_AR(1)_day 0.192 (0.056) 0.063 (0.057) − 0.009 (0.037)

Inflow_AR(2)_day − 0.051 (0.057) − 0.096 (0.058) − 0.036 (0.036)

Inflow_AR(3)_day 0.028 (0.057) − 0.003 (0.057) − 0.039 (0.036)

Outflow_AR(1)_day 0.109 (0.056) 0.230 (0.056) 0.035 (0.036)

Outflow_AR(2)_day − 0.072 (0.057) − 0.032 (0.057) − 0.058 (0.036)

Outflow_AR(3)_day −0.006 (0.056) 0.024 (0.056) − 0.006 (0.035)

Internal_flow_AR(1)_day 0.035 (0.032) 0.042 (0.032) 0.258 (0.021)

Internal_flow_AR(2)_day 0.160 (0.033) 0.170 (0.033) 0.165 (0.020)

Internal_flow_AR(3)_day 0.133 (0.032) 0.133 (0.033) 0.176 (0.020)

Inflow_AR(1)_week 0.294 (0.059) 0.136 (0.060) 0.099 (0.037)

Inflow_AR(2)_week − 0.017 (0.058) − 0.133 (0.059) − 0.016 (0.037)

Inflow_AR(3)_week 0.131 (0.059) 0.048 (0.060) 0.039 (0.037)

Inflow_AR(4)_week 0.168 (0.059) 0.084 (0.059) 0.073 (0.037)

Outflow_AR(1)_week 0.012 (0.059) 0.171 (0.059) − 0.044 (0.037)

Outflow_AR(2)_week 0.070 (0.058) 0.186 (0.059) 0.008 (0.037)

Outflow_AR(3)_week 0.120 (0.058) 0.207 (0.059) 0.050 (0.037)

Outflow_AR(4)_week 0.077 (0.059) 0.160 (0.060) 0.022 (0.037)

Internal_flow_AR(1)_week − 0.067 (0.032) − 0.069 (0.033) 0.145 (0.021)

Internal_flow_AR(2)_week − 0.058 (0.031) − 0.061 (0.032) 0.046 (0.020)

Internal_flow_AR(3)_week − 0.217 (0.032) − 0.221 (0.031) − 0.044 (0.020)

Internal_flow_AR(4)_week − 0.174 (0.032) − 0.168 (0.032) − 0.041 (0.020)

Exogenous variable Outflow (s.e.) Inflow (s.e.) Internal flow (s.e.)

Sin_day_1 − 45.439 (7.928) − 37.692 (7.990) − 47.087 (5.015)

Cos_day_1 − 25.347 (7.432) − 29.108 (7.490) − 27.341 (4.701)

Sin_day_2 − 9.508 (2.976) − 11.809 (3.000) − 14.312 (1.883)

Cos_day_2 5.004 (2.232) 3.044 (2.249) 5.749 (1.412)

Sin_day_3 4.342 (2.579) 5.511 (2.600) 4.179 (1.632)

Cos_day_3 − 11.551 (3.188) − 4.073 (3.213) − 7.625 (2.016)

Sin_day_4 − 0.254 (2.086) − 2.125 (2.103) − 3.108 (1.320)

Cos_day_4 1.540 (2.473) − 2.723 (2.493) − 3.912 (1.565)

Sin_day_5 0.166 (2.086) 0.348 (2.103) 1.962 (1.320)

Cos_day_5 0.327 (1.956) − 0.486 (1.971) − 0.159 (1.237)

Sin_day_6 1.029 (1.941) 0.662 (1.956) 0.839 (1.228)

Cos_day_6 − 1.805 (1.969) − 0.736 (1.985) − 1.310 (1.246)

Sin_day_7 − 1.472 (2.023) 0.425 (2.039) − 0.010 (1.280)

Cos_day_7 − 1.026 (1.969) − 1.361 (1.985) − 1.143 (1.246)

Sin_week_1 41.318 (2.358) 41.137 (2.377) 22.975 (1.492)

Cos_week_1 5.778 (2.347) 6.137 (2.366) 5.785 (1.485)

Sin_week_2 − 35.458 (2.324) − 35.469 (2.342) − 22.282 (1.470)
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Table 2 continued

Exogenous variable Outflow (s.e.) Inflow (s.e.) Internal flow (s.e.)

