
TRANSACTIONS ON SOFTWARE ENGINEERING 1

Evaluation framework for autonomous systems:
the case of Programmable Electronic Medical

Systems
Andrea Bombarda, Silvia Bonfanti, Martina De Sanctis, Angelo Gargantini, Patrizio Pelliccione,

Elvinia Riccobene, Patrizia Scandurra

Abstract—This paper proposes an evaluation framework for autonomous systems, called LENS. It is an instrument to make an
assessment of a system through the lens of abilities related to adaptation and smartness. The assessment can then help engineers
understand in which direction it is worth investing to make their system smarter. It also helps to identify possible improvement
directions and to plan for concrete activities. Finally, it helps to make a re-assessment when the improvement has been performed in
order to check whether the activity plan has been accomplished.
Given the high variability in the various domains in which autonomous systems are and can be used, LENS is defined in abstract terms
and instantiated to a specific and important class of medical devices, i.e., Programmable Electronic Medical Systems (PEMS). The
instantiation, called LENSPEMS, is validated in terms of applicability, i.e., how it is applicable to real PEMS, generalizability, i.e., to what
extent LENSPEMS is generalizable to the PEMS class of systems, and usefulness, i.e., how it is useful in making an assessment and
identifying possible directions of improvement towards smartness.

Index Terms—Autonomous systems, Evaluation framework, Programmable Electronic Medical Systems (PEMS).

✦

1 Introduction

In the last years, we have observed active and proficuous
research in autonomous and self-adaptive systems (SASs).
The Software Engineering of Adaptive and Self-Managing
Systems (SEAMS)1 community produced two roadmaps
to summarize the state-of-the-art, for identifying critical
challenges for the systematic software engineering of
SASs [1], [2]. The second roadmap [2] identified essential
topics of self-adaptation, spanning from the design space to
processes and to run-time verification and validation. The
runtime assurance of SASs has been also targeted through
the use of models at runtime (M@RT) [3]. There have also
been survey papers aiming at identifying the underlying
research gaps and providing a taxonomy of SASs [4], [5].
Finally, a recent book provides a historical perspective
of SASs and presents the basic principles, engineering
foundations, and applications of SASs [6].

Over the years, SASs are increasingly becoming
“smarter” to be able to adapt and learn how to handle

A. Bombarda is with University of Bergamo, Bergamo, Italy - email:
andrea.bombarda@unibg.it
S. Bonfanti is with University of Bergamo, Bergamo, Italy - email:
silvia.bonfanti@unibg.it
M. De Sanctis is with Gran Sasso Science Institute (GSSI), L’Aquila,
Italy - email: martina.desanctis@gssi.it
A. Gargantini is with University of Bergamo, Bergamo, Italy - email:
angelo.gargantini@unibg.it
P. Pelliccione is with Gran Sasso Science Institute (GSSI), L’Aquila,
Italy - email: patrizio.pelliccione@gssi.it
E. Riccobene is with Università degli Studi di Milano, Milano, Italy -
email: elvinia.riccobene@unimi.it
P. Scandurra is with University of Bergamo, Bergamo, Italy - email:
patrizia.scandurra@unibg.it

1. https://www.hpi.uni-potsdam.de/giese/public/selfadapt/seams/

and manage new and unexpected events with autonomy.
However, the precise meaning of “making a system smarter”
is not always obvious, and, more pragmatically, it is not
straightforward to decide how to concretely operate to
achieve the ambition [7]. Making a system smarter might
involve various system’s abilities, such as configurability,
autonomy, adaptability, perception, cognitive, and inter-
action with other systems and humans, to mention a few.
These abilities can have various levels of importance in
specific systems [7]. Then, it is important to understand
in which direction it is worth and useful to invest to make
systems smarter, and how and how much to improve a
system in each specific direction.

In this paper, we aim to provide an instrument to help
engineers understand (i) in which direction it is worth
investing to make their system smarter, (ii) how to plan for
concrete activities, and (iii) how to assess the execution
of the plan. The instrument we propose is an evaluation
framework for autonomous systems, which focuses on
abilities related to adaptation and smartness. An evaluation
framework is an instrument to perform an evidence-based
assessment of a system under a specific lens (the topic
of interest) and to monitor the evolution of the system
over time. An example of existing evaluation frameworks is
CMMI (Capability Maturity Model Integration),2 originally
developed for the U.S. Department of Defense. It has been
used for more than 30 years to help organizations under-
stand their current level of capability and performance
and offer a guide to optimizing business results. Another
example is the Family Evaluation Framework (FEF) [8],

2. https://cmmiinstitute.com/

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3374382

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://www.hpi.uni-potsdam.de/giese/public/selfadapt/seams/
https://cmmiinstitute.com/

TRANSACTIONS ON SOFTWARE ENGINEERING 2

which has been created for evaluating the performance in
software product line engineering of organizations.

The evaluation framework we contribute in this paper
is called LENS - evaLuation framEwork for autoNomous
Systems - and it can be used for (i) making an assessment
of a system under the lens of abilities related to adaptation
and smartness, (ii) identifying the possible directions
of improvement, and (iii) making a re-assessment when
the improvement has been performed. LENS stimulates
reasoning to determine which abilities are worth enhancing
in a system, and which levels within an ability are suitable
and optimal for a system (thus rejecting the idea that higher
levels are always better). Then, it will make it possible to
plan improvement steps and also define Key Performance
Indicators (KPIs) to measure improvements in making
systems smarter.

The preliminary idea of LENS has been presented in the
short paper published at the ACSOS 2022 conference [7].
In the previous paper, we motivated the need for LENS, we
described the process that we followed to create it, and
briefly sketched the framework. In this paper, we describe
LENS in detail, its instantiation to a specific domain, the
tool supporting it, and its validation according to various
validation questions. We also provide lessons learned that
can support the process of making new customizations of
LENS for other domains.

LENS is defined at an abstract level, since there is high
variability in the various domains in which autonomous
systems are and can be used. We are talking about a family
of evaluation frameworks, where LENS is the abstract root
and the various instantiations become concrete and ready
to be used in practice. We instantiate LENS to a specific
and important class of medical devices, and specifically
on Programmable Electronic Medical Systems (PEMS) [9].
The concrete instance we obtained is called LENSPEMS. The
choice of this precise medical domain was due to the fact
that when working on developing an adaptive version of a
mechanical ventilator for pneumonia disease, we needed an
instrument for evaluating the device in terms of adaptation
and smartness and planning the required improvements.
However, we were not able to find any instrument with
the needed requirements, and this triggered the idea of
doing it ourselves. Moreover, considering the lack of similar
tools for autonomous systems, in general, in this paper we
explain the steps to be performed in order to make an
instantiation of LENS for a different class of systems.

We developed LENS and LENSPEMS by exploiting
the Multi-annual Robotic Roadmap [10] for robotic sys-
tems, since this roadmap identifies various abilities of
autonomous robotics and defines levels for each of them.
We only considered the abilities that make sense for
autonomous systems without motion and manipulation, as
these abilities are specific to robots and not inherent to the
class of systems that we intended to evaluate. Moreover,
note that LENS is an evolving meta-framework, open to
inheriting abilities and/or sub-abilities elicited from the
LENS’s customization to specific classes of systems when
those elicited abilities are also suitable for autonomous

systems as a whole. We show such LENS’s evolution
upon LENSPEMS definition, and we envision such kind of
advancement due to customization to further classes of
concrete autonomous systems.

To show how LENSPEMS is applicable to real PEMS,
we use it for evaluating the adaptive abilities of the Me-
chanical Ventilator Milano (MVM), a mechanical ventilator
for COVID-19 [11], [12], [13]3. It was developed by an
international and multidisciplinary network of scientists
spread all around the world during the first wave of the
COVID-19 pandemic. Evaluating the MVM by means of
LENSPEMS has helped us to identify a number of possible
improvements and to evaluate the engineering effort (from
low to high) required to achieve them. This analysis allows
engineers to design the next generation of mechanical
ventilators that expose autonomous, adaptive, and learning
abilities.

To evaluate the generalizability of LENSPEMS, we identi-
fied five additional PEMS (in addition to the MVM) and eval-
uated changes, extensions, or customizations LENSPEMS

would need to become usable for a system belonging to the
class of PEMS.

Finally, to assess the usefulness of LENSPEMS, we
gathered responses from 26 experts in self-adaptive sys-
tems and/or PEMS through a questionnaire we created.
Additionally, we conducted 13 interviews to further clarify
and supplement the questionnaire responses.

The paper is organized as follows. Section 2 provides
background on (i) the Multi-annual robotic roadmap that is
used as inspiration to build LENS and LENSPEMS and (ii) the
class of PEMS. Section 3 introduces LENS together with the
steps that need to be performed to instantiate it to a specific
class of systems. Section 4 presents LENSPEMS and the tool
supporting it. Section 5 reports the activities we performed
to validate LENSPEMS. Finally, Section 6 compares the work
with related works, and Section 7 concludes the paper with
final remarks and directions for future works.

2 Background

In this section, we provide background information on
the Multi-Annual Roadmap for Robotics (Section 2.1) and
Programmable Electronic Medical Systems (Section 2.2).

2.1 Multi-Annual Roadmap for Robotics in Europe

In this section, we introduce the Multi-Annual Roadmap
for robotics in Europe (MAR) [10] which has been used
as an inspiration for the definition of LENS. This roadmap
provides a high-level strategic overview of the robotics
community and its objectives, and identifies challenges
and opportunities available for robotics. Similar roadmaps
have been defined for other continents and countries4.
Even though MAR focuses on robotics, we used it as
an inspiration since it is organized into a set of robot

3. https://vexos.com/mvm-ventilator/
4. Australia: https://roboausnet.com.au/robotics-roadmap/,

US: https://www.nowpublishers.com/article/DownloadSummary/
ROB-066

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3374382

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://vexos.com/mvm-ventilator/
https://roboausnet.com.au/robotics-roadmap/
https://www.nowpublishers.com/article/DownloadSummary/ROB-066
https://www.nowpublishers.com/article/DownloadSummary/ROB-066

TRANSACTIONS ON SOFTWARE ENGINEERING 3

abilities, similar to how we aimed to structure LENS. Each
ability captures one specific aspect of the operation and
behavior of a robot system. MAR is focusing on robotics,
which is, indeed, a special kind of autonomous system. We
then changed and generalized the abilities to autonomous
systems in general. The abilities introduced by MAR are:

• Adaptability: concerning the actions of the robot to
adapt itself to various scenarios, environments, and
conditions.

• Cognitive Ability: concerning the actions of the robot to
interpret a task, human commands, and environment,
as well as, work interactively with humans, so as to
efficiently and effectively execute the task potentially
under uncertainty.

• Configurability: concerning the actions of the robot to
be (re-)configured or self-(re-)configured to perform a
task.

• Decisional Autonomy: concerning the actions of the
robot to act autonomously (degree of autonomy).

• Dependability: to perform its given mission without
errors.

• Interaction Ability: concerning the actions of the robot
to interact both cognitively and physically either with
users, operators or other systems around it, including
other robots.

• Perception Ability: concerning the actions of the robot
to perceive its environment.

• Manipulation Ability: concerning the actions of the
robot to handle objects.

• Motion Ability: concerning the actions of the robot to
move to specific locations.

Moreover, each ability has a series of ability levels,
which provide a progressive characterization of what any
robotic system might do. This is another aspect that has
been analyzed in depth when building LENS and then its
instantiation, LENSPEMS.

2.2 PEMS: Programmable Electronic Medical Sys-
tems

Programmable Electronic Medical Systems (PEMS) are
systems that do not have Manipulation and moving abilities.
Indeed, according to the medical standard IEC 60601-4-
1 [9], PEMS are defined as MEE5 or MES6 containing one
or more systems based on one or more central processing
units, including their software interfaces. Therefore, PEMS
are not medical robots; they may exhibit a DOA (Degree
of Autonomy), but they do not have motion and/or manip-
ulation abilities. On the other side, a medical robot is a

5. A MEE (Medical Electrical Equipment) is defined as an electrical
equipment having an applied part or transferring energy to or from
the patient or detecting such energy transfer to or from the patient
and which is: a) provided with not more than one connection to a
particular supply mains; and b) intended by its manufacturer to be
used: 1) in the diagnosis, treatment, or monitoring of a patient; or 2)
for compensation or alleviation of disease, injury, or disability.

6. A MES (Medical Electrical System) is defined as a combination,
as specified by its manufacturer, of items of equipment, at least one
of which is MEE to be inter-connected by functional connection or by
use of a multiple socket-outlet.

PEMS with motion and manipulation abilities (e.g., robotic
surgery systems, dog therapy robots, etc.).

3 LENS: evaLuation framEwork for au-
toNomous Systems

To define LENS, we exploited the various surveys and books
in the field of autonomous and self-adaptive systems [1], [2],
[4], [5], [6], and we further performed a literature review
in evaluation frameworks for system adaptive abilities (see
Section 6) to be sure we were not missing relevant papers.

LENS can be formally defined as a tuple ⟨ab1, . . . , abn⟩
of abilities, i.e., qualities that an autonomous system owns
to perform some given actions. Each ability abi can be
primitive or defined itself as a tuple ⟨abi,1, . . . , abi,mi

⟩
of sub-abilities. Each primitive (sub-)ability ab has an
associated maximum level MaxLev(ab) > 0, and for
each l from 0 to MaxLev(ab), ab is associated to a tuple
⟨l, name, description⟩, where l is the level index; name
denotes the level of the owned quality; and description
motivates the quality measure index. Levels are used to
measure how much the quality/ability is owned by the
autonomous system (the basic level, level 0, usually means
that the system does not have the ability).

