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Abstract (EN): 

 

District heating and cooling networks, forming the backbone of modern district energy systems, 

centralize the provision of thermal services for urban buildings. The evolution from traditional 

systems, which have been hampered by high heat loss rates and costs, to the advanced 4th and 5th 

Generation district heating and cooling networks (5GDHCNs) signifies a leap in efficiency. These 

5GDHCNs have the unique ability to cater to both heating and cooling needs concurrently, 

especially vital for regions with variable climatic demands.  

The deployment of 5th Generation systems, however, brings forth intricate challenges due to the 

combination of varied components, making the requirement for control strategies paramount, 

particularly as these systems increasingly interplay with non-dispatchable renewable energy 

sources and link with the larger electrical grid dynamics. 

A pivotal component in this landscape is the substation, with a heightened focus on those serving 

residential buildings. These decentralized substations act as intermediaries: on one side, interfacing 

with the sophisticated 5GDHCNs, and on the other, tailoring the energy supply to meet the specific 

demands of residential buildings. Herein lies the significance of Model Predictive Control (MPC). 

With its innate ability to anticipate future scenarios, MPC equips the system to make informed, 

efficient decisions based on forecasted data. 

In the realm of substations, the Thermal Energy Storage (TES) and Heat Pump (HP) play a vital 

role. The inclusion of a TES system in this setup elevates the operational flexibility. Armed with 

a TES, the controller is better poised to handle multifaceted tasks: from sector coupling, balancing 

the varying thermal needs, to efficiently orchestrating the charging and discharging cycles. Also, 

given that HPs are powered by electricity, their efficient operation is crucial from an economic 

perspective. 

In this research, MPC is employed to optimize the flexible utilization of decentralized user 

substations within 5GDHCNs. The best operational strategies under diverse boundary conditions 

are assessed through MPC, considering factors such as district heating supply temperature 

variations and fluctuating grid electricity costs. The study showed that MPC outperformed RBC 

strategies under the operation conditions concerned, reducing electricity costs significantly across 

different pricing schemes and district heating management strategies, with notable electricity cost 

savings of up to 24%. 

 



 
 

Abstract (IT): 

 

Le reti di teleriscaldamento e teleraffrescamento, che costituiscono la spina dorsale dei moderni 

sistemi energetici di quartiere, centralizzano la fornitura di servizi termici per gli edifici urbani. 

L'evoluzione dai sistemi tradizionali, che sono stati ostacolati da alti tassi di perdita di calore e 

costi elevati, alle avanzate reti di teleriscaldamento e teleraffrescamento di quarta e quinta 

generazione (5GDHCNs) rappresenta un salto di qualità in termini di efficienza. Queste 

5GDHCNs hanno la capacità unica di soddisfare contemporaneamente le esigenze di 

riscaldamento e raffrescamento, particolarmente vitale per le regioni con esigenze climatiche 

variabili. 

L'implementazione dei sistemi di quinta generazione, tuttavia, porta con sé sfide complesse a causa 

della carattere distribuito della generazione di calore, fortemente incentrato sull’utilizzo di fonti 

energetiche non progrmmabili e sull’interazione con la rete elettrica, che rendono necessarie 

strategie di controllo. Un componente cruciale in questo contesto è la sottostazione di utenza, con 

un'attenzione particolare a quelle che servono edifici residenziali. Queste sottostazioni 

decentralizzate da un lato si interfacciano con le sofisticate 5GDHCNs e, dall'altro, adattano 

l'offerta energetica per soddisfare le specifiche esigenze degli edifici residenziali. Qui risiede 

l'importanza dei Controlli Predittivi basati su Modelli (MPC). Con la sua capacità innata di 

anticipare scenari futuri, l'MPC permette alla sottostazione di prendere decisioni informate ed 

efficaci, basate su dati previsti. 

Nel campo delle sottostazioni, l'Accumulo di Energia Termica (TES) e la Pompa di Calore (HP) 

giocano un ruolo fondamentale. L'inclusione di un sistema TES in questa configurazione 

incrementa la flessibilità operativa. Dotato di un TES, il controllo può assolvere a funzioni di 

sector-coupling attraverso cicli di caica-scarica ottimizzati. 

In questa ricerca, l'MPC viene impiegato per ottimizzare l'utilizzo flessibile delle sottostazioni 

decentralizzate in 5GDHCNs. Strategie di gestione ottimizzate sono valutate in diverse condizioni 

operative, considerando fattori come le variazioni della temperature del teleriscaldamento e costi 

variabili dell'elettricità dalla rete. Lo studio dimostraa come, sotto le condizioni considerate l'MPC 

ha superato le strategie convenzionali basate su regole, riducendo significativamente i costi 

operativi in diversi schemi tariffari e strategie di gestione del teleriscaldamento, con risparmi sui 

costi dell'elettricità utilizzata dalla sottostazione fino al 24%. 
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Chapter 1 

1  Introduction  
 

The operation of buildings is linked to approximately 36% of the global energy consumption, 40% 

of greenhouse gas emissions, and climate change [1]. According to Eurostat's latest data, in 2021, 

households comprised 27% of total energy consumption in the EU. Most of this energy (64.4%) 

was used for heating homes, with renewables making up 27% of EU household heating [2]. The 

European Union is taking steps to reduce its dependence on fossil fuels and protect its energy 

supply. To achieve this, the EU has set ambitious targets for reducing greenhouse gas emissions. 

In 2018, the EU strengthened the Emissions Trading System (ETS) to deliver on the 40% emission 

reduction target by 2030. However, the EU is now considering increasing this target to 50% or 

55% by 2030, as part of its efforts to reach climate neutrality by 2050 [3].  

The primary approaches to addressing these challenges involve optimizing energy utilization and 

utilizing local energy resources. These strategies are accompanied by energy conservation policies. 

However, adopting these methods requires the establishment of sophisticated energy networks, 

integrating non-programmable renewable sources, and embracing circular economy principles 

within the energy sector.  

The implementation of District Heating and Cooling Networks (DHCNs) has been recognized as 

a promising approach to decrease both primary energy usage and local emissions, effectively 

meeting the heating and cooling needs of buildings [4].  

1.1 Background 

District energy systems, commonly referred to as district heating and cooling networks, are 

centralized infrastructures that provide heating and cooling to numerous buildings or facilities 

within a given area or district. These networks operate on the premise that thermal energy may be 

produced and dispersed from a single point to satisfy the heating and cooling requirements of 

multiple buildings, including residential, commercial, and industrial ones [5]. 

Conventional district heating (DH) systems work by heating urban areas with hot water or steam 

delivered through pipes from centralized power plants. However, high-temperature DH systems 
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have high heat loss rates and high installation costs, particularly in the summer when many systems 

are used only to supply domestic hot water, which results in thermal losses of about 30% of the 

energy supplied owing to water retention. Research is currently concentrated on 4th and 5th 

Generation district heating and cooling networks (5GDHCNs), which run at low temperatures for 

greater efficiency, to address these challenges. In 4GDH systems, the same pipes cannot 

simultaneously offer heating and cooling services to different buildings. This is where the 

advantage of 5GDHC technology comes in. It holds significant potential, particularly in places 

with a Mediterranean climate. In such areas, buildings require both heating and cooling, making it 

possible for a 5GDHC operator to sell both services all year round by utilizing the same thermal 

network [6]. 

The advent of 5th Generation DH systems, with their numerous advantages, including the ability 

to supply water to decentralized Water-Source Heat Pumps (WSHP) within a wide temperature 

range and harnessing abundant local heat sources, represents a promising development in the field 

of district heating and cooling. However, the complexity of these advanced systems is significantly 

heightened, particularly with the integration of diverse components such as heat pumps (HP) and 

thermal energy storage (TES) within customer-sited substations. As a result, more sophisticated 

control strategies are required due to the growing complexity of smart district heating and cooling 

grids, which is fueled by the integration of non-programmable renewable thermal energy sources 

and coupling with the power grid. To successfully address these difficulties, conventional 

approaches by themselves are insufficient. Smart control strategies, both at the centralized and 

decentralized levels, are therefore essential and ought to be used in addition to the fundamental 

control strategies. With the goal of enhancing system performance and accommodating capacity 

restrictions within the district heating network, these cutting-edge strategies aim to address 

problems including weather inconsistencies, user behavior, and customer-sited substation 

operations.  

1.2 Significance of research 

In searching for sustainable energy solutions, research on 5GDHCNs is extremely important. 

5GDHCNs present a viable way to reduce energy usage in buildings, encourage the adoption of 

renewable energy sources and lessen greenhouse gas emissions as global energy demands rise and 

environmental concerns grow. These cutting-edge networks can enhance energy systems, 

effectively harvesting excess thermal energy for increased overall efficiency, by permitting 
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optimal sector coupling between thermal and electrical grids. Additionally, 5GDHCNs offer a 

novel approach to maximize urban space in the context of growing urbanization since they enable 

centralized thermal energy storage and delivery, avoiding the space restrictions that limit 

individual ground heat exchanger installations. This development in district heating and cooling 

systems encourages competitiveness as well. 

In 5GDHC networks, substations play a crucial role in the energy distribution process. Their main 

function is to facilitate the exchange of thermal energy between the central energy source and the 

individual buildings or consumers within the network. The substations serve as intermediaries that 

adjust the temperature of the energy coming from the central source to match the specific 

requirements of each building for space heating or cooling. Decentralized substations, also known 

as customer-sited energy transfer stations or heat substations, are a specific type of substation 

located closer to end-users, typically within or nearby individual buildings. Unlike centralized 

substations that serve larger areas, decentralized substations are smaller and serve specific 

buildings or groups of buildings in proximity. The implementation of decentralized substations 

offers several advantages within DHC networks. Firstly, it enables a more efficient and targeted 

distribution of thermal energy, delivering it directly to the buildings where it is needed, thereby 

reducing transmission losses. Secondly, it grants greater flexibility and control to individual 

consumers, as each building can have its own substation that adjusts the thermal energy supply 

according to its unique requirements, allowing for customized heating and cooling solutions that 

optimize energy consumption and minimize waste. The utilization of decentralized substations in 

DHC networks aligns well with the significance of employing advanced controllers to optimize 

system performance. These controllers, especially Model Predictive Control (MPC), play a crucial 

role in managing the operation of decentralized substations and ensuring the fulfillment of 

objectives in 5GDHCNs. With decentralized substations in place, MPC becomes a powerful tool 

in realizing the advantages. Its predictive capabilities enable real-time optimization of thermal 

energy distribution, responding to changing demands and supply conditions. By considering 

factors like weather forecasts, demand, and energy prices, MPC dynamically adjusts the operation 

of individual substations, precisely delivering the required amount of thermal energy when and 

where it is needed. This dynamic optimization capability of MPC enhances the overall efficiency 

and targeted distribution of thermal energy within 5GDHCNs, reducing transmission losses and 

waste, thus contributing to more sustainable and energy-efficient heating and cooling solutions. 
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1.3 Research Questions 

Figure 1-1 illustrates the core concept of the project, showing the operation of the substation. This 

study primarily focuses on controlling substations within 5GDHCNs. It explores how a high-level 

controller, based on MPC, can optimally manage decentralized substations in the 5GDHC network. 

The emphasis is on effectively utilizing a TES system to flexibly meet building loads. 

 
Figure 1-1. Overview of the substation's operation within the context of 5GDHCNs. 

As mentioned above, the implementation of MPC for a residential decentralized substation 

connected to a 5GDHN is the focus of this research. Within this context, the management of the 

HP and the TES charging will be handled by MPC to optimize the overall operation and 

performance of the substation. The study will thoroughly analyze the potential benefits and 

challenges of using MPC as an optimal control strategy for decentralized substations, considering 

factors such as efficiency, flexibility, and adaptability to varying energy supply conditions. 

The integration of MPC necessitates the development of several models. First, a predictive model 

for the building's thermal requirements is essential, as MPC relies on accurate forecasts future 

thermal demand and effectively manage the substation. Additionally, MPC must assess the state 

of charge of the TES and the operational status of the HP, taking into account how the mutual 

interaction influences the system performance. Consequently, detailed models for both the HP and 

TES are required to accurately replicate their real behavior. Additionally, an optimization 
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component is crucial to determine the optimal operation pathway along a specific time horizon in 

the future.  

To address these requirements, this study investigated several sub-questions as follows: 

RQ1) How can a flexible reduced-order model (ROM) be created to accurately forecast thermal 

load in residential buildings? For minimizing energy consumption, boosting energy efficiency, and 

implementing efficient demand-side management strategies, accurate thermal load forecast in 

dwellings is essential. Developing a ROM that accurately reflects the fundamental dynamics of 

thermal load fluctuations while ensuring computational simplicity is one of the primary aims of 

this research. The model must be powerful and flexible in its application, fitting buildings of all 

sizes and shapes, while allowing to be trained during operation, with a limited amount of 

monitoring data available, and be run online, eventually on hardware with limited computational 

capacity. 

RQ2) How can a ROM be developed for TES that is simple enough as to be continuously trained 

during operation to retain accuracy, not only in terms of energy stored but also in terms of 

temperature distribution? The accurate modeling of TES is essential for optimizing energy 

efficiency and ensuring reliable energy supply. This research aims to tackle the complexity of TES 

modeling by formulating a mathematical model that fulfills three critical objectives: 1) a simplified 

model that captures the fundamental dynamics of TES behavior while reducing computational 

complexity, 2) that maintains a consistent energy balance, accounting for all relevant energy inputs 

and outputs during charging and discharging processes, and 3) that ensures a consistent description 

of the temperature distribution along the TES height, as this influences the performance and 

triggers the operation of the connected HP.  

RQ3) How can a real-time optimization in a receding horizon fashion be effectively implemented 

for the integrated operation of a substation including HP and TES that seamlessly considers 

dynamic interactions with the electricity grid, thermal grid, and buildings? The integration of these 

components poses unique challenges, requiring a comprehensive approach to ensure optimal and 

synchronized operation. The research aims to advance control techniques to enable real-time 

decision-making for the integrated system. The receding horizon approach, also known as MPC, 

has been explored as a key framework to continuously optimize the system's operation based on 

real-time data acquired and changing operating conditions. 
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1.4 Methodological approach 

To tackle the mentioned research questions, the following methods have been employed: 

• RQ1) Historical data plays a crucial role to develop a ROM for accurate thermal load 

prediction [7]. Therefore, a detailed simulation of a real building was conducted using 

TRNSYS, a powerful and versatile simulation software for energy systems. Through this 

simulation process, valuable insight into the building's thermal behavior was gathered, 

capturing its dynamic response to varying weather conditions and other dynamic boundary 

conditions. Artificial Neural Network (ANN) is a cutting-edge solution for the 

development of a ROM that predicts thermal load accurately. The versatility of ANN 

allowed us to effectively handle the multidimensional relationships between the input 

parameters and the thermal load and indoor temperature variations. We determined the 

optimal ANN structure specifically tailored for the ROM. This entails designing the input 

layer to accommodate relevant boundary conditions, determining the number of hidden 

layers and neurons to capture complex patterns without overfitting, and configuring the 

output layer to represent thermal loads and indoor temperature predictions. The model's 

performance was analyzed based on key indicators, comparing it to simulated data. 

• RQ2) To address the challenges of modeling a thermocline thermal energy storage system, 

a simple “piston” model was developed, and upgraded to account for thermoclines born, 

evolution along the TES height and collapse. Monitoring data from laboratory tests at 

EURAC’s Energy Exchange Lab was used, which included charging and discharging 

cycles under a range of operating conditions. The model's results were compared with the 

monitored data using key performance indicators, assessing uncertainty and consistency 

across variable operating conditions. 

• RQ3) A full MPC execution compound has been implemented allowing to simulate a 

building + heating system and to use this as a basis for the calculation of optimized 

management pathways over the receding time horizon. Particularly, the two above models 

elaborated as part of this work have been coupled with a HP model (available already at 

EURAC) to simulate the DH substation when serving a residential building. An 

optimization algorithm based on the Dynamic Programming (DP) approach (also already 

available at EURAC) have been integrated with the simulation model, receiving 

performance information from the latter and providing optimized set point values for the 
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charge of the TES, over said receding horizon. The performance of the MPC have been 

thoroughly analyzed, considering various operation scenarios to assess its capabilities and 

effectiveness. 

1.5 Organization of the thesis 

Chapter 1 introduces the foundation of the research, beginning with a background that sets the 

scene for the research problem at hand. It then allocates the significance of the research, 

elaborating on the importance and implications of the study in the wider context. The chapter also 

enumerates the research questions, providing readers with a clear insight into the objectives being 

pursued. An overview of the methodology gives a snapshot of the research design and approach 

adopted.  

Chapter 2 investigates deep into the literature, tracking the evolution of DHNS from its first to 

the fifth generation. It then focuses on substations in 5GDHNS and discusses the current state of 

control strategies in DHNS. A deeper investigation into the basic control strategies in both 

conventional DH/DC Systems and in 4GDH and 5GDHC Systems is presented. The chapter also 

elaborates on the advanced control strategies in DHC Networks. It further investigates the realm 

of MPC, its applications in DHNs, and concludes with a section on model identification. 

Chapter 3 outlines the methodology employed in this research. It commences with a detailed 

examination of thermal load prediction, exploring its details, including feature selection, structure 

of neural networks, KPIs, and more. The chapter then transitions into TES models, providing a 

deep dive into the mathematical modeling of thermocline TES and its dynamic stages. It also 

presents methodology validation with various case studies, results, and discussions. Following 

this, the chapter delves into the heat pump, exploring the HP state machine model. It includes a 

detailed exploration of optimization, highlighting dynamic programming and its mathematical 

framework. The chapter rounds off by integrating a substation with various configurations for 

connecting DH to HP and TES. 

Chapter 4 analyzes the entire system by running the substation under various conditions to 

establish a rule-based control (RBC) strategy. Subsequently, the performance of the MPC-based 

controller is evaluated by running MPC under different conditions and comparing its performance 

against the RBC. The resulting implications and outcomes are presented and discussed in detail. 
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Chapter 5 concludes the thesis by summarizing key findings and revisiting the initial research 

questions. It also recommends next steps and highlights the research's impact in the field. 
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Chapter 2 

2 Literature review 
 

This chapter described the evolution of district heating and cooling technology. The historical roots 

and development trajectory of this technology has been investigated. During this investigation, the 

critical significance of control tactics in influencing advancements in this essential subject have 

been disclosed. 

2.1 From the first to the fifth generation of DHNs 

For many years, buildings were heated by burning different types of fuel, starting with wood, and 

progressing to charcoal, coal, coke, oil, and natural gas. Initially, most fuel was burned in open 

fires and stoves. Later, in the 20th century, it became common to burn fuel to heat water or produce 

steam, which was then circulated through buildings to provide central heating via radiators. 

The first generation of district heating, introduced in the late 1870s in the United States, utilized 

steam as the heat carrier. Until around 1930, these systems were common in both the United States 

and Europe [5]. Steam pipes in concrete ducts, steam traps, and compensators were all often used 

components. Nonetheless, due to the limitations of high steam temperatures resulting in significant 

heat losses and the possible hazards of steam explosions causing accidents and even fatalities, this 

technique has become outdated. While some cities, such as Salzburg, Hamburg, and Munich, have 

successfully implemented replacement programs, others, such as New York (Manhattan) and 

Paris, continue to use steam. The primary reason for establishing these systems was to replace 

individual apartment boilers to improve safety and comfort. Authorities, on the other hand, 

experienced difficulties in coordinating rival supply in the same locations [8]. The second 

generation of district heating emerged in the 1930s and dominated new systems until the 1970s. It 

used pressurized hot water as the heat carrier, with temperatures typically above 100°C. These 

systems included water pipes in concrete ducts, large heat exchangers, and heavy valves. Soviet-

based district heating systems also used this technology, but they lacked heat demand control and 

had lower quality. Outside the Union of Soviet Socialist Republics (USSR), the quality was better, 

and some water-based district heating systems still use this technology. Different countries had 
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slightly varied motivations, but the focus was on achieving fuel savings and improving comfort 

through combined heat and power (CHP) utilization. The third generation of systems emerged in 

the 1970s and expanded significantly in the 1980s and beyond. It uses pressurized water as the 

heat carrier, with temperatures below 100°C. This generation, known as "Scandinavian district 

heating technology," features prefabricated pipes buried underground, compact substations with 

stainless steel heat exchangers, and efficient components. It has been widely adopted in various 

regions, including Central and Eastern Europe, the former USSR, China, Korea, Europe, the USA, 

and Canada. The motivation for using this technology includes ensuring a stable supply, energy 

efficiency through CHP, and replacing oil with more affordable and locally available fuels like 

coal, biomass, and waste. Some places also use solar and geothermal heat as supplements [9].  

The notion of 4th Generation District heating and cooling (4GDHC) was first used by Prof. Sven 

Werner and afterwards given a formal and enhanced definition in a paper from 2014 [8]. According 

to the paper, the 4GDH system is a well-defined and comprehensive technological and institutional 

concept. It revolves around the utilization of smart thermal grids to promote the development of 

sustainable energy systems. 4GDH systems are specifically designed to provide heat supply to 

low-energy buildings with minimal grid losses, achieved through the integration of low-

temperature heat sources with smart energy systems. This concept involves the establishment of 

an institutional and organizational framework to facilitate cost-effectiveness and motivation 

structures that support the implementation and success of 4GDH. The idea behind 4GDH is to 

create a low-temperature network, supplying heat between 70÷35°C, that can efficiently meet the 

demand for space heating and domestic hot water. This is achieved primarily through centralized 

systems for heat production and storage. 

The main differences of 4GDH compared to previous generations are lower supply temperatures, 

the integration of low‐temperature excess heat, and the incorporation of large shares of renewable 

heat sources. The implementation of 4GDH presents both technical and non-technical challenges. 

On the technical side, these challenges encompass adopting lower supply temperatures, integrating 

large-scale renewable energy sources, and incorporating storage technologies. Non-technical 

challenges include addressing consumer acceptance, developing new business models for district 

heating, and establishing suitable regulatory frameworks. To conduct a comprehensive assessment 

of the 4GDHNs, an analysis of their strengths, weaknesses, opportunities, and threats (SWOT) was 

performed in [10]. This analysis examines the SWOT associated with the implementation and 
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operation of these innovative heating systems. The assessment reveals several areas of strength in 

their favor, according to the SWOT analysis. They can connect to various sectors like electricity 

or transport, and they are a driving force for future district heating improvements. They can also 

use a lot of renewable energy sources to reduce carbon emissions. However, there are also some 

weaknesses. They might not be cost-efficient in the short and medium term, and it can be tricky to 

adapt them to crowded areas. On the bright side, 4GDHNs offer opportunities to create value in 

specific countries by using renewable energy sources and being suitable for new buildings with 

low heat needs. Expanding efficient district heating networks also aligns with energy strategies, 

leading to more growth prospects. But there are threats too. If heat demand decreases significantly, 

there could be more heat losses. They also face competition from attractive low-temperature 

heating options like heat pumps. Existing heat supply contracts might make it hard to reduce 

temperatures without involving consumers [11]. 

The increasing adoption of heat pumps (HPs) in heating and cooling systems has been a significant 

driver in the development and implementation of 5th Generation District Heating and Cooling 

(5GDHC) Networks. 5GDHC networks are heating and cooling systems that use water or brine as 

a carrier. These networks operate at temperatures close to the ground and are not used directly for 

heating. However, this low temperature lets them use excess heat from industries and cities, along 

with renewable heat sources. The customer substations can reverse their operation, providing both 

heating and cooling to various buildings using the same pipelines. With hybrid substations, 

5GDHC technology connects thermal, electrical, and gas grids in a smart and decentralized energy 

system [6].  

5GDHCNs have several good points, including the ability to recover low-temperature excess heat 

and use renewable energy sources efficiently. They can provide both heating and cooling services 

throughout the year and are flexible in adapting to changing conditions. The networks have low 

heat losses and can use the ground as thermal storage. However, they also have some weaknesses, 

such as expensive substations and the need for domestic hot water (DHW) tank. The expenses 

related to heat pumps and their electricity usage may be a matter of concern. 

Despite challenges, there are exciting opportunities. 5GDHCNs can create new business models 

and convert existing networks. They can work well with seasonal storage and help in achieving 

decarbonization goals. Moreover, they allow energy savings through district-level strategies and 

better interaction with the electric sector. On the other hand, there are potential threats. The design 
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approach of conventional district heating systems may need adjustments. The efficiency of HPs 

could vary depending on the building's heating system and network temperature. Space limitations 

might become an issue if dependent on seasonal storage.  

5GDHC systems are known for their flexibility, and this is achieved by integrating thermal energy 

storage at both the network level and the user substation level. This allows the shift in time between 

producing and using thermal energy to be managed effectively [12]. Another important point to 

note is their compatibility with Seasonal Thermal Energy Storage. Borehole and Aquifer Thermal 

Energy Storage are well-suited for 5GDHC technology, as they can store heat at low temperatures 

in the ground and in underground water sources, optimizing their performance [13]. The 5GDHC 

system is specially designed to connect with the electrical grid and use excess heat from nearby 

sources [14].  

As Figure 2-1 shows, DHNs have seen a significant increase in the share of renewable resources. 

In the past decades, renewable energy sources like solar and wind have shown significant progress 

in electricity generation, but renewable thermal energy generation has not experienced the same 

level of advancement. Even if the technology is mature, only a few countries such as Denmark, 

Sweden and Lithuania [15] already achieved a good share of renewable thermal energy production 

in DH/DC systems thanks to their ambitious decarbonization policies.  

 

Figure 2-1. Evolution of district heating [8] 
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DHC plays a crucial role in expanding renewable thermal energy in buildings. It combines two 

important aspects: using economies of scale and finding solutions to building-level challenges, 

like limited space and preserving architectural heritage. In Europe, DH cover about 12% of the 

heating market share [14] and DC only 2% of the cooling market share [15]. Worldwide, district 

energy systems supply only 6% of the thermal energy demand and it is strongly based on fossil 

fuels. In fact, in 2018 only 8% of the energy sources employed in DHC were based on renewables 

with 95% of this consisting of biomass according to [15]. This high share confirms that biomass 

is the most competitive source for renewable heat supply in DHC systems of several countries. 

Moreover, it is easy to implement since the management of the heat generation plant remains very 

similar to a conventional dispatchable fossil-based one. Biomass boilers can be derived from the 

upgrade of existent coal-fueled plants and, in some cases, are coupled with steam-based or Organic 

Rankine Cycles (ORC) combined heat and power (CHP) systems [18]. 

The years between 2020 and 2030 have been defined as the “Geothermal Decade” [19], since a 

large growth is foreseen for the exploitation of geothermal energy in Europe for both electricity 

production and direct/indirect use. Even if the location of high enthalpy geothermal reservoirs is 

geographically constrained, medium enthalpy resources are more diffused. Deep geothermal for 

direct use in DH can meet the heating demand of about 25% of the European population according 

to the results of the research project GeoDH [20]. With this regard, Iceland is the leader country 

in the installed capacity of geothermal DH. The projections for coming years foresee important 

market growth of geothermal DH, especially in France, Germany, Denmark, the Netherlands and 

Hungary [19]. Deep geothermal for direct use in DH provide dispatchable baseload capacity, 

achieving large equivalent full-load hours. Shallow geothermal can be exploited almost 

everywhere but requires centralized or decentralized heat pumps to lift the supply temperature. 

Solar thermal has great potential for DH application, but conversely from geothermal and biomass 

might introduce more effort for the control of the system that can be supported by forecast tools 

for both the heat demand and the not-programmable solar heat generation. Denmark is the pioneer 

country in solar district heating (SDH) and the worldwide leader in large-scale solar thermal fields 

achieving 1.1 GWth of installed capacity in the first half of 2019 (almost equal to the PV capacity 

installed in the country) [21]. This was possible thanks to the competitive heat price from solar 

thermal with respect to gas (affected by high taxes), high penetration and sound experience with 

DH networks, cheap land prices and willingness of the community-owner DH companies that run 
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a business that is non-profit by law. From the Danish experience [22], the average efficiency of 

the solar collector fields is about 40%, and the heat production cost ranges from 20 to 40 

EUR/MWh. Concerning the solar fraction over the total thermal energy supply, 20% can be 

achieved without TES installation, whereas a larger solar fraction can be accomplished with 

seasonal TES. Among the different technologies, water pit and borehole seasonal TES systems 

result in the most used in conjunction with SDH. Moreover, the installation of the seasonal TES 

system paves the way for more heat production flexibility and integration of large-scale heat 

pumps that improve the performance of the overall SDH system [23]. Further penetration of non-

programmable renewable power generation can be also achieved thanks to the DHC systems since 

excess electricity generated can be used directly or stored in the form of heat or cold in TES 

systems avoiding the limitation of photovoltaic (PV) and wind production. Furthermore, 

connecting different sectors through power-to-heat technologies, like electric boilers and HPs, can 

provide valuable balancing services for the power grid, such as frequency regulation. 

The comparison between the 4GDH and the 5GDHC reveals significant differences in their 

capabilities and applications. While 4GDH is designed primarily for direct heating purposes, it 

requires the use of two separate distribution networks in urban areas to accommodate both heating 

and cooling demands. On the other hand, 5GDHC is not suitable for direct heating, but it offers a 

remarkable advantage by seamlessly meeting both heating and cooling demands for different 

buildings through the same pipelines. This feature makes 5GDHC a more versatile and efficient 

system, as it eliminates the need for multiple networks, simplifying the overall infrastructure and 

providing a more integrated and flexible solution for thermal energy supply. The transition from 

4GDH to 5GDHC represents a significant leap in district heating and cooling technology, enabling 

more comprehensive and sustainable energy systems that cater to diverse heating and cooling 

requirements with increased efficiency and environmental benefits.  

In the context of the evolution of district heating networks, Figure 2-1 illustrates the progression 

from the first generation to the 5th generation. This figure provides a visual representation of the 

advancements and changes that have occurred over time in the design and operation of district 

heating systems. 
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2.2 Substations in 5GDHCNs 

In conventional DHC networks, energy is transformed from a higher to a lower-level temperature 

in units called substations (like electrical substation). These substations consist of key elements 

such as heat exchangers, along with mixing and control equipment. Usually, each building 

connected to the network has its own substation, although alternative solutions may exist, like area 

substations serving local distribution networks or apartment substations allowing individual 

regulation and billing for each flat in a building [9]. By reducing the supply temperature and raising 

the supply-return temperature difference, it is possible to reduce heat losses and increase 

generating efficiency, but end-user temperature requirements have an impact on constructing 

substation design, departing from the conventional idea. Furthermore, safety and comfort 

performance, along with reducing maintenance problems, are typically favored by hydraulic 

separation, which separates the building circuit from the network. However, in modern DHC 

networks designed to operate at lower supply temperatures, there is no longer a requirement to 

convert energy from high to low temperature levels. Instead, these networks need to intelligently 

incorporate boosting solutions to achieve the necessary temperature increase. The FLEXYNETS 

project [24] focused on the creation of a 5GDHCNs that operate at "neutral" temperature levels 

(30÷0°C), aiming to decrease energy transportation losses. It is proposed to use HPs for 

exchanging heat with the DHC network on the demand side, thereby supplying the required heating 

and cooling to the buildings. The building substation layout obtained from FLEXYNETS 

simulation analyses is depicted in Figure 2-2. 

 

Figure 2-2. FLEXYNETS residential substation [24] 
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The objective of this design is to utilize a neutral-temperature network as the source for a reversible 

HP to cover DHW, space heating (SH), and space cooling (SC) needs. The design includes both a 

storage tank for DHW and a buffer tank for the heating and cooling supply. Nevertheless, this 

approach presents certain technical constraints in 2-pipe networks, as mentioned in [24]. The most 

significant characteristics and exemplary instances of "prosumer" substations were collected and 

assembled in [12]. The term "prosumer" is used for constructing substations in 5GDHC networks, 

where each customer can function as either a "consumer" or a "producer" of thermal energy when 

the network is intended to cater to both heating and cooling requirements. The survey reported 

various versions of these building "prosumer" substations, and Figure 2-3 illustrates three of the 

most relevant substation configurations.  