Cos_week_2 10.698 (2.177) 9.993 (2.195) 2.815 (1.377)

Sin_week_3 10.185 (1.978) 10.820 (1.994) 6.417 (1.251)

Cos_week_3 − 23.977 (2.113) − 23.635 (2.129) − 10.739 (1.337)

Sin_week_4 16.133 (1.985) 15.494 (2.000) 9.308 (1.256)

Cos_week_4 18.184 (2.069) 18.348 (2.086) 7.757 (1.309)

Month (ref. January): February 43.963 (6.942) 44.745 (6.997) 3.117 (4.392)

March 56.449 (6.775) 56.982 (6.829) 23.425 (4.286)

April 7.840 (6.807) 8.286 (6.861) − 0.302 (4.306)

May 43.830 (7.116) 44.526 (7.172) 7.260 (4.501)

June 65.148 (7.097) 66.822 (7.153) 21.094 (4.490)

July 68.355 (7.234) 69.637 (7.291) 9.575 (4.576)

August − 32.542 (7.210) − 33.130 (7.267) − 47.680 (4.561)

September 42.524 (7.544) 44.453 (7.604) 11.643 (4.773)

October 102.004 (7.127) 103.378 (7.183) 38.790 (4.508)

November 54.185 (6.947) 54.458 (7.002) 31.033 (4.394)

December 71.030 (6.794) 71.378 (6.847) 27.408 (4.298)

Weekday (ref. Monday): Tuesday 63.740 (26.874) 68.238 (27.087) 31.087 (17.001)

Wednesday 11.398 (26.888) 17.867 (27.101) − 13.700 (17.009)

Thursday 11.876 (26.920) 23.314 (27.133) − 10.966 (17.029)

Friday 9.321 (26.875) 27.938 (27.088) − 27.546 (17.090)

Saturday − 64.434 (26.842) − 46.322 (27.055) − 59.964 (16.980)

Sunday − 30.698 (26.858) − 22.364 (27.071) − 20.947 (16.990)

Intercept 19.612 (13.058) 19.244 (13.161) 61.881 (8.260)

Residual correlation matrix Outflow Inflow Internal flow

Outflow 1 0.983 0.858

Inflow 0.983 1 0.856

Internal flow 0.858 0.856 1

Information criteria AIC: 23.488 BIC: 23.636

residuals has been checked by means of the Dickey Fuller (DF) test (Dickey & Fuller, 1979)
for unit roots. Since our regression set-up contemplates lags from the order 24, the DF test
is employed based on the beta coefficient of the following regression:

δYt = α + βYt−24 + υt .

The null hypothesis of unit roots is rejected for all the three time-series of estimated residuals.
It means the time series of estimated residuals are stationary.

Footnote 4 continued
available upon request) and do not justify the use of a Box-Cox transformation on original data. We have also
added the lags 25 (the previous hour of the previous day) and 169 (the previous hour of the same day of the
previous week) in the model, but again no significant improvements emerge.
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(a) Inflows’ VARX estimated residuals.
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(b) Outflows’ VARX estimated residuals.
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(c) Internal flows’ VARX estimated residuals.

Fig. 7 Residuals’ diagnostic: Time series of estimated residuals (top), PACF with 95% confidence bounds for
strict white noise (bottom left), histogram of the empirical distribution with normal curve (bottom right)
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4.2 Performance evaluation

To evaluate prediction performance, we apply the blocked k-folds cross validation strategy
for time series described in Sect. 3.2, which is based on splitting the observed time series in a
training set and a validation set, by taking as training set the previous two months of data and
as validation set the considered day itself. The total number of generated different training
and validation set is 277, because for 88 days the validation has not been possible: i) 60 days
are excluded because used for the training set, ii) 28 additional days have been used as lag
terms in the vector autoregressive model (remember that the order chosen for pw was 4). As
a result, each training set has sample size nt = 1440 (24 daily observations in each of the 60
days) and each validation set has sample size nv = 24.

Schematically, to evaluate the forecasting accuracy we proceed, using the two indices
defined in Sect. 3.2, as it follows:

1. first, we replace holidays’ values with the values of the same hour of a different day
using an appropriate criterion that will be explained below. We do replacement for these
days because traffic on holidays likely follows a particular dynamic. We refer to them as
anomalous days.

2. in a second step, on the dataset where anomalous days have been appropriately replaced
we analyze bymeans of theMAPE the performance of our method in correctly predicting
the amount of traffic in the validation days. In doing so, an analysis by month is shown
to demonstrate that the accuracy of the prediction is similar in different time periods.

3. In the third and most relevant step, true and predicted values are classified in 5 categories
using distributional quintiles and the HR is computed to evaluate how good is the model
to predict whether the traffic is very high, high, moderate, low or very low.

