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Chapter 1

Introduction

1.1 Preamble

Following the profound impact of airline industry deregulation occurred
since the 1970’s, the strategic behavior of airlines operating in the whole in-
dustry were subject to a great and unprecedented transformation. The lib-
eralization process took several years and packages to become effective, and
its adoption was triggered in different times and ways depending on the ge-
ographical area. The United States led the change while Europe followed
from the 1980’s, but it is from the late 90’s that the actual changes took place
with a series of liberalization packages.1 While a strictly regulated environ-
ment was providing a certain degree of stability for both sides of the mar-
ket, deregulation changed everything. Incumbent carriers had to manage the
new economic freedom and flexibility and soon faced the entry of new (and
sometimes low-cost) competitors. Inefficient players were forced to leave the
market or to became more efficient. Moreover, according to new business
models, networks changed towards hub-and-spoke network service struc-
tures. Consolidation of airlines have also been a huge phenomenon that hap-
pened through several means, from sporadic cooperation to actual waves of
merges, especially in the most recent years. Indeed, the liberalization pack-
age opened the door to increased competition, but also to anti-competitive
practices potentially leading to increased market concentration. Questions
about the effectiveness of a deregulated industry and its profitability have
always been at the heart of the debate about the airline industry as airline
deregulation policies have been designed to ensure a fair and competitive
marketplace. Many have been the papers studying the relationship between

1The liberalization process in Europe began in 1987 with the First Package, continued
with the Second Package in 1990, and was completed by the Third Package in 1993 (Author-
ity, 1998). It is only in April 1997 that airlines could freely serve and setting their own fares
on domestic and international routes in Europe.
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prices and competition, and much has been written on the evolution of the
airline industry, on the benefits of deregulation for travelers and carriers, and
on the evaluation of the deregulation process. Fares have often been the fo-
cus of any discussion on the airline industry, and certainly the most popular
metric being analyzed while assessing the consequences of any change to the
market, in general. Other studies focused on different relevant consequences
of a liberalized market by posing questions of how deregulation affected ser-
vice quality or airlines’ performance. In a fast-changing environment as the
airline industry it is important to rely on updated information and to con-
stantly monitor the markets. This is the hard task that government depart-
ments of transport and regulating authorities must bear. With this thesis I
hope I can also contribute to enrich the set of information at disposal of reg-
ulatory bodies in their decision-making process, and to shed light on some
still unclear findings from the existing literature.

1.2 Research Content and Outline

This thesis applies empirical methods in industrial organization and applied
economics to investigate about cooperation and competition strategies and
mechanisms, and their effect on the main microeconomic dimensions. This
manuscript collects three empirical independent works, each of them applied
to the airline industry. Chapter 2 consists of a paper, published in the Journal
of Transport Economics and Policy (Dresner et al., 2021) and focused on the
North Atlantic air transportation market to investigate about the price effect
of two different peculiarities of such a market: the entry (for the first time)
of a Low-Cost Competitor (LCC), and cooperative agreements (namely, al-
liances) active on the market. Chapter 3 focuses on a paper coauthored with
Martin Dresner and Li Zou and that is currently under review for publication
on the Transportation Research Part A journal. This third chapter scrutinizes
the effect of a strategic policy introduced by some US domestic airlines dur-
ing the first wave of Covid-19 pandemic on a set of performance indicators
in order to assess whether the policy benefitted the adopters or not. Finally,
Chapter 4 extends the understanding of the outcome of airlines cooperation
where deregulation is still to happen, and in a context where efficiency is
hindered by socioeconomic and geopolitical factors, and it is therefore diffi-
cult to achieve. The international African market is considered to evaluate
whether the most widespread cooperative agreement (i.e., code sharing) re-
sults in an effective economic advantage for the final users. In order to detail
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more on the content of the three core chapters of this manuscript, below I
provide a summary of their contribution.

1.2.1 Chapter 2: Airline Competition and LCCs in the North

Atlantic Market

An analysis of the impact of low-cost carrier competition and alliance coop-
eration on the open skies North Atlantic gateway-to-gateway airfares is con-
ducted. Our results indicate that the presence of the largest low-cost carrier,
Norwegian, on a gateway-to-gateway route is associated with lower airfares
after controlling for the other factors that may influence fares. The estimated
reduction is about 5%. The alliance results indicate that when two or more
carriers from the same alliance operate on a route, fares are higher than they
would be otherwise. The estimated fare effect is about +5%. Then, we show
that the entry of a non-alliance competitor generates an 8% decrease in North
Atlantic airfares; furthermore, if the entrant is Norwegian the effect is greater,
equal to -12.1%, while if the entrant is an allied airline there is no significant
price impact. Finally, the combined entry of Norwegian and an allied airline
leads to a fare effect equal to -14.9%.

1.2.2 Chapter 3: Airlines Strategies During Pandemic: What

Worked?

An examination is conducted of airline strategies during the covid-19 pan-
demic using data from the United States. Our findings show that airlines
pursued diverse strategies in terms of route entry and retention, pricing, and
load factors. At the route level, a more detailed examination is conducted
of the performance of a middle-seat blocking strategy designed to increase
the safety of air travel. We show that this strategy (i.e., not making middle
seats available to passengers) likely resulted in revenue losses for carriers, an
estimated US $3,300 per flight. This revenue loss provides an indication as
to why the middle seat blocking strategy was discontinued by all US airlines
despite ongoing safety concerns.

1.2.3 Chapter 4: Pricing Effects of Code Sharing in Africa

There has been considerable research on cooperation form of agreements in
the airline industry, but little effort has been spent on underdeveloped coun-
tries like Africa. In our empirical work we exploit a rich set of fixed effects



4 Chapter 1. Introduction

to estimate the direct and indirect impact of code sharing on airfares in the
African international connecting routes between 2017 and 2019. The main
objective of this paper is to investigate whether cooperation helps to internal-
ize double marginalization, and results in lower fares. Moreover, we check
whether the pro-competitive effect of the introduction of code sharing perco-
lates to interline, online, and direct airfares on the same route. Our main re-
sults show that the activation of a CS agreement generates a strong reduction
of airfares equal to about -18%. Evidence regarding the codeshare spillover
effect is mixed: in connecting flights with interline service we find that, all
else equal, when code sharing is introduced on a route, other airlines react
by reducing their price of about 10%. In flights with online or direct service
airlines do not react to the CS introduction as they do not perceive CS prod-
ucts as a threat. Our findings confirm that the African aviation market has a
high potential growth coming from airlines’ cooperation.

This thesis collects three empirical papers which are organized in three
chapters that compose this manuscript. The first contribution is presented in
Chapter 2, the second paper is illustrated in Chapter 3, while the last one is
presented in Chapter 4. Finally, Chapter 5, that concludes my thesis, presents
and discusses the conclusion, and proposes some possible directions for fu-
ture research.
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Chapter 2

Airline Competition and LCCs in
the North Atlantic Market

2.1 Introduction 1

In 2007, the United States (US) and the European Union (EU) concluded an
“open skies” agreement (OSA) covering air traffic across the North Atlantic.
The agreement allowed airlines from both sides of the Atlantic, including
new entrants, to freely determine North Atlantic airfares and routes (subject
to airport slot availability). Canada and the EU signed a similar agreement in
2009, while two non-EU states, Iceland and Norway, were effectively added
to the US-EU agreement in 2011. A “fact sheet” published by the EU in 2017
claimed that the US-EU open skies agreement contributed to 6 million addi-
tional North Atlantic passengers, 52 new North Atlantic connections and a
savings of 230 euros per passenger, compared to pre-agreement fares (Euro-
pean Union, 2017).

A beneficiary of OSAs has been Norwegian Air Shuttle (“Norwegian”).
Norwegian was founded in 1993 and grew rapidly to become the third largest
European low-cost carrier (LCC) (Chen and Pawlikowski, 2015). However,
unlike most LCCs, Norwegian entered long-haul markets, including routes
between Europe and the US. Long-haul entry was facilitated by Norwegian’s
purchase of wide-bodied Boeing 787 Dreamliners. By summer 2019, Nor-
wegian was flying between 17 North American destinations and 14 cities in
Europe2 using a fleet of 36 Dreamliners.3 Hence, our first goal is to estimate

1This Chapter has been coauthored with Martin Dresner, Gianmaria Martini, and
Michela Valli and it has been published on the Journal of Transport Economics and Policy in
2021 (Dresner et al., 2021)

2World Airline News, https://worldairlinenews.com/category/norwegian-long-haul/,
accessed Sept. 24, 2019.

3Norwegian.com, https://www.norwegian.com/en/about/our-story/our-aircraft/,
accessed Sept. 24, 2019.
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the impact of Norwegian; notably, how its operations have affected North
Atlantic airfares.

Although OSAs may have had positive consumer impacts, opening North
Atlantic markets to increased competition, the agreements may also have had
a negative side for consumers. OSAs allowed airlines to enter cooperative
arrangements that would otherwise have been prohibited by US competi-
tion laws.4 Consequently, several US, Canadian and European allied airlines
were granted antitrust immunity (ATI) by the US Government and its Euro-
pean and Canadian counterparts to engage in cooperative behaviors. A more
limited number of carriers were granted the additional authority to conduct
joint ventures (JV) with their alliance partners. According to Brueckner and
Singer, 2019, ATI allows allied carriers to coordinate pricing and scheduling,
while JVs additionally permit revenue pooling by allied airlines on routes.
Although these arrangements may have been authorized to promote “syn-
ergies” and “seamless connections” among partner airlines, they may also
have acted to reduce competition. Notably, Brueckner and Singer, 2019 find
that airline cooperative agreements with ATI or JV contributed to small, but
significantly higher North Atlantic airfares. Thus, as a second research ob-
jective, we expand on Brueckner and Singer’s (2019) research using a recent
dataset covering both European and North American carriers to examine the
impact of airline cooperation on North Atlantic airfares. The data source is
Traffic Analyser from the Official Aviation Guide (OAG).

To address our research questions, we estimate a panel data set with ob-
servations from January 2017 to December 2018 on gateway-to-gateway air
routes between Europe and North America.5 We find a significant impact of
Norwegian on airfares, after controlling for other relevant factors. On routes
where Norwegian is present, fares are significantly lower, by about 5%. On
the other hand, operations by two or more carriers of the same alliance on
a route are associated with 5% higher fares. Given the opposing impacts
of alliances and LCC operations on airfares, it is not clear if North Atlantic
OSAs have resulted in lower overall airfares, although our results also show
that, in general, more competitors are associated with lower fares on a route.
The latter effect is estimated to be equal to -8% per additional competitor.

4The US also has an open skies agreement with Canada, so that Canadian-based carriers
can participate in these North Atlantic agreements as well.

5As more fully described below, these are nonstop routes operated by carriers between
Europe and North America. Our sample does not include “behind-the-gateway” routes
involving hubbing at a gateway airport. For example, the route Washington-Paris, operated
by United Airlines on a non-stop basis is included. However, the Pittsburgh-Washington-
Paris connecting route, also operated by United Airlines, is not included.
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Hence, the entrance of Norwegian on a route is estimated to produce a 12.1%
reduction in airfares. The entrance of a carrier belonging to an alliance gener-
ates no significant effect on airfares. Finally, the joint entrance of Norwegian
and a carrier belonging to an alliance already operating on the route gener-
ates a 14.9% decrease of airfares. Other results indicate that the probability
of Norwegian operating on a route increases with route distance, there was
greater probability of Norwegian operating in 2018 than in 2017, and Norwe-
gian tends not to operate routes where both endpoints are hub airports, but
it does operate on routes where alliance-affiliated carriers are present.

In the next section, we provide a brief literature review of research con-
nected to our paper, while in Section 3 we discuss our data and the estimation
methods. In Section 4 we show the econometric results and in Section 5, dis-
cuss these results and conclude our paper. In the Appendix, we report some
additional econometric results and further information about the dataset.

2.2 Literature Review

2.2.1 Long-Haul Low-Cost Carriers

Starting shortly after US deregulation in 1978, pioneering LCC, Southwest
Airlines, developed an aviation model that reduced costs and increased effi-
ciencies, relying on a standardized aircraft fleet, simple point-to-point schedul-
ing, fast turnaround times at gates, high aircraft utilization, and the use of
lower-cost secondary airports. Operations emphasized short-medium haul
routes, where the low-cost model could readily be implemented. Other LCCs
in North America, Europe, Asia and elsewhere followed suit. Research find-
ings show that LCCs have operating costs 20-30% below network carrier
competitors (Zou, Yu, and Dresner, 2015; Wilken, Berster, and Gelhausen,
2016), with fares 20% or more below competitors (Kwoka, Hearle, and Alepin,
2016).

As the LCCs grew and saturated their markets, they searched for new op-
erating strategies to gain market share. Some LCCs moved operations from
secondary airports to more costly, primary airports to gain business travel-
ers.6 Other LCCs diversified their fleets or established hubs to connect pas-
sengers. Finally, some LCCs began operating long-haul routes in addition to
(or instead of) short-medium haul routes.

6Southwest Airlines, in fact, moved a significant percent of its operations to primary
airports
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Wensveen and Leick, 2009 indicate that long-haul LCCs are “inherently
different” from short-haul LCCs in operating procedures, training proce-
dures, route densities and turnaround times, among other factors. These
operational differences reduce the cost advantages that LCCs enjoy over net-
work carriers (Wilken, Berster, and Gelhausen, 2016). Whyte and Lohmann,
2015 calculate cost differentials between low-cost carriers operating on Aus-
tralian long-haul routes and their network competitors in the range of 13-
20%, lower than the 20-30% advantage LCCs enjoy on short-medium haul
services (Zou, Yu, and Dresner, 2015; Wilken, Berster, and Gelhausen, 2016).
Moreover, LCCs face difficulties competing against network carriers in long-
haul markets, such as the North Atlantic, since network carriers generate
significant revenues from high-yield business-class seats and, therefore, can
price economy seats close to marginal cost.

Wilken, Berster, and Gelhausen, 2016 note that demand elasticity on many
long-haul routes may be lower than on short-haul routes, thus limiting the
opportunity for traffic generation through low fares by LCCs. Moreover, the
authors find limited long-haul European markets with sufficient traffic to ac-
commodate LCC services, thus requiring LCCs to establish hubs and veer
from cost-efficient point-to-point models. Finally, De Poret, O’Connell, and
Warnock-Smith, 2015 see difficulties for LCCs in generating sufficient traffic
to operate on long-haul routes, suggesting that cargo revenues may be vital
for profitable operations.

In summary, the traditional LCC model may not transfer well to long-haul
routes since the cost advantages enjoyed by LCCs may be lower on long-haul
routes than on shorter routes. Moreover, there may be limited opportunities
for LCCs on long-haul routes due to required traffic densities and to the in-
ability to generate business class revenues. These arguments make it inter-
esting to investigate whether Norwegian has the ability to set lower airfares
on long-haul North Atlantic routes.

2.2.2 Alliance Operations

Much of the alliance research has been conducted by Jan Brueckner and his
colleagues (Brueckner and Whalen, 2000; Brueckner, 2001; Brueckner, 2003;
Brueckner and Proost, 2010; Brueckner, Lee, and Singer, 2011; and Brueckner
and Singer, 2019), with other efforts by Oum, Park, and Zhang, 1996, Park,
1997, Bilotkach, 2005, Bilotkach and Hüschelrath, 2013, and Calzaretta Jr,
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Eilat, and Israel, 2017. Brueckner and Singer, 2019 provide an excellent sum-
mary of the literature, with research divided between studies on gateway-to-
gateway routes and research on routes from behind international gateways
(i.e., one- or multi-stop connecting itineraries). The results from research on
connecting itineraries is overwhelmingly positive, indicating that alliances
provide lower fares than non-alliance itineraries, notably, through the elimi-
nation of double marginalization. For example, Brueckner, Lee, and Singer,
2011 find that airline cooperative arrangements, including code-sharing, al-
liance membership and ATI, reduce fares on connecting itineraries by 11%
relative to fares from “non-cooperating” carrier connections, with an even
higher reduction (16%) for transatlantic itineraries.

The evidence on the impact of alliances on gateway-to-gateway fares is
less certain. While most of the studies show little-to-no impact (e.g., Brueck-
ner and Whalen, 2000; Wan, Zou, and Dresner, 2009; and Calzaretta Jr, Eilat,
and Israel, 2017), Brueckner and Singer, 2019 find that since 2010, alliance ar-
rangements on US international routes, including ATI and JV, increase fares
in the order of 4-7%.7

For this paper, we extend the work on LCCs and alliances by analyzing
the fare effects from Norwegian’s presence in North Atlantic markets and
from alliance cooperation in the same markets. For our analysis, we use a re-
cent dataset covering the period January 2017-December 2018 with a sample
that includes US, European and Canadian carriers.8

2.3 Model and Data

The setting for our analysis is the North Atlantic market; specifically, gateway-
to-gateway routes over the period January 2017 to December 2018. In 2017,
79 million passengers traveled between Europe and the US. This number in-
creased to 85 million in 2018.9 Traffic flows between Canada and Europe
increased from 9.9 million to 10.3 million between 2017 and 2018.10 The ma-
jority of North Atlantic seats are provided by carriers affiliated with the three

7Brueckner and Singer (2019) also include an LCC variable in their dataset showing that
when an LCC is in a market, fares are reduced by 14%.

8Brueckner and Singer, 2019 use the US Department of Transportation’s DB1B database,
that only includes US carrier data and data from foreign carriers on codeshare routes with
US carriers.

9https://www.statista.com/statistics/193551/atlantic-air-traffic-passengers-travelling-
to-or-from-the-us/, accessed September 27, 2019.

10https://www.statista.com/statistics/483702/number-of-air-passengers-between-
canada-and-europe/, accessed September 27, 2019.
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major alliances, Star, oneworld and Skyteam. In the summer of 2016, alliance
carriers that also participated in joint ventures operated 72% of available seat-
kilometers (ASKs) on the North Atlantic.11 Norwegian, the largest LCC op-
erator on the North Atlantic, carried almost 5 million passengers in 2018.12

In this Section, we first present the econometric model adopted to study
the impact of Norwegian and alliances on airfares on North Atlantic routes,
the related econometric challenges that we face, and how our models accom-
modate these challenges. Second, we describe the data used to estimate the
econometric model. Finally, we specify the explanatory variables and the
instruments introduced due to endogenous variables in the models.

2.3.1 The Econometric Model

Our aim is to investigate the impact of long-haul LCC (namely Norwegian)
competition and carrier cooperation (i.e., alliances) on the North Atlantic air-
fares. Our baseline model is stated below:

log(FARE) = X1 · β′
1 + α1 · COMP + α2 · NOR + v (2.1)

NOR = 1{X2 · β′
2 + α3 · COMP + u ≥ 0} (2.2)

COMP = X3 · β′
3 + e (2.3)

In Eq. 2.1, the logarithm of monthly fares on a North Atlantic city-pair is
function of a vector X1 of exogenous explanatory variables, and of two possi-
ble endogenous variables: one capturing the degree of competition (COMP),
and the other a dummy variable for the presence of Norwegian (NOR).13 β′

1

is a column vector of coefficients for the exogenous explanatory variables,

11https://centreforaviation.com/analysis/reports/north-atlantic-airline-market-closed-
jvs-to-have-78-of-asks-in-2016-weighing-the-benefits-272815, accessed September 27, 2019.

12A second much smaller LCC operating in the North Atlantic market, Iceland-based
WOW airline, is also included in our analysis. WOW operated a fleet of 10 Airbus A321
neos during our study period but ceased operations in 2019.

13A third possible source of endogeneity in Eq. 2.1 is that the presence of alliance opera-
tions on a route may depend on the level of fares on that route. However, we disregard this
issue for two reasons: First, airlines join alliances as a complete entity. Alliance membership
is not route specific. Second, the main impact of alliances may be on the number of carriers
operating on a route. For example, if two carriers are alliance members, they may choose
to have one of the carriers operate the route, with the other carrier code sharing. Since we
already consider the number of carriers (i.e., COMP) as endogenous, we can include the
alliance dummy as a predictor for the number of carriers. In this way, we believe that we
account for alliance endogeneity concerns.
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α1 is the coefficient for the effect of competition on airfares, and α2 identifies
the impact of Norwegian, while v is the error term, with 0 mean and vari-
ance σ2

v . Eq. 2.2 highlights that the presence of Norwegian is a function of
a vector of exogenous variables X2 (β′

2 is a vector of coefficients), and of the
degree of competition (COMP) that might be endogenous; u is the error term
with 0 mean and for identification reasons, variance set equal to unity (1[·]
is a binary indicator function). Eq. 2.3 is related to the degree of competi-
tion (COMP), which is function of a vector of exogenous variables X3 (β′

3 is
a vector of coefficients), and of the error term e, with 0 mean and variance σ2

e .
To estimate the parameters in Eq. 2.1 and to control for endogeneity,

we adopt a control function approach (CFA, Heckman and Robb Jr, 1985;
Wooldridge, 2010; Wooldridge, 2015) twice: first, we control for the endo-
geneity of COMP on NOR. Next, we control for the possible endogeneity of
NOR and COMP on FARE.

To treat the possible endogeneity of COMP in Eq. 2.2, it is necessary
that X3 contains at least one exogenous variable that is not in X2. We de-
fine X3=(X2, Z2, Z3), where Z2 and Z3 are instruments as defined below.
As shown by Wooldridge, 2010,14 to implement a CFA we first estimate the
residuals ê from an OLS regression of COMP on X3, and then coefficients
(β′

2, α3) are estimated from a probit of NOR on X2, COMP, and ê. A test for
the endogeneity of COMP in Eq. 2.2 is given by the t-ratio of the estimated
coefficient of ê.15 The null hypothesis is that there is no endogeneity. If the
coefficient is statistically significant, we can reject the null and obtain valid
estimates of the coefficients with the CFA. On the contrary, probit estimates
from Eq. 2.2 without ê are valid.

Wooldridge, 2010 shows that the estimated coefficients (β̂2, α̂3) from the
probit model including ê need to be scaled by a factor ψ = 1√

1−ρ2
), where

ρ represents the correlation between u and e. However, 1
1−ρ2 = 1 + α̂4 · τ2,

where α̂4 is the estimated coefficient of ê in the probit model and τ2 is the
variance of ê.16

In order to control for the possible endogeneity of COMP and NOR in
Eq. 2.1 we implement a second CFA, where ê is included in Eq. 2.1 to con-
trol for the endogeneity of COMP. Regarding the endogeneity of NOR, we
adopt the control function approach as explained by Wooldridge, 2015.17 It

14The complete procedure is shown in Wooldridge, 2010, section 15.7.2.
15See Wooldridge, 2010, p. 587.
16See Wooldridge, 2010, pp. 586-588.
17The complete procedure is shown at pages 427-428.
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involves a first stage where we estimate the probit model in Eq. 2.2, including
ê, where X2 = (X1, Z1). Z1 is another instrument defined below. We obtain
the generalized residuals r̂ = [NOR · λ · (X2 · β̂′

2 + α3 ·COMP + α̂4 · ê)− (1−
NOR) · λ · [−(X2 · β̂′

2 + α3 · COMP + α̂4 · ê)]], where λ is the well-known in-

verse Mills ratio (Heckman (1979); that is, λ =
ϕ·(X2·β̂′

2+α3·COMP+α̂4·ê)
Φ·(X2·β̂′

2+α3·COMP+α̂4·ê)
.

