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A B S T R A C T

Combinatorial testing is a widely adopted technique for efficiently detecting faults in software. The quality of
combinatorial test generators plays a crucial role in achieving effective test coverage. Evaluating combinatorial
test generators remains a challenging task that requires diverse and representative benchmarks. Having such
benchmarks might help developers to test their tools, and improve their performance.

For this reason, in this paper, we present BenCIGen, a highly configurable generator of benchmarks to
be used by combinatorial test generators, empowering users to customize the type of benchmarks generated,
including constraints and parameters, as well as their complexity. An initial version of such a tool has been
used during the CT-Competition, held yearly during the International Workshop on Combinatorial Testing. This
paper describes the requirements, the design, the implementation, and the validation of BenCIGen. Tests for
the validation of BenCIGen are derived from its requirements by using a combinatorial interaction approach.
Moreover, we demonstrate the tool’s ability to generate benchmarks that reflect the characteristics of real
software systems.

BenCIGen not only facilitates the evaluation of existing generators but also serves as a valuable resource
for researchers and practitioners seeking to enhance the quality and effectiveness of combinatorial testing
methodologies.
1. Introduction

Combinatorial Interaction Testing (CIT) (Petke et al., 2015) has
been an active area of research in the latest years and has proven to
be very effective to test complex systems, having multiple inputs or
configuration parameters. The main purpose of CIT is to help testers in
finding defects due to the interaction of different inputs or parameters,
by testing this interaction systematically and by assuring that every
𝑡-uple of parameter values (i.e., an array of 𝑡 elements, where each
element is one of the parameters of the system under test with one
of its possible values Niu et al., 2013) is tested at least once (Kuhn
et al., 2004). In practice, testers provide an input parameter model
(IPM) of a system under test (SUT), containing the possible values for
each parameter, as well as any additional constraints between values
of distinct parameters, and ask a test generator to produce a test suite.

During the years, several test generators have been proposed1 by
the community: research groups that actively work on the CIT area
have been listed in Nie and Leung (2011), but many other recent groups
and tools are not considered in that paper, while in Khalsa and Labiche
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1 For a non-exhaustive list of tools see, for instance, https://www.pairwise.org/tools.html.

(2014) a lot of algorithms and tools available for CIT are analyzed.
Despite so many algorithms and tools for CIT have been developed
with the intent of improving testing of software systems, paradoxically
little attention has been given to testing and systematically and fairly
evaluating those tools and algorithms. One major issue is the absence
of a collection of benchmarks to be used for testing the correctness and
evaluating the performance of the generators themselves. Many tools
have only been evaluated on ad-hoc or unrealistic models, or small
examples, missing some important and common problem characteris-
tics. This becomes especially evident when dealing with problems that
involve constraints, as they pose a greater challenge for test generators,
and obtaining representative test IPMs from real scenarios can be
difficult.

While evaluating CIT test generators, every research group has
established its own procedure and benchmarks, and this can be limiting
for many reasons: (a) some specific features, which may be common in
practice, are not considered while testing the test generator; (b) on the
contrary, uncommon features may be considered and, thus, bias the test
outcome; (c) a limited amount of test IPMs may be available.
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Moreover, having a high number of benchmarks may foster the
improvement of the performance of test generators, since they can be
tested (and, thus, adapted) against different IPMs. This is the rationale
behind the CT-Competition which is organized every year during the
International Workshop of Combinatorial Testing.2

To address all these issues, in this paper, we present BenCIGen,
benchmark generator of IPMs that can be used by practitioners to

enerate synthetic IPMs for testing CIT generators. First, we design
enCIGen by building a feature model describing its configuration
arameters and possible constraints among them. BenCIGen is built
n the top of the CTWedge environment (Bombarda et al., 2021),
nd allows practitioners to generate a set of different benchmarks,
ith a configurable type, amount, and cardinality of parameters and

onstraints. In order to make the benchmarks as challenging as de-
ired, BenCIGen allows users to configure the ratio of the generated
PMs, i.e., the fraction of the number of valid tests (or 𝑡-uples) over
he total number of tests (or 𝑡-uples). We believe that this aspect is
rucial for assessing the performance of a test generator under different
also in terms of complexity) use case scenarios. Lastly, BenCIGen only
roduces solvable IPMs, i.e., IPMs from which at least a test case can
e generated. This is of paramount importance for making the use of
enerated benchmarks valuable for evaluating test generators: assessing
he performance (time and test suite size) of test generators requires
odels that allow at least a test case. Non solvable models could be
seful as well in order to test the correctness of test generators but
ot in evaluating their performance, and we may add the feature of
enerating also non solvable IPMs in future releases of BenCIGen.

We investigate the correctness of BenCIGen by using combinatorial
est cases derived from its model, and we show how models available in
he literature can fit inside those that can be generated from our tool.
y demonstrating this aspect, we can state that BenCIGen can generate
ealistic IPMs, as challenging and complex as those used in practice for
eal systems, and, thus, that the benchmarks we generate are valuable
or effectively testing CIT test generators.

The remainder of the paper is structured as follows. Section 2
escribes the background on combinatorial testing and the measures
e perform on each generated IPM. In Section 3 we present the

equirements we set for the development of BenCIGen, while Section 4
ntroduces the design of our tool and the possible approaches for
omputing the two types of ratio and the solvability of an IPM. Sec-
ion 5 shows BenCIGen and how we have implemented it, while in
ection 6 we validate our tool by generating combinatorial tests from its
equirements, and by showing how the majority of CIT models available
n the literature can fit in those that our tool can generate. Finally,
ection 7 presents related works on benchmarking combinatorial test
enerators, and Section 8 concludes the paper.

. Background

Combinatorial test generators are tools used to generate test suites
uitable for testing a system that has been modeled using an Input
arameter Model (IPM). It specifies parameters of a system under
est (SUT), their possible values, as well as any additional constraints
etween values of distinct parameters. Formally, it can be defined as
ollows.

efinition 1 (Input Parameter Model). Let 𝑆 be the system under test,
= {𝑝1,… , 𝑝𝑛} be a set of 𝑛 parameters, where every parameter 𝑝𝑖

ssumes values in the domain 𝐷𝑖 = {𝑣𝑖1,… , 𝑣𝑖𝑗}, let 𝐷 be the set of all the
𝑖, i.e., 𝐷 = {𝐷1,… , 𝐷𝑘} and 𝐶 = {𝑐1,… , 𝑐𝑚} be the set of constraints
ver the parameters 𝑝𝑖 and their values 𝑣𝑖𝑗 . We say that 𝑀 = (𝑃 ,𝐷, 𝐶)
s an Input Parameter Model for the system 𝑆.

2 https://fmselab.github.io/ct-competition/.
2

Model example1

Parameters:
P1 : {V1, V2}
P2 : Boolean
P3 : {V1, V2, V3}
P4 : [2 .. 5]

Constraints:
# P1 != P3 #
# (P3=V1 => P2=false) AND P1=V2 #
# (P4=3 <=> P2=true) OR P3=V3 #

Listing 1: Example of a constrained combinatorial model

Table 1
An example of a pairwise (𝑡 = 2) test suite.

P1 P2 P3 P4

V2 False V1 2
V2 True V3 2
V2 False V3 3
V2 False V1 4
V2 True V3 4
V2 False V1 5
V2 True V3 5
V2 True V3 3

Given an IPM, test generators build a test suite 𝑇𝑆, composed of
several test cases 𝑡𝑐𝑖, in which every parameter 𝑝 ∈ 𝑃 has its own value.
The main objective of a 𝑇𝑆 is to cover all the feasible interactions
between 𝑡 parameters, where 𝑡 is the strength of the test suite.

Definition 2 (T-wise Coverage). Let 𝑇𝑆 be the test suite for the IPM
𝑀 = (𝑃 ,𝐷, 𝐶), as defined in Definition 1, and be 𝑡 its strength. We say
that 𝑇𝑆 achieves the t-wise coverage if all the feasible 𝑡-uples among the
parameters 𝑝𝑖 ∈ 𝑃 and their values are covered by at least a test case
n 𝑇𝑆.