 

Figure 2-3. Details of the “prosumer” substations adopted in some of the surveyed 5GDHC systems [23] 

 

The simplest solution is "Substation A" since it includes a direct connection of the WSHP to the 

network for active heating/cooling. Additionally, two 3-way diverter valves enable connection to 

a heat exchanger, which is installed in parallel with the WSHP to facilitate free-cooling operation. 

When retrofitting existing systems, a backup unit can be retained to operate in bivalent mode. In 

certain cases, it can be linked in series to raise the supply temperature from the WSHP, particularly 

for DHW production or when high-temperature water distribution is necessary. This approach 
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allows the WSHP to function with a lower supply temperature and enhance its own Coefficient of 

Performance (COP). 

Some added complexity arises in "Substation B" due to the incorporation of a redundant heat 

exchanger (HEX) between the WSHP and the network. This inclusion ensures hydraulic 

separation, safeguarding the WSHP from potential fouling risks. However, this results in increased 

costs and thermodynamic irreversibility. The HEX necessitates a temperature difference for heat 

exchange in both heating and cooling modes, causing the intermediary circuit between the WSHP 

and the redundant HE to operate at temperatures lower and higher than that of the network. As a 

consequence, the performance of the WSHP is negatively affected. Based on the surveyed cases, 

the presence of this HE is often obligatory, but in certain instances, it may be optional depending 

on specific local regulations and/or engineering practices. 

The most advanced solution is "Substation C." It involves installing two diverter 3-way valves on 

the primary loop of the WSHP between the hydraulic pump and the network. This arrangement 

allows for separate rejection of hot water (during active or free-cooling mode) into the warm 

pipeline and cold water (during heating mode) into the cold pipeline. This separation prevents 

thermal mixing within the network, preserving the exergy content of the DHC transfer fluid. 

Consequently, the HPs along the network can operate with the most efficient boundary conditions  

[23].  

2.3 State of the art control of strategies in DHNs 

The state of the art in control strategies in DHNs encompasses a spectrum of approaches, ranging 

from basic to advanced techniques. At the fundamental level, conventional control strategies have 

focused on maintaining system stability and ensuring consistent heat supply to consumers. These 

basic strategies typically involve simple ON/OFF control for heat generators, basic temperature 

regulation, and fixed flow rates. While effective to a certain extent, these conventional methods 

lack adaptability and optimization, leading to potential inefficiencies in energy usage. 

In recent years, significant advancements have been made in DHN control, leading to the adoption 

of more sophisticated and intelligent techniques. Advanced control strategies now incorporate 

predictive modeling, data analytics, and machine learning algorithms to optimize system 

performance and energy efficiency. By considering real-time data, weather forecasts, consumer 

demand patterns, and heat source characteristics, these approaches can dynamically adjust heat 
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generation, distribution, and storage, maximizing renewable resource utilization and minimizing 

energy waste. 

2.3.1 Basic Control Strategies in conventional DH/DC Systems 

Six independent basic control strategies operate simultaneously in a conventional DH network, as 

depicted in Figure 2-4 and listed in the following. These are usually implemented in the form of 

classical control such as rule-based or proportional-integral-derivative (PID). According to 

Frederiksen and Werner (2014) [9], the ones from A to E are implemented at the production and 

pumping station level, whereas the control strategy F is implemented at the user substation level. 

 

Figure 2-4. Basic control strategies in conventional district heating (DH) systems [26]. 

A. Supply temperature control: The goal of this control is to module the thermal power at the 

heat generation plant to reach a fixed supply temperature set-point. The latter is generally 

determined by means of a heating curve as a function of the external ambient temperature, and it 

is high enough to satisfy the temperature level required for all the customer-sited heat emission 

systems. 

B. Minimum supply temperature control: This control is important, especially in summer, when 

the DH system operates to supply only the DHW load. During the night, for instance, a by-pass 
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between the supply and return pipelines at the end of the network allows maintaining a small 

recirculation in order that the supply temperature always satisfies the comfort level for the users. 

C. Minimum differential pressure control: It is essential to maintain a minimum differential 

pressure between the supply and the return pipelines at the farthest substation from the network 

pumping station. In this way it is assured that the pressure head is enough to supply all the 

substations in the between. 

D. Maximum pressure control: The pumps are controlled to avoid over-pressure at the supply 

line that could damage the network. 

E. Minimum pressure control: The minimum pressure of the network that occurs at the suction 

of the pumps is controlled to avoid cavitation and damage of components. 

F. Heat demand and flow control: These control strategies are implemented at the user substation 

level. For instance, a climatic control can be implemented to set the supply temperature on the 

substation’s secondary side. A modulating valve is then used to achieve this set-point by 

controlling the flow rate on the substation’s primary side. 

TES systems based on short-term tanks provide several advantages in conventional DH/DC 

networks. They allow equalizing the load of the heat production plants, while heat demand by 

consumers is fluctuating, and covering the peak demand by avoiding that peak generation units 

switch on with high operational costs. Moreover, TES systems allow operating the system when 

the heat demand is below the technical minimum of the heat production plant and increasing the 

flexibility of CHP systems by permitting electricity generation during off-peak hours of the heat 

load without wasting the heat produced. Several temperature meters are usually installed along the 

height of a tank TES to monitor the temperature stratification and state of charge. To exploit the 

capacity of TES directly connected to the DH network such as in Figure 2-4, few further control 

measures are needed: the charging and discharging phases are activated automatically by 

generating the right amount of positive/negative differential pressure at the connections of the TES 

at the supply and return DH pipelines by controlling properly the network and production pumps. 

Moreover, usually, a control to limit the minimum temperature at the top during discharging and 

the maximum temperature at the bottom during charging can be beneficial to avoid thermocline 

destruction. The same basic control strategies shown in this section for conventional DH 

applications are also valid for DC systems. The latter usually operate with a smaller temperature 
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difference between supply and return concerning DH, with consequent larger flow rates and 

pumping electricity consumption to supply the same thermal power. 

2.3.2 Basic Control Strategies in 4GDH and 5GDHC Systems 

The basic control strategies shown in the previous section are usually applied also in 4GDH 

systems. Generally, these have a supply temperature of 70÷35 °C, while if it is lower, small 

booster HPs are required at the user-sited substation to satisfy minimum DHW comfort 

temperature and limiting legionella proliferation. The challenge that the current 3GDH systems 

are facing in the transition towards 4GDH is the supply temperature reduction. This is achievable 

mainly in those areas with new or refurbished buildings by zoning the DH network, maintaining a 

high-temperature backbone and low-temperature subnetworks. In this regard, a prototype of a 

mixing shunt system in a containerized solution has been installed in the DH network of Brescia 

(Italy) in the framework of the H2020 TEMPO project [27]. In contrast, a commercial solution has 

been recently installed in the DH network of Albertslund (Denmark) in the framework of the 

H2020 REWARDHeat project [28], as shown in Figure 2-5. These shunt systems usually include 

the minimum supply temperature and the minimum differential pressure controls for the 

subnetwork and unlock the possibility to absorb local peak loads by operating the subnetwork 

according to a dynamic heat storage strategy. Other benefits of the network supply temperature 

reduction are: 

• The decrease of the distribution heat losses since also the return temperature decreases. 

• The increment of the DH network capacity thanks to the larger temperature difference between 

supply and return at the backbone. This means that more customers could be connected to the 

existing infrastructure and that a lower flow rate is needed to supply the same thermal power. 

• The increment of the life of some DH components thanks to the lower operating temperature. 

• The increment of the efficiency in condensing boilers, CHP plants, HPs and solar thermal fields 

thanks to the lower return temperature. 
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Figure 2-5. (a) Piping & instrumentation diagram of the mixing station in{Citation}stalled at the DH system of Brescia [26]; (b) 
shunt system installed in the district heating and cooling (DHC) system of Albertslund [28] 

Nevertheless, to maximize these benefits, it is essential to reduce the return temperature of the 

subnetwork by acting on the customer’s substation and heating system. Apart from the substitution 

of some critical radiators with high panels or the extension of the heat emission surface, it might 

be useful to mitigate the effect of high flow rate occurring for instance due to night set back, with 

control using thermostatic radiator valves (TRV) and return temperature sensor [29]  . 

As far as 5GDHC networks are conceived, basic control strategies can differ from conventional 

DH/DC systems and 4GDH. 5GDHC systems, which usually operate with a network temperature 

in the range of 30÷0 °C, include HPs at the customer-sited energy transfer station that are in charge 

of meeting the required heating/cooling supply temperature. For this reason, supply temperature 

control is usually not implemented at centralized level, and several systems operate with free-

floating temperature that is a result of the balance between the heating and cooling loads as well 

as thermal energy source temperature throughout the year [6]. Minimum supply temperature 

control is in some cases implemented to limit the risk of very low temperature and possible freezing 

in the pipes using back-up systems [30]–[32]. Differential pressure control is usually present only 

when centralized pumping stations are used and, in some cases, together with redundant heat 

exchangers that separate the HPs from the thermal grid. In other cases, such as in small loops 

where decentralized hydraulic pumps are installed at the substation level, differential pressure 

control is absent. Anyhow, the minimum pressure in the network is met by means of pressurization 

stations. 
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Remote smart metering is a mature technology, and it is an important aspect to improve the 

operation in both 4GDH and 5GDHC systems such as with the implementations of demand 

response (DR) strategies for peak shaving as well as to detect faults in substations. Nevertheless, 

there are still some barriers to overcome to achieve this as the lack of trust between the DHC 

operators and the users as well as additional services to provide by DHC companies such as 

substation maintenance [32]. 

2.3.3 Advanced Control Strategies in DHC Networks 

Given the fact that smart DHC grids are becoming more complicated than before due to the 

exploitation of non-programmable renewable thermal energy sources and sector-coupling with the 

power grid, conventional strategies, even if they are robust, are not sufficient to cope with these 

challenges. Smart control strategies at centralized and decentralized levels are of paramount 

importance and need to be applied on top of the basic control strategies. These strategies against 

challenges such as weather uncertainty, user behavior and customer-sited substation operation are 

trying to achieve good performance of the system satisfying capacity constraints at some points of 

the DH network. 

Linear programming (LP) and mixed-integer linear programming (MILP) are commonly used to 

individuate complex energy systems’ best size or scheduling. A recent application of LP related to 

this scope for a 5GDHC system supplying several buildings of a university campus can be found 

in Wirtz et al. (2020) [33], where the problem has been set up in Python and solved by means of 

the solver Gurobi. A MILP model for the design and operation of an urban energy system in the 

center of England has been presented by Samsatli and Samsatli [34]. This model is based on a 

flexible value web framework for representing integrated networks of resources and technologies. 

It can be used for different temporal and spatial scales. Researchers in [35] have applied MILP to 

minimize the total annual cost for an industrial area located in the northeast of Italy with the 

integration of solar thermal production. Their results showed that the yearly total cost and primary 

energy consumption reduce 5 and 15%, respectively. In the framework of the H2020 

FLEXYNETS project [36], to reduce the overall heat generation cost of a DH supplied by a large 

share of low-grade excess heat, Vivian et al. [37] indicate that the suggested MILP-based controller 

managed to reduce the system operational costs by 11% with respect to a standard rule-based 

control. Similarly, in Schütz et al. [38], the authors applied a MILP method to minimize the total 

costs. To this end, four different strategies for calculating temperature stratification inside thermal 

https://www.mdpi.com/2076-3417/11/1/455#B32-applsci-11-00455
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storage are performed. Procedures are tested with an operation scheduling use case that aims at 

minimizing operational costs by achieving a reduction of 6–7%. MILP has been applied in the 

work of Giraud et al. [39] using the commercial solver CPLEX in a receding horizon fashion with 

a timestep of 15 min and a prediction horizon of 24 h. Differently from other works, here, the 

optimal scheduling of the generation units assessed takes into consideration the effects on the DH 

network with the integration of a dynamic model in Modelica. The simultaneous optimization of 

DH production and distribution resulted in the use of the DH network as storage by increasing the 

supply temperature prior to a peak of the demand, reducing the differential pressure and avoiding 

the start-up of expensive peak units. In [40], a more complete overview of the results is provided 

by the authors showing that with respect to an empirical piling method, the production optimization 

only was capable of achieving 6.4% of savings on the production costs and no energy savings, 

whereas with both production and distribution optimization, it was possible to obtain 8.3% of 

savings in production costs and 1.7% reduction in the energy consumption. Researchers in [41] 

presents an optimization-based investment planning approach to size a heat transfer station for 

connecting industrial sites to district heating systems. The approach utilizes MILP and takes into 

account diverse energy demands, waste heat, and transformation strategies using regret 

optimization. The study demonstrates positive net present value, reduced energy costs, and lower 

carbon dioxide emissions, achieved through efficient utilization of energy systems and waste heat 

integration. Merkert et al. [42] introduce a Mixed-Integer Linear Programming (MILP) approach 

to optimize the supply temperature in a district heating network for short-term periods. This 

optimization determines the specific time when the network should be heated and the 

corresponding temperature increase. Based on their model, the temperature propagation wave 

reaches the buildings with a known a-priori temporal network delay. Gabrielli et al. [43] proposed 

a mixed-integer non-linear program (MINLP) to optimize the operation of the 5GDHC network at 

ETH Zurich. They used bilinear products of mass flow rate and fluid temperature to address the 

computational complexity. To manage this complexity, they transformed the model into a MILP 

by linearizing the efficiency curves of heat pumps and assuming a fixed profile for the mass flow 

rate. The 5GDHC network studied had low-temperature variations, allowing them to replace the 

highly non-linear relationship between heat output, electric power, and inlet temperature at the 

evaporator of the heat pump with a bivariate linear approximation. However, for 5GDHC networks 
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with larger temperature fluctuations, the linear approximation resulted in significant errors and 

was, therefore, not applicable. 

The strengths of MILP formulation in addressing optimal operation problems are acknowledged, 

but its limitations are noteworthy. One of the main challenges of MILP is that it suffers from 

combinatorial complexity, which can make it difficult to solve large problems to global optimality 

[44]. The computation time to solve a MILP problem to global optimality via a branch-and-cut 

solver highly depends on the problem size, the choice of design variables, and the quality of 

optimization constraint formulations [45]. To address these shortcomings, meta-heuristic 

algorithms, a type of optimization technique that employs iterative processes to explore optimal 

responses, are utilized. Genetic algorithm (GA), particle swarm optimization (PSO), and ant 

colony optimization (ACO) are some of the most used population-based meta-heuristic algorithms. 

By integrating GA with MILP, the optimization process becomes more versatile and capable of 

addressing complex, non-linear problems, thereby enhancing the quality of the obtained solutions. 

 A two-level optimization algorithm contain MILP and GA is proposed in Urbanucci et al. [46]. 

In the case study, the cogeneration unit directly reaches 70% of both the thermal and electric yearly 

demand, while 16% of the subsequent is met by storage.  

Likewise, a hierarchical optimization strategy is used in Casisi et al. [47]. The higher layer for 

binary decision is dedicated to the GA, while the MILP algorithm is used in the lower to choose 

the system’s optimal operation. Results show a remarkable reduction in computing time. 

The multi-agent system (MAS) approach benefits several critical computer applications such as 

communication network configuration, process control, planning or concurrent systems. MASs are 

formed by several agents that have a considerable number of communications with each other. In 

general, agents act to support the users and have different goals and motivations. An agent is 

defined as an autonomous entity that can be viewed as perceiving and acting upon its environment. 

An agent must be able to communicate with other agents [48]. To interact successfully, agents 

must have the ability to cooperate, coordinate and negotiate with each other, almost as people do. 

To improve the monitoring and control of a DH system through the use of agent technology, 

Wernstedt and Davidsson [49] developed a MAS approach. In order to shave the peaks and prevent 

entering the boilers in the circuit, the authors of [50] have applied the MAS approach. Yielded 

results show that MAS was capable of decreasing the peak loads by up to 20%. In the same way, 

Lacroix et al. [51] used the MAS approach to control a compressed unit providing heating, 
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ventilation and domestic hot water production in a low-energy building. However, findings show 

that the suggested methodology managed to increase costs by only 2.5%, but they improve thermal 

comfort by 35%. MAS and PSO’s combination is the main idea in Wang et al. [52]. The aim is to 

maximize the comfort index using minimum power consumption, and the findings indicate the 

effectiveness of the proposed method. 

The MAS approach has been recently applied to 5GDHC systems that enable the concept of 

decentralized prosumers for all the connected substations. In particular, in Bünning et al. [53] the 

performance of two 5GDHC systems located in San Francisco and Cologne exploiting an agent-

based control have been assessed in comparison with a conventional gas-fired DH and individual 

chillers solution for space cooling. By exploiting the coordinated balancing effects of several 

decentralized prosumers with heat pumps and chillers, this control strategy was able to maintain 

the average temperature of the system within 2 K around the setpoint all year around showing that 

this approach is beneficial with respect to free-floating temperature control. Future technology 

could match blockchain with the MAS approach. Blockchain application in 5GDHC have been 

investigated in the framework of the D2Grid project [76] and is going to be demonstrated at the 

demo case of Paris-Saclay (France) [77]. The goal is to apply a new business model where smart 

contracts can be signed automatically and with the exploitation of dynamic energy tariffs to flatten 

the peaks in the heating and cooling demands by promoting flexibility and demand response (DR) 

strategies at the customer level. In this regard, an overview of DR applications in the DHC sector 

is presented in the next section. 

In recent years, MPC has become a high-tech solution to several complicated control problems. It 

attracted research communities’ attention in different fields and in particular in the DHC sector.  

2.4 Model Predictive Control 

MPC is described as an "approach" to control design, not a specific algorithm, signifying a way of 

thinking in control systems. Users ideally interpret the approach to define algorithms suitable for 

their own needs. One of the reasons why predictive control is considered logical is that it is based 

on human behavior, which serves as a good starting point for designing automation techniques. 

For example, when looking at a PID controller, it can be realized that it is a simplification of a 

human technique for controlling simple systems. Similarly, humans use predictions for common 

strategies [54]. For instance, in the context of "driving a car," a core component is that drivers look 

ahead and anticipate future "targets" or demands, such as changes in the road, pedestrians, other 

https://www.mdpi.com/2076-3417/11/1/455#B76-applsci-11-00455
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vehicles, and speed limits. Therefore, anticipation, or prediction, helps determine effective control 

strategies. 

Figure 2-6 illustrates the common traits shared by all the methods within the MPC category. 

• For every time step 𝑘, the dynamical model of the process is used to predict the future 

output 𝑦𝑘+𝑖|𝑘, 𝑖 = 1,2, ⋯ , 𝑁. The notation 𝑦𝑘+𝑖|𝑘 denotes the value of the variable at time 

𝑘 + 𝑖, calculated at time 𝑘. The future output relies on both the current state of the system 

and the current and future control input signals 𝑢𝑘+𝑖|𝑘, 𝑖 = 0,1,2, ⋯ , 𝑁. These control input 

signals are determined by optimizing specific performance criteria. 

• The process receives the control input signal 𝑢𝑘|𝑘 while disregarding the remaining control 

inputs. In the subsequent time step (𝑘 + 1), the updated system state 𝑥𝑘+1 is already known, 

and the process is repeated, making predictions for the output, and calculating the control 

action using the updated information. 
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Figure 2-6. MPC strategy. The vertical black arrow marks the present time. Black line past commands. Red line future commands. 

Figure 2-7 illustrates the fundamental structure of the approach. This strategy employs a dynamical 

model to forecast the future states of the process based on the current state and anticipated control 

signals. These control signals are determined through optimization of an objective function, while 

adhering to system state and control input constraints, to achieve an optimal control sequence. The 

prediction horizon denotes the maximum number of time steps considered for predicting the 

system states, and similarly, the control horizon represents the number of time steps used for 

calculating future control actions. Since the number of time steps for predictions is finite, this 

approach is known as finite receding horizon control. Nevertheless, it is worth noting that a finite 

prediction horizon may compromise the stability of the control system, as discussed in later 

sections. 
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Figure 2-7. Basic design of MPC 

The importance of the MPC strategy lies in its objective function. This function serves to express 

the intentions behind designing the control system and measures the system's performance through 

the use of a suitable mathematical function. Depending on the control problem, the objective 

function can take on different forms, such as linear (e.g., economic MPC), quadratic (e.g., nominal 

MPC), or even nonlinear. 

Currently, the focus lies on tracking a specific desired path with minimal input requirements. The 

system described in Eq. (2.1) allows us to formulate the objective function 𝐽 for the tracking 

problem as follows: 

 

𝐽(𝒀, 𝑼) =  ∑(𝒚𝑖+𝑘 − 𝒓𝑖)
𝑇

𝑁

𝑖=1

𝑸(𝒚𝑖+𝑘 − 𝒓𝑖) + 𝒖𝑖+𝑘
𝑇 𝑹𝒖𝑖+𝑘 2.1) 

The prediction horizon is represented by 𝑁. The system states and control inputs have associated 

positive semi-definite and positive definite weighting matrices, 𝑸 and 𝑹, respectively. The 

reference value after 𝑖 time steps is denoted as 𝒓𝑖. Also, 𝒚 and 𝒖 are representing the output and 

input vector. The objective function shows the error between the reference value to be achieved in 

the future and the future system states. In real-world scenarios, knowing the reference trajectory 

beforehand allows the system to react in advance, avoiding time-delay effects. As shown in Eq. 

(2.2), 𝑼 is a sequence of control actions you might apply and 𝑼∗ is the best sequence of control 

actions as determined by the MPC optimization process. 

 𝑼 = [𝒖𝑘 … 𝒖𝑘+𝑁−1] 

𝑼∗ = [𝒖𝑘
∗ … 𝒖𝑘+𝑁−1

∗ ] 
2.2) 
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It should be noticed that, for consistent representation and clarity, we have adopted a notation 

convention: vectors are denoted by bold lowercase letters, while matrices are indicated by bold 

uppercase letters. 

Constraints are applied to nearly all real-world dynamical systems like car driving, stirred tank 

systems, and power systems. Consequently, the control action that activates the process must be 

contained within a specific range, and likewise, the system states should be kept within an 

allowable limit. The system states and control input sequence are required to meet these conditions. 

 𝒙𝑘 ∈ 𝕏 

𝒖𝑘 ∈ 𝕌 
2.3) 

 

where 𝕏 is a convex, closed subset of ℝ𝑛 and 𝕌 is a convex, compact subset of ℝ𝑚 and each set 

contains the origin in the interior of the set. In general, constraints are treated in two ways in MPC. 

• Soft Constraints: In a soft constraints approach, the constrained element can break the 

rules, but it will be penalized heavily for doing so. As a result, the decision to balance 

between violating the constraints and incurring the penalty is made by the controller. 

Typically, this method is applied to output variables' restrictions. 

• Hard Constraints: The limitations on control input are typically regarded as strict rules. 

In this setting, the constrained variable cannot break these rules. Usually, in MPC, the 

constraints are included as linear inequalities, similar to problems in mathematical 

programming. 

 

The objective function 𝐽 is minimized by an optimizer to obtain the optimal control sequence, 

while taking into account the constraints and system dynamics. 

 𝑈∗ = min
𝑈

𝐽(𝒀, 𝑼) 2.4) 

Subjected to 

 𝑥𝑘+𝑖+1 = 𝐴𝑥𝑘+𝑖 + 𝐵𝑢𝑘+𝑖, 𝑖 = 0,1, ⋯ , 𝑁 − 1  

𝑦𝑘+𝑖 = 𝐶𝑥𝑘+𝑖 + 𝐷𝑢𝑘+𝑖, 𝑖 = 0,1, ⋯ , 𝑁 

𝑥𝑘 = 𝑥(𝑘) 

𝑥𝑚𝑖𝑛 ≤ 𝑥𝑘+𝑖 ≤ 𝑥𝑚𝑎𝑥, 𝑖 = 0,1, ⋯ , 𝑁 − 1 

𝑢𝑚𝑖𝑛 ≤ 𝑢𝑘+𝑖 ≤ 𝑢𝑚𝑎𝑥 , 𝑖 = 0,1, ⋯ , 𝑁 − 1 

2.5) 
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The optimal control input policy, denoted as 𝑈𝑖
∗|𝑖=1

𝑁 , is designed to minimize the difference 

between the reference temperature trajectory and the future states, considering the system 

dynamics and imposed constraints. In simpler terms, the 𝑈𝑖
∗ policy helps steer the system states 

towards the desired reference values. The values 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝑢𝑚𝑖𝑛, and 𝑢𝑚𝑎𝑥 represent the 

minimum and maximum allowable ranges for the system states and control inputs. To implement 

the control law, only the first component, 𝑈1
∗, is used to compute the system state 𝑥𝑘+1. 

Subsequently, as new information becomes available regarding the reference trajectory, 

constraints, and disturbances (which will be discussed later), the optimization process is repeated 

using 𝑥𝑘+1 as the current state of the system. This approach follows the receding horizon control 

strategy. 

2.4.1 MPC in DHNs 

MPC is based on a predictive process that exploits a dynamic model of the system and allows 

finding the vector of the manipulate inputs over a time horizon by solving an on-line constrained 

optimization problem that takes into account the system details [55]. For instance, an MPC 

controller based on a dynamic programming (DP) optimization algorithm has been presented in 

Saletti et al. (2020) [53] to supply the thermal energy to a school complex located in Northern 

Italy. Results show a decrease in natural gas consumption of the boiler up to more than 7% in 

comparison with a standard PID controller. In De Lorenzi et al. (2020) [54], the same tool and 

approach are applied in different case studies. The comprehensive smart control strategy consists 

of pledges efficient energy distribution, flexibility and low-carbon energy integration. 

Achievements are a 6% reduction in operating cost and up to 34% in energy consumption, whereas 

meeting consumers’ needs. Moreover, MPC has been applied in Verrilli et al. (2017) [55] by 

scheduling boilers, TES units and flexible loads. Results show that the MPC succeeded in reducing 

operating and maintenance costs in a DH power plant. This methodology integrated projection on 

fluctuating demand within the optimization problem and answered it in a receding horizon fashion. 

Labid et al. (2014) [56] developed an MPC to improve the thermal storage tank management in a 

multi-energy district boiler. The results revealed that the controller reduced fossil energy 

consumption and CO2 emissions, while the economic profit increased. A MPC introduced in 

Lennermo et al. (2019) [57] has been applied to decentralized solar thermal collectors (STC) fields 

connected to a DH network in the return-supply configuration. The authors showed that the MPC 

implementation in the real SDH system in Lerum (Sweden) operated in a robust way solving the 

https://www.mdpi.com/2076-3417/11/1/455#B53-applsci-11-00455
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problems of the previous PID controller that was not capable of limiting severe supply temperature 

and flow rate cycling variations that can be a cause of fatigue problems in buried steel pipes. 

Sometimes for covering the disadvantages of MPC and obtaining the best performance and result, 

MPC has been merged with other methods. For example, to control the supply temperature in the 

DH network, authors in Grosswindhager et al. (2013) [58] used the combination of the MPC and 

fuzzy direct matrix control (FDMC). Findings confirm that FDMC can command the inherent 

nonlinearity in the acknowledgment characteristics of DH systems by considering the volume flow 

rate at the plant as a fuzzy variable. Additionally, the trade-off between pumping and heat loss 

costs can significantly impact minimizing operational costs. A tool named XEMS13 using MPC 

strategy has been introduced in Lazzeroni et al. (2019) [59] in order to optimize operational costs 

by considering technical and operational constraints. This tool is developed by the Energy 

Department of the Politecnico di Torino and LINKS. Different configurations with increasing cost-

saving, installation costs, renewable energy source generation and primary energy saving are 

presented, and results demonstrated the success of the method. Authors in [56] aimed to enhance 

MPC performance in buildings by addressing weather forecast uncertainty. An error model, based 

on easily measurable data, was introduced to improve weather forecast data quality. The MPC 

with the error model achieved significant energy cost savings (3.4%) and reduced indoor 

temperature violations (73%) compared to conventional controllers. The introduction of the error 

model consistently improved MPC performance, even with low forecast errors, making it 

beneficial for practical application in buildings. Hering et al. in [57] focused on optimizing a low-

temperature district heating network with a high share of waste heat from high-performance 

computers. The network includes heat pumps with temperature-dependent characteristics, 

modeled using quadratic correlations. An optimization model, a mixed-integer quadratically-

constrained program, is used to optimize the heat pumps' operation along with thermal energy 

storages and pipe network temperatures. The optimization achieves 1.55%-5.49% electrical energy 

savings, depending on heat and cooling demands, by utilizing thermal energy storages and 

controlling flow and return temperatures. In [58] MPC shows promise in improving heating, 

ventilating, and air conditioning  (HVAC) system efficiency and flexibility. However, widespread 

adoption faces challenges due to expertise, data quality, and risk aversion. This study implements 

MPC using an open-source tool-chain in a real office building, achieving 40% HVAC energy 

savings. It discusses practical challenges and estimates implementation effort, aiming to guide 

https://www.mdpi.com/2076-3417/11/1/455#B58-applsci-11-00455
https://www.mdpi.com/2076-3417/11/1/455#B59-applsci-11-00455
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future workflows and reduce implementation complexity. In [59], authors applied MPC to a 

university heat prosumer with data center waste heat and thermal energy storage. The MPC 

framework minimized energy costs and improved cooling system stability, resulting in up to 3.2% 

monthly energy cost reduction compared to conventional control. Lyons et. Al in [60] proposes a 

novel approach that combines model reduction techniques with state-of-the-art building energy 

modeling tools within an MPC framework. The approach is demonstrated through a case study 

involving a 95-flat communal heating system. Both centralized and decentralized approaches are 

explored, particularly their ability to incorporate externally imposed constraints on the supply. A 

forecasted load-and time delay-based MPC has proposed in [61] for district energy systems. The 

MPC model reduces energy consumption by 9.56% in summer and 7.75% in winter compared to 

conventional feedback control, and by 5.30% in summer and 2.61% in winter compared to load 

feedforward fuzzy control. Jansen et al. in [62] presented an advanced control strategy based on 

MPC, for DHNs. The MPC outperforms the conventional rule-based controller, reducing thermal 

discomfort and lowering electrical energy use by 3% in winter and 17% in spring. It considers the 

entire system, including heat demand, and uses anticipation and flexibility for better performance. 

In [63] MPC has been used to regulate a DH station in China, achieving higher room temperature 

stability and flexibility. MPC reduced room temperature fluctuations and energy consumption. 

Practical application showed energy consumption reduced by 5.9% and 7.9% over two years, with 

improved thermal comfort rates. Bella et. Al in [64] proposed a method for optimizing district 

heating systems connected to the electrical grid. It combines physical and identified piece-wise 

linear models for efficient optimization. The method was tested on a real district heating plant in 

Novate Milanese, Italy, showing promising results with significant cost and gas consumption 

reductions. Buffa et. al [12] utilized advanced MPC with recurrent artificial neural networks to 

improve energy transfer station operation in 5GDHC systems. The MPC controller achieved up to 

14% electricity consumption shift from on-peak to off-peak hours, enhancing grid flexibility and 

thermal-electric sector coupling. A predictive control strategy was developed in [65] for the DH 

system at the Drake Landing Solar Community in Canada. The strategy aims to minimize energy 

consumption while maintaining a high solar fraction. Simulation results show it can save about 

47% of pump electricity use annually, resulting in cost and greenhouse gas emissions reductions 

of 38% and 32% respectively. Authors in [66] compared two control strategies for a multi-energy 

DH network DHN: Reactive Rule-Based Control (RBC) and MPC. MPC reduces operational costs 
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by up to 5% compared to RBC, especially with variable energy costs, intermittent solar energy, 

and storage capabilities. The study provides a methodology and tools for efficient implementation 

and validation of complex MPC strategies using Modelica-based simulation and various control 

strategies. Taylor et. al [67] focuses on optimizing 5GDHCN using MPC to match demand with 

low-cost electricity supply. To enable MPC application, the paper extends a control-oriented 

modelling framework for multi-energy systems to accommodate 5GDHC network, including 

hydraulic pumps, thermodynamic cycle devices (e.g., WSHPs), and multi-energy networks. An 

economic MPC (eMPC) scheme is proposed for energy management in 5GDHC-based smart 

districts. A case study comparing the proposed eMPC controller with rule-based control shows its 

superiority in achieving economic operation of a smart district. 