Then we run the OLS regression in Eq. 2.1, including r̂ and ê. As with the
first CFA, a simple test of the null hypothesis that NOR (COMP) is exoge-
nous is obtained as the t-ratio on r̂ (ê). If the null cannot be rejected, the
OLS estimates of Eq. 2.1 without either r̂ or ê are valid (the exclusion of one
component is subject to the result of the endogeneity test).

2.3.2 The Data

Our dataset is a panel with 2 years and 512 city-pairs and is built as follows:
we consider all round-trip gateway-to-gateway routes between North Amer-
ica and Europe from January 2017 to December 2018 on a monthly base. Data
on all flights are aggregated to the city-pair level by grouping airports in the
same metropolitan area following multi-airport designations in the Official
Aviation Guide (OAG). Passengers traveling on connecting flights (e.g., from
Milan to Washington, DC with a stop in London) are not included. The data
are related to operating carriers only.

Fares are obtained from the OAG Traffic Analyser. The OAG provides
fares charged by airlines on flights on routes worldwide. The OAG Traf-
fic Analyser data consist primarily of Marketing Information Data Trans-
fer (MIDT) data obtained through MIDT’s arrangement with the Travelport
Global Distribution System (GDS) and adjusted with additional data from
other GDS’s.18 Bookings are divided into first class, business class, premium
economy, full economy, and discount economy tickets. Since one of our main
purposes is to determine the impact of LCC operations on route fares and
since LCCs sell predominantly discount economy tickets, we only include

18Data include both fares and bookings and are adjusted to estimate the “true” market
figure. Average monthly fares below $100 are omitted to exclude employee and frequent
flier ticket fares, as well as data errors. In addition, air services on routes with fewer than
3 flights per week are also excluded to increase the reliability of route-specific data. Fares
are expressed per kilometers flown (i.e., as yields) so that they are comparable across routes.
For information on the MIDT dataset, see Devriendt, Derudder, and Witlox, 2006 Devriendt
et al. (2005). Information on the OAG Traffic Analyser can be found at the following web-
site: https://www.oag.com/hubfs/User%20Guides/Traffic%20Analyser/TA-Main-Guide-
July2017.pdf (accessed October 25, 2019). Research papers that have used MIDT and/or
OAG Traffic Analszer data include the following: Delhaye et al. (2017), Scotti and Volta,
2018 and Zou, Oum, and Yu, 2011
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discount economy bookings. Fares are directional (i.e., A-B and B-A are
counted as separate routes) calculated in US dollars and do not include fees
paid for allocating seats, baggage, or priority boarding. Nor do they include
payments for onboard food and drinks, taxes, airports fees and surcharges.
OAG Traffic Analyser uses round-trip data (as well as one-way data) and
divides the round-trip information into directional monthly bookings and
fares, after considering revenue allocation procedures implemented by carri-
ers.

Our dataset includes booking information from US, Canadian and Euro-
pean airlines serving the North Atlantic market. The dataset differentiates
our contribution from the existing literature. Data from existing studies are
generally derived from US DOT DB1B data. This dataset excludes opera-
tions by non-US carriers, except for codeshare tickets. Therefore, key airlines
operating on North Atlantic routes, such as Norwegian and Emirates, are ex-
cluded from previous studies. Our dataset consists of 6,288 month-city-pair
observations over the period 2017-18.

2.3.3 Variables and Descriptive Statistics

All the variables included in Eq. 2.1 are shown below:

log FAREjt = β0 + β1 · DISTjt + β2 · ALLjt + β3 · 2018t+

+ α1 · COMPjt + α2 · NORjt + α4 · êjt + η · r̂jt + mt + µj + vjt

(2.4)

In the above equation, r̂jt is the control function variable for the possible
endogeneity of NOR and ˆejt is the control function variable for the endogene-
ity of COMP. X1 in Eq. 2.1 includes the route length (DIST, the distance
between the two endpoints of the city-pair measured by flown kilometers
and transformed to logarithms)19 , a dummy variable equal to 1 if in period
t there are at least two carriers from the same alliance in a city-pair mar-
ket, capturing carrier cooperation through alliances (ALL), a year fixed effect
(2018), and monthly fixed effects (mt), where t indicates the month. We also
include city-pair fixed effects (µj), where j is the city-pair. The city-pair fixed
effects capture time-invariant factors that may affect fares on a route, and
other unobserved variables including airport congestion measures and the

19We adopt the city-pair definition as defined by OAG. Therefore, for routes that involve
cities with multiple airports, this variable varies according to the number of flights operated
at the different airports.



14 Chapter 2. Airline Competition and LCCs in the North Atlantic Market

intensity of business activities. We consider two specifications for the degree
of competition COMP: TOTCOMP, the number of operating carriers in the
city-pair (as in Brueckner and Singer, 2019, and Calzaretta Jr, Eilat, and Israel,
2017), and HHI (not shown in Eq. 2.4, the Hirschman-Herfindahl concentra-
tion index. HHI is based on market shares for gateway-to-gateway routes
using seats as market outputs. Since the city-pairs identify our markets, we
exploit heterogeneity across North Atlantic markets to estimate, through Eq.
2.4, the impact of our two main variables of interest; that is, variables for
Norwegian and alliance operations. We focus on route-level market prices
and not on the fares charged by individual airlines. As a result, we collapse
fares charged by operating carriers on a city-pair and calculate the monthly
mean fare for all airlines on a route.

Eq. 2.2 is a probit regression, where X2 includes X1 and Z1, the instrument
for NOR in Eq. 2.1. The latter is HUBOD, a dummy variable equal to 1 if at
both endpoints there are hub airports. In order to be a good instrument for
NOR, HUBOD must satisfy two requirements: (1) it must be correlated with
NOR; (2) must not be correlated with error v in Eq. 2.1. Regarding the first
condition, the number of operating carriers at a hub airport is very likely to
be lower than at a non-hub airport. The operating carrier that uses the airport
as a hub tends to occupy the majority of available slots. Furthermore, at a hub
airport, slots are often scarce and are allocated according to the “grandfather”
rule;20 therefore, it is very difficult for new entrants, such as Norwegian, to
obtain slots.21 Hence, HUBOD should be an important determinant of NOR
(with negative impact), satisfying the first condition.

Regarding the second condition, it is necessary to consider whether an in-
crease in unobserved determinants of FARE (which are included in the error
term v) might affect HUBOD. Main factors affecting fares are market size,
the composition of business activities at the origin and destination, tourist
flows, the fuel price, the location of the airport, and the degree of competi-
tion. With X1, we control for most of these factors. Remaining factors may
be captured by the fixed effects and month effects variables. The remaining
time-varying unobserved factors that may affect FARE are not likely to in-
fluence Norwegian’s participation decision in a market, so that the second
condition is also fulfilled. Hence, the estimated probit equation is as follows:

20Slot holders are permitted to maintain slots as long as they are used.
21Bilotkach and Hüschelrath, 2013 show that routes between hubs are a deterrent for new

entrants, including low-cost carriers, such as Norwegian.



2.3. Model and Data 15

NORjt = ρ0 + ρ1 · DIST + ρ2 · ALLjt + ρ3 · COMPjt + ω1 · HUBODj+

+ êjt + mt + ujt

(2.5)

Moving to Eq. 2.3, X3 includes X2 and Z2, Z3, the two instruments em-
ployed to treat the possible endogeneity of COMP on NOR. They are given
by the estimated number of seats on a city-pair, considering the 25th and the
75th quantiles of the seats’ distribution. Available seats on a flight are the
output of a long-run decision, planned by an airline prior to the observed
month (i.e., flight schedules are usually fixed for a season and disclosed at
least one season in advance). Inspired by Berry and Jia, 2010, those instru-
ments are used because the 25th and the 75th quantiles are nonlinear func-
tion of exogenous city-pair characteristics (i.e., they are not correlated with
the error component u). Moreover, they are clearly related to the number
of competitors on a city-pair, since the larger the volume of available seats
(i.e., the greater is the market size), the greater the number of operating car-
riers, holding the exogenous variables fixed. Therefore, the first requirement
(correlation between COMP and the fitted quantiles of seats distribution) is
satisfied. Hence, all the variables included in the estimation of Eq. 2.3 are
shown below:

COMPjt = π0 + π1 · DIST + π2 · ALLjt + π3 · 2018t + ω1 · HUBODj+

+ ω2 · ˆQUANT25jt + ω3 · ˆQUANT75jt + mt + µj + ejt

(2.6)

where the two instruments ˆQUANT25jt, ˆQUANT75jt are the fitted values
obtained by estimating the following quantile regression:

QUANTjt = θ0 + θ1 · DIST + θ2 · ALLPRESjt + θ3 · OLINKSjt + θ4 · DLINKSjt+

+ θ5 · POPjt + θ6 · GDPjt + θ7 · TOURISMjt + θ8 · 2018t+

+ θ9 · ONESTOPjt + mt + ϕjt

(2.7)

where ALLPRES is a dummy variable equal to 1 if at least one operating
carrier in city-pair i belongs to an alliance, OLINKS is the number of direct
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connections at the origin, DLINKS is the number of direct connections at
the destination, POP is the product of the two endpoints’ population, GDP
is the product of the two endpoints’ income per capita, and TOURISM is
the tourist flow in the city-pair and is the product of the tourist flows at the
endpoints.22 POP, GDP and TOURISM are logged. Finally, ONESTOP is a
dummy variable indicating whether the city-pair is also connected through
a one-stop flight, and the variable ϕjt is the error term.

Using CFA, standard errors may be underestimated, leading to inflated
t-statistics. In this case, the standard errors can be adjusted by implement-
ing a bootstrap procedure. As a result, we implement a bootstrap method
with 10,000 replications.23 Given the nature of our data, we implement a
bootstrap procedure by time blocks, resampling routes without resampling
months or pairs of route-months to keep the time series properties of the
observations.24 Equation 2.4 is estimated using a panel data approach. We
implement a Hausman test to determine whether fixed or random effects
should be applied. Moreover, standard errors are always clustered at the
route level. We test the validity of our model using the Hansen J-test.

Table 2.1 presents descriptive statistics for the variables.

22Tourist flows at the local level are extracted from Statistics Canada, Tourism Industry
Association of Canada, Visa Canada, the U.S. Department of Commerce’s Office of Travel
and Tourism Industry, and the Tourism Statistics of the European Commission. When not
directly available from these sources, additional data from web searches are used to complete
the picture.

23See a formal treatment of the procedure in Wooldridge, 2010, section 19.6.2.
24The Stata command "vce(bootstrap)" as well as the use of the option "cluster(route)" can

account for the specific characteristics of the panel data and bootstrap by time blocks.
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TABLE 2.1: Summary Statistics for the Data Set

Variable Mean Std. Dev. Min Max Description

FARE 0.04 0.01 0.01 0.16 Average fare per kilometer in discount economy class ($)
TOTCOMP 1.83 1.22 1 8 Number of operating carriers on a city-pair
HHI 7,545 2,884 1,213 10,000 Herfindahl-Hirschman Index on a city-pair
ALL 0.19 0.39 0 1 At least two airlines of the same alliance on the city-pair
ALLPRES 0.88 0.33 0 1 At least one carrier belonging to an alliance on the city-pair
NOR 0.17 0.37 0 1 Norwegian presence on the city-pair
DIST 6,874 1,372 3,714 11,029 Average route distance
TOURISM 40,151 47,128 141 274,108 Product of the two endpoints’ tourist arrivals (bln.)
POP 11,458 23,338 1.75 193,493 Product of the two endpoints’ population (bln.)
GDP 2,382 1,301 139 12,730 Product of the two endpoints’ income per capita (mln. $)
OLINKS 12.41 11.38 1 42 Number of direct connections at the origin
DLINKS 12.07 11.26 1 38 Number of nonstop connections at destination
ONESTOP 0.97 0.17 0 1 If the city pair is also connected through a one-stop flight
HUBOD 0.27 0.45 0 1 If at both endpoints there are hub airports

The average fare per kilometer flown in the discount economy class is
$0.04, with a maximum of $0.16. The standard deviation is about one fourth
of the mean. The mean number of operating carriers on a route is 1.83, with a
maximum of 8 competitors on a city-pair. The average city-pair HHI is quite
high at 7,545 since many of the city-pair routes are monopolies (with an HHI
of 10,000). On average, 19% of the city-pairs have at least two airlines of
the same alliance (ALL), while on 88% of the city-pairs there is at least one
carrier belonging to an alliance (ALLPRES). Norwegian operates on about
17% of city-pairs in the North Atlantic market, including city-pairs where
it is a monopolist. The average route distance is 6,874 kilometers with the
longest route equal to 11,029 km. The average product of tourist arrivals in
the city-pair (TOURISM) is about 40 million, the average product of the two
endpoints’ population (POP) is about 11 billion, the average product of per
capita income (GDP) is $2.4 billion. At the city of origin there are on average
12.4 nonstop connections (OLINKS), while at the destination city there are
12.07 (DLINKS). On about 97% of city-pairs, there are possible one-stop
connections (ONESTOP). About 27% of the city-pairs have hub airports at
both endpoints (HUBOD). (Table 2.7 in the Appendix reports the list of hub
airports.)

North Atlantic routes exhibit high monthly variability in market struc-
ture, as shown in Figure 2.1. The plurality of routes are monopolies, with
about 80 monopoly routes operating during the winter period and more than
200 monopoly routes during the peak demand period in the summer. The re-
maining routes are split about evenly between duopolies and routes with 3
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or more operating carriers (there are additional airlines that market tickets
on the routes and code share with operating carriers). There are about 50
routes in each of these categories during the winter period and 90 during
the summer. Our primary analysis uses monthly observations, but we repli-
cate our study with quarterly data to provide results comparable to previous
studies.25
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FIGURE 2.1: Number of Nonstop City-pairs by Competitors
and Month on the North Atlantic

25Previous studies are based on quarterly data since they use the US DOT DB1B database.
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2.4 Results

In this section we present the empirical results of our econometric model
to estimate the impact of alliances and Norwegian’s presence on airfares in
North Atlantic markets. As a first step we show the results of the regression
to estimate Eq. 2.7 to obtain the fitted value of the seats quantile regressions,
i.e., ˆQUANT25jt, ˆQUANT75jt, which are used as instruments for COMP in
Eq. 2.6. Table 2.2 shows the estimated coefficients.

TABLE 2.2: Seat Quantiles Estimates

Dependent variable: SEATS

(2)
QUANT25

(3)
QUANT75

ALLPRES 2786.4*** 2820.0***
(38.05) (6.54)

OLINKS 112.8*** 720.8***
(12.74) (24.32)

DLINKS 124.9*** 900.2***
(12.92) (25.84)

POP 145.2*** -491.9***
(3.66) (-5.54)

GDP 1339.6*** 3078.5***
(15.74) (14.79)

TOURISM 1060.0*** 2541.7***
(20.04) (20.96)

ONESTOP -1271.8*** -5100.9***
(-3.97) (-11.92)

DIST 107.9*** 869.6***
(4.32) (13.90)

2018 186.7+ 757.0***
(1.95) (3.38)

Constant -45198.7*** -86673.2***
(-25.30) (-18.13)

Monthly dummies
Observations 6,288 6,288
R-squared 0.09 0.24

Robust t statistics in parentheses
Legend: + = p <0.1; * = p <0.05; ** = p <0.01; *** = p <0.001

Both the 25th and 75th seat quantiles on a route are increasing in income
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per capita (GDP), tourist flows (TOURISM), route distance (DIST), nonstop
connections at the origin (OLINKS), nonstop connections at the destination
(DLINKS), and the presence of at least one carrier belonging to an alliance.
Both seat quantile values are negatively related to the presence of one-stop
connections (ONESTOP) and are higher in 2018 compared to 2017. The 25th
quantile is increasing in population (POP) while the 75th quantile is decreas-
ing in the same variable.

The first stage OLS results from Eq. 2.6 are shown in Table 2.3. Column
(2) has the number of competitor (TOTCOMP) as dependent variable while
Column (3) has the HHI.

TABLE 2.3: First-Step CFA Estimates for Treating COMP Endo-
geneity

Dependent variable: COMP

(2)
TOTCOMP

(3)
HHI

ALL 0.523*** -1735.2***
(19.38) (-22.27)

DIST 0.0546*** -106.8***
(11.88) (-7.46)

2018 -0.0822*** 281.5***
(-5.20) (6.32)

HUBOD 0.530*** -2045.7***
(5.26) (-4.99)

ˆQUANT25 0.000103*** -0.655***
(5.77) (-9.58)

ˆQUANT75 0.0000214*** 0.0241*
(5.22) (2.11)

Constant -0.359*** 14021.2***
(-4.15) (51.64)

Monthly dummies
Observations 6,288 6,288
R-squared 0.89 0.92

Robust t statistics in parentheses
Legend: + = p < 0.1; * = p < 0.05; ** = p < 0.01; *** = p < 0.001

All coefficients are statistically significant, with an R2 of 0.89 (0.91 when
HHI is dependent variable), inferring that the regression well describes the
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level of competition on a route. In general, a positive coefficient for a vari-
able in the regression on TOTCOMP and a negative coefficient for a vari-
able in the regression on HHI implies that the variable is associated with
greater competition. The coefficients for ALL indicate that markets where
two or more airlines belong to the same alliance are markets with greater
overall competition. We also find that there is greater competition on longer
routes, while in 2018 the level of competition seems to be lower compared to
2017. HUBOD is associated with greater competition positive. ˆQUANT25
is also associated with greater competition, while we get mixed results for

ˆQUANT75. Next, we present the results of the first CFA, implemented to
estimate Norwegian’s participation on a city-pair: we compute êjt from the
OLS results shown in Table 2.3, include it in Eq. 2.5, and then present the
probit estimates of the second stage Norwegian participation decision; that
is, Eq. 2.5, shown in Table 2.4.

TABLE 2.4: Probit Estimates for Norwegian Route Participation

Dependent variable: NOR
(2) (3)

TOTCOMP 0.0814*
(2.20)

HHI -0.0000092
(-0.52)

ALL 0.559*** 0.602***
(8.23) (7.66)

DIST 0.0891*** 0.0953***
(5.92) (6.45)

2018 0.713*** 0.686***
(11.94) (11.72)

HUBOD -0.856*** -0.625***
(-11.87) (-9.59)
0.429*** -0.000145***

(9.17) (-6.80)
Constant -1.912*** -1.740***

(-13.35) (-7.92)

Monthly dummies
Observations 6,288 6,288
Log likelihood -2,384.88 -2,507.32

Robust t statistics in parentheses
Legend: + = p < 0.1; * = p < 0.05; ** = p < 0.01; *** = p < 0.001
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Column (2) in Table 2.4 reports the results when TOTCOMP is included
in the estimation, and Column (3) uses HHI as the competition variable.
We find mixed results regarding the impact of route competition on Nor-
wegian’s route operating decision. The estimated coefficient for TOTCOMP
is +0.08 (and significant), suggesting that Norwegian operates on routes with
greater competition; however, the coefficient for HHI not statistically signif-
icant. Other results indicate that the probability of Norwegian operating on
a route increases with route distance, there was greater probability of Nor-
wegian operating in 2018 than in 2017, and Norwegian tends not to operate
routes where both endpoints are hub airports, but it does operate on routes
where alliance-affiliated carriers are present. The estimated coefficient for
the control function variable ê is positive and statistically significant in both
models in the table. This implies that route competition is endogenous to
the Norwegian participation decision. Having two more variables (Z2, Z3)
in the equation which generates ê ensures that it has separate variation from
(X2, COMP).26

Moving to the air fares analysis, Figure 2.2 presents descriptive evidence
on the impact of number of competitors on North Atlantic fares. It shows
monthly fare per kilometer flown on monopoly routes (#1), duopoly routes
(#2) and on routes where 3 or more airlines operate (#>=3). It is evident that
average monthly fares are higher on monopoly routes than on routes with at
least two competitors. However, a regression must be estimated to account
for other factors that may be influencing fares.

26Monthly dummies were also included in the model, but not reported due to space con-
siderations.
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FIGURE 2.2: Fares on North Atlantic City-pairs as Function of
Number of Competitors

The results from our North Atlantic fare regression (Eq. 2.4) on gateway-
to-gateway routes are shown in Table 2.5.27 Columns (2)-(4) in Table 2.5 in-
clude TOTCOMP as the variable measuring degree of competition, while
Columns (5)-(7) use HHI. Column (2) presents the OLS results without con-
sidering TOTCOMP as endogenous. Column (3) presents the CFA results
considering only TOTCOMP as endogenous, while Column (4) provides
the CFA results considering both TOTCOMP and NOR as endogenous. In
Columns (5)-(7) we replicate the sequence of estimations using HHI.

27Using the Wooldridge (2002) test in Stata, we test whether to adopt a fixed or random
effects panel data model, with the results suggesting we use a fixed effects model.
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TABLE 2.5: Fare Estimates from Different Specifications –
Monthly Data

Dependent variable: LFARE

(2)
OLS

(3)
CFA

(4)
2-CFA

(5)
OLS

(6)
CFA

(7)
2-CFA

TOTCOMP -0.0152* -0.0805* -0.0592*
(-2.03) (-2.37) (-2.52)

HHI 0.00000683 0.0000303+ 0.0000344*
(1.61) (1.90) (2.42)

ALL 0.0125 0.0484* 0.0458* -0.0119 0.0595+ 0.0893*
(0.89) (2.11) (2.06) (-0.48) (1.84) (2.39)

NOR -0.0443* -0.0485* -0.0772 -0.0727** -0.0519* -0.0893
(-2.16) (-2.26) (-1.26) (-2.91) (-2.51) (-1.21)

DIST 0.00179 0.00467 0.00478 0.00151 0.00343 0.00704+
(0.62) (1.40) (1.38) (0.26) (1.05) (1.77)

2018 0.0136 0.00820 0.0149 0.0110 0.00909 0.0183
(1.54) (0.90) (1.22) (0.66) (0.96) (1.40)

0.0698* 0.0512* -0.0000289+ -0.0000341*
(2.02) (2.03) (-1.82) (-2.34)

0.0173 0.0223
(0.50) (0.55)

Constant -3.271*** -3.187*** -3.214*** -3.326*** -3.554*** -3.598***
(-148.90) (-67.94) (-91.03) (-61.85) (-24.90) (-27.42)

Monthly dummies
Observations 6,288 6,288 6,288 6,288 6,288 6,288
R-squared (within) 0.21 0.21 0.21 0.08 0.21 0.21

TEST

TOTCOMP + ALL = 0 p = 0.1280

TOTCOMP + NOR = 0 p = 0.0009

TOTCOMP + NOR + ALL = 0 p = 0.0044

Robust t statistics in parentheses
Legend: + = p < 0.1; * = p < 0.05; ** = p < 0.01; *** = p < 0.001

Table 2.5 shows that the estimated coefficients of COMP become signif-
icant when endogeneity is properly considered. As shown in Column (3),
with TOTCOMP measuring the degree of competition, an increase in the
number of competitors has a -8.1% effect on airfares on a North Atlantic
route, while the presence of alliances has a 4.8% upward effect. Norwegian
generates 4.9% lower air fares. The control function variableêhas a significant
coefficient, confirming that TOTCOMP can be considered to be endogenous
in Eq. 2.4, and that ê has separate variation from (X1, TOTCOMP,NOR). On
the contrary, Column (4) shows that the estimated coefficient of the control
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function variable r̂ is not statistically significant. Hence, we cannot reject the
null hypothesis that NOR is exogenous in Eq. 2.4, and this implies that the
results obtained without including r̂ are not biased (i.e., the results shown in
Column (3). Therefore, the results in Column (3) may be used to assess our
research questions.28

With respect to the other variables in the fare equation, there is no signif-
icant effect from route distance since this impact is likely already captured
by the city-pair effects. Airfares are not significantly different in year 2018
compared to 2017.