Since the set of abilities defining LENS is domain-
specific, once a given system or class of systems is fixed,
it must be customized, as is the case for the LENSPEMS

defined in Section 4. Therefore, LENS can be considered
a meta-evaluation framework and can be instantiated for
any class of autonomous systems upon detecting the set
of characterizing abilities and their description levels. It
is interesting to highlight that the structure of LENS with
its instantiations builds on the idea of engineering product
lines and family of products [14], i.e., software systems
that share similarities and that can be engineered and
built by sharing a set of software assets and a common
means of production. It would be interesting in the future
to investigate, e.g., precise use of variation, feature models
as a meta-modeling language for specializing LENS, using
feature models tooling for evaluating instantiations of
LENS, and so on.

As a starting point for defining all the abilities an
autonomous system should have, LENS suggests the 8
abilities listed in Table 1. Some are primitives, e.g., Config-
urability, while others, like Cognitive, are defined by a set
of sub-abilities. To identify these abilities, we first exploited
the Multi-Annual Roadmap for Robotics in Europe (MAR)
(see Section 2.1), which has been an important starting
point for defining LENS.

When we customized LENS to the PEMS class of
systems, we identified the need for adding the sub-abilities
Adaptation trigger and Adaptation object for the Adapt-
ability ability, as well as the Explainability ability (see
Section 5.2 for more details). Since these (sub-)abilities
also refer to autonomous systems in general, we considered
them as a valid extension of LENS. Therefore, the abilities
shown in Table 1 result from the meta-framework evolution
after instantiating it to a specific class of systems. We

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3374382

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

TRANSACTIONS ON SOFTWARE ENGINEERING 4

TABLE 1
LENS abilities

Ability

Configurability

Adaptability
Adaptation trigger

Adaptation object

Dependability

Autonomy

Interaction (Int.)
Human-system Int.

Human-system Int. feedback

System to system Int.

Human-system Int. safety

Perception
General perception

Element recognition

Scene perception

Cognitive
Action

Interpretive

Envisioning

Acquired knowledge

Reasoning

Cognitive human interaction

Explainability

envision such evolution upon customization to further
classes of concrete autonomous systems. The openness of
LENS enables any appropriate modifications made during
customization not to be restricted solely to the particu-
lar customization, but to emerge and rise till the meta-
framework. As a consequence, any further customization
may benefit from previous ones.

In the following, we devise some key learnings and
general guidelines on how (i) to customize LENS for a
target class of systems, and (ii) to carry out the assessment
with the customized framework in practice.

3.1 Customization of LENS: key points and lessons
learned

Fig. 1 shows a reference workflow on how a customization
LENSC for a class C of systems can be defined. The starting
point for the customization is the characterization of the
class C of systems under consideration, and then the
analysis of the underlying domain and features of interest.
The third step refers to the analysis of the structure
(in terms of abilities and sub-abilities) of LENS and of
other existing frameworks in LENS_ZOO (available in our
supplementary material [15]), i.e., frameworks obtained
from previous customizations of LENS, for similar classes of
systems. Other suitable external frameworks might also be
considered for the purpose. According to this preliminary
analysis of the domain and diverse systems features, the
real customization process can start. It is to be conceived as
an iterative execution of abstraction and refinement steps
that may imply adding/removing/changing (sub-)abilities
and/or levels of abilities, including their descriptions, to
make them more suitable for C.

Systems Selection

C = class of systems

Domain Analysis on C

Analysis of LENS and

LENS _ZOO (if any) for C

Customization of LENS to LENSC

Remove

from LENS

non-relevant

abilities and/or

levels of

abilities for

the class C

Adapt

descriptions of

abilities/levels

in LENS

according to C

Add new

abilities and/or

levels for

the abilities

in LENS

suitable for C

LENSC

N
o
t

co
m

p
le

te

Fig. 1. Reference workflow for customizing LENS

In addition to such a workflow, we here distill some guid-
ance by reporting some key attention points and related
lessons learned that we matured from our experience in
customizing LENS for the PEMS domain. These key points
(KP) include the following:

• KP0: Characterization of the class of systems: The
starting point in the concretization of the reference work-
flow for a target domain C is the characterization itself
of the class of systems and the analysis of the underlying
domain. For this purpose, we found it useful to establish
a definition for the class C with the aim of identifying
the main elements/features that characterize the target
systems and make them different from other classes of
similar systems. A common vocabulary of terms starting
from that available for LENS and an explanation of their
meaning for the domain of C can help in such an analysis.
For example, we found it essential to clarify the meaning
of the terms mission and task for the systems under
consideration in order to later identify the abilities and
sub-abilities of these systems and assess them.

• KP1: Identification of existing frameworks to analyze:
Once C has been characterized and similar classes of
systems have been found, another challenge is the search
for a zoo of existing customizations of LENS (if any) for
these similar classes. We found it helpful to start from
an existing evaluation framework, which in our case was
the framework MAR for LENS and LENS for LENSPEMS,
and then to go ahead with the customization process by
abstraction and refinement steps. In the long term, the
availability of a documented zoo of diverse customizations
of LENS may significantly help with the domain analysis
itself.

• KP2: Customization by examples: How to reconcile
the extension requirements (in terms of abilities and sub-
abilities) for C with those of the existing zoo of frameworks?
From our experience, it may be useful to start with a

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3374382

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

TRANSACTIONS ON SOFTWARE ENGINEERING 5

specific instance of C (e.g., the MVM ventilator for PEMS)
and then try to generalize to the whole class. This also
makes sense because at the beginning one might be
interested in using LENS only to evaluate a specific product
rather than a broader class. In our case, for example,
first LENSMVM was born, and then it became LENSPEMS.
Exploiting the similarities between the system variants for
the class C could help in such generalization activity.

• KP3: Customization by abstraction and refinement:
This process is similar to a software design methodology;
it is manual and requires some creativity. Refined abilities
and sub-abilities can be obtained at first instance as specific
to the system example(s) and then generalized and lifted to
the entire class of systems. One can consider a spectrum
of levels of granularity, e.g., going from coarse-grained to
fine-grained. From our experience, we recommend to first
remove what is non-necessary (and to be sure of this one
has to look at the whole system class), then adapt what
remains, and, finally, add what is missing. To identify what
is missing, it is necessary to look into specific instances
and then generalize to the whole class. The actions taken
to address RQ2 during validation serves as an illustration
of the execution of this step.

• KP4: Customization guided by tools: How to manage
the customization process with some means of automation?
Customization tools built around tried and trusted practices
could be identified and selected to assist in classifying
characteristics, possibly overlapping or interrelated, about
the target systems. As aforementioned, examples of such
tools include those for feature and variability modeling
from the area of software product lines engineering [16],
for model evolution from model-driven engineering [17],
and so on.

3.2 Making an assessment with LENSC

Once the abilities of LENSC together with their levels
and descriptions, for a class C of autonomous systems,
are identified, a set of activities are to be performed to
evaluate a system in that class. It is important to point
out that humans play an important role in the evaluation,
and some aspects cannot be completely automated. Part of
the evaluation concerns the re-engineering opportunities
of the system under evaluation. Indeed, some instruments
could be used, e.g., to retrieve important information or
to understand the impact of a potential decision. Such
instruments are most probably dependent on and specific
to the system under evaluation.

In this paper, we will not focus on opportunities to
automate this evaluation, and we leave such investigation
to future works. The evaluation will be performed by an
evaluation committee that has all the needed competencies.
It should include experts in the domain able to understand
whether it makes sense to automate specific functionalities,
engineers able to understand what it is feasible to automate,
but also business strategists able to understand whether
it is worthwhile to automate specific functionalities. The
evaluation of the committee can follow well-known tech-
niques for collecting opinions from the group of experts and

reaching a consensus, like the ATAM method for evaluating
software architectures [18], or the Delphi method [19].

3.3 Assessment values

When performing the assessment, the evaluation committee
should assign to each level one of the following values:

• Not applicable - white: this is the default value, and it
is assigned when the level is still too low for the application
domain, and a higher level must be present for all the
systems in that domain.

• Satisfied - green: when the level is completely satis-
fied. We also require the evaluation committee to justify
the value.

• Improvable (low effort) - yellow: when the system can
be improved to (better) satisfy the level. The effort to realize
the improvement is low. We also require the evaluation
committee to identify the direction of improvements needed
to reach that level.

• Improvable (high effort) - orange: when the system
can be improved to (better) satisfy the level. The effort to
realize the improvement is high. We also require the evalu-
ation committee to identify the direction of improvements
needed to reach that level.

• Unable - gray: when the system is not able to own the
ability at that level, cannot be improved to reach this level
of ability or the improvement is out of scope. This can be
due to several reasons: e.g., the system configuration, its
goals, and the lack of other abilities.

3.4 Assessment process

The assessment process is reported in Fig. 2 and explained
in the following:

Phase 0 – Setup: Preparation before starting the
evaluation. This is an informal step with the main purpose
of bringing all important stakeholders on-board.

Phase 1 – Analysis: First, (1) LENS, already cus-
tomized for a specific class of systems, is presented along
with (2) the system under evaluation (SUE), (3) the context
in which the SUE is supposed to operate, and (4) the
business goals of the SUE, together with its mission and
its main tasks. Then, the SUE can be evaluated under each
dimension. For each ability, the evaluation committee will
do iteratively the following steps:

(5) it assesses the SUE and assigns an assessment value
to the ability levels: Not applicable, Satisfied, Improvable
(low effort), Improvable (high effort) and Unable (see
Table 5 for an example of evaluation; some aspects of the
evaluation are explained in the following items);

(6) it provides examples explaining the given assess-
ment for Satisfied levels (see Table 4 for an example);

(7) it provides recommendations for potential exten-
sions of the SUE for Improvable (low effort) and Improvable
(high effort) levels (see Table 4 for an example).

Phase 2 – Reporting the evaluation results, along with
recommendations for potential extensions of the SUE, are
presented by the evaluation committee and documented in
a report.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3374382

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

TRANSACTIONS ON SOFTWARE ENGINEERING 6

Setup

C = class of the SUE

∃ LENSC ?
Customize

LENS

Analysis

Presentation of SUE and LENSC

Establish the assessment

value for all the ability levels

Provide examples for Satisfied levels

Describe extensions

for Improvable levels

Reporting

NO

YES

F
o
r

e
a
ch

a
b

ility

Fig. 2. Assessment process of a SUE with an instance of LENS

Phase 3 – Re-assessment of the SUE, after that
all or part of the recommended extensions have been
performed. Recommended extensions are delegated to
the development team, which possibly differ, in total or
in part, from the evaluation committee that carried on
the assessment process. This phase essentially consists
in a repetition of the assessment process as depicted
in Fig. 2, and it can be carried on by the same or a
different evaluation committee. The re-assessment of the
SUE is particularly useful to verify that the implemented
extensions did not degrade one or more abilities previously
evaluated as Satisfied. In this case, the identification of
trade-offs might also be considered.

Table 5 shows what the outcome summary of a potential
evaluation would look like. As we anticipated, LENS needs
to be instantiated to a domain to be used in practice.
However, LENS provides a schema for the evaluation
process; the table shows how an overall evaluation will
be reported in a summary report as well as filled tables
with the details of the evaluation for each ability and level.

An example of an evaluation performed on a concrete
system by the instantiation of LENS for PEMS called
LENSPEMS is presented in Section 5.1, where we answer
the first research question of the validation, i.e., how
LENSPEMS is applicable to real PEMS. Specifically, we show
the summary of the overall evaluation of the PEMS, and
we provide details about the evaluation of two specific
abilities, namely the Adaptability and Cognitive abilities.
The overall evaluation of the selected PEMS is available
in its entirety in our online supplementary material [15],
under the applicability section.

It is important to highlight that the evaluation values
do not take into account the return on investment (ROI)
for performing a specific improvement of the system. The
aim is just to make a rough estimation of the effort to be

made to improve the system. We expect that making a
proper evaluation of the ROI for a specific improvement
requires different profiles and competencies, and it is out
of the scope of LENS and LENSPEMS. Instead, LENS and
LENSPEMS aim at providing the context to enable informed
decisions on go/no-go improvements.

4 Instantiation of LENS to the PEMS domain

In this section, we show the instantiation of LENS to
a specific class of systems, i.e., medical devices and,
specifically, Programmable Electronic Medical Systems
(PEMS). The instantiation is called LENSPEMS.

4.1 Abilities in LENSPEMS

For space reasons, we cannot describe in detail each
ability of the LENSPEMS framework and the levels of each
ability. We instead focus on two specific abilities that are
good representatives of the framework, and we invite
the interested reader to refer to the webpage that is
associated with the paper for finding details about each
ability, together with supplementary material for the entire
research made [15].

Table 2 reports the Adaptation trigger sub-ability of the
Adaptability ability of LENSPEMS with its levels. Adaptabil-
ity is defined as the ability of the system to adapt itself
to different work scenarios, environments, and conditions.
Adaptation may take place over long or short time scales.
Furthermore, with the Adaptation trigger sub-ability, we
focus on the trigger of the adaptation, i.e., the parts of
the system or history of collected data that cause an
adaptation. Table 3 shows the description of the levels of
the Action sub-ability of the Cognitive ability in LENSPEMS.
The Cognitive ability is defined as the ability to interpret the
task and environment such that tasks can be effectively and
efficiently executed even where there exists environmental
and/or task uncertainty. In this context, the Action sub-
ability concerns the ability of the system to act purposefully
within its environment and the degree to which it is able
to carry out actions and plan those actions. These tables
might be exploited, by following the process described
in Section 3.2, to assess a system according to the two
abilities.

4.2 Tool support

The LENSPEMS evaluation framework is presented together
with an online evaluation tool7 that supports engineers in
analyzing a PEMS and creating the final report containing
the evaluation of the PEMS under analysis and suggestions
for making it smarter. In particular, with the LENSPEMS

tool, the users can analyze the abilities and assign to each
of them the corresponding assessment value. Moreover, a
detailed description (e.g., the scenario in which the level is,
or can be, reached) for each ability level can be added.