2.5 Model Identification  

A wide area of research is organized by the underlying processes described by systems. The 

methods used in the process of system identification are briefly outlined in this section. The 

modeling approach chosen depends on the complexity, dynamics, and nonlinearity of systems. The 

existing approaches in the field of energy systems can be broadly categorized into three main 

groups. 

White-box models, being grounded solely on physics, indeed require a significant amount of 

effort and time to develop. A comprehensive understanding of the system's physical parameters 

and the equations governing its behavior is essential to construct an accurate model. The 

complexity of these models can lead to slow execution in simulations, making them 

computationally intensive. Despite the challenges, for example, white-box models offer a unique 

advantage in that they can simulate buildings that have not yet been constructed, provided that all 

relevant physical properties are known. This capability makes them valuable tools for architects 

and engineers in the design phase, allowing them to explore various scenarios and optimize the 

building's energy performance even before construction commences [62]. In the field of energy 

modeling, several well-established software packages are based on the white-box approach. These 

tools have become instrumental in assessing energy usage and devising effective building control 

and operation plans. Among them, EnergyPlus, ESP-r, TRNSYS, Ecotect, and Grasshopper stand 

out as widely-used platforms [63], [64]. These software applications enable energy analysts and 

researchers to evaluate the energy efficiency of buildings, study the impact of different design 

choices, and propose energy-saving measures. By relying on the principles of physics, these white-
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box models contribute to advancing sustainable building practices and reducing the environmental 

footprint of our built environment. 

Black-box models, in contrast to white-box models, black-box models, also known as data-driven 

models, do not rely on the underlying physics or first principles of the system. Instead, they 

establish relationships between input and output features purely based on historical data. These 

models use the available data to calibrate and establish correlations, making the modeling process 

relatively straightforward and quick. The primary advantage of black-box models lies in their 

ability to handle complex systems where the underlying physics may be difficult to model 

explicitly. They excel in situations where the relationships between input and output variables are 

nonlinear and cannot be easily described by conventional physics-based equations. To construct 

these models in the field of energy, historical data on building energy usage and operating 

parameters are utilized. By analyzing the data, the model learns patterns and correlations, allowing 

it to make predictions and optimize energy usage in various scenarios. For training black-box 

models, it is essential to have on-site observations over an extended period to gather sufficient data 

that represents different operating conditions. This comprehensive dataset ensures that the model 

captures the system's behavior accurately and can generalize well to handle diverse situations [68], 

[69]. Commonly applied approaches in black-box modeling include ANN, Support Vector 

Machines (SVM) [70], and Statistical Regression. ANN is particularly useful for handling complex 

nonlinear relationships, while SVM is effective in dealing with classification and regression tasks. 

Statistical Regression, on the other hand, is a simple yet powerful technique for establishing 

correlations between variables [71], [72]. 

Gray-box models, which offers a valuable middle ground between the purely qualitative nature 

of black-box models and the fully physics-based approach of white-box models. Gray-box models 

combine both qualitative knowledge and quantitative data to develop a more comprehensive and 

accurate representation of the system. The gray-box modeling technique allows for the integration 

of prior knowledge and insights gained from domain experts. This qualitative knowledge can 

include factors such as system constraints, behavior patterns, and known relationships between 

variables [73]. By incorporating this domain expertise into the model, it becomes more 

interpretable and aligned with the real-world understanding of the system. Furthermore, gray-box 

models make effective use of available data, which may be limited or noisy in some cases. Instead 
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of relying solely on data-driven techniques like black-box models, gray-box models extract the 

most meaningful information from the available data while complementing it with the qualitative 

understanding of the system. The process of developing a gray-box model involves a careful 

selection of the most appropriate process model, considering all the currently available information 

[74]. This hybrid modeling approach ensures that the model's predictions are not solely data-driven 

but also constrained by the underlying physical principles or qualitative insights. The advantage 

of using gray-box models is evident in scenarios where obtaining large amounts of data might be 

impractical or expensive. By combining qualitative knowledge with the limited data available, 

gray-box models can still provide valuable predictions and insights into the system's behavior [75]. 
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Chapter 3 

3 Methodology  
 

The methodology section in this thesis centers on the utilization of the MPC approach specifically 

for the optimal control of substations. MPC is applied for an end-user substation that is linked to 

the 5GDHC network, with a specific emphasis on its application within residential buildings.  

The state of charge of TES and the temperature distribution within the storage tank are crucial 

inputs for decision making. Understanding both the current and projected future state of TES 

charge enables the MPC to effectively manage the use of stored thermal energy, contributing to 

energy efficiency. 

The status of HPs is another key consideration. Since HPs operate using electricity, MPC must 

decide the optimal times for their operation. This decision depends on various factors, including 

the current grid electricity price. The electricity source supplying the HP and the inlet temperature 

to the HP, which directly affects its efficiency, play pivotal roles in the decision-making process 

of the MPC. 

A critical factor that requires prediction is the thermal load demand within the residential building. 

Accurately estimating the future thermal load is essential for MPC to determine the precise amount 

of heating or cooling needed to meet all the heating requirements of occupants and maintain a 

comfortable indoor environment. 

Among these factors, the prediction of thermal load demand stands as a cornerstone. It serves as 

a fundamental input, dictating the energy requirements within the residential building. This 

demand prediction is essential for crafting a well-optimized energy planning strategy, ensuring 

that the substation operates efficiently and effectively. Therefore, it is necessary to employ a 

robust and accurate load prediction model.  

This model is pivotal in informing the MPC's decisions and contributing to the overall success of 

the optimized energy planning process. In this section, we outline the steps and methodologies 

used to select and implement a suitable load prediction model. This model is crucial for achieving 

the primary objective: utilizing the MPC approach for optimal control of residential substations 

connected to 5GDHCNs. 
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3.1 Thermal load prediction 

Thermal load refers to the amount of heat energy that needs to be either added or removed from a 

space or system to achieve the desired temperature conditions. It can represent both the heating 

load and cooling load. Given that buildings use significant amounts of energy and produce 

considerable carbon dioxide, accurate thermal load forecasting is crucial for the optimal planning 

and operation of the energy systems. It helps to reduce energy waste, enhance occupant comfort, 

and extend the lifespan of building equipment. This type of forecasting is widely utilized in the 

controls of  HVAC systems [2]–[7], HPs [81]–[83], and TES systems [84]–[86]. Load forecasting 

is typically implemented through various modeling techniques [87]. The choice of modeling 

approach depends on the complexity, dynamics, and nonlinearity of building energy systems, 

whether in a single building or multiple buildings. 

As mentioned earlier, black box models are like magic boxes that provide predictions without 

revealing how they work inside, making them great for complex situations. White box models, on 

the other hand, are like transparent glass, showing you exactly how they make decisions, which is 

useful when understanding the process is crucial. Gray box models, as the name suggests, are a 

mix of both, giving you some insight into their inner workings while still preserving some mystery, 

often striking a balance between understanding and prediction accuracy. 

Black box modeling is often preferred over white and gray box modeling in certain situations due 

to its inherent simplicity, flexibility, scalability, and automation [88]. These advantages make 

black box models particularly suitable for complex systems where understanding the inner 

workings is challenging, or when dealing with diverse datasets across various domains. Their 

ability to handle large amounts of data effectively, relying on techniques like machine learning, 

makes them well-suited for big data scenarios. Additionally, black box models can provide 

valuable predictions or classifications without revealing sensitive or proprietary details, addressing 

privacy and security concerns. In cases of time and resource constraints, black box models offer 

quicker development and deployment [89]. While interpretability and transparency are essential 

in some contexts, when the primary goal is accurate predictions and outputs, black box modeling 

becomes a pragmatic choice, though a balanced approach, incorporating elements of white, gray, 

and black box methods, can be employed to meet specific needs. 

In the context of thermal load prediction in residential buildings, having a one-size-fits-all model 

for all types of buildings is unrealistic as every building is unique and requires its specific set of 
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parameters. This is where the black-box model comes in handy, as it can be applied to a wide range 

of buildings, regardless of their specific characteristics, making it a generic solution [7]. Also, the 

widespread implementation of automated control systems and the Internet of Things in buildings 

has resulted in an abundance of data from measuring sensors, providing ample opportunities for 

developing black box models using Machine Learning (ML) algorithms, including linear 

regression, autoregressive exogenous (ARX), Support Vector Machines (SVM), extreme gradient 

boosting (XGBoost), and ANN models [90], [91]. Within the black-box category, choosing the 

appropriate algorithm is a challenging endeavor, with "Is there a stronger method than others?" as 

a frequently asked question. 

Linear regression [92]–[94], ARX model [95]–[98], and more complicated methods like SVM 

[99]–[101] and XGBoost [102]–[105] are only a few statistical models and techniques used to 

predict future building loads. The other cutting-edge data-driven solution is the use of ANN. These 

networks are popular due to their striking features, such as adaptive learning, self-organization, 

real-time operations, generalization, stability and flexibility, and parallel processing. ANN has 

been widely recognized in the building energy domain as a promising approach due to its superior 

learning abilities and computational advantages. The Multilayer Perceptron (MLP) is a popular 

type of ANN that is made up of multiple layers of interconnected neurons. Unlike linear regression, 

which can only model linear relationships, MLP can handle both linear and nonlinear relationships 

by adding more hidden layers to the network. This allows MLPs to better capture the complex 

relationships in the data, leading to improved forecasting performance. 

In addition to MLPs, the ANN domain includes various advanced ANN architectures such as 

Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) networks. While RNN 

is widely used and effective for time series forecasting, it is susceptible to the risk of exploding 

and vanishing gradients and may have a limited capacity for storing features for long sequences 

[106]. LSTM overcomes these issues and has a more sophisticated structure than conventional 

RNNs, which allows it to store and access information over an extended period of time, making it 

more suitable for time series forecasting tasks. Some studies have highlighted the superior 

performance of LSTM over simple ANN for predicting a building's energy consumption, but this 

advantage comes at the cost of the increased computational burden [107]. Also, LSTMs require a 

large amount of training data to produce accurate results. If the training data is limited or noisy, 
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LSTMs may struggle to learn meaningful patterns. Therefore, the choice of ANN depends on the 

specific needs of the application [108], [109].  

Creating an appropriate ANN model is a complex process that requires careful consideration of 

several critical steps. The early step involves selecting the most suitable features for the model, 

and there are various extraction algorithms available to achieve this, including the filter approach, 

wrapping method, embedding method [110]–[112], and so on. Choosing the right inputs is also a 

crucial aspect of feature selection, as having too many inputs can make the model overly complex 

and result in increased training time [113]. On the other hand, having too few inputs may lead to 

a model with inadequate performance. Therefore, it is essential to find a balance between the 

number of inputs and the model's performance. Having access to the inputs is also another aspect 

of feature selection that should be considered. Temporal features that are easily accessible, such 

as time of day, day of the week, and holidays, can be utilized in data-driven model training to 

improve the model's accuracy [92]. For example, in a predictive model for building energy 

consumption, the time of day, day of the week, and holidays can be useful in predicting peak 

demand periods. While these temporal features can be easy to obtain and process, there may be 

cases where additional sensors or algorithms are necessary to extract essential features for the 

model. These sensors and algorithms may come at an additional cost and require more time and 

effort to implement. For example, utilizing occupancy as a feature for model training can be 

beneficial. Alternative algorithms, room occupancy detectors, passive infrared sensors [114], or 

CO2 sensors [115]–[117] can also provide valuable information about occupancy. Nonetheless, 

these methods can be expensive for the end user. Ideally, information should come from sensors 

that would be installed anyway, such as indoor temperature measurement and fluid temperatures 

in heating and cooling system points. 

In this study the goal is to introduce a straightforward MLP model with a single hidden layer as an 

approach for predicting the thermal load of buildings. The objective was to develop a model that 

is fast, cost-effective, and adaptable, capable of accurate predictions even with limited data. To 

achieve this, complex data-driven models were deliberately avoided in favor of simpler 

alternatives. Instead, the study focused on selecting easy and straightforward inputs that could be 

universally applied to all building types without requiring detailed information about their physical 

characteristics. The chosen inputs consisted of commonly embedded sensors in buildings, 

eliminating the need for additional sensors. The MLP model was specifically designed for a 
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controller based on model predictive control, emphasizing the necessity of precise predictions for 

the building's thermal load. Overall, the proposed approach prioritized simplicity and practicality 

while still achieving accurate predictions. 

In the following, the detailed procedure for constructing a self-adaptive ANN model to accurately 

predict thermal loads in buildings is explored. Subsequently, the model's effectiveness is 

showcased using a simulated building, emphasizing the potential of this innovative approach. 

Before diving into the details, let's recall how the ANN training process works. ANNs are trained 

using several input and output data pairs that correspond to the input features and output targets. 

The ANN architecture has a set of trainable parameters which are continuously adjusted in the 

training phase to minimize/maximize a particular performance indicator, also known as the loss 

function. In this case, features and targets are snapshots of measured physical quantities observed 

over a certain period of time. This training process enables the ANN to learn and improve its 

predictions continuously. The end result is a highly adaptable and versatile model that can be used 

for energy planning and management in the building. 

3.1.1 Case study 

The dataset used in this study was generated by simulating the real building in TRNSYS and saving 

the numerical data in a Comma-Separated Values (CSV) file. The building stratigraphy was 

already known from the EnergyMatching project (European Union’s Horizon 2020 research and 

innovation program, grant agreement Nº 768766). The TRNSYS model was utilized to generate a 

meticulously prepared dataset that accurately represents the behavior of an existing building 

subjected to climate conditions typical of Bolzano, Italy [118].  

The dataset encompasses all aspects of the building, with a particular emphasis on the HVAC 

control system. It consists of 65 columns that represent the most crucial information related to the 

building's thermal behavior and energy consumption. In terms of size, the dataset contains a 

significant amount of information due to the one-year simulation duration and the 5-minute 

sampling interval. 

The building, as depicted in Figure 3-1, is a small apartment with high insulation levels and a floor 

area of 62.6 m2. The building's annual energy consumption stands at around 50 kWh/m2. For 

space heating, all rooms except the bathroom and kitchen are equipped with a radiant floor heating 

and cooling system, each with its own dedicated thermostat for individual zones. 

https://www.energymatching.eu/demo-sites/italian-demo-site/
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Figure 3-1. The layout of the building in the case study 

3.1.2 Input variable selection  

Selecting appropriate input features is fundamental to building an ANN. The process of choosing 

the right features is a challenging task and requires a basic knowledge of the parameters capable 

of influencing the system. A general principle is to pick the number of features that can adequately 

model the system dynamics without putting excessive computational burden. To this end, some 

statistical-based feature selection methods evaluate the relation between input (features) and output 

(target) variables. These techniques attempt to concentrate on reducing redundant or unhelpful 

variables and selecting the most meaningful features. The relationship between the input and target 

variables depends on the variable types (numerical/categorical), leading to different statistical 

assessment (regression/classification) methods. In this case, the types of variables we encounter 

are numerical; therefore, we resort to calculating Pearson's correlation coefficient (PCC) to assess 

the input and target variable relationship. PCC measures the linear correlation (𝜌(𝑋, 𝑌)) between 

two variables 𝑋 and 𝑌 using the equation (3.1). 

 
𝜌(𝑋, 𝑌) =

𝔼[(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)]

𝜎𝑋𝜎𝑌
 3.1) 

Where 𝔼 is the expected value, 𝜇𝑋 and 𝜇𝑌 are the mean value of variables 𝑋 and 𝑌 respectively, 

and 𝜎𝑋 and 𝜎𝑌 are the standard deviation of variables 𝑋 and 𝑌, respectively. Based on the outputs 

of PCC, selected features are shown in Figure 3-2.  
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Figure 3-2. Correlation Heatmap showing the Relationship between Inputs and Thermal Load 

3.1.3 ANN design and configuration  

 

In this study, various ANN structures were considered, with the goal of selecting the most 

appropriate one based on the specific needs of the task at hand. While multiple structures were 

initially explored, the MLP was ultimately found to be the most effective option for the specific 

requirements of this study. While other structures may have had the potential to achieve higher 

accuracy or faster speeds with further optimization, the simplicity and efficiency of the MLP were 

essential for meeting the specific requirements of this study.  

The Multilayer Perceptron (MLP) is one of the most used and versatile ANN architectures. MLPs 

are widely regarded as a powerful tool for solving complex nonlinear problems, including 

classification and prediction tasks, due to their ability to learn and represent complex nonlinear 

relationships between input and output data. One of the key advantages of MLPs is their flexibility 

and adaptability. They can be trained on a wide range of input and output data types, including 

continuous, discrete, and binary data, and can be used for both supervised and unsupervised 

learning [119]. Another advantage of MLPs is their ability to incorporate prior knowledge and 

expert input into the learning process. This makes it possible to tailor the network architecture and 

learning algorithm to specific problem domains and to optimize the network's performance based 

on domain-specific knowledge [120]. 

The MLP model that was chosen for the study has six input features, a hidden layer with 16 

neurons, and only one output feature. In order to address the temporal dependence of the problem 
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at hand, it was deemed necessary to include not only the parameters with the highest correlation 

but also the day of the week (𝐷𝑤) and time of the day (𝑡) as input features. The inclusion of 𝐷𝑤 and 

𝑡 as input features in the MLP model is significant for capturing the cyclic and diurnal patterns in 

thermal load behavior. 𝐷𝑤  captures differences in thermal load across weekdays and weekends, 

while 𝑡 accounts for variations throughout the day due to factors like outdoor temperature and 

human activities. Including both features allows the model to account for weekly and daily 

variations in thermal load without the need for additional sensors. 𝐷𝑤 and 𝑡 can be easily derived 

from available data sources such as timestamps or system clocks. 

In the process of developing the ANN model, experiments were conducted to determine the 

optimal number of neurons in the hidden layer. Several trials were performed with varying 

numbers of neurons, ranging from a small number to a larger one. Through these experiments, it 

was found that using 16 neurons in the hidden layer proved to be the most effective choice, as it 

yielded the best results. Besides, the choice of activation function for the hidden layer was 

considered. After evaluating different options, the Rectified Linear Unit (ReLU) activation 

function was selected as the optimal choice. This decision was made based on its ability to improve 

the model's performance and accuracy, as well as its computation efficiency compared to other 

activation functions. As the activation function for the output layer, a linear activation was 

considered in order to produce continuous output values that represent the predicted thermal load 

of the building. This choice was made to ensure that the output is directly proportional to the input, 

making it easier to interpret and integrate with the MPC approach used in the controller. Figure. 

10 illustrates the architecture of the proposed ANN model. 
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Figure 3-3. Structure of proposed ANN model for load prediction 

3.1.4 Technical barriers 

In order for the ANN to effectively predict the thermal load, it must have access to the future values 

of its input features. Therefore, the future input feature values can be obtained through forecasting 

or made available through other means. In this work, the meteorological data (𝑇𝑎 and 𝜙𝑠) and 

integral gains (𝜃) are sourced from TRNSYS, therefore, assuming to have a perfect prediction of 

outdoor conditions and internal gains. It should be noted that the term "internal gain" refers 

explicitly to the measured internal gains associated with lighting and electrical appliances that can 

be easily quantified using electricity meters. Measuring internal gain in the real world is 

challenging, often requiring models or calculations. To strike a balance between accuracy and 

practicality, we simplified the model and focused on electrical measurable sources. 

As we can see in Figure 3-3, the zone temperature is one of the input features for the thermal load 

model, implying that it must also be predicted. It turns out that the future values of the zone 

temperature can be forecasted with satisfying accuracy by making use of a second ANN model 

where the thermal load is an input feature as they are interdependent. The task of the second ANN 

model is to predict the zone temperature (𝑇𝑧). This model requires similar features to those of the 
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thermal load model with additional features representative of the thermal load and zone 

temperature at the previous time step. The zone temperature model can be formulated as equation 

(3.2). 

 𝑇𝑧(𝑡) = 𝑓(𝑇𝑎(𝑡), 𝜙𝑠(𝑡), 𝑡, 𝐷𝑤, 𝜃(𝑡), 𝑃(𝑡), 𝑇𝑧(𝑡 − 1)) 3.2) 

The tie induced by the fact that each model output is also an input of the other is solved by 

connecting the two models in a feedback loop. Figure 3-4 shows the final model structure. 

 
Figure 3-4. Identified model for load (and zone temperature) prediction. 

3.1.5 Model enhancement 

The mathematical details of the proposed model's implementation are discussed in this section. 

The model is designed to make hourly predictions over a 24-hour horizon continuously. The model 

is based on a state-space model that can approximate the input-output relation seen in the data, and 

this family of functions includes all networks arising from the combination of possible neuronal 

units, connections, activation functions, and weights. The extended state vector is introduced to 

include the recent past evolution of state and input variables, and a selector is used to reduce the 

network's complexity by selecting a subset of extended states to become features fed to the ANN 

core. We investigated the optimal size of training datasets for a 5-minute time step model and 

designed a method for weight initialization. The model is trained every day at midnight using the 

most recent data and then used to make predictions for the next 24 hours. To evaluate the accuracy 

of the proposed model, various performance metrics were utilized. 
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3.1.6 Continuous training model 

Determining the behavior of a building in response to variations in its boundary and internal 

conditions can be seen as a (dynamic) system identification task. More specifically, since a real 

building can show both nonlinear and time-varying (NLTV) behaviors, we are dealing with 

identifying NLTV systems. Such systems can theoretically be formulated like equation (3.3) as 

NLTV state-space models. 

 
{
𝒙(𝑡 + 1) = 𝒇(𝒙(𝑡), 𝒖(𝑡), 𝑡)

𝒚(𝑡) = 𝒈(𝒙(𝑡), 𝒖(𝑡), 𝑡)
 3.3) 

In this formula, 𝒇 and 𝒈 are vector values functions, while 𝒖(𝑡) ∈ ℝ𝑚, 𝒙(𝑡) ∈ ℝ𝑛 and 𝒚(𝑡) ∈ ℝ𝑝 

represent the input, state, and output vectors at time 𝑡, respectively. In other words, 𝒇 represents 𝑛 

scalar functions of 𝑛 + 𝑚 + 1 (scalar) variables while 𝒈 represents 𝑝 scalar functions of 𝑛 + 𝑚 +

1 variables. 𝒇 is called the state update function, while 𝒈 is called the output function. The system 

identification task consists in determining the state update and output function that best 

approximates the input-output relation seen in the data in a certain family of functions. In this 

work, we performed the system identification task using ANNs, therefore the family of functions 

we are referring to is the family of all the networks arising from the combination of possible 

neuronal units, their connections, activation functions, and weights. 

In this context, due to the use of ANN, we found it helpful to explicitly include the recent past 

evolution of state and input variables in the mathematical formulation, leading to a modified 

version of equation (3.3) to read as equation (3.4). 

 
{
𝒙(𝑡 + 1) = 𝒇(𝒙(𝑡 − 𝑞𝑋), … , 𝒙(𝑡 − 1), 𝒙(𝑡), 𝒖(𝑡 − 𝑞𝑈), … , 𝒖(𝑡 − 1), 𝒖(𝑡), 𝑡)

𝒚(𝑡) = 𝒈(𝒙(𝑡 − 𝑞𝑋), … , 𝒙(𝑡 − 1), 𝒙(𝑡), 𝒖(𝑡 − 𝑞𝑈), … , 𝒖(𝑡 − 1), 𝒖(𝑡), 𝑡)
 3.4) 

Here, 𝑞𝑋 is the number of past samples of the state variables, and 𝑞𝑈 is the number of past samples 

of the input variables. Note that although in equation (3.4) we used the same symbols as in equation 

(3.3), the symbols denote different state update and output functions. The total number of scalar 

arguments of the two functions is 𝑛(𝑞𝑋 + 1) +  𝑚(𝑞𝑈 + 1) + 1, including the time dependence. 

It is easy to show by introducing the extended state vector 𝝃(𝑡), 

 𝝃(𝑡) = [𝒙(𝑡 − 𝑞𝑋); … ;  𝒙(𝑡 − 1);  𝒙(𝑡); 𝒖(𝑡 − 𝑞𝑈);  … ;  𝒖(𝑡 − 1)] 3.5) 

that the modification does not change the structure of the formulation, as (3.4)) can be cast in the 

same form as equation (3.5), 

 
{
𝝃(𝑡 + 1) = 𝝋(𝝃(𝑡), 𝒖(𝑡), 𝑡)

𝒚(𝑡) = 𝜸(𝝃(𝑡), 𝒖(𝑡), 𝑡)
 3.6) 
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where 𝝋: ℝ𝑛(𝑞𝑋+1)+𝑚𝑞𝑈 × ℝ𝑚 × ℝ → ℝ𝑛(𝑞𝑋+1)+𝑚𝑞𝑈 is the new (extended-)state update function 

and 𝜸: ℝ𝑛(𝑞𝑋+1)+𝑚𝑞𝑈 × ℝ𝑚 × ℝ → ℝ𝑝 is the new output function. 

A diagram representing the relationship between extended state 𝝃(𝑡), state at the next moment 

𝒙(𝑡 + 1) and input 𝒖(𝑡) is given in Figure 3-5, using two vector delay lines (VDL), one related to 

the state variables and the other to the input variables. The two VDLs consist of several vectorial 

one-step delay blocks (denoted by 𝑧−1). As represented in Figure 3-6, a vector delay block is 

composed of various scalar one-step delay elements (also denoted by 𝑧−1). 

 

Figure 3-5. Graphical representation of the construction of the extended state ξ(t) carried out by the VDL block. 

 

Figure 3-6. Illustration of the vector representation in the case of the delay block. 

 

Decimation, or down-sampling, is the process of reducing a signal sample rate. Decimation 

decreases the sampling rate of the inputs by an integer factor by periodically selecting one sample 

out of N samples. To ease the system identification with neural networks, we consider a different 
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structural feature regarding the reduction of the extended states. The reasons for introducing this 

feature in the model are outlined below. In certain conditions, it may be helpful or even necessary 

to use relatively high values of the parameters 𝑞𝑋 and 𝑞𝑈 in order to capture "ancient" samples 

(like those of 24 hours before). However, the fact that very old samples are needed does not mean 

that feeding the ANN element with the entire record of past samples (including the present) is the 

most appropriate choice. To provide the ANN element with a reduced number of samples, we 

introduce the selector 𝚷: ℝ𝑛(𝑞𝑋+1)+𝑚𝑞𝑈 → ℝ𝑛𝑓, allowing, in general, to select a subset of extended 

states to become features to be fed to the ANN core. 

In this way, 𝒇̃ and 𝒈̃, the final state update and output functions are obtained. We remark that 

reducing the number of inputs to an ANN can reduce the network's complexity and consequently 

increase both the learning speed and the evaluation speed, especially in the case of shallow 

networks. In theoretical developments, 𝚷 can be assumed to be a full-rank matrix with 𝑛𝑓: ℕ rows 

and 𝑛(𝑞𝑋 + 1) + 𝑚𝑞𝑈 columns, consisting of only numbers one and zero and having precisely 

one number 1 per row. The reduced (extended-)state 𝚷𝝃(𝑡) and the current input 𝒖(𝑡) concur to 

form the set of features fed to the neural network, which aims to produce certain output targets. 

Briefly, the structure of the model is written like equation (3.7). 

 
{
𝒙(𝑡 + 1) = 𝒇̃(𝚷𝝃(𝑡), 𝒖(𝑡), 𝑡)

𝒚(𝑡) = 𝒈̃(𝚷𝝃(𝑡), 𝒖(𝑡), 𝑡)
 3.7) 

This description using mathematical symbols can be illustrated in Figure 3-7. Figure 3-7 highlights 

the fundamental structural elements of the functional block called ANNModel: the double VDL, 

the selector of the extended-state 𝚷, the ANN block and the feedback loop (𝒙(𝑡 + 1)). Both the 

load model and the zone temperature model are instances of this ANN-model functional block. 

The load model has no state variables (𝒙(𝑡) is empty, 𝑛 = 0) while the zone temperature model 

has no outputs apart from its state variable (𝒚(𝑡) is empty, 𝑝 = 0). Both models however have an 

extended state because both make use of past inputs. Although the model allows for a flexible 

method to reduce the extended state to create the features, in this works we used only the 

decimation approach. 
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Figure 3-7. Graphical representation of a functional block (FB) implemented by the neural network. 

3.1.7 Length of the dataset for training and validating  

The datasets for training, validating, and testing the proposed ANN model were generated from 

yearly simulations of the TRNSYS model. These datasets are referred to as TRNSYS datasets. In 

the deployable implementation, as it is not possible to embed meaningful data for training and 

validating before the installation of the system, the model requires some time to gather 

experimental data before it can begin training and making predictions. The size of the dataset is of 

paramount importance, as having the right amount of data can reduce computational time, while 

not having enough data can result in the model not achieving acceptable performance. Empirical 

processes and experiments are a way of answering the question of how much data is needed for a 

well-performing model, as the answer depends on the type of problem. Therefore, based on the 

TRNSYS dataset, the size of the data required for the model to be well-trained and proficient was 

investigated. It was discovered that the learning of the model is significantly impacted by days 

with frequent zero thermal loads. Consequently, it would be better not to use zero days for training. 

The size of the training dataset was also explored. As previously stated, a model that can be trained 

effectively with less data has a competitive advantage. The results of several experiments showed 

that on a 5-minute time step model, 14 days of recorded data are sufficient to achieve acceptable 

performance. Utmost care has been taken to ensure that new data is consistently included in the 

training dataset while the oldest samples are left for validation. This approach allows for a more 

accurate and up-to-date model. Additionally, it is important to note that the size of the dataset may 

vary depending on the complexity of the problem and the type of model used. Thus, it is important 

to experiment and evaluate the performance of the model with different dataset sizes to find the 

optimal size for the specific problem. 
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3.1.8 Learning through weight adjustments 

Proper weight initialization is a crucial step in developing a neural network model. The 

optimization approach used in neural network modeling, stochastic gradient descent, gradually 

alters network weights to minimize a loss function, ultimately resulting in a set of weights that can 

generate accurate predictions. However, this optimization process needs a starting point, which is 

where weight initialization comes into play. Weight initialization is the process of assigning initial 

values to the weights of a neural network, often small random values. This serves as the starting 

point for the optimization process [121]. Choosing the appropriate weight initialization strategy is 

essential for the network to converge and reach a global minimum of the loss function. For 

example, it has been shown that using appropriate weight initialization techniques such as Xavier 

initialization [122] or He initialization [123] can lead to faster convergence and better performance 

of the model. The correct weight initialization can help to overcome local optima and help the 

model to converge faster. Therefore, weight initialization is a crucial step in developing a neural 

network model, and it should be carefully considered in the model design process. 

In this study, the proposed model is designed in a way to be retrained every 24 hours and make 

predictions hourly over a horizon of 24 hours. This process is repeated daily, for example, at 

midnight. Each training starts with an initial set of weights. The weights can be set at random or 

with the previous best gains. Starting from the steps of the previous weight rather than starting at 

random can improve convergence speed. It might be interesting in the future to combine the two 

options, allowing for "blur" only a portion of your previous gains. In addition to that, the applied 

weights for the next 24 hours after the retraining are a convex combination of the most recent 

optimal gains and the previous optimal gains. Equation (3.8) shows precisely how the weights are 

manipulated. The factor 𝛿 is a floating number in the [0,1] range. One entirely discards the previous 

weights, whereas zero dismisses the new ones (rendering the model totally non-adaptive). Figure 

3-8 represents the structure of weight initialization and weight selection in the proposed ANN 

model. Also, the role of a switch is formulated in equation (3.9). 