Column (6) presents the results using HHI as a proxy for the degree of
competition. The estimated coefficient is positive and significant and implies
that a 100-point increase in HHI, (i.e., a reduction in the degree of compe-
tition) generates a 0.3% increase in airfares. The presence of two carriers in
an alliance on a route (ALL) increases fares by 6%, while Norwegian’s pres-
ence on a route is associate with 5.2% lower ticket prices. Again, there is no
effect of distance on airfares, nor of 2018 compared to 2017. As before, ê has
an estimated coefficient significantly different from 0, implying that HHI is
endogenous in Eq. 2.4; on the contrary, r̂ in Column (7) is not statistically sig-
nificant and so, as before, estimates shown in Column (6), obtained without
considering the control variable r̂ are not biased.29 The combined coefficients
for the variables TOTCOMP, ALL, and NOR (i.e., α̂1, β̂2, and α̂2) allow us to
analyze the effects of entry on a North Atlantic route.30 If an alliance car-
rier enters a route, the additional competitor generates the following effect
on air fares: since we have a log-linear equation, the estimated percentage
impact is computed as (e(α̂1+β̂2) − 1) ·100. Hence, an additional alliance com-
petitor (bringing the number of alliance competitors on a route to 2) would
reduce fares by 3.2%. The entry effect (from an additional competitor) is
partially offset if the entrant belongs to an alliance already operating on the
route. However, as shown at the bottom of Table 2.5, the null hypothesis,
H0 : α̂1 + β̂2 = 0, cannot be rejected, implying that the combined effect of
the two relevant coefficients is not significantly different from zero. On the

28The J index to apply the Hansen J-test to check if our model is overidentified is equal
to 0.26, with p-value equal to 0.61. Hence, our model is not overidentified. We compute the
J index as follows: the residuals v̂ are obtained from Column (3), and regressed with ALL,
NOR, DIST, 2018, ê, m, µ, ˆQUANT25 and ˆQUANT75 as explanatory variables. Second, we
calculate the F-test of whether the coefficients of ˆQUANT25 and ˆQUANT75 are 0; last J =
2×F. The first-stage F-statistic to test the relevance of instruments is equal to 157.2.

29The J index to apply the Hansen J-test to check if our model is overidentified is equal
to 0.13, with p-value equal to 0.73. The first-stage F-statistics to test the relevance of instru-
ments is equal to 123.6.

30We are grateful to an anonymous referee for suggesting this point.
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other hand, if the entrant is Norwegian, the estimated effect on air fares is
-12.1%. The results at the bottom of Table 2.5 shows that the null hypothesis,
H0 : α̂1 + α̂2 = 0, can be rejected (p-value 0.005), implying that Norwegian’s
entry leads to reduced fares on a route. Finally, we test the effect of the si-
multaneous entries of an alliance airline and Norwegian on a route. In this
case, we have two new competitors, and the estimated total effect is -14.9%.
Since we can reject the null H0 : α̂1 + α̂2 + β̂2 = 0, this combined entry has
significant impact on airfares. This implies that if Norwegian and an alliance
competitor both enter a city-pair, the airlines behave competitively, generat-
ing a robust decrease in air fares.

To better compare our results with previous studies, we also estimate our
model using quarterly data. The results are shown in Table 2.6. Column
(2) reports the OLS estimates, while Columns (3)-(4) show the CFA results,
when TOTCOMP is adopted as proxy for total competition. Columns (5)-
(7) present the results when HHI is included in the analysis. An increase in
HHI leads to an increase in airfares. If market concentration on a city-pair
increases by 100 points, airfares increase by 0.4%. while the presence of two
alliance carriers has no significant impact on airfares. Norwegian’s presence
is associated with 5% lower airfares. DIST and 2018 have no significant effect
on fares. In sum, the results are similar to our estimates using monthly data,
but from quarterly data we cannot identify a positive effect of alliances on
North Atlantic nonstop airfares.
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TABLE 2.6: Fare Estimates from Different Specifications – Quar-
terly Data

Dependent variable: LFARE

(2)
OLS

(3)
CFA

(4)
2-CFA

(5)
OLS

(6)
CFA

(7)
2-CFA

TOTCOMP -0.00769 -0.0673+ -0.0286
(-0.78) (-1.66) (-1.00)

HHI 0.00000647 0.0000413+ 0.0000248
(1.48) (1.90) (1.41)

ALL -0.0344 0.0182 0.00554 -0.0232 0.0389 0.0409
(-1.44) (0.88) (0.25) (-0.96) (1.37) (1.05)

NOR -0.0920*** -0.0462* -0.0345 -0.0903*** -0.0496* -0.0390
(-3.86) (-2.17) (-1.11) (-3.73) (-2.21) (-1.17)

DIST -0.000143 0.00571 0.00373 0.000781 0.00738 0.00690
(-0.02) (1.46) (1.04) (0.14) (1.61) (1.45)

2018 0.0105 0.0129 0.0146 0.0105 0.0101 0.0155
(0.64) (1.31) (1.41) (0.64) (0.95) (1.50)

0.0533 0.0104 -0.0000395+ -0.0000215
(1.21) (0.36) (-1.82) (-1.23)

-0.0105 -0.00819
(-0.42) (-0.32)

Constant -3.206*** -3.201*** -3.248*** -3.277*** -3.658*** -3.516***
(-73.49) (-55.50) (-86.56) (-61.12) (-18.09) (-20.82)

Quarterly dummies
Observations 2,670 2,670 2,670 2,670 2,670 2,670
R-squared (within) 0.05 0.12 0.12 0.05 0.12 0.12

TEST

TOTCOMP + ALL = 0 p = 0.0962

TOTCOMP + NOR = 0 p = 0.0137

TOTCOMP + NOR + ALL = 0 p = 0.0086

Robust t statistics in parentheses
Legend: + = p < 0.1; * = p < 0.05; ** = p < 0.01; *** = p < 0.001

Our findings on the impact of Norwegian on airfares can be compared to
the results in Brueckner and Singer, 2019 and Calzaretta Jr, Eilat, and Israel,
2017. These contributions use quarterly data and do not focus on the North
Atlantic market. They show that an LCC presence on a route decreases air
fares by 10-14%. Our estimate using North Atlantic routes and Norwegian
as the LCC shows that its presence leads to fares 5% lower, compared to
routes without Norwegian’s presence. However, our estimations are at the
route level and are related to North Atlantic markets only, while Brueckner
and Singer, 2019 results are at the carrier level (the individual airline price
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elasticity is always at least as great as the market elasticity) and for all routes
outside the US, including shorter routes to Central America, where the LCC
competition is much stronger than between North America and Europe. The
estimated fare effect of Norwegian’s entry onto a North Atlantic route (i.e.,
the impact of an additional LCC competitor, Norwegian) is significant (see
bottom of Table 2.6) and equal to -10.7%.

Our estimates can also be compared to findings from studies investigating
the effect of LCCs on ticket price. The literature on this topic has focused on
domestic markets (US) or intra-continental routes (mainly Eastern-Southern
Asia). As shown by Kwoka, Hearle, and Alepin, 2016, there is evidence that
LCCs generate fares 20% or more below the network carriers in the US. Wang,
Zhang, and Zhang, 2018 find that in China and India, fares on routes with
an LCC presence are 2% and 12% (respectively) lower than on comparable
routes. With our long-haul route database, we find a fare impact lower in
magnitude to the reductions found in shorter-haul markets. This result is to
be expected since the relative cost advantage for LCCs on long-haul routes is
likely to be lower than on shorter-haul routes.

2.5 Discussion and Conclusions

The OSAs between the EU and the US and between the EU and Canada
opened the North Atlantic to greater competition, including from long-haul
low-cost carriers. However, the agreements also allowed alliance carriers
more latitude to jointly set fares and schedules. Our results indicate that the
presence of the largest transatlantic LCC, Norwegian Airlines, on a route is
associated with lower airfares (about 5%) after controlling for the other fac-
tors that may influence fares. After controlling for route characteristics and
for the level of competition on a route, Norwegian’s presence is associated
with fares significantly lower from those found on other routes. However,
we find a lower fare reduction effect for the long-haul routes in our dataset
compared to the impacts found in most prior research that used datasets with
shorter-haul routes.

The alliance results indicate that when two or more carriers from the same
alliance operate on a route, fares are higher (about 5% for monthly estimates)
than they would be otherwise. Our monthly-based alliance results are similar
to those found by Brueckner and Singer, 2019 and may indicate that alliance
partners refrain from actively competing on price. We also find that adding a
carrier to a nonstop route in the North Atlantic market generates a reduction
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of about 8% in airfares, similar in sign but with higher magnitude (almost
double) to the impact estimated by Brueckner and Singer, 2019, Calzaretta Jr,
Eilat, and Israel, 2017, Gillespie and Richard, 2012, and Brueckner, 2003. This
prior research, however, did not focus on North Atlantic markets. Finally, we
show that carrier entry on a North Atlantic route does not necessarily lead
to lower airfares. If the entry is from an alliance airline on a route already
served by a carrier from the same alliance, then the downward impact of
fares due to entry will be at least partially offset by the upward impact from
having two carriers from the same alliance operating on a route.

Our results provide information to policymakers and regulators as they
assess the value of the North Atlantic OSAs. Clearly, opening a market to
increased competition can have potential benefits to consumers. Compet-
itive markets, on average, have lower fares than monopoly markets. These
insights are confirmed by our results and highlight the importance of compe-
tition and entry on long-haul nonstop routes. A higher number of competi-
tors leads to fare reductions. On North Atlantic routes, competition may be
enhanced (for example) through slot allocation at congested airports. More-
over, based on our results, it may be appropriate for policymakers to monitor
the activities of alliances, as they are associated with higher fares in gateway-
to-gateway markets; on top of this, entry from an alliance carrier may have
limited downward impact on fares. Finally, despite the inherent difficulties
of LCCs to successfully operate in long-haul markets, their presence may
lead to lower fares. As we find, routes operated by the main long-haul LCC,
Norwegian, have fares significantly lower than comparable routes without
LCC competition. However, Norwegian’s fare impact is lower than the im-
pacts of LCCs observed on medium/short-haul routes (mainly domestic or
intra-continental), probably due to narrower cost advantages for LCCs on
long-haul routes (compared to network carrier costs).

This paper analyzes GTG flights and does not consider the effects of LCCs
operating in the North Atlantic long-haul markets on connecting flights. More-
over, our analysis is restricted to the North Atlantic market. Finally, we do
not specifically control for joint ventures or other features of alliances. On
the other hand, previous work is restricted to US carrier data or to airlines
operating code-share flights with US carriers. We use a dataset that also in-
cludes fares from European and Canadian carriers, so may provide a broader
analysis of fare impacts than in previous studies. The dataset used for this
paper allows for the extension of the analysis to connecting flights. We leave
this analysis for future research.
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2.6 Appendix A

TABLE 2.7: List of Hub Airports

Region Code Airport Code City Name

US ATL Atlanta
US CLT Charlotte
US DEN Denver
US DFW Dallas
US DTW Detroit
US EWR Newark
US IAD Washington DC
US IAH Houston
US JFK New York
US LAX Los Angeles
US MIA Miami
US MSP Minneapolis/St Paul
US ORD Chicago
US PHL Philadelphia
US PHX Phoenix
US SEA Seattle
US SFO San Francisco
CA YUL Montreal
CA YVR Vancouver
CA YYC Calgary
CA YYZ Toronto
EU AMS Amsterdam
EU CDG Paris
EU FCO Rome
EU FRA Frankfurt
EU IST Istanbul
EU LHR London
EU MAD Madrid
EU MUC Munich
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Chapter 3

Airline Strategies During the
Pandemic: What Worked?

3.1 Introduction 1

Although it has become a cliché to describe events during the Covid-19 pan-
demic as “unprecedented”, the term may aptly be applied to the collapse in
traffic realized by airlines and the resultant loss in revenues. U.S. airlines
experienced an expected loss of $35 Billion in 2020,2 while worldwide air-
lines were expected to lose $157 Billion.3 According to estimates from the
U.S. Federal Aviation Administration (FAA),4 total passenger enplanements
across all the 446 commercial service airports in the U.S. dropped by more
than 60% from 935 million in 2019 to 368 million in 2020. The decline in pas-
senger demand caused airlines to discount airline tickets. On U.S. domestic
routes, average airfares fell by more than 18% from $359 in 2019 to $292 in
2020, the lowest level since 1995 after adjusting for inflation.5

To improve their cash positions, airlines engaged in strategies to reduce
costs and increase cash flow. To reduce costs, airlines grounded aircraft, re-
tired older fleets, lobbied governments for tax relief and labor subsidies, laid
off staff and provided employees with incentives for early retirements. To
generate cash, airlines repositioned aircraft from business-oriented routes to

1This Chapter is based on a joint work with Martin Dresner, and Li Zou. The paper has
been submitted to the Transportation Research Part A, and it is currently at the second round
of review.

2https://www.cnbc.com/2021/01/01/us-airline-2-losses-expected-to-top-35-billion-in-
dismal-2020-from-pandemic.html, accessed June 7, 2021.

3https://www.cnn.com/2020/11/24/business/iata-airlines-coronavirus/index.html,
accessed June 7, 2021.

4https://www.faa.gov/airports/planning_capacity/passenger_allcargo_stats/passenger/,
accessed October 4, 2021.

5https://www.bts.gov/newsroom/average-air-fares-dropped-all-time-low-2020, ac-
cessed October 4, 2021.
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(the less impacted) leisure routes, cut prices, converted aircraft to cargo oper-
ations, offered promotional deals including complementary Covid-19 travel
insurance, and lobbied governments for loans, equity investments, and di-
rect aid (Adrienne, Budd, and Ison, 2020; Albers and Rundshagen, 2020;
Bombelli, 2020; Czerny et al., 2021; Wenzel, Stanske, and Lieberman, 2020;
Tay et al., 2020). In addition, airlines sought to generate demand by reas-
suring passengers of increased safety-related procedures; for example, by
changing boarding processes (e.g., boarding from back to front of aircraft),
improving the cleaning regimen between flights, mandating facemasks, and
leaving the middle seats open to increase social distances (Barnett and Flem-
ing, 2020; Dube, Nhamo, and Chikodzi, 2021; Li, 2020; Milne, Delcea, and
Cotfas, 2021). Moreover, when the Covid-19 vaccine became available, many
airlines required staff to be vaccinated and proof of vaccine to be provided
by the traveling public.6

Did the pandemic-induced strategies work? For this paper, we use U.S.
data to assess the impact of the strategies on airline performance. We review
several of the pandemic strategies at the airline level and then examine the
middle seat blocking strategy at the more micro, route level. Blocking mid-
dle seats may decrease passenger load factors but should be offset by higher
yields. If both load factors and yields fall for the airlines with middle seats
blocked, this would be an indication that the strategy is not successful from
the financial consideration. However, if the higher yields produce sufficient
revenues to offset the lower load factors, then the strategy may be considered
successful.

In conducting this research, we make use of the differences in strategies
undertaken by U.S. airlines. Most notably, airlines exhibited considerable
variation in their middle-seat blocking strategies. Delta Air Lines made the
greatest use of this strategy, blocking middle seats from April 2020 to April
2021, when it finally rescinded the policy. On the other hand, United Air-
lines never implemented the policy, while American Airlines implemented
the policy for a shorter period, from April 2020 through June 2020. We exam-
ine how the middle-seat blocking policy may have benefited or cost Delta,
along with the other U.S. airlines that engaged in this strategy.

Our major results show that the middle seat blocking strategy did lead to
lower load factors, with a decrease of about 4.75 percentage points when

6See Bielecki et al., 2020 for a full review of preflight and in-flight measures taken by
the major airlines worldwide to mitigate the potential virus transmission among passengers
traveling during the pandemic period.
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middle seats were blocked (although, if the blocked middle seats are ex-
cluded from the seat total, the “effective load factor” actually increased by
12.28 percentage points). The middle seat blocking strategy also did not
contribute to higher yields suggesting that the strategy may not have been
effective at getting passengers to pay extra for the safety associated with the
blocked middle seat. Yields were lower by $0.026 per revenue-passenger mile
when the middle seats were blocked. Finally, airlines blocking middle seats
operated routes with higher seat shares of about 2.1% and higher passenger
shares of 7.93%. Based on a mean plane size of 168 seats, a mean load fac-
tor of 53%, a mean yield of $0.12/revenue-passenger mile, and a mean route
distance of 1,119 miles, the blocking of the middle seat on average resulted
in decreased revenues of about $3,300 per flight.7

Although the middle seat-blocking strategy may have conferred longer-term
benefits to airlines, such as the perception of better safety or quality, in the
short run, the strategy appears to have resulted in revenue losses. Therefore,
it is not surprising that some airlines never instituted the policy, while others
quickly rescinded the policy after implementation.8

This paper contributes to the growing literature on how the Covid-19 pan-
demic impacted airline operations. Prior research describes how the pan-
demic has negatively affected the airline industry through decreased de-
mand and lower revenues (e.g., Czerny et al., 2021; Iacus et al., 2020; Suau-
Sanchez, Voltes-Dorta, and Cugueró-Escofet, 2020; Tay et al., 2020), led to

7These means are based on operations without middle seats blocked. As noted, load
factors fell, and yields increased when middle seats were blocked.
Calculations are as follows:

WITHOUT MIDDLE SEAT BLOCKING:
168 seats X 0.53 pax/seat = 89 pax/flight
$0.115/m X 1,119 m = $129/pax
Revenue = 89 pax/flight X $129/pax = $11,481/flight

WITH MIDDLE SEAT BLOCKING:
168 seats X 0.48 pax/seat = 81 pax/flight
$0.09/m X 1,119 m = $101/pax
Revenue = 81pax X $101/pax = $8,181/flight

NET REVENUE FROM MIDDLE SEAT BLOCKING = $8,181– $11,481 = -$3,300/flight
8Our results are consistent with Hyman and Savage, 2021 and Hyman and Savage, 2022

who examined the airfare and market share effects of the middle seat-blocking strategy
adopted by Delta Air Lines. Hyman and Savage (2021 & 2022) do find that there is a posi-
tive willingness to pay from passengers for the blocking of middle seats; that is, yields are
higher when middle seats are blocked. We find lower yields when middle seats are blocked
and when airline-fixed effects are included in the estimation. When we estimate our yield
equation without airline-fixed effects, our results are consistent with Hyman and Savage
(2021 & 2022).
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various “pivot” strategies undertaken by the airlines to respond to the pan-
demic (Adrienne, Budd, and Ison, 2020; Amankwah-Amoah, 2020; Bauer,
Bloch, and Merkert, 2020; Czerny et al., 2021), and resulted in measures un-
dertaken by the airlines to reassure passengers and increase the safety of
operations (Barnett and Fleming, 2020; Dube, Nhamo, and Chikodzi, 2021;
Milne, Delcea, and Cotfas, 2021; Bielecki et al., 2020). Moreover, Hyman and
Savage (2021 & 2022) have examined the impact of the middle seat block-
ing strategy used by Delta Air Lines and Li, 2020 has undertaken a SWOT
(strengths, weaknesses, opportunities, and threats) analysis of the middle
seat blocking strategy. We add to this literature by demonstrating the vari-
ations in strategies undertaken by U.S. carriers in response to the Covid-19
pandemic, and then use a wide sample of routes and carriers to analyze the
impact on carrier operations of the blocking of middle seats.

The rest of the paper is organized as follows. Section 3.2 reviews the
aviation-related pandemic literature. Section 3.2.3 presents an industry-level
descriptive analysis of U.S. airline operations during the pandemic period.
Section 3.4 describes our econometric model and the data used to assess the
performance impact of the middle-seat blocking strategy. Section 3.5 presents
our results. We conclude with a discussion of our results, the limitations of
this research and suggestions for future research projects.

3.2 Literature Review

3.2.1 Covid-19 Impact on Airlines9

The Covid-19 pandemic was first reported in China in January 2020. By April
2020, 17,000 aircraft had been grounded, representing 64% of the world’s
fleet. Airlines were projected to lose hundreds of billions of dollars in rev-
enues during the pandemic as governments issued stay-at-home directives
and restricted international travel (Adrienne, Budd, and Ison, 2020). Between
March 2020 and July 2020, 19 airlines had declared bankruptcy, including
larger, well-established airlines, such as the South American-based carrier,
LATAM, with a fleet of 315 aircraft (Czerny et al., 2021).

Tay et al., 2020 note that airlines have been differentially impacted by the
pandemic. Airlines that have done better (than average) tended to have had

9An excellent summary of the impact of the pandemic on airlines is provided in Sun
et al., 2021
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stronger pre-pandemic balance sheets, operate in countries with large do-
mestic markets (that have been subject to fewer travel restrictions than inter-
national markets), and have benefitted from direct governmental support,
such as labor subsidies, loans and capital injections and/or indirect gov-
ernmental support, such as the waiving of “use-it-or-lose-it” requirements
for airport slots. Airlines specializing in freight transport fared better than
(mainly) passenger airlines. With surging demand for protective equipment,
medical devices, and accelerated online shopping, integrators, such as FedEx
and DHL, were able to perform relatively better than carriers without cargo
operations during the pandemic. According to a report by Boeing (2020),10

Iacus et al., 2020 and Suau-Sanchez, Voltes-Dorta, and Cugueró-Escofet,
2020 compare the impact of Covid-19 on air transport to the impacts from
previous pandemics, including SARS in 2003, the Avian Flu in 2005 and 2013
and MERS in 2015. The authors find that the 2003 SARS pandemic previously
had the most serious effect on aviation. Its impact was mainly in the Asia-
Pacific region, with traffic volumes in that region down about 35% at the
peak of the pandemic. Recovery from the pandemic to pre-outbreak levels
took about 6 months. Gudmundsson, Cattaneo, and Redondi, 2021 estimated
that it would take 2.4 years for the global air passenger traffic to recover from
Covid-19 to pre-pandemic levels, with the forecasted recovery time varying
by region.

3.2.2 Impact of Air Mobility on Viral Spread

The main rationale for direct governmental restrictions on aviation, such as
bans on international flights, is that air travel is believed to contribute to vi-
ral transmission. Gössling, 2020 and Christidis and Christodoulou, 2020, for
example, state that air travel is a vector for the spread of pathogens and dis-
eases, including Covid-19. The risks of viral spread facilitated by air trans-
port have been identified and quantified for previous epidemics; for exam-
ple, with respect to the MERS epidemic in 2015 (Poletto, Boëlle, and Col-
izza, 2016), the Ebola epidemic in 2014 (Bogoch et al., 2015), and the SARS
epidemic in 2003 (Bowen Jr and Laroe, 2006; Gardner, Chughtai, and Mac-
Intyre, 2016). Hosseini et al., 2010 provide empirical evidence that the high
connectivity of global air travel network was a critical factor facilitating the
rapid global spread of the A/H1NA influenza in 2009 and 2010, leading to

10See Boeing’s World Air Cargo Forecast 2020-2039 at
https://www.boeing.com/resources/boeingdotcom/market/assets/downloads/2020_WACF
_PDF_Download.pdf, accessed in Oct. 26, 2021.
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the first pandemic in the 21st century. Moreover, air transport may con-
tribute to higher mortality rates, since it may help spread lethal viral mu-
tations from country to country. Instead of using the traditional geographic
distance between nodes (cities/countries), Brockmann and Helbing, 2013 de-
velop a unique measure called effective distance, which is based on the most
probable path between two nodes in a given air mobility network. The use
of effective distance measurement enables the calculation of arrival times of
a contagion, even without considering epidemiological parameters such as
viral reproduction rate and recovery rate. The authors use their effective dis-
tance measure to simulate the diffusion of the 2009 H1N1 influenza virus and
2003 SARS infections and find that this measure can successfully predict vi-
ral spread and arrival times in the context of a global, air transport mobility
network.