To simplify the evaluation, the tool supports the incre-
mental evaluation process: a JSON file can be exported

7. https://foselab.github.io/LENS4PEMS/

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3374382

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://foselab.github.io/LENS4PEMS/

TRANSACTIONS ON SOFTWARE ENGINEERING 7

TABLE 2
Adaptability ability - Adaptation trigger sub-ability

Level Name Description

0 No Adaptation The system does not alter its operating behavior in response to experience gained over time.
1 Human-triggered adaptation The adaptation of the system is triggered by humans.
2 Adaptation triggered by a single

part of the system
The adaptation is triggered by individual components, parameters or tasks.

3 Adaptation triggered by various
parts of the system

The adaptation is triggered by a set of interconnected or closely coupled parts of the system.

4 Adaptation triggered by collected
data, trends on data, history

The adaptation is triggered by analyzing collected data or data history, or by identifying
trends on data.

TABLE 3
Cognitive ability - Action sub-ability

Level Name Description

0 Defined action The system executes fully pre-defined actions as a sequence of sub-actions. This sequence can repeat
until stopped by an operator or other system event.

1 Decision-based action The system is able to alter its course of action based on perceptions or system events. It is able to
select between a set of pre-defined actions based on its decisional autonomy ability.

2 Sense-driven action The system is able to modulate its action in proportion to parameters derived from its perceptions.
The perceptions are used to drive the selection of pre-defined actions or the parameters of pre-defined
actions.

3 Optimized action The system is able to alter the sub-task sequence it applies to the execution of a task in response to
perceptions or a need to optimize a defined task parameter.

4 Knowledge-driven action The system is able to utilize knowledge gained from perceptions of the environment including elements
within it, to inform actions or sequences of action. Knowledge is gained either by accumulation over
time or by embedding knowledge from external sources, including user inputs that associate properties
with perceptions.

5 Plan-driven action The system is able to use accumulated information about tasks to inform its plans for action.
6 Dynamic planning The system is able to monitor its actions and alter its plans in response to its assessment of success.
7 Task action suggestions The system is able to suggest tasks that contribute to the goals of a specific mission.
8 Mission proposals The system is able to propose missions that align with high-level objectives.

from the evaluator at any moment and can be loaded at a
later time for completing or updating the evaluation of the
tool under analysis. When the evaluation is completed, as
a result, the evaluator tool produces the LENS evaluation
summary and a PDF report containing all the data inserted
by the user. The evaluation summary consists of Table 1
filled with colors according to the values assigned to each
ability, as described in Section 4.1. Additionally, it reports
the complete evaluation for each ability, including the levels
with their assessment values and the detailed description
of the scenario in which the level is, or can be, reached. An
example of a filled table summary is provided in Table 5
reporting the evaluation of a PEMS (the MVM ventilator),
while an example of a complete evaluation summary is
available in our online supplementary material [15], under
the applicability section.

5 Validation

We frame the validation of the LENSPEMS framework into
the following three Research Questions (RQs):

• RQ1 (Applicability): How is LENSPEMS applicable to
real PEMS?

• RQ2 (Generalizability): To what extent is LENSPEMS

generalizable to the PEMS class of systems?
• RQ3 (Usefulness): How is LENSPEMS useful in making

an assessment of a PEMS and identifying possible
directions of improvement towards smartness?

5.1 RQ1: Applicability of LENSPEMS

This section aims to answer RQ1 (Applicability): How is
LENSPEMS applicable to real PEMS?

Methodology. To answer RQ1, we used LENSPEMS to
evaluate a real PEMS. Specifically, we followed the process
described in Section 3.2, and, therefore, for each of the
levels of abilities and sub-abilities, we have analyzed the
level of satisfaction, improvability, or inability. The PEMS
we considered is a mechanical ventilator (MVM), which
has been developed during COVID-19 [11]. Most authors
of this work have collaborated on the realization of the
MVM, therefore, we have access to all data, code, and
documentation produced during the MVM development
(i.e., around 60 artifacts on requirements engineering,
architectural design, testing – unit, integration, and vali-
dation –, implementation, documentation, and traceability
checking).

The MVM mission is to perform patients’ ventila-
tion. The mission is pursued through a series of tasks:
(i) startup (both for hardware and software components)
to initialize the ventilator with default parameters, (ii) self-
test to ensure that the hardware is fully functional,
(iii) alarms management to raise alarms when faulty or
dangerous conditions are detected by the software com-
ponents, (iv) ventilation-on when ventilating the patient,
(v) ventilation-off when ventilation is not required, and
(vi) safe-mode performed when dangerous situations are

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3374382

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

TRANSACTIONS ON SOFTWARE ENGINEERING 8

TABLE 4
MVM evaluation on adaptability - Adaptation trigger sub-ability

Level Evaluation Details

0 Not applica-
ble

–

1 Satisfied MVM changes its ventilation mode in
response to the patient’s breath.

2 Satisfied MVM raises alarms in case of faulty parts
(e.g., tube obstruction, high inspired
volume, oxygen level too high) having
different priorities (High, Medium, Low).

3 Improvable
(low effort)

MVM can be extended with an alarm
managing component responsible for ag-
gregating all triggered alarms and prior-
itizing them using a Fault Tree Analysis
(FTA) technique.

4 Improvable
(high effort)

By maintaining a history of the alarm
system and the patient’s state over time,
MVM could be equipped with a predictive
model to forecast severe situations, for
example, when the patient is about to go
into apnea status.

detected and the patient must be protected. During ven-
tilation, the MVM can be in two modes: PCV (Pressure
Controlled Ventilation) when the patient is not able to start
breathing on his own, or PSV (Pressure Support Ventilation)
when MVM simply supports the patient’s breathing cycles.

MVM has been developed according to the IEC 62304
standard [12], [13] and it obtained the certification by
the FDA (Food and Drug Administration)8, the Health
Canada Authorization9, and the CE marking. Thanks to
these achievements, MVM can be now sold and used not
only in the USA, but also in Canada and Europe.

Although MVM has been a successful project and the
MVM ventilator has been produced in a large quantity, we
have initiated a feasibility study to make MVM smarter
and autonomous as much as possible. This work has been
carried out in the context of the initial phase of an Italian
project, called MVM-Adapt10, on strategic funds for devices
and technology to face with COVID-19. The project involved
3 partners, i.e. 3 universities in Italy, for a total of 12
researchers (including 2 physicians). During this phase
of the project, we conceived LENSPEMS and made an
assessment of MVM to understand its degree of Autonomy
and identify all the possible directions in which to improve
the autonomy of MVM.

Results of the evaluation of RQ1. Table 5 shows the
summary of the LENSPEMS evaluation on MVM.

The evaluation of the current state of the MVM abilities
shows that the ventilator is mature enough (see green
cells) with respect to Configurability, the basic levels of
Perception (since higher levels are not required by a me-
chanical ventilator), Reasoning (sub-ability of Cognitive),
and Human-system interaction.

According to the MVM mission, some abilities/sub-
abilities are not improvable (gray cells), since they are out

8. https://bit.ly/44yrWzH
9. https://bit.ly/3Fg5OPg
10. https://bit.ly/3FRTB3E

TABLE 5
MVM evaluation

Ability Levels
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Configurability
• • • • •

Adaptability
Adaptation trigger ◦ • • • •
Adaptation object ◦ • • •

Dependability
◦ • • • • • • •

Autonomy
◦ ◦ • • • • •

Interaction (Int.)
Human-system Int. ◦ ◦ • • • • • • •
Human-system Int. feedback ◦ ◦ • • •
System to system Int. ◦ • • • •
Human-system Int. safety ◦ •

Perception
General perception ◦ • • •
Element recognition •

Cognitive
Action • • • • • • • •
Interpretive ◦ • •
Envisioning • • • • •
Acquired knowledge ◦ • • • • • •
Reasoning ◦ • • • • • •
Cognitive human interaction ◦ •

Explainability
• • • • • ◦

of the scope of what a mechanical ventilator should do (e.g.,
Element recognition, or Cognitive human interaction).

With the opinion and feedback of physicians (that
we hired as consultants in the project) and their direct
experience in using mechanical ventilators in intensive
care units, we identified through LENSPEMS the directions
in which the system can be further extended. Some abilities
(yellow cells) are feasible with a reasonable effort, while
others (orange cells) require a major effort. Specifically, it
turned out that MVM can be worthily improved in terms
of Adaptability and Autonomy by endowing MVM with the
ASV (Adaptive Support Ventilation) mode (already available
in more advanced mechanical ventilators). It consists of
adapting the ventilation parameters (mainly pressure and
respiratory cycle time) depending on the patient’s status.
In ASV mode, the ventilator continuously checks if either
a patient is able to spontaneously breathe – in that case
it simply supports the ventilation – or if the patient needs
controlled ventilation.

With the ASV ventilation mode, we would extend the
Cognitive Action sub-ability (see the yellow cells in Table 6),
but also Autonomy, Acquired knowledge, and Reasoning
(see the complete documentation online [15] where we
make available for download also the report of the anal-
ysis, under the applicability section). With the additional
availability of a stochastic model of the patient and the
involvement of analytics techniques, we could further
improve the Adaptability and Cognitive abilities of the
MVM (see the orange cells in Tables 4 and 6), as well as the

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3374382

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://bit.ly/44yrWzH
https://bit.ly/3Fg5OPg
https://bit.ly/3FRTB3E

TRANSACTIONS ON SOFTWARE ENGINEERING 9

TABLE 6
MVM evaluation on Cognitive ability - Action sub-ability

Level Evaluation Details

0 Satisfied Predefined actions are executed in self-test mode, which can be interrupted by the operator.
1 Satisfied The MVM continuously monitors the patient’s breathing and decides to change modes (ventilation algorithms)

and set the backup parameters in the transition from PSV to PCV in case of apnea. The MVM is also able to
continuously monitor the patient’s breathing and decides the inlet valve pressure and outlet valve status.

2 Improvable
(low effort)

By introducing the additional ASV ventilation algorithm, a threshold-based parametric adaptation decision is
realized by the MVM: when the ventilator is operating in PCV mode, based on the monitoring of patient parameters
(respiratory rate and target volume) and the relative distance from the Otis curve, the MVM switches to ASV mode
to ensure minimum breathing effort (WOB: work of breathing).

3 Improvable
(low effort)

MVM extended with the ASV mode can calculate the optimal breathing pattern that involves the minimum WOB
for the patient (it optimizes the inspiratory pressure and the respiratory rate to reach a target value).

4 Improvable
(high effort)

The MVM embeds a knowledge base where all the information (e.g., patient state, ventilation failures, etc.) is
stored. These historical data are used for data analytics, user profiling, and improving the system’s dependability.

5 Improvable
(high effort)

MVM is extended with descriptive analytics: it can plan ventilation strategies according to the accumulated
knowledge.

6 Improvable
(high effort)

MVM is extended with predictive analytics: it can dynamically change the ventilation plan in response to its level
of success. For example, in ASV mode, the MVM may monitor the overall life cycle of the ventilation process in
terms of a specific flow of activities, and predict how and which parameters to modify to calibrate the ventilator
according to the current values of the patient’s parameters; in this case, the MVM assists the doctor in the clinical
use of the ventilator in ASV mode.

7 Improvable
(high effort)

MVM is extended with prescriptive analytics based on a predictive model of the patient (e.g., a stochastic runtime
model of the patient). The MVM can provide prescription actions to calibrate the ASV ventilation based on the
comparison between the patient’s real monitored data and the data prescribed by the patient model.

8 Unable MVM, as a mechanical ventilator, has only one mission (the lung ventilation).

Dependability and Interaction abilities. Indeed, if the MVM
was endowed with a knowledge base, e.g., information
on the patients’ state and ventilation failures (level 4 in
Table 6), it would be able to adapt its ventilation mode
based on predefined ventilation strategies (descriptive
analytics - level 5 in Table 6), or even dynamically change
the ventilation plan in response to its level of success
(predictive analytics - level 6 in Table 6).

Moreover, if a predictive model of the patient was
available, MVM would be able to calibrate the ventilation
parameters (possibly in the advanced ASV mode) based on
the comparison between the patient’s real monitored data
and the data prescribed by the patient model (prescriptive
analytics - level 7 in Table 6). These extensions require
a higher effort with respect to the yellow ones discussed
above, and moreover, the medical community would also
show resistance in accepting them as they would employ AI
technologies for analytical and decision-making skills [20].

Further details on the evaluation with respect to all
the abilities and their levels are provided as part of the
online supplementary material [15], which also provides
the evaluation summary under the applicability section.

RQ1: Applicability

With respect to the applicability of LENSPEMS, we can
state that the framework’s usage for assessing the
MVM (by following the process provided in Section
3) shows the ease of use of LENSPEMS and its user-
friendliness. This might be because the evaluation com-
mittee includes people with the needed competencies
and deep knowledge of the SUE. Nevertheless, this
should be a pre-requisite to the use of LENSPEMS, to
guarantee the quality of the evaluation.

5.2 RQ2: Generalizability of LENSPEMS

This section aims to answer RQ2 (Generalizability): To what
extent is LENSPEMS generalizable to the PEMS class of
systems?

Methodology. To answer this RQ, we collected a number
of PEMS and analyzed the following aspects:

• Fit for purpose: evaluate whether the current abilities
and sub-abilities, together with their levels, (i) are
appropriate for evaluating these systems, (ii) need
to be slightly changed to better match the needs of
the considered PEMS, e.g., adapting some levels or
removing or adding some of them, or (iii) abilities and
sub-abilities should be removed, or new ones should
be added.

• Extensibility of the tool: We show how the LENSPEMS

tool can be extended with new abilities/sub-abilities
and/or levels, or existing ones can be changed.

In our analyses, we have considered a PillBox [21],
some models of Insulin Pumps [22], the class of Smart
ECG devices [23], [24], a hemodialysis machine [25], and
a sterilizer produced by an industrial collaborator11. We
selected these PEMS since they differ from each other and
offer a variety of behaviors, functionalities, interactions
with humans, and consequently different levels and needs
for autonomy and smartness. Moreover, we identified PEMS
that give enough information in terms of published papers,
white papers, and/or websites for evaluating them.