 𝑊́𝑖 = (1 − 𝛿)𝑊𝑖−1  + 𝛿𝑊𝑖           𝛿 ∈  [0, 1]   3.8) 

 
 {

 𝛿 = 1,      𝑠 = 0
𝛿 ∈  [0, 1], 𝑠 = 1

 
3.9) 
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Figure 3-8. The structure of the proposed idea regarding weights in ANN 

3.1.9 Resetting state 

In this study, the proposed ANN model was designed to predict thermal load and indoor 

temperature for the following 24 hours. Typically, models can predict the first few hours with high 

accuracy, but their accuracy decreases over time, leading to diverging predictions. However, since 

in real-world scenarios, continuous access to sensor data is available, the proposed model is able 

to update its predictions more frequently, every hour. This is achieved by updating the internal 

state of the model with the most recent information and then running a 24-hour simulation. It is 

important to note that the process of training the model and making predictions are distinct. The 

model is trained every day at midnight, using the most recent data available. After the training 

process is complete, the trained model is used to make predictions every hour for the next 24 hours.  
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3.1.10  Key performance indicators (KPIs) 

To evaluate the accuracy of the proposed model, several key performance indicators (KPIs) were 

used. One of the most widely used error metrics in the regression problem is the mean square error 

(MSE). MSE measures the average squared discrepancies between a dataset's predicted and actual 

target values. Root Mean Square Error (RMSE) is an extension of the mean squared error [124], 

and it is a commonly used measure of the difference between values predicted by a model or an 

estimator and the true values. An important feature of RMSE is that the units of the RMSE are the 

same as the original units of the target value that is being predicted. Another commonly used metric 

is mean bias error (MBE). MBE is a measure of the long-term performance of a model, as it 

indicates the average difference between the predicted and actual values. A positive number 

indicates that the estimated values are typically overestimated and vice versa [125]. To make the 

MBE findings comparable, the normalized mean bias error (NMBE) index is used, which 

normalizes the MBE index by dividing it by the mean of the measured values [126]. This allows 

for a more accurate comparison of the performance of the model across different datasets and 

scenarios. 

 
𝑀𝑆𝐸 =  

∑ (𝑦̂𝑖 − 𝑦𝑖)2𝑁
𝑖=1

𝑁
 3.10) 

 𝑅𝑀𝑆𝐸 =  √𝑀𝑆𝐸 3.11) 

 
𝑀𝐵𝐸 =  

∑ (𝑦̂𝑖 − 𝑦𝑖)𝑁
𝑖=1

𝑁
 3.12) 

 
𝑁𝑀𝐵𝐸 =  

∑ (𝑦̂𝑖 − 𝑦𝑖)
𝑁
𝑖=1

(𝑁 − 1)𝑦̅
× 100  3.13) 

In equations (3.10) to (3.13), N is the number of samples, 𝑦̂𝑖 is the predicted value, 𝑦𝑖 is the actual 

value and 𝑦̅ is the average of actual values. 

3.1.11  Method assessment  

This section presents the simulation results that evaluate the effectiveness of the suggested model 

for thermal load prediction. The proposed ANN model was implemented in Python on a laptop 

with an i7 2.3 GHz CPU and 32 GB memory. It is a versatile model capable of predicting the 

thermal load of a building zone, such as an apartment, throughout the year. Regardless of the 

building's size and location, the model requires two weeks of performance data to be collected. 

Since it is a black-box model, it does not have pre-existing data in its repository, highlighting the 



67 
 

importance of data collection as a crucial step. Once the data is gathered, the model can generate 

predictions for control purposes. It produces hourly predictions and self-trains every 24 hours, 

replacing old data with newly recorded data. The training and validation period for the model spans 

two weeks. In the prediction model, for each time step, the model examines the data from the past 

6 hours and generates a prediction. 

Figure 3-9 provides a detailed illustration of the model performance during the winter season. In 

the beginning, the model is trained on data spanning from the 17th to the 30th of November. It was 

deployed for prediction for the next seven days. During the winter, the thermostat hysteresis is set 

between 20.75 and 21.25 ℃. The figure is divided into three sections. The initial section gives a 

summary of the ambient temperature (𝑇𝑎) and the relative global horizontal irradiance (𝜙𝑠). In the 

following section, the temperature of the zone is presented, showcasing both the actual values and 

the model's predicted values. The actual temperature is represented by a black line, while the 

model's hourly predictions are distinguished using various colors. Lastly, the third section displays 

the thermal load of the living room, depicting both the ground truth and the predicted values in a 

similar format. 

 

Figure 3-9. Living room's temperature and thermal load prediction for the first week of December 

 

Figure 3-10 (a) and (b) show the RMSE and MBE, which are used to assess the accuracy of the 

zone-temperature ANN model. Typically, KPIs are calculated in the literature based on the 
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prediction horizon, which means that if the prediction horizon is 24 hours, all points of ground 

truth and forecast are considered, and the relative KPI is generated. As previously stated, models 

can generally accurately anticipate the first several hours. Nonetheless, their accuracy go down 

over time, making it critical to know the accuracy at various intervals. To that purpose, computed 

KPI (CKPI) was established to calculate error hourly and over 3, 6, 12, and 24 hours. Figure 3-10 

(a) depicts the RMSE for temperature in different CKPIs where the mean of all errors is around 

0.3 ℃. As can be seen, when the CKPI is computed at a 24-hour interval, the error range is narrow, 

but when the CKPI is computed at a 1-hour interval, the error range widens. Figure 3-10 (b) shows 

the range of the temperature bias error. Like RMSE, the error distribution varies depending on the 

data aggregation; for a 24-hour period, the error range is lower than for a shorter period. The mean 

of MBE for all CKPIs is 0.18 ℃. To enhance the clarity of the data visualization, outliers have 

been deleted from all the box plots. This was done to provide a clearer view of the box and improve 

the overall visual representation of the data. 

 
(a) 

 
(b) 

Figure 3-10. RMSE (a) and MBE (b) for temperature in the winter 
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Figure 3-11 (a) and (b) show the RMSE and MBE of the thermal load model. The average of 

RMSE and MBE is about 12 and -2.4 𝑊/𝑚2, respectively. 

 
(a) 

 
(b) 

Figure 3-11. RMSE (a) and MSE (b) of thermal load in the winter 

The NMBE of the thermal load is shown in Figure 3-12. According to Eq. (3.13) we are dealing 

with 𝑦̅ in the denominator and as it observed from Figure 3-12 in some intervals 𝑦̅ is zero. While 

the amount of CKPI is less than 6, 𝑦̅ sometimes will be zero, resulting in the amount of error being 

infinite. To address this problem, the mean period (MP) is introduced, which considers the average 

of the next 6, 12, and 24 hours. The range of the NMBE will be reduced concurrent with increasing 

CKPI. 
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Figure 3-12. NMBE for thermal load 

Figure 3-13 represents the results of the model during summer. The model has been trained by 

data from the 17th of June to the 30th of June and started predicting the 1st to the 7th of July. 

During the summer, the thermostat hysteresis is set between 24.5 and 25.5 ℃. The cooling load is 

considered here as a negative value.  

 

Figure 3-13. Living room's temperature and thermal load prediction for the first week of July 
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Figure 3-14 (a) shows the RMSE of the temperature model in summer. In all CKPIs, the average 

and median of RMSE is less than 1℃. Also, as presented in Figure 3-14 (b), the average MBE in 

summer is around 0.2  ℃. 

 
(a) 

 
(b) 

Figure 3-14. RMSE (a) and MBE (b) for temperature in the summer 
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(a) 

 

 
(b) 

Figure 3-15. RMSE (a) and MBE (b) for thermal load in the summer 

In Figure 3-15 (a) and (b), the average of RMSE and MBE for thermal load is about 10 and -0.6 

𝑊/𝑚2, respectively. Based on Figure 3-12, same as winter, the average of ground truth in some 

intervals is zero, which can result in a high amount of NMBE. Especially once MP is 6, since the 

value of 𝑦̅ is close to zero, as it observed from Figure 3-16 in some period of time (between 5th to 

7th of July), the range of error increased substantially.  
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Figure 3-16. NMBE for thermal load 

In the proposed model, training load-ANN and zone temperature models are trained sequentially, 

with the training load model being trained first and then the zone temperature model being trained 

on the output of the load model. In this regard, the total training time for both models are presented 

in Table 3-1. The total training time for both models is between 1.3 to 2.9 minutes, which is 

reasonable for a model that provides hourly predictions for an entire year. The training time is 

shorter during the summer season, which can be attributed to the lower thermal load and the 

relatively stable weather conditions during this period.  

Also, As the results are presented for a one-week period, and one prediction is made every hour, 

it is not feasible to present all the simulation times. However, the model's minimum and maximum 

simulation times were 4.1 and 8.6 seconds, respectively. 

Table 3-1. Time of training for winter and summer [minutes] 

Days 1st day 2nd day 3rd day 4th day 5th day 6th day 7th day 

Winter 2.9 2.7 1.5 1.3 2.4 2.6 1.6 

Summer 2.7 1.4 2.1 1.4 1.3 1.8 1.8 

To optimize training time, one can enhance the computational power of the training system or 

employ parallel processing methods. The duration required to train a machine learning model 

depends significantly on the specifications of the computer system utilized. In general, a more 

robust system yields faster training times. For instance, a high-end graphics processing unit (GPU) 

can significantly expedite the training process by leveraging parallel processing techniques. 



74 
 

Similarly, a system equipped with ample random-access memory (RAM) can reduce data loading 

time during training. Consequently, the reported training times were influenced by the specific 

system specifications employed, and using a different system with distinct specifications may lead 

to varying training times. 

3.1.11.1 Weight Initialization: Classic Approaches vs. Proposed Method 

The Keras library offers various pre-existing methods for weight initialization. However, based on 

the observations, the commonly used methods in the Keras library did not consistently yield 

optimal results for this specific use case. Consequently, we developed a novel initialization method 

that demonstrated improved outcomes and faster convergence compared to the conventional 

approaches. Notably, this method enables the partial retention of previous gains, which is 

advantageous when the physical system undergoes structural changes. Furthermore, the proposed 

method includes a switch that allows users to either discard previous weights entirely or render the 

model non-adaptive, enhancing flexibility in model development. For comparison, the results 

presented in Figure 3-17 were obtained using Glorot uniform (GU) initialization for winter. It is 

evident from the results that GU initialization has led to chaotic predictions and produced 

unsatisfactory results. This chaos is particularly noticeable in the temperature section, which is 

concerning as temperature prediction is used as an input for load modeling and can significantly 

affect thermal load prediction.  

 

Figure 3-17. Living room temperature and thermal load prediction for the first week of December. Weight initialization: Glorot 
uniform 
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To compare the performance of the proposed weight initialization method with the GU 

initialization, we considered only RMSE as a quantitative measure. Figure 3-18 (a) shows the 

RMSE of thermal load prediction in winter with GU initialization, which is the same as the graph 

in Figure 3-11 (a) for the proposed initialization method. Interestingly, both the mean and range 

of RMSE values in Figure 3-18 (a) are higher than those in Figure 3-11 (a). Moreover, Figure 3-18 

(b) shows the RMSE of living room temperature prediction with GU initialization, while Figure 

3-11 (a) presents the RMSE for the proposed initialization method. Again, we observe that the 

mean RMSE is higher, and the error range has increased when using GU initialization.  

 
(a) 

 

 
(b) 

Figure 3-18. RMSE of thermal load (a) and temperature (b). Weight initialization: Glorot uniform 

 

Research findings indicate that utilizing the GU initialization method results in both an increased 

average error and a broader range of errors compared to the proposed initialization method.  
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The strong performance of the proposed initialization method and the satisfactory outcomes it 

produced for model control suggest that it can be effectively used in practical applications.  

Table 3-2. Comparison of training time for proposed and GU initialization methods for winter [minutes] 

Days 1st  

day 

2nd  

day 

3rd 

day 

4th  

day 

5th  

day 

6th  

day 

7th  

day 

Proposed weight initialization 2.9 2.7 1.5 1.3 2.4 2.6 1.6 

GU initialization 2.6 7 3 1.5 1.2 1.2 1 

 

Table 3-2 provides a comparison of the training times for the two initialization methods over a 

period of seven days. The minimum and maximum times for the proposed method are 1.3 and 2.9 

minutes, respectively, while for the GU initialization method, they are 1 and 7 minutes, 

respectively. The proposed method generally shows more consistent and faster training times than 

the GU initialization method.  

While other initialization methods might yield better results with further investigation and 

experimentation, the current focus was on developing an effective initialization method 

specifically for this project, rather than exhaustively comparing all possible methods. Thus, 

proposed method is well-suited for the purpose of this project, and it is believed to be a valuable 

contribution to the field. 

3.1.12  Discussion 

The major findings of this work highlight several advantages of the proposed ANN model 

compared to previous studies and existing methods. These advantages can be summarized as 

follows: 

1. Versatility and Adaptability: Unlike conventional approaches that rely on specific 

assumptions about building characteristics or location, the proposed model adopts a black-

box data-driven approach, making it highly versatile and adaptable to different building 

types and sizes. It learns underlying patterns and relationships by collecting data from the 

building's performance over time, without explicitly requiring detailed information about 

the specific characteristics of each building. 

2. Practicality and Cost-effectiveness: proposed model utilizes simple and commonly 

available inputs, such as outdoor temperature, global horizontal irradiation, zone 

temperature, internal gain, day of the week, and time. By focusing on easily accessible 

inputs, it can be applied to a wide range of buildings without requiring complex or 
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specialized data collection. This practical and cost-effective solution sets it apart from other 

methods that may require extensive building-specific information. 

In comparing proposed approach to previous studies, this model offers notable advantages. It is 

designed to be adaptive and continually trained with newly available data, enabling it to improve 

its forecasts over time and accommodate changes in building characteristics and behavior. 

Furthermore, this model achieves accurate predictions with minimal data by employing a simple 

MLP architecture with advanced techniques like specific internal state reset and specialized weight 

initialization functions. This simplicity not only allows for efficient implementation across various 

building types but also showcases the effectiveness and potential of proposed method in achieving 

superior outcomes. 

While acknowledging that each building may possess unique characteristics, this approach 

provides a practical and cost-effective solution for accurate thermal load predictions. The model's 

adaptability, simplicity, and the use of common inputs make it suitable for general applications 

across a wide range of building types and characteristics. 

However, it is important to address potential limitations and conflicting results. Further 

investigation is warranted to assess the model's performance in specific scenarios with unusual 

building characteristics or extreme climatic conditions. Additionally, future studies could explore 

potential refinements to enhance the model's robustness and accuracy. 

In summary, this work advances the field by offering a versatile, practical, and cost-effective ANN 

model that surpasses previous approaches.  It demonstrates the advantages of adaptability, 

simplicity, and accuracy while acknowledging the need for continued research to address potential 

limitations and explore further refinements. 
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3.2 Thermal energy storage model 

Thermal Energy Storage (TES) is a game-changing tech that stores heat or cold, like how batteries 

store electricity. It captures excess heat for later use, boosting energy efficiency and system 

reliability. TES taps into renewable sources and industrial processes, preventing energy waste and 

reducing grid stress during peak demand. This tech cuts costs by using cheaper energy when 

available and cutting emissions.  

A prevalent form is sensible heat storage, well-suited for buildings due to its cost-effectiveness 

and absence of risks associated with toxic materials. Sensible heat storage harnesses the heat 

capacity and temperature variation of the storage medium during the charging and discharging 

phases. The quantity of stored heat relies on the medium's specific heat, temperature shift, and the 

volume of storage material [127]. Equation (3.14) accurately depicts this relationship. 

 
𝑄𝑠 =  ∫ 𝑚𝐶𝑝𝑑𝑇 =  ∫ 𝜌𝑉𝐶𝑝

𝑇𝑒𝑛𝑑

𝑇𝑠𝑡𝑎𝑟𝑡

𝑑𝑇
𝑇𝑒𝑛𝑑

𝑇𝑠𝑡𝑎𝑟𝑡

 3.14) 

where: 𝑄𝑠 is the quantity of heat stored, in 𝐽; 𝑚 is the mass of heat storage medium, in kg; 𝐶𝑝 is 

the specific heat, in 𝐽/(𝑘𝑔. ℃); 𝑇𝑠𝑡𝑎𝑟𝑡 is the initial temperature, in ℃; 𝑇𝑒𝑛𝑑 is the final temperature, 

in ℃; 𝜌 is the density in 𝑘𝑔/𝑚3 and 𝑉 stands for volume in 𝑚3. 

The thermal storage capabilities of various solid-liquid materials are highlighted, and it becomes 

evident that water is favored as the preferable choice for efficient storage of sensible heat. This 

preference can be attributed to its cost-effectiveness and notably high capacity to hold heat. A 

simplified diagram of a hot water tank has been crafted to depict the tank's operation during both 

charging and discharging phases. Figure 3-19 illustration showcases how the tank functions in 

these two operational modes. The subscripts "in," "out," "d," and "c" denote the terms "inlet," 

"outlet," "discharge," and "charge," respectively. 
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ṁout,d  

Tout,d  
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Figure 3-19. Simplified diagram of TES 

However, situations where temperatures go beyond 100°C require the use of oils, molten salts, 

liquid metals, and similar materials [128]. The method of using hot water tanks to store thermal 

energy is well-known. They are utilized to save energy in water heating systems that depend on 

solar energy or HPs. When combined with heat pumps, TES increases effectiveness by reusing 

stored warmth. The efficiency of this combination is further improved by sophisticated controllers, 

such as MPC, which optimize energy consumption for both comfort and environmental well-being.  

As previously mentioned, MPC is a method of control that relies on having a model capable of 

predicting future outcomes. This model helps the controller make decisions about how to control 

something to get the best results. So, having a good model that can predict accurately how a system 

will react to different controls is important for MPC to work well. Therefore, it's clear that making 

model for TES system when using MPC is necessary.  

While ANN hold potential for this task (same as thermal load model), their utilization can be 

accompanied by notable challenges. One significant hurdle involves the process of hyperparameter 

tuning. ANNs contain various settings that dictate their performance, and determining the ideal 

combination of these parameters can be a complex and time-consuming task [129]. What proves 

effective for one dataset might not yield satisfactory results for another, requiring meticulous 

experimentation and fine-tuning to attain optimal performance. Moreover, the efficacy of ANNs 

often hinges on the availability of substantial amounts of training data. The process of training 

neural networks requires a diverse and representative dataset to ensure accurate predictions. 

However, in scenarios where data collection is limited, sparse, or resource-intensive, this 

requirement can present a substantial obstacle. Gathering the requisite volume of data might be 
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impractical or time-consuming, potentially impeding the effective utilization of ANNs for 

predictive modeling in MPC. To address these challenges, an alternative approach that holds 

promise is mathematical modeling. Mathematical modeling is the craft of creating a set of 

equations. These equations should be intricate enough to mirror the real world and yet 

straightforward enough to offer understanding into the situation [130]. 

Mathematical models offer a distinct set of advantages that directly address the concerns associated 

with ANN-based modeling. These models provide transparency and interpretability, allowing for 

a clear understanding of the relationships between input variables and system behavior. 

Additionally, they often do not demand an extensive dataset for effective implementation, making 

them well-suited for cases where data availability is a constraint. Furthermore, mathematical 

models inherently offer a level of control and flexibility that can prove invaluable in the context 

of MPC. These models can explicitly incorporate underlying physical principles and constraints, 

enabling a more intuitive integration of control objectives. Importantly, they can lead to faster 

computations compared to the iterative training and optimization processes characteristic of 

ANNs, an attribute that aligns well with the real-time demands of predictive control strategies. In 

conclusion, while ANNs hold promise for predictive modeling in MPC, challenges related to 

hyperparameter tuning and data requirements can hinder their efficacy, particularly in scenarios 

where time and data availability are limited. Mathematical modeling emerges as an attractive 

alternative, offering transparency, efficiency, and accuracy. By capitalizing on the strengths of 

mathematical models, practitioners can achieve reliable predictions and well-informed decision-

making, ultimately enhancing the effectiveness of control strategies in dynamic systems. 

3.2.1 Mathematical model of thermocline TES 

Water becomes less dense when it gets heated. This makes the warmer water stay at the top of the 

tank. So, there's a layer of hot water at the tank's upper part. At the same time, because cold water 

is denser than hot water, it goes down to the tank's bottom, forming a cold region. The difference 

in temperature between the cold and hot water in the tank creates something called a 'thermocline' 

layer. This thermocline layer acts like a kind of wall, stopping the hot and cold water from mixing 

together. Inside this thermocline, the temperature changes quickly, and that makes a sharp change 

in temperature. This sharp change helps heat move faster from the hot layer to the cold layer, which 

makes the energy storage tank work better. When the thermocline is thinner, the difference 

between the cold and warm parts is even bigger.  
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In this thesis, a TES system with three distinct layers has been considered. These layers consist of 

the upper layer and the lower layer and thermocline layer. The location of the thermocline adjusts 

depending on whether the system is undergoing charging or discharging processes. As a result of 

these shifts, the volumes of the upper- and lower-layers experience modifications. To visualize 

this setup, refer to Figure 3-20, which illustrates the proposed model's schematic configuration. 

This model serves to explain how the proposed TES functions, depicting the relationship of the 

thermocline, the upper layer, and the lower layer during different operational phases. 

Top layer

Bottom layer

Thermocline

 

Figure 3-20. Stratification of the proposed model 

The temperature distribution across the tank is visually represented in Figure 3-21. A linear 

temperature distribution is assumed within the thermocline. 𝑇𝑚𝑎𝑥 is allocated as the highest 

temperature present within the tank, while 𝑇𝑚𝑖𝑛 signifies the lowest temperature within the tank. 

 

Figure 3-21. Distribution temperature in the tank 
The calculation of a weighted average temperature for the upper and lower portions can be 

achieved based on 𝑇𝑚𝑎𝑥, 𝑇𝑚𝑖𝑛, the thermocline width, and the heights of the top and bottom layers. 

A more detailed depiction of the tank's arrangement is presented in Figure 3-22. 

 
Figure 3-22. Stratification of the proposed model with more details 

 

𝑊 is the width of thermocline. ℎ𝑡𝑜𝑝 represents the height of the upper layer, measured from the 

tank's top to the middle of the thermocline's width. ℎ𝑏𝑜𝑡 signifies the height of the lower layer, 

extending from the tank's bottom to the middle of 𝑊. 𝐻 is the general height of the tank. The 
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parameters ℎ1and ℎ2 indicate the positions of the upper and lower edges of the thermocline, which 

vary along the height of the tank. ℎ1 can be mathematically represented as Eq. (3.15). 

 ℎ1𝑖
= ⋯ 3.15) 

The weighted average of the 𝑇𝑡𝑜𝑝 and 𝑇𝑏𝑜𝑡 can be shown in Eq. (3.16) and Eq. (3.17).  

 𝑇𝑡𝑜𝑝,𝑖 =  … 3.16) 

 𝑇𝑏𝑜𝑡,𝑖 =  … 3.17) 

To characterize the temperature distribution within the tank with precision, a set of equations is 

employed as Eq. (3.18). These equations define how the temperature (𝑇) varies at different heights 

(𝑧) within the tank. The function 𝑇(𝑧) is structured as a piecewise expression to accurately capture 

the variations. In the region between ℎ1 and ℎ2, 𝑇(𝑧) changes gradually from 𝑇𝑚𝑖𝑛 to 𝑇𝑚𝑎𝑥 as 𝑧 

varies. This transition corresponds to the thermocline, where a distinct change in temperature 

occurs. For heights beyond ℎ2, the temperature stabilizes at 𝑇𝑚𝑎𝑥 . For heights below ℎ1, the 

temperature stabilizes at 𝑇𝑚𝑖𝑛. This arrangement of equations provides a comprehensive 

representation of the temperature profile within the tank. 

 

𝑇(𝑧) = {

𝑇𝑚𝑖𝑛 𝑧 < ℎ1

… ℎ1 < 𝑧 < ℎ2

𝑇𝑚𝑎𝑥 𝑧 > ℎ2

 3.18) 

The energy balance equation is employed to depict the movement of energy within the hot water 

tank. Facilitates comprehension of how temperature alterations are influenced by the inflow and 

outflow of heat. Through the consideration of energy inputs and outputs, a deeper insight into the 

tank's thermal dynamics can be attained. The energy balance equation can be represented as Eq. 

(3.19). 

 𝜌𝐶𝑣𝐴 (… ) = ⋯ 3.19) 

The expanded form of this equation can be represented as (3.20). This extended version provides 

a more detailed account of the various factors involved in the energy balance within the tank. 

 𝜌𝐴𝐶𝑣(… ) = ⋯    
 

3.20) 

In equations (3.19) and (3.20), 𝜌 is density, 𝐴 shows area, 𝑚̇ represents the mass flow rate, 𝐶𝑝 

signifies the specific heat capacity, 𝑈𝐴 refers to the overall heat transfer coefficient, 𝑇𝑖𝑛 is the inlet 

temperature and 𝑇𝑜𝑢𝑡 is outlet temperature. 𝑇𝑎𝑚𝑏 represents the ambient temperature and ∆𝑡 is 

timestep. 
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3.2.1.1 Dynamic Stages of TES 

In the realm of mathematical modeling, the thermocline TES system that has been formulated 

features four marked stages (both in charge and discharge). These stages encapsulate the dynamic 

behaviors inherent in the TES system during both charging and discharging processes. Each stage 

is established by its distinct properties and equations, as dictated by the mathematical model. The 

focus is on understanding the intricate behaviors and reactions of the thermocline TES system as 

it progresses through these stages. The equation used in the modeling of TES varies slightly 

between the charging and discharging processes. Let's begin by discussing the charging process 

before addressing the discharge process. 

3.2.1.1.1      Charge mode 

3.2.1.1.1.1 Stage one: Expansion 

In the context of the mathematical modeling of thermocline TES during charging mode, consider 

a water tank initially possessing a uniform temperature. Upon commencement of the charging 

process, the gradual formation of a thermocline takes place. This thermocline emerges within the 

proximity of the water inlet. The progression of the thermocline’s formation will cease if either of 

the following two conditions is met: 

1) When the upper edge of the thermocline comes into contact with the top of the tank. 

2) When the width of the thermocline (𝑊) reaches the predetermined optimal width known 

as 𝑊𝑜𝑝𝑡. 

The process used to identify the 𝑊𝑜𝑝𝑡 can be characterized as an optimization procedure. It entailed 

systematically running the model with a range of 𝑊 values and concurrently evaluating the 

resulting RMSE for each setting. This iterative method facilitated the discovery of the optimal 𝑊 

value that minimizes the RMSE, effectively optimizing the performance of the model.  

In this phase, while the thermocline is in the process of formation and remains in a state of 

immobility, alterations will not occur in the values of ℎ𝑡𝑜𝑝, ℎ𝑏𝑜𝑡, ℎ1, and ℎ2. However, a dynamic 

evolution is observed in the parameter 𝑊 over time. The depiction of the thermocline formation 

(in charging) is presented in Figure 3-23.  In this illustration, it’s evident that the process 

commenced at 𝑡𝑠𝑡𝑎𝑟𝑡,𝑒𝑥 and concluded at 𝑡𝑠𝑡𝑎𝑟𝑡,𝑒𝑥 + 𝑛 + 𝑘 (to provide a clear example, we have 

taken into account a scenario where 𝑊 is equal to 𝑊𝑜𝑝𝑡). The “𝑒𝑥” notation is used to indicate the 

“expansion” phase.  
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Figure 3-23. Thermocline formation in charge mode 

 

For the purpose of determining the energy balance during this phase, the expression denoted as 

(3.20) can be formulated in the subsequent manner: 

 𝜌𝐴𝐶𝑣(… ) =  … 3.21) 

 

In Eq. (3.21), 𝑇𝑡𝑜𝑝,𝑖, 𝑇𝑏𝑜𝑡,𝑖 and 𝑇𝑜𝑢𝑡,𝑖 are unknown. Consequently, recourse can be taken to employ 

equations of weighted average temperature derived from the top and bottom layers as a means of 

resolving these indeterminate variables. 

 𝑇𝑡𝑜𝑝,𝑖 =  … 3.22) 

 𝑇𝑏𝑜𝑡,𝑖 =  … 3.23) 

 

Through the utilization of the weighted average temperature involving both the upper and lower 

layers, certain variables are indeed determined. However, several unknowns, notably 𝑇𝑚𝑎𝑥, 𝑇𝑚𝑖𝑛, 

and 𝑊, remain. This underscores the pivotal role of assumptions in shaping the dynamics of this 

modeling process. Assumptions wield significant influence in mitigating the complexities arising 

from unresolved variables, thereby aiding in generating a more comprehensible and manageable 

representation of the system under study.  

However, their effectiveness hinges on a crucial factor: these assumptions must align seamlessly 

with the realities of the system being studied. To put it simply, assumptions act as bridges between 

proposed model and the real world. These bridges are strongest when they're built on solid ground 

– the ground of reality. Assumptions are not just empty spaces; they function as essential 

components that make the model applicable and effective in real-world scenarios. While 

assumptions assist us in untangling puzzles involving things like unknown temperatures and width, 

they can't be disconnected from the real world. Assumptions are tools that help proposed model 

make sense of the reality, but they're effective only when they mirror how things truly operate. As 

mathematical modeling progresses, it is important that the assumptions made are in sync with the 

real world. In this way, the proposed model becomes a clearer reflection of reality, enabling a 

better understanding of and interaction with the sophisticated mechanisms that shape the 

surroundings. 
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An essential assumption arises from the equation (3.18). It implies that since the thermocline is 

positioned above the sensor out, we can consider 𝑇𝑚𝑖𝑛,𝑖 to be the same as 𝑇𝑆𝑒𝑛𝑠𝑜𝑟𝑂𝑢𝑡,𝑖−1. 

Simultaneously, we can assume that when thermocline is not reaching the sensor out yet, 𝑇𝑜𝑢𝑡,𝑖 

also can be equate to 𝑇𝑚𝑖𝑛,𝑖 which is equal to …. Therefore, these two assumptions can be 

represented as: 

 𝑇𝑚𝑖𝑛,𝑖 = ⋯ 3.24) 

 𝑇𝑜𝑢𝑡,𝑖 = ⋯ 3.25) 

The quest to unravel the unknown 𝑇𝑚𝑎𝑥,𝑖 still remains. To address this puzzle, a solution emerges 

in the form of calculating the weighted average of the water mass situated above the thermocline. 

The methodology involves formulating the temperature 𝑇𝑚𝑎𝑥,𝑖 as follows: it's determined by the 

weighted combination of two temperature components. The first component, 𝑇𝑖𝑛,𝑖 which is 

associated with the incoming water mass rate (represented by 𝑚̇), and it takes into account the 

change in time (𝛥𝑡). The second component, 𝑇𝑚𝑎𝑥,𝑖−1, corresponds to the preceding 𝑇𝑚𝑎𝑥 value, 

but it's influenced by the adjustment made with respect to the vertical distance ℎ𝑡𝑜𝑝_𝑒𝑥,𝑖−1 −
𝑊𝑖

2
 and 

the mass of water that is stored there. 

 𝑇𝑚𝑎𝑥,𝑖 = ⋯ 3.26) 

At this point in time, by employing all the equations (3.21), (3.22), (3.23), (3.24), (3.25) and (3.26), 

we have the capability to determine all the unknown values  which are 

𝑇𝑚𝑖𝑛,𝑖, 𝑇𝑚𝑎𝑥,𝑖 , 𝑇𝑡𝑜𝑝,𝑖 , 𝑇𝑏𝑜𝑡,𝑖 , 𝑇𝑜𝑢𝑡,𝑖 , 𝑊𝑖 .  

As discussed, the thermocline formation halts either when it reaches the top of the tank or when 

its width equals 𝑊𝑜𝑝𝑡. There are times when our calculations might place 𝑊 just a bit under 𝑊𝑜𝑝𝑡. 