Air travel may be restricted by governments during a pandemic because
the travel mode, itself, may be unsafe due to the transmission of viruses
within the closed quarters of aircraft cabins and airport facilities. Aircrafts
have been described as incubators of respiratory pathogens due to the den-
sity of passengers in cabins (Gössling, 2020). Barnett and Fleming, 2020 seek
to determine the increased risks for infections and mortality due to viral
transmissions among passengers while flying. The authors use stated infec-
tion and mortality data from Covid-19 and a probabilistic model to estimate
the viral risks to a passenger traveling on a two-hour flight. The authors cal-
culate the chance of catching the coronavirus at about 1 in 3,900 if the flight
is full and 1 in 6,400 if the middle seats are left empty.11 Given mortality
rates from the virus, 1 in 710,000 air passengers could expect to encounter
a fatal exposure to the coronavirus on a full flight. If the middle seat is left
empty, the fatality rate from the coronavirus is predicted to fall to 1 in 920,000
passengers.

In summary, aviation may increase the transmission of Covid-19 in two
ways – through the actual process of traveling, including transmission while
in aircraft, and by spreading the virus to the populations in cities across the
route networks operated by airlines. Although the possibilities of contacting
Covid-19 or dying from the virus that is caught while flying are likely small,
researchers have found that they can be made even less likely by leaving
middle seats empty (Barnett and Fleming, 2020).

11Calculations do not assume passengers are vaccinated against the coronavirus.
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3.2.3 Airlines Strategies to Combat Covid-19

Airlines have engaged in a diverse array of strategies to respond to the de-
cline in passenger demand due to the pandemic. These strategies can be
divided into three categories: (1) cost reduction; (2) cash flow enhancement;
and (3) safety improvement. The cost reduction strategies include, the ground-
ing of aircraft, the retirement of entire fleets (of mainly older, less efficient
aircraft) (Adrienne, Budd, and Ison, 2020) and workforce layoffs and salary
cuts (Amankwah-Amoah, 2020). Cash flow-enhancing strategies include, re-
ducing fares to stimulate demand, lobbying governments for loans, equity
investments, and wage subsidies (Amankwah-Amoah, 2020) and reposition-
ing aircraft to better respond to changing demand, such as shifting aircraft
to service increased cargo flows, better serve leisure passengers, or to pro-
vide increased non-stop routings (Bauer, Bloch, and Merkert, 2020). Safety
measures implemented by airlines include the blocking of middle seats to in-
crease social distancing (Barnett and Fleming, 2020; Li, 2020), the installation
of better cabin air filtration systems, the improvement in cleaning procedures
on aircraft (Dube, Nhamo, and Chikodzi, 2021), the enhancement of passen-
ger screening measures, including temperature checks and covid testing, the
mandating of facemasks on aircraft (Dube, Nhamo, and Chikodzi, 2021), im-
proved protective equipment for cabin crews (Dube, Nhamo, and Chikodzi,
2021), and safer boarding procedures (Milne, Delcea, and Cotfas, 2021).

For this paper, we expand research on pandemic aviation strategies by
examining the impacts of key strategies on airline performance. We then
use an airline-route-level dataset to analyze, in greater detail, the impact of
a middle-seat blocking strategy on three measures of airline performance –
load factors, yields and seats shares. The airfare and market share effects of
blocking middle seats are also studied in Hyman and Savage (2021 & 2022).
Focusing on non-stop routes with the presence of Delta Air Lines, United
Airlines, and American Airlines, and a subset of those routes where Delta
directly competes with at least one of the two rivals, Hyman and Savage
(2021 & 2022) find that Delta’s middle-seat blocking strategy is associated
with higher yields and market shares. In our study, we use a wider data sam-
ple to investigate the adoption of middle-seat blocking strategies by a larger
number of U.S. carriers and estimate performance effects using a broad set
of origin-and-destination routes, including direct and connecting routings.
Our findings provide direct evidence that the strategy, on average, results in
revenue losses for carriers, likely contributing to the decision by airlines to
either forego the middle seat blocking strategy or terminate the strategy after
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implementation.

3.3 Airline Pandemic Strategies

In this section, we analyze the operational strategies of the four largest U.S.
airlines, American, Delta, United and Southwest, describing how they adapted
during the first year (2020) of the Covid-19 pandemic. The strategies under-
taken by the airlines varied considerably. While all four airlines dramatically
reduced their flight operations after the onset of the pandemic to save op-
erating expenses, our analysis shows that their pre-pandemic strategies and
route network structures influenced their operational responses to the pan-
demic.

As shown in Table 3.1, Southwest was the largest airline in the U.S. by
passenger enplanements in 2019. However, as opposed to the other three
airlines, it had a greater focus on domestic routes, with international traffic
accounting for only 3% of its total passenger traffic. In comparison, the share
of international traffic ranged from 16% to 25% for the other three airlines.
The focus on domestic markets, with fewer international destinations, made
Southwest less vulnerable to the closing of international markets during the
pandemic, since it was less reliant on international traffic to feed its domes-
tic routes. As a result, Southwest was in a better position to maintain its
domestic route structure following the onset of the pandemic, compared to
American, United and Delta.

TABLE 3.1: Passenger Enplanements of the Four Largest U.S.
Airlines in 2019

Airline (Rank) Total Pax in Mln Dom. Pax in Mln Intl. Pax in Mln
(% of Total) (% of Total)

Southwest (1) 162.681 158.419 4.263
(97.4%) (2.62%)

Delta (2) 162.494 136.241 26.280
(83.8%) (16.2%)

American (3) 155.785 126.031 29.754
(80.9%) (19.1%)

United (4) 116.256 87.472 28.784
(75.2%) (24.8%)

Total Scheduled Passenger Traffic 1,052.8 811.5 241.3
(77.1%) (22.9%)
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FIGURE 3.1: The % Change of Number of O&D Routes in 2020
vs 2019

Figure 3.1 compares the number of origin-and-destination (O&D) routes
offered by the four airlines in 2020 to the corresponding quarter in 2019. The
figure shows that Southwest was the least aggressive of the four airlines in
cutting routes during the pandemic, maintaining over 70% of its route total
during the lowest point for airlines during the pandemic – the second quar-
ter of 2020. The other three airlines reduced their route offerings by 60-65%,
thus retaining only about half the routes (in percentage terms) as Southwest.
Although the three network carriers all brought back routes during the third
and fourth quarters of 2020, a gap in routes offered (compared to 2019) be-
tween Southwest and the three network carriers remained throughout the
year.

The network structure of Southwest is distinct from the structures of the
other three airlines, with a higher value for network density of 0.159, com-
pared to 0.030 for American Airlines, 0.029 for United, and 0.024 for Delta
Air Lines. Network density is defined as the ratio of the number of non-stop
flight segments relative to all potential origin-and-destination connections
within an airline’s route network.12 Therefore, an airline that operates a hub-
and-spoke system has a lower density measure, since most passengers only
have indirect connections through the hub, while an airline that operates a
point-to-point network has a higher density measure, since the network of-
fers a greater percent of nonstop origin-and-destination flights. Compared to

12Network density values are calculated using monthly schedule data for the four airlines
on domestic routes in 2019.
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a hub-and-spoke route structure, a point-to-point route structure could give
an airline more flexibility to withdraw from routes or add new destinations
with less disruption to the rest of the route network.13

As noted by Gary Kelly, the CEO of Southwest, the ability of Southwest to
rapidly add vacation destinations to target leisure travelers during the pan-
demic enabled the airline to turn the pandemic crisis into an opportunity
to outcompete its rivals.14 After cutting its domestic routes from 1,404 in
the second quarter of 2020 to 1,094 in the third quarter of 2020, Southwest
quickly reversed this trend, adding 204 new routes into its network in the
fourth quarter of the year, flying to several new destinations in Florida, Col-
orado, California, and Georgia that appealed primarily to vacation travelers.

Another factor that could impact the ability of an airline to maintain its
network is its relationship with regional carriers since regional carriers pro-
vide traffic feed for network carriers, such as American, Delta and United.
Of the three network airlines, Delta reported about 15% of its passenger rev-
enue was derived from traffic feed provided by its regional carriers under
capacity purchasing agreements in 2019.15 In comparison, United Airlines
reported about 11% of its capacity was operated by regional carriers that
year, while American Airline reported that about 27% of its passenger en-
planements were provided by its regional affiliates (owned or contracted) in
2019.

The relatively high use by American Airlines of regional carriers may
have helped it maintain its network during the pandemic, since the regional
services can be operated with fewer passengers. Network carriers, such as
American, Delta and United, may act to maintain the centralized structure of
their hub-and-spoke networks to run feed through their hubs. As shown in
Figure 3.2, the average degree of centrality16 across all the airports in Amer-
ican’s domestic route network dropped by only 0.43% (from 0.257 to 0.256),
while it dropped by 11.29% for United (from 0.261 to 0.232), by 8.77% for
Delta (from 0.232 to 0.211), and by 6% for Southwest (from 0.378 to 0.356) in
the 2nd quarter of 2020, as compared to the same quarter of 2019. Similarly,

13With a hub-and-spoke network, withdrawing from a route impacts all other routes,
since the network depends on traffic feed from all routes into the hub. Withdrawing from
too many routes can impact the viability of the network.

14See the article “A strategy session at 40,000 feet: how Southwest Airlines used the pan-
demic to outmaneuver the majors” by Shawn Tully, published on Fortune.com, June 18,
2021.

15Data are based on the airlines’ 2019 10-K filings to the U.S. Securities and Exchange
Commission.

16See Cheung, Wong, and Zhang, 2020 for definitions of these centrality measures.
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FIGURE 3.2: The % Change of the Average Degree of Centrality
in 2020 vs 2019

Figure 3.3 shows that the average degree of closeness centrality for American
Airlines across all the airports in its domestic route network remained almost
unchanged (i.e., 0.57735 vs. 0.57744) in the 2nd quarter of 2020, as compared
to the same quarter of 2019, while the average degree of closeness centrality
decreased by 3.62% for United (from 0.575 to 0.554), by 2.48% for Delta (from
0.561 to 0.547), and by 2.34% for Southwest (from 0.617 to 0.603).

American’s ability to rely on its regional carriers may have also allowed
the airline to limit its capacity and route reduction after the onset of the pan-
demic. To save operating expenses, all four airlines substantially reduced
their flight operations during the pandemic. United Airlines cut its flights on
domestic routes by 54.4% in 2020 relative to 2019 and Delta by 44.3%. How-
ever, American only reduced its flights by 42.4%, and Southwest’s reduction
of 33.6% was even lower. Seat capacity reductions were of similar magni-
tudes – 54.4% by United, 44.2% by Delta, 41.5% by American, and 32.6% by
Southwest.

As shown in Figures 3.4 and 3.5, all the four major carriers started trim-
ming their domestic flight operations in March 2020, with the greatest reduc-
tions in May 2020. Compared to United and Delta, American made a smaller
reduction in flight and seat capacity, especially during the worst months of
the pandemic. As shown in Figure 4, in May 2020, American Airlines kept
49% of its flights compared to the same month in 2019 compared to 41% for
Delta Air Lines and only 22% for United Airlines. Similar findings based on
seat capacity are illustrated in Figure 5.
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FIGURE 3.3: The % Change of the Average Degree of Closeness
Centrality in 2020 vs 2019

FIGURE 3.4: The Comparison of Flights Capacity Change (%)
in 2020 vs 2019
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FIGURE 3.5: The Comparison of Monthly Seat Capacity in 2020

In addition to downsizing operation capacity to adjust for falling passen-
ger demand, airlines also used a variety of measures to enhance safety stan-
dards. Notable among these strategies was the blocking of middle seats to
increase social distancing among passengers. Delta began blocking middle
seats in April 2020 and kept the policy for the remainder of the year (only
rescinding the policy in May 2021). American blocked middle seats only
during the 2nd quarter of 2020, Southwest blocked middle seats from May
2020 until November 2020 while United never blocked middle seats, booking
them throughout the pandemic.

Summarizing its commitment to both safety and financial measures dur-
ing the pandemic, Edward Bastian, the CEO of Delta Air Lines, stated the
following: “Our response has been focused on three priorities. First, pro-
tecting the health and the safety of our employees and our customers. Sec-
ond, preserving our financial liquidity to work through this crisis. And third,
ensuring we are well-positioned to recover once the virus is contained and
building a plan to accelerate our progress through this period of recovery.”17

Although the decision to block middle seats may have been primarily
driven by safety concerns, the financial implications of middle seat blocking
varied among airlines depending on their fleet composition. Importantly,
the mix of narrow-body, wide-body and regional jets impact the percentage
of middle seats in the total seat capacity of a fleet. For example, the fleet of

17See “Delta Air Lines: Navigating the Covid-19 Storm” by Ted Berk and Ryan Flamerich,
HBS Case (9-221-063), May 14, 2021.
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FIGURE 3.6: The Average Daily Flight Frequency on Route in
2019

Southwest consists of B737-700, B737-800, and B737-Max 800 aircraft,18 and
middle seats account for more than 32% of the aircraft seat capacity across
all three aircraft types. In contrast, the fleet of Delta Air Lines consists of
22 aircraft types with only 5 operating in domestic markets having middle
seats.19 As a result, middle seats account for only 30% of Delta’s aircraft seat
capacity. Therefore, middle seat blocking may have a lower impact on Delta
compared to Southwest.

Figures 3.6-3.8 show how daily flight frequencies on domestic routes evolved
for the four major airlines between 2019 and 2020. As shown in Figure 6.1,
average daily flight frequencies per route were higher for American and
Delta than for Southwest and United in 2019, prior to the pandemic. Figure
6.2 shows that all four airlines cut their frequencies significantly beginning
March 2020. By April 2020, frequencies had been reduced by their maximum
compared to the corresponding month in 2019 – 73.1% by United; 62.9%
by American; 61.4% by Delta and 56.9% by Southwest. Figure 6.3 indicates
that the frequency reduction pattern varied by airline. In general, Delta and
Southwest cut frequencies by the least amount, while United cut frequencies
by the greatest amount.

Figure 3.9 compares the four major airlines in terms of the change in aver-
age aircraft size on their domestic flight segments between 2019 and 2020. In
contrast to the other three airlines, Southwest operated with larger aircraft in

18B737-Max 800 was not in operation during 2020.
19These 5 aircraft types are A319, A320-100/200, A321, B737-800, and B757-200.
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FIGURE 3.7: The Average Daily Flight Frequency on Route in
2020

FIGURE 3.8: The % Change of Average Daily Flight Frequency
on Route in 2020 vs 2019
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FIGURE 3.9: The % Change of Average Aircraft Size on Route
in 2020 vs 2019

2020 (compared to 2019) in each of the 2nd, 3rd, and 4th quarters of the year.
United Airlines downsized its average aircraft size in each of these quarters,
while Delta Airlines downsized its average aircraft size in the 2nd quarter
but increased average aircraft size in the 4th quarter. Finally, American held
its aircraft size fairly steady in the 2nd and 3rd quarters, before increasing its
aircraft size in the 4th quarter.

The strategies undertaken by the carriers, including capacity adjustments,
fleet size adjustments and safety strategies such as the blocking of middle
seats, likely affected performance outcomes. Figure 8 shows that yields dropped
for all airlines in 2020 compared to the pre-pandemic year, 2019. Yields in the
industry may have declined for several reasons, notably due to a drop in
demand as potential passengers stayed home due to personal choice and
to government lockdown restrictions, and to the relatively larger decline
in higher-yield business travelers compared to lower-yield leisure travelers.
However, Figure 8 shows that the decline in yields was not uniform across
the four largest U.S. carriers. Yields dropped the most for American Airlines,
which only blocked middle seats during the second quarter of 2020. Dur-
ing the last quarter of 2020, United experienced the second greatest drop in
yields, while yields fell the least for Delta, providing some indication that
the middle seat strategy may have been successful at stemming the decline
in yields in agreement with Hyman and Savage (2021 & 2022).

Figure 3.10 compares the load factors of the three airlines in 2020 relative
to 2019. It can be seen that prior to the onset of the pandemic in the U.S. in
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FIGURE 3.10: The Comparison of Average Yield Change in 2020
vs 2019 among DL, AA, UA and WN

March 2020, the four major carriers were filling about the same percentage of
seats as in 2019. The onset of the pandemic reduced load factors, initially, for
all four airlines by about 70%. The airlines responded by reducing capacity,
thus increasing their load factors. The figure shows that during the latter half
of 2020, load factors were lowest for Delta, reflecting, perhaps, its decision to
keep middle seats open and highest for American and United, both of which
did not block middle seats during the latter half of 2020. Southwest contin-
ued blocking middle seats until November, when it rescinded this policy and
saw an uptick in its load factor, approaching the load factors of United and
American.

In summary, the airlines adopted very different strategies to compete dur-
ing the pandemic. Delta kept higher yields by allowing for lower load factors
than its competitors, Southwest was aggressive at reconfiguring its routes,
while American and United tolerated lower yields while keeping load fac-
tors higher. In the next section, we examine how performance outcomes may
be more closely tied to the blocking of middles seats during the pandemic.
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FIGURE 3.11: The Average Route LF Change in 2020 vs 2019

3.4 Models and Data

3.4.1 Middle Seat Blocking Profiles

In this section, we analyze at the airline-route level, the impact on airline per-
formance of the middle seat blocking strategy. Table 3.2 shows the airlines in-
cluded in our dataset and the periods of time in which they pursued middle
seat blocking strategies. According to the Bureau of Transportation Statistics,
by including the top ten airlines by revenue-passenger miles (RPMs), our
dataset describes over 90 percent of the available seat miles (ASMs) in the
US domestic market.20 In examining the three major network carriers in the
U.S. domestic market (American, Delta and United), strong variations in the
use of middle seat blocking are evident, as shown in Table 3.2. United never
blocked middle seats, American only blocked middle seats during the first
wave of the pandemic (April 2020 to June 2020), while Delta initially blocked
middle seats during the first pandemic wave and then continued with this
strategy throughout the year. Variations in middle seat blocking strategies
also appear among the other seven carriers in the dataset. Notably, three air-
lines – JetBlue, Hawaiian and Southwest, blocked middle seats from May to
November 2020, while Alaska continued middle seat blocking to December
2020. At the other end of the spectrum, Spirit and Allegiant joined United in

20See https://www.transtats.bts.gov/ accessed in October 2020. We did not include the
regional connector airline, SkyWest, in our dataset since it operates under capacity purchas-
ing agreements with the major carriers. Allegiant Air, the next largest carrier, was added to
replace SkyWest.
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never blocking middle seats, while Frontier blocked middle seats in only one
month, May 2020.

TABLE 3.2: Airlines in Dataset and Middle Seat Blocking Time
Periods21

Airline Airline Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Code Name (Q5) (Q5) (Q5) (Q6) (Q6) (Q6) (Q7) (Q7) (Q7) (Q8) (Q8) (Q8)

AA American Airlines 0 0 0 1 1 1 0 0 0 0 0 0
DL Delta Air Lines 0 0 0 1 1 1 1 1 1 1 1 1
UA United Airlines 0 0 0 0 0 0 0 0 0 0 0 0
AS Alaska Airlines 0 0 0 0 1 1 1 1 1 1 1 1
B6 JetBlue Airways 0 0 0 0 1 1 1 1 1 1 1 0
F9 Frontier Airlines 0 0 0 0 1 0 0 0 0 0 0 0
G4 Allegiant Air 0 0 0 0 0 0 0 0 0 0 0 0
HA Hawaiian Airline 0 0 0 0 1 1 1 1 1 1 1 0
NK Spirit Airlines 0 0 0 0 0 0 0 0 0 0 0 0
WN Southwest Airlines 0 0 0 0 1 1 1 1 1 1 1 0

3.4.2 Data Source

We collect 2019 and 2020 monthly segment-level operating data for the ten
airlines’ domestic routes from the U.S. Department of Transportation (DOT)
T-100 reports, and quarterly origin and destination (O&D) airfare, itinerary
and passenger data from U.S. DOT DB1B reports. Both the T-100 and DB1B
reports are retrieved from the Cirium Diio Mi Market Intelligence data por-
tal. In total, we gathered 313,492 observations from the T-100 dataset. After
excluding carrier routes with fewer than 16 flights per month, we are left
with 234,578 observations across 5,042 airport directional pairs.

The quarterly airfare dataset (DB1B) is larger, containing 1,624,120 itinerary-
level observations for the ten airlines across 12,340 origin and destination
(O&D) markets (with a minimum of 10 passengers per day). These itineraries
include non-stop (5%), one-stop (54%) and two-stop (41%) connections.22

The DB1B dataset is used to access passenger fare data. Fares are presented
in the dataset net of applicable federal taxes and fees, such as security and

22We exclude itineraries with more than two stops. Note that the itinerary percentages do
not reflect passenger totals. Nonstop itineraries attract greater numbers of passengers than
connecting itineraries.
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passenger facility charges.23 To convert fares into yields, fares are divided by
route distance. The distance used for these calculations is the great circle dis-
tance between the O&D airports. We include in our model a social distancing
index to control for decreases in mobility due to the spread of Covid-19. The
index is compiled by the University of Maryland Transportation Institute at
the state level, based on several factors, such as percent of people staying at
home and traveling to work, as well as the number of reported covid cases.24

For each of our sample airlines, we also collect aircraft seat layout data pri-
marily from seatguru.com, supplemented by the airlines’ own fleet informa-
tion webpages. For those aircraft models that have multiple layout designs,
we use the number of seats per flight departure of an airline on a given route
as a reference and select the layout design that provides the seat capacity
closest to the reference.

3.4.3 Variables

Table 3.3 provides a description of variables in our models. We estimate our
models with five dependent variables: passenger share, load factor, effective
load factor, seat share, and yield. Passenger shares are computed using T-
100 flight segment data for each carrier-specific route. Shares are based on
the percentage of passengers carried during a period on a route by a specific
carrier to the total number of passengers on the route during the time pe-
riod. Load factors are computed for each carrier-specific route as passengers
divided by seats on the route during the period. Seat shares are computed
using the same data, based on seats offered by a carrier during a period on a
route. In addition to computing the load factor for airline i on route j a given
month, we also calculate the “effective load factor” after excluding the num-
ber of middle seats that are blocked by an airline in a period. Similarly, we
develop the “effective seat share” as the modified seat share measure. Given
that passengers can use several itineraries to fly an O&D route, we calculate
O&D yield based on the shares of the various itineraries for a route. Specif-
ically, for airline i on route j in quarter t, we develop the variable YIELDijt

23To exclude likely data errors from our dataset, as well as employee tickets, we drop
records with fares below $10. This choice is arbitrary but is supported in the literature. For
example, studying the same markets, Brueckner, Lee, and Singer, 2013, set the threshold at
$25. Given the nature of our research objective, we cautiously chose a less stringent level,
but we also impose a percentile restriction by excluding those observations belonging to the
first or the last percentile of the yield distribution. By doing so we exclude a total of about
0.4% of the records.