According to the first step, for the holidays we have considered as anomalous the follow-
ing days: January, 1st and 6th (Epiphany), April, 4th (Easter) and April, 5th, April, 25th,
May, 1st, June, 2nd, August, 15th (mid-August public holiday), December, 8th (Immaculate
Conception), 25th (Christmas), 26th (S. Stefano) and 31th. We have replaced the values of
the inflows, the outflows and the internal flows with the values of the same weekday of the
previous week (under the assumption that the replaced one is a “normal” day). Actually,
some of these days are replaced with the nearest same weekday that is not an anomalous day.
That is the case of, e.g., January 1st, whose same weekday of the previous week was another
anomalous day (December, 25th).

According to the second step, MAPE has been computed for all the available validation
days, using the dataset where the holidays have been replaced and using the predicted val-
ues determined by the chosen VARX(3d , 4w) model with DHR(7d , 4w) components. As
an example of forecast, Fig. 8a–c show, respectively from top to bottom, the time series of
observed (black) versus predicted (colored) inflows, outflows and internal flows - where out-
flows represent the amount of traffic exiting Cellatica, inflows the amount of traffic entering
Cellatica, internal flows the amount of traffic within Cellatica - for the validation of four rep-
resentative days (from left to right): February, 15th (Monday), February, 17th (Wednesday),
February, 19th (Friday), February, 21st (Sunday). According to these validation days, the
MAPE (computed according to Eq. 4) varies from a minimum of 4.8 (Wednesday) to a max-
imum of 24.3 (Monday) for outflows, from a minimum of 3.8 (Wednesday) to a maximum
of 23.5 (Monday) for inflows and from a minimum of 7.4 (Wednesday) to a maximum of
23.5 (Monday) for internal flows. Here it is worth considering that the MAPE ranges from 0
to 100, where values lower than 10 are generally associated to a very good performance and
values between 10 and 20 to fairly good performance.
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(a) Inflows.
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(b) Outflows.
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(c) Internal flows.

Fig. 8 Plot of observed (black) versus predicted (colored) traffic flow in Cellatica. Validation days (from
left to right): February, 15th (Monday), February, 17th (Wednesday), February, 19th (Friday), February, 21st
(Sunday) 2021

Mean and standard deviation of theMAPEbymonth have been computed for both inflows,
outflows and internal flows. Table 3 shows that, according to MAPE, the performance of our
prediction method is similar between different months. Excluding November, which average
values are determined by three days only, we range from aminimumof about 13 for themonth
of May (better predicting performance) to a maximum of 22/25 in the month of July (worst
prediction performance). The month of July also presents the larger standard deviations.
Despite it emerge that our model presents a worst prediction performance in summer days
and in the days of January, the difference with respect to the other months is not large.
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As a third step, we compute the Hit-Rate on the available validation days after having
turned true and predicted values in five categories according to quintiles.5 It is worth recalling
that this step is the core of the validation strategy, because, for early warnings purposes, one
is not interested to know the exact amount of traffic, but whether traffic is higher than a
threshold. The performance must be evaluated in terms of the ability to predict whether the
amount of traffic is on the correct category interval.

Mean and standard deviation of the HR by month have been computed for both inflows,
outflows and internal flows. Table 4 shows that, according to HR, the performance of our
prediction method is similar between different months. Excluding November, which average
values are determined by three days only, average HR values range from a minimum of 0.70
for internal flows in July to amaximumof 0.87 for inflows in themonth ofNovember. Standard
deviations are also quite similar each others. Similar to the results of MAPE in Table 3, we
found the worst prediction performance for summer days. We can also notice that prediction
performance for internal flows is slightly worst. However, overall the predicting performance
in terms of HR is stable over the time period. Recalling that the HR ranges from 0 to 1 (where
1 corresponds to a perfect match between observed and predicted values), overall, results
prove a good accuracy in predicting whether the amount of traffic flows in flooding risk area
will fall into one of the 5 categories.

Histograms in Fig. 9a–c show the distribution of HR over the set of available validation
days, respectively, for inflows, outflows and internal flows. For all cases, distributions show
a negative skewness with high frequencies in the range [0.80, 0.95] for the case of inflows
and outflows and in the range [0.70, 0.95] for the case of internal flows.

In all cases, the median of the HR is larger than 0.8, while very few are the validation days
reporting an HR lower than the lower whisker (which is approximately 0.6).