In the following, we briefly describe each of them:

• Pillbox [21] is a device that helps patients to follow
the prescribed therapy. Pills are organized in com-
partments based on the doses of medications and,
when it is the right time to assume the pill, the

11. https://bit.ly/3Z5zJm6

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3374382

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://bit.ly/3Z5zJm6

TRANSACTIONS ON SOFTWARE ENGINEERING 10

pillbox notifies the user with sound/light signals or
smartphone notifications.

• Insulin pump [22] is a device that administers insulin
to diabetic patients. In the last years, insulin pump
technology has grown fast: patients are continuously
monitored, and the insulin is administrated automat-
ically based on the current blood sugar level and the
type of diabetes.

• Smart ECG devices [23], [24] belong to the class
of smart health monitoring systems and enable the
continuous monitoring of the electrocardiogram (ECG).
Smart ECG devices exploit emerging and advanced
communication techniques (e.g., wired / wireless
communication) to collect and deliver biomedical
signals [24], and AI methods for the ECG signal in-
terpretation (e.g., AI algorithms, neural networks) [23].
Specifically, the monitoring can leverage mobile, wear-
able, and sensor devices [23], integrated into t-shirts,
smartphones, and smartwatches.

• Hemodialysis machine [25] is used to clean the blood
in case of kidney diseases. The machine withdraws and
filters the patient’s blood by eliminating wastes and
salts, then the blood is returned to the patient.

• The sterilizer for medical devices (e.g., dentist tools),
produced by an industrial collaborator, uses moist
heat in the form of saturated steam under pressure
to destroy all forms of microbial life. It integrates a
temperature sensor to inform the user about which is
the current temperature inside (e.g., if it is too hot),
a smart sensor that tells what the sterilizer needs
(e.g., how to optimize drying), and a status sensor that
informs the user which is the current status of the
sterilization cycle.

All the documents we produced, containing the com-
ments about the generalizability and consequent mod-
ifications of LENSPEMS are available online, under the
generalizability section [15].

To perform an evaluation of the PEMS and consequently
to answer RQ2, we elicited the necessary modifications
arising from each of the examined PEMS. Once we con-
firmed that each modification was suitable for all the PEMS,
we used the following symbols to represent the changes
and their rationales, as summarized in Table 7:

= (No change): ability and its levels, when present, are
good as they are.

∼ (To be changed): during the evaluation of the selected
PEMS it was found that some changes are needed in
LENSPEMS. Possible changes are:

1) addition of one or more levels;
2) union of levels;
3) change in the description and/or name of

a) the ability;
b) the sub-ability;
c) the level;

4) removal of one or more levels;
5) split of a level.

× (To be removed): the entire ability or sub-ability should

be removed;
✓ (To be added): the evaluation of the selected PEMS

required/suggested the addition of the new ability or
sub-ability.

It is important to highlight that in LENSPEMS, when an
ability has sub-abilities, the ability has only a name and a
description, but it does not contain levels. Consequently, the
only changes that are possible for these types of abilities
might concern only the name and/or the description. For
example, in Interaction, we report = since changes in the
description of the ability have not been made, while the
sub-abilities have been changed in some way. Moreover, in
Table 7 we have strike-through the abilities and subabilities
that have been changed or removed.

Lastly, we assessed the generalizability of LENS to the
PEMS class of systems by considering only five distinct
PEMS, as we reached saturation during the refinement of
LENSPEMS. More specifically, the majority of modifications
were derived from the initial assessment of the first
examined PEMS, with the latter ones making minimal
contributions to the elicitation process. Nonetheless, they
confirmed the appropriateness of the elicited modifications.

Results of the evaluation of RQ2. In the following, we
report the outcome of the evaluation for what concerns Fit
for purpose and Extensibility of the tool.

5.2.1 Fit for purpose

The evaluation for generalizability triggered various
changes of different granularity in different abilities and
sub-abilities. This permitted us to better fit LENSPEMS to
the PEMS class of systems. In the following, we summarize
the outcome of the fit-for-purpose evaluation:

• Abilities and sub-abilities that are appropriate for
evaluating PEMS and then require no change: this
is the case of the descriptions of the Dependability,
Interaction, and Perception abilities.

• Abilities and sub-abilities that need to be slightly
changed to better match the needs of the considered
PEMS: since we revised the terminology to distinguish
clearly among environment, physical environment,
human environment, and patient, this caused changes
in almost every ability, sub-ability, and level. More-
over, changes were mainly triggered by the need of
removing ambiguities.

• Abilities and sub-abilities that need to be changed by
adding and/or removing levels: The only ability that
required the addition of a new level is the Depend-
ability ability, by adding the level called prescriptive
dependability. This new level enables making explicit
when the system is able to predict that a planned
future action may result in a loss of dependability, or
that the effect of the partial failure of a component
can be mitigated by altering future actions. For what
concerns the removal of levels, we have three cases
in the Dependability and Autonomy abilities and the
Cognitive-action sub-ability. The removal concerned
the removal of a level 0 of no dependability, no auton-
omy, and no action that we considered as confusing

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3374382

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

TRANSACTIONS ON SOFTWARE ENGINEERING 11

TABLE 7
Evaluation of Generalizability of LENSPEMS to collected PEMS.

Abilities / Subabilities Changes Rationale

Configurability ∼3.a ∼3.c The ability description and some of the levels’ description have been revised such that to remove
technicalities and make them more general, thus be applicable to different PEMS.

Adaptability ∼3 ∼4 The ability description required a change to accommodate the revised ability, for which we now
envisage two sub-abilities, namely adaptation trigger and adaptation object. The adaptability
levels have been removed and reused and adapted in the new adaptation object sub-ability.

▷ Adaptation trigger [NEW] ✓ Considering that multiple PEMS show some degree of autonomy, we identified a new sub-ability
regarding the possibility for PEMS to trigger the need for adaptation.

▷ Adaptation object [NEW] ✓ This sub-ability inherits its levels from the previous adaptability ability. Moreover, levels have
been adjusted such that to accommodate the identification of the objects of the adaptation and
how the system alters its behavior or structure for adaptation purposes.

Dependability ∼1 ∼3.c

∼4

Considering that all PEMS are dependable to some degree, we removed the “no dependability"
level. Moreover, we added the “prescriptive dependability" level, as emerged from some of the
evaluated PEMS.

Autonomy ∼3.c ∼4 Considering that all PEMS exhibit a degree of autonomy, we removed the “no autonomy" level.
Moreover, we slightly revised the descriptions of levels to accommodate the revised terminology.

Interaction (Int) = No changes both in the ability name or description.
▷ Human-system Int ∼3.b We added a description of this sub-ability, which was missing in the previous version of the tool.
▷ Human-system Int feedback ∼3.b ∼3.c We added a description of this sub-ability, which was missing in the previous version of the

tool. We further revised some of the levels’ names and descriptions to accommodate the revised
terminology, to increase the clarity of each level, and to include sound feedback.

▷ System to system Int ∼3.b ∼3.c We added a description of this sub-ability, which was missing in the previous version of the tool.
We further revised some of the levels’ descriptions to accommodate the revised terminology.

▷ Human-system Int safety ∼3.b ∼3.c We added a description of this sub-ability, which was missing in the previous version of the tool.
We further revised some of the levels’ descriptions to accommodate the revised terminology, to
increase the clarity of each level, and remove ambiguities.

▷ Human-system Int safety-cont. × We removed it for lack of clarity and to remove ambiguities with the other interaction sub-
abilities.

Perception = No changes both in the ability name or description.
▷ Perception→ General perception ∼3.b ∼3.c We revised the name and description of this sub-ability, and some of the levels’ descriptions

to accommodate the revised terminology, to increase the clarity of each level, and remove
ambiguities.

▷ Object recognition→Element recognition ∼3.b ∼3.c We revised the name and description of this sub-ability, and some of the levels’ descriptions
to accommodate the revised terminology, to increase the clarity of each level, and remove
ambiguities.

▷ Scene perception × Given that PEMS do not have motion and manipulation, they do not need to have scene perception
capabilities, and general perception (which focuses much on sensing the environment) is enough.

Cognitive ∼3.a We slightly changed the description of the ability to fit with the revised terminology.
▷ Action ∼3.c ∼4 We removed the no action ability level, since PEMS show some level of action on the environment.

We slightly revised the other levels’ descriptions to fit with the revised terminology.
▷ Interpretive ∼3.b ∼3.c We revised both ability’s description and the levels’ description to fit with the revised terminology

and to better adapt them to the medical domain.
▷ Envisioning ∼3.c We slightly changed the description of some of the levels to fit with the revised terminology.
▷ Acquired knowledge ∼3.b ∼3.c We changed both the description of the ability and the levels’ description to fit with the revised

terminology.
▷ Reasoning ∼3.c We revised both the levels’ names and descriptions to fit with the revised terminology and to

better adapt them to the medical domain.
▷ Human interaction→Cognitive human in-
teraction

∼3.b ∼3.c We revised the name of the ability and the name and description of one level to remove
ambiguities and better fit with the revised terminology.

Explainability [NEW] ✓ Considering that PEMS are medical devices, whose behavior might have often a considerable
impact on the patients, we find the explainability ability relevant and applicable to the PEMS
class of systems.

since PEMS always exhibit some degree of these
abilities. Moreover, in Adaptability, we removed all
levels since we organized the ability into two sub-
abilities, one for the Adaptation trigger and one for the
Adaptation object.

• Abilities and sub-abilities that should be removed:
we removed two sub-abilities. The Human-system
Interaction Safety - Context sub-ability of Interaction
has been removed, since in the context of PEMS it
overlaps with the Human-system Interaction Safety
ability. The Scene Perception sub-ability of Perception
has been removed since PEMS have no motion and
manipulation capabilities and therefore the General
perception is enough (without the need for scene
perception).

• Abilities and sub-abilities that should be added: We
refined the Adaptability ability into two sub-abilities,
namely Adaptation object and Adaptation trigger.
Adaptation object and its levels have been defined
by inheriting and refining the levels of the previous
Adaptability ability. Moreover, we added the Adapta-
tion trigger sub-ability, which focuses on the possibility
for PEMS to trigger the adaptation. Finally, we added
a new ability, namely Explainability, since it is getting
increasing importance in AI-based and autonomous
systems, and it is particularly relevant for PEMS
because they involve humans both in the role of users
(e.g. medical staff, operators, physicians) and patients.

We mention that we did not find the need for unifying
or splitting existing levels, and, therefore, we never used

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3374382

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

TRANSACTIONS ON SOFTWARE ENGINEERING 12

{ "abilityName" : " Explainability " ,
" abilityDescription " : "The explainability is the
abi l i ty of the system to [. . .] " ,

"hasSubAbilities" : false ,
" abilityLevels " : [{

" level " : 0,
"levelName" : "No explainability " ,
" levelDescription" : "The system does not

explain i t s operating behavior while i t adapts i t se l f
. "

},
[. . .]

]
}

Listing 1. Excerpt of the JSON file describing the abilities used by the
LENSPEMS tool

the symbols “∼2" and “∼5" in Table 7.

Note that the MVM evaluation reported in Section 5.1
is the result of the device re-evaluation after the LENSPEMS

improvements due to generalizability analysis. With re-
spect to the previous evaluation, small changes, reflecting
modifications shown in Table 7, involve Configurability,
Human-System Interaction Safety, and Scene perception;
deeper changes concern Adaptability since the reviewed
version of LENSPEMS now distinguishes between trigger
and object of adaptation.

5.2.2 Extensibility of the tool

The need for extending or changing LENSPEMS gave us
the opportunity to experiment with the extensibility of
the tool. In this subsection, we report our experience in
extending the LENSPEMS tool. In particular, we here explain
how the process of extending the tool to support the new
Explainability ability has been carried out.

The first activity needed for extending the LENSPEMS

tool is the update of the JSON file containing the description
of the abilities and their levels12. Performing it is a very
straightforward operation, and it is necessary whenever
a new ability is included in the evaluation framework
of LENSPEMS, or if there are changes to the existing
abilities. In the case of the Explainability, the JSON file
has been modified by adding the description of the ability,
its properties, the levels, and their description, as shown
in the excerpt reported in Listing 1.

The last activity consists of modifying the HTML web-
page we are currently hosting on GitHub pages13 in order
to set the correct buttons and tabs for each ability in
LENSPEMS. This is only required when new abilities are
added or removed, but not when additional levels are
appended or updates in the descriptions or levels are
performed. In the case of the Explainability, the needed
update is very simple, since only two lines have to be added
to the HTML file, as shown in Listing 2.

12. https://github.com/foselab/LENS4PEMS/blob/main/docs/
abilities.json

13. https://github.com/foselab/LENS4PEMS/blob/main/docs/index.
html

[. . .]
<button class="tablinks " onclick="openAbility (event , ’

Explainability ’) ">Explainability</button>
[. . .]

<div id=" Explainability " class="tabcontent"></div>
[. . .]

Listing 2. Excerpt of the HTML file of the LENSPEMS tool

RQ2: Generalizability

With respect to the fit for purpose of LENSPEMS to the
PEMS class of systems, we can state that LENSPEMS

was overall appropriate for evaluating these systems.
Indeed, after the analysis and evaluation of 5 different
types of PEMS, the majority of elicited changes re-
ferred to the descriptions of abilities and levels, mainly
due to a terminology revision. Only a few abilities,
sub-abilities, or levels have been added or removed.
Moreover, the tool shows suitability for extensions, by
easily supporting adjustments.

5.3 RQ3: Usefulness of LENSPEMS

This section aims to answer RQ3 (Usefulness): How is
LENSPEMS useful in making an assessment of a PEMS
and identifying possible directions of improvement toward
smartness?