24https://data.covid.umd.edu/, last accessed January 28, 2022. Demographic data also
come from this source.
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based on the airline’s itinerary-specific yield and the share of daily passenger
numbers on itinerary m for airline i on route j in quarter t:

YIELDijt =
n

∑
m=0

(Share of Passengers per day by Itinerary m)ijt × YIELDijmt

(3.1)

TABLE 3.3: Variable Descriptions

Variable Description

PAXSHR Passenger share of each airline i on route j at time t
LOADFACTOR Average (absolute) load factor of each airline i on route j at time t
EFFLOADFACTOR Average (effective) load factor of each airline i on route j at time t
SEATSHR Seat share of each airline i on route j at time t
YIELD Average fare per mile flown by each airline i on route j at time t (US$/mile)
MSB Dummy variable equal to 1 if airline i blocks the middle seat at time t
RESROUTE Dummy variable equal to 1 if airline i operates route j at time t of both years
SDI Product of the endpoints state-based social distancing index
TOTCOMP Number of competitors at the city pair level
LCC Dummy variable equal to 1 if the airline i is a Low-Cost Carrier
DIST Average route distance (miles)
SUNBELT Dummy variable equal to 1 if one or both the endpoints are US southern belt states
POP Product of the two endpoints’ population
INC Product of the two endpoints’ income per capita (US$)
FREQ Monthly frequency of operations of airline i on route j at time t
FLEETMIX Number of different aircraft types employed by airline i at time t
AIRCRAFTSIZE Average number of seats offered by airline i at time t
TOTROUTE Total number of routes operated by airline i at time t
ONESTOP Percentage of passengers flying one-stop on route j at time t
TWOSTOP Percentage of passengers flying two-stop on route j at time t
EFFSEATSHR Effective seat share of each airline i on route j at time t
CENTRALITY19 Maximum closeness centrality index of the endpoint airports by i-j-t in 2019
MIDDLESEATSHR19 Percentage of middle seats in the total number of seats provided by i-j-t in 2019

We also compute two measures that will be used in first-stage equations in
our model, estimated to address potential econometric concerns (see Section
3.4.5). First, to measure the importance of origin and destination airports
for an airline in terms of the connectivity in the airline’s route network, we
calculate an airport-specific network metric in period t, and then take the
maximum of the network metric between the two endpoint airports on a
given route j. The closeness centrality index is calculated as follows:

Closeness Centralityivt =
Nit − 1

∑Nit−1
w=1 Svwt

(3.2)
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where Svwt represents the length of the shortest paths from airport v to w
in airline i’s domestic route network in period t. The length of the shortest
paths indicates the minimum number of connections needed for traveling
from airport v to w, based on airline i’s domestic route network in period
t. The shorter the length, the greater the value of closeness centrality. This
network metric has been applied in recent aviation research (e.g., Malighetti
et al., 2019, Cheung, Wong, and Zhang, 2020, Sun, Wandelt, and Zhang, 2021
and Reynolds-Feighan, Zou, and Yu, 2022). We select this variable and incor-
porate its 2019 values into the estimation of an airline’s resilient route selec-
tion (i.e., routes maintained in both 2019 and 2020) during the pandemic.

Second, we compute the percentage of middle seats to the total number
of seats provided by airline i on route j in period t. We incorporate values for
2019 to estimate the likelihood of an airline blocking a middle seat in a given
period. The variable is computed as follows:

Middle Seat Shareijt =
Number of Middle Seatsijt

Total Number of Seatsijt
(3.3)

3.4.4 Models

To examine the impact of the middle seat blocking strategy, we use data from
2019 (pre-pandemic period) and 2020 (pandemic period, beginning March
2020) to estimate our models. The data are at the airline-route-month level
or at the airline-route-quarter level, depending on the model employed. We
define a route as the directional combination of a departing airport O and
an arrival airport D (i.e., A-B is a different route from B-A). Dependent vari-
ables include airline passenger share, load factor (absolute and effective), seat
share, and yield. An effective middle seat blocking strategy can be expected
to attract more passengers because of higher perceived travel safety, and to
lead to higher yields, while, potentially, depressing load factors. Moreover,
the strategy could cause airlines to adjust the number of seats offered on a
route.

From the T-100 and DB1B data sources, two datasets are constructed. In
each case, we confine our dataset to competitive routes, where airlines adopt-
ing the middle seat blocking strategy were competing with airlines that did
not use this strategy. Monopolistic routes and routes where either all airlines
were blocking middle seats, or all airlines were not blocking middle seats
are excluded from the datasets. This leaves the T-100 dataset and the DB1B
dataset with 730 and 946 directional route pairs, respectively.
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We present the results of the five models in Table 3.5 in Section 3.5. As ro-
bustness checks, we estimate all our models on different samples, and with
several econometric specifications. We perform four robustness checks. First,
we run the five models without including airline fixed effects. These estima-
tions allow us to compare our results with references in the existing literature
(Hyman and Savage 2021 & 2022). Second, we add route-time fixed effects
to our main specification, hence adding an extra level of fixed effects and
capturing all the time variant characteristics of a given route. Results from
these estimations are reported in Table 3.7 and Table 3.8 in the Appendix.
Third, we run our models based on year-over-year changes to the dependent
variables (from 2019 to 2020).25 Finally, we restrict our analysis to Delta Air
Lines’ middle seat blocking strategy and estimate our yield equation using
the subset of data focusing on those routes where Delta Air Lines competed
with the other two legacy airlines, i.e., American Airlines and United Air-
lines. As with Hyman and Savage (2021, 2022) we find that blocking middle
seats has a positive effect on yields, when examining this restricted database.
This last result is reported in Table 3.9 in the Appendix.

The baseline models for the PAXSHR equation (Eq. 3.5), LOADFACTOR
equation (Eq. 3.6), and SEATSHR equation (Eq. 3.7), is generalized in Eq.
3.4 as follows:

Yijt = α0 + X1ijt · α̂′
1 + α2 · MSB + ηi + θj + κt + e (3.4)

The dependent variable, Yijt, is the average monthly passenger share (load
factor, seat share) for airline i on route j in period t. The dependent variable
is a function of a matrix X1 of exogenous explanatory variables, and of a
variable capturing the middle seat blocking strategy of each airline i. α̂′1 is a
column vector of coefficients for the exogenous explanatory variables and α2

the coefficient for the MSB dummy variable. Finally, ηi identifies airline fixed
effects, θj captures airport pair fixed effects, κt month fixed effects, while e is
the error term which is assumed to be normally distributed with zero mean
and constant variance σ2

e . The inclusion of airline fixed effects allows us to
better identify the middle seat blocking effect as they capture the time in-
variant characteristics of each carrier. Similarly, airport pair fixed effects are
included to control for route unobserved heterogeneity. Finally, month fixed
effects are used to eliminate biases from unobservable factors that change

25We use the subset of routes that were operated both in 2019 and 2020 to estimate the
change models at the month or quarter level. Results are very similar to the ones in Table 3.5
and are available upon request.
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over time and not across entities. In this way it is possible to exploit the
variations within each carrier, route, and month.

Among the exogenous explanatory variables, we include regressors for
market and airline characteristics such as pandemic intensity measures, so-
ciodemographic data, a city pair-specific measure of competition (TOTCOMP),
a dummy variable capturing the business model type of each airline (LCC)
and other supply and demand shifters. As an additional regressor in the
PAXSHR model, we include the effective share of seats each carrier offers
during a period on a given route.26

The extended formulations of Eq. 3.4 are reported in Eq. 3.5, 3.6, and 3.7
as follows:

PAXSHRijt = γ0 + γ1 · MSBit + γ2 · IMR1it + γ3 · RESROUTEijt + γ4 · IMR2it+

+ γ5 · log(SDI)jt + γ6 · TOTCOMPjt + γ7 · LCCijt+

+ γ8 · log(DIST)ijt + γ9 · SUNBELTj + γ10 · log(POP)jt+

+ γ11 · log(INC)jt + γ12 · FLEETMIXit + γ13 · TOTROUTEit+

+ γ14 · FREQUENCYitj + γ15 · AIRCRAFTSIZEit+

+ γ16 · EFFSEATSHRijt + ηi + θj + κt + h

(3.5)

LOADFACTORijt = δ0 + δ1 · MSBit + δ2 · IMR1it + δ3 · RESROUTEijt + δ4 · IMR2it+

+ δ5 · log(SDI)jt + δ6 · TOTCOMPjt + δ7 · LCCijt+

+ δ8 · log(DIST)ijt + δ9 · SUNBELTj + δ10 · log(POP)jt+

+ δ11 · log(INC)jt + δ12 · FLEETMIXit + δ13 · TOTROUTEit+

+ δ14 · FREQUENCYitj + δ15 · AIRCRAFTSIZEit+

+ δ16 · EFFSEATSHRijt + ηi + θj + κt + k

(3.6)

26Effective seat shares are based on the seat share computation considering the actual
capacity available (discounted by the number of seats blocked).
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SEATSHRijt = ϵ0 + ϵ1 · MSBit + ϵ2 · IMR1it + ϵ3 · RESROUTEijt + ϵ4 · IMR2it+

+ ϵ5 · log(SDI)jt + ϵ6 · TOTCOMPjt + ϵ7 · LCCijt+

+ ϵ8 · log(DIST)ijt + ϵ9 · SUNBELTj + ϵ10 · log(POP)jt+

+ ϵ11 · log(INC)jt + ϵ12 · FLEETMIXit + ϵ13 · TOTROUTEit+

+ ϵ14 · FREQUENCYitj + ϵ15 · AIRCRAFTSIZEit+

+ ϵ16 · EFFSEATSHRijt + ηi + θj + κt + r

(3.7)

As shown in Eq. 3.8, the baseline general model for the YIELD equation
is estimated with a different formulation from the previous baseline model,
as this estimation relies on a separate dataset (O&D data):

YIELDijt = β0 + X2ijt · β′
1 + β2 · MSBit + ϵi + µj + ϵt + u (3.8)

where YIELDijt is the average quarterly yield of each airline i on a route j
in period t. The dependent variable is a function of a matrix X2 of exogenous
explanatory variables and of a variable capturing the middle seat blocking
strategy for each airline i. β̂1 is a column vector of coefficients for the ex-
ogenous explanatory variables and α2 the coefficient for the MSB dummy
variable. The airline fixed effects are identified by γi, while µj captures air-
port pair fixed effects and ϵt refers to quarter fixed effects. Finally, u is the
error term which is assumed to be normally distributed with zero mean and
constant variance σ̂2

u.
Among the exogenous explanatory variables are regressors identifying

market and airline characteristics, including the percentage of passengers on
a route flying on a connecting (rather than nonstop) itinerary (ONESTOP,
TWOSTOP). The extended formulation of Eq. 3.7 is reported in Eq. 3.8 as
follows:

YIELDijt = π0 + π1 · MSBit + π2 · IMR1ijt + π3 · RESROUTEijt+

+ π4 · IMR2ijt + π5 · log(SDI)jt + π6 · TOTCOMPjt + π7 · LCCijt+

+ π8 · log(DIST)ijt + π9 · SUNBELTj + π10 · log(POP)jt+

+ π11 · log(INC)jt + π12 · FLEETMIXit + π13 · TOTROUTEit+

+ π14 · ONESTOPitj + π15 · TWOSTOPit + γi + µj + ϵt + w

(3.9)
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3.4.5 Econometric Concerns

Eq. 3.9 is characterized by possible econometric concerns related to poten-
tial endogeneity between TOTCOMP and YIELD (i.e., higher yields may
produce a feedback effect attracting more competitors onto a route). How-
ever, following Brueckner et al. (2019, 2013), we do not specifically control
for endogeneity for several reasons: First, by explicitly including fixed ef-
fects and market characteristics in our model, we already capture much of
the unobserved heterogeneity among observations, hence limiting potential
bias; second, there is evidence in the literature (i.e., Gayle and Wu, 2013)
showing that directly addressing endogeneity of carrier competition via a
structural model has little impact on the final estimates; third, the poten-
tial endogeneity between TOTCOMP and YIELD is more of an issue with
nonstop routes. In our final sample, 82% of itineraries involve connections,
therefore the feedback effect from passengers to number of competitors may
be limited. Finally, in this work we do not attempt to obtain the best linear
unbiased estimator (BLUE) for TOTCOMP or use its coefficient to interpret
the causal impact on the dependent variable. TOTCOMP only serves as a
control variable. Therefore, potential endogeneity between TOTCOMP and
our dependent variables will not influence the main results measuring the
influence of MSB on the dependent variables. For these reasons, we do not
specifically control for the potential endogeneity of TOTCOMP.27

A second econometric concern is the selection problem for our obser-
vations. With the advent of the pandemic, carriers dropped many of their
routes. However, the decrease in routes was likely systematic, rather than
random. Therefore, we estimate Eq. 3.10 through a probit regression to gen-
erate the Inverse Mills Ratio (IMR1) to correct for route selection bias in Eqs.
3.5, 3.6, 3.7 and 3.9.

RESROUTEijt = ϕ0 + ϕ1 · CENTRALITYijt + ϕ2 · log(SDI)jt+

+ ϕ3 · log(DIST)ijt + ϕ4 · TOTCOMPjt + ϕ5 · SUNBELTj+

++ϕ6 · log(POP)jt + ϕ7 · log(INC)jt + ϕ8 · TOTROUTEit+

+ vt + z

(3.10)

27To check for the robustness of the estimates presented in Table 3.5 we also run the mod-
els including fixed effects at the ROUTE × TIME level. In this way we capture all the time-
varying characteristics of each route across time, implicitly excluding some of the variables
from the models (i.e., TOTCOMP).
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In Eq. 3.10, RESROUTEijt is a binary outcome variable indicating whether
a route is operated by a carrier in both 2019 and 2020. It is estimated as a func-
tion of the intensity of the pandemic at the state level, route cost and demand
shifters and route market and origin and destination characteristics. Seasonal
trends are captured by vt while z is the error term with 0 mean and, for iden-
tification purposes, variance σ2

z set equal to unity. In Eq. 3.10 we also include
the network variable CENTRALITY19 that serves as an instrumental vari-
able to tackle the route selection bias in the main equations. This variable is
included in the selection equation, but not in the equations of interest. We
believe that an airline is more likely to keep a route if it is important in terms
of connectivity for its entire network. To save operating expenses while min-
imizing the disruption to the overall route network connectivity, an airline is
more likely to cut those routes involving endpoint airports that have lower
centrality values. This intuition is indeed supported by the probit results in
Table 3.6 in the Appendix. Since the connectivity of a route network is impor-
tant for passengers (as well as for airlines), the centrality index may also im-
pact passenger share, load factor, seat share, and yield. Given the exclusion
restriction (i.e., the instrumental variable should not directly impact the de-
pendent variables), we base our centrality measure on (pre-pandemic) 2019
data. A third econometric concern rises because the adoption of a middle-
seat blocking strategy is highly possibly a result of self-selection by an air-
line. Systematic differences between airlines that did or did not adopt the
strategy might yield biased measures of the effects of the middle-seat block-
ing strategy even after correcting for route selection bias (i.e., due to carrier
bias). Therefore, we estimate Eq. 3.11 through a probit regression to gener-
ate the Inverse Mills Ratio (IMR2) to correct for airlines’ self-selection bias
in Eqs. 3.5, 3.6, 3.7 and 3.9. We included the variable MIDDLESEATSHR19
in Eq. 3.11.It measures the percentage of middle seats to total seats oper-
ated by airlines in 2019 (lagged to limit endogeneity concerns), and serves
as an instrumental variable to address self-selection bias in the main equa-
tions. The percentage of middle seats on an airline’s network may be linked
to the likelihood that the airline will adopt a middle-seat blocking strategy.
For example, the percentage of middle seats is higher for wide-body aircraft
than for narrow-body aircraft; therefore, airlines that operate a high percent-
age of wide-bodied aircraft may be less likely to block middle seats.28 The
lagging of the variable allows us to exclude MIDDLESEATSHR19 from the

28This result is supported in our probit analysis. We find that middle seat share is neg-
atively associated with the middle seat blocking strategy. See results in Table A1 in the
Appendix.
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estimation of the performance variables, passenger share, load factor, seat
share, and yield, since passenger choices are based on current, rather than on
lagged, seat configurations.

MSBit = ξ0 + ξ1 · MIDDLESEATSHRijt + ξ2 · log(SDI)jt+

+ ξ3 · log(DIST)ijt + ξ4 · TOTCOMPjt + ξ5 · SUNBELTj+

+ ξ6 · log(POP)jt + ξ7 · log(INC)jt + ξ8 · TOTROUTEit+

+ τt + ω

(3.11)

Given the multi-step estimation procedure leading to our final estimates,
standard errors may be underestimated, leading to inflated t-statistics. To
adjust for potentially inflated standard errors, we employ a bootstrap proce-
dure with 1,000 replications. Given the nature of our data, we implement the
procedure by time blocks, resampling on the airline-route dimension (with-
out resampling months or airline-route-months) to keep the time series prop-
erties of the observations (Dresner et al., 2021).29 Moreover, Eqs. 3.5, 3.6, 3.7
and 3.9 are estimated using high dimensional fixed effects regressions. For
identification reasons we include route, airline, and time dummies. Finally,
standard errors are always clustered at the airline-route level.30

3.4.6 Descriptive Statistics

Table 3.4 presents descriptive statistics for the variables in our models. The
statistics for our five dependent variables show that, on average, a US carrier
averaged about 23% of the market in terms of both seat share and passenger
share. Airlines filled about 53% of seats on a route during the time of our
dataset. Average load factors were, thus, quite low, during the first year of
the Covid-19 pandemic.31 Yields averaged $0.12 per revenue-passenger mile.
Data from the table indicate that the middle seat was blocked in 48% of our
observations, about 91% of our observations are for routes operated both in
2019 and 2020 (the remaining 9% are new routes, introduced in 2020). There
was an average of just over three carriers operating a route segment. Airlines

29In Stata the bootstrap procedure combined with the use of the cluster and clusterid
options can account for the specific characteristics of the panel data and bootstrap by time
blocks.

30According to Stock and Watson, 2008, the use of the conventional heteroskedasticity-
robust variance matrix estimator would produce inconsistent results.

31Average load factors per route fell to 11.4% in April 2020.
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employed about two different aircraft types on a route on average and the
average aircraft size was 168 seats and the average route distance 1,119 miles.

TABLE 3.4: Descriptive Statistics32

Variable Obs. Mean Std. dev. Min Max

PAXSHR 7,135 22.54 15.31 0.99 93.35
LOADFACTOR 7,135 52.95 19.34 2.63 94.76
EFFLOADFACTOR 7,135 62.35 20.23 2.91 99.97
SEATSHR 7,135 22.56 15.22 2.07 90.86
YIELD 4,554 0.12 0.09 0.02 0.71
MSB 7,135 0.48 0.50 0.00 1.00
RESROUTE 7,135 0.91 0.28 0.00 1.00
SDI 7,135 1240.10 627.80 0.00 4683.50
TOTCOMP 7,135 3.00 0.92 2.00 6.00
LCC 7,135 0.54 0.50 0.00 1.00
DIST 7,135 1118.90 608.66 153.00 2918.00
SUNBELT 7,135 0.46 0.50 0.00 1.00
POP 7,135 186.00 241.00 4.00 1,560.00
INC 7,135 4,040.00 946.00 1,090.00 6,660.00
FLEETMIX 7,135 1.96 0.97 1.00 11.00
TOTROUTE 7,135 461.72 282.06 13.00 1,004.00
FREQ 7,135 66.61 55.39 16.00 1,080.00
AIRCRAFTSIZE 7,135 167.76 25.40 100.00 364.00
EFFSEATSHR 7,135 22.39 14.45 2.03 93.58
ONESTOP 4,554 0.11 0.20 0.00 1.00
TWOSTOP 4,554 0.00 0.01 0.00 0.15
CENTRALITY19 7,135 65.54 11.26 28.67 100.00
MIDDLESEATSHR19 7,209 30.07 4.91 0.00 45.10

3.5 Results

Results from our main estimations are presented in Table 3.5, while the pro-
bit route selection results are shown in Table 3.6 in the Appendix. The main
results show that blocking the middle seat contributes to higher passenger
shares on a route, to lower absolute load factors, but to higher “effective”
load factors (assuming that the seat capacity of an aircraft with middle seats
blocked is lower by the number of blocked middle seats), to higher seat
shares on a route, but, surprisingly to lower yields (after controlling for air-
line fixed effects). Based on a mean plane size of 168 seats, a mean load fac-
tor of 53%, a mean yield of $0.12/revenue-passenger mile, and a mean route
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distance of 1,119 miles, the blocking of the middle seat on average results in
decreased revenues of more than $3,000 per flight.

Note that when fixed effects are not included in the model, the middle
seat blocking strategy is associated with higher yields (see Appendix table,
3.7). This result indicates that there may be systematic decisions related to
the blocking of middle seats, likely associated with the yields airlines, on av-
erage, are able to achieve. Importantly, Delta Airlines, a carrier that blocked
middle seats from April-December 2020, is associated with higher yields than
most of its competitors. On the other hands, ultra-low-cost carriers Allegiant
and Spirit never blocked middle seats. Therefore, accounting for systematic
difference among airlines using fixed effects may be necessary to isolate the
impact of the middle seat blocking strategy.33

Other results in Table 3.5 from our estimations seem reasonable: increased
social distancing at the endpoints of a route (SDI) reduces load factors. Re-
silient routes have higher load factors and seat shares. The significant coef-
ficients for the Inverse Mills Ratios show that there is selection bias in both
choosing whether to block middle seats and which routes to operate. As ex-
pected, connecting flights have lower yields.