Box plots in Fig. 10a–c, where the extremes of the box represent the first and the third
quartiles (Q1 and Q3), the horizontal line is the second quartile (Q2) and whiskers corre-
sponds to, respectively, Q1 − 1.5 × (Q3 − Q1) and Q3 + 1.5 × (Q3 − Q1), display the
distribution of the HR computed, respectively, on inflows, outflows and on internal flows.
Further anomalous days are labeled in blue and corresponds to those days for which the
performance is not good. Among those new anomalous days, no holidays are detected.

An alternative replacement strategy based on Exponential Weighted Moving Average
(EWMA) (Hunter, 1986) has been applied. Actually, we used a variation of the EWMA
where t − 1 is replaced by t − 24 (in order to just consider the values of the same hour of
the day in the weighting scheme) according to the formula:

EW M At = αYt + (1 − α)(EW M A)t−24,

where α = 2
n−1 and n represents the backward window length, that we set to n = 5.

Histograms in Fig. 11a–c display the distribution of the Hit-Rate computed after having
replaced holidays with our EWMA strategy. By doing such a way, the accuracy of our
model does not change significantly though a larger frequency of HR values (for outflows
and inflows) is found for the bin corresponding to the interval [0.9, 0.95]. According to the
boxplots in Fig. 12a–c,we can notice the presence of the same few anomalous days (compared
to the other replacement method).

It is worth observing that, regardless of the replacing method adopted, in this step of
analysis the anomalous days (labeled in blue) are just few.

5 As a check, a classification into seven categories has also been tried and results appear really similar to the
classification in five categories.
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Fig. 9 Histogram of the distribution of the HR computed over the 277 days of the dataset, where holidays are
replaced
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Fig. 10 Box plot of the distribution of the HR computed over the 277 days of the dataset, where holidays are
replaced. Further anomalous days labeled in blue

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
00

0.
10

0.
20

0.
30

0.
40

(a) Inflows.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
00

0.
10

0.
20

0.
30

0.
40

(b) Outflows.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
00

0.
10

0.
20

0.
30

0.
40

(c) Internal flows.

Fig. 11 Histogram of the distribution of the HR computed over the 277 days of the dataset, where holidays
are replaced with the EWMA strategy
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Fig. 12 Box plot of the distribution of the HR computed over the 277 days of the dataset, where holidays are
replaced. Further anomalous days labeled in blue

5 Concluding remarks

Flooding risk exposure maps traditionally use only administrative and census data, that allow
static flooding risk exposures mapping, where the amount of presences is constant over time,
although crowding is a highly dynamic process in metropolitan areas.

Today real-time monitoring of people and vehicles presences is a relevant aspect for
“smart” cities, especially when they could be subjected to flooding risk or other natural
disasters. Public decision-makers can take advantage of the availability of data-driven systems
based on telecom data that allow to monitor hydrogeological risk areas and that can be used
for real-time predictive purposes to deal with future emergency situations.

To account for the complex dynamic of traffic flows, in this study we have made use of
the cutting-edge data coming from the mobile phone network related to origin-destination
signals on traffic flows and available hourly basis from September 2020 to August 2021.

With the aim of forecasting the exposure risk and thus to make outbreaks’ early detec-
tion and warning to who is transiting through that area, we have proposed to model the
complex seasonality by adopting a novel methodological strategy based on combining Vec-
tor AutoRegressive with eXogenous variables (VARX) and Dynamic Harmonic Regression
(DHR) models.

By adopting a robust cross validation strategy along with the Mean Absolute Percentage
Error (MAPE) and the Hit-Rate (HR) indices on a case study represented by the area of
Cellatica in the Mandolossa region, a critical zone with flood episodes located in the north-
west outskirt of Brescia:

1. we came to prove that our method presents a good performance in predicting whether
traffic in flooding risk areas is “very high”, “high”, “moderate”, “low”, “very low”.

2. we are able to detect those year’s days for which the traffic forecast based on our method
is not good enough.

The poor prediction on anomalous days is the price to pay for the technical limitation given
by not including the immediately previous hours lag terms in the model. Actually, we would
like to highlight that this limitation may turn out to an advantage. In fact, we prove that a
fairly good predicting performance on traffic flows may be obtained even if previous hours’
information is not accounted for.

The useful results obtained in this study are promising, and will be used to further
develop the main Project MoSoRe@UniBS 2020-2022 (see Acknowledgement). Possible
future directions may regard: i) applying the method to other flooding risk areas, ii) refin-
ing the considered areas interested in flooding risk. According to point ii), a solution may
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be to match original traffic flows data with additional sources. For example, Minimization
Drive Test (MDT) technology data (Baumann, 1996), which present an excellent accuracy
in terms of geolocalization, might be matched with origin-destination data to allow inferring
the portion of traffic related to the road network.
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