Methodology. We answered this question by following a
mixed research methodology, including answers to a ques-
tionnaire and interviews. The questionnaire is structured
as follows:

• Introduction to LENS and LENSPEMS through text and
a short video explaining their usage;

• Introductory questions to collect demographic informa-
tion and experience in projects for developing/study-
ing/using PEMS (Q1 and Q2);

• Questions to assess the usefulness of LENS and
LENSPEMS (from Q3 to Q7);

• Questions to check the availability of the person to
test LENSPEMS on a PEM system or for a follow-up
interview (Q8).

The questionnaire, the anonymized responses, and the
transcription of interviews are available online, under
the usefulness section [15]. To mitigate the potential
involvement of non-experts, we specifically contacted
people with expertise in adaptive systems and/or PEMS.
Furthermore, we made sure to avoid people who might
have conflicts of interest with the authors or with the
research outcomes. This is further discussed in the threat
to validity section (Section 5.4). Table 8 shows anonymized
information about the participants in the questionnaire
and interviews, together with information on the type of
organization where they work (university, research center,
or industry), the knowledge they have in PEMS and/or
their experience in PEMS projects. Overall, 6 out of the
26 participants come from industry. Specifically, 4 of them
work in a company producing PEMS. The remaining 2 work
in companies dealing also with self-adaptive systems.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3374382

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://github.com/foselab/LENS4PEMS/blob/main/docs/abilities.json
https://github.com/foselab/LENS4PEMS/blob/main/docs/abilities.json
https://github.com/foselab/LENS4PEMS/blob/main/docs/index.html
https://github.com/foselab/LENS4PEMS/blob/main/docs/index.html

TRANSACTIONS ON SOFTWARE ENGINEERING 13

TABLE 8
Participants to the questionnaire and interview

ID Type of or-
ganiz.

Experience in PEMS (years)
/ # of PEMS in which they
worked

Quest. /
Interview

P1 University 2-5 years / < 2 PEMS Q
P2 University <2 years / < 2 PEMS Q
P3 University <2 years / < 2 PEMS Q and I
P4 University <2 years / < 2 PEMS Q and I
P5 University <2 years / < 2 PEMS Q and I
P6 University <2 years / < 2 PEMS Q and I
P7 University <2 years / < 2 PEMS Q
P8 University <2 years / < 2 PEMS Q

P9 University <2 years / <2 PEMS (∗) Q and I
P10 University <2 years / < 2 PEMS Q
P11 University <2 years / < 2 PEMS Q

P12 Industry <2 years / <2 PEMS (∗) Q and I
P13 Research

center
<2 years / < 2 PEMS Q

P14 University <2 years / < 2 PEMS Q and I
P15 University <2 years / < 2 PEMS Q
P16 University 2-5 years / < 2 PEMS Q and I
P17 University <2 years / < 2 PEMS Q and I
P18 University 5-8 years / 2-5 PEMS Q
P19 University <2 years / < 2 PEMS Q
P20 University >8 years / 2-5 PEMS Q
P21 University <2 years / < 2 PEMS Q

P22 Industry >8 years / 2-5 PEMS (∗) Q and I
P23 Industry <2 years / < 2 PEMS Q

P24 Industry 2-5 years / 2-5 PEMS (∗) Q and I
P25 Industry <2 years / < 2 PEMS Q and I
P26 Industry 2-5 years / 2-5 PEMS Q and I

Among the other 20 participants coming from universi-
ties, the majority of them have experience in self-adaptive
systems, while 4 of them declare more than 2 years of
experience in PEMS development, with P18 and P20 stating
more than 5 and 8 years, respectively. Concerning the
experience in projects for developing/studying/using PEMS,
the majority of participants declare less than 2 years of
experience. Thanks to the interviews, we find out that 5 of
them (P4, P5, P6, P9, P25) declare one year of experience
in PEMS projects. According to the number of PEMS
projects that participants have worked on, the majority
of them declare less than 2 projects, while 4 of them
have experience ranging from 2 to 5 years. The interviews
helped participants to better understand and clarify their
effective experience in PEMS projects. Indeed, some of
them, highlighted with the (∗) in Table 8, revised their
experience during the interview discussion (due to question
misunderstanding), by increasing (P22) or decreasing (P9,
P12) both the years of experience with PEMS projects
and the number of PEMS projects they worked on. P24,
instead, decreased the years of experience and increased
the number of PEMS projects.

Results of the evaluation of RQ3. The summary of
the agreements of all participants with the questions
regarding the usefulness of LENSPEMS is reported in Fig. 3.
Overall, as shown for Q3 (It is a good idea to perform the
evaluation in terms of abilities (e.g. Adaptability, Autonomy,
etc.) and levels) in Fig. 3, the participants are of the
opinion that assessing according to abilities and levels is a

8 6 4 2 0

Q7

Q6

Q5

Q4

Q3

Strongly disagree Disagree Neither agree nor disagree

0 5 10 15 20 25

Agree Strongly agree

Fig. 3. Agreement with the questions regarding the usefulness of
LENSPEMS

beneficial approach. Through the interviews, we collected
further feedback on this question. Specifically, some of
the participants (P5, P22, P24, P25, P26) highlight that
the abilities of LENSPEMS could be not general enough
for different systems in the same class. In this regard,
we generalized the framework, as explained in Section
5.2. This is a confirmation of how typically evaluation
frameworks are built; for instance, CMMI14 and FEF [8]
have the same structure.

To the question Q4 (It is useful to enable an evaluation
for each level with values “Not applicable”, “Satisfied”,
and “Unable”, together with an evaluation of how costly
is to perform an extension “Improvable (low effort)” and
“Improvable (high effort)”) the participants are overall
positive as reported in Fig. 3, with only two disagree (P11
and P18).

Among the 15 agrees, P4 and P22 suggested some
rewriting and polishing to remove ambiguities (we fixed the
recommendations), P10 highlights that the evaluation of the
cost could be hard for certain abilities, and consequently
a method like Delphi [19] might help. This is indeed in
line with the process we defined in Section 3 to evaluate
with LENS. Probably this aspect was not made clear in the
questionnaire since also P13 added comments on how to
decide how much effort is needed for an improvement, i.e.,
“Improvable (low effort)” and “Improvable (high effort)”, or
how one decides the evaluation result for each level; we
used this recommendation to better explain the process to
perform an evaluation with LENS in Section 3. P21 (in the
group of neither agree nor disagree) highlights that we can
make clear how to scale LENSPEMS since, for instance, the
cost is just one factor and there could be other impediments
like strategic, regulatory, market positioning, expected ROI,
etc. We explained in the paper how to extend LENSPEMS

and also how to extend the tool support (see the evaluation
in Section 5.2.2).

14. https://cmmiinstitute.com/

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3374382

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://cmmiinstitute.com/

TRANSACTIONS ON SOFTWARE ENGINEERING 14

During the interviews, we further analyzed the opinions
of the participants about Q4. Most of the interviewed
participants considered that our formulation is reasonable,
and some of them gave us interesting points we describe
in the following. In particular, P14 and P4 (who both agree
with the question), found it difficult to recognize when
a level can be assessed as “unable” or “not applicable”.
To solve this issue, we now better explain the difference
between the two assessment values in Sect. 3.

Moreover, some of the interviewed participants (P5,
P14, and P26) highlighted that deciding whether a level
can be assessed as improbable with low or high effort is,
sometimes, difficult and may require considering also the
market request. This is the reason why we envision the
assessment with LENSPEMS being performed by an evalu-
ation committee composed of domain experts, who know
the market and can better estimate the effort required
for an improvement. This type of evaluation performed
by an evaluation committee that is required to follow a
defined process is also used in other contexts, like the
ATAM method to evaluate software architectures [18].

Finally, P4 suggested enforcing that level li+1 can be
assessed as “satisfied” only when level li is satisfied. This
could require the introduction of multiple axes. This is a
good point, and we will consider that in future develop-
ments.

Concerning Q5 (I believe that LENSPEMS can be useful
to assess the current level of adaptation and smartness
of a PEMS), the consensus among participants is that
LENSPEMS can indeed be valuable for such an assessment.
P21 explains that the score of neither agree nor disagree
is caused by her/his lack of knowledge in PEMS: “It is
quite difficult for me to assess this correctly”. P5 says
that, indeed, the tool is capable of assessing the level of
adaptation and smartness and suggesting improvements
in those areas. P10 highlights that to properly answer the
question, LENSPEMS should be tried in practice; however,
she/he does not see issues about the conceptual soundness
of the approach. P13 points out that the abilities are related
to the adaptation and smartness of a PEMS. The only
concern is how to ensure the correctness and accuracy of
the evaluation, since we need to do it manually. We argue
that these types of evaluations can only be made manually,
and the definition of the evaluation process solves this issue
(see Section 3).

Additionally, further comments come from the inter-
views. P5 highlights that sometimes it might be appropriate
to also measure on a quantitative basis. This comment is in
line with the opinion of P12 stating that LENSPEMS gives an
overview of how the system is classified, but it might not be
enough for quantification. In this regard, we argued already
that LENSPEMS is open to extensions, and it can be used in
combination with other tools or methods for quantitative
analysis. P6 confirms that having an evaluation committee
(composed of experts) mitigates the subjectiveness of the
evaluation, while P16 states that the use of the tool is
intuitive. P4, instead, argues that using LENS would be
great for companies working on adaptive devices since it

gives a view that can aid in understanding how the devices
will react in different scenarios. Lastly, according to P14
no competing frameworks exist, thus it is good to push the
development of LENS, while P22 suggests adding other
factors beyond smartness.

Concerning Q6 (I believe that LENSPEMS can be useful
for understanding in which ability it is worth to invest in
order to make a PEMS smarter), we also have a general
agreement with 16 participants agreeing or strongly agree-
ing (Q6 in Fig. 3). This is how evaluation frameworks, like
CMMI and FEF [8], are often used; therefore, the general
agreement is in line with the literature.

P10 highlights that, under the assumption that scores
are produced by engineers who are also domain experts,
she/he strongly agrees. However, it can be difficult to find
these assessors. Indeed, this is our assumption since the
assessment should be done by experts, as explained in
Section 3. However, what P10 is probably missing is that a
team makes the evaluation, and the team should have the
required knowledge, more than each individual.

P17 explains that while she/he agrees that the tool can
be used to identify possible opportunities for investment
to improve the abilities of the system, it would be an
opportunity to put a front focus on quantifying the benefits
or “level of need” of uplifting the abilities into higher
levels in terms of improvement required (as detailed in
the interview). Indeed, this is a good point, and we will
consider that in future developments.

In the interview, P6 suggested including a score for each
ability to better decide in which direction the device has
to be improved. Among the participants answering neither
agree nor disagree, P4 explains that LENSPEMS is very nice
to spot the weakest points in the system; nevertheless, it is
not obvious how this information can be used to prioritize
development. Moreover, in the interview, he/she specifies
that investments also need to take financial goals into
account (as suggested by P14 during the interview), and
sometimes having a smarter medical device implies more
effort (which they are not always willing to do) to get the
device certified. This observation is related to the return
on investment for performing a specific improvement of
the system, which is, as explained in Section 3, out of the
scope of this paper.

P13 explains that there are many abilities related to
the smartness of a PEMS (e.g., Autonomy, Perception, and
Cognitive). However, it is not clear the importance of each
ability; therefore, when multiple abilities are evaluated as
requiring improvement, it becomes hard to decide which
ability is the most worth investing in. Also for this question,
P21 explains that she/he is not a PEMS expert, and then it
is quite difficult to assess this correctly.

Finally, among the 5 participants disagreeing, P22
points out that some features may be interesting for
research purposes but not worth investing in because the
market does not require them, since it is not given that the
smartness of a PEMS is the only driving factor for product
development. This statement has been confirmed in the
interview by P26 and P25, while P22 has also specified that

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3374382

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

TRANSACTIONS ON SOFTWARE ENGINEERING 15

companies can be more focused on making the device safer
instead of smarter. We agree with this observation, and this
is why we propose to use LENSPEMS only for what concerns
the smartness of the system, while, for other properties,
other evaluation frameworks may be used.

Moreover, as we introduced in Section 3, LENSPEMS

does not take into account the ROI, but only aims at giving
possible improvement directions, while their impact should
be evaluated with other tools or methods. Moreover, P24
pointed out that the improvements to make the system
smarter depend on the stakeholders included in the assess-
ment phase.

Concerning Q7 (I believe that LENSPEMS can be useful
for making a re-assessment when the improvement has
been performed on a PEMS), P9 provides a general
comment since the evaluation is made manually, it can be
subjective. Unfortunately, these evaluations, like ATAM [18]
or Delphi [19], can only be made by humans and there is
no testing or trustable autonomous validation that can
substitute humans. P13 would like to have a re-assessment
example in the video to better understand. Moreover,
she/he would like to understand when “Improvable (high
effort)” can be re-assessed as “Improvable (low effort)”
and in which cases “Improvable (high effort)” can be re-
assessed as “Satisfied”. This is a good point, and we will
come back to it in future works.

Similarly to the previous question of the questionnaire,
P10 highlights that also for this type of evaluation, there
is the assumption that scores are produced by experts. 2
participants declare that they neither agree nor disagree
(P12 and P21). P12 highlights that she/he would need
some extensive use to answer more precisely. Similarly,
P21 explains that she/he is not a PEMS expert, and then it
is quite difficult to assess this correctly. Again, P11 shows
her/his disagreement, and, also for this question, there are
no explanations or possibilities for a follow-up investigation.

Additionally, according to interviews, P14 argues that
without the framework people would not even have a way
of understanding if they were doing something in some
direction. Then, she/he adds that metrics are needed to
avoid losing details in the evaluation. This last comment
is in line with the opinions of P5 and P12. Specifically, P5
states that it would be useful to have requirements, and
trade-off analysis to establish a compromise between the
system’s qualities before and after a change. P12 suggests
enabling comparisons with other views of the system, such
as the system’s requirements.