Even though it's near, the following step could gently push it past the limit, which is 𝑊𝑜𝑝𝑡. It's 

same to finding balance on the edge of a line – a slight push can cause a shift. Similarly, even if 

the width of the thermocline is okay, we need to be cautious about where the top part is headed 

next. Sometimes, even if it's fine now, in the next step, it might go too high and violate the top of 

the tank, which wouldn't make sense. Hence, to monitor the forthcoming values of 𝑊 and the 

upper edge of the thermocline, consideration has been given to equation (3.27). 

 ∆𝑥𝑖 = ⋯ 

𝑥𝑖+1 = ⋯ 
3.27) 
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As a result, if using this equation indicates that the next step may exceed the bounds, it's time to 

commence movement rather than proceeding to the next iteration. 

3.2.1.1.1.2 Stage two: Movement 

After the completion of the thermocline's formation, that's when the movement of the thermocline 

begins in a downward direction. Therefore, alterations will occur in ℎ𝑡𝑜𝑝, ℎ𝑏𝑜𝑡 and the 

thermocline’s position. However, following the commencement of thermocline movement, the 

width of the thermocline will stay consistent. So, in contrast to equations (3.21), (3.22), (3.23), 

(3.24), (3.25) and (3.26) where ℎ𝑡𝑜𝑝 and ℎ𝑏𝑜𝑡 remained constant while 𝑊  changed, the situation 

changes here. At this point, ℎ𝑡𝑜𝑝 and ℎ𝑏𝑜𝑡 change while 𝑊 remains steady. This 𝑊 now matches 

the last value determined in the ‘expansion’ stage. Figure 3-24 illustrates the progression of 

thermocline movement in charge mode. 

 
Figure 3-24. Movement of thermocline in charging mode 

Therefore, equations (3.21), (3.22), (3.23) and (3.26) can be written as follows: 

 𝜌𝐴𝐶𝑣(… ) = 𝑚𝑖̇ 𝐶𝑝(𝑇𝑖𝑛,𝑖 − 𝑇𝑜𝑢𝑡,𝑖 ) … 
 

3.28) 

 𝑇𝑡𝑜𝑝,𝑖 = … 3.29) 

 𝑇𝑏𝑜𝑡,𝑖 =  … 3.30) 

 𝑇𝑚𝑎𝑥,𝑖 = ⋯ 3.31) 

Equations (3.24) and (3.25) will remain unchanged from their previous forms. Hence, by 

employing Equations (3.28), (3.29), (3.30), (3.31), (3.24) and (3.25), it becomes possible to 

compute the unknown variables existing at this point that are 

 𝑇𝑚𝑖𝑛,𝑖, 𝑇𝑚𝑎𝑥,𝑖, ℎ𝑡𝑜𝑝,𝑖, 𝑇𝑡𝑜𝑝,𝑖, 𝑇𝑏𝑜𝑡,𝑖, 𝑇𝑜𝑢𝑡,𝑖 . Upon comparing the equations utilized in both the 

'expansion' and 'movement' phases, the sole distinction pertains to the notation assigned to the 

variables. Here, the symbol "𝑚" is employed to denote the "movement" phase. 

It is intended to continue the movement until the lower edge of the thermocline encounters the 

sensor output, situated precisely at the outlet port. Upon contact, the subsequent stage will 

commence.  
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The position of the thermocline can be determined at this stage based on the movement of the 

thermocline. Also, since ℎ𝑡𝑜𝑝,𝑖 is calculated by the system of equations, ℎ𝑏𝑜𝑡,𝑖 can also be easily 

calculated. Equation (3.32) determined all these parameters. 

 ∆ℎ𝑖 = ⋯ 

ℎ1,𝑖 = ⋯ 

ℎ2,𝑖 = ⋯ 

ℎ𝑏𝑜𝑡,𝑖 = ⋯ 

3.32) 

The speed of the thermocline is represented by Equation (3.33). 

 𝑆𝑖 = ⋯ 3.33) 

The alteration of the thermocline's position causing variations in ℎ𝑡𝑜𝑝 and ℎ𝑏𝑜𝑡 results in 

modifications to the masses of both the upper and lower layers. The calculation of these changes 

is explained by Equation (3.34). 

 𝑚𝑡𝑜𝑝,𝑖 = ⋯ 

𝑚𝑏𝑜𝑡,𝑖 = ⋯ 
3.34) 

 

3.2.1.1.1.3 Stage three: Assumption revision 

When the lower edge of the thermocline reaches the outlet port, this signals the beginning of 

changes in 𝑇𝑜𝑢𝑡. Since 𝑇𝑚𝑖𝑛 represents the tank's minimum temperature, in that, it's essential to 

notice that 𝑇𝑚𝑖𝑛 cannot be equated with … anymore. Thus, Eq. (3.24) can be turned to Eq. (3.35). 

 𝑇𝑚𝑖𝑛,𝑖 = ⋯ 3.35) 

Apart from this alteration, none of the remaining equations will undergo modification and 

thermocline will persist in its motion until it reaches the tank's bottom. Consequently, just like in 

the 'movement' stage, all the unknowns will be computed. 

3.2.1.1.1.4 Stage four: Contraction 

After the lower part of the thermocline reaches the bottom of the tank, contraction phase will start. 

An innovative technique was employed to simulate the controlled contraction of the thermocline. 

To achieve this, a strategic decision was made to artificially prevent the lower edge of the 

thermocline from moving, while allowing the upper edge to undergo adjustments. By blocking the 

lower edge's movement, we essentially restricted the thermocline's shrinkage to upward direction 
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and thermocline will be contracted downwardly. Hence, in this phase, the unknown variables 

encompass 𝑇𝑚𝑖𝑛,𝑖, 𝑇𝑚𝑎𝑥,𝑖, ℎ𝑡𝑜𝑝,𝑖, 𝑇𝑡𝑜𝑝,𝑖, 𝑇𝑏𝑜𝑡,𝑖 , 𝑇𝑜𝑢𝑡,𝑖 , 𝑊𝑖 . 

 
Figure 3-25. Contraction stage in charging mode 

In the 'formation' stage, as evident from equations (3.22) and (3.23), ℎ𝑡𝑜𝑝,𝑖 and ℎ𝑏𝑜𝑡,𝑖 remained 

consistent while 𝑊𝑖 underwent variations. In contrast, in the ‘movement’ or ‘assumption revision’ 

stage, within the framework of equations (3.29) and (3.30), 𝑊𝑖 remained stable while ℎ𝑡𝑜𝑝,𝑖 and 

ℎ𝑏𝑜𝑡,𝑖 experienced changes. 

Transitioning to the 'contraction' stage, as demonstrated by Eq. (3.16), (3.17) and (3.36) all three 

parameters —ℎ𝑡𝑜𝑝,𝑖, ℎ𝑏𝑜𝑡,𝑖 and 𝑊𝑖— are subject to alterations, rendering them unknown variables. 

 𝑇𝑚𝑎𝑥,𝑖 = ⋯. 3.36) 

Given that we currently have 7 unknowns and only 6 equations available, we require an additional 

equation to facilitate the solution for these unknowns. In this stage, the width of the thermocline 

is calculated using the equation (3.37). 

 𝑊𝑖 = ⋯ 3.37) 

To clarify why the coefficient for (… ) was considered ., following description provides a deeper 

insight.  

The artificial constraint introduces a mathematical anomaly that must be addressed. When the 

upper edge moves by ∆ℎ𝑡𝑜𝑝 the actual middle position of the thermocline does not shift by the 

same unit due to the immobilization of the lower edge. This shift discrepancy results from the fact 

that any change in ℎ𝑡𝑜𝑝,𝑖 only affects half of the thermocline's effective height. To explicate, 

consider a scenario where ℎ𝑡𝑜𝑝,𝑖 experiences an increment of 1 cm. Given that the lower edge 

remains static, the 'center' or 'midpoint' of the thermocline shifts only by 0.5 cm. Such a differential 

behavior requires an adjustment in our mathematical representation to ensure that it mirrors the 

physical reality of the system.  

At this stage, ultimately, using equations (3.25), (3.28), (3.35), (3.16), (3.17), (3.36) and (3.37) we 

are able to calculate all the unknowns.  

An important point is that once the thermocline has completely passed through the outlet sensor, 

the simulation terminates, as there are no additional sensors for measurement beyond the outlet 

point.  
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3.2.1.1.2    Discharge mode 

3.2.1.1.2.1 Stage one: Expansion 

As the discharge process initiates, the gradual development of a thermocline occurs. This 

thermocline emerges close to the water inlet. The progression of the thermocline's formation ceases 

if either of the following two conditions is met: 

1) When the lower edge of the thermocline comes into contact with the bottom of the tank. 

2) When the width of the thermocline (𝑊) reaches the predetermined optimal width known 

as 𝑊𝑜𝑝𝑡. 

Same as charging mode, during this stage, as the thermocline forms and stays still, the values of 

ℎ𝑡𝑜𝑝,𝑖, ℎ𝑏𝑜𝑡,𝑖, ℎ1,𝑖 and ℎ2,𝑖 do not change. The parameter 𝑊𝑖 undergoes a changing process as time 

goes by. Figure 3-26 displays how the formation of the thermocline occurs during the discharge 

process. As it observed, the process commenced at 𝑡𝑠𝑡𝑎𝑟𝑡,𝑒𝑥 and concluded at 𝑡𝑠𝑡𝑎𝑟𝑡,𝑒𝑥 + 𝑛 + 𝑘 (to 

provide a clear example, we have taken into account a scenario where 𝑊𝑖 is equal to 𝑊𝑜𝑝𝑡). Same 

as charging mode, the "𝑒𝑥" notation is used to indicate the "expansion" phase.  

 
Figure 3-26. Thermocline formation in discharge mode 

 

In this stage, 𝑇𝑚𝑖𝑛,𝑖,𝑇𝑚𝑎𝑥,𝑖, 𝑇𝑡𝑜𝑝,𝑖,𝑇𝑏𝑜𝑡,𝑖 , 𝑇𝑜𝑢𝑡,𝑖 , 𝑊𝑖 are unknowns. What's interesting is that the 

equations used to figure out these unknowns are pretty much the same as what we used during the 

charging phase. Equation (3.21), (3.22), (3.23) and (3.25) are the same and remain unchanged. 

However, in the discharge phase, there's a switch in the roles of 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥. To put it simply, 

what we thought of as 𝑇𝑚𝑖𝑛 during charging becomes 𝑇𝑚𝑎𝑥 during discharge, and vice versa. 

Equation (3.38) and (3.39) representing these changes.  

 𝑇𝑚𝑎𝑥,𝑖 = ⋯ 3.38) 

 𝑇𝑚𝑖𝑛,𝑖 = ⋯ 3.39) 

At this point in time, by employing all the equations (3.21), (3.22), (3.23), (3.25), (3.38) and (3.39) 

we have the capability to determine all the unknown values. 

3.2.1.1.2.2  Stage two: movement 

Following the completion of thermocline formation during the discharging phase, the upward 

motion of the thermocline comes into play. Consequently, adjustments are made to ℎ𝑡𝑜𝑝,𝑖, 
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ℎ𝑏𝑜𝑡,𝑖 and the position of the thermocline. Same as charging process, once the thermocline's 

upward movement begins, the width of the thermocline remains constant. In this stage, 

𝑇𝑚𝑖𝑛,𝑖,𝑇𝑚𝑎𝑥,𝑖, ℎ𝑡𝑜𝑝,𝑖, 𝑇𝑡𝑜𝑝,𝑖,𝑇𝑏𝑜𝑡,𝑖 , 𝑇𝑜𝑢𝑡,𝑖 are unknowns that using equations (3.25), (3.28), (3.29), 

(3.30), (3.38) and (3.39) can be calculated. Figure 3-27 illustrates the progression of thermocline 

movement in discharge mode. 

 
Figure 3-27. Movement of thermocline in discharge mode 

 

Just like in the charging mode, after the thermocline forms, it begins to move. This movement 

carries on until the upper part of the thermocline reaches the sensor placed at the outlet port. 

Same as charge mode, height of bottom layer and the position of the thermocline, the speed of 

movement of the thermocline and the mass of each layer are calculated through the equation 

(3.32), (3.33) and (3.34).  

3.2.1.1.2.3 Stage three: Assumption revision 

When the highest point of the thermocline reaches the output port, the start of changes in 𝑇𝑜𝑢𝑡,𝑖  is 

indicated. Since 𝑇𝑚𝑎𝑥,𝑖  stands for the highest temperature of the tank, it's important to observe that 

𝑇𝑚𝑎𝑥,𝑖 can no longer be considered equal to 𝑇𝑆𝑒𝑛𝑠𝑜𝑟𝑂𝑢𝑡,𝑖−1 because it the time that output 

temperature start decreasing. Thus, Eq. (3.38) can be turned to Eq. (3.40). 

 𝑇𝑚𝑎𝑥,𝑖 = ⋯ 3.40) 

Apart from this adjustment, none of the other equations are changed, and the thermocline continues 

its movement until it reaches the upper part of the tank. Therefore, just like in the 'movement' stage 

in discharge, all the unknown values are calculated. 

3.2.1.1.2.4 Stage four: Contraction 

Similarly, during the 'contraction' phase in discharge mode, once the upper edge of the thermocline 

makes contact with the tank's ceiling, we deliberately halt the upward movement of the upper edge. 

This action initiates the process of compressing the thermocline. Figure 3-28 illustrates the process 

of contraction in discharge mode. 

 
Figure 3-28. Contraction stage in discharge mode 
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Unknown in this stage are 𝑇𝑚𝑖𝑛,𝑖, 𝑇𝑚𝑎𝑥,𝑖, ℎ𝑡𝑜𝑝,𝑖 , 𝑇𝑡𝑜𝑝,𝑖, 𝑇𝑏𝑜𝑡,𝑖, 𝑇𝑜𝑢𝑡,𝑖 , 𝑊𝑖  which can be calculated 

using equation (3.25), (3.28), (3.16), (3.17), (3.37), (3.39) and (3.40).  

Similar to the charging mode, once the thermocline has completely passed through the outlet 

sensor, the simulation terminates, as there are no additional sensors for measurement beyond the 

outlet point. 

3.2.2 Methodology validation 

3.2.2.1 Case study  

A study involving the analysis of a commercial hot water storage tank (KOOLTANK 2000, IMA 

s.r.l.) for a thermal energy storage case study has been conducted at Eurac Research's Energy 

Exchange Lab. This tank features four ports serving specific purposes:  

1. The top-left port is connected to the heat pump's outlet. 

2. The top-right port is linked to the load. 

3. The bottom-left port connects from the tank to the heat pump. 

4. The bottom-right port connects from the load to the tank. 

Figure 3-19 simply depicts how the tank operates in charge/ discharge mode. To monitor 

temperature variations within the tank, various sensors have been positioned at different heights. 

A LabVIEW-based control and data acquisition system, operating at a 2-second sampling rate, is 

installed in the Energy Exchange Lab. The platinum RTD thermometer has a maximum inaccuracy 

of ±0.24°C at 85°C. Measurement of volumetric flowrate is achieved through a magnetic flowrate 

sensor, accurate within ±0.008 m3/hr. Mass flowrates are calculated under the assumption of 

constant water density. Figure 3-29 provides an expansive view of the TES setup within the 

laboratory. 
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Figure 3-29. TES setup within the laboratory 

The tank present in the laboratory does not possess a perfectly cylindrical shape. Instead, its overall 

volume is composed of three distinct sections: two spherical caps situated at the tank's ends and a 

central cylindrical volume. Given the tank's non-perfect cylindrical shape, we intend to simplify 

our analysis by assuming the tank to be a pure cylinder. This assumption requires us to compute 

the equivalent heights at the two spherical caps, a critical step in our approach.  

The tank's configuration, as depicted in Figure 3-30 (a), is derived from the manufacturer's 

datasheet. In contrast, Figure 3-30 (b) displays the calculations we have performed to establish the 

tank's configuration under the assumption of a perfect cylinder. The values presented in the figures 

are expressed in millimeters. 
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(a) 

 

 

 

 

                           
 

 

 

 

 

                                                                                                                                                                                                                                                                                                                                   (b) 

Figure 3-30. (a) tank's configuration derived from the manufacturer's datasheet, (b) tank's configuration under the assumption of 

a perfect cylinder. 

Under the assumption of a perfect cylinder, the overall height of the idealized cylinder is fixed at 

177 cm. Consequent to this assumption, Table 3-3 details the placements of sensors and inlet/outlet 

ports in accordance with this established height. The measurements provided in the table are 

expressed in centimeters and are referenced from the base of the tank. 

Table 3-3. Vertical Positions within the Tank under the Assumption of a Perfect Cylinder (referenced from the base of the tank) 

 Position (cm) 

Inlet port 155 

Sensor top 134 

Sensor middle 87 

Sensor bottom 40 

Outlet port 22 

The remaining parameters regarding the tank are documented in Table 3-4. 
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Table 3-4. Characteristics of the hot water storage tank. 

Parameters Material Dimension (unit) 

Internal diameter - 120 cm 

External diameter - 140 cm 

Thermal conductivity of the tank material  Carbon steel 50 
𝑊

𝑚.𝐾
 

Thickness of insulation 1  Polyethylene 2 cm 

Thermal conductivity of insulation 1  Polyethylene 0.3 
𝑊

𝑚.𝐾
 

Thickness of insulation 2  Polyurethane foam 8 cm 

Thermal conductivity of insulation 2  Polyurethane foam 0.03 
𝑊

𝑚.𝐾
 

 

3.2.2.2      Result and discussion 

In the lab, tests were conducted on our hot water tank to study its performance during both charging 

and discharging phases. Various experiments were carried out with different mass flow rates, and 

temperature distributions were examined. During these tests, the tank was observed to be charged 

and discharged under controlled conditions. Different parameters were measured and recorded to 

better understand how the hot water tank behaves in various scenarios. The recorded data primarily 

consist of ambient temperature, water inlet/outlet temperature, and mass flow rate. After gathering 

all this information, our proposed TES model was evaluated.  

As a crucial point, the measurement of two specific points holds significant importance. Firstly, 

the sensor output is crucial because it directly influences the calculation of the Heat Pump's COP 

by providing the inlet temperature of the heat pump. Secondly, the sensor at the top of the tank is 

equally vital. The temperature recorded at the tank's uppermost part helps inform decisions 

regarding when to activate or deactivate the heat pump. As such, achieving accuracy in these 

specific measurement points is of utmost importance. 

3.2.2.2.1      Test one, charge mode 

This test was conducted in the charging mode, where the mass flow rate of water entering the tank 

was set at 0.28 kg/s. Initially, the tank had a consistent temperature of approximately 30 ℃, while 

the desired final temperature for the charging process was 40 ℃. To monitor this process, we 

employed various sensors, as indicated in Table 3-3, to measure the temperature of the water inside 
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the tank. In section 3.2.1.1, we talked about the four stages of our proposed model, and we used 

Figure 3-31 to show them, based on the test results. We used different colors to distinguish each 

stage and better understand how the thermocline's behavior changes during the charging process. 

In "Stage 1", the formation of the thermocline commences and continues until one of the end 

formation conditions is met. In this test, the formed 𝑊 at the end of formation stage was 38.5 cm. 

Subsequently, in "Stage 2," the thermocline begins to move smoothly. Upon reaching the output 

port, no changes occur in its speed, but this marks the commencement of "Stage 3," during which 

one of the assumptions undergoes modification (refer to section 3.2.1.1.1.3). "Contraction stage" 

initiates when the lower edge of the thermocline reaches the bottom of the tank. At this point, the 

width of the thermocline begins to decrease, as elegantly depicted in Figure 3-31 (b).  

 

Figure 3-31. Stages in our proposed model (based on the result of “Test-1”) 

 
Figure 3-32. Charge test. (a) Height changes in each layer (b) Mass changes in each layer in entire process of charging 

 

Figure 3-32 illustrates alterations in the height and, as a result, the mass of the layers. In “Stage 

1”, no changes occur because there is no movement in the thermocline. As the lower edge of the 

thermocline gets closer to the tank's bottom, the upper layer's height goes up, and the lower layer's 

height goes down. When contraction stage commences, the rate of height alterations decreases and 

approaches zero. 

Figure 3-33. Charge test. (a) temperature in the top and bottom layer, (b) monitored and simulated temperature of water along 

the tank 

As depicted in 

Figure 3-33 (a) when the charging process begins, the temperature in the top layer starts to rise. 

As time passes, the temperature of the bottom layer gradually rises. However, when the 

thermocline descends to the tank's bottom, the bottom layer becomes quite thin, and its temperature 

stays constant. In fact, once the thermocline reaches the tank's bottom, the bottom layer's height 
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(ℎ𝑏𝑜𝑡,𝑖) equals half of the thermocline's width. It's important to mention that the temperature shown 

here is the weighted average temperature calculated using equations (3.16) and (3.17).  

The temperature distribution along the tank is depicted in 

Figure 3-33 (b), with solid lines denoting the observed data and dashed lines indicating simulated 

data. Notably, our proposed model effectively reproduces the observed data. It's important to 

emphasize that our model assumes a linear temperature profile within the thermocline, resulting 

in a linear temperature increase, in contrast to the sigmoid-shaped pattern observed in the 

monitored data. The simulated temperature for the output sensor is not entirely linear; it exhibits a 

curved shape, particularly in the latter section. This curvature can be attributed to the "contraction" 

phase. To evaluate the model's accuracy, we utilized the RMSE. The RMSE values between the 

observed and simulated data at various sensor locations, including the top, middle, bottom, and 

outside sensors, are 0.5 °C, 0.44 °C, 0.34 °C, and 0.44 °C, respectively. The key consideration 

here is that the RMSE is computed for the whole of the charging process. 

 
Figure 3-34. Charge test. (a) Power gives to the tank, (b) The absolute difference between observed and modeled data. 

 

In Figure 3-34 (a), the power supplied to the tank is displayed in black based on the monitored 

data, while the power calculated from simulated data is shown in red. Additionally, Figure 3-34 

(b) presents the absolute difference between the monitored and simulated data. It is evident that 

our proposed model has satisfactorily captured the monitored data. Furthermore, it should be 

noted that the average of these discrepancies is less than one kW. 

3.2.2.2.2      Test two, charge mode 

The test was carried out in the charging mode, with the mass flow rate of water entering the tank 

being set to 0.14 kg/s. Initially, the tank was maintained at a stable temperature of around 30 ℃, 

while the target final temperature for the charging process was set at 70 ℃. 

 
Figure 3-35. Charge test. (a) Speed of thermocline, (b) Width of thermocline, (c) Height changes and (d) Mass balance 

 

In Figure 3-35 (a), the speed of thermocline movement is depicted. In Figure 3-35 (b), the 

formation of the thermocline is illustrated. The optimal 𝑊, as identified from the monitored data, 
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was 40 cm, whereas, according to our model, the formation of the thermocline ceased at 39.9 cm. 

Figure 3-35 (c) and (d) demonstrate alterations in the height and mass within each layer. 

 
Figure 3-36. Charge test. (a) temperature in the top and bottom layer, (b) monitored and simulated temperature of water along 
the tank 
 

In Figure 3-36 (a), the weighted average of the top and bottom layer temperatures is presented. 

Like test 1 (charge), when the thermocline reaches the bottom of the tank, the temperature of the 

bottom layer remains unchanged. Upon initial examination of Figure 3-36 (b), your attention is 

drawn to a delay in the proposed model. This delay arises from the extended time required for 

thermocline formation and a subsequent delay in thermocline movement. Consequently, it is 

observed that the simulated results exhibit a delay of approximately 20 minutes. Despite this delay 

contributing to an increased RMSE, it is essential to acknowledge that the model's consistency 

persists. RMSE values for the top, middle, bottom, and outer sensors stand at 3.1 °C, 3.38 °C, 3.04 

°C, and 2.77 °C, respectively.  

 
Figure 3-37. Charge test. (a) Power gives to the tank, (b) The absolute difference between observed and modeled data. 

 

Upon analyzing the power data in Figure 3-37 (a) and (b), it becomes evident that our proposed 

model exhibits consistency, as it successfully replicates the monitored data. The average 

discrepancy between the two sets of data is approximately 1.3 kW.  

Our model is employed as a critical component in the decision-making process of the MPC 

controller. Specifically, the optimal times for the activation of the HP are determined by the 

controller based on factors such as the load or State of Charge (SOC) of TES system. When the 

HP is activated, it becomes essential to predict the response of the TES system. 

Despite potential delays in temperature prediction, our model maintains consistency from an 

energy perspective. This means that reliable estimations of energy interactions within the system 

are provided, which are vital for the MPC controller to make informed decisions about when to 

activate the HP for the effective management and control of the thermal energy storage process. 

3.2.2.2.3      Test three, discharge mode 

The test was done in a way where water flowed into the tank at a rate of 0.28 kg/s. At first, the 

tank stayed at a steady 40 ℃ temperature, and the final goal temperature for the discharging 
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process was set to 30 ℃. As shown in Figure 3-19, during the discharge, the tank is filled with 

water from the bottom, and water exits from the top of the tank. During the discharge, a 

thermocline is formed in the area of inlet water port. Over time (as shown in Figure 3-27Figure 

3-29), it begins to move upward from the bottom of the tank until it reaches the top of the tank. 

The results of the test are depicted in Figure 3-38. Figure 3-38 (a) illustrates the speed at which 

the thermocline moves. By comparing the results of test 1 (3.2.2.2.1), it's evident that the speed of 

movement in both Test 1 (3.2.2.2.1) and present test is roughly the same because the mass flow 

rates in both tests are similar. 

 

Figure 3-38. Discharge test. (a) Speed of thermocline, (b) Width of thermocline, (c) Height changes and (d) Mass balance 
 

Based on monitored data, we determined that 𝑊𝑜𝑝𝑡  (optimal width) is equal to 10 cm. As shown 

in Figure 3-38 our proposed model also predicts that the width of the thermocline is 10 cm. Figure 

3-38 (c) and (d) also demonstrates how the height and mass in each layer change based on the 

movement of the thermocline. 

 

Figure 3-39. Discharge test. (a) temperature in the top and bottom layer, (b) monitored and simulated temperature of water 
along the tank 

Even though our model accurately identified the same value of 𝑊 as the monitored data, it exhibits 

a delay in its formation of approximately 10 minutes.  

In Figure 3-39 (a), a comprehensive view of temperature variations within each layer during the 

discharge process is presented. Notably, the inlet port is precisely positioned at a depth of 155 cm, 

as specified in Table 3-3. Given these established parameters, even as the thermocline completely 

passes through the inlet port, which signifies a pivotal moment in our simulation, It can be 

anticipated that the temperature in the top layer will exhibit minimal change. This expectation 

stems from a key insight: 𝑇𝑡𝑜𝑝, representing the temperature of the top layer, is derived as a 

weighted average of the temperatures within that specific layer. In the context of the scenario under 

discussion, where the thermocline does not ascend to the uppermost region of the tank, it implies 

that the majority of the top layer remains unaffected by temperature fluctuations. Consequently, it 
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is reasonable to expect that the temperature across most of the top layer remains close to the initial 

value of around 40 ℃, as previously discussed. 

Due to the delay in the formation and subsequent movement of the thermocline in our model, we 

observe that our model aligns with the monitored data, albeit with around 10 minutes time lag, as 

depicted in Figure 3-39 (b). Despite the presence of a time lag, our model produces encouraging 

results as evidenced by the calculated RMSE. The RMSE values for the top, middle, bottom, and 

outlet port are 1.21°C, 1.09°C, 1.07°C, and 0.67°C, respectively. These results indicate a 

satisfactory level of accuracy in our model's ability to predict temperature variations across 

different segments of the tank.  

 
Figure 3-40. Discharge test. (a) Power gives to the tank, (b) The absolute difference between observed and modeled data. 

When we look at the power data in Figure 3-40 (a) and (b), we can see that our proposed model 

consistently matches the monitored data. There's only about a 0.77 kW difference on average 

between the monitored data and simulated results. 

3.2.2.2.4      Test four, discharge mode 

The test was conducted by allowing water to enter the tank at a rate of 0.14 kg/s. Initially, the 

tank was maintained at a constant temperature of 70 ℃, and the target temperature for the end of 

the discharging process was set at 30 ℃.  

 

Figure 3-41. Discharge test. (a) Speed of thermocline, (b) Width of thermocline, (c) Height changes and (d) Mass balance 

In Figure 3-41 (a), we can see the speed at which the thermocline moves, and it closely resembles 

Figure 3-35 due to the matching mass flow rate. Figure 3-41 (b) illustrates how the thermocline 

forms. The optimal width, determined from the monitored data, was 10 cm. However, our model 

indicates that the thermocline stopped forming at 8.9 cm. Figure 3-41 (c) and (d) show changes in 

both height and mass within each layer. 

 

Figure 3-42. Discharge test. (a) temperature in the top and bottom layer, (b) monitored and simulated temperature of water 
along the tank 
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As previously discussed in Test 3 (3.2.2.2.3), we do not anticipate significant changes in 𝑇𝑡𝑜𝑝, and 

Figure 3-42 (a) confirms this expectation. However, over time, as the tank was continuously filled 

with water at a temperature of 30°C, the temperature in the bottom layer gradually decreased. 

Because of the delay in the formation and movement of the thermocline in our model, we notice 

that our model matches the monitored data, although with a time lag of approximately 20 minutes, 

as shown in Figure 3-42 (b). Despite this time lag, our model delivers promising results, as 

indicated by the RMSE calculations. Particularly, the RMSE values for the top, middle, bottom, 

and outlet port are 2.64°C, 2.34°C, 3.5°C, and 1.89°C, respectively. These outcomes affirm that 

our model performs well in predicting temperature changes in various parts of the tank. 

 

Figure 3-43. Discharge test. (a) Power gives to the tank, (b) The absolute difference between observed and modeled data. 

Upon examining the power data presented in Figure 3-43 (a) and (b), it becomes evident that our 

suggested model consistently aligns with the observed data. On average, there is merely a 1 kW 

discrepancy between the observed data and the simulated results. 

3.2.2.3     Conclusion 

In conclusion, our study delved into the behavior of a TES system, focusing on the dynamic nature 

of water temperature within the tank. As water heats up, it becomes less dense, leading to the 

formation of distinct layers: a warm upper layer and a cool lower layer, with a crucial boundary 

known as the thermocline that prevents mixing. Our TES system comprised three layers (upper, 

lower, thermocline) whose volumes and positions changed during charging and discharging 

processes. Temperature distribution was considered linear within the thermocline, with a 

maximum and minimum temperature in the tank. Mathematical modeling revealed four distinct 

stages during both charging and discharging, aiding our understanding of system behavior. Our 

practical study analyzed a commercial hot water storage tank, emphasizing the critical role of 

accurate temperature measurements at specific points within the system. The sensor output directly 

impacted HP’s COP, while the upper tank sensor influenced heat pump activation decisions. We 

performed a total of four tests, two during the charging phase and two during the discharging 

phase, and these tests successfully forecasted temperature fluctuations in different areas of the 

tank. 
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3.3 Heat Pump 

Reversible heat pumps have the capacity to fulfill the space heating, space cooling, and domestic 

hot water requirements of buildings without producing local pollutants. They can harness 

renewable heat from the air, water, and ground, making them a promising technology with the 

potential to play a significant role, even in regions with more challenging climates [131]. Various 

types of heat pumps are examined, each being characterized by its unique heat source and method 

of heat distribution. Notably, the water source heat pump is recognized for its exceptional energy 

efficiency. A water-to-water heat pump (WWHP) functions by transferring heat between two water 

streams, one serving as the heat source and the other as the heat sink. In essence, it operates on the 

fundamental principles of traditional heat pumps, but it employs water as the medium for heat 

exchange. Consequently, it harnesses the heat energy contained within water to offer both heating 

and cooling capabilities. Remarkably, suitable water sources encompass groundwater, industrial 

cooling water, pre-chilled process water, and even sewage water. In fact, rivers and seawater can 

also serve as heat sources. This makes WWHPs incredibly versatile, catering to both heating and 

cooling requirements. During heating mode, they extract heat from the water source and channel 

it into the heating system. Conversely, in cooling mode, the heat pump reverses its operation, 

extracting heat from the building and releasing it into the water source. This versatility sets the 

WWHP apart, excelling in both cooling and heating tasks, thereby optimizing energy utilization.  