33Although attempts are made to account for systematic differences by including the In-
verse Mills Ratio in the estimations, this inclusion likely only partially accounts for these
differences.
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TABLE 3.5: Estimates of the Five Models

(1) (2) (3) (4) (5)
Variables PAXSHR LOADFACTOR EFFLOADFACTOR SEATSHR YIELD

MSB 7.925*** -4.751*** 12.279*** 2.098*** -0.026***
(21.823) (-9.784) (20.141) (4.328) (-6.155)

IMR1 2.668*** -3.432* 6.965*** 7.756*** -0.170***
(2.884) (-1.809) (3.100) (4.402) (-6.162)

RESROUTE -1.498*** -0.955 -2.590*** 0.419 0.113***
(-5.755) (-1.499) (-3.689) (0.785) (20.596)

IMR2 -2.829*** -10.638*** -13.506*** -4.376*** -0.082**
(-4.235) (-8.208) (-8.912) (-3.264) (-2.575)

SDI 0.718** -14.856*** -17.122*** 6.773*** 0.029***
(2.415) (-8.682) (-8.803) (6.033) (4.337)

TOTCOMP 0.445*** -0.417 -0.218 -3.760*** -0.003**
(5.530) (-0.989) (-0.431) (-11.295) (-2.491)

FLEETMIX 0.146 0.086 -0.150 -8.712*** -0.000
(1.456) (0.448) (-0.720) (-21.488) (-1.438)

TOTROUTE -0.009*** -0.017*** -0.007 -0.001 -0.000***
(-4.521) (-4.320) (-1.602) (-0.276) (-7.242)

FREQ -0.004 -0.017*** -0.007 0.177***
(-1.437) (-3.963) (-1.413) (20.929)

AIRCRAFTSIZE -0.000 -0.003 0.018* 0.130***
(-0.010) (-0.318) (1.846) (13.121)

EFFSEATSHR 1.040***
(101.207)

ONESTOP -0.018***
(-4.616)

TWOSTOP -0.143*
(-1.950)

AA 7.609*** 16.820*** 17.117*** -1.175 -0.011*
(16.337) (19.284) (16.167) (-1.212) (-1.749)

AS -1.387** 2.136 3.856** -12.584*** -0.047***
(-2.002) (1.616) (2.362) (-8.208) (-10.078)

B6 1.499** 7.407*** 11.880*** -7.920*** -0.084***
(2.005) (5.534) (7.238) (-5.555) (-6.572)

F9 3.426*** 13.924*** 9.070*** -14.042*** -0.179***
(4.480) (8.286) (4.319) (-9.815) (-14.833)

G4 1.998 9.081** 4.681 -12.884*** -0.167***
(1.123) (2.291) (1.135) (-3.913) (-11.463)

HA -6.505*** -1.700 -2.365 -9.604*** -0.044***
(-3.206) (-0.758) (-0.726) (-4.134) (-7.714)

NK 6.820*** 22.791*** 19.447*** -10.345*** -0.169***
(10.448) (16.666) (11.302) (-7.824) (-12.542)

UA 4.701*** 8.791*** 9.641*** -3.681*** -0.037***
(8.710) (7.428) (7.136) (-3.969) (-7.255)

WN 7.436*** 10.698*** 17.728*** 1.206 -0.032***
(10.940) (7.171) (10.549) (0.779) (-6.610)

Constant -11.767*** 162.964*** 162.255*** -32.177*** 0.197***
(-4.668) (13.446) (11.682) (-3.872) (2.841)

Observations 7,135 7,135 7,135 7,135 4,554
Adj. R-squared 0.94 0.83 0.79 0.74 0.87
MONTH FEs
ROUTE FEs
AIRLINE FEs
ROUTETIME FEs

Robust t-statistics in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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The results from our estimations to demonstrate the robustness of our re-
sults are presented in the Appendix (Tables 3.7, 3.8 and 3.9). As noted above,
when airline fixed effects are not included in the model, the impact of the
middle seat blocking strategy on yields changes from negative to positive
(Table 3.7, Column 4). Results for the other performance variables (load fac-
tor, effective load factor, seat share and passenger share) are reasonably con-
sistent with our base results. When we include a different set of fixed effects
(route-time fixed effects) in our estimations, we also get results consistent
with our base results (Table 3.8). Finally, when we use a database similar to
Hyman and Savage (2021 & 2022), confining our analysis to Delta and its net-
work carrier competitors (American and United) and using a model without
fixed airline effects, we obtain results similar to Hyman and Savage (2021
& 2022); that is with this limited dataset, the middle seat blocking strategy
is associated with about 12% higher yields. It should be noted, that even if
yields are marginally higher with the middle seats blocked as per our results
in Tables 3.7 and 3.9, the revenue losses from the decrease in load factors as-
sociated with the strategy will outweigh the revenue gains from the higher
yields. Thus, using any of our models presented (base model and robustness
check models), there will be net revenue losses for airlines undertaking the
middle seat blocking strategy. This result likely indicates why airlines either
did not implement the strategy or ceased implementing the strategy, despite
continued safety concerns.

3.6 Conclusion

3.6.1 Implications

For this paper, we first provide a general analysis of strategies undertaken
by the four largest U.S. airlines and then provide a more detailed analysis on
a route-level basis of one of the key safety-related strategies, the blocking of
middle seats. Our airline-level analysis shows distinct difference among the
largest airlines in terms of the strategies undertaken during the pandemic.
In particular, strategic decisions may be closely tied to pre-pandemic opera-
tions. Southwest Airlines, notably, without an extensive international route
network, was best able to maintain domestic routes during the pandemic.
Moreover, American Airlines, with its greater reliance on regional carriers,
was able to keep a higher percent of flights and seats in operation during
the pandemic compared to its network carrier rivals. The regional carriers
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were especially suited to operating routes when passenger demand declined
early in the pandemic. The strategies undertaken by the carriers likely re-
sulted in variations in performance outcomes. Although American Airlines
maintained a higher percentage of flights and seats than its rivals, it also had
a higher decline in yields during the pandemic, compared to the previous
year. Therefore, American’s decision to maintain its capacity may have had
a cost, with the higher capacity resulting in lower yields.

Our analysis of the middle seat blocking strategy revealed revenue losses
for airlines engaging in this strategy. Although there may be a positive long-
term rationale for blocking the seats; for example, enhancing the safety image
of an airline, in the short run, we calculated an airline lost about $3,000 per
flight due to the blocking of the middle seat. Much of the revenue loss can be
attributed to lower load factors. With the middle seats blocked, fewer passen-
gers could be accommodated by airlines undertaking the middle seat block-
ing strategy. To offset at least part of the loss in capacity resulting from the
blocking of middle-seats, airlines that instituted this policy also had a greater
share of seats on a route. Airlines that blocked middle seat increased flight
frequencies or operated with larger aircraft to, at least partially, compensate
for the lost capacity. However, this offset was not sufficient to overcome the
revenue losses due to the lower load factors.

Even though load factors were significantly lower when blocking the mid-
dle seats, effective load factors were higher. This result indicates that airlines
blocking middle seats were able to fill a larger percent of available seats. This
may be an indication that there were passengers that were attracted to air-
lines using this strategy. Further evidence of the ability of the strategy to
attract passengers is passenger shares were higher when the strategy was
employed, even after controlling for an airline’s capacity on a route (through
seat share).

Finally, we found that yields were lower when the middle seat was blocked,
contributing to the revenue loss. This result was related to the inclusion of
fixed airline effects in our model. When fixed effects were excluded, the mid-
dle seat blocking strategy contributed to higher yields. These mixed findings
indicate that the middle seat blocking strategy was related to systematic dif-
ferences in airline strategies and operations.

The major implication of this research is that strategy matters. Although
some passengers may view airline travel as a commodity and the services of-
fered by airlines to be largely undifferentiated, airlines do attempt to differen-
tiate their services. This was evident with the various strategies undertaken
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by U.S. carriers during the pandemic, especially with respect to the middle
seat blocking strategy. The fact that it appeared to be a “losing” strategy may
be indicative of the faith passengers put into the other efforts airlines took to
increase the safety levels in their aircraft.

3.6.2 Limitations and Future Research

A limitation of this paper is in its scope. We examine only the short run impli-
cations of blocking middle seats. Clearly some of the airlines that maintained
this strategy for several months (e.g., Delta) must have seen some benefits to
continuing to block middle seats. We do not assess these spillover effects
from the middle seat blocking strategy. Furthermore, we only estimate a
dataset for U.S. airlines. Since the viral levels differ across countries and
since people’s perception of air safety will vary across cultures, then our re-
sults may not be fully generalizable to other aviation markets. Clearly there
is future work that can be conducted on the blocking of middle seats as well
as on other pandemic-related aviation strategies. As noted above, it would
be useful to see if our results hold in other markets. Furthermore, other
safety-related strategies, including face mask requirements, may contribute
to passenger traffic or to yields. Therefore, conducting further analysis of
pandemic airline strategies may produce more insights into how airlines can
best survive pandemics.



3.7. Appendix B 65

3.7 Appendix B

TABLE 3.6: Estimates of the Selection Probit Models

(1) (2)
Variables RESROUTE MSB

CENTRALITY19 0.037***
(10.290)

MIDDLESEATSHARE19 -0.041***
(-5.711)

DIST -0.013 0.358***
(-0.223) (9.903)

TOTCOMP -0.022 0.045**
(-0.718) (2.123)

TOTROUTE 0.002*** 0.003***
(13.043) (24.046)

SUNBELT 0.108* 0.014
(1.700) (0.336)

LCC -1.122*** -0.239***
(-10.220) (-3.083)

POP 0.035 0.049**
(1.132) (2.489)

INC 0.073 -0.083
(0.613) (-0.954)

Constant -3.104 -2.531
(-1.164) (-1.240)

Observations 7,441 7,209
MONTH FEs
ROUTE FEs
AIRLINE FEs
ROUTETIME FEs

Robust t-statistics in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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TABLE 3.7: Estimates from the Main Model – Without Airline
Fixed Effects

(1) (2) (3) (4) (5)
Variables PAXSHR LOADFACTOR EFFLOADFACTOR SEATSHR YIELD

MSB 3.866*** -12.905*** 5.571*** 2.298*** 0.029***
(13.688) (-25.644) (10.403) (4.556) (16.555)

IMR1 3.044*** -2.500 6.967*** 3.544** -0.117***
(2.940) (-1.145) (2.746) (2.207) (-6.275)

RESROUTE -1.712*** -3.812*** -3.627*** 2.210*** 0.120***
(-6.299) (-5.559) (-4.836) (4.395) (38.184)

IMR2 -2.961*** -11.563*** -14.396*** -2.983** -0.114***
(-4.234) (-7.487) (-8.213) (-2.208) (-4.185)

SDI 0.719*** -15.904*** -18.196*** 6.820*** 0.022***
(2.753) (-9.258) (-9.237) (6.073) (3.047)

TOTCOMP 0.488*** 0.075 0.474 -3.948*** -0.003**
(6.228) (0.176) (0.902) (-12.133) (-2.212)

LCC 1.263*** 5.909*** 7.614*** -4.131*** -0.085***
(2.662) (6.097) (6.672) (-5.302) (-18.862)

FLEETMIX 0.336*** 1.223*** 1.375*** -8.720*** -0.000
(3.106) (4.154) (4.387) (-19.277) (-1.420)

TOTROUTE -0.000 -0.013*** 0.004 0.009*** -0.000***
(-0.096) (-3.531) (0.970) (3.518) (-5.220)

FREQ -0.009*** -0.051*** -0.039*** 0.182***
(-2.948) (-8.096) (-5.707) (20.876)

AIRCRAFTSIZE -0.003 0.004 -0.017 0.111***
(-0.510) (0.520) (-1.598) (11.571)

EFFSEATSHR 1.049*** 0.135*** 0.148***
(88.724) (7.137) (6.947)

ONESTOP -0.005
(-1.163)

TWOSTOP 0.039
(0.529)

Constant -10.084*** 176.377*** 176.388*** -34.219*** 0.049
(-4.262) (14.499) (12.460) (-4.237) (0.822)

Observations 7,135 7,135 7,135 7,135 4,554
Adj. R-squared 0.93 0.79 0.77 0.73 0.84
MONTH FEs
ROUTE FEs
AIRLINE FEs
ROUTETIME FEs

Robust t-statistics in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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TABLE 3.8: Estimates from the Main Model – With Route-Time
Fixed Effects

(1) (2) (3) (4) (5)
Variables PAXSHR LOADFACTOR EFFLOADFACTOR SEATSHR YIELD

MSB 8.812*** -3.687*** 12.774*** 8.051*** -0.031***
(22.020) (-7.448) (20.131) (41.192) (-6.541)

IMR1 3.126*** -3.506* 7.115*** 3.865*** -0.161***
(3.281) (-1.849) (3.206) (5.222) (-5.642)

RESROUTE -2.017*** -1.059 -3.042*** -0.353* 0.110***
(-6.361) (-1.613) (-3.994) (-1.906) (16.281)

IMR2 -3.730*** -8.154*** -10.337*** 0.194 -0.102***
(-4.567) (-5.405) (-5.698) (0.366) (-3.272)

FLEETMIX 0.223* 0.646** 0.226 0.142** -0.000**
(1.725) (2.544) (0.815) (2.037) (-2.239)

TOTROUTE -0.012*** -0.013*** -0.001 0.002 -0.000***
(-5.072) (-3.125) (-0.253) (1.603) (-5.826)

FREQ -0.008** -0.025*** -0.008 -0.009***
(-2.459) (-4.312) (-1.376) (-3.822)

AIRCRAFTSIZE -0.001 -0.008 0.016 0.013***
(-0.205) (-0.820) (1.347) (3.618)

EFFSEATSHR 1.057*** 0.094*** 0.086*** 0.997***
(80.556) (5.167) (4.120) (143.100)

ONESTOP -0.023***
(-4.896)

TWOSTOP -0.082
(-1.026)

Constant 0.119 65.910*** 50.424*** -9.747*** 0.286***
(0.060) (18.571) (12.050) (-7.687) (5.991)

Observations 7,135 7,135 7,135 7,135 4,554
Adj. R-squared 0.95 0.89 0.88 0.99 0.89
MONTH FEs
ROUTE FEs
AIRLINE FEs
ROUTETIME FEs

Robust t-statistics in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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TABLE 3.9: Results Based on a Subsample Where DL is Always
Competing With AA, UA, or Both

(1)
Variable YIELD

MSB 0.017***
(5.646)

IMR1 -0.008
(-0.905)

IMR2 0.040***
(3.648)

SDI -0.029***
(-3.272)

TOTCOMP -0.000
(-0.106)

FLEETMIX 0.000
(0.087)

TOTROUTE -0.000
(-0.573)

ONESTOP -0.020**
(-2.420)

TWOSTOP 0.096
(0.956)

Constant 0.353***
(5.564)

Observations 544
Adj. R-squared 0.96
MONTH FEs
ROUTE FEs
AIRLINE FEs
ROUTETIME FEs

Robust t-statistics in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Chapter 4

Pricing effects of code sharing in
Africa

4.1 Introduction 1

Air transport is a critical factor for Africa’s economic development (Button,
Martini, and Scotti, 2017). The continent has one of the largest territories in
the world: this implies long distances between the main urban centers of the
various African countries, but also for domestic connections. Furthermore,
several countries are landlocked, making the aviation sector even more cru-
cial for mobility of people and freight. Nevertheless, the sector is lagging be-
hind: it accounts for around 2% of world passenger transport, and for about
1.5% of freight transport (Button, Martini, and Scotti, 2017). In addition, ef-
forts to improve the sector through liberalization are slowed down by antag-
onisms between nations, poor negotiation effectiveness, political instability
(Njoya, 2016).2

The industry’s delay is also due to the lack of cooperation between African
airlines, both with each other and with major worldwide carriers and al-
liances (Button, Porta, and Scotti, 2022), even if other continents we are ob-
serving a trend for airlines’ consolidation, also to tackle the strong crises
triggered by COVID-19 (Andreana et al., 2021). For instance, AFRAA, 2022
claims that the enhancement of cooperation among African airlines is a cru-
cial factor in the process of recovery and long-run sustainability of air trans-
portation in Africa. Airlines’ cooperation may foster the industry and im-
prove the contribution of air transportation for economic growth in Africa

1This Chapter is coauthored with Gianmaria Martini, Laura Ogliari, and Davide Scotti
2In 1999 the African countries signed the Yamoussoukro Decision, with the aim of liber-

alizing intra-African flights, and implementing uniform safety and security standards. To-
day, African states mutually grant themselves the right to exercise traffic rights, but retain
the power to designate the airlines, and tariff freedom is limited to eligible airlines. Cabotage
is not in place, as it is, for instance in the European Union.
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through network expansion, internalization of external effects such as dou-
ble marginalization, and cost savings due to synergies. At the same time, co-
operation can reduce competition and lead to higher prices. Hence, looking
at the relation airlines’ cooperation-airfares is essential to evaluate whether
in Africa the benefits of cooperation translate to passengers through lower
prices, that can act as a stimulus for an increase in the passengers’ volume,
as it happened in the United States, and in Europe. The aim of this paper is
to estimate the effect of airlines’ cooperation on airfares in Africa.

Among the different forms of airline cooperation this paper focuses on
code sharing (CS), the most widespread cooperation strategy at a global level.3

Code sharing is a marketing arrangement between two airlines whereby one
airline’s designator code is shown on flights operated by its partner airline
(Oum, Park, and Zhang, 1996). CS extends the network of routes and in-
creases the load factor of the aircraft. CS has long been a practice in air trans-
port: the first international codeshare agreement took place in 1985 between
American Airlines and Qantas (Dresner and Windle, 1996). It has progres-
sively developed to cover a large percentage of flights (Jong et al., 2022 states
that in 2018 about 75% of all direct and indirect flights between the US and
Australian were in code sharing, and that a similar percentage applies to
flights between Europe and the US) in parallel with the liberalization of air
transport.

Previous contributions on the effects of CS are mainly empirical, but there
are also some theoretical papers (e.g., Hassin and Shy, 2004, Heimer and Shy,
2006, Chen and Gayle, 2007; Adler and Hanany, 2016) that have highlighted
the possible existence of a trade-off between positive and negative effects
of CS agreements .4 The vast majority of studies is related to the US, since
they exploit information available in the Department of Transportation ori-
gin and destination data bank 1B, which provides data on a 10% sample of
passengers traveling both domestic and international flights extracted from

3In the air transportation sector there is a variety of cooperation strategies, i.e., global
alliances, antitrust immunity, and joint ventures. While CS is usually an agreement between
two airlines, a global alliance is a coordination among several alliances, granting benefits
like a high network expansion to the allied carriers, and the possibility to collect advantages
from frequent flyer programs to passengers.

4Chen and Gayle, 2007 study the effect of CS with a vertical product differentiation
model in itineraries involving one stop, and show that it decreases prices by eliminating
the double markup only if there is no CS partner offering online flights (i.e., the same airline
operates both legs) in the same itinerary. Adler and Hanany, 2016 present a game-theoretic
model to study the impacts of CS in parallel networks, i.e., routes where airlines overlaps.
They show that consumers are better off only if CS covers a small share of the flights offered
in the parallel networks.
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reporting carriers.5 A large number of these papers finds that CS decreases
prices in connecting prices, while there is no effect on direct flights. The in-
tuition is that through cooperation airlines realize that in a one stop itinerary
if both charge prices independently on the leg they operate, they do not take
into account the external effect on the demand for the other leg, i.e., a typical
double markup effect, and this leads to higher prices.

The magnitude of the price reduction due to CS in connecting flights
has decreased from the early cross section studies of Brueckner, 2003 and
Bilotkach, 2007, that find about a 20% price decrease, to later contributions
using panel data (Whalen, 2007; Armantier and Richard, 2008; Brueckner,
Lee, and Singer, 2011; Calzaretta Jr, Eilat, and Israel, 2017; Brueckner and
Singer, 2019), with estimates varying between -4% and -6%.6

Some papers do not find any effect, or that CS increases prices. Gayle,
2008 examines US data for the 4th quarter of 2002 and of 2003, to test the ef-
fect of the announcement made in August 2002 of Delta Airlines, Continental
Airlines, and Northwest Airlines to implement CS, and he does not find any
effect. Gayle, 2013 presents a structural model using US data for domestic
flights covering the four quarters of 2006, and explores a counterfactual anal-
ysis where a CS between carriers is transformed as a complete integration,
and finds that in this case prices would decrease by 20%, highlighting that
CS does not reduce double marginalization. Other papers present a struc-
tural model, and find that CS is not facilitating collusion. Gayle and Brown,
2014 using US data for the 4th quarter of 2002 and 2003 to study the effects
of the alliance (involving also CS agreement) between Delta Airlines, Conti-
nental Airlines, and Northwest Airlines, show that data are better fitted by
a model that assume Bertrand competition among the carriers, even if they

5Carriers are US-based (domestic) carriers, and reflect US airline and codeshare partner
(foreign) airline routes.

6Brueckner, 2003 investigates cross-section data on the 3rd quarter of 1999 and find that
in one stop flights CS reduces the prices by 17%. Bilotkach, 2007 use the same data set
but focuses only on EU-US routes and finds that CS reduces prices by 22%. Whalen, 2007
investigates a data set composed by international EU-US flights related to the 3rd quarter of
each year from 1990 to 2000 and finds a 4% price reduction. Armantier and Richard, 2008
study a data set composed by US domestic flight in the period 1998-2000 to identify the effect
of the CS agreement between Continental Airlines and Northwest Airlines, and find that it
reduces prices by 6% in connecting flights, but it increases them by 10% in direct ones. A
reduction in prices (-4%) is found also by Brueckner, Lee, and Singer, 2011 using US data
for a longer period (1998-2009). Calzaretta Jr, Eilat, and Israel, 2017 analyze international
flights departing/arriving in the US between 1998 and 2015, and find alliances involving
also CS agreements lead to a 4% price decrease on connecting fares (even after controlling for
antitrust immunity and joint-ventures). Brueckner and Singer, 2019, using a more detailed
data set, find a much smaller price reduction due to CS (-1%) for the period (1997-2016) for
connecting flights.
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cooperate, rather than collusion. On the contrary, Ciliberto, Watkins, and
Williams, 2019 with US data for a long period, i.e., 1993-2016, finds that CS
might be a factor facilitating price fixing, since airfare are more rigid in pres-
ence of CS. Ito and Lee, 2007 makes an important contribution on the effect
of CS, using the US data for domestic flights in the 3rd quarter of 2003. They
provide a classification of CS agreements, introducing the difference between
traditional and virtual CS, that will be specified later, and show that CS may
be implemented not only for expanding the network, increasing the flight
frequency, and eliminating double marginalization, but also for market seg-
mentation. The idea is that the CS flight is perceived a lower quality prod-
uct by passengers, since when the itinerary is operated by a different carrier
than the passenger’s preferred one, luggage, check-in and boarding opera-
tions may be treated differently. They find that virtual CS reduces prices by
5%, while, as expected, traditional CS increases prices by 6%, in comparison
to online flights.

Few studies have investigated the effects of CS outside the US, due to
lack of data.7 Alderighi, Gaggero, and Piga, 2015 analyze 49 European routes
from April 2003 to February 2004 by web-scrapping data from Opodo web-
site with a focus on the dynamic pricing, i.e., the possible price differences
among early and later buyers.8 They show that CS increases prices by 10%
on early bookers, due to the higher airfares charged by the marketing carrier,
i.e., the airline that does not operate the flight. Jong et al., 2022 use data from
a survey involving Australian passengers flying on two routes: Australia-
Chile, and Australia-North America. They show that CS increases passen-
gers’ willingness to pay for flights provided by non-Australian carrier, i.e.,
there is an evidence that passengers have a bias towards home airlines, and
CS is a factor increasing the reputation of foreign carriers.

Last, Adler and Mantin, 2015 is the closer contribution to this paper re-
garding the empirical method. They study data on El Al Israel Airlines
flights from/to Israel for March 2008 and March 2010, to observe the effect
of the Israeli antitrust authority taken in 2009 that limited several coopera-
tive agreements between El Al and other international airlines. They adopt
a difference-in-difference econometric model to observe the impact of a vari-
ation in the CS settings on airfares, and find that in the connection flights

7A similar data set to the US Databank B1 is not available in other countries, where it
is instead necessary to buy proprietary data from specialized companies, e.g., OAG–Official
Aviation Guide, of from web scrapping, limited to some routes/airlines.

8Opodo is a online travel agency operating in Europe, developed by some European
airlines, e.g., British Airways, Lufthansa, Air France, KLM, Iberia, etc.
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where the Israeli antitrust authority decision removed CS, prices increase by
4% in case of free sale CS.9

This paper fills some gaps existing in the literature. First, it provides some
empirical evidence of the changes in price when a CS agreement is imple-
mented in a connecting flight where the two operating airlines were not co-
operating before. Similarly to Adler and Mantin, 2015 this paper adopts a
sort of difference in differences method, but the implementation of CS is not
due to an imposition of a antitrust authority (with the usual monitoring of
behavior after the decision) but rather is the independent decision of some
airlines. Hence, it is possible to observe whether the potential benefits com-
ing from the elimination of double marginalization outweigh the possible
losses due to collusion. Second, the paper analyzes data related to Africa,
providing, to the best of our knowledge, insights on the effect of CS not yet
available in the literature. Third, differently from Alderighi, Gaggero, and
Piga, 2015; Adler and Mantin, 2015 the paper investigates official data (i.e.,
not obtained through web scraping) and for all airlines and flights (not lim-
ited to a sample, as in Alderighi, Gaggero, and Piga, 2015 and Adler and
Mantin, 2015). Last, it presents new empirical evidence on possible spillover
effects of CS, i.e., what is the impact of a CS agreement on the airfares of carri-
ers not involved in CS but with some strategic interactions (e.g., they operate
the same route but with different products) with the airlines involved in CS.
The idea is to analyze whether there is a price effect in three different types of
flights: (1) in connecting flights, the prices charged by the two carriers that re-
main independent, i.e., a interline itinerary, and (2) by the carrier that operate
both legs (i.e., a online itinerary); (3) the prices charged by airlines operating
a direct flight in the same itinerary where there is a connecting flight with
CS. The spillover analysis may shed light on possible market segmentation
involved by CS, as in Ito and Lee, 2007: for instance, it may be possible to
find no effect on direct flight because passengers consider this product com-
pletely different from a CS connecting flight even if the ticket is sold by the
same company also operating the direct flight in that itinerary.