P6 and P9 argue that there might be subjectiveness
issues in the re-assessment. We already discussed this point
about Q5. Whereas, P14, P16, P17, P3, P9, P4, P6, P25, P26,
P24, and P22 somehow agree about the coherence of using
LENSPEMS for re-assessing a previously assessed system,
supporting comparison and enabling an iterative process.
Lastly, P16 provides an interesting suggestion on how the
tool can support interaction with stakeholders. Specifically,
she/he says that “the interface of the tool is simple, you can
see how stakeholders react to a change, compare the level
of satisfaction or how they perceive the changes (e.g., all

satisfied, not all satisfied, or when there is uncertainty)”.
Concerning Q8 (Do you have a PEMS and/or are you

interested in using LENSPEMS for evaluating your PEMS?),
15 out of 26 participants answered positively. In particular,
during the interviews, P17, who answered negatively to the
question in the questionnaire, confirmed that he does not
have a PEMS, but he will definitely be interested in using
LENSPEMS if he has a PEMS. Moreover, other interviewed
participants (P17, P12, P4) declared to be interested in
using LENS also in other classes of systems. We will follow
up with them to further validate in practice LENSPEMS.

RQ3: Usefulness

Overall, we can conclude that the usefulness evaluation
of LENS and LENSPEMS is positive:

• The structure of LENS in abilities and levels is
positively evaluated and considered valuable to
drive the evaluation.

• LENSPEMS is evaluated as a good and useful in-
strument to explore the adaptation and smartness
space for the system’s abilities and provide more
actionable insights to the product engineer to rea-
son to what extent it is worth investing in. It is also
considered a valid tool for the re-assessment when
the improvement has been actuated on a PEMS,
although they suggested us some strengthening
means for such an intent.

The interviews also provided good observations and
suggestions for further improving LENS and LENSPEMS

in the future.

5.4 Threats to validity

In this section, we describe the main threats to validity
according to the scheme proposed in [26] and elaborate on
mitigation strategies.

5.4.1 Internal validity

Internal validity is a concern that arises when the design of
a study may compromise the accuracy of the results [26].
To minimize this risk, we designed and constructed LENS
and LENSPEMS by deeply studying the literature, the Multi-
Annual Robotics Roadmap [10], experimented through an
evaluation of the MVM, checked on other PEMS, and eval-
uated with experts in autonomous systems and/or PEMS.
Concerning the evaluations, we followed recommendations
and best practices in designing them. The interviewed
experts participated voluntarily, and confidentiality was
emphasized in the interviews to encourage them to respond
to the interview questions in the most truthful way.

5.4.2 Construct validity

Construct validity is a concern that arises when the
connection between theory and observation may be compro-
mised [26]. Since some of the co-authors have been working
on the certification of MVM, this deep knowledge of
MVM might have influenced the construction of LENSPEMS

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3374382

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

TRANSACTIONS ON SOFTWARE ENGINEERING 16

and made it specific for MVM, thus compromising its
generalizability. This is mitigated by the fact that some
of the co-authors have been working in various PEMS, and
other co-authors have not been involved in the MVM work.
Moreover, we dedicated a research question, i.e., RQ2, to
the generalizability of LENSPEMS so as to check to what
extent LENSPEMS is generalizable to the PEMS class of
systems.

The class of PEMS has influenced both the construction
of LENS, besides of LENSPEMS, and its validation. This
might lead to over fit LENS to this specific domain.
However, we implicitly analyzed also the robotics domain
because of the influence of the Multi-Annual Roadmap for
Robotics in Europe (MAR) in the construction of LENS.
Moreover, as explained in Section 3, to define LENS,
(i) we exploited the various surveys and books in the
field of autonomous and self-adaptive, (ii) we performed
a literature review in evaluation frameworks for system
adaptive abilities to be sure we were not missing relevant
papers (see Section 6), and (iii) we exploited our experience
in other domains to mitigate this risk.

Concerning the questionnaire and interviews, both
the questions and interview guide have been defined by
researchers who have prior experience in conducting qual-
itative research within the software engineering domain.
We performed the interviews with at least two coauthors
participating to minimize the risk of misunderstanding
the comments of the experts. We also made recordings,
when allowed by the interviewees, took notes during the
interviews, made transcripts, and discussed internally until
we reached an agreement before including the message
from the interviews in the paper.

5.4.3 External validity

External validity is a concern that arises when the results
and outcomes of a study may not be generalizable to
a wider population [26]. Concerning RQ3, the research
question about usefulness, we selected the participants
of the questionnaire and interviews with knowledge of
autonomous systems and PEMS (in fact, we have no
question about their knowledge of these systems).

In this way, we minimize the risk of having useless
judgments. To minimize the risk of having biased answers,
we avoided experts who could have conflicts of interest
with the authors of this work or with LENS.

5.4.4 Conclusion validity

Conclusion validity is a concern that arises when the
relationship between the extracted data and the obtained
findings may compromise the credibility of the conclusions
drawn [26]. Concerning RQ1, we validated the applicability
of LENSPEMS by applying it to MVM, which is a certified and
real product. Part of the co-authors of this publication have
been working on the MVM re-engineering activities and
on the software certification. This guarantees that we have
enough knowledge of MVM, as well as access to the needed
documentation, code, etc. to perform a good evaluation.

Concerning RQ2, the selection of the PEMS used for the
evaluation is subject to a selection bias that may impact
the external validity of our results, as it influences their
generalizability to PEMS not considered. The selection
of the PEMS used for the evaluation that is used for
answering our RQ2 is also a threat to external validity,
since it influences the extent to which our results can
be generalized. To mitigate these threats, we considered
PEMS that differ from each other in terms of purpose,
characteristics, and criticality and cover a large set of
functionalities, different types of interaction with humans,
and different types of autonomy and smartness.

Concerning RQ3, asking subjects about the usefulness
of LENS and LENSPEMS might lead to the hypothesis-
guessing phenomenon [26]. To mitigate this risk, we tried
to ask questions about the usefulness of specific features
rather than the overall framework, and we tried to avoid
making bold conclusions, but instead, we focused on the
comments, critics, and suggestions for improvement.

Moreover, to mitigate the conclusion validity threats,
we documented every step of our research and provided a
public replication package and supplementary material to
ensure transparency and replicability.

Another threat to the conclusion validity is the need of
a regression assessment of the core SUE functionalities
after new ones suggested by the proposed framework have
been effectively engineered. The new smart features could
in fact introduce unintended side effects and invalidate
important properties (like safety) of the system. However,
we assume that this form of regression assessment is
carried out systematically (e.g., via regression testing)
after each significant system change as part of the system
development process.

6 Related works

In the last years, we observed active and applicable
research in autonomous and self-adaptive systems (SASs).
The SEAMS community produced two roadmaps to summa-
rize the state-of-the-art, for identifying critical challenges
for the systematic software engineering of SASs [1], [2].

However, to the best of our knowledge, no existing paper
provides an evaluation framework to assess abilities related
to adaptation and to provide guidance to developers and
engineers to make a system smarter, in the spirit of making
it more autonomous. Existing taxonomies, e.g., [4], [5],
identify concepts behind the adaptation, but the taxonomies
cannot be used as evaluation frameworks. In the literature,
we can find works focusing on a specific system ability, such
as adaptability, providing metrics to measure them [27],
[28], [29], [30], [31]. Specifically, in Table 9 we collected the
metrics provided by the reviewed works, by grouping them
in macro categories. For each work, we report the number
of provided metrics and the category they belong to. It
can be observed that the majority of them contribute with
Architectural Adaptability metrics. Perez-Palacin et al. [27]
aim to support software architects to guide the system
adaptation to fulfill systems’ quality requirements. To do so,

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3374382

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

TRANSACTIONS ON SOFTWARE ENGINEERING 17

they provide metrics able to quantify and evaluate software
adaptability at the architectural level. In a successive
work [31], the same authors present a more extensive
set of architectural metrics that can be used for the evalu-
ation of the system adaptability. They further analyze the
relationships between adaptability and quality, by means
of the defined metrics. Subramanian et al. [29] also target
adaptability at the architectural level, with the objective of
exploiting the measured architectural adaptation to deter-
mine the adaptability of the final software system. Raibulet
et al. [30], in addition to architectural adaptability metrics,
further define a set of Dynamic Adaptivity metrics, to
address the evaluation of dynamic adaptivity non-functional
requirement. Architectural Resilience metrics are, instead,
the core of the work by Cámara et al. [28], where 13 metrics
are presented, specifically used to show the evidence of
the beneficial impact of architecture-based self-adaptation
on resilience with respect to different approaches, such as
those relying on code-based adaptation. Lastly, Tomforde
and Goller in their recent works [32], [33] provide metrics
for measuring the Configuration & Adaptation Coherence
and Global & Avg. Parameter Spectrum Usage, respectively,
as we will better discuss later on in this section.

TABLE 9
Metrics for self-adaptive systems.

Category of Metrics
(tot. # of metrics)

P
e
re

z-
P
a
la

ci
n

e
t

a
l.

[2
7

]

C
á
m

a
ra

e
t

a
l.

[2
8

]

S
u

b
ra

m
a
n

ia
n

e
t

a
l.

[2
9

]

R
a
ib

u
le

t
e
t

a
l.

[3
0

]

P
e
re

z-
P
a
la

ci
n

e
t

a
l.

[3
1

]

T
o
m

fo
rd

e
e
t

a
l.

[3
2

]

G
o
ll

e
r

e
t

a
l.

[3
3

]

Architectural Adaptability (16) 6 3 2 5
Architectural Resilience (13) 13
Dynamic Adaptivity (10) 10
Global & Avg. Parameter
Spectrum Usage (2)

2

Configuration & Adaptation
Coherence (2)

2

Being focused on a few specific metrics, referring only
to one (or a few) abilities of the system, these works miss
a holistic view, and, moreover, metrics are defined for
specific development phases, e.g., architecture develop-
ment. Furthermore, the operation of the system is only
marginally considered. As expected, adaptability is the
most assessed system ability by means of metrics. Also, in
LENS and LENSPEMS adaptability plays a central role and
it is organized into two sub-abilities, namely adaptation
trigger and adaptation object. However, for a wider evalua-
tion of the system’s smartness and autonomy, the system
adaptation must be considered in synergy with a variety
of multiple abilities the system should possess. For these
reasons, we think that existing metrics-based evaluation
frameworks are not suitable for a holistic evaluation of
smart and autonomous systems. However, in the context of
our work, we do not exclude that metrics might be exploited

TABLE 10
Inclusion and Exclusion Criteria.

Inclusion criteria

1. Peer-reviewed papers published in journals, conferences, and
workshops.
2. Papers presenting an evaluation framework.

Exclusion criteria

1. Papers not written in English.
2. Short papers, posters and tutorials (< 3 pages).
3. Conference Proceedings.

in specific customizations of LENS, such as LENSPEMS, for
measuring a given level under a given ability.

Following famous evaluation frameworks, like CMMI,
an evaluation framework needs to cover various abilities
together with a clear identification of various levels for
each of these abilities.

To further investigate the state of the art in evaluation
frameworks for system adaptive abilities, and be sure
not to omit existing relevant evaluation frameworks, we
systematically analyzed related literature. Specifically, we
searched for suitable publications in the IEEE Xplore, ACM,
and Scopus digital libraries. As search string, we used the
following:

(Adaptive System(s) OR Autonomous System(s))
AND (Evaluation Framework OR Measurement
Framework OR Assessment Framework).

For this work, the search extends a previous work [7] to
further incorporate the most recent works. Specifically, the
search was performed by considering publications’ title,
abstract, and keywords, in the time period from 2012 to
(July) 2023. As a result, we got 46 papers from Scopus, 8
papers from IEEE Xplore, and 2 papers from ACM. However,
the subsequent screening of publications and duplicates
removal showed that the set of papers from Scopus already
included papers obtained by querying the other libraries.
Thus, the evaluation has been performed on a total of 46
unique papers. The inclusion and exclusion criteria we
defined to identify the set of potentially relevant papers are
given in Table 10. Details on the SLR can be found in the
replication package [15].

Eventually, only a few papers (i.e., [32], [33], [34], [35],
[36], [37], [38], [39], [40], [41], [42], [43]) fulfilled the
criteria and were evaluated. Hartsell et al. [34] present
ReSonAte, a dynamic risk estimation and assessment
framework for autonomous systems. The probabilities of
unsafe conditions or failures are computed from runtime
observations about the state of the system and environment,
besides safety requirements, design time assumptions, and
past failures. Similarly, according to the work by Le et
al. [35], IoT data are dynamically exploited to support the
risk awareness of Connected and Autonomous Vehicles
(CAV), thus enabling faster reactions and better decision-
making for a safer mobility [35]. The proposed framework
exploits multiple risk profiles to support users in better
understanding risks and appropriately adapting to various
situations. Mundt et al. [42] also refer to autonomous

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3374382

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

TRANSACTIONS ON SOFTWARE ENGINEERING 18

driving systems. The authors present KnowGo, a dynamic
risk assessment framework. It makes use of a risk pre-
diction architecture enabling dynamic reconfiguration in
terms of risk criterion, risk model selection, and level of
automation, to manage dynamic changes in the operational
environment. The frameworks proposed in [34], [35], [42]
clearly show that, due to its criticality, risk estimation
and assessment require dynamic runtime techniques, thus
capturing the failures that systems face at runtime. To this
aim, they are specifically intended for evaluating systems
during their operation and under the lens of one or a
few critical properties, such as the risk of failures. These
frameworks do not consider the system as a whole, nor
other systems’ abilities different from the risk estimation
and assessment ability. Given the holistic view of LENS
and its objective to support the evaluation of (classes of)
autonomous systems all-round, the risk’s estimation and
assessment is only one ability, among many others, whose
presence (and extent in terms of levels) can be considered
and assessed, given the specific class of systems under
analysis. Differently from [34] and [35], where risk refers
to the probability and severity of undesirable events, Smith
et al. [36] consider risk as a barrier to the implementation
of autonomous systems or as consequences of the use
of such systems. The authors provide a risk assessment
framework, which is intended to evaluate the different
levels of autonomy a system can show, and the risk faced
when implementing each of these levels. In other words,
the framework aims to assess whether the current state of
automation technology will support the envisaged level of
autonomy. It also provides an initial consideration of the
level of risk associated with the implementation of a specific
level of automation. Interestingly, Smith et al. followed a
similar approach to ours in their work. Specifically, they
structured the proposed statement of intent of automation
on the basis of a description loosely based on the Autonomy
Levels developed by the Society of Automotive Engineers
(SAE) [44], adapted to make it applicable to autonomous
systems across a variety of domains. Moreover, similarly to
LENS, the statement of intent of automation is presented
in terms of levels, e.g., no automation, assistance, partial
automation, and so on, with a level number, a name and
a description. It is then combined with capability of tech-
nology levels. Although rather limited to the assessment
of risk in the implementation of autonomous systems, this
framework shows the emerging need for practitioners for a
tool to support the evaluation of systems’ abilities to guide
decision-making.