A WWHP comprises three key components: the evaporator, compressor, and condenser. The 

evaporator's role is to extract heat from a water source by circulating a refrigerant through coils. 

As the refrigerant evaporates, it absorbs heat from the water source, causing the water temperature 

to decrease. The vaporized refrigerant is then compressed by a compressor, raising both its 

temperature and pressure. In its transformed state as a high-temperature, high-pressure refrigerant, 

it passes through a condenser where it transfers its heat to another water distribution system. In the 

condenser, the refrigerant releases heat into the second water flow, which is subsequently 

employed for heating. As the refrigerant releases its heat, it condenses back into a liquid state, 

ready to initiate the process once more. When cooling is required, the WWHP functions similarly 

but in reverse order: condensation, compression, and evaporation.  

WWHPs are recognized for their high energy efficiency. High COPs can be achieved by WWHPs, 

contributing to a reduction in energy consumption and a lowering of utility bills. When compared 

to other alternatives, such as air-based heat pumps, WWHPs typically present a higher level of 
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efficiency. Consequently, COPs in the range of 2.8 to 4 are typically observed in the context of 

WWHPs. However, these values are contingent on the temperature difference between the heat 

source and the heat sink, with a warmer heat source and a colder heat sink resulting in higher heat 

output and efficiency [132]. As a means of integrating renewable energy, WWHP are employed, 

allowing for the optimization of clean, sustainable energy utilization. In this capacity, the constant 

temperature of the water source can be harnessed without dependence on fossil fuels, resulting in 

a reduction in greenhouse gas emissions. Thus, they are deemed a viable option in the effort to 

expedite progress towards achieving net zero carbon emissions. Therefore, the benefits of WWHP 

are numerous, encompassing cost-effectiveness, quiet operation, dependable performance, and 

energy recovery [133].  

As it discussed earlier, the essence of MPC lies in its ability to use a model to predict the system's 

future behavior and adjust control inputs accordingly to achieve desired outcomes. The HP plays 

a cardinal role in regulating the building's temperature, making it crucial for any control strategy 

to have a profound understanding of its dynamics. However, capturing the complexities of a HP's 

operations is not always straightforward, given its nonlinear characteristics and dependencies on 

various external and internal conditions. 

 Given this backdrop, a "state machine" approach for modeling the HP was already proposed and 

implemented by Eurac Research employees. State machines, by their design, offer a structured yet 

flexible way to capture the various operational modes and transitions of a system. For a component 

as versatile as the HP, which can operate under different modes (e.g., heating, cooling, standby) 

and transition between them based on specific criteria (e.g., temperature thresholds, demand), the 

state machine approach seems apt. 

A state machine is often described as a conceptual tool used to represent the different states of a 

system and the transitions between these states. In the context of system design and control, state 

machines are commonly employed to capture the behavior of systems that can exist in different 

conditions or modes. At the heart of how a state machine operates are the distinct conditions in 

which a system can exist, known as states. Each of these conditions is identified and defined 

clearly. These states are interconnected by movements called transitions. Specific criteria or 

triggers, which when met, cause these transitions to occur, allowing the system to shift from one 

state to another. Every state machine starts with an initial condition or state, which is the condition 

in which the system is found when first activated or initialized. In some machines, there might be 
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a specific condition that marks the end or completion of its process, referred to as the final 

state[134] . Taking a simple example, a light bulb can be in two states: "Off" or "On". The act of 

flipping a switch can be seen as a transition that moves the bulb between these two states.  

One of the primary advantages of state machines is the simplicity and clarity they bring. By 

breaking down a system's behavior into well-defined states and transitions, its operation becomes 

easier to understand [135]. This clarity is coupled with flexibility; as the system evolves or its 

requirements change, new states or transitions can be added without needing to redesign the entire 

system. Furthermore, they offer a degree of predictability; if one knows the current state of a 

system, its future behavior can be anticipated based on the defined transitions. This predictability 

also aids in error handling. Unwanted or unexpected conditions can be detected when the system 

enters states that aren't defined or when illegal transitions are attempted [136]. Lastly, state 

machines have the advantage of reusability [137]. Once designed for a specific system, the same 

state machine framework can often be adapted or reused for other similar applications. 

In [138] authors use a state machine to model the start-up and shut-down sequences of a heat pump. 

The state machine has four states: Off, On, Heating, and Cooling. The transitions between states 

are triggered by events such as the thermostat being turned on or off, the pressure switch being 

activated, or the temperature of the heat pump reaching a certain threshold. In [139] authors also 

use a state machine to model the heating process of a building. The state machine has three states: 

Off, Heating, and Cooling. The transitions between states are triggered by events such as the 

temperature of the building dropping below a certain threshold, or the temperature of the building 

rising above a certain threshold. 

3.3.1    HP state machine model 

In Figure 3-44 (a), the state machine corresponding to the HP is depicted (As mentioned before, 

the model was already available in Eurac Research). This model represents any single-stage heat 

pump, where the fluid at the load and source sides is defined based on the thermal properties of 

the respective fluids, such as air or water. Figure 3-44 (b) also is an example how transition works. 

The state machine is designed to mimic the ramps depicted in the Figure 3-44 (b), serving as an 

illustrative example for better understanding. 

 

Figure 3-44. State machine of HP 
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The state machine for the designed heat pump consists of 10 distinct discrete states, with two 

fundamental states related to operational modes: heating and cooling. The other 8 states 

predominantly relate to the operation of the compressor and its various stages. It should be noted 

that the modulation of the compressor is determined by the inlet temperature at the load side of the 

heat pump and a specified setpoint temperature. 

IDLE (Stand-by): In this state, the heat pump is not entirely shut off. Instead, it consumes a 

minimal amount of energy for peripheral activities within the unit. While it doesn't actively cool 

or heat, the system remains primed for prompt activation. 

Warm_up: it primarily serves as a preliminary stage. Upon entering this state, the compressor is 

introduced into the circuit, not at its maximum speed, but it initiates operations at its minimum 

speed. This is essential as, before ramping up and tracking the load, the heat pump should remain 

at this minimum speed.  

Stable_min: In this state, the compressor operates at its minimum speed, delivering the necessary 

thermal power or temperature level to meet the current load without requiring any escalation. 

Ramp_up: In the Ramp_up state, the speed of the compressor is incrementally increased. 

Stable_PL: This denotes a 'Stable Part Load' state where the compressor operates at a speed 

between its minimum and maximum thresholds. 

Stable_max: The compressor is operating at its peak capacity during this state. 

Ramp_down: A reduction in the compressor's speed is observed in this state. 

Cool_down: In this state, prior to transitioning to the IDLE, the compressor operates at its 

minimum, similar to the warm-up state. The system hasn't fully transitioned to IDLE yet. The 

behavior of the state machine can be mathematically characterized by defining the transitions 

between states based on various parameters. Before delving into specifics, symbolic 

representations and their corresponding definitions are presented. It's noteworthy to mention that 

the logic of the state machine compares inputs and determines subsequent states, highlighting the 

essential inputs required for the model. 

o 𝜏𝑖𝑑𝑙𝑒 indicating the duration, the system has been in the IDLE. 

o 𝜏𝑤𝑎𝑟𝑚_𝑢𝑝 indicates the time duration the compressor has been in the Warm_up state. 

o 𝑇𝑖𝑛𝑙𝑒𝑡_𝑙𝑜𝑎𝑑 denotes the current inlet load temperature. 

o 𝑇𝑠𝑒𝑡_ℎ𝑒𝑎𝑡 stands for the temperature setpoint for the heating mode. 

o 𝑇𝑠𝑒𝑡_𝑐𝑜𝑜𝑙 represents the temperature setpoint for the cooling mode. 
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o 𝜖 is the temperature margin, which is 0.5°C. 

o 𝜔 signifies the current speed of the compressor. 

o 𝜏𝑐𝑜𝑜𝑙_𝑑𝑜𝑤𝑛 measures the duration in the Cool_down state. 

o 𝜏𝑤𝑎𝑟𝑚𝑢𝑝,𝑚𝑖𝑛, 𝜏𝑖𝑑𝑙𝑒,𝑚𝑖𝑛, and 𝜏𝑐𝑜𝑜𝑙𝑑𝑜𝑤𝑛,𝑚𝑖𝑛 represent the minimum duration thresholds for their 

respective states. 

These symbols primarily encompass various timers that monitor the duration a specific state is 

active, the inlet load temperature, which is pivotal for decision-making processes in state 

transitions, setpoints that define target temperatures for different operational modes, a margin 

value providing a temperature buffer, and details about the compressor's operational speed. Each 

of these notations acts as a cornerstone to understand and dictate the nuanced behavior and state 

transitions of the heat pump, ensuring it operates optimally and responds properly to varying 

conditions. 

Now, discussing transitions and their conditions: 

1. …. 

2. … 

3. … 

4. … 

5. … 

6. … 

7. … 

8. … 

9. … 

10. … 

11. … 

12. … 

13. … 

14. … 

15. … 

16. … 

17. … 
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18. … 

19. … 

20.  

 

1. Speed (𝝎): Represents the current operational speed of the compressor, which is instrumental 

in regulating the heat transfer capacity of the HP. The speed of the compressor is generally 

expressed in normalized revolutions per minute (RPM). 

2. Heat Energy Delivered (𝑸𝒕𝒉): This metric quantifies the amount of thermal power transferred 

to the load, giving a direct insight into the HP's heating or cooling efficacy. Typically measured 

in Watt (W) or kilowatt (kW).  

3. Electrical Energy Consumed (𝑾𝒆𝒍): By monitoring the power intake, we can gauge the 

system's demand on the power grid and assess its operational cost. This is usually measured in 

Watt (W) or kilowatt (kW). 

4. Coefficient of Performance (COP): A pivotal measure, COP provides a ratio of the heat 

energy delivered to the electrical energy consumed, thus serving as a benchmark for the HP's 

efficiency. COP is a ratio, so it doesn't have a unit. It's the amount of heat energy delivered 

divided by the electrical energy consumed. 

5. Mass Flow Rate from Load Side (𝒎̇𝒍𝒐𝒂𝒅): This indicates the volume or mass of the operating 

fluid at the load side flowing through the HP's load side, reflecting the system's cooling, or 

heating load. Generally quantified in kilograms per second (kg/s) or kilograms per hour (kg/h), 

depending on the capacity and size of the system. 

6. Mass Flow Rate from Source Side (𝒎̇𝒔𝒐𝒖𝒓𝒄𝒆): Correspondingly, this measures load side mass 

flow rate on the source side, showing the heat source's contribution. This is usually expressed 

in kilograms per second (kg/s) or kilograms per hour (kg/h). 

7. Outlet Temperature from Load Side (𝑻𝒐𝒖𝒕,𝒍𝒐𝒂𝒅): A vital metric for user comfort and safety, 

it indicates the temperature of the fluid as it exits the HP, moving towards the conditioned 

space. Temperature is typically given in degrees Celsius (°C) or Kelvin (K). 

8. Outlet Temperature from Source Side (𝑻𝒐𝒖𝒕,𝒔𝒐𝒖𝒓𝒄𝒆): This reflects the temperature of the 

fluid after it has extracted or dumped heat to the external environment or heat source. 

Temperature is typically given in degrees Celsius (°C) or Kelvin (K). 
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Among these outputs, the COP stands out as particularly significant. The COP is defined by Eq. 

(3.41). 

 
𝐶𝑂𝑃 =

𝑄𝑡ℎ

𝑊𝑒𝑙
 3.41) 

Where 𝑄𝑡ℎ is the thermal power delivered or extracted by the HP and 𝑊𝑒𝑙 is the electrical power 

consumed by the HP. 

In the proposed model, a regression analysis is employed to compute values for 𝑄𝑡ℎ and 𝑊𝑒𝑙. This 

analysis is rooted in a performance map crafted from data sourced either from real-time monitoring 

or rigorous laboratory tests. This map pairs specific combinations of input parameters - such as the 

compressor's speed, inlet temperatures from both the load and source sides, and mass flow rates - 

with their corresponding outputs, notably 𝑄𝑡ℎ and 𝑊𝑒𝑙. By leveraging non-linear regression 

techniques, the most fitting curve to represent these relationships is derived. Hence, when the 

system encounters specific inputs, it refers to this curve to predict the likely outputs, ensuring the 

model remains attuned to previously observed patterns and behaviors. 

3.4 Optimization 

Optimization is the process of making something better or more effective based on certain criteria 

or constraints. In the context of mathematics and engineering, optimization is about finding the 

best solution from a set of feasible solutions. Optimization problems can vary in complexity and 

can be found in a multitude of disciplines, from economics to engineering, and from machine 

learning to logistics. The importance of optimization cannot be overstated. In a world filled with 

limited resources and endless possibilities, optimization provides the tools and techniques to 

maximize or minimize desired quantities. It could be about reducing costs, increasing profits, 

minimizing errors, or maximizing throughput. By framing problems in terms of optimization, it's 

possible to leverage powerful algorithms and mathematical tools to find solutions that would be 

unattainable or highly time-consuming through intuition or trial and error alone. As it mentioned 

earlier, MPC is a type of control strategy that employs a model of the system to predict its future 

behavior. What truly distinguishes MPC from other control strategies is its inherent reliance on 

optimization at every control step. Through optimization, MPC ensures the system's performance 

closely adheres to desired setpoints or trajectories, even when considering constraints. This 

continual recalibration of the optimal control input based on the latest information allows MPC to 

achieve a level of performance that is challenging to match with traditional control methods MPC 
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is a powerful control strategy that can handle constraints on both the control inputs and the states 

of the system. By formulating the control problem as an optimization problem, MPC can ensure 

that these constraints are consistently respected. This is crucial in systems where safety or 

operational boundaries cannot be compromised [140].  

Moreover, the combination of MPC with optimization endows the control strategy with a 

flexibility that's hard to find elsewhere. MPC can adapt readily to changes within the system or its 

external environment, making it an invaluable tool for non-linear, time-varying, or uncertain 

systems [141], [142]. As a result, it frequently leads to reduced operational costs by making 

optimal control decisions, often resulting in minimized energy consumption or decreased wear and 

tear. This not only makes systems more efficient but also adds to their effectiveness.  

Also, the predictive nature of MPC, when paired with optimization, offers a layer of reliability to 

systems [143]. By continuously monitoring and adjusting based on the predicted behavior, MPC 

ensures that systems operate within safe and reliable boundaries, effectively mitigating the chances 

of unforeseen events or system failures. 

In essence, optimization serves as the lifeblood of MPC. It equips MPC with the tools necessary 

to make informed, forward-looking decisions that boost the performance, reliability, and efficiency 

of systems. As technology continues to evolve, the synergy between MPC and optimization 

remains pivotal in tapping into the maximum potential of our systems in the most optimal manner. 

As discussed in section 2.2, district heating networks play a pivotal role in delivering efficient and 

sustainable energy solutions. Within this framework, substations form a crucial nexus point, 

especially when integrating advanced systems like HP and TES. Given the dynamic nature of 

energy demands and supply conditions, managing these systems requires a strategy that is both 

adaptable and future-facing. This is where MPC becomes invaluable. At the heart of this is the 

optimization capability of MPC. Consider the HP, which can draw power from either PV panels 

or the electrical grid. To operate this HP most efficiently, one needs to decide the optimal source 

of power at any given time. Factors influencing this decision include current solar irradiance 

(affecting PV output), grid electricity prices, and anticipated energy demand. The cost variability 

of the electrical grid introduces a unique challenge. It's advantageous to tap into the grid during 

periods of low pricing. Yet, predicting these periods requires knowledge of future electricity 

prices, demand profiles, local weather conditions affecting PV output, and the state of the TES. 

The predictive nature of MPC thrives in such environments. By leveraging models that forecast 
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these variables, MPC can anticipate the best times to use grid electricity versus stored or solar-

generated energy. This not only ensures optimal performance of the HP but also leads to economic 

benefits by capitalizing on lower grid prices.  

Furthermore, integrating TES into the mix amplifies the importance of MPC. TES systems store 

excess heat for future use, acting as a buffer against demand fluctuations. Utilizing mathematical 

models that describe the behavior and dynamics of the TES, MPC can determine the optimal times 

for charging or discharging based on the system's current state, predicted heating demands, and 

other influencing variables. This precise modeling and the predictive capability of MPC together 

foster a synergistic relationship between the HP and TES. Under the guidance of MPC, both 

systems cooperate to ensure that energy is both utilized and stored in the most efficient manner, 

optimizing both energy usage and cost. 

3.4.1 Dynamic programming 

Dynamic programming (DP) is a powerful mathematical and computational technique used to 

solve problems by breaking them down into simpler subproblems. It is particularly effective for 

optimization problems, where the goal is to find the best solution among a set of feasible solutions. 

At its core, DP addresses the challenge of large, complex problems by decomposing them in a way 

that avoids redundant work and accelerates problem-solving. The name "dynamic programming" 

might be misleading as it doesn't directly refer to "programming" in the context of writing 

computer code. Instead, it refers to a systematic procedure or "program" to solve a problem. 

Introduced by Richard Bellman in the 1950s [144], The technique is built upon the concept of 

optimal substructure, meaning that an optimal solution to the problem can be derived from optimal 

solutions to its subproblems. 

A characteristic feature of DP is the use of a table to store solutions to subproblems, ensuring that 

each subproblem is solved only once. This concept, known as "memorization," reduces the 

computational effort by retrieving stored solutions rather than recalculating them [145]. In essence, 

DP is a blend of recursion and iterative problem-solving, optimizing the process to tackle complex 

problems with increased efficiency. It has found applications in numerous fields, from economics 

to bioinformatics, and from computer science to operations research and energy, serving as a 

testament to its versatility and power. 

DP emerges as a pivotal tool in [146], bolstering the efficiency and user comfort of the HVAC 

system. Through DP, the study adeptly frames HVAC control as a constrained optimization 



110 
 

challenge, ensuring intelligent decision-making to strike a balance between comfort, preferences, 

and energy costs. A novel feature, the 'thermal energy storage in building', is introduced to 

circumvent a challenge in DP’s typical reliance on historical state data. When this approach is 

applied, not only does the system optimize operations based on room temperature and the 

remaining start hours of the Primary Air Unit, but it also substantially outperforms existing expert 

rules. Specifically, compared to a standard rule maintaining a 20°C room temperature, the method 

guided by DP realizes a remarkable 35.1% reduction in energy and emissions, all while preserving 

comfort. This highlights the transformative role of DP in refining HVAC system controls.  

DP was used in [147] to find the best way to balance electricity use, costs, and comfort. A smart 

move in the study is using a simplified thermal model with DP. This helps because traditional DP 

sometimes struggles to get indoor temperatures right, especially when considering things like how 

long warmth stays in a room. When they put their DP method to the test, it did better than other 

common methods. For example, when compared to another method using EnergyPlus to guess 

indoor temperatures, the DP method did better, even with its simpler approach. This shows how 

DP can be a game-changer in making HVAC systems work better, leading to savings and more 

comfort.  

In [148], a study conducted on pharmaceutical industry buildings in Southern Germany, DP was 

employed to optimize the cooling demands met by their chilled water plant. Given the increasing 

cooling loads, the study evaluated whether to add a chiller or introduce a chilled water TES system. 

The optimization, rooted in DP, focused on refining the TES system's charge/discharge strategy, 

and was paired with mixed integer programming for individual chiller dispatch. Results indicated 

that by adopting a TES system, not only would there be a significant cost savings — with 

investments being recouped within three to six years — but also operational benefits like improved 

system reliability and the ability to bypass less efficient chillers in favor of more effective ones. 

From its foundational principles to its practical applications, it's clear that DP is more than just a 

theoretical tool—it's a driving force behind many innovative solutions, especially in the realm of 

HVAC systems. The studies outlined above underscore DP's ability to bridge the gap between 

theoretical optimization and tangible energy savings and user comfort.  

In this thesis, DP was utilized for optimization, building upon a model previously developed at 

Eurac Research by another researcher. 
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3.4.1.1 DP mathematical framework  

Consider a scenario in which a transition from state 𝒙(𝑡) at time 𝑡 through the control 𝒖(𝑡) incurs 

an instantaneous cost given by ℒ[𝒙(𝑡), 𝒖(𝑡), 𝑡]. The total cost over a finite horizon of 𝑁 + 1 points 

starting at time 𝑡0  to concluding at time 𝑡0 + 𝑁 can be represented as (3.42). 

 

𝐽 =  ∑ ℒ[𝒙(𝑡), 𝒖(𝑡), 𝑡]

𝑡0+𝑁

𝑡=𝑡0

 3.42) 

A sequence of controls 𝒖(𝑡) exists that minimizes 𝐽 as described in (3.43) and (3.44). 

 

𝑉(𝒙0, 𝑡0, 𝑁) =  min
𝒖(𝑡)∈𝑼,𝑡=𝑡0,…,𝑡0+𝑁

{ ∑ ℒ[𝒙(𝑡), 𝒖(𝑡), 𝑡]

𝑡0+𝑁

𝑡=𝑡0

} 3.43) 

subject to 

 𝒙(𝑡 + 1) = 𝒇(𝒙(𝑡), 𝒖(𝑡), 𝑡), ∀𝑡 ∈ {𝑡0, … , 𝑡0 + 𝑁 − 1} 3.44) 

In Eq. (3.43) 𝑼 ⊆ ℝ𝑚 is a space where the control action belongs to. Similarly, 𝑿 ⊆ ℝ𝑛 will denote 

the space where the state variables are bounded to. Given our state vector and control vector, the 

next state vector is determined by the equation Eq. (3.44) where 𝒇 is a vector-valued function 

mapping vectors of the state space 𝑿, vectors of the input space 𝑼 and the time 𝑡 to a vector in 𝑿. 

For any initial state vector and time, our optimal control sequence is governed by the Bellman 

equation which is represented in Eq. (3.45). 

 𝑉(𝒙(𝑡), 𝑡, 𝑁) = min
𝒖∈𝑼

{ ℒ[𝒙(𝑡), 𝒖(𝑡), 𝑡] + 𝑉(𝒇(𝒙(𝑡), 𝒖(𝑡), 𝑡), 𝑡 + 1, 𝑁 − 1)} 3.45) 

Consequently, an iterative formula was identified that can be used to establish 𝑉(𝒙(𝑡), 𝑡, 𝑁) for 

every 𝒙𝑘 ∈ 𝑿, with 𝑿 being the collection of permissible states. 

In summary, the least expense at state 𝒙(𝑡) and step 𝑡 over a horizon of 𝑁 + 1 points, 𝑉(𝒙(𝑡), 𝑡, 𝑁), 

is determined by minimizing the combined cost of the current step 𝑡 and the minimal expense to 

reach the process's end from the subsequent state at step 𝑡 + 1 (𝑉(𝒙(𝑡 + 1), 𝑡 + 1, 𝑁 − 1)). This 

mirrors Bellman’s Principle of Optimality. 

It should be noticed that in this thesis, the DP optimization approach has been utilized, which was 

previously developed and made available by colleagues at Eurac Research. 

3.5 Integration of substation 

In this thesis, the primary focus is placed on the conditions at the decentralized substation rather 

than on the internal dynamics of the DH network itself. Consequently, details concerning the 
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production of heat within the DH network and other internal processes are not considered within 

the scope of this research. The primary objective is to assess how the temperature and mass flow 

rate from the DH network influence the performance of the integrated substation and the MPC. 

The critical parameters for this system include the temperature and mass flow rate of the water 

entering the decentralized substation.  

This research considers four different types of schemes for connecting the DH to the decentralized 

substation. Each of these connections occurs under certain conditions, which will be discussed in 

detail. These schemes are designed to enhance the effectiveness and efficiency of substations, 

ensuring optimal performance under various scenarios. 

Figure 3-45 illustrates scheme 1, which depicts the initial configuration for connecting the DH 

network to the substation. 

 

Figure 3-45 Schematic diagram of scheme 1 

In this scheme, the configuration and operation of the DH network rely on specific temperature 

conditions to ensure optimal performance. For scheme 1 to be viable, the following temperature 

relationships must be satisfied, as presented in Eq. (3.46). 

 … 3.46) 

Here, 𝑇𝑖𝑛_𝑚𝑎𝑥 represents the maximum inlet temperature at the source side (evaporator) of the 

WWHP. Efficient operation of the heat pump is ensured without exceeding the thermal limits set 

by the manufacturer, who specifies 𝑇𝑖𝑛_𝑚𝑎𝑥 = 55 ℃ . 

𝑇𝑟𝑒𝑡_𝑇𝐸𝑆 is the temperature of the water returning from TES to the load side (condenser) of the HP. 

𝑇𝐷𝐻 denotes the temperature of the water in the district heating supply. 

In Figure 3-46, which presents scheme 2, the process is triggered when 𝑇𝐷𝐻 exceeds …. When 𝑇𝐷𝐻 

surpasses … can be utilized to feed the HP condenser, leading to higher efficiency. Thus, in scheme 

2, modifying the connection between the district heating system and the heat pump enhances 

overall efficiency. Equation 3.47 illustrates the conditions necessary for transitioning to scheme 2. 

 … 3.47) 

 

 
Figure 3-46. Schematic diagram of scheme 2 
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Figure 3-47 illustrates scheme 3. In this scheme, when 𝑇𝐷𝐻 exceeds the …, feeding the heat pump 

directly is not feasible due to safety concerns and limitation of …. Consequently… is connected to 

the source side of the heat pump (evaporator), while the load side of the heat pump (condenser) is 

supplied by DH. Equation 3.48 outlines the conditions under which the transition to scheme 3 

occurs: 

 … 3.48) 

 
 

Figure 3-47. Schematic diagram of scheme 3 

In scheme 4, when the district heating temperature exceeds …, the heat pump does not need to be 

activated. Instead, the district heating is directly connected to the TES. This process is described 

by Equation (3.49): 

 … 3.49) 

 

 
Figure 3-48. Schematic diagram of scheme 4 

Therefore, based on … different operational schemes can be switched to achieve the highest system 

efficiency. 

The substation is managed through four different operational schemes, each with its own specific 

criteria for transitioning between them. To ensure smooth and efficient transitions, a hysteresis 

structure is employed. Hysteresis helps prevent frequent switching between schemes by defining 

upper and lower thresholds (dead bands) for each temperature variable. By adjusting to the most 

suitable scheme according to these temperature variables, the system's optimal performance and 

energy use are ensured. 

In the substation, five different hysteresis mechanisms have been considered: HA, HMa, HMb, 

HMc, and HMd. These hysteresis controls are crucial for managing the transitions between 

different operational schemes. Each hysteresis serves a specific purpose, regulating various aspects 

of the heating process based on the state of the temperature variables. 

The “HA” hysteresis is specifically used for the activation and deactivation of HP. As shown in 

Figure 3-49, sensor activation is exactly at sensor top, as described in Figure 3-30 and Table 3-3. 

Sensor deactivation is slightly above sensor bot. 
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Figure 3-49. Position of sensor activation and deactivation within the tank 

For activation of the HP: 

• When the temperature difference between the top temperature sensor of TES (𝑇𝑠𝑒𝑛𝑠,𝑡𝑜𝑝) 

and the set point temperature (𝑇𝑠𝑒𝑡,𝑇𝐸𝑆) is less than the upper hysteresis threshold (𝐻𝐴𝑈𝑃), 

the value of HA is set to 0. This indicates that the heat pump should be activated to increase 

the temperature. 

For deactivation of HP: 

• When the temperature difference between the deactivation temperature sensor 

(𝑇𝑠𝑒𝑛𝑠,𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛) and the set point temperature (𝑇𝑠𝑒𝑡,𝑇𝐸𝑆) is greater than the lower 

hysteresis threshold (𝐻𝐴𝐿𝑊), the value of HA is set to 1. This means that the heat pump 

should be turned off to prevent overheating. 

Important note: In typical hysteresis control systems, a value of 1 indicates the system is ON, 

while a value of 0 indicates it is OFF. However, in this thesis, the hysteresis control labeled as HA 

is operated in the opposite manner. This means that when the temperature reaches the upper 

threshold, the heat pump CS is 1 and means OFF. Conversely, when the temperature drops below 

the lower threshold, the heat pump CS is 0 and it turns ON. 

Equation. (3.50) represents the control signal (CS) status of HP, indicating its activation and 

deactivation based on the sensed temperatures and setpoint differential. 

 𝐶𝑆𝐻𝑃 = ⋯ 3.50) 

 

The thresholds for 𝐻𝐴𝑈𝑃 and 𝐻𝐴𝐿𝑊 are set at -5°C and +5°C respectively. This hysteresis structure 

helps maintain a stable temperature within the system, avoiding rapid cycling that can lead to 

inefficiencies and increased wear on the heat pump and also letting TES to have lengthy cycle of 

charge and discharge. Figure 3-50 represents how hysteresis HA is working (the values shown are 

dummy data).  

 
Figure 3-50. Example of the performance of hysteresis HA 
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The conditions for the HA hysteresis are described in Table 3-5. 

 
Table 3-5. Conditions for HP Activation and Deactivation Based on HA Hysteresis 

 HA NOT (HA) 

… … … 

… … … 

 

Besides having two sensors for activation and deactivation, the option of using only one sensor for 

both the activation and deactivation of the HP was also considered. In this scenario, as shown in 

Eq. (3.51), 𝑇𝑠𝑒𝑛𝑠,𝑡𝑜𝑝 is responsible for the control signal. Therefore, the control logic is as follows: 

 
𝐶𝑆𝐻𝑃 =  {

… … 
… …
… …

 3.51) 

 

HMa is the hysteresis control mechanism for managing the substation based on the temperature 

difference between 𝑇𝐷𝐻 and …. The conditions for the HMa hysteresis are described in Table 3-6. 

The thresholds for 𝐻𝑀𝑎𝑈𝑃 and 𝐻𝑀𝑎𝐿𝑊 are set at 0°C and -5°C, respectively. … also is set to 60 

°C. 

Table 3-6. Condition for activation and deactivation of HMa 

 HMa NOT (HMa) 

… … … 

… … … 

 

HMb is the hysteresis control mechanism used to regulate the substation by monitoring the 𝑇𝐷𝐻  

and 𝑇𝑟𝑒𝑡,𝑇𝐸𝑆. The thresholds for 𝐻𝑀𝑏𝑈𝑃 and 𝐻𝑀𝑏𝐿𝑊 are set at 2°C and -2°C respectively. The 

conditions for the HMb hysteresis are described in Table 3-7. 

Table 3-7. Condition for activation and deactivation of HMb 

 HMb NOT (HMb) 

… … … 

… … … 
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The HMc hysteresis control mechanism is employed to regulate the substation by monitoring the 

temperature difference between …. The thresholds for 𝐻𝑀𝑐𝑈𝑃 and 𝐻𝑀𝑐𝐿𝑊 are set at 0°C and -5°C, 

respectively. The conditions for the HMc hysteresis are described in Table 3-8. 

Table 3-8. Condition for activation and deactivation of HMc 

 HMc NOT (HMc) 

… … … 

… … … 

 

The hysteresis control identified as HMd is essential for regulating the substation by evaluating 

the temperature difference between … and …. With thresholds set at 0°C for 𝐻𝑀𝑑𝑈𝑃 and -5°C for 

𝐻𝑀𝑑𝐿𝑊, it ensures efficient system operation. The specific conditions for the HMd hysteresis are 

detailed in Table 3-9. 

Table 3-9. Condition for activation and deactivation of HMd 

 HMd NOT (HMd) 

… … … 

… … … 

 

With five different hysteresis mechanisms involved, there are 32 possible cases at each step. All 

32 cases are described in Appendix 2. However, only one case can be active (represented by 1) at 

any given time, while the remaining cases are inactive (represented by 0). Table 3-10 summarizes 

the conditions required for the substation to be in each of the four schemes. Each scheme is defined 

by the activation or deactivation of specific hysteresis mechanisms.  