In order to fill these gaps the paper develops a fixed effects econometric
model applied to a panel data set covering the period 2017-2019, with fares
monthly observation at the airline level for each commercial route in Africa.
The identified empirical evidence is that CS acts as a potential stimulus for air
transportation demand in Africa, since, when it is introduced in a connecting

9A free sale CS agreement means that seats are not allocated to the marketing carrier,
and the latter can operate directly on the operating carrier’s computer reservation system.
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route previously served by interline service, it generate a strong reduction
in airfares, i.e., about -18%. The magnitude of the price reduction effect of
CS is larger than any previous results, implying that the impact of double
markup is strong in Africa where the lack of cooperation among the airlines
generates too high prices. The diffusion of protectionism and monopoly in
Africa aviation generates high prices, and only when, through a initial stage
of cooperation, airlines start to consider the possible negative effect on de-
mand of single leg high markups, they realize how many improvements can
be obtained by limiting the monopoly power. This large impact of CS is a
confirmation that the African aviation market has a high potential growth
coming from airlines’ cooperation, as suggested by AFRAA, 2022).

Furthermore, the evidence regarding the CS spillover effects is mixed: in
connecting flights with interline service we find that the airlines react to the
introduction of CS by reducing the price of about 10%. In flights with online
service the airlines does not react to the CS introduction. These insights im-
ply when providing online or direct services the airline do not perceived CS
as a threat for their market share. Definitions of these types of itineraries are
provided in the next subsection.

The plan of the paper is as follows. Section 4.2 introduces some defini-
tions regarding the different types of air transportation services we analyze.
Section 4.3 presents the African context, while Section 4.4 describes the em-
pirical strategy. Section 4.5 provides information regarding data sources and
variable definitions, while Section 4.6 show the econometric results. Section
4.7 offers some conclusions.

4.2 Definition of Air Transportation Services

In order to understand the impact of CS agreements once that they have been
implemented in Africa it is essential to clarify some important definitions
that apply to both itineraries and CS types. Regarding itineraries, it is nec-
essary to distinguish first between direct and connecting flights. A direct
flight links two airports without any intermediate stop. A connecting flight
provides instead service between two airports, one defined as origin airport
and the other as destination airport, but with at least one stop in another
airport, defined as gateway. Many international itineraries involve connect-
ing flights, also because, typically, the business model of full service carriers
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(FSCs) is based on the hub-and-spoke system.10

A further important distinction is related to connecting flights. In this
case it is necessary to distinguish itineraries between self-connecting, inter-
line, and online. Figure 4.1 shows the differences between self-connecting
(a), interline (b), and online (c). In case of self-connecting, the passenger buys
two tickets, one from the origin airport O to the gateway airport G, oper-
ated buy airline A1, and one from G to the destination airport D, operated by
airline A2 (or airline A1, it does not matter). The passenger has to check-in,
drop baggage, pass through security controls at O and G, and to claim bag-
gage both at G and D. If there is a delay in the flight between O and G, and
the passenger misses the flight between G and D, there is not protection on
another flight. If the passenger participates in a frequent flight program, e.g.,
related to carrier A1, can only collect the points related to this flight.

If the itinerary is interline (Figure 4.1(b)), the passenger buys a single
ticket, usually from a travel agency, the flight from O to G is operated by
airline A1, while the flight from G to D is operated by the other airline A2.
The check-in, baggage drop, and security controls are performed only in O,
and baggage claim is only in D. If there is a delay in the flight between O and
G, and the passenger misses the following flight, there is protection. How-
ever points are treated as in the self-connecting case.

The characteristics of the online itinerary are described in Figure 4.1(c).
The two legs O-G and G-D are operated by a single airline, e.g., A1, the pas-
sengers buys a single ticket both from a travel agency or on the airline’s web-
site, check-in, drops baggage and make security checks only at O, claims
baggage only at D, there is protection in case of delay, and can collect points
for both legs. Clearly, in terms of service quality, online is the best, then inter-
line, and last, self-connecting. In interline and self-connecting itineraries the
two airlines A1 and A2 choose the ticket price to maximize each individual
profit. In this way, airline A1 adds a markup on the leg O-G, and airline A2

a markup on leg G − D, i.e., we have a double marginalization effect. The

10In aviation there is a traditional distinction between FSCs and low cost carriers (LCCs).
A LCC has a business model based on low prices, essential cabin and ground services, use of
secondary airports, direct sale of tickets through its website, concentration on medium-short
haul flights. A FSC provides higher quality services (fidelity premiums for frequent flyers,
protection in case of delays, lounges, differentiation of in-flight service between business and
leisure travelers, use of primary airports, a network with many long-haul flights. FSCs typi-
cally adopt a hub-and-spoke system, where many medium-short haul flights are connected
to a large airport that operates as a operational base for the airline, and from where many
long haul flights departs. In this way FSCs increase the load factor in long haul flights, by
gathering in the hub airport people sharing the same destination but staring from different
origins.
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FIGURE 4.1: Different Types of Connecting Flights
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CS agreement introduces an important change and generates a new itinerary
type. In connecting flights if airlines A1 and A2 are code sharing, this implies
a difference between the carrier that operates and sells the ticket–defined as
operating carrier–and the carrier that only sells the ticket–classified as mar-
keting carrier. A CS agreement implies the possibility for the marketing car-
rier to sell tickets on the leg that it does not operate.11 In a CS itinerary the
passenger buys a single ticket from the marketing carrier, that can be either
the airline that operates the flight or the one in codeshare, check-in, drops
baggage and pass through security at the origin airport O, claims baggage
only at D, there is protection, and can collect points for both legs. Hence, a
CS itinerary is close to the only even if there are some important differences,
as shown by Ito and Lee, 2007: since the passenger buys the ticket from the
marketing carrier, and then travels with a different airline, the check-in, on-
board, etc. treatments might be different, the points that may be collected
may be lower, baggage may not be completely seamless. These characteris-
tics make the quality of a CS itinerary between interline and online.

A further distinction regarding CS is between traditional and virtual: the
former is implemented when, for instance, airline A1 operates the leg O-G
in Figure 4.1 and airline A2 is the marketing carrier, while airline A2 oper-
ates leg G-D and A1 is the marketing carrier.12 A virtual CS is when in the
itinerary one airline does not operate in any leg of the itinerary O-(G)-D, but
only markets some tickets. Clearly, in case of direct flight the only type of CS
is virtual.

This paper focuses on connecting flights, therefore it is focused on the tra-
ditional type of codeshare. As shown by Adler and Mantin, 2015; Adler and
Hanany, 2016, there are several factors that may induce airlines to sign a CS
agreement, ranging from network expansion, increasing flight frequency, the
stimulus to demand through the elimination of double marginalization, price
discrimination through market segmentation (Ito and Lee, 2007), cost reduc-
tions through economies of density and scope (the airline can open new con-
nections without operating an aircraft and grasp benefits from higher pas-
sengers in the hub airport), higher load factor through better listing in the
reservation systems. A further incentive may be increasing prices through

11This right to sell ticket on the flight operated by the other CS member under different
specifications. In a free-sale CS seats in the aircraft that operates the leg are not allocated
to the marketing carrier, that can access directly to the operating carrier reservation system
and sell. In a hard-block CS agreement the marketing carriers buys some seats from the
operating carrier, and sell them independently.

12In a traditional CS it is enough that at least in one leg there is a operating and different
marketing carrier.
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cooperation. The paper aims to identify if CS is a factor decreasing prices
in African aviation, that implies that it limits double marginalization and/or
generates cost reductions. Furthermore, by analyzing the CS spillover effects
on interline, online, and direct itineraries, the paper provides some evidence
on whether CS may be implemented for market segmentation: for instance,
if airlines involved in online itineraries react to the introduction of CS by re-
ducing the price it means that the CS itinerary is a strong substitute of the
online one.

4.3 Air Transportation in Africa

The great potential of Africa for the development of air services is not in
question. Africa’s demography (about 15% of the world’s population, spread
in more than 50 countries) combined to its geography (huge distances and
larger and larger urban concentrations) and to the underdevelopment of al-
ternative transport modes are ideal conditions for successfully developing
aviation (Button et al., 2015; Abate, 2016; Lubbe and Shornikova, 2017). De-
spite that, African continental airline markets are underdeveloped (only about
2% of global traffic) and concentrated in a few countries, with most of the air-
lines characterized by local orientation and inefficiency (Button, Porta, and
Scotti, 2022). In other words, African airlines (and this is especially true for
the Sub-Saharan ones) benefit little from economies of scope and density,
and, on top of that, are often subjected to significant political interference.
A contribution to make airlines’ business particularly costly is also given by
high finance costs of aircraft acquisitions, lack of connectivity and liberaliza-
tion, high costs of jet fuel, and high aviation fees and charges. As a result, air
tickets in Africa cost much more compared to more developed industries like
in Europe or US. When also the GDP per capita is considered, the “real cost”
increases to the point that an African middle-class citizen cannot bear more
than 1 air trip per year, compared to the about 26 in Europe and 33 in North
America (Logistic, 2022). The fact that airlines are unprofitable and unable
to offer competitive fares to passengers is a dramatic obstacle to the devel-
opment of the industry in many African countries. The main direction along
which to proceed in order to get out from this quicksand is represented by the
enhancement of the liberalization process of the African Skies. Several efforts
have been made over the last 30 years to improve connectivity and remove
many of the rigid bilateral constraints. The Yamoussoukro Decision (YD) of
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1999 is the most important agreement in this direction (Scotti et al., 2017). Al-
though the efforts have not been sufficient to date (Button, Porta, and Scotti,
2022), the launch of the Single African Air Transport Market (SAATM) in
2018 represents a further clear attempt toward the full implementation of the
YD. As pointed out by the African Airlines Association (AFRAA), the im-
plementation of the liberalization is important also to guarantee a favorable
environment for airlines cooperation allowing them to enter into agreements
providing the required commercial and operational flexibility. Globally, the
benefits from commercial cooperation (especially strategic alliance member-
ships and code sharing agreements) have been remarkable. On the contrary,
there is currently lack of cooperation across African airlines (Button, Porta,
and Scotti, 2022). Njoya, 2016 attributes part of the failure to the past effort
toward liberalization to this lack of cooperation between African carriers and
airlines from elsewhere. Commercial cooperation is therefore seen as one of
the keys to make intra-Africa travel convenient and affordable thanks to fare
reductions and revenue increase for African carriers.

4.4 The Empirical Strategy

This section describes the econometric model to identify the impact of CS on
airfares in Africa. Since the aims are to obtain evidence (1) on the change
in prices once that CS has been adopted on particular routes, and (2) on the
spillover effects of the CS adoption on the same set of routes when offered
under alternative circumstances (i.e., nonstop, connecting but with only one
single player for both legs, etc.), two different empirical settings are designed.
For the first goal, we exploit the panel dimension of the dataset and imple-
ment a fixed effect econometric model as follows:

log FAREijt = γCSijt + αij + αjt + ϵijt (4.1)

where FAREijt is the average fare charged by the operating carriers pair
i (i.e., the pair A1-A2 or A1-A1 in Figure 4.1), on the O&D market j (the con-
necting itinerary O-(G)-D in Figure 4.1) during period t (month-year), ex-
pressed in logarithm. CSijt is a dummy variable equal to 1 if the two oper-
ating carriers are in a CS agreement on market j, and 0 otherwise. αij is the
carrier pair×market fixed effect, αjt is the market×period fixed effect, and
ϵijt is the error term, which is assumed to be normally distributed.
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The model is applied to connecting itineraries where there are at least two
pairs of operating carriers covering the two different legs, with at least six ob-
servations, of which at least in the first three periods the itinerary is interline,
and then one carrier pair adopts the CS agreement and keeps it until the end
of the observed time interval. Table 4.1 offers a clear view of our definition
of a CS agreement.

TABLE 4.1: Example of the Activation of Code Sharing

t OC1 MC1 OC2 MC2 CS

1 A1 A1 A2 A2 0
2 A1 A1 A2 A2 0
... ... ... ... ... ...
23 A1 A1 A2 A2 0
24 A1 A1 A2 A1 1
... ... ... ... ... ...
T A1 A1 A2 A1 1

The rich set of fixed effects allows us to parsimoniously control for many
sources of unobserved heterogeneity. In particular, the carrier pair×market
fixed effect controls for all time-invariant factors involving two airlines on a
given market. The market×period fixed effect absorbs all unobserved time-
varying factors that may affect the ticket price charged in a specific market,
such as demand shocks due to seasonality, country pair characteristics, and
the competition on the route. The dummy variable CS captures the switch
from interline to codeshare. The coefficient, γ, is identified only using fare
variation in the same market and period between pairs that are in CS and
those who are not, as well as variation within pairs and market before and
after the switch to CS. It is therefore possible to interpret γ as a difference in
difference effect: the difference in fares charged in market j between airline
pairs operating in CS and those operating interline, before and after code
sharing is introduced.13

Even with the rich set of fixed effects, in the model shown in (4.1), the
CS dummy may still be endogenous (Brueckner, 2003). Airlines may select
the route where to adopt CS due to unobserved factors, implying that the

13The inclusion of market × period and market pair fixed effects implies that to identify
gamma we are using only those itineraries where that are at least two pairs of operating
carriers covering different legs in which at least one of the two switches.
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dummy CS may be correlated with the error term ϵ, generating a challenge
in the identification of the effect of the adoption of codeshare on ticket prices.
We tackle this issue with an instrumental variable approach. As an instru-
ment we exploit the "gateway characteristics", and in particular the number
of direct connections that the two airlines operate in codeshare with any air-
line from the gateway to other destinations rather than the origin and the
destination of the considered market. We call this variable CSPROPENSITY as
we believe it captures the attitude of an airline pair to cooperate through a
code sharing agreement on the observed O&D market at a given period t.
This measure allows us to exploit some variation at the airline pair (i) - mar-
ket (j) level. Moreover, supported by the theory on multimarket contact, we
believe that if the codeshare agreements are signed for a group of routes, then
the decision to codeshare on another route is driven by the same reasons. If
at time t the interline connection A1/A1 → A2/A2 on the itinerary Origin-
Gateway-Destination O0 − (G0)− D0 is observed, it is reasonable to assume
that the probability that at period t a CS agreement is observed (i.e., A1/A1
→ A2/A1*) is positively linked to the number of segments in CS that the two
operating carriers (A1 and A2) have with any partner connecting that specific
gateway G0 to airports different from the origin and destination of the route.
This number explains the propensity of CS in G0, but does not affect the fare
of the itinerary O0 − (G0)− D0 given that regards other O&Ds.14 Figure 4.2
and Figure 4.3 illustrate this concept.

14When an airline pair A1/A2 flies the same interline itinerary passing through different
gateways this number is computed as the mean across the gateways.
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FIGURE 4.2: An Interline Itinerary operated by A1 and A2

FIGURE 4.3: A Gateway and All Its Outbound Direct Codeshare
Flights That We Count to Build Our IV

Our second goal is to investigate whether CS adoption by a carrier pair
in a particular market has spillover effects on the same route when served
under different circumstances: by airline pairs that never switch to codeshare
(the interline case), by airlines offering the two legs on their own (the online
scenario), and when the O&D market is served without any intermediate
stop (the direct case). To this purpose we use three different subsamples and
estimate the following econometric model:

log FAREijt = θCSjt + αit + αjs + αct + ψijt (4.2)

where FAREijt is, in the interline subsample, the fares charged by the air-
line pair i that never adopt CS in market j (t identifies the period, as before);
in the online subsample, the price charged in the connecting route j by the
single carrier i that operates both legs; on the direct itinerary subsample, the
price charged by airline i that serves market j without stops (i.e., a direct
flight from origin O to destination D). CS_ROUTEjt is specified as a dummy
variable equal to one if on route j a carrier pair operating a connecting flight
switches from interline to codeshare; hence, the coefficient θ identifies the
spillover effect, i.e., how the other airlines, offering a different product, re-
act to the introduction of CS by some competitors on the same route. The
set of fixed effects is now different than the one we exploited to estimate the



4.5. Data and Variables 83

double difference in the main model (4.1). αit is the airline pair×period (or
the single airline×period in the online and direct subsamples) fixed effect,
αjs the market×semester fixed effect, αct the country pair×period fixed effect
capturing all the time varying characteristics of the route at the country pair
level (all the sociodemographic attributes that we could have included at the
country level are taken into account).15

4.5 Data and Variables

This Section presents the data sets used in the empirical application to iden-
tify the impact of code sharing on airfares in Africa. The main dataset cov-
ers 36 months within the 2017-2019 period and focuses on connecting flights
in the intra-African international market.16 Data used for investigating the
spillover effects extend also to non-stop (direct) flights. Data are available
from the OAG (Official Aviation Guide) Traffic Analyzer, which provides
aggregated traffic information on tickets sold (prices, passengers, etc.). So-
ciodemographic data as political stability, population, and gdp per capita in
PPS17 at the country-year level are collected from the World Bank dataset.18

The basic unit of observation is an airline pair in a market, where the airline
pair is the combination of the airlines operating the first and the second leg
of the itinerary, which differ in the case of code sharing. We define a market
as a directional flight between two airports, irrespective of intermediate con-
necting points (gateways). Considering directionality (that is, A–B and B–A
are counted as separate routes) is common in the literature that relies on the
same data source (e.g., Dresner et al., 2021).

Data cleansing actions have been applied to keep the most credible and
relevant observations only. First, observations reporting airfares below 10$
are excluded as they are unlikely credible. This threshold has been set in a
cautionary way not to risk losing too much information. Yet, with this cut-
off we exclude about 50% of the total number of observations. Those are

15Market and period fixed effects cannot be included since they are collinear with CSjt.
To alleviate this concern we included the αjs which we believe it captures most of the airline
competition at the j − t as the entry/exit decision is rarely something changing within the
season, but rather decided months in advance and stable along the semester. Birolini et al.,
2021

16Itineraries with gateways outside Africa have not been included.
17A common currency that eliminates the differences in price levels between countries

allowing meaningful volume comparisons of GDP between countries.
18Available at https://databank.worldbank.org/source/worldwide-

governance-indicators, https://data.worldbank.org/indicator/SP.POP.TOTL and
https://data.worldbank.org/indicator/NY.GDP.MKTP.PP.CD, accessed, March 13, 2022
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likely the results of misreporting or missing data; other cases might be re-
lated to frequent flier programs and discounted fares for cabin crews. We
are not surprised by such a huge drop in the number of records as this is
often observed with OAG-based data, especially for secondary and poorly
researched markets, as Africa.19 Second, observations that appear less than
six times (consecutives or not) in our sample are excluded as actual changes
in the code sharing agreements are difficult to appraise. Similarly, to have a
clearer pattern to apply our models on, we exclude from the sample the pairs
switching on and off. As consequence of this second cutoff we restrict the
sample by an additional 20%.20

Although we do not exploit a classical Difference in Differences frame-
work, we borrow its taxonomy and identify the Treatment Group (TG) as
those observations that are interline for the first three periods, and then are
in code sharing for the rest of the periods in the sample. The Control Group
(CG) is composed of those observations that are always interline. Our dataset
shows some cases of virtual codeshare that we consider as interline, but those
account for less than 0.8% of the total number of records and do not change
the estimates if treated differently.

After the data cleansing actions are applied, there are 1,008 unidirectional
markets with 83 carriers, including 6 Low-Cost carriers (e.g., FA (Safair), JE
(Mango)), some European and Gulf carriers (e.g., AF (Air France), BA (British
Airways), EK (Emirates)).21 The Top 10 airlines and airline pairs in our main
sample are reported in tables 4.2 and 4.3.

19Airfares are calculated in US dollars, and do not include fees paid for allocating seats,
baggage, or priority boarding. Nor do they include payments for on-board food and drinks,
taxes, airports fees, and surcharges (Dresner et al., 2021).

20As robustness checks, different thresholds have been tested without any relevant
change. The same applies to the threshold on the level of airfares.

21Before the cutoffs were applied we had 6,580 markets, 128 carriers. Proportions were
similar with respect to the carriers’ identity
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TABLE 4.2: Top 10 Operating Carriers in Panel A

Airline Code Airline Name Business Model

SA South African Airways Mainline
KQ Kenya Airways Mainline
ET Ethiopian Airlines Mainline
BA British Airways Mainline
FA Safair Low Cost

MN Comair Mainline
BP Air Botswana Mainline
WB Rwandair Express Mainline
KP ASKY Airlines Mainline
HF Air Cote d’Ivoire Mainline

TABLE 4.3: Top 10 Operating Pairs in Panel A

Airline Pair Code Airline Pair Name

BA-SA British Airways-South African Airways
FA-SA Safair-South African Airways

MN-SA Comair-South African Airways
BP-SA Air Botswana-South African Airways
KQ-SA Kenya Airways-South African Airways
WB-KQ Rwandair Express-Kenya Airways
ET-SA Ethiopian Airlines-South African Airways
5H-KQ Five Forty Aviation-Kenya Airways
KQ-ET Kenya Airways-Ethiopian Airlines
MS-ET Egyptair-Ethiopian Airlines

Our final data set contains 2,061 products (airline pair-market) for which
we observe ticket prices across time. Summary statistics for the variables
used in our empirical models are reported in Table 4.4, Panel A describes
the characteristics of the main sample, while panels B, C, and D, report the
summary statistics for the subsets exploited in the spillover analyses. Panel
B is composed of interline observations that never experience a switch to
codeshare. In this case, we suspect there might be an indirect effect from
the activation of code sharing by some airline pairs on airfares proposed by
those never cooperating on this level in the same market. Panels C, and D are,
respectively, the online type of observations (where the operating carrier of
both legs is the same) and the direct (nonstop) observations that is expected
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to be representing the highest quality product, or at least the highest level of
integration by definition.