Based on the system to be modeled, the parameters may be of
different types. In the work presented in this paper, we consider Boolean
arameters, that can assume only the true and false values, Enumerative
arameters, assuming values in a finite set, and Integer ranges param-
ters, assuming values between a lower and an upper bound (both
ntegers).

An example of IPM, in the CTWedge format (Gargantini and Radav-
lli, 2018), is given in Listing 1. It contains two enumerative parameters
P1 and P3), a single Boolean parameter (P2), and an integer range
arameter (P4). Furthermore, it contains a set of three constraints,
efined over the set of parameters. Table 1 shows the test suite
chieving the pairwise (i.e., 𝑡 = 2) coverage for the IPM in Listing 1.

In every IPM, for each constraint, it is possible to compute a com-
lexity, which roughly measures the effort required by the combina-
orial test generator when checking the satisfiability of the constraint.
ormally, it can be defined as follows.

efinition 3 (Complexity). Let 𝑀 = (𝑃 ,𝐷, 𝐶) be an IPM as defined
in Definition 1. The Complexity of a constraint 𝑐 ∈ 𝐶 is the number
f binary logical operators and connectors in 𝑐, i.e., the number of
ND, OR, implies (=>), and double implies (<=>). More formally, the
omplexity is represented by a function 𝐶𝑜𝑚𝑝 ∶ 𝐶 → N.

For example, the complexity of the constraint

# P1 = true AND P2 = false #

s equals to 1, as only a binary logical operator or connector (i.e., the
ND) is available. Instead, if we consider the constraint

https://fmselab.github.io/ct-competition/
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Fig. 1. The Feature Model representing the possible configurations and features of the benchmarks generator. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
# P1 => (P2 AND P3)#

the complexity is 2, as we have an AND connector and an implication.
Given a strength 𝑡, some of the 𝑡-uples may clash with one or a

conjunction of constraints (i.e., the assignments contained in the 𝑡-uple
violate at least a constraint or a combination of them). In that case,
none of the tests generated from an IPM will cover those 𝑡-uples and we
say that they are not feasible or invalid. In order to measure the effort
required to a test generator to filter the not feasible 𝑡-uples out, we
introduce the concept of Tuple validity ratio (𝑟𝑡𝑝), defined as follows.

Definition 4 (Tuple Validity Ratio). Let 𝑀 = (𝑃 ,𝐷, 𝐶) be the IPM for a
system 𝑆 and 𝑡 be the required strength for test generation. We say that
the tuple validity ratio 𝑟𝑡𝑝 is the fraction of the number of valid 𝑡-uples
over the total number of 𝑡-uples.

Similarly, due to the constraints, some of the tests that can be
generated from an IPM by a combinatorial test generator may be not
valid, i.e., they may violate one or more constraints; instead, tests
complying with the constraints of the IPM are considered as valid. For
this reason, to estimate how difficult may be for a generator to generate
valid test cases, we exploit the concept of Test validity ratio (𝑟𝑡𝑠).

Definition 5 (Test Validity Ratio). Let 𝑀 = (𝑃 ,𝐷, 𝐶) be the IPM for a
system 𝑆, 𝑇𝑆 be the set of all possible test cases that can be generated
when the constraints 𝐶 of 𝑀 are ignored. Let 𝑇𝑆𝑣 ⊆ 𝑇𝑆 be the set
of valid test cases, i.e., the set of those that do not violate any of the
constraints in 𝐶. We say that the test validity ratio 𝑟𝑡𝑠 is the fraction of
the number of valid tests (i.e., the cardinality of 𝑇𝑆𝑣) over the total
number of possible tests 𝑁 (i.e., the cardinality of 𝑇𝑆).

3. Requirements

During the development of BenCIGen, we aimed at creating a tool
allowing users to generate a wide spectrum of IPMs, by specifying all
the features and characteristics we have found in the other models
available in the literature (see Section 6.2).

The possible configurations we wanted to include in BenCIGen gen-
erator are reported in the feature model in Fig. 1. In the following, we
better describe the features and their meaning in detail:
3

• Each generation run may generate multiple benchmarks with the
same characteristics. The number of benchmarks is configurable
through the feature NumBenchmarks;

• Several different categories (BenchmarkType) of models may be
generated, depending on the type of parameters and constraints,
as reported in Table 2. In case one of the categories contain-
ing constraints is chosen, the Constraints may be selected and,
possibly, contain Arithmetic operators;

• Depending on the benchmark type, different types of Parameters
(Booleans, Enumeratives, or integer Ranges) can be present in
the generated IPM;

• Depending on the selected benchmark type, the user may specify
the following ConfigurationParameters:

– the maximum accepted Ratio, as described in Section 2,
which can be set as the TupleValidityRatio and/or Test-
ValidityRatio;

– regarding the parameters (Parameters Configuration), the
user can select:

∗ the Cardinality, limited between a lower and upper
bound, for the parameters in the generated IPMs, only
if not BOOLC neither UNIFORM_BOOLEAN are se-
lected;

∗ the integer ranges (IntegerBounds) in the models of
the NUMC category;

∗ the number of parameters NumParams to be present
in the generated IPMs, included between a lower and
upper bound;

– regarding the constraints (Constraints Configuration), the
user can select:

∗ the number of constraints NumConstraints (whether
applicable), included between a lower and upper
bound;

∗ the Complexity, included between a lower and upper
bound, for the constraints in the generated IPMs, as
described in Section 2;

∗ whether to have constraints comparison BetweenPa-
rameters (e.g., PAR1 = PAR2) and not only compar-
isons between parameters and values (e.g., PAR1 =
true);
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Table 2
Types of benchmarks supported by the BenCIGen benchmark generator.

Benchmark Type Parameters Constraints

UNIFORM_BOOLEAN (UB) Only Booleans NO
UNIFORM_ALL (UA) Uniform NO
MCA (M) MCA (Booleans and Enumeratives) NO
BOOLC (BC) Only Booleans Randomly chosen between AND, OR, ⇔, NOT, ⇒
MCAC (MC) MCA (Booleans and Enumeratives) Randomly chosen between AND, OR, ⇔, NOT, ⇒, =

(both 𝑥 = 𝐶 and 𝑥 = 𝑦, where 𝑥 and 𝑦 are parameters
and 𝐶 a constant of 𝑥), ≠

NUMC (NC) Booleans, Enums and Integer ranges Randomly chosen between AND, OR, ⇔, NOT, ⇒, =
(both 𝑥 = 𝐶 and 𝑥 = 𝑦, where 𝑥 and 𝑦 are parameters
and 𝐶 a constant of 𝑥), ≠, mathematical and
relational operations
Fig. 2. Software architecture of BenCIGen.

∗ whether the constraints (if they are applicable — see
Table 2) need to be InCNF,3 expressed as Forbid-
denTuples or InGeneralForm. In the first case, each
constraint is a conjunction (an AND) of one or more
clauses, where a clause is a disjunction (an OR) of
atomic predicates. In the second case, each constraint
must express a forbidden tuple, i.e., in the form of
NOT (P1=v1 AND P2=v2 AND ...), or (P1!=v1 OR P2!=v2
OR ...). Finally, in the third, an arbitrary composition

of each constraint is allowed, i.e., a mix between
conjunctions, disjunctions, implications, equivalences
and negations can be used in any arbitrary order and
combination;

• The generated benchmarks may be exported in different formats,
such as ACTS (Yu et al., 2013), PICT (Microsoft Inc, 2023)
and CTWedge (Gargantini and Radavelli, 2018). We decided to
support these three different formats because they are the most
used ones and, moreover, they allow for representing the same
type of constraints and operators. Other formats, such as the
CASA one, would require the transformation of the constraints
and this would make the benchmarks not comparable.