Table 3-10. Conditions for Transition Between Different schemes 

Scheme Conditions 

… … 

… …  

… … 

… …  
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A set point temperature of 55°C was established for the user side. A constant ΔT of 10°C was also 

considered for the load side. A mixing valve was used to cool down the return temperature from 

the building. If the temperature of the water in the tank sent to the building exceeds 55°C, the water 

is recirculated to maintain the desired temperature. 

In this thesis, the mass flow rate in the substation is considered a constant value, though it depends 

on the specific scheme used. Generally, the load side of the HP is considered to have a mass flow 

rate of 3.5 m³/h. However, the source side varies depending on the scheme. For schemes 1 and 2, 

the mass flow rate on the source side of the HP is 80% of the mass flow rate on the load side. In 

contrast, for schemes 3 and 4, the mass flow rate on the source side is the same as that on the load 

side. 

As presented in Figure 3-45 to Figure 3-48 , the mass flow rate in the DH system varies according 

to the scheme implemented. In scheme 1, the DH mass flow rate is the same as the source side of 

the HP. Once scheme 2 is in use, as depicted in Figure 3-46, the DH mass flow rate becomes the 

summation of the mass flow rate of both the source and load sides of the HP. In schemes 3 and 4, 

the DH mass flow rate matches the load side of the HP. Table 3-11 presents the mass flow rate 

values for the different schemes of substation. 

Table 3-11. mass flow rate in the substation and DH [m³/h] 

 DH Source side of HP Load side of HP 

… … … … 

… … … … 

… … … … 

… … … … 
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Chapter 4 

4 Results and Discussion 
In this section, the substation integration is performed, and the MPC is executed. The resulting 

outcomes are subsequently discussed. As illustrated in Figure 1-1, the 5GDHC showcases the 

integration of a district heating network with a residential building. On the left side, the 5GDHC 

network operates at lower temperatures that are not useful for direct heating purposes. At the 

center, a decentralized substation is depicted, containing HP and TES. On the right side, a 

residential building is shown, which benefits from the thermal energy supplied by the substation 

for space heating (SH) and domestic hot water (DHW).  

The load specifications are provided for a reference building, which is a small multi-family house. 

This building consists of five floors, with two dwelling units per floor, each unit having an area of 

50 m². In total, the building covers an area of 500 m². Located in Stuttgart, the building has been 

renovated to improve energy efficiency. The space heating demand for the building is specified to 

be 70 kWh per square meter per year. This demand profile is crucial in evaluating the performance 

of the integrated substation and the effectiveness of the MPC implementation. 

4.1 Simulation campaign for performance analysis of the developed 

substation 

To thoroughly analyze the performance of the developed substation, an extensive simulation 

campaign was conducted during the first week of December. During this campaign, a variety of 

district heating temperatures were tested to determine their impact on system efficiency and 

effectiveness. Additionally, different sizes of TES units were considered to evaluate how the 

storage capacity influences the overall performance of the substation. Various setpoints for the 

TES were also explored to understand how different operational parameters affect the system's 

stability and efficiency. The effect on the user-side delivered temperature was also examined. This 

comprehensive approach ensured that all relevant factors were taken into account, providing a 

detailed understanding of the substation's performance under diverse conditions. For the DH 

temperature, two constant values were considered: 30°C and 50°C. For the thermal TES, three 

different capacities were evaluated: 1 m³, 2 m³, and 3 m³. Regarding the setpoints of the TES, three 
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temperature values were examined: 55°C, 60°C, and 65°C. Table 4-1 presents the combinations 

of tests conducted for the different parameters and values considered in the simulation campaign.  

Table 4-1. Parameters and Values Considered in the Simulation Campaign 

Test number TDH (°C) Tank size (m³) Set point (°C) 

1 30 1 55 

2 50 1 55 

3 30 2 55 

4 50 2 55 

5 30 3 55 

6 50 3 55 

7 30 1 60 

8 50 1 60 

9 30 2 60 

10 50 2 60 

11 30 3 60 

12 50 3 60 

13 30 1 65 

14 50 1 65 

15 30 2 65 

16 50 2 65 

17 30 3 65 

18 50 3 65 

 

The size of our HP is 35 kW, and it has been carefully sized to effectively fulfill the heating load 

requirements. The heat pump tested in this study is a high-temperature model capable of producing 

output temperatures up to 80°C. 

Figure 4-1 shows temperature ranges for top of the tank and user-side temperature stability across 

various combinations of (setpoint, tank size and DH temperature). 

The x-axis labels depict various combinations as specified in Table 4-1. For the lower DH 

temperature (30°C, highlighted in blue), it is noted that the temperature range increases in 

correlation with both the TES setpoint and capacity. This trend suggests that as the TES setpoint 
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and capacity rise, the system's output temperature also escalates. Similarly, for the higher DH 

temperature (50°C, highlighted in pink), the same pattern emerges, where higher TES setpoints 

and capacities result in increased temperature ranges. In the lower plot (second subplot), it is 

consistently shown that the delivered temperature to the user remains stable across all examined 

combinations. This stability signifies that the substation is adept at maintaining a uniform user-

side temperature, ensuring dependable performance regardless of the specific operational 

conditions. Additionally, the analysis reveals that larger TES units and higher setpoints 

significantly boost output temperatures. Consequently, the system demonstrates its ability to 

provide stable and reliable temperatures to the user, affirming its effectiveness under various 

conditions. Outliers in this figure have been excluded for clarity.
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Figure 4-1. Temperature Ranges for top of the tank and User-Side Temperature Stability Across Various Combinations of (setpoint, tank size and DH temperature). Outliers 
Removed. 
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Figure 4-2 represents the performance of the HPON a minute-by-minute basis and the substation 

operational mode scheme. Additionally, electricity consumption and ON/OFF cycles have been 

investigated. In this analysis, the combinations of setpoints, tank sizes, and DH temperatures are 

indicated on the y-axis. The left side of the plot illustrates the HP performance, represented in 

gray, based on the total minutes of operation over one week for each test. It is also noted how much 

of this performance time was allocated to scheme 1 or scheme 2. According to figures and 

equations 3.46) to (3.49), it can be concluded that due to the DH temperature, transitioning to 

scheme 3 or scheme 4 is impossible. Specifically, when DH is set to 30°C, only scheme 1 is 

followed, as dictated by Eq. (3.46). This restriction highlights the influence of lower DH 

temperatures on the operational scheme selection. In general, it can be concluded that a higher DH 

temperature correlates with less HP operation time, while a lower DH temperature necessitates 

longer HP operation. This inverse relationship underscores the efficiency impact of DH 

temperature settings on HP performance. The HP's electricity consumption is displayed on the 

right side of the plot. Since electricity consumption is mainly related to HP performance, it can be 

observed that longer HP operation times result in higher electricity consumption. Additionally, the 

ON/OFF cycles of the HP are shown in blue. Each cycle represents the period from when the HP 

turns on to when it turns off. Generally, a higher DH temperature results in more ON/OFF cycles. 

When the DH temperature is lower, the HP needs to operate longer to reach the setpoint, thereby 

extending the operation time and reducing the number of ON/OFF cycles. Conversely, when the 

DH temperature is higher, the HP can quickly satisfy the setpoint, leading to an increased number 

of cycles compared to lower DH temperatures.  

The analysis reveals several key points. The selection of operational schemes is heavily influenced 

by the DH temperature, with lower temperatures restricting the system to scheme 1. Higher DH 

temperatures reduce the HP operation time, enhancing overall efficiency. Electricity consumption 

is proportional to the duration of HP operation, with longer operation times leading to higher 

consumption. The number of ON/OFF cycles increases with higher DH temperatures, as the HP 

can more rapidly achieve the setpoint temperature. These insights highlight the importance of DH 

temperature settings to balance HP efficiency, electricity consumption, and operational stability.
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Figure 4-2. Performance of HP minutely, operational schemes, electricity consumption, and ON/OFF cycles for one week. 
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Figure 4-3 represents the distribution of HP operation minutely by the hour of the day for various 

combinations of setpoints, tank sizes, and DH temperatures. The left y-axis displays the HP 

operating minutes, while the right y-axis shows the average thermal load in kWh. Each line 

corresponds to a specific combination of parameters as indicated in the legend. The black line with 

markers illustrates the average load curve. In examining the plot, it is observed that HP activity 

sharply increases in the early morning hours (around 4-6 AM), peaks during the morning (7-9 

AM), and gradually declines towards the afternoon. A secondary peak occurs in the evening (5-7 

PM), reflecting typical household heating demand patterns. This pattern suggests that the HPON 

curves closely follow the thermal load demand throughout the day, ensuring that the heating needs 

are met efficiently. The parameter combinations reveal that higher setpoints (e.g., 65°C) and larger 

tank sizes generally result in higher operation of HP during peak hours. This indicates that more 

frequent HP activation occurs with these settings, likely due to the need for maintaining higher 

temperatures and accommodating larger thermal storage.  

Lower DH temperatures (30°C) necessitate longer HP operation times to reach the setpoint, 

resulting in increased HPON compared to higher DH temperatures (50°C). The average load curve 

mirrors the HPON times, reinforcing the correlation between HP operational patterns and overall 

thermal load demand. Combinations such as (60, 1, 30) and (65, 3, 30) show significant activity 

during this period, suggesting that higher setpoints, larger tank sizes and low DH temperature lead 

to increased operation of the HP to meet the system's requirements.  



126 
 

 

Figure 4-3. The “distribution of HP operation” by the hour of the day for various combinations 
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Figure 4-4 provides a comprehensive analysis of the HP system's performance by displaying both 

the coefficient of performance (COP) of the system (COPsys) and the HPON times minutely 

categorized by scheme state.  

The left image displays a box plot of COPsys, representing the COP at the terminal between the HP 

and the TES. The box plot showcases the range and distribution of COPsys across various setpoints 

and tank sizes and DH temperatures. Notably, the COPsys values are higher when the system 

operates in scheme 2 compared to scheme 1. The median COPsys values increase significantly 

when the system moves from scheme 1 to scheme 2, indicating improved performance. In the right 

image, the performance of the HP is illustrated based on operational minutes across different 

combinations. The gray bars represent the total HP activation in a minute basis, while the colored 

segments denote the distribution of these counts across various schemes. When the system operates 

exclusively in scheme 1, the average COPsys ranges from approximately 2 to 5. However, when 

scheme 2 is engaged, the COPsys experiences a significant increase, demonstrating enhanced 

efficiency. 

The analysis further reveals that increasing the setpoint leads to a decrease in COPsys. This 

phenomenon is attributed to the corresponding rise in tank temperature, which, according to Eq. 

(3.46) to (3.49), reduces the probability of the system remaining in scheme 2. The right image 

illustrates this effect, showing that higher setpoints result in more operational time in scheme 1, 

where the COPsys is lower. Therefore, it can be concluded that by optimizing the DH temperature 

and setpoint levels to consistently meet the user setpoint, the system can be maintained in scheme 

2 for longer durations. This optimization would allow the substation to operate more efficiently, 

as indicated by the higher COPsys values in scheme 2. 
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Figure 4-4. A comprehensive analysis of the HP system's performance by displaying both the COPsys and the HPON minutely categorized by scheme state. 
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Figure 4-5 illustrate the charging and discharging processes for different tank sizes (1 m³, 2 m³, 

and 3 m³) under various setpoint and DH temperature conditions. The plots with a pink background 

represent the charging periods, while the plots with a blue background depict the discharging 

periods. Each subplot shows the energy density distribution for a specific tank size and set of 

conditions, with medians indicated for each combination. In the charging periods (pink 

background), the energy density distributions reveal that larger tanks (e.g., 2 m³ and 3 m³) 

generally store more energy. For instance, the 1 m³ tank's energy density peaks around 12.89 kWh 

for the (55, 1, 30) combination, whereas the 2 m³ and 3 m³ tanks show peaks at 26.01 kWh and 

39.34 kWh, respectively, for similar combinations. As the setpoint increases, the median energy 

stored also increases. For example, the median energy for the (65, 1, 30) combination in the 1 m³ 

tank reaches 20.11 kWh. This trend is consistent across all tank sizes, indicating that higher 

setpoints enhance the energy storage capacity of the system. During the discharging periods (blue 

background), the energy density distributions show that higher setpoints also lead to higher median 

energy utilization. For example, the 1 m³ tank discharges a median energy of 12.98 kWh for the 

(55, 1, 30) combination, while for the (65, 1, 30) combination, the median energy discharged is 

19.99 kWh. This pattern is observed across all tank sizes, with the 2 m³ and 3 m³ tanks showing 

even higher medians. The distributions during the discharging periods are generally tighter than 

those during the charging periods, suggesting more consistent energy utilization. The key insights 

from these plots are that larger tanks and higher setpoints significantly improve the energy storage 

and discharge capacities of the TES. The charging periods exhibit greater variability in energy 

storage, while the discharging periods show more stable energy utilization. This consistency 

during discharging is crucial for maintaining a reliable energy supply to meet user demands.  

In conclusion, optimizing tank size and setpoints can significantly enhance the overall performance 

of the substation. Larger tanks provide greater storage capacity, while higher setpoints ensure that 

the system can efficiently store and utilize energy. 
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Figure 4-5. Charging and discharging processes for different tank sizes (1 m³, 2 m³, and 3 m³) under various setpoint and DH temperature conditions
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Based on the extensive tests conducted across various important factors, several key insights have 

been gained regarding the performance and efficiency of the substation: 

• Tank Size Impact: Larger tanks (e.g., 2 m³ and 3 m³) significantly enhance the system's 

ability to store and discharge energy efficiently. They provide higher median energy storage 

and more consistent energy utilization during discharge periods, indicating a clear benefit 

in scaling up tank sizes. 

• Setpoint Influence: Higher setpoints contribute to increased energy storage capacity and 

improved system performance. However, they also introduce more variability during the 

charging periods and result in more frequent HP activation. Optimizing setpoints is crucial 

for balancing efficiency and stability. 

• Operational schemes: The system's performance is highly dependent on the operational 

scheme. Scheme 1 tends to operate with lower COPsys values (around 2 to 5), while scheme 

2 demonstrates significantly higher COPsys values, indicating better efficiency. Situation in 

which DH temperature is higher than return temperature from TES helps the system stay 

longer in scheme 2, further enhancing overall performance.  

• Charging and Discharging Consistency: The discharging periods exhibit tighter 

distributions compared to charging periods, indicating more consistent energy utilization. 

This consistency is vital for reliable energy supply to meet user demands. 

• Effect of DH Temperature: Lower DH temperatures require more frequent HP operations 

to maintain setpoints, reflecting higher energy demands. Higher DH temperatures reduce 

the frequency of HP operations, contributing to more stable and efficient system 

performance. 

Therefore, our rule-based control (RBC) has been selected based on this system specification: tank 

size of 2 m³ and tank setpoint of 60°C. All the hysteresis settings are the same as those discussed 

above in section 3.5. 
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4.2 RBC vs. MPC 

The objective of testing the MPC control described in this section is to compare its performance 

against a baseline, which involves a simulation under identical boundary conditions where the 

5GDHC substation is managed using a rule-based control strategy.  

The operating costs of the substation over the prediction horizon are minimized through an 

objective function, as represented by Eq. (4.1). These costs for a 5GDHC substation encompass 

the expenses for the electrical energy required to operate the heat pumps and hydraulic pumps, 

which are sourced from the grid.  

 

 

𝐽(𝑡𝑗) =  ∑ 𝐶𝑒𝑙

𝑘+𝑁−1

𝑗=𝑘

(𝑡𝑗)𝑊𝑒𝑙,𝑠𝑦𝑠(𝑡𝑗) 4.1) 

In this equation, 𝐶𝑒𝑙(𝑡𝑗) represents the price of electrical energy [€/kWh] at time 𝑡𝑗. The cost of 

electricity can vary over time, so this function reflects the dynamic pricing of electricity during the 

prediction horizon. 𝑊𝑒𝑙,𝑠𝑦𝑠 is the total electrical consumption of substation [kWh] at time 𝑡𝑗.  N is 

the length of the prediction horizon. This is the future time period over which the control actions 

are optimized. The controller predicts the system behavior and calculates the optimal control 

actions to minimize the objective function over this horizon. 𝑘 denotes the present or current time 

step. The controller is at time 𝑡𝑘, and it is looking to optimize performance over the future time 

steps from 𝑘 to 𝑘 + 𝑁 − 1. 

The primary goal of the substation, controlled either by MPC or RBC, is to ensure that the user-

side temperature remains at or above this threshold to ensure thermal comfort. Thermal discomfort 

occurs when the temperature on the user side of the system falls below a predefined threshold, in 

this case, 55°C. Mathematically, this can be expressed as Eq. (4.2). 

 

 

𝑄𝑡ℎ,𝑑𝑖𝑠𝑐 = ∑ 𝑚𝑎𝑥(0, 𝑄𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑(𝑗) − 𝑄𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑(𝑗))

𝑘+𝑁−1

𝑗=𝑘

 4.2) 

𝑄𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑(𝑗) is the heating power required at time 𝑗 to maintain 55°C. 𝑄𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑(𝑗)is the actual 

heating power supplied by the MPC at time 𝑗. 

Note: As discussed in the previous section, the set point of the tank was initially considered to be 

60°C. The primary reason for this choice was the hysteresis range of HA, which was set to [-5, 5]. 

Upon running the MPC, it was realized that this range was too broad, making it difficult for the 
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optimizer to properly optimize the substation. This issue is described in Appendix 1. Consequently, 

the decision was made to narrow this range to [0, 5]. As a result, the set point of the tank for RBC 

was adjusted to 55°C, aligning with the user temperature side which was also set to 55°C. This 

adjustment is crucial for accurately assessing the performance differences between MPC and RBC. 

For all tests, the setpoints considered in the search space of DP were 50, 55, 60, and 65°C. 

 

Test 1: Performance assessment of MPC and RBC with constant electricity cost 

In this test, the performance of MPC and RBC is compared while the cost of electricity is 

consistently maintained at a fixed rate of 0.3 €/kWh. To facilitate a controlled comparison of the 

two control strategies, this constant electricity cost is assumed for the entire duration of the test. 

The temperature of the district heating system is varied between 40°C and 55°C. The test is 

conducted over the first week of December. 

Figure 4-6  displays the results of test 1. In the first subplot, the thermal load is illustrated, with 

the black line representing the actual measured values and the colorful crosses indicating 

predictions made every hour for the subsequent 24 hours. The overlapping prediction lines 

highlight the continuous nature of the forecasting process. The second subplot presents the chosen 

setpoints, with solid blue lines indicating RBC setpoints and solid red lines representing MPC 

optimal setpoints. The MPC setpoints are shown to be more dynamic compared to the RBC 

setpoints. This dynamism reflects MPC's ability to optimize setpoints in real-time, potentially 

leading to more efficient system performance. The dotted blue and red lines depict the temperature 

delivered to the user under RBC and MPC, respectively. 

In the third subplot, the stored energy in the tank is depicted, with the blue line representing the 

performance of the RBC and the red line representing the performance of the MPC. The unit of 

measurement for the stored energy is kilowatt-hours (kWh). 

The fourth subplot relates to the cumulative electricity cost of the substation. The cumulative cost 

under the RBC is shown by the blue line, while the cumulative cost under the MPC scheme is 

represented by the red line. The subplot demonstrates that the cumulative energy cost under MPC 

is generally lower than that under RBC, suggesting that MPC is more effective in minimizing 

energy consumption costs over time. This cost reduction is quantified at 7.44%. 

Finally, the fifth subplot presents the temperature of the DH system, shown by the black line, and 

the COP of the system, represented by scatter points. The color of the scatter points indicates the 
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active control scheme, providing insights into the performance efficiency of the system under 

different control strategies. 

 
Figure 4-6. Result of comparison the performance of MPC vs. RBC with constant electricity price (test 1) 

Figure 4-7 represents the activation time of the HP under different schemes, providing a 

comparison between RBC and MPC. In this analysis, both the total HPON time and the number of 

ON/OFF cycles were evaluated to assess the performance and efficiency of each control. In RBC, 

the total activation time of the HP was recorded as 2495 minutes. Scheme 1 was predominantly 

utilized, accounting for 1753 minutes or 70.3% of the total HPON time. Scheme 2, in contrast, was 

active for 742 minutes, representing 29.7% of the total activation time. The number of ON/OFF 

cycles in the RBC was relatively low, with 38 cycles observed throughout the test period. In MPC, 

the total HPON time was slightly lower, at 2341 minutes. Scheme 1 was used, with an activation 

time of 1517 minutes, constituting 64.8% of the total HPON time. Scheme 2 also contributed 

significantly, with an activation time of 824 minutes, or 35.2% of the total. An increase in the 

frequency of ON/OFF cycles was observed in MPC, with 49 cycles recorded. It should also be 

noted that in the objective function, no constraints for ON/OFF cycles were considered. 

 
Figure 4-7. Activation time of the HP in test 1 

These results illustrate distinct operational characteristics between the RBC and MPC. In the RBC, 

HP operation was heavily concentrated in scheme 1, with fewer transitions to scheme 2. 

Conversely, the MPC exhibited a more balanced distribution of activation time between scheme 1 

and scheme 2, coupled with a higher frequency of switching ON and OFF. Being more in scheme 

2 provides the system with the opportunity to achieve greater efficiency. 

 

Test 2: Performance assessment of MPC and RBC with time of use (TOU)  

In Test 2, all conditions remain the same as in Test 1 except for the consideration of TOU pricing 

for electricity. A variable price is applied, with a rate of 0.15 €/kWh during off-peak hours (00:00 

to 07:00) and 0.30 €/kWh for the rest of the day. Figure 4-8 shows the results of Test 2. As can be 

seen, in general, the MPC managed to reduce the total electricity cost by 6.7%.  

 
Figure 4-8. Result of comparison the performance of MPC vs. RBC with TOU (test 2) 
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Figure 4-9. Activation time of the HP in test 2 

Figure 4-9 illustrates the activation time of the HP across various schemes, facilitating a 

comparison between RBC and MPC.  In the RBC, the HP was activated for a total of 2495 minutes. 

Scheme 1 dominated this period, being active for 1753 minutes, which accounts for 70.3% of the 

total HPON time. Scheme 2, on the other hand, was operational for 742 minutes, representing 29.7% 

of the total activation time. The number of ON/OFF cycles recorded in RBC was relatively low, 

with 38 cycles observed during the test period. In the MPC, the total HPON time was slightly 

reduced to 2372 minutes. Scheme 1 was again the primary scheme, with an activation time of 1413 

minutes, constituting 59.6% of the total HPON time. Scheme 2 also contributed significantly, being 

active for 959 minutes or 40.4% of the total. There was an increase in the frequency of ON/OFF 

cycles in the MPC, with 50 cycles recorded.  

When comparing the results of test 1 and test 2, it becomes evident that the total HPON time was 

not only reduced by the MPC, but it also had an increased likelihood of operating in scheme 2. 

The opportunity for MPC to spend more time in scheme 2 contributed to its enhanced efficiency. 

Besides, during the analysis, it was observed that the running time of the HP during the TOU 

period (from 00:00 to 07:00) increased by 9% in test 2 compared to test 1. This increase indicates 

that the MPC attempted to take advantage of the TOU incentives. The slight increase in the HP's 

operational time during the TOU period suggests that the MPC recognized and responded to the 

cost-saving opportunities presented by the TOU pricing. However, the marginal change also 

implies that the TOU pricing scheme may not have been sufficiently attractive to significantly 

influence the MPC's overall strategy. Despite this, it is noteworthy that the MPC did make an effort 

to optimize its performance based on the available incentives, demonstrating a level of 

responsiveness to dynamic pricing models. This responsiveness, even if limited, showcases the 

potential for further optimization and efficiency improvements under more compelling pricing 

schemes. 

 

Test 3: Performance assessment of MPC and RBC with variable electricity price 

In the evolving landscape of energy management, understanding how different control strategies 

perform under varying electricity prices is crucial. Test 3 aims to evaluate the performance of MPC 

and RBC when subjected to variable electricity pricing. In the previous tests, we considered 

constant electricity prices (Test 1) and TOU pricing (Test 2). However, real-world scenarios often 
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involve more dynamic pricing structures. Thus, it is essential to assess how these controllers adapt 

and perform when faced with fluctuating prices. Figure 4-10 illustrates the variable electricity price 

profile over a typical day, highlighting the complexity and challenges associated with managing 

energy costs effectively. It should be noted that the prices are hypothetical. 

 

 
Figure 4-10. Electricity price in test 3 

Figure 4-11 shows the results of the performance comparison between MPC and RBC under these 

variable pricing conditions. In general, MPC managed to reduce electricity costs by 21.7% 

compared to RBC, demonstrating its superior ability to optimize energy consumption in response 

to price fluctuations. 

 
Figure 4-11. Result of comparison the performance of MPC vs. RBC with variable electricity price (test 3) 

Figure 4-12 presents the activation time of the HP across different schemes, enabling a comparison 

between RBC and MPC. Under the RBC strategy, the total HP activation time amounted to 2495 

minutes. The majority of this activation occurred under scheme 1, which was operational for 1753 

minutes, accounting for 70.3% of the total HPON time. Scheme 2 was active for 742 minutes, 

representing 29.7% of the activation time. The RBC strategy exhibited a relatively low number of 

ON/OFF cycles, with 38 cycles recorded. In contrast, the MPC strategy demonstrated a different 

pattern. The total HPON time for MPC was 2374 minutes, showing a slight reduction compared to 

RBC. Scheme 1 was predominant, with an activation time of 1442 minutes, constituting 60.7% of 

the total HPON time. Scheme 2 contributed significantly with 932 minutes, making up 39.3% of 

the activation time. The MPC strategy resulted in a higher number of ON/OFF cycles, with 51 

cycles observed during the test period. 

 
Figure 4-12. Activation time of the HP in test 3 

This comparison highlights that while the MPC strategy reduced the total HP activation time, it 

also increased the frequency of ON/OFF cycles. This indicates a more dynamic response to the 

variable electricity prices, potentially optimizing energy usage more effectively. The redistribution 

of activation times across different schemes in MPC, particularly the significant use of scheme 2, 

suggests a strategic adaptation to varying electricity prices to achieve cost efficiency. The analysis 

reveals that MPC not only managed to reduce the overall activation time by approximately 4.8% 
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compared to RBC but also exhibited a higher adaptability to fluctuating electricity prices. This 

adaptability is reflected in the increased number of cycles and the redistribution of activation times 

across different schemes, showcasing MPC's potential for dynamic pricing models. 

 

Figure 4-13. HP operation distribution by hour with electricity prices and average of thermal load (test 3) 

Figure 4-13 depicts the HP operation distribution by hour over the simulation horizon. The daily 

fluctuations in electricity price are indicated by the black line, and the green line represents the 

average thermal load throughout the simulation timeframe. During midnight hours, the MPC 

activates the HP more frequently than the RBC due to lower electricity prices. This pattern is also 

evident during other low-cost periods. During these times, MPC makes extensive use of the HP to 

maximize the charging of the TES, achieving its highest HP operation rates when electricity prices 

are at their lowest. In contrast, during peak electricity price periods, such as between 07:00 and 

08:00 in the morning, RBC shows the highest levels of HP operation. The MPC effectively 

manages HP operation during off-peak hours (00:00 to 06:00, 13:00 to 17:00, and 22:00 to 23:00) 

for a total of 1355 minutes, compared to RBC's 879 minutes. This represents a 35% increase in 

off-peak HP’s operation time by the MPC. 

Besides, it is evident that the RBC operation bars tend to follow the load pattern more closely, 

whereas the MPC bars do not exhibit the same correlation. The MPC can predict future trends, 

including electricity prices and load peaks, enabling it to make optimal decisions. For instance, at 

17:00, the MPC identifies an upcoming load peak and recognizes that the current electricity price 

is low. Consequently, it opts to run the HP extensively. Conversely, at 18:00, when the electricity 

price is high, the MPC strategically decides to minimize HP operation and instead discharges the 

TES. 

Table 3-1 outlines the economic assessment of test 1, 2 and 3 conducted to compare the 

performance of RBC and MPC under various electricity pricing schemes.  

Table 4-2. Economic assessment of test 1, 2 and 3 

 

For the first test, a constant electricity price of 0.3 €/kWh was used for both off-peak and peak 

periods, with a thermal demand cost of 0.05 €/kWh. Under the RBC strategy, the total electricity 

cost was 71.28 €, the thermal cost was 71.84 €, and the total bill amounted to 143.12 €. When 

MPC was applied under the same pricing conditions, the total electricity cost decreased to 65.97 
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€, while the thermal cost slightly increased to 71.41 €, resulting in a total bill of 137.38 €. This 

represented a 7.44% reduction in electricity costs, a 0.5% decrease in thermal costs, and an overall 

decrease of 4% in the total bill. 

In the second test, TOU pricing was considered, with off-peak electricity priced at 0.15 €/kWh and 

peak electricity remaining at 0.3 €/kWh. The thermal demand cost remained at 0.05 €/kWh. Under 

the RBC strategy, the total electricity cost was 65.64 €, the thermal cost was 71.84 €, and the total 

bill was 137.48 €. With MPC, the total electricity cost was reduced to 61.24 €, the thermal cost 

slightly increased to 73.85 €, and the total bill was 135.09 €. These results indicated a 6.7% 

reduction in electricity costs, a 2.7% increase in thermal costs, and an overall 1.73% reduction in 

the total bill.  

Test 3 utilized variable electricity pricing, which more accurately reflects real-world conditions. 

Under RBC, the total electricity cost was 63.88 €, with a thermal cost of 71.84 €, leading to a total 

bill of 135.72 €. When MPC was applied, the total electricity cost significantly decreased to 50.01 

€, while the thermal cost increased to 73.13 €, resulting in a total bill of 123.14 €. This test showed 

a substantial 21.7% reduction in electricity costs, a 1.76% increase in thermal costs, and an overall 

9.26% decrease in the total bill.  

Across all tests, the MPC strategy consistently outperformed RBC in terms of reducing total 

electricity costs. While the thermal costs slightly increased in some scenarios, the overall total bill 

was always lower with MPC, demonstrating its effectiveness in reducing costs under varying 

pricing schemes. The most significant savings were observed under variable electricity pricing, 

highlighting the potential of MPC to adapt to dynamic pricing environments and achieve 

substantial cost reductions. 

Table 4-3 provides a comprehensive overview of various performance metrics under different 

control strategies and test conditions, highlighting key differences in operation and efficiency. 

Table 4-3. A comprehensive overview of various performance metrics for test 1, 2 and 3 

 

 

The analysis shows that the total HP operation time was consistently lower for MPC, indicating 

more optimized usage of the heat pump. The number of ON/OFF cycles increased with MPC, 

suggesting a more dynamic response to changing conditions. It is beneficial to include a term in 

the objective function to reduce these cycles. 
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The amount of power that the controller failed to cover (Qth, dis) was a bit higher in MPC 

controller. However, this value remains very low. Further investigation, incorporating a penalty in 

the objective function, could help in reducing this uncovered power. 

 

Test 4: Performance assessment of MPC and RBC with constant electricity price and DH 

temperature following load profile 

Test 4 was conducted to assess the performance of MPC and RBC under conditions of constant 

electricity price while ensuring the DH temperature follows a load profile and varies between 40°C 

to 55°C. In this scenario, the DH temperature was regulated to align with the load profile, 

presenting a more challenging operational environment for both control strategies. The objective 

was to observe how MPC would manage the situation compared to RBC under these specific 

conditions. MPC was expected to demonstrate its capability to predict future load variations and 

adjust the DH temperature proactively, thereby optimizing energy usage and maintaining the 

desired thermal comfort. 

Figure 4-14 shows the result of Test 4. As can be observed, MPC managed to reduce the electricity 

cost by 6.83 % compared to RBC.  