Diaconeasa et al. [37] propose a model-based resilience
assessment framework that exploits a resilience ontology
to guarantee transparent and up-to-date modeling and
quantification of the system risk and reliability metrics.
The main objective of this work is to overcome the usually
weak integration of reliability analysis in the model-based
software engineering process. As opposed to LENS, it is
specifically tied to metrics for reliability, enabling the use
of a range of resilience mechanisms in the design and
operation of a system.

Shimizu et al. [38] present an evaluation framework of
the performance limitations of autonomous systems that
combines safety analysis and sensor attack simulation.
Feth et al. [39] propose a conceptual framework, i.e., a
metamodel, to support early design decisions for system-
atically deriving Safety Supervisors (SSV) for autonomous
systems. From an engineering perspective, the framework
allows one to arrive at an evidence-based decision about
which algorithms to choose for the further development
of a safety monitor, by conducting what-if analyses and
comparing different meaningful combinations of available
solutions. Both frameworks focus on system safety. The
framework in [38] essentially aims to evaluate how the
system safety is affected by previously identified sensor
attacks scenarios. The framework in [39], instead, is more
directed towards runtime safety monitoring. These works
suggest that evaluating systems safety, especially for safety-
critical systems, can address further system improvements
during future development. On the one hand, a framework
like LENS can easily support the evaluation of safety-
related abilities and/or levels, i.e., by including them under
the dependability ability and/or by further enabling the
reasoning on how to improve the system safety, if needed.
On the other hand, LENS is open to the evaluation of other
systems’ properties specifically tied to the target class of
systems.

Vuorimaa et al. [40] target the need for development
organizations of capabilities, processes and tools required
to achieve the needed readiness for designing Autonomous
Machine Systems (AMS). To this aim, by means of semi-
structured interviews and based on the literature, the
authors propose a set of organizational factors that or-
ganizations should exhibit to show a sufficient readiness
in designing AMS. Examples of readiness elements are
design practices and competences, digital design tools and
practices, partnerships and ecosystems. Differently from
LENS, the target of the evaluation framework presented in
this work is the organization developing an AMS and not
the AMS itself.

Dong et al. [41] propose an assessment framework
for dependability properties (safety, resilience, robustness,
detection, and recovery) of Deep Reinforcement Learning-
driven Robotics and Autonomous Systems. Specifically,
the dynamics of risk/failures of systems in an uncertain
environment are modeled as a Discrete-Time Markov Chain
(DTMC). Temporal logic is used for defining dependability
properties that are then verified on the DTMC through
Probabilistic Model Checking. In this work, similarly to
LENS, the aim of the authors is that of providing an as-
sessment framework for dependability able to address the
target systems in a holistic way, namely by considering all
dependability properties. In addition to this, the objective
of LENS and its instances is that of providing a holistic
view for the assessment of multiple properties of (specific
classes of) autonomous systems, besides dependability.

The studies by Tomforde and Goller [32], [33] extend
an existing measurement framework for the properties
of adaptive systems, by defining new metrics. Metrics

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3374382

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

TRANSACTIONS ON SOFTWARE ENGINEERING 19

measuring the quantification of parameters utilization,
under dynamic conditions. The overall idea consists of
quantifying the change in parameter configurations, thus
detecting unexpected events [33]. Metrics measuring the
coherence of configurations of self-adaptive systems, by
collecting and analyzing the configuration decisions of all
the autonomous subsystems of a self-adaptive system [32].
These metrics-based works contributed to Table 9. As
discussed above, they exhibit the same limitations of
metrics-based evaluation frameworks. Al-Tahir et al. [43]
apply knowledge from control system theory to define
an assessment framework for co-adaptive human-machine
interfaces. The approach enables a better understanding
of the dynamics of co-adaptive myoelectric human-machine
systems. Specifically, the proposed approach exploits
Poincaré maps, to identify learning effects, oscillations
and uncertainty in performance. However, the proposed
framework is rather tied to myoelectric systems. This
makes it difficult to use it for different types of adaptive
systems.

In Table 11, we schematically outline the discussed
related works about evaluation frameworks for adaptive
and autonomous systems, by organizing them according
to the systems’ properties that each evaluation framework
focuses on. It can be observed that all of them target only

TABLE 11
Evaluation frameworks for adaptive and autonomous systems.

Approaches R
is

k

R
e
si

li
e
n

c
e

S
a
fe

ty

O
rg

.
R

e
a
d

in
e
ss

D
e
p

e
n

d
a
b

il
it

y

A
d

a
p

ta
ti

o
n

Hartsell et al. [34] (2021) ✓
Le et al. [35] (2018) ✓
Smith et al. [36] (2018) ✓
Mundt et al. [42] (2022) ✓
Diaconeasa et al. [37] (2019) ✓
Shimizu et al. [38] (2021) ✓
Feth et al. [39] (2017) ✓
Vuorimaa et al. [40] (2021) ✓
Dong et al. [41] (2022) ✓
Goller et al. [33] (2022) ✓
Tomforde et al. [32] (2021) ✓
Al-Tahir et al. [43] (2022) ✓

one specific system ability or property, or a set of properties
all referring to the same umbrella ability, such as the work
by Dong et al. [41] that considers multiple dependability
properties. On the contrary, LENS and its instances, such
as LENSPEMS, provide a broader coverage of the abilities
assessment of (classes of) autonomous systems.

In conclusion, to the best of our knowledge, there exists
no generic framework for the assessment of adaptive abili-
ties that is applicable to a broad spectrum of autonomous
systems and, specifically, to PEMS, i.e., the class of medical
devices, which we focus on.

7 Conclusions

This paper contributes a meta-evaluation framework for
autonomous systems, called LENS, which enables the
assessment of systems under the lens of abilities related
to adaptation and smartness. Since the domains in which
autonomous systems can be used are various and systems
differ among them in terms of purpose, characteristics,
abilities, and type of interaction with humans, we defined
LENS at an abstract level. Instantiating LENS to a specific
domain of autonomous systems allows for the definition of
concrete evaluation frameworks that engineers can use to
understand in which direction is worth investing to make
their system smarter. In this paper, we specialized LENS to
the domain of Programmable Electronic Medical Systems
(PEMS) and we obtained LENSPEMS. The evaluation frame-
work is supported by a tool that guides engineers during
the evaluation.

We evaluated LENSPEMS according to three main as-
pects: (i) applicability - how it is applicable to real PEMS,
(ii) generalizability - to what extent it is generalizable to
the PEMS class of systems, and (iii) usefulness - how it is
useful in making an assessment of a PEMS and identifying
possible directions of improvement towards smartness. The
results of the evaluations are convincing and promising,
and we make also available all the data for transparency
and replicability purposes [15]. We also make available on
the website of LENS the information that is required to
guide interested researchers to replicate the instantiation
of LENS for a different class of systems.

As future work, we plan to test LENSPEMS with other
PEMS, also in collaboration with some of the experts
interviewed during the validation, and who showed their
interest in trying LENSPEMS in practice, to evaluate their
PEMS. We further plan to perform instantiations of LENS
to other classes of systems, such as autonomous guidance
or satellite systems. Moreover, we plan to compare the
use of LENS’s instances with certification standards of the
SUE to evaluate the feasibility of possible improvements
suggested by the evaluation framework.

Acknowledgements

This work has been partially funded by (a) the European
Union - NextGenerationEU under the Italian Ministry
of University and Research (MUR) National Innovation
Ecosystem (i) grant ECS00000041 - VITALITY – CUP:
D13C21000430001 and (ii) PNRR Missione 4 Compo-
nente 2 Investimento 1.3, grant PE0000020 – CHANGES
– CUP: D53C22002560006; (b) the MUR (Italy) Depart-
ment of Excellence 2023 - 2027 for GSSI; (c) the MUR
FISR 2020 IP_05310 MVM-Adapt; (d) the PRIN project
P2022RSW5W - RoboChor: Robot Choreography; (e) the
PRIN project 2022JKA4SL - HALO: etHical-aware Ad-
justabLe autOnomous systems.

The work of P. Pelliccione was also partially supported by
the Centre of EXcellence on Connected, Geo-Localized and
Cybersecure Vehicles (EX-Emerge), funded by the Italian

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3374382

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

TRANSACTIONS ON SOFTWARE ENGINEERING 20

Government under CIPE resolution n. 70/2017 (Aug. 7,
2017).

The work of A. Bombarda was partially supported
by PNRR - ANTHEM (AdvaNced Technologies for
Human-centrEd Medicine) - Grant PNC0000003 – CUP:
B53C22006700001 - Spoke 1 - Pilot 1.4.

References

[1] B. H. C. Cheng et al., Software Engineering for Self-Adaptive
Systems: A Research Roadmap. Springer, 2009.

[2] R. De Lemos et al., Software Engineering for Self-Adaptive
Systems: A Second Research Roadmap. Springer, 2013.

[3] B. H. C. Cheng et al., Using Models at Runtime to Address
Assurance for Self-Adaptive Systems. Springer, 2014.

[4] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape
and research challenges,” ACM Trans. Auton. Adapt. Syst., vol. 4,
no. 2, 2009.

[5] C. Krupitzer et al., “A survey on engineering approaches for
self-adaptive systems,” Pervasive Mob. Comput., vol. 17, 2015.

[6] D. Weyns, An Introduction to Self-Adaptive Systems: A Contem-
porary Software Engineering Perspective. John Wiley & Sons,
Ltd, 2021.

[7] A. Bombarda, S. Bonfanti, M. De Sanctis, A. Gargantini, P. Pellic-
cione, E. Riccobene, and P. Scandurra, “Towards an evaluation
framework for autonomous systems,” in 2022 IEEE International
Conference on Autonomic Computing and Self-Organizing Sys-
tems Companion (ACSOS-C), 2022, pp. 43–48.

[8] F. van der Linden, K. Schmid, and E. Rommes, The
Family Evaluation Framework. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2007, pp. 79–108. [Online]. Available:
https://doi.org/10.1007/978-3-540-71437-8_6

[9] IEC 60601-1:2005 Medical electrical equipment - Part 1: General
requirements for basic safety and essential performance, https://
www.iso.org/standard/70755.html, International Electrotechnical
Commission Std.

[10] EU, “Robotics 2020 Multi-Annual Roadmap For Robotic in
Europe,” https://old.eu-robotics.net/cms/upload/topic_groups/H2020_

Robotics_Multi-Annual_Roadmap_ICT-2017B.pdf, 2016.
[11] A. Abba et al., “The novel mechanical ventilator milano for the

COVID-19 pandemic,” Physics of Fluids, vol. 33, 2021.
[12] A. Bombarda, S. Bonfanti, C. Galbiati, A. Gargantini, P. Pelliccione,

E. Riccobene, and M. Wada, “Lessons learned from the develop-
ment of a mechanical ventilator for COVID-19,” in ISSRE2021.
IEEE, 2021.

[13] ——, “Guidelines for the development of a critical software
under emergency,” Information and Software Technology,
vol. 152, p. 107061, Dec. 2022. [Online]. Available: https:
//doi.org/10.1016/j.infsof.2022.107061

[14] F. van der Linden, K. Schmid, and E. Rommes, Software
Product Lines in Action: The Best Industrial Practice in Product
Line Engineering. Springer Berlin Heidelberg, 2010. [Online].
Available: https://books.google.it/books?id=3-ebcQAACAAJ

[15] A. Bombarda et al., “Supplementary material of the work titled
“Evaluation Framework for Autonomous Systems: the case of
Programmable Electronic Medical Systems",” https://foselab.
github.io/LENS4PEMS/additional_material/.

[16] J. M. Horcas, M. Pinto, and L. Fuentes, “Empirical analysis
of the tool support for software product lines,” Softw. Syst.
Model., vol. 22, no. 1, pp. 377–414, 2023. [Online]. Available:
https://doi.org/10.1007/s10270-022-01011-2

[17] R. F. Paige, N. Matragkas, and L. M. Rose, “Evolving
models in model-driven engineering: State-of-the-art and future
challenges,” Journal of Systems and Software, vol. 111, pp.
272–280, 2016. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0164121215001909

[18] R. Kazman, M. Klein, and P. Clements, “Atam: Method for
architecture evaluation,” Carnegie-Mellon Univ Pittsburgh PA
Software Engineering Inst, Tech. Rep., 2000.

[19] D. Beiderbeck, N. Frevel, H. A. von der Gracht, S. L.
Schmidt, and V. M. Schweitzer, “Preparing, conducting,
and analyzing delphi surveys: Cross-disciplinary practices,
new directions, and advancements,” MethodsX, vol. 8, p.
101401, 2021. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S2215016121001941

[20] E. H. Shortliffe and M. J. Sepúlveda, “Clinical Decision Support
in the Era of Artificial Intelligence,” JAMA, vol. 320, no. 21, pp.
2199–2200, 12 2018.