All these configuration parameters may be set by the user prior to
the benchmark generation. Moreover, considering that in real scenarios
one may want to test its combinatorial test generator with models
similar to those he/she already has, BenCIGen must provide an interface
for extracting the configuration from a former IPM and generating
models having similar characteristics. Finally, BenCIGen shall allow
users to load a JSON file, such as the one in Listing 2, representing
the dictionary of parameter name, type, and values to be used in the
randomly created IPMs when tests of a specific domain are required.

3 We support constraints in CNF as some generator, such as in the case of
ASA (Garvin et al., 2009), may require constraints to be defined in that form.
4

Listing 2: Example of a dictionary JSON file for the Smartphone
domain for BenCIGen

[
{

"name" : " ScreenSizeInch " ,
" type " : " Integer " ,
" lowerBound" : 4 ,
"upperBound" : 7

} ,
{

"name" : "OS" ,
" type " : "Enum" ,
" values " : [

" android " ,
" ios "

]
} ,
{

"name" : "WirelessCharge " ,
" type " : "Boolean"

}
]

4. Design

In this section, we describe the architecture we have designed for
BenCIGen, together with the strategies and approximations we used
for computing relevant measures. The tool architecture is reported in
Fig. 2. BenCIGen features a GUI and a CLI. The former aims at increasing
the usability of the benchmark generator, but the business logic is
completely implemented in the CLI. The latter includes all the func-
tionalities of the benchmark generator, such as the pure generation, the
check for the existence of at least a test derivable from the generated
IPM (see Section 4.1), the computation of the tuple validity ratio (see
Section 4.2) and test validity ratio (see Section 4.3).

The basic functionalities used by BenCIGen are offered by the
CTWedge environment (Gargantini and Radavelli, 2018), including
the CTWedge grammar definition, the utility functions (such as those
generating the tuples, converting a CTWedge model in other formats,
etc.), and the validation functionalities (exploited for checking the
solvability of an IPM). In the following, we describe in detail the role of
each component of the architecture, by explaining the method we have
implemented for checking the solvability of an IPM and computing
relevant ratios.

4.1. Existence of at least a test

When a benchmark is generated, it is important to check its solv-
ability, i.e., the existence of at least a test case derivable from the
IPM. This check is done by the CTWedge validator module in Fig. 2,
which exploits an SMT Solver,4 as presented in Bombarda et al. (2021).
In particular, an SMT solver is a tool aiming to determine whether
a mathematical formula is satisfiable or not, by using some modulo

4 We use the following SMT solver: https://github.com/sosy-lab/java-smt.

https://github.com/sosy-lab/java-smt
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Fig. 3. MDD structure for the combinatorial problem in Listing 3. With ∗ we mean all
he possible values.

heories. In our case, the formula we want to check is a Boolean formula
omposed by the conjunction of all the constraints and defined on the
artesian product of all the domains of the parameters of the IPM under
nalysis.

The process to be followed for determining if at least a test case can
e derived from an IPM is very straightforward. Each IPM generated
y BenCIGen is translated in its own SMT context, containing all the
ariables and constraints of the IPM. More in detail, the parameters of
n IPM are translated into SMT variables depending on their type:

• Booleans are translated into SMT Boolean variables;
• Integer ranges are translated into SMT integer variables. Further-

more, since ranges in combinatorial models are limited between
a lower and an upper bound, it is necessary to add to the context
an additional constraint specifying these limits. For example, if
a range is defined in the combinatorial model as 𝑃 1 ∶ [−4..3],
in addition to the 𝑃 1 integer variable, the following constraint is
added: 𝑃 1 ≥ −4 AND 𝑃 1 ≤ 3;

• Enumeratives are translated into SMT integer variables. As for the
normal integer ranges, when translating enumeratives, it is nec-
essary to add to the SMT context a group of constraints limiting
the values that can be taken by each enumerative. Furthermore,
in this kind of transformation, it is necessary to use unambiguous
numbers between parameters, in order to avoid different param-
eters assuming the same value. For example, if two enumeratives
are defined in the combinatorial model as 𝑃 1 ∶ {𝐴,𝐵} and
𝑃2 ∶ {𝐶,𝐷}, the following is a valid mapping: 𝐴 → 1, 𝐵 → 2,
𝐶 → 3, and 𝐷 → 4. Moreover, for the parameter 𝑃 1 the following
constraint need to be added: 𝑃1 ≥ 1 AND 𝑃 1 ≤ 2.

Additionally, all the other constraints of an IPM can be easily
apped to SMT formulas, exploiting the variables previously defined.
ote that a combinatorial model may contain relational, mathematical,
r comparison operators (between parameters or values) in general
ropositional formulas. All these aspects can be easily represented with
perations between variables and values defined in an SMT context.

Then, if the context is SAT, it means that at least one test can be
erived from the IPM and, thus, it can be accepted as benchmark.

.2. Computation of the tuple validity ratio

To compute the tuple validity ratio 𝑟𝑡𝑝 we exploit the same for-
alism presented in Section 4.1, i.e., the CTWedge validator module

n Fig. 2, similarly as done in Bombarda et al. (2023b). First, we
uild a complete SMT context 𝑐𝑡𝑥, containing all the parameters and
onstraints of the IPM, properly translated in SMT notation. Then, we
terate over all the 𝑡-uples 𝑡𝑝𝑖 ∈ 𝑇𝑃 and we check if adding 𝑡𝑝𝑖 to 𝑐𝑡𝑥
5

akes the context still satisfiable. In that case, it means that 𝑡𝑝𝑖 is valid,
Model example2

Parameters:
a : Boolean
b : Boolean
c : {V1, V2, V3}

Constraints:
# a => b #

Listing 3: Example of a simple IPM in CTWedge format

otherwise it is not. By doing so, we compute the number of valid 𝑡-uples
𝑣 and, consequently, the tuple validity ratio 𝑟𝑡𝑝 as follows:

𝑟𝑡𝑝 =
𝑣

#𝑇𝑃

.3. Computation of the test validity ratio

One of the desired characteristics of the benchmark models is the
est validity ratio 𝑟𝑡𝑠, introduced and defined in Section 2. Only for
mall models the calculation of 𝑟𝑡𝑠 could be done by simply enumer-

ating all the possible configurations and checking how many of them
are valid. For large models, we have devised two techniques, one
that is precise, but it is not suitable for any model, while the other
is approximate, but it can be used even when the model contains
arithmetic constraints.

4.3.1. Using MDDs
To count how many combinations are valid, we rely on a data

structure, called Multi-Valued Decision Diagrams, on which the MEDICI
(Gargantini and Vavassori, 2014) test generator (see Fig. 2) is based.
Indeed, most combinatorial problems can be easily represented by
using an MDD identifying valid combinations that comply with the
constraints of the IPM under analysis. Let us consider the IPM in Listing
3, which represents a combinatorial model with three parameters and
a very simple constraint between 𝑎 and 𝑏. With an MDD, as reported
in Fig. 3, we can represent the validity of different parameter combina-
tions. By counting how many paths lead to the 𝑇 leaf, we can simply
determine the number of valid tests without the need to generate each
possible configuration and check if it is valid or not.

More in details, after having generated an IPM 𝑀 , we can execute
MEDICI with the option --donotgenerate. In this way, MEDICI
translates 𝑀 into its MDD representation, by starting with the defini-
tion of the nodes corresponding to the variables of the combinatorial
model. The cardinality of the MDD (i.e., the number of paths starting
from the root node to the true leaf) is the number of all the possible
tests 𝑁 . Then, we incrementally add all the constraints of 𝑀 , and

e compute again the cardinality of the MDD after all the constraints
ave been added. This second cardinality corresponds to the number
f valid tests 𝑉 for 𝑀 when the constraints are considered. Thus, the
est validity ratio is computed as follows:

𝑡𝑠 =
𝑉
𝑁

We emphasize that the cardinality of an MDD is not computed
by enumerating all the possible assignments leading to the true leaf
(although this would be possible Toda and Soh, 2016), but recursively
visiting the MDD and computing the final cardinality by sums and
products of the cardinality of partial MDDs, thus the complexity of
this operation is much lower than that of path enumeration. However,
although MDDs are very efficient in subset counting, not all combi-
natorial problems can be easily represented by an MDD. Indeed, as
presented in Bombarda and Gargantini (2022, 2023a), MDDs allow
users to represent in an optimized and memory-effective way only
combinatorial problems not containing arithmetical or comparison op-
erations between parameters and values (e.g., +, −, >, <, etc.), or
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Fig. 4. The BenCIGen GUI.
constraints comparing two different parameters (e.g., PAR1 = PAR2).
Indeed, even if using MDDs would be technically feasible in those cases,
we may likely have the problem of the combinatorial explosion of the
number or complexity of constraints, thus leading to the impossibility
of completely representing the combinatorial problem.