 
Figure 4-14. Result of comparison the performance of MPC vs. RBC with constant electricity price and DH temperature following 

load profile (test 4) 

 
Figure 4-15. Activation time of the HP in test 4 

Figure 4-15 illustrates the activation time of the HP across different schemes, allowing for a 

comparison between RBC and MPC. Under the RBC control strategy, the total activation time of 

the HP was 2072 minutes. Most of this activation time was dominated by scheme 2, which operated 

for 1056 minutes, representing 51% of the total HPON time. Scheme 1 accounted for 1016 minutes, 

or 49% of the activation period. The RBC approach recorded a low number of ON/OFF cycles, 

totaling 44 cycles. In contrast, the MPC control strategy showed a different pattern. The total 

activation time of the HP under MPC was 1941 minutes, indicating a reduction compared to RBC. 

Scheme 2 was the primary scheme, with an activation time of 1080 minutes, accounting for 55.6% 

of the total HPON time. Scheme 1 was active for 861 minutes, making up 44.4% of the activation 

period. The MPC strategy resulted in a higher number of ON/OFF cycles, with 51 cycles recorded 

during the test. This comparison reveals that while the MPC strategy managed to reduce the total 

HP activation time, it also led to an increase in the frequency of ON/OFF cycles.  



140 
 

Table 4-4 presents the economic assessment of test 4. For this test, a constant electricity price of 

0.3 €/kWh was applied for both off-peak and peak periods, with a thermal demand cost of 0.05 

€/kWh. Under the RBC strategy, the total electricity cost was 60.24 €, the thermal cost was 70.71 

€, and the total bill amounted to 130.95 €. When MPC was applied under the same pricing 

conditions, the total electricity cost decreased to 56.12 €, while the thermal cost remained 

unchanged at 70.97 €, resulting in a total bill of 127.09 €. This represented a 6.83% reduction in 

electricity costs and an overall decrease of 2.94% in the total bill. The thermal costs did change 

only 0.3% between the control strategies, indicating that the savings achieved by MPC were 

mainly due to more efficient electricity usage. 

Table 4-4. Economic assessment of test 4 

 

Table 4-5 provides a comprehensive overview of various performance metrics for Test 4, 

conducted to compare the performance of RBC and MPC. The amount of power that the controller 

failed to cover was 0.07% under the RBC strategy. In contrast, this value increased to 0.17% under 

the MPC strategy.  

Table 4-5. A comprehensive overview of various performance metrics for test 4 

 

 

Test 5: Comparison of MPC and RBC with constant electricity price and inverse relationship 

between DH temperature and load 

Test 5 was performed to assess the performance of MPC and RBC under a constant electricity 

price, with the DH temperature inversely related to the load. In this scenario, the DH temperature 

was regulated to be lower when the load was high and higher when the load was low, creating a 

more complex operational environment for both control strategies. DH temperature varied between 

45°C to 55°C. 

 Figure 4-16 presents the results of Test 5. It can be observed that MPC managed to reduce the 

electricity cost to 67.34 euros, which represents a 4.08% decrease compared to the RBC cost of 

70.21 euros. 

 
Figure 4-16. Result of Comparison of MPC and RBC with constant electricity price and inverse relationship between DH 

temperature and load (test 5) 
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Figure 4-17 illustrates the activation time of the HP. Under the RBC control strategy, the total 

activation time of the HP was 2482 minutes. Most of this activation time was dominated by scheme 

1, which operated for 1566 minutes, representing 63.1% of the total HPON time. Scheme 2 

accounted for 916 minutes, or 36.9% of the activation period. The RBC approach recorded a low 

number of ON/OFF cycles, totaling 37 cycles. In contrast, the MPC control strategy showed a 

different pattern. The total activation time of the HP under MPC was 2400 minutes, indicating a 

reduction compared to RBC. Scheme 1 was the primary scheme, with an activation time of 1242 

minutes, accounting for 51.7% of the total HPON time. Scheme 2 was active for 1158 minutes, 

making up 48.2% of the activation period. The MPC strategy resulted in a higher number of 

ON/OFF cycles, with 51 cycles recorded during the test. 

 
Figure 4-17. Activation time of the HP in test 5 

Table 4-6 presents the economic assessment of test 5. For this test, a constant electricity price of 

0.3 €/kWh was applied for both off-peak and peak periods, with a thermal demand cost of 0.05 

€/kWh. Under the RBC strategy, the total electricity cost was 70.21 €, the thermal cost was 70.18 

€, and the total bill amounted to 140.39 €. When MPC was applied under the same pricing 

conditions, the total electricity cost decreased to 67.34 €, while the thermal cost slightly increased 

to 70.9 €, resulting in a total bill of 138.24 €. This represented a 4.08% reduction in electricity 

costs, a 1% increase in thermal costs, and an overall decrease of 1.53% in the total bill.  

Table 4-6. Economic assessment of test 5 

 

Table 4-7 provides a comprehensive overview of various performance metrics for test 5, conducted 

to compare the performance of RBC and MPC. Under the RBC strategy, the maximum COPsys 

was 16.52, while the minimum was 4.85. The amount of power that the controller failed to cover 

was 0.06%. In contrast, the MPC strategy demonstrated an identical maximum COPsys at 16.52, 

with the minimum 4.37. However, the amount of power that the controller failed to cover was 

higher for MPC at 0.21%. Although the Qth, disc value increased with MPC, it remains relatively 

low, indicating that further optimization could reduce this discrepancy. 

Table 4-7. A comprehensive overview of various performance metrics for test 5 

 



142 
 

 

Test 6: Comparison of MPC and RBC with variable electricity price and higher DH 

temperature 

In Test 6, the performance of MPC and RBC was assessed under a variable electricity price, with 

the DH temperature which varies between 40°C to 60°C. In previous tests, as discussed in Table 

3-8 and Table 3-10, the substation could only transition to schemes 1 and 2. However, in this test, 

it can also transition to scheme 3. The findings of this evaluation are depicted in Figure 4-18.  It is 

evident from the results that the electricity cost was reduced to 47.11 euros using MPC, marking 

a 18.6% reduction compared to the RBC cost of 57.9 euros. 

Figure 4-19 illustrates the activation time of the HP across different schemes for both RBC and 

MPC, as well as the number of ON/OFF cycles for each control strategy. Under the RBC strategy, 

the total activation time of the HP was recorded as 2167 minutes. This activation time was 

predominantly spent in Scheme 1, which accounted for 1410 minutes or 65.1% of the total HPON 

time. Scheme 2 saw the HP active for 274 minutes, representing 12.6% of the total activation 

period. Additionally, scheme 3 accounted for 483 minutes, making up 22.3% of the total activation 

time. The RBC strategy recorded 39 ON/OFF cycles, indicating a moderate frequency of activation 

and deactivation events. In contrast, the MPC strategy demonstrated a different pattern in HP 

activation time, with a total of 2104 minutes. The majority of this time, 1225 minutes or 58.2% of 

the total HPON time, was also spent in scheme 1. Scheme 2 had the HP active for 296 minutes, 

accounting for 14.1% of the total activation period. Scheme 3 was used for 583 minutes, 

representing 27.7% of the total activation time. The MPC strategy resulted in a higher number of 

ON/OFF cycles, with 53 cycles recorded.   

 
Figure 4-18. Result of Comparison of MPC and RBC with constant electricity price and higher DH temperature (test 6) 

 
Figure 4-19. Activation time of the HP in test 6 

The substation has activated scheme 4, as depicted in Figure 4-19. The detailed conditions for this 

activation are provided in Table 3-6, which specifies that 𝑇𝑠𝑒𝑡,𝑑𝑖𝑟𝑒𝑐𝑡_𝐷𝐻 is set to 60°C. Notably, 

during this test, the district heating temperature does not exceed 60°C, prompting an investigation 

into the activation of scheme 4. Exceptions to the scheme transitions, described in Appendix 2, 

reveal that if the district heating temperature exceeds 55°C and the return temperature of the TES 

(𝑇𝑟𝑒𝑡,𝑇𝐸𝑆) is also above 55°C, the controller is restricted from switching to schemes 1, 2, or 3. This 
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restriction is due to the maximum allowable input temperature for the evaporator of the heat pump 

(𝑇𝑖𝑛,𝑀𝑎𝑥,𝐻𝑃) being set to 55°C. This limit, set by the manufacturer, ensures the proper operation of 

the heat pump's evaporator. 

Since the control signal is ON, only two possibilities exist. The first is to prevent the substation 

from bringing the heat pump into the circuit until district heating temperature or 𝑇𝑟𝑒𝑡,𝑇𝐸𝑆 falls 

below 𝑇𝑖𝑛,𝑀𝑎𝑥,𝐻𝑃. In this scenario, schemes 1, 2, or 3 can be utilized. 

However, the disadvantage of this approach is that the heat pump frequently turns on and off, 

potentially causing damage over time, which is not recommended. The second approach, which 

has been implemented, is to activate scheme 4. Although this ensures safe control, it also has 

drawbacks. If district heating temperature is lower than the temperature at the top of the tank, it 

will reduce the tank temperature, which is not ideal. Additionally, as long as the control signal is 

ON and scheme 4 is active, power must be purchased from DH, increasing costs as shown in Table 

4-8. If the heat pump could be turned on, less money would be spent on DH power. 

 

Table 4-8. Economic assessment of test 6 

 

 

 

 

 

 

 

Table 4-8 compares the costs associated with RBC and MPC in test 6. Similar to test 3, variable 

electricity pricing was employed to simulate real-world conditions, with district heating priced at 

(0.05 €/kWh). The total electricity cost for MPC is 18.6% lower than RBC, resulting in a savings 

of 10.79 €. The total district heating cost for MPC is 25.15% higher than RBC, leading to a 

spending more money for buying from DH. Consequently, the overall total bill for MPC is 10.1% 

higher than that of RBC, providing a total cost increment of 15.29 € for one week of simulation. 

As previously noted, this limitation pertains to special cases that may occur, but not often. 

 

Table 4-9. A comprehensive overview of various performance metrics for test 6 
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Table 4-9 provides a detailed comparison of various performance metrics for RBC and MPC. 

Under the RBC strategy, the maximum COPsys was 16.18, while the minimum was 4.28. The HP 

was operational for 2167 minutes, with 39 cycles of activation. Additionally, the Qth, disc was low 

at 0.1%. In contrast, the MPC strategy showed an identical maximum COPsys at 16.18, with the 

minimum at 3.29. The HP was operational for a slightly shorter duration of 2104 minutes but had 

more frequent activations, with 53 cycles. The Qth, disc increased slightly to 0.75%.  

 

Test 7: Comparison of MPC and RBC with constant electricity prices and realistic DH 

temperatures 

In test 7, DH temperature varies between 43°C and 55°C to reflect realistic conditions. Realistic 

conditions in DH temperature refer to the typical fluctuations observed in DH systems, often 

influenced by daily and seasonal variations in demand. For instance, during colder periods or peak 

usage times in the morning and evening, DH temperatures might be higher to meet increased 

heating needs, while during milder periods or off-peak times, temperatures are lower. This 

dynamic range of temperatures, reflecting real-world operational patterns, ensures that the system 

can effectively respond to varying heat demands throughout the day. 

The electricity price was considered constant to isolate the impact of DH temperature variations 

on system performance. The results, illustrated in Figure 4-20, show that MPC achieved a cost of 

61.39 euros, significantly lower than the 67.09 euros incurred by RBC. This represents an 8.5% 

reduction in electricity cost.  

Figure 4-21 displays the activation duration of the HP across various schemes for both RBC and 

MPC strategies, along with the number of ON/OFF cycles for each control method. For the RBC 

strategy, the total HP activation time was observed to be 2351 minutes. This time was mainly 

concentrated in scheme 1, which accounted for 1491 minutes or 63.4% of the total HPON time. 

scheme 2 had the HP active for 860 minutes, representing 36.6% of the total activation period. The 

RBC strategy exhibited 40 ON/OFF cycles, indicating a moderate frequency of switching events. 

 

Figure 4-20. Comparison of MPC and RBC with constant electricity prices and realistic DH temperatures (test 7) 

 
Figure 4-21. Activation time of the HP in test 7 

Conversely, the MPC strategy showed a total HP activation time of 2144 minutes. In this strategy, 

scheme 1 was used for 1039 minutes, making up 48.5% of the total HPON time, while scheme 2 
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accounted for 1105 minutes or 51.5% of the activation time. The MPC strategy resulted in a higher 

number of ON/OFF cycles, with 48 cycles recorded, indicating a more frequent switching pattern 

compared to RBC. 

 

Figure 4-22. HP operation distribution by hour with electricity prices, average of thermal load and DH temperature (test 7) 

Figure 4-22 illustrates that the electricity price remains constant. The main incentive for the MPC 

in this scenario is the DH temperature. For instance, at 00:00, 01:00, 09:00, 10:00 and 21:00 when 

the DH temperature is elevated, the MPC decided to activate the HP to charge the tank because in 

this case the COPsys is higher. Therefore, without considering price incentives, MPC find it hard 

to reduce the total cost of substation.  

Table 4-10. Economic assessment of test 7 

 

Table 4-10 presents the economic assessment of test 7. For this test, a constant electricity price of 

0.3 €/kWh was applied for both off-peak and peak periods, with a thermal demand cost of 0.05 

€/kWh. Under the RBC strategy, the total electricity cost was 67.09 €, the thermal cost was 71.19 

€, and the total bill amounted to 138.28 €. When MPC was applied under the same pricing 

conditions, the total electricity cost decreased to 61.39 €, while the thermal cost slightly increased 

to 71.98 €, resulting in a total bill of 133.37 €. This represented an 8.5% reduction in electricity 

costs, a 1.09% increase in thermal costs, and an overall decrease of 3.55% in the total bill.  

 

Table 4-11. A comprehensive overview of various performance metrics for test 7 

 

 

Table 4-11 provides a comprehensive overview of various performance metrics for test 7, 

conducted to compare the performance of RBC and MPC. Under the RBC strategy, the maximum 

COPsys was 14.25, while the minimum was 4.46. The amount of power that the controller failed to 

cover was 0.14%. In contrast, the MPC strategy demonstrated an identical maximum COPsys at 

14.25, with the minimum 4.01. However, the amount of power that the controller failed to cover 

was higher for MPC at 0.29%. Although the Qth, disc value increased with MPC, it remains low. 
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Test 8: Evaluation of MPC and RBC performance with realistic electricity pricing and DH 

temperatures 

In Test 8, the performance of MPC and RBC was evaluated under realistic conditions, with the 

DH temperature ranging between 43°C and 55°C and realistic electricity pricing as shown in 

Figure 4-10. The results, illustrated in Figure 4-23, indicate that MPC achieved a cost of 45.61 

euros, significantly lower than the 59.96 euros incurred by RBC. This represents a 23.9% reduction 

in electricity cost, highlighting the efficiency of MPC in managing both realistic electricity pricing 

and district heating temperatures.  

 

Figure 4-23. Evaluation of MPC and RBC performance with realistic electricity pricing and DH temperatures (test 8) 

Figure 4-24 depicts the activation duration of the HP across various schemes for both RBC and 

MPC strategies, along with the count of ON/OFF cycles for each control method. For the RBC 

strategy, the total HP activation time was measured at 2351 minutes. This period was 

predominantly occupied by scheme 1, which accounted for 1491 minutes or 63.4% of the total 

HPON time. Scheme 2 recorded the HP being active for 860 minutes, constituting 36.6% of the 

total activation time. The RBC strategy exhibited 40 ON/OFF cycles, indicating a moderate 

frequency of switching events. Conversely, the MPC strategy demonstrated a total HP activation 

time of 2128 minutes. Within this strategy, scheme 2 accounted for 1173 minutes, representing 

55.1% of the total HPON time, while scheme 1 accounted for 955 minutes or 44.9% of the activation 

time. The MPC strategy resulted in a higher number of ON/OFF cycles, with 54 cycles recorded, 

indicating a more frequent switching pattern compared to RBC. 

 

Figure 4-24. Activation time of the HP in test 8 

 
Figure 4-25. HP operation distribution by hour with electricity prices and average of thermal load (test 8) 

Figure 4-25 shows the HP operation distribution by hour over the simulation horizon. The 

electricity price, the average thermal load during the simulation period and DH temperature are 

presented.  

MPC frequently operates the HP during periods of low electricity prices, such as midnight, 15:00 

to 17:00, and 22:00 to midnight, to maximize the charging of the TES. In contrast, RBC shows the 

highest HP operation during peak electricity cost at 07:00 in the morning. RBC HP operation 
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follows the load profile closely, while MPC typically tries to predict future conditions and charges 

the tank at favorable times when the cost is low, and the DH temperature is high enough. 

Comparing MPC and RBC, it is evident that MPC effectively manages the thermal load by 

utilizing low-cost hours to charge the TES. MPC managed to turn on the HP for 1,295 minutes 

during off-peak times, while RBC did so for only 1,013 minutes, which is approximately 22% 

more. However, during peak thermal load hours, MPC operates the HP less often than RBC. 

Additionally, at 23:00, when the DH temperature was high and electricity costs were low, MPC 

decided to charge the tank as much as possible. 

Table 4-12 compares the costs associated with RBC and MPC in test 8. Similar to test 3, variable 

electricity pricing was employed to simulate real-world conditions, with district heating priced at 

(0.05 €/kWh). The total electricity cost for MPC is 23.93% lower than RBC, resulting in a savings 

of 14.35€. The total district heating cost for MPC is 3.07% higher than RBC. Consequently, the 

overall total bill for MPC is 9.21% lower than that of RBC, providing a total cost reduction of 

12.09€ for one week of simulation. 

 
Table 4-12. Economic assessment of test 8 

 
 

Table 4-13 provides a comprehensive overview of various performance metrics for test 8, 

conducted to compare the performance of RBC and MPC. Under the RBC strategy, the maximum 

COPsys was 14.25, while the minimum was 4.46. The amount of power that the controller failed to 

cover was 0.14%. In contrast, the MPC strategy demonstrated an identical maximum COPsys at 

14.25, with the minimum 4. However, the amount of power that the controller failed to cover was 

a bit lower for MPC at 0.11%. Although the Qth, disc value increased with RBC, it remains low. 

Table 4-13. A comprehensive overview of various performance metrics for test 8 

 
 

 

4.2.1 Concluding remarks 

In this chapter, the performance of MPC and RBC strategies for district heating systems was 

evaluated across various scenarios. The tests compared the effectiveness of both control methods 

under constant, TOU, and variable electricity pricing schemes. The results demonstrated that MPC 

consistently outperformed RBC in reducing electricity costs and optimizing energy consumption. 

MPC's advanced algorithm allows for dynamic adjustment of setpoints in real-time, effectively 
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responding to fluctuating electricity prices and varying thermal loads. This capability leads to 

significant cost savings and improved system efficiency, making MPC a more viable solution for 

modern district heating systems. 

The study revealed that MPC's ability to predict future load variations and adjust operations 

proactively resulted in lower overall energy costs. Under constant electricity pricing, MPC 

achieved a cost reduction of 4% compared to RBC. In the TOU pricing scenario, MPC further 

optimized energy consumption by shifting usage to off-peak periods, resulting in a 1.73% total 

cost saving. The most notable performance was observed under variable electricity pricing, where 

MPC reduced total costs by a substantial 9.26%. In the most realistic scenario (Test 8), where both 

the electricity price and DH temperature exhibit realistic variations, the MPC demonstrated its 

efficiency by achieving a 23.93% reduction in electricity costs. Additionally, this optimization led 

to a 9.21% decrease in the total bill over the span of one week. This significant cost saving 

highlights the potential of MPC to manage energy consumption more effectively under real-world 

conditions. 

The flexibility and adaptability of MPC were also demonstrated in its performance under different 

district heating temperature strategies. When the DH temperature followed the load profile, MPC 

optimized energy usage better than RBC, achieving a 6.83% reduction in electricity costs. In 

scenarios where the DH temperature was inversely related to the load, MPC still managed 

significant cost savings, showing its robustness in various operational contexts. 

Furthermore, the study highlighted the operational advantages of MPC beyond cost savings. By 

considering higher temperatures for the district heating system, both RBC and MPC systems were 

able to transition through all operational schemes, including handling exception conditions that 

may arise. This comprehensive control over various schemes and potential exceptions underscores 

MPC's robustness and adaptability in maintaining efficient and reliable system performance. 

Overall, the study illustrates that MPC is a superior control strategy for district heating systems, 

offering substantial economic and operational benefits over traditional RBC methods. The ability 

to dynamically adjust to real-time conditions makes MPC highly effective in reducing costs and 

improving system efficiency.  
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Chapter 5 

5 Conclusions and recommendation for 

further work 
 

This study provides an overview of the evolution and operational dynamics of DHCNs, 

particularly focusing on the transition from conventional systems to the advanced 5GDHCNs. 

These innovative systems represent a significant advancement in terms of effective energy 

management from a circular energy perspective, especially in application characterized by 

concurrent heating and cooling needs all over the year. Despite the benefits identified, the complex 

management of distributed energy source in 5GDHCNs requires sophisticated control strategies to 

be implemented at user substations, aimed to both the minimize the energy use and to shift energy 

use towards the most favorable hours of the day.  

The research underscores the fundamental role of advanced controls (particularly the MPC) in 

enhancing the effective operation of these substations. MPC’s predictive capabilities allow the 

system to make informed, efficient decisions based on forecasted data, significantly optimizing 

the performance of TES and HP systems.  

The PhD research involved developing several models to implement MPC effectively: 

• A flexible ROM to precisely forecast thermal load in residential buildings. 

• A detailed TES model to optimize performance, improve energy efficiency, and ensure 

reliable energy supply, fulfilling three critical objectives: capturing fundamental 

dynamics, maintaining consistent energy balance, and ensuring uniform temperature 

distribution. 

• A state-machine-based HP model (Provided by Eurac Research). 

• An optimizer based on dynamic programming (Provided by Eurac Research). 

All models were validated using monitored data, ensuring their accuracy and reliability under a 

variety of operating conditions. 
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The study's results demonstrate the superior performance of MPC over RBC strategies across 

various scenarios. MPC consistently reduced electricity costs and optimized energy consumption 

more effectively than RBC. Under different electricity pricing schemes—constant, TOU, and 

variable—MPC achieved significant cost savings, demonstrating its ability to dynamically adjust 

setpoints in real-time and respond to fluctuating prices and thermal loads. Notably, MPC reduced 

electricity prices by 7.44% under constant pricing, 6.7% under TOU pricing, and an impressive 

21.7% under variable pricing. The flexibility and adaptability of MPC were further evidenced by 

its performance under different strategies assumed for district heating supply temperature 

management. With respect to the operating conditions analyzed, MPC optimizes energy use, 

achieving a 6.83% reduction in electricity costs when the district heating supply temperature 

followed the building load profile. Even with the supply temperature inversely related to the load, 

the MPC managed significant cost savings, proving its robustness across various operational 

contexts. Under realistic conditions, where both electricity prices and DH temperatures vary, MPC 

efficiently reduced electricity costs by 23.93%. This optimization also resulted in a 9.21% decrease 

in the total bill over the simulation horizon. 

Beyond cost savings, MPC offers several operational advantages by effectively handling different 

district heating schemes and challenging conditions. One significant advantage is load shifting. 

MPC strategically operates the HP during periods of low electricity prices to maximize the 

charging of the TES. In contrast, traditional RBC often operates the HP during peak electricity 

cost periods. This demonstrates MPC's capability to manage the thermal load more efficiently by 

utilizing low-cost periods for energy storage, resulting in less HP operation during peak thermal 

load hours.  

In conclusion, this study illustrates that MPC is a superior control strategy for 5GDHCNs 

substations, offering substantial economic and operational benefits over conventional RBC 

methods.  

Several key areas will be the focus of future developments to enhance the performance and 

robustness of the current system, including: 

• During testing, it was observed that MPC sometimes does not completely meet the load 

when compared to RBC. Although this unmet load is less than 1%, incorporating a penalty 

function for non-responded loads is recommended. This penalty function will help refine 

the control strategy by accounting for unmet thermal demands. 

• MPC tends to cycle the HP ON/OFF more frequently than RBC, leading to higher 

maintenance costs and potentially reducing the lifespan of the HP over time. To address 
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this issue, reducing the number of HP’s ON/OFF cycles will be included in the objective 

function. This optimization aims to balance operational efficiency with the longevity of the 

HP, ensuring both cost-effectiveness and sustainability in the long term. 

• In this study, the HP was solely connected to the electricity grid, and the roles of PV 

systems and battery storage were not considered. By integrating PV systems and battery 

storage, significant benefits can be realized. TOU pricing can be leveraged to optimize the 

operation of the HP, allowing it to charge the TES during periods of low electricity prices. 

Additionally, the battery can be charged during these favorable times, and during peak 

electricity prices, the HP can be operated using the stored battery power. This approach 

can lead to enhanced cost savings. Ultimately, achieving these benefits requires a robust n-

dimensional optimization framework to effectively manage the complex interactions and 

dependencies within the integrated system. 

• Moreover, this research could act as a starting point for transitioning from the optimal 

control of a single substation to the optimal management of a pool of substations 

interconnected with electrical and thermal grids. By broadening the focus beyond a single 

substation, the opportunities for developing more efficient and cohesive control strategies 

across multiple substations can be investigated. 
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Appendix 1 
 

The wide range for hysteresis HA, set as [-5, 5], allows the tank to be used for long charging and 

discharging cycles. For example, if the set point is 60°C, once the temperature at the top sensor 

drops below 55°C, the HP will be activated to charge the tank until the bottom sensor reaches 

65°C. This process is illustrated in Figure 3-50.  

Upon implementing MPC, it was observed that the extended charge cycle length significantly 

hindered the MPC's ability to capitalize on available incentives. This limitation is due to the strict 

loyalty required to the hysteresis settings, which prevents the HP from being turned ON or OFF in 

response to incentive opportunities. As a result, the potential for optimizing HP operation is 

limited.  

A shallower hysteresis range, such as [0, 5], could offer increased flexibility for the MPC, allowing 

it to better adjust the HP operation in response to incentives. By narrowing the hysteresis range, 

the system could react more dynamically to changes in energy prices or availability of DH 

temperature, thereby enhancing overall efficiency and cost-effectiveness. 
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Appendix 2 
 

This appendix provides a detailed enumeration of all possible cases arising from the combination 

of five different hysteresis mechanisms. Each case represents a unique state of the substation, 

determined by the activation (1) or deactivation (0) of each mechanism. The mechanisms 

considered are HA, HMa, HMb, HMc, and HMd. Notably, when HA is 0, the HP is ON, and when 

HA is 1, the HP is OFF. Table 0-1 summarizes all 32 combinations of hysteresis mechanisms, 

providing a comprehensive overview of the conditions under which each mechanism is active or 

inactive.  

Table 0-1: Comprehensive list of hysteresis mechanism cases for schemes’ transition 

Case Hysteresis combinations Scheme 

1 HA * HMa * HMb * HMc * HMd HP OFF 

2 HA * HMa * HMb * HMc * NOT(HMd) HP OFF 

3 HA * HMa * HMb * NOT(HMc) * HMd HP OFF 

4 HA * HMa * HMb * NOT(HMc) * NOT(HMd) HP OFF 

5 HA * HMa * NOT(HMb) * HMc * HMd HP OFF 

6 HA * HMa * NOT(HMb) * HMc * NOT(HMd) HP OFF 

7 HA * HMa * NOT(HMb) * NOT(HMc) * HMd HP OFF 

8 HA * HMa * NOT(HMb) * NOT(HMc) * NOT(HMd) HP OFF 

9 HA * NOT(HMa) * HMb * HMc * HMd HP OFF 

10 HA * NOT(HMa) * HMb * HMc * NOT(HMd) HP OFF 

11 HA * NOT(HMa) * HMb * NOT(HMc) * HMd HP OFF 

12 HA * NOT(HMa) * HMb * NOT(HMc) * NOT(HMd) HP OFF 

13 HA * NOT(HMa) * NOT(HMb) * HMc * HMd HP OFF 

14 HA * NOT(HMa) * NOT(HMb) * HMc * NOT(HMd) HP OFF 

15 HA * NOT(HMa) * NOT(HMb) * NOT(HMc) * HMd HP OFF 

16 HA * NOT(HMa) * NOT(HMb) * NOT(HMc) * NOT(HMd) HP OFF 

17 NOT(HA) * HMa * HMb * HMc * HMd Scheme 4 

18 NOT(HA) * HMa * HMb * HMc * NOT(HMd) Scheme 4 

19 NOT(HA) * HMa * HMb * NOT(HMc) * HMd Scheme 4 

20 NOT(HA) * HMa * HMb * NOT(HMc) * NOT(HMd) Scheme 4 

21 NOT(HA) * HMa * NOT(HMb) * HMc * HMd Scheme 4 

22 NOT(HA) * HMa * NOT(HMb) * HMc * NOT(HMd) Scheme 4 

23 NOT(HA) * HMa * NOT(HMb) * NOT(HMc) * HMd Scheme 4 

24 NOT(HA) * HMa * NOT(HMb) * NOT(HMc) * NOT(HMd) Scheme 4 

25 NOT(HA) * NOT(HMa) * HMb * HMc * HMd Special case 1 

26 NOT(HA) * NOT(HMa) * HMb * HMc * NOT(HMd) Special case 2 

27 NOT(HA) * NOT(HMa) * HMb * NOT(HMc) * HMd Scheme 1 

28 NOT(HA) * NOT(HMa) * HMb * NOT(HMc) * NOT(HMd) Scheme 1 
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29 NOT(HA) * NOT(HMa) * NOT(HMb) * HMc * HMd Special case 3 

30 NOT(HA) * NOT(HMa) * NOT(HMb) * HMc * NOT(HMd) Scheme 3 

31 NOT(HA) * NOT(HMa) * NOT(HMb) * NOT(HMc) * HMd Scheme 2 

32 NOT(HA) * NOT(HMa) * NOT(HMb) * NOT(HMc) * NOT(HMd) Scheme 2 

 

 

Special case 1: NOT(HA) * NOT(HMa) * HMb * HMc * HMd 

In this scenario, 𝑇𝑟𝑒𝑡,𝑇𝐸𝑆 >  𝑇𝐷𝐻 > 𝑇𝑖𝑛,𝑀𝑎𝑥,𝐻𝑃. Due to the evaporator's maximum inlet temperature 

limitation, transitioning to schemes 1, 2, or 3 is not feasible. Thus, even though 𝑇𝐷𝐻 is below 

𝑇𝑠𝑒𝑡,𝑑𝑖𝑟𝑒𝑐𝑡_𝐷𝐻, the safest course of action is to proceed with scheme 4. 

 

Special case 2: NOT(HA) * NOT(HMa) * HMb * HMc * NOT(HMd) 

This scenario presents a mathematical impossibility due to conflicting temperature conditions. In 

this case, 𝑇𝑟𝑒𝑡,𝑇𝐸𝑆 >  𝑇𝐷𝐻, 𝑇𝐷𝐻 > 𝑇𝑖𝑛,𝑀𝑎𝑥,𝐻𝑃 and 𝑇𝑖𝑛,𝑀𝑎𝑥,𝐻𝑃 > 𝑇𝑟𝑒𝑡,𝑇𝐸𝑆. These conditions cannot 

coexist because they create a logical contradiction. this case is deemed impossible to occur in 

practice. 

 

Special case 3: NOT(HA) * NOT(HMa) * NOT(HMb) * HMc * HMd 

This scenario presents a mathematical impossibility due to conflicting temperature conditions. In 

this case, 𝑇𝐷𝐻 > 𝑇𝑟𝑒𝑡,𝑇𝐸𝑆, 𝑇𝐷𝐻 > 𝑇𝑖𝑛,𝑀𝑎𝑥,𝐻𝑃 and 𝑇𝑟𝑒𝑡,𝑇𝐸𝑆 > 𝑇𝑖𝑛,𝑀𝑎𝑥,𝐻𝑃. These conditions cannot 

coexist because they create a logical contradiction. this case is deemed impossible to occur in 

practice. 

 