TABLE 4.4: Summary Statistics

Variable Obs Mean Std. Dev. Min Max

Panel A: main sample

FARE 31,085 215.26 127.11 10 1,892
CS 31,085 0.04 0.20 0 1
CS_PROPENSITY 31,085 1.520 5.311 0 56
DOM_LEG 31,085 0.50 0.50 0 1
KEY_GTW 31,085 0.66 0.36 0 1

Panel B: interline sample

FARE 27,959 210.15 122.55 10 1,892
CS_ROUTE 27,959 0.03 0.48 0 1
DOM_LEG 27,959 0.52 0.50 0 1
KEY_GTW 27,959 0.636 0.362 0 1
DIST 27,959 2,863 1,503 283 9,149
POP 27,959 1,660 2,810 0.12 22,500
GDP 27,959 65.60 94 47 585
POL_STAB 27,959 -0.44 0.55 -2.15 1.00

Panel C: online sample

FARE 19,729 194.25 118.18 10 1,523
CS_ROUTE 19,729 0.07 0.26 0 1
DOM_LEG 19,729 0.27 0.44 0 1
KEY_GTW 19,729 0.88 0.17 0 0.99
DIST 19,729 3,415 2,002 294 11,374
POP 19,729 1,630 2,480 0.32 20,300
GDP 19,729 42.25 65.40 0.47 560.00
POL_STAB 19,729 -0.559 0.536 -2.11 1.00

Panel D: direct sample

FARE 9,299 176.48 104.85 14 1,319
CS_ROUTE 9,299 0.05 0.22 0 1
DIST 9,299 2,156 1,360 278 6,711
POP 9,299 1,700 3,100 0.12 22,500
GDP 9,299 51.60 76.60 0.85 585.00
POL_STAB 9,299 -0.58 0.54 -2.15 0.88

Panel A includes all the observations that either belong to the control or
to the treatment group. In this case, the effect of the adoption of code shar-
ing has a direct impact, which is assessed on the i-j-t level. Differently, for
the spillover analyses the level of detail is the j-t level. After excluding the
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observations according to the criteria described above we are left with 31,085
interline observations where a change in CS takes place (Panel A), and 27,959
records with airline pairs never activating CS (Panel B). Within the online
itineraries (Panel C), 19,729 observations are identified, while direct flights
(Panel D) represent the smallest group, and account for 9,299 observations.
In Panel A are included 1,008 markets and 2,061 products, Panel B has 886
markets and 1,862 products, Panel C has 878 routes and 1,686 products, while
Panel D includes 455 markets and 616 products.

Our key variable of interest is CS, which is a dummy variable describ-
ing whether the two airlines operating the interline itinerary are cooperating
through a code sharing agreement.

From Panel A it is evident that the average level of fare is the highest
among the four panels, maybe reflecting that airlines codeshare in the most
profitable markets. Code sharing is typical of about 4% of the sample. On
average, about 20% of the routes (i.e., 198) are characterized by the adoption
of code sharing during the observed time window. CS_PROPENSITY is
the instrumental variable used to tackle the CS endogeneity problem. As
described in Section 4, it represents the airline pair’s propensity to codeshare
from each specific gateway as it counts the number of segments in CS that
the two carriers (A1 and A2) have with any partner connecting that specific
gateway to airports different from the origin and destination of the itinerary.
On average, about 25% of the direct flights from the gateway are operated
under a codeshare agreement (i.e., about 2 routes per carrier pair). Among
the interline routes, more that 70% of them are connected through a gateway
from which airlines codeshare to other destinations. DOM_LEG is a binary
variable taking one if at least one of the two segments is domestic (links two
points within the same country). In Panel A, half of the observations involve
a connection of this kind. Lastly, KEY_GTW is a continuous variable ranging
between 0 and 1, and describing the importance of the gateway for the airline
pair by the percentage of flights of the two airlines having the gateway as
origin for other destinations with respect to the total number of destinations
operated by the two players. This is a proxy measure of the hub nature of
a gateway, which we believe to be important to control for.22 In the main
sample, on average, the gateway is often key for the airline pair.

Moving to Panels B, C, and D, consistently with the theory of double

22We considered the maximum percentage of direct flights from the gateway between A1
and A2. A value equal to one would mean that the airline pair (or at least one of the two
airlines) serves all its direct routes from that particular gateway.
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marginalization, the average fare progressively decreases as it does the num-
ber of observations in the samples. When studying the spillovers we define
CS_ROUTE to take one if at least an airline pair activates codeshare on that
particular market. On average, in our samples, this is typical of 3-7% of the
observations, with the online sample the one with the highest percentage of
observations on routes where codeshare is activated by some other airline
pairs.

In addition to the variables already described for Panel A, to capture the
disutility of the travel, and a cost term for the airlines, the average distance
connecting origin and destination (DIST) has been included in the spillover
models. As expected, the average distance is higher for connecting itineraries
than for non-stop flights. Finally, population, gdp, and political stability are
computed at the country pair-year level: POP and GDP are computed as the
product of the endpoints’ population and gdp per capita (PPS). Direct routes
seem to connect bigger areas, while online routes richer markets. POL_STAB
reflects the average political stability index of the two countries involved in
the international O&D route: the lowest value (-2.15) belongs to the Congo-
Nigeria country pair, while the highest refers to Botswana-Mauritius. FARE,
DIST, POP, and GDP variables have all been logged when included in the
regression models.
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4.6 Results

4.6.1 The Effect of Code Sharing Agreements on Fares

This section estimates model 4.1 to determine a direct causal relationship
between code sharing and fare levels. Table 4.5 collects the results. Col-
umn (1) reports the correlation between the activation of a codeshare agree-
ment and the logarithm of fare, conditional on carriers pair×market and
market×period fixed effects. The coefficient on CS indicates the change in
fares charged by a pair of carriers on a specific market j after they start op-
erating in code sharing, compared to the fares of pairs that remain interline
on the same route. The conditional correlation is small, positive and statis-
tically insignificant, suggesting that, on average, in a market, prices charged
by carriers operating interline and in code sharing are comparable.

As discussed in Section 4.4, we expect carriers to choose which markets
to operate in code sharing and who to stipulate the agreement with in order
to maximize their expected profits. This makes the CS variable endogenous
and the effect we estimate with a simple OLS regression biased. Therefore,
to estimate the causal effect of the introduction of CS on fares, we employ an
instrumental variable approach. Column (3) reports the results of the 2SLS
estimate of model 4.1, where CS_PROPENSITY is used as an instrument for
CS. The first stage coefficient in Column (2) suggests that the instrument is
strong (0.011 (0.003)), and positively correlated with CS, implying that the
higher the number of segments that the two carriers operate in (virtual) code
sharing from the gateway (other than those connecting the gateway to the
origin and the destination of the specific route) the higher the likelihood that
they will have a code sharing agreement also on that route. In accordance
with the exclusion restriction, the reduced form in Column (4) shows no
correlation between the instrument and the dependent variable. The 2SLS
estimates of γ is now negative and statistically significant, and implies that
airline pairs that switch to CS lower their fares by approximately 18% on a
route, compared to fares charged by carriers that continue to operate inter-
line. The comparison of the OLS and the 2SLS estimate suggests that carriers
typically enter in code sharing agreements in markets where fares are higher
(either because they have higher margins or because they have higher costs to
serve that market). The magnitude of the effect is sizable and slightly larger
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than what the literature finds when analyzing code sharing on intercontinen-
tal or US domestic routes.23 This could be due to the underdevelopment of
the African air service sector. As a final step, Column (4) presents the re-
sult of the reduced form model which show a negative and non significant
coefficient of CS_PROPENSITY which supports the exclusion restriction as-
sumption.

In order to check the robustness of our results we propose a sensitivity
analysis which results are summarized in Table 4.8. First, we include addi-
tional control variables including DOM_LEG and KEY_GTW. We do not
find any significant difference. Second, we propose a set of robustness re-
garding the sample composition and arbitrary decisions that were taken in
the dataset construction. In the context of air transportation in Africa, the
North-African market tends to be more developed, integrated and domi-
nated by European players. The effect of code sharing on fares is likely to
differ between North Africa and the rest of the continent; therefore, to test the
robustness of our results, we exclude from the sample all routes with origin
and destination in North-African Mediterranean countries and we propose
a focus on the Sub-Saharan Africa as robustness check. Similarly, moved by
the same suspect, we also repeat the analysis focusing on African airline pairs
only. Indeed, in both cases, the magnitude of the 2SLS coefficient increases,
and it now suggests that, when compared with their interline counterparts,
pairs who start operating in code sharing reduce their fare on the route by
approximately 30%. When we exclude LCCs from the sample results do not
change, while when setting different cutoffs for the acceptable level of fares
we find a slightly stronger effect (-20.5 to -23.2%). On the contrary, when we
allow for our products to be in the sample if observed for less or more peri-
ods, we end up with slightly lower coefficients (both around -15%). Finally,
three different ways of clustering the standard errors are proposed. In this
latter case, and no change in the significance of our results is detected.

Overall, the results in this section show that the switch to code sharing
lowers the fares charged by the airline pairs. This squares with the results of
the literature on cooperative pricing (see Brueckner, 2003, Ito and Lee, 2007,
among others) which find code sharing to lead to reduced fares compared

23Among others, Brueckner, 2003 finds a reduction of fares of 8%-17%, Ito and Lee, 2007
compares the codeshare case to the online case but the direction and the magnitude of the
coefficient is comparable. In Brueckner, Lee, and Singer, 2011 the effect is estimated in about
a 4% reduction of fares with respect to the interline case.
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to the interline case. As already mentioned before, we are not surprised to
find the effect of code sharing to be stronger than that found in other, more
developed and efficient, air transport markets.

TABLE 4.5: Fare Estimates from the Main Model

(1) (2) (3) (4)
Dependent Variable LFARE CS LFARE LFARE

CS 0.038 -0.202***
(0.041) (0.074)

CS_PROPENSITY 0.011*** -0.002
(0.003) (0.002)

Observations 19,800 19,800 19,800 19,800
Model OLS FS 2SLS RF
Adj. R-Squared 0.84 0.50 - 0.84

OPERATING PAIR×ROUTE FEs
ROUTE×TIME FEs

Standard errors, clustered at the route level, in parentheses.
*** p<0.01, ** p<0.05, * p<0.1
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TABLE 4.6: Robustness of the Fare Estimates from the Main
Model

Dependent Variable: LFARE

CS (2SLS) Observations

Specification

Add. Controls -0.192*** 19,800
(0.074)

Sample

Sub-Saharan Africa -0.333*** 18,656
(0.089)

African pairs -0.328*** 19,772
(0.074)

w/o LCC -0.201*** 13,298
(0.074)

FARE>=25 -0.229*** 19,730
(0.072)

FARE>=50 -0.264*** 19,204
(0.068)

T >=3 -0.157** 22,903
(0.070)

T >=12 -0.160** 14,551
(0.074)

Clustering

Operating pair and Route -0.202*** 19,800
(0.074)

Operating pair × Time and Route -0.202*** 19,800
(0.074)

Operating pair and Route × Time -0.202*** 19,800
(0.077)

OPERATING PAIR×ROUTE FEs
ROUTE×TIME FEs

Standard errors, clustered at the route level, in parentheses.
*** p<0.01, ** p<0.05, * p<0.1



4.6. Results 93

4.6.2 Spillover Effects

We now turn to the analysis of spillover effects. Since interline flight operated
in code sharing have lower prices than interline flights on a particular route,
we investigate whether code sharing generates pro-competitive spillover ef-
fects on fares charged by airlines which do not operate in code sharing. To
do so we concentrate on different categories of flights that may respond to
the introduction of code sharing on a given route.

We start by analyzing the impact of the introduction of code sharing on
interline flights; to do so, we restrict the sample to those carrier pairs that
operate as interline on the connecting routes O-(G)-D and we compare their
fares on routes where code sharing is introduced (by other carrier pairs) to
those where there is no code sharing at all. In this exercise the CS variable
varies at the route-time level. The inclusion of carrier pair interacted with
time fixed effects ensures us that we are accounting for time-varying factors
that may influence each airline pair, such as changes in the governance, po-
litical pressure or restructuring of the company, etc. The market × semester
fixed effects ensure us that we absorb all route-specific confounding factors
varying each six months (i.e., the competition on the route is likely to be
absorbed by those fixed effects), while the country pair × period fixed ef-
fects accounts for origin and destination non observable characteristics (e.g.,
population characteristics, trade, occupation) and basically allows to capture
changes in demand of the itinerary without explicitly including market-level
time-varying controls. As before, the interpretation of the codeshare coef-
ficient is akin to a difference in differences estimator as we are comparing
fares within routes before and after the introduction of code sharing, and
within company pairs between routes that have some form of code sharing
and markets which do not. Table 4.7 collects the results of this exercise. The
main explanatory variable is CS_ROUTE: an indicator that takes value 1 if
some carrier pairs (other than those included in the sample) operate in code
sharing on that route in that period. Columns (1), (2), and (3) report the coef-
ficients estimated via OLS. The results of Table 4.7 suggest that, all else equal,
when code sharing is introduced on a route, interline prices drop on average
by approximately 10% (Column 1). We are also interested in understanding
whether the pro-competitive effect of the introduction of code sharing per-
colates to online and direct itineraries serving the same route. On the one
hand, online and direct flights tend to be considered as different products
from interline flights, thus might not feel the effect of increased competition
on the interline market. Besides, as shown in Table 4.4 online and direct
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fares are already on average lower than interline fares. On the other hand,
even if they are differentiated products, a higher competitive pressure on the
route may still have some effect if, for example, it increases service frequen-
cies of the interline carriers on the route. However, Columns (2) and (3),
do not show any pro-competitive spillover effect on both online and direct
itineraries: the presence of at least one pair operating in code sharing on the
same market-period it is not enough to drive down the prices of online and
direct competitors.

TABLE 4.7: Spillover Fare Estimates on the Interline, Online,
and Direct Samples

Dependent Variable: LFARE

(1) (2) (3)
INTERLINE ONLINE DIRECT

CS_ROUTE -0.107** -0.028 0.024
(0.051) (0.069) (0.051)

Observations 15,617 14,899 4,730
Model OLS OLS OLS
Adj. R-squared 0.74 0.60 0.86

OPERATING PAIR×TIME FEs
ROUTE×SEMESTER FEs
COUNTRY PAIR×TIME FEs

Standard errors, clustered at the route level, in parentheses.
*** p<0.01, ** p<0.05, * p<0.1

As for the main results, we propose some robustness checks on the spillover
results as well. With a similar setting, Table 4.8 below collects these results.



4.6. Results 95

TABLE 4.8: Robustness of the Spillover Fare Estimates on the
Interline Sample

Dependent Variable: LFARE

CS_ROUTE Obs. Adj. R-Squared

Specification

Add. Controls -0.105** 15,617 0.745
(0.050)

Sample

Sub-Saharan Africa -0.107** 15,364 0.745
(0.051)

African pairs -0.161** 10,587 0.749
(0.068)

w/o LCC -0.107** 15,617 0.744
(0.051)

FARE>=25 -0.131*** 15,514 0.745
(0.037)

FARE>=50 -0.124*** 14,898 0.726
(0.036)

T >=3 -0.107** 15,617 0.744
(0.051)

T >=12 -0.124*** 11,804 0.760
(0.044)

Clustering

Route and Time -0.107** 15,617 0.734
(0.041)

Operating pair × Route and Time -0.107** 15,617 0.734
(0.040)

Operating pair and Route × Time -0.107* 15,617 0.758
(0.060)

OPERATING PAIR×TIME FEs
ROUTE×SEMESTER FEs
COUNTRY PAIR×TIME FEs

Standard errors, clustered at the route level, in parentheses.
*** p<0.01, ** p<0.05, * p<0.1

Again, the sensitivity analysis shows our results are robust to alternative
specifications, but African pairs seem to feel more the effect of higher com-
petition from the interline new products as the spillover effect is estimated to
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reduce their interline airfares by about 15%.

4.7 Conclusions

There has been considerable research on cooperation form of agreements in
the airline industry, but most of the studies were applied to highly developed
markets such as the US, and little work has been done on underdeveloped
countries like Africa. The main objective of this paper revolves around un-
derstanding whether the key findings from the literature apply also to those
markets that are still developing and trying to fill the gap. Moreover, we were
interested in understanding whether the pro-competitive effect of the intro-
duction of code sharing percolates to interline, online, and direct airfares on
the same route. We rely on two simple models exploiting a rich set of fixed
effects to estimate the impact of codeshare on airfares in the African avia-
tion market. We focus our attention on international connecting flights to in-
vestigate whether cooperation actually helps to internalize double marginal-
ization and results in lower fares. Our main results show that CS acts as
a potential stimulus for air transportation demand in Africa, since, when it
is introduced by a pair previously serving the connecting route by interline
service, it generate a strong reduction in airfares equal to about -18%. The
magnitude of the price reduction effect of CS is larger than any previous re-
sults, implying that the impact of double markup is strong in Africa where
the lack of cooperation among the airlines generates too high prices. The di-
rect effect is not the only one, since our second set of results highlight the
presence of significant spillover effects on airfares of interline products. In-
deed, all else equals, when code sharing is introduced on a route by at least a
pair of operating carriers, interline prices drop on average by approximately
10%. With this respect, the fact that no pro-competitive significant spillover
effect is found on neither the online nor the direct sample means that the CS
itinerary is not a strong substitute of online or direct itineraries connecting
the same O&D market and do not feel the effect of increased competition on
the interline market. Our estimates are robust to all the alternative specifica-
tions; yet we are able to distinguish the effect of cooperation in the most de-
veloped regions of Africa from the one we find for the Sub-Saharan countries,
and to distinguish the effect of increased cooperation and efficiency when
this happens between African airline pairs and partners from elsewhere. In
light of our findings we can confirm that the African aviation market has
a high potential growth coming from airlines’ cooperation, as suggested by
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AFRAA, 2022). Among the possible future developments of our work, per-
haps, one important point would be to incorporate a realistic treatment of
the dynamism of the activation of code sharing agreements as well as the
identification of delayed effect and its persistence across time. We leave the
modeling of this for future research.
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Chapter 5

Conclusion

5.1 Discussion and Conclusion

This thesis presents a collection of three empirical works applied to the air-
line industry and investigates the effect of airline cooperation and competi-
tion strategies on different metrics, focusing particularly on the price dimen-
sion. The three papers apply econometric techniques to the North-Atlantic,
US domestic and African markets, and share similar identification strategies.
Chapter 2 and Chapter 4 also rely on the same main data source (i.e., OAG
Traffic and Schedule Analyser) that is exploited at the aggregated (airline)-
route-month level, distinguishing - where appropriate - by operating and
marketing airlines in the markets. Similarly, Chapter 3 relies on the US data
counterpart which provides, at least, the same level of information.

The air liberalization process opened the aviation market to greater com-
petition. However, the agreements also allowed alliance carriers more lati-
tude to jointly set fares and schedules. In the first paper, presented in Chap-
ter 2, after controlling for other factors that may influence fares and after
tackling severe econometric issues, our results show that despite the inher-
ent difficulties of LCCs to successfully operate in long-haul markets, their
presence may lead to lower fares. However, this 5% reduction looks lower
than most of the findings from prior research which refers to shorter-haul
routes. In these terms, distance seems to have a significant moderating effect
as this lower impact is probably due to narrower cost advantages for LCCs
on long-haul routes (compared to network carrier costs). Our second set of
results from the first paper indicates that when two or more carriers from
the same alliance operate on a route, fares are higher (about 5% for monthly
estimates) than they would be otherwise. Finally, we show that carrier entry
on a North Atlantic route does not necessarily lead to lower airfares. If the
entry is from an alliance airline on a route already served by a carrier from
the same alliance, then the downward impact of fares due to entry will be at
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least partially offset by the upward impact from having two carriers from the
same alliance operating on a route.

Chapter 3 presents the results of Covid-19 pandemic safety-related strate-
gies introduced by some airlines in the US domestic market in the attempt to
combat and mitigate the sharp decline in air transportation demand. We first
provide a general analysis of strategies undertaken by the largest U.S. air-
lines and then provide a more detailed analysis on a route-level basis of one
of the key safety-related strategies: the blocking of middle seats. This chap-
ter analyzes the consequences of such a policy adoption on several airlines’
performance measures and concludes that this choice was indeed effective in
generating more demand, though it was not supported by economic profit
maximization in the short run. The major implication of this third chapter
is that strategy matters. Although some passengers may view airline travel
as a commodity and the services offered by airlines to be largely undiffer-
entiated, airlines do attempt to differentiate their services. This was evident
with the various strategies undertaken by U.S. carriers during the pandemic,
especially with respect to the middle seat blocking strategy. The fact that it
appeared to be a “losing” strategy may be indicative of the faith passengers
put into the other efforts airlines took to increase the safety levels in their
aircraft.

Finally, Chapter 4 studies the effect of cooperation in a market that is
only poorly researched and, particularly in recent times, has been extensively
debated by airlines associations, regulatory bodies, and governments. The
main objective of this paper revolves around understanding whether the key
findings from the literature apply also to those markets that are still devel-
oping and characterized by ad-hoc bilateral agreements between countries.
Moreover, we were interested in understanding whether the pro-competitive
effect of the introduction of code sharing percolates to interline, online, and
direct airfares on the same route. We rely on two simple models exploit-
ing a rich set of fixed effects to estimate the impact of codeshare on airfares
on African international routes. Our main results show that CS generates a
strong reduction in airfares equal to about -18%. The larger magnitude of
the price reduction effect of CS implies that the impact of double markup
is stronger in Africa where the lack of cooperation among the airlines gen-
erates too high prices. The direct effect is also accompanied by significant
spillover effects on airfares of interline products. Indeed, all else equal, when
code sharing is introduced on a route by at least a pair of operating carriers,
interline prices drop on average by approximately 10%. CS itinerary is not
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a strong substitute of online or direct itineraries connecting the same O&D
market and do not feel the effect of increased competition on the interline
market. Considering our findings, we can confirm that the African aviation
market has a high potential growth coming from airlines’ cooperation.

This manuscript scrutinizes the effect of economic phenomena in the air-
line industry on airfares and few other dimensions. Conclusions are always
supported by empirical findings. As already stated in the three chapters,
even if standing on robust grounds, there are limitations to the conclusions
derived out of these empirical works. Chapter 2 ignores the effects of LCCs
operating in the North Atlantic long-haul markets on connecting flights. More-
over, it does not include specific controls for joint ventures or other features
of alliances. The main limitation of 3 is in its scope as only the short run
implications of blocking middle seats are assessed. Clearly some of the air-
lines that maintained this strategy for several months must have seen some
benefits (e.g., safety-image) to continuing to block middle seats. Further-
more, we only estimate a dataset for U.S. airlines. Since the viral levels differ
across countries and since people’s perception of air safety will vary across
cultures, then our results may not be fully generalizable to other aviation
markets. Furthermore, other safety-related strategies, including face mask
requirements, may contribute to passenger traffic or to yields. Therefore,
conducting further analysis of pandemic airline strategies may produce more
insights into how airlines can best survive pandemics. In Chapter 4, among
the possible future developments, perhaps, one important point would be to
incorporate a realistic treatment of the dynamism of the activation of code
sharing agreements as well as the identification of delayed effect and its per-
sistence across time. We leave the empirical modelling of these features for
future research. Collectively, these three empirical works contribute to the
literature on competition and cooperation, and offer several policy implica-
tions that can inform policy-making in the aviation industry. The informa-
tion presented in the manuscript could be valuable for researchers, practi-
tioners, regulators, and competition policy authorities who are interested in
understanding the effects of air liberalization and cooperative agreements on
the airline industry, as well as the strategies that airlines have used to navi-
gate difficult times. Additionally, the manuscript provides insights into how
cooperative agreements have affected competition in less developed mar-
kets, particularly in Africa. By contributing to the literature on this topic,
these works provide precious insights that could inform policy-making in
this area. Specifically, the policy implications identified in this thesis could
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be useful for regulators and other stakeholders who are responsible for pro-
moting competition and cooperation within the aviation industry. By consid-
ering the findings and recommendations of these works, policymakers may
be better equipped to develop policies and enforce rules that are effective at
achieving their goals while minimizing unintended negative consequences.
Ultimately, this manuscript can be a valuable contribution to the ongoing
debate on competition and cooperation in the airline industry.
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