4.3.2. Using a Monte Carlo approach
When the MDD-based technique presented before is not applicable,

we can rely on one of the basic approximate set counting algorithms
that are based on the classical Monte Carlo method. These methods can
be applied because we have a finite set, containing all the possible tests,
𝑈 of known size 𝑁 , and an efficient method for randomly choosing
elements in 𝑈 . We have also an efficient method to discover if a random
test is valid or not (without using the solver, but simply by checking
the truth value of each constraint when the assignments contained in
the tests are set).

To estimate the ratio 𝑟𝑡𝑠, we can simply take a sequence of 𝑛 inde-
pendent random tests by assigning a random value to each parameter
in the model. Then we check if every test 𝑡𝑠𝑖 is valid or not, and we
assign to 𝑥𝑖 the value 0 if the 𝑖th test is not valid, otherwise, we assign
to 𝑥𝑖 the value 1. The total number of valid tests is ∑𝑛

1 𝑥𝑖.
The Monte Carlo-based estimator for 𝑟𝑡𝑠 that we indicate as 𝑟𝑡𝑠 is

simply:

𝑟𝑡𝑠 =
∑𝑛

1 𝑥𝑖
𝑛

It can be easily proved that this estimator is unbiased, i.e., as
the sample size 𝑛 increases the variance of the estimator decreases,
improving the confidence of the estimation. If we could take all the
possible 𝑁 tests and count how many of them are valid, then we
would get the right estimation. In most cases, we can only guarantee
that the approximation is good enough if we take enough elements. In
6

particular, the Zero-One Estimator Theorem (Karp et al., 1989) gives us
a lower bound for the number of elements to be considered in order to
make a correct prediction with probability 𝑝 > 0 and a maximum error
of 𝜀 > 0, i.e.

𝑛 ≥ 1
𝑟𝑡𝑠

⋅
4 ⋅ ln 2

1 − 𝑝
𝜀2

If this requirement is satisfied, then, our prediction 𝑟𝑡𝑠 is a correct
approximation of the ratio 𝑟𝑡𝑠 with probability:

𝑃𝑟[(1 − 𝜀) ⋅ 𝑟𝑡𝑠 ≤ 𝑟𝑡𝑠 ≤ (1 + 𝜀) ⋅ 𝑟𝑡𝑠] ≥ 𝑝

When the user sets the desired ratio 𝑟𝑡𝑠, we ask him/her to insert
the desired probability 𝑝 and to set the acceptable error 𝜀, so we
can compute for every model 𝑀 the number 𝑛 of samples needed
for making a prediction which is a correct approximation. Then, after
having estimated 𝑟𝑡𝑠 we check whether it is included in the range
(1 − 𝜀) ⋅ 𝑟𝑡𝑠 ≤ 𝑟𝑡𝑠 ≤ (1 + 𝜀) ⋅ 𝑟𝑡𝑠. If the answer is yes, then we consider the
model as satisfying the desired ratio 𝑟𝑡𝑠. Otherwise, a new IPM has to
be generated.

Example 1. For a desired IPM 𝑀 , the user asks for 𝑟𝑡𝑠 = 0.1, 𝑝 = 75%,
and 𝜀 = 0.1. The generator computes the number of required samples
for making a correct approximation

𝑛 ≥ 1
𝑟𝑡𝑠

⋅
4 ⋅ ln 2

1 − 𝑝
𝜀2

= 8, 317.77

Thus, the generator takes 8318 random tests, and let us assume that
825 of them are valid, while 7493 are invalid. The estimated ratio is
𝑟𝑡𝑠 = 0.099, which is included in the range [(1 − 𝜀) ⋅ 𝑟𝑡𝑠, (1 + 𝜀) ⋅ 𝑟𝑡𝑠] =
[0.09, 0.11]. Therefore, we can say that 𝑀 has ratio 𝑟𝑡𝑠 = 0.1 with
probability 𝑝 ≥ 75%.
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Algorithm 1 Algorithm for the generation of NUMC benchmarks
Require: 𝑛𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘𝑠, the number of IPMs to be generated

equire: ⟨𝑘𝑀𝑖𝑛, 𝑘𝑀𝑎𝑥⟩, the min. and max. number of parameters for each IPM
Require: ⟨𝑙𝐼𝑛𝑡, 𝑢𝐼𝑛𝑡⟩, the lower and upper bounds for integer ranges
Require: ⟨𝑣𝑀𝑖𝑛, 𝑣𝑀𝑎𝑥⟩, the min. and max. cardinalities
Require: ⟨𝑐𝑀𝑖𝑛, 𝑐𝑀𝑎𝑥⟩, the min. and max. number of constraints for each IPM
Require: ⟨𝑑𝑀𝑖𝑛, 𝑑𝑀𝑎𝑥⟩, the min. and max. constraint complexities
Require: 𝑢𝑠𝑒𝐶𝐵𝑡𝑤𝑃 , whether to use constraints between parameters
Require: 𝐹𝑇 , whether to use only forbidden tuples in constraints
Require: 𝐶𝑁𝐹 , whether to use only constraints in CNF
Require: 𝑟𝑡𝑝, the max. tuple validity ratio
Require: 𝑢𝑠𝑒𝑇 𝑢𝑝𝑙𝑒𝑅𝑎𝑡𝑖𝑜, whether to consider 𝑟𝑡𝑝 during IPMs generation
Require: ⟨𝑟𝑡𝑠, 𝑝, 𝜀⟩, the max. test validity ratio, the probability, and the maximum error for the ratio
Require: 𝑢𝑠𝑒𝑇 𝑒𝑠𝑡𝑅𝑎𝑡𝑖𝑜, whether to consider 𝑟𝑡𝑠 during IPMs generation
Ensure: 𝑚𝑜𝑑𝑒𝑙𝑠𝐿𝑖𝑠𝑡, the list of the generated benchmarks

⊳ Initially, no models have been generated
1: 𝑚𝑜𝑑𝑒𝑙𝑠𝐿𝑖𝑠𝑡 ← ∅; 𝑛𝐵 ← 0;
2: while 𝑛𝐵 < 𝑛𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘𝑠 do
3: for 𝑛𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ← 1 to 10 do

⊳ Randomly define parameters
4: 𝑛𝑃𝑎𝑟𝑎𝑚𝑠 ← randomBetween(𝑘𝑀𝑖𝑛,𝑘𝑀𝑎𝑥)
5: 𝑝𝐿𝑖𝑠𝑡 ← defineParams(𝑛𝑃𝑎𝑟𝑎𝑚𝑠, 𝑙𝐼𝑛𝑡, 𝑢𝐼𝑛𝑡, 𝑣𝑀𝑖𝑛, 𝑣𝑀𝑎𝑥)

⊳ Randomly define constraints
6: 𝑛𝐶 ← randomBetween(𝑐𝑀𝑖𝑛,𝑐𝑀𝑎𝑥)
7: 𝑐𝐿𝑖𝑠𝑡 ← defineCnstr(𝑝𝐿𝑖𝑠𝑡, 𝑛𝐶, 𝑑𝑀𝑖𝑛, 𝑑𝑀𝑎𝑥, 𝑢𝑠𝑒𝐶𝐵𝑡𝑤𝑃 , 𝐹𝑇 , 𝐶𝑁𝐹 )