[21] A. Bombarda, S. Bonfanti, and A. Gargantini, “Developing
medical devices from abstract state machines to embedded
systems: A smart pill box case study,” in Software
Technology: Methods and Tools. Springer International
Publishing, 2019, pp. 89–103. [Online]. Available: https:
//doi.org/10.1007/978-3-030-29852-4_7

[22] C. Berget, L. H. Messer, and G. P. Forlenza, “A clinical overview
of insulin pump therapy for the management of diabetes: Past,
present, and future of intensive therapy,” Diabetes Spectrum,
vol. 32, no. 3, pp. 194–204, Aug. 2019. [Online]. Available:
https://doi.org/10.2337/ds18-0091

[23] M. A. Serhani, H. T. E. Kassabi, H. Ismail, and A. N. Navaz, “ECG
monitoring systems: Review, architecture, processes, and key
challenges,” Sensors, vol. 20, no. 6, p. 1796, Mar. 2020. [Online].
Available: https://doi.org/10.3390/s20061796

[24] M. M. Baig, H. Gholamhosseini, and M. J. Connolly, “A
comprehensive survey of wearable and wireless ECG monitoring
systems for older adults,” Medical & Biological Engineering &
Computing, vol. 51, no. 5, pp. 485–495, Jan. 2013. [Online].
Available: https://doi.org/10.1007/s11517-012-1021-6

[25] A. Mashkoor, “The hemodialysis machine case study,” in Abstract
State Machines, Alloy, B, TLA, VDM, and Z, M. Butler, K.-D.
Schewe, A. Mashkoor, and M. Biro, Eds. Cham: Springer
International Publishing, 2016, pp. 329–343.

[26] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering, ser. Com-
puter Science, 2012.

[27] D. Perez-Palacin et al., “Software architecture adaptability
metrics for qos-based self-adaptation,” in Proceedings of the
Joint ACM SIGSOFT Conference – QoSA and ACM SIGSOFT
Symposium – ISARCS on Quality of Software Architectures –
QoSA and Architecting Critical Systems – ISARCS, 2011.

[28] J. Cámara et al., “Empirical resilience evaluation of an
architecture-based self-adaptive software system,” in Proceed-
ings of the 10th International ACM Sigsoft Conference on Quality
of Software Architectures, ser. QoSA ’14, 2014.

[29] N. Subramanian and L. Chung, “Metrics for software adaptabil-
ity,” Proc. Software Quality Man. (SQM 2001), vol. 158, 2001.

[30] C. Raibulet and L. Masciadri, “Evaluation of dynamic adaptivity
through metrics: an achievable target?” in 2009 Joint Working
IEEE/IFIP Conference on Software Architecture European Con-
ference on Software Architecture, 2009.

[31] D. Perez-Palacin et al., “On the relationships between qos and
software adaptability at the architectural level,” J. Syst. Softw.,
vol. 87, jan 2014.

[32] S. Tomforde and M. Goller, “Beyond homeostasis: A novel
approach for assessing the stability and coherence of
self-adaptive systems,” in IEEE Intl Conf on Dependable,
Autonomic and Secure Computing, Intl Conf on Pervasive
Intelligence and Computing, Intl Conf on Cloud and
Big Data Computing, Intl Conf on Cyber Science and
Technology Congress, DASC/PiCom/CBDCom/CyberSciTech
2021, Canada, October 25-28, 2021. IEEE, 2021,
pp. 10–17. [Online]. Available: https://doi.org/10.1109/
DASC-PICom-CBDCom-CyberSciTech52372.2021.00018

[33] M. Goller and S. Tomforde, “Runtime assessment of
the parameter utilisation in adaptive systems,” in 2022
IEEE International Conference on Pervasive Computing and
Communications Workshops and other Affiliated Events, PerCom
2022 Workshops, Pisa, Italy, March 21-25, 2022. IEEE,
2022, pp. 200–205. [Online]. Available: https://doi.org/10.1109/
PerComWorkshops53856.2022.9767230

[34] C. Hartsell et al., “Resonate: A runtime risk assessment frame-
work for autonomous systems,” in SEAMS@ICSE 2021, 2021.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3374382

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.1007/978-3-540-71437-8_6
https://www.iso.org/standard/70755.html
https://www.iso.org/standard/70755.html
https://old.eu-robotics.net/cms/upload/topic_groups/H2020_Robotics_Multi-Annual_Roadmap_ICT-2017B.pdf
https://old.eu-robotics.net/cms/upload/topic_groups/H2020_Robotics_Multi-Annual_Roadmap_ICT-2017B.pdf
https://doi.org/10.1016/j.infsof.2022.107061
https://doi.org/10.1016/j.infsof.2022.107061
https://books.google.it/books?id=3-ebcQAACAAJ
https://foselab.github.io/LENS4PEMS/additional_material/
https://foselab.github.io/LENS4PEMS/additional_material/
https://doi.org/10.1007/s10270-022-01011-2
https://www.sciencedirect.com/science/article/pii/S0164121215001909
https://www.sciencedirect.com/science/article/pii/S0164121215001909
https://www.sciencedirect.com/science/article/pii/S2215016121001941
https://www.sciencedirect.com/science/article/pii/S2215016121001941
https://doi.org/10.1007/978-3-030-29852-4_7
https://doi.org/10.1007/978-3-030-29852-4_7
https://doi.org/10.2337/ds18-0091
https://doi.org/10.3390/s20061796
https://doi.org/10.1007/s11517-012-1021-6
https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech52372.2021.00018
https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech52372.2021.00018
https://doi.org/10.1109/PerComWorkshops53856.2022.9767230
https://doi.org/10.1109/PerComWorkshops53856.2022.9767230

TRANSACTIONS ON SOFTWARE ENGINEERING 21

[35] A. Le, C. Maple, and T. Watson, “A profile-driven dynamic risk
assessment framework for connected and autonomous vehicles,”
in Living in the IoT: Cybersecurity of the IoT, 2018.

[36] K. T. Smith, L. M. Coventry, and R. GreenSmith, “An initial
generic assessment framework for the consideration of risk in
the implementation of autonomous systems,” in IFIP WG 13.6
Working Conference, HWID on Human Work Interaction Design.
Designing Engaging Automation, 2018.

[37] M. A. Diaconeasa, A. Mosleh, A. Morozov, and A. T. Tai,
“Model-Based Resilience Assessment Framework for Autonomous
Systems,” ser. ASME International Mechanical Engineering
Congress and Exposition, 2019.

[38] K. Shimizu, D. Suzuki, R. Muramatsu, H. Mori, T. Nagatsuka, and
T. Matsumoto, “Evaluation framework for performance limitation
of autonomous systems under sensor attack,” in Computer Safety,
Reliability, and Security. Springer, 2021.

[39] P. Feth, D. Schneider, and R. Adler, “A conceptual safety su-
pervisor definition and evaluation framework for autonomous
systems,” in Computer Safety, Reliability, and Security, 2017.

[40] V. Vuorimaa et al., “Factors affecting the organizational readiness
to design autonomous machine systems: Towards an evaluation
framework,” in Int. Systems and Applications. Springer, 2021.

[41] Y. Dong, X. Zhao, and X. Huang, “Dependability analysis of
deep reinforcement learning based robotics and autonomous
systems through probabilistic model checking,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems,
IROS 2022, Kyoto, Japan, October 23-27, 2022. IEEE, 2022,
pp. 5171–5178. [Online]. Available: https://doi.org/10.1109/
IROS47612.2022.9981794

[42] P. Mundt, I. Kumara, W. van den Heuvel, D. A. Tamburri,
and A. S. Andreou, “Knowgo: An adaptive learning-based
multi-model framework for dynamic automotive risk assessment,”
in Business Modeling and Software Design - 12th International
Symposium, BMSD 2022, Fribourg, Switzerland, June 27-
29, 2022, Proceedings, ser. Lecture Notes in Business
Information Processing, B. Shishkov, Ed., vol. 453. Springer,
2022, pp. 268–278. [Online]. Available: https://doi.org/10.1007/
978-3-031-11510-3_18

[43] I. Al-Tahir, J. W. Sensinger, and E. J. Scheme, “A better
framework for the assessment of performance and stability of
co-adaptive myoelectric systems,” in International Conference on
Rehabilitation Robotics, ICORR 2022, Rotterdam, Netherlands,
July 25-29, 2022. IEEE, 2022, pp. 1–5. [Online]. Available:
https://doi.org/10.1109/ICORR55369.2022.9896541

[44] S. International, “Taxonomy and definitions for terms related
to driving automation systems for on-road motor vehicles -
j3016_202104.”

Andrea Bombarda is a Research Associate
in the FOSELab (Formal Methods and Software
Engineering Laboratory) at the University of
Bergamo (Italy). His research topics are mainly
in the context of quality assurance for med-
ical software and systems, by applying rigor-
ous methods and suitable software engineering
processes, aiming at improving the effective-
ness and the rapidness of the medical software
certification process. He received his PhD in

Engineering and Applied Sciences from the University of Bergamo
(Italy). More information is available at https://cs.unibg.it/bombarda/.

Silvia Bonfanti is a Research Associate at
the University of Bergamo (Italy) and she is
part of FOSELab (Formal Methods and Software
Engineering Laboratory). She received her PhD
in Engineering and Applied Science from the Uni-
versity of Bergamo, in collaboration with SCCH
(Software Competence Center Hagenberg). Her
research interests include software engineering,
software testing, formal methods, and medical
software certification.More information is avail-

able at https://cs.unibg.it/bonfanti/.

Martina De Sanctis is Assistant Professor at
the Computer Science department of the Gran
Sasso Science Institute (GSSI), in L’Aquila, (Italy).
Her research interests include behavioral and
architectural adaptation of smart systems and
applications, collective aspects and modeling
of multi-agent systems, and their application to
several domains, e.g., mobility, smart cities, IoT,
and eHealth. She received a Ph.D. in Computer
Science at the Doctoral School in Information

and Communication Technology in 2018, from the University of Trento
and the Fondazione Bruno Kessler (FBK) in Trento (Italy). More informa-
tion is available at https://martinadesanctis.bitbucket.io/index.html

Angelo Gargantini is a full professor in Com-
puter Science and Engineering at the University
of Bergamo (Italy), and he is the director of the
FOSELab (Formal Methods and Software Engi-
neering Laboratory). He received his PhD in com-
puter engineering from the Politecnico of Milan.
Before joining the University of Bergamo, he has
worked for the Politecnico of Milan, the Naval
Research Laboratory in Washington DC, and the
University of Catania. His research focuses on

automated testing techniques, model-based testing, mutation testing,
and the application of formal methods in software validation and verifi-
cation. More information is available at https://cs.unibg.it/gargantini/.

Patrizio Pelliccione is a Professor in Computer
Science and Director of the computer science
area at Gran Sasso Science Institute (GSSI, Italy).
He is also an adjunct professor at the Univer-
sity of Bergen, Norway. His research topics are
mainly in software engineering, software archi-
tecture modeling and verification, autonomous
systems, and formal methods. He received his
Ph.D. in computer science from the University
of L’Aquila (Italy). Thereafter, he worked as a

senior researcher at the University of Luxembourg in Luxembourg,
then assistant professor at the University of L’Aquila in Italy, then
Associate Professor at both Chalmers | University of Gothenburg in
Sweden and University of L’Aquila. More information is available at
http://www.patriziopelliccione.com.

Elvinia Riccobene is full professor in Computer
Science at the Computer Science Department
of the University of Milan (Italy), and she is
the director of the FALSE Lab (Formal Methods
and Software Engineering Laboratory). She re-
ceived laurea and PhD degree in Mathematics.
Her research interests include formal methods,
with particular expertise in the Abstract State
Machines, integration between formal modeling
and model-driven engineering, model analyses

techniques for software systems. More information is available at
https://homes.di.unimi.it/riccobene/.

Patrizia Scandurra is Associate Professor at
the University of Bergamo (Italy). She obtained
her PhD in Computer Science (2006) at the
University of Catania. Her research interests
are mainly in the area of software engineering,
formal methods, software architecture, and self-
adaptive and autonomous systems. She is mem-
ber of the FOSELab (Formal Methods and Soft-
ware Engineering Laboratory). More information
is available at https://cs.unibg.it/scandurra/.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3374382

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.1109/IROS47612.2022.9981794
https://doi.org/10.1109/IROS47612.2022.9981794
https://doi.org/10.1007/978-3-031-11510-3_18
https://doi.org/10.1007/978-3-031-11510-3_18
https://doi.org/10.1109/ICORR55369.2022.9896541
https://cs.unibg.it/bombarda/
https://cs.unibg.it/bonfanti/
https://martinadesanctis.bitbucket.io/index.html
https://cs.unibg.it/gargantini/
http://www.patriziopelliccione.com
https://homes.di.unimi.it/riccobene/
https://cs.unibg.it/scandurra/

	Introduction
	Background
	Multi-Annual Roadmap for Robotics in Europe
	PEMS: Programmable Electronic Medical Systems

	LENS: evaLuation framEwork for autoNomous Systems
	Customization of LENS: key points and lessons learned
	Making an assessment with LENSC
	Assessment values
	Assessment process

	Instantiation of LENS to the PEMS domain
	Abilities in LENSPEMS
	Tool support

	Validation
	RQ1: Applicability of LENSPEMS
	RQ2: Generalizability of LENSPEMS
	Fit for purpose
	Extensibility of the tool

	RQ3: Usefulness of LENSPEMS
	Threats to validity
	Internal validity
	Construct validity
	External validity
	Conclusion validity

	Related works
	Conclusions
	References
	Biographies
	Andrea Bombarda
	Silvia Bonfanti
	Martina De Sanctis
	Angelo Gargantini
	Patrizio Pelliccione
	Elvinia Riccobene
	Patrizia Scandurra