⊳ Check that the generated IPM complies with the requirements
8: 𝑚𝑜𝑑𝑒𝑙 ← buildModel(𝑝𝐿𝑖𝑠𝑡, 𝑐𝐿𝑖𝑠𝑡)
9: if 𝑚𝑜𝑑𝑒𝑙.isSolvable() then

10: if not 𝑢𝑠𝑒𝑇 𝑢𝑝𝑙𝑒𝑅𝑎𝑡𝑖𝑜 or 𝑚𝑜𝑑𝑒𝑙.getTupleValidityRatio() < 𝑟𝑡𝑝 then
11: if not 𝑢𝑠𝑒𝑇 𝑒𝑠𝑡𝑅𝑎𝑡𝑖𝑜 or 𝑚𝑜𝑑𝑒𝑙.getTestValidityRatio(𝑝, 𝜀) < 𝑟𝑡𝑠 then
12: 𝑚𝑜𝑑𝑒𝑙𝑠𝐿𝑖𝑠𝑡.add(𝑚𝑜𝑑𝑒𝑙)
13: 𝑛𝐵 ← 𝑛𝐵 + 1; 𝑛𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ← 0
14: break
15: end if
16: end if
17: end if
18: end for
19: end while
5. Implementation

This section describes the implemented tool for generating bench-
mark IPMs, available as a command-line tool and with a GUI (see
Fig. 4). In both versions, the generator allows the user to work in two
different ways:

• The parameters of interest, depending on the chosen benchmark
type, can be manually set;

• The parameters of interest, including the benchmark type, can be
automatically set by giving a baseline model in CTWedge format,
which is analyzed by BenCIGen that extracts all the configuration
parameter values (see Section 5.3 for further details).

After having fixed the parameters of interest, the benchmarks are
randomly generated by BenCIGen. To give an intuition on how the
benchmark generator produces the models, in Algorithm 1, we report
the algorithm used for generating NUMC benchmarks. Note that the
procedure is the same for the other benchmark categories, except for
the type of constraints and parameters chosen.

The algorithm aims at producing 𝑛𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘𝑠 IPMs with the de-
sired characteristics. For each benchmark, initially, the tool extracts a
random number of parameters (line 4) with bounds 𝑘𝑀𝑖𝑛 and 𝑘𝑀𝑎𝑥.
Then, the set of the parameters to be included in the IPM is generated
by the function defineParams, which randomly extracts the types and
values for each parameter (line 5). The same approach is followed for
7

constraints definition (lines 6 and 7). In Section 5.1 we will explain in
detail the algorithm defining the parameters, and in Section 5.2 that
defining the constraints. In this way, BenCIGen produces a single IPM
(line 8) which now needs to be checked to see whether it is solvable
(line 9) and, if the tuple validity ratio and/or the test validity ratio
have to be met, possibly has the required ratios (lines 10 and 11). In
that case, the model is added to the 𝑚𝑜𝑑𝑒𝑙𝑠𝐿𝑖𝑠𝑡, otherwise, a new model
is generated.

This process can last for a long time, especially if some check on
the ratio is required. For this reason, we set a maximum number of
𝑛𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠 of 10 trials for the single IPM. Note that different approaches
may be used, especially when considering the ratio of IPMs, for pro-
ducing only benchmarks complying with the requirements, such as
adding one constraint per time and building incrementally the model.
However, this may cause to be stuck in models where no constraint
making the model solvable or complying with the ratio required can
be added. As a future work, we may investigate this approach in order
to solve its limitations (e.g., by using a backtracking strategy) and to
avoid completely throwing away the generated IPM every time it is not
compliant with the characteristics requested by the user.

5.1. Parameters definition

For every benchmark IPM, after having fixed the number of param-

eters, BenCIGen defines the type and values for each of them randomly.
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Algorithm 2 Algorithm for the definition of parameters in the case of NUMC benchmarks
Require: 𝑛𝑃𝑎𝑟𝑎𝑚𝑠, the number of parameters

equire: ⟨𝑙𝐼𝑛𝑡, 𝑢𝐼𝑛𝑡⟩, the lower and upper bounds for integer ranges
Require: ⟨𝑣𝑀𝑖𝑛, 𝑣𝑀𝑎𝑥⟩, the min. and max. cardinalities
Ensure: 𝑝𝑎𝑟𝑎𝑚𝑠𝐿𝑖𝑠𝑡, the list of the random parameters

1: function defineParameters(𝑛𝑃𝑎𝑟𝑎𝑚𝑠, 𝑙𝐼𝑛𝑡, 𝑢𝐼𝑛𝑡, 𝑣𝑀𝑖𝑛, 𝑣𝑀𝑎𝑥)
⊳ Initially, no parameters have been defined

2: 𝑝𝑎𝑟𝑎𝑚𝑠𝐿𝑖𝑠𝑡 ← ∅; 𝑛𝑃 ← 0;
3: while 𝑛𝑃 < 𝑛𝑃𝑎𝑟𝑎𝑚𝑠 do

⊳ Extract the type of the current parameter
4: 𝑝𝑇 𝑦𝑝𝑒 ← chooseRandom(Boolean, Enumerative, Range)
5: if 𝑝𝑇 𝑦𝑝𝑒 = Boolean then

⊳ Boolean variables require only to set their name
6: 𝑝𝑎𝑟𝑎𝑚 ← createNewBoolean(‘‘PAR’’ + nP)
7: else if 𝑝𝑇 𝑦𝑝𝑒 = Enumerative then

⊳ Enumeratives require to set all possible values, which are random as well
8: 𝑛𝑉 𝑎𝑙𝑢𝑒𝑠 ← randomBetween(𝑣𝑀𝑖𝑛, 𝑣𝑀𝑎𝑥)
9: 𝑝𝑎𝑟𝑎𝑚 ← createNewEnum(‘‘PAR’’ + nP)
0: 𝑖 ← 0
1: for 𝑖 < 𝑛𝑉 𝑎𝑙𝑢𝑒𝑠 do
2: 𝑝𝑎𝑟𝑎𝑚.values.add(‘‘PAR’’ + nP + ‘‘_’’ + 𝑖)
3: 𝑖 ← 𝑖 + 1
4: end for
5: else

⊳ For integer ranges, we need to set the lower and upper bound
⊳ but the cardinality must be considered as well

6: 𝑝𝑎𝑟𝑎𝑚 ← createNewRange(‘‘PAR’’ + nP)
7: ⟨𝑙, 𝑢⟩ ← randomRange(𝑙𝐼𝑛𝑡, 𝑢𝐼𝑛𝑡, 𝑣𝑀𝑖𝑛, 𝑣𝑀𝑎𝑥)
8: 𝑝𝑎𝑟𝑎𝑚.setRange(𝑙, 𝑢)
9: end if
0: 𝑝𝑎𝑟𝑎𝑚𝑠𝐿𝑖𝑠𝑡.add(𝑝𝑎𝑟𝑎𝑚)
1: 𝑛𝑃 ← 𝑛𝑃 + 1
2: end while
3: return 𝑝𝑎𝑟𝑎𝑚𝑠𝐿𝑖𝑠𝑡
4: end function
The type, and consequently the values, of each parameter depends
on the requested type of benchmarks (e.g., for UNIFORM_BOOLEAN
only Boolean parameters are chosen, for MCA and MCAC, the type of
each parameter is chosen between Boolean and enumeratives, while for
NUMC also integer ranges are considered). As previously done for the
general algorithm, we here give an explanation of the parameters’ defi-
nition algorithm for NUMC IPMs in Alg. 2, but for the other categories,
the procedure is the same, except that fewer types of parameters are
used.

In general, for each parameter, at line 4, the algorithm randomly
defines the parameter type (among Booleans, enumeratives, and integer
ranges). If the parameter is Boolean (line 5) no additional setting is
required. On the other hand, if an enumerative or range has to be
created, additional information has to be set. In the former case (line 7),
the number of values is randomly set within the bounds given by 𝑣𝑀𝑖𝑛
and 𝑣𝑀𝑎𝑥. In the latter case (line 15), the bounds of the range have to
be set by the function randomRange. At this stage, BenCIGen considers
both the integer bounds 𝑙𝐼𝑛𝑡 and 𝑢𝐼𝑛𝑡, but observes the cardinality
bounds (𝑣𝑀𝑖𝑛 and 𝑣𝑀𝑎𝑥) as well.

The described process is repeated for the number of parameters
required and, then, at the end, a full 𝑝𝑎𝑟𝑎𝑚𝐿𝑖𝑠𝑡 is produced, containing
parameters with different types and values.

5.2. Constraints definition

After having set the parameters of the IPM, it is necessary to add
(whether applicable), the constraints. As for parameters, the constraints
8

are randomly defined, both in terms of number and complexity. Instead,
unlike the parameters, the constraints are all composed in a very similar
way, regardless of the benchmark type. For NUMC IPMs, relational and
mathematical operations are possible as well.

The constraints definition process is based on Alg. 3. After having
defined the number of constraints, as shown in Alg. 1, the algorithm
randomly chooses the complexity of every single constraint (line 4).
Then, the composition of the constraint is performed by the gen-
erateConstraint recursive function. It is designed for composing the
constraint as an AND, OR, implication, or double implication of atomic
constraints (line 12). This process is recursively repeated while the re-
maining complexity is greater than 1 and populates, for each constraint,
the left and the right part (line 14 and 15). Then, when the complexity
reaches the value 1, a single atomic constraint is created (line 17), in
the form of 𝑃𝐴𝑅 = 𝑣𝑎𝑙 or 𝑃𝐴𝑅𝑋 = 𝑃𝐴𝑅𝑦 (or ≠, >, ≥, <, ≤, depending
on the type of the IPM being generated). Note that the decision on the
operator to be used in the atomic predicate, as well as the decision
on whether to compare two parameters or a parameter and a value
is randomly made by the benchmark generator thanks to the function
createAtomicConstraint.

5.3. Model analyzer

In this section, we analyze the Model analyzer component, which
is used by BenCIGen for automatically extracting the configuration
depending on an already available CTWedge IPM 𝑀 .

For what concerns the benchmark type (as reported in Table 2),
first, BenCIGen looks for the constraints in 𝑀 . If no constraint is found,

then, the decision on the benchmark type is taken depending on the
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Algorithm 3 Algorithm for the definition of constraints in the case of NUMC benchmarks
Require: 𝑝𝐿𝑖𝑠𝑡, the list of parameters
Require: 𝑛𝐶𝑛𝑠𝑡𝑟, the number of constraints to be generated
Require: ⟨𝑑𝑀𝑖𝑛, 𝑑𝑀𝑎𝑥⟩, the min. and max. constraint complexities
Require: 𝐶𝐵𝑡𝑤𝑃 , whether to use constraints between parameters
Require: 𝐹𝑇 , whether to use only forbidden tuples in constraints
Require: 𝐶𝑁𝐹 , whether to use only constraints in CNF
Ensure: 𝑐𝐿𝑖𝑠𝑡, the list of the constraints generated

1: function defineCnstr(𝑝𝐿𝑖𝑠𝑡, 𝑛𝐶𝑛𝑠𝑡𝑟, 𝑑𝑀𝑖𝑛, 𝑑𝑀𝑎𝑥, 𝐶𝐵𝑡𝑤𝑃 , 𝐹𝑇 , 𝐶𝑁𝐹 )
⊳ Initially, no constraints have been defined

2: 𝑐𝐿𝑖𝑠𝑡 ← ∅; 𝑛𝐶 ← 0;
3: while 𝑛𝐶 < 𝑛𝐶𝑛𝑠𝑡𝑟 do

⊳ Randomly define the complexity
4: 𝑐𝑜𝑚𝑝𝑙 ← randomBetween(𝑑𝑀𝑖𝑛, 𝑑𝑀𝑎𝑥)

⊳ Generate the constraint
5: 𝑐𝐿𝑖𝑠𝑡.add(generateCnstr(𝑝𝐿𝑖𝑠𝑡, 𝑐𝑜𝑚𝑝𝑙, 𝐶𝐵𝑡𝑤𝑃 , 𝐹𝑇 , 𝐶𝑁𝐹 )
6: 𝑛𝐶 ← 𝑛𝐶 + 1
7: end while
8: return 𝑐𝐿𝑖𝑠𝑡
9: end function

0: function generateCnstr(𝑝𝐿𝑖𝑠𝑡, 𝑐𝑜𝑚𝑝𝑙, 𝐶𝐵𝑡𝑤𝑃 , 𝐹𝑇 , 𝐶𝑁𝐹 )
1: if 𝑐𝑜𝑚𝑝𝑙 > 1 then

⊳ Recursively define the constraint
2: 𝑐𝑇 𝑦𝑝𝑒 ← chooseRandom(AND, OR, IMPL, DBLIMPL)
3: 𝑐 ← createConstraintByType(𝑐𝑇 𝑦𝑝𝑒)

⊳ Set the left and right part
4: 𝑐.setLeft(generateCnstr(𝑝𝐿𝑖𝑠𝑡, (𝑐𝑜𝑚𝑝𝑙 − 1)∕2, 𝐶𝐵𝑡𝑤𝑃 , 𝐹𝑇 , 𝐶𝑁𝐹 ))
5: 𝑐.setRight(generateCnstr(𝑝𝐿𝑖𝑠𝑡, (𝑐𝑜𝑚𝑝𝑙 − 1)∕2, 𝐶𝐵𝑡𝑤𝑃 , 𝐹𝑇 , 𝐶𝑁𝐹 ))
6: else

⊳ Define an atomic constraint
7: 𝑐 ← createAtomicConstraint(𝑝𝐿𝑖𝑠𝑡, 𝐶𝐵𝑡𝑤𝑃 , 𝐹𝑇 , 𝐶𝑁𝐹 )
8: end if
9: return 𝑐
0: end function
a

type of parameters. When all parameters are Booleans, the model is
considered as an UNIFORM_BOOLEAN instance; if all parameters are
all with the same size, the model is considered as an UNIFORM_ALL
instance, while in all the other cases it is an MCA instance. On the
other hand, if constraints are present in 𝑀 , then the benchmark type is
within BOOLC, MCAC, or NUMC. The first category is chosen when all
arameters are Booleans; the second is assigned when not all param-
ters are Boolean but no integer ranges are available in 𝑀 , while the

last benchmark type is chosen in all the other cases.
Depending on the benchmark type, identified by the Model ana-

lyzer, following actions are taken by BenCIGen. The number of pa-
rameters (both minimum and maximum — 𝑘 in the BenCIGen GUI)
are automatically set by counting the parameters in 𝑀 , as well as
done for the constraints (𝑐 in the BenCIGen GUI). The minimum and
maximum cardinality for the parameters (𝑣 in the BenCIGen GUI), or
the bounds for integer ranges, are computed by enumerating all the
parameters in 𝑀 and identifying the one with the lowest and the one
with the highest cardinality. Regarding the minimum and maximum
constraints complexity (𝑣 in the BenCIGen GUI), they are computed
by applying Definition 3 to all the constraints in an iterative way,
in order to find the lowest and highest values. More specifically, the
Model analyzer, extracts the complexity from each single constraint
by recursively visiting it and identifying the number of binary logical
operators or connectors.

The Model analyzer can also extract from 𝑀 the type of the con-
straints, i.e., if all of them are expressed as forbidden tuples or in
9

CNF. This analysis is done by iteratively visiting all the constraints and b
exploiting the modelanalyzer utility in the CTWedge framework (Bom-
barda et al., 2021).

Finally, the tuple validity ratio and the test validity ratio are extracted
by 𝑀 by applying the same strategies presented in Sections 4.2 and 4.3,
and choosing the most suitable approach depending on the benchmark
type, i.e., on the type of the parameters and constraints in 𝑀 .

5.4. BenCIGen usage

In this section, we delve into the workflow and usage of BenCIGen
and its GUI for generating a set of benchmarks. Additional instruction
for the CLI version of BenCIGen are available at https://github.com/
fmselab/CIT_Benchmark_Generator/tree/main/BenchmarkGenerator.

First, the user needs to set the Benchmark type, by choosing one of
those proposed by BenCIGen. In this way, the configuration parameters
of interest in the left column (as shown in Fig. 1 and explained in
Section 3) are automatically enabled, filled with default values, and
can be set by the user. After having set all the parameters, the Generate
button allows for generating the benchmark IPMs complying with the
chosen configuration parameters.

When the generation process terminates, the names of the IPMs are
shown in the list in the lower part of the left column of BenCIGen,
and the full model is shown when the user clicks on one of them. The
exporting process is very straightforward: first, the formats of interest
are set through the Export format button in the menu bar; then the IPMs
re exported in the chosen formats when the user clicks on the ExportAll

utton.

https://github.com/fmselab/CIT_Benchmark_Generator/tree/main/BenchmarkGenerator
https://github.com/fmselab/CIT_Benchmark_Generator/tree/main/BenchmarkGenerator
https://github.com/fmselab/CIT_Benchmark_Generator/tree/main/BenchmarkGenerator
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Table 3
The test suite derived from the feature model of the requirements.

Param 𝑡𝑠1 𝑡𝑠2 𝑡𝑠3 𝑡𝑠4 𝑡𝑠5 𝑡𝑠6 𝑡𝑠7 𝑡𝑠8 𝑡𝑠9 𝑡𝑠10 𝑡𝑠11 𝑡𝑠12 𝑡𝑠13 𝑡𝑠14 𝑡𝑠15 𝑡𝑠16 𝑡𝑠17
#B X X X X X X X X X X X X X X X X X
Type NC NC NC MC MC MC BC BC BC M UA UB BC UA M UB MC
Ratio – X – X – X – X X – – – X – – – X
𝑟𝑡𝑝 – X – X – X – X – – – – X – – – –
𝑟𝑡𝑠 – X – – – X – X X – – – X – – – X
Int.Bounds X X X – – – – – – – – – – – – – –
Card. X X X X X X – – – X X – – X X – X
#P X X X X X X X X X X X X X X X X X
CnstrConf X X X X X X X X X – – – X – – – X
BtwParam – X X – X – X – X – – – X – – – –
Complx. X X X X X X X X X – – – X – – – X
#C X X X X X X X X X – – – X – – – X
CnstrForm G C F G C F G C F – – – G – – – F
Params. X X X X X X X X X X X X X X X X X
Ranges X X X – – – – – – – – – – – – – –
Enums. X X X X X X – – – X X – – X X – X
Booleans X X X X X X X X X X X X X X X X X
Cnstr. X X X X X X X X X – – – X – – – X
Arithmetic X X X – – – – – – – – – – – – – –
Ex.Format – X X – X – X – – X – X X X – – X
ACTS – X X – X – – – – X – X X X – – –
CTWedge – X – – X – X – – X – X – X – – X
PICT – X X – – – X – – X – X X X – – X

Outcome ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
e
b
t
t
o

a

Table 4
Summary of the values set for each non-boolean feature during test execution.

#B 𝑟𝑡𝑝 𝑟𝑡𝑠 Int.Bounds Card. #P Complx. #C

Min – – – −50 2 2 1 1
Max – – – 50 30 30 15 20
𝑝 – – 75.0% – – – – –
𝜀 – – 0.1 – – – – –
Value 10 0.1 0.1 – – – – –

If a baseline IPM is available and the user wants to generate new
PMs with the same characteristics, the model analyzer component
ntroduced in Section 5.3 can be triggered by clicking on the Set baseline
PM button under the Additional funct. menu in the menu bar.

Finally, the use of a domain specific dictionary5 is allowed by the
et dictionary button under the Additional funct. menu in the menu bar.
hen a dictionary is set, the name and values of the parameters are

hosen among those provided in the dictionary, if available. Otherwise,
he regular naming strategy is adopted.

. Validation

In this section, we report how we have validated BenCIGen by testing
ts functionalities and ensured that generated benchmarks reflect real-
orld software systems’ characteristics by showing that the majority of

he benchmarks available in the literature can be generated by our tool.

.1. CIT for validation

In order to validate and test BenCIGen, we have applied a dogfood-
ng technique: we derive from the feature model in Fig. 1, describing
he requirements of our tool, a combinatorial test suite with strength
= 2. The test suite has been generated, after having automatically

ranslated the feature model in a CTWedge model, using ACTS, and,
ith only 17 tests it allowed us to effectively test BenCIGen. The test

ases are reported in Table 3, where #𝐵 indicates the number of
enchmarks, the 𝑇 𝑦𝑝𝑒 is expressed with the abbreviations introduced
n Table 2, #𝑃 represents the number of parameters, #𝐶 the number

5 Examples of dictionaries are available at: https://github.com/fmselab/
IT_Benchmark_Generator/tree/main/BenchmarkGenerator/dictionaries.
10
of constraints, and the ConstraintForm is 𝐶 if constraints need to be in
CNF, 𝐺 if the general form is required, or 𝐹 if forbidden tuples are used.
Note that abstract features (those in light blue in the feature model
in Fig. 1) are not reported in the test suite, since they are not actual
features of the generators, but they are only used for grouping other
features.

Some of the parameters that can be selected or unselected in the
generated test suite actually correspond to many parameters that have
to be set during test execution (e.g., the number of parameters #𝑃
requires to set the maximum and minimum number). Therefore, in
Table 4 we report the values we set in each test case for each non-
boolean feature, but we emphasize that these values are reported only
for completeness and replicability of the tests, and the same results
would be obtained with every other values. Note that we decided
to use #𝐵 = 10 in order to have multiple examples to check for
very test case, considering that models are generated randomly by the
enchmark generator. Then, for each test case 𝑡𝑠𝑖, after having set all
he configuration parameters, we generate the benchmarks and check
hat every generated IPM conforms to its expected properties, in terms
f parameters, constraints, ratio, and complexity.

The code executing the tests is available online in BenCIGen’s offi-
cial repository https://github.com/fmselab/CIT_Benchmark_Generator,
while the outcome of each test execution is reported in the last row of
Table 3.

6.2. External validation

Ensuring the similarity between artificially generated benchmarks
and real models is of utmost importance when evaluating generators.
This is crucial to avoid bias in the evaluation process, as models that do
not accurately represent real systems can introduce distortions in the
assessment of generator performance and correctness. For this reason,
in this section, we show that a significant number of models taken from
the literature can be obtained by at least one configuration of our CIT
benchmark generation.

Table 56 shows the 767 models we have considered and the char-
cteristics extracted from them by the modelanalyzer part of our CIT

6 For the models in the NUMC category, 𝑟𝑡𝑠 is an estimation computed with
the Monte Carlo-Based approach, as explained in Section 4.3, with 𝑛 = 1000.
For some models (those with the *) it was not possible to compute both 𝑟𝑡𝑠
and 𝑟 because of their high complexity (Thüm, 2020).
𝑡𝑝

https://github.com/fmselab/CIT_Benchmark_Generator/tree/main/BenchmarkGenerator/dictionaries
https://github.com/fmselab/CIT_Benchmark_Generator/tree/main/BenchmarkGenerator/dictionaries
https://github.com/fmselab/CIT_Benchmark_Generator
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Table 5
Summary values for the IPMs taken from the literature. In columns where two values are reported, they represent the lower and the upper bounds. FT reports the number of
models in that category having forbidden tuples, while CF those with constraints in CNF.

Src #Ms Type # #P Int bnd. Card. #C Comp. FT CF 𝑟𝑡𝑝 𝑟𝑡𝑠
Petke et al. (2015) 7 BC 1 10 – – 1 5 0 1 0.99 0.75

MC 6 7–14 – 2–10 6–83 1–38 0 6 0.75–0.92 0.002–0.250

Jin et al. (2020)* 11 BC 7 65–1639 – – 108–4664 1–100 0 0 0.70–0.93 0.000–0.000
MC 4 72–6295 – 2–27 94–9842 1–352 0 0 0.63–0.82 0.000–0.000

Segall et al. (2011) 18 BC 1 5 – – 7 1–6 0 1 0.90 0.250
MC 17 4–35 – 2–13 3–388 1–8 13 17 0.75–1.00 10−5–0.654

Garvin et al. (2010) 35 MC 35 30–199 – 2–6 5–49 1–9 0 35 0.80–0.99 10−5–0.324

Microsoft Inc (2023) 28 M 7 6–18 – 1–7 – – – – – –
BC 1 7 – – 2 1 0 0 0.98 0.625
MC 20 2–33 – 1–11 1–36 1–9 0 0 0.80–0.99 10−7–0.813

Tzoref-Brill and Maoz (2018) 112 M 15 3–61 – 1–500 – – – – – –
BC 1 23 – – 19 1–4 0 0 0.94 0.024
MC 93 4–118 – 1–166 1–381 1–252 4 4 0.08–0.99 10−13–1.000
NC 2 8–8 0–3 2–4 7–11 1–4 0 0 0.35–0.91 0.088–1.000

Johansen et al. (2011)* 16 BC 8 28–1397 – – 34–3633 1–13 0 0 0.61–0.93 10−12–0.001
MC 8 7–6295 – 2–27 7–9842 1–352 0 0 0.47–0.82 10−13–0.103

Bombarda et al. (2022) 300 UB 53 2–20 – – – – – – – –
UA 50 2–20 – 2–20 – – – – – –
M 47 2–20 – 2–50 – – – – – –
BC 54 2–20 – – 1–23 1–15 0 0 0.25–1.00 10−5–0.937
MC 60 2–19 – 2–50 1–38 1–14 0 4 0.01–1.00 10−16–1.000
NC 36 2–17 (−99)–100 1–199 1–13 1–14 1 1 0.01–1.00 0.001–1.000

Bombarda et al. (2023) 240 UB 15 7–29 – – – – – – – –
UA 15 7–25 – 2–15 – – – – – –
M 30 7–30 – 1–15 – – – – – –
BC 36 6–43 – – 1–46 1–14 0 1 0.33–1.00 10−9–0.906
MC 114 4–199 – 1–15 1–37 1–15 0 44 0.02–1.00 10−12–1.000
NC 30 6–30 (−100)–111 1–16 1–24 1–14 0 0 0.06–1.00 0.001–0.830
m
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benchmark generator, i.e., the part meant to extract the configura-
tion from a given IPM where the generation from a baseline model
is chosen (see Section 5). All models and data extracted from their
analysis are available at https://github.com/fmselab/CIT_Benchmark_
Generator/blob/main/BenckmarkGenerator/external_validation.

Data reported in Table 5 show that in all the considered cases,
we have been able to classify the models from the literature in the
categories handled by BenCIGen, and all the categories we can gener-
te with BenCIGen have been found in the literature. The only limit
e found is dealing with very complex models having thousands of
arameters and constraints (derived from Software Product Lines and
ot natively representing IPMs, though), for which computing the ratio
s not feasible in an exact way. Considering the data obtained by
nalyzing the IPMs available in the literature, we can conclude that
y setting BenCIGen in the same way as in those benchmarks, we can
btain plausible models with the same features as real-world IPMs.

. Related work

Benchmarking combinatorial test generators is of paramount im-
ortance since it allows both for assessing the correctness of the tools
i.e., their ability to produce valid and complete test suites, covering all
he desired 𝑡-way interactions) and for evaluating their performance.
everal works have been presented in the past, trying to evaluate test
enerators and identifying those having the best performance, both in
erms of generation time and test suite size. For example, in Bombarda
t al. (2021), the authors presented a benchmarking environment,
ased on CTWegde (Gargantini and Radavelli, 2018) which allows the
omparison between test generators that can be easily included by
xtending some selected Eclipse extension points. In that work, the
uthors compared some of the most well-known generators (ACTS Yu
t al., 2013, MEDICI Gargantini and Vavassori, 2014, CAgen Wagner
t al., 2020, PICT Microsoft Inc, 2023, and CASA Garvin et al., 2009),
ut only on a limited set of 196 IPMs taken from the literature.
11

i

In this paper, instead, we focus more on generating benchmark
odels and not on their execution for comparing test generators.

ndeed, finding real IPMs is not so easy in the literature, since many
f those used in research works are not distributed due to IP limita-
ions. Some analyses, when real highly configurable system models are
eeded, have been conducted by deriving combinatorial models from
oftware product lines, such as in Johansen et al. (2011) and Jin et al.
2020). This is not always the optimal approach, since the translation
f an SPL into an IPM requires some assumption (such as the way in
hich alternative groups are translated, or the way in which abstract
r hidden features are treated) that may vary the complexity of the
enerated IPMs.

This is the reason why we focus on benchmark generation. This
roblem is not completely new and it is tackled also by other works.
or example, in Younes et al. (2005), the authors proposed a method
or generating benchmarks, with known solutions, that does not suffer
he usual limitations on the problem size or the sequence length, since
t does not require the re-optimization phase. This approach is different
.r.t. that we use in this paper since we do not require any solution to
e known and, thus, we can generalize better test models. Moreover,
n Ansotegui and Torres (2023), the authors propose a generator for
enchmark IPMs, but only a limited set of features is addressed. For ex-
mple, when considering constraints, only models containing Boolean
arameters can be generated, while the tool presented in our paper
upports also enumeratives and integer ranges.

Benchmark generation is a common approach for comparing dif-
erent methods, techniques, and tools (Hasselbring, 2021). It has been
idely adopted especially in the context of competitions but not only.
or instance, in Derks et al. (2023) the authors introduce vpbench,
hich simulates the evolution of a variant-rich system. The tool gen-
rates an evolution together with metadata that explains it — like in
ur case we generate a benchmark together with its type. In Ferrer
t al. (2011), an automatic benchmark generator of java programs is
resented. As done in our work, it is configurable by the user which can

nclude in the generated code interesting features, and the reachability

https://github.com/fmselab/CIT_Benchmark_Generator/blob/main/BenckmarkGenerator/external_validation
https://github.com/fmselab/CIT_Benchmark_Generator/blob/main/BenckmarkGenerator/external_validation
https://github.com/fmselab/CIT_Benchmark_Generator/blob/main/BenckmarkGenerator/external_validation
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of each branch is assured (as we do for the validity of the IPMs). The
application of benchmarks is not limited only to pure software systems,
but sometimes is applied even in systems embedding hardware. For
example, benchmarks generated by exploiting machine learning are
used to test computer networks (Cerquitelli et al., 2023).

8. Conclusions

Testing and comparing combinatorial test generators is of
paramount importance for the improvement, both in terms of per-
formance and correctness, of the tools developed by practitioners in
combinatorial testing. However, this process requires the availability
of a high number of benchmarks representing real-world examples and
grasping all the aspects of interest.

For reducing this gap in evaluating test generators, in this paper,
we have presented BenCIGen, a generator of benchmark IPMs. It is
fully configurable by users, that can decide the type of parameters and
constraints to be included in each model, their number and complexity,
as well as the properties of the IPMs themselves (e.g., the ratios and the
existence of at least one valid test case).

Its applicability has already been demonstrated by its use during
all the past editions of the CT Competition, held yearly during the
International Workshop on Combinatorial Testing. Moreover, in this
paper, we have further extended the tool and unit-tested it by using
a combinatorial test suite directly derived from its requirements. As
shown by the external validation activity, in which we have compared
the IPMs available in the literature with those generable with BenCIGen,
we believe that our tool can be profitably used for evaluating test
generators with synthetically generated benchmarks having the same
characteristics as real-world systems.

As a future work, we may investigate approaches allowing BenCIGen
to solve the limitation of throwing away the generated IPM every time
it is not solvable or compliant with the ratios requested by the user.
Moreover, we may include the generation of not solvable IPMs. This
would allow users to test their generators not only when the model can
be solved, but also in negative cases, and to verify that the generators
are actually able to identify that condition.
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