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ABSTRACT
Large language models (LLMs) are increasingly gaining relevance

in every-day life, due to their apparent ability in solving tasks that

demand intricate linguistic comprehension. Recent studies state

that one of the key points that impact their outcome is the quality

of the prompt used to interact with them. This work proposes a

grammar-based evolutionary approach for exploring the prompt

space of LLMs, driven by a fitness function that aims at optimiz-

ing the performance on a given task. We tested our technique by

steering two state-of-the-art models through evolved prompts, and

by comparing the performance they obtain on 8 benchmark tasks

with that obtained when using other baseline prompts on the same

tasks, showing that in most cases our prompts yield better results.

Further, we defined a constrained mutation operator that limits

the changes to specific grammar non-terminals, allowing to study

and highlight the elements in the prompt that mostly affect the

output of the LLM. Finally, a thorough discussion points out some

issues that limit the relevance of the emerging prompt engineering

discipline, given the existence of many effective prompt structures

and the possible diversity that can be observed in the LLM output

given the same input to the model.
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1 INTRODUCTION
Large language models (LLM), queried by giving them as input a

natural language question, are able to generate textual answers

on many different topics and which require reasoning at different

levels. Actually, the quality of their answers heavily depends on the

topic, on the required reasoning effort, and most importantly on

the way the question is structured. In the literature, several prompt

engineering techniques have been presented, aiming at enhancing

the performance of LLMs on diverse tasks. The search for a good

prompt is not easy, due to the internal working of the models, which

are trained to learn complex and wide correlations between parts

of huge textual training datasets. Also, given an input query, they

generate an output answer that is controlled by the learned internal

representation, and partly by random noise which by design is

part of the computation. Moreover, the search space for a good

query prompt is virtually unconstrained, consisting of all natural

sentences which can be built around the data about which the LLM

is required to reason and answer.

This work introduces a novel way to automatically search for

effective prompts based on an evolutionary computation approach,

and aiding the exploration of the solution space with constraints

derived from known prompt engineering techniques. Even under

the constraints we designed, the system is allowed to generate and

select novel and successful prompt structures, which are exploit-

ing mixtures and new variations of known querying approaches.

The key idea is evolving prompts, our individuals, under the con-

trol of custom designed grammars, where a collection of query

components and some details of the given task are encoded.

This work presents the following contributions:

• a novel model agnostic system to generate effective prompts,

• an analysis of the results of its application to on two open

source large language models when asked to face eight rea-

soning tasks, reaching better than state of the art scores on

some of them,

• experimental evidence of emergent properties of large lan-

guage systems, in terms of how specific prompt features

are differently effective for each model on any given task,

producing evidence of how hard could be the search for a

definitive and universal prompting technique.

2 RELATEDWORK
In very recent times, generative AI models known as Large Lan-

guage Models, that are based on the transformer architecture [21],

appeared to be good in solving several and diverse tasks and at-

tained a notable presence in everyday life, owing to their capacity

to generate human-like texts and to the widespread availability
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of models (e.g. GPT [1], PaLM [2] and LLaMA [20]). Some well

performing models are derived from open sourced foundational

models, such as LLaMA or Mistral 7B [5]. Most of these models are

made available in different sizes, measured in terms of how many

parameters the model uses, that is the quantity of weights and

biases of its neural architecture. Usually model size ranges from a

few billions up to hundreds of billions parameters. We will operate

on general purpose open source LLMs in the 7B size range.

Large language models are evaluated on benchmark datasets,

concerning different types of Q&A effort for the LLM, which gener-

ates the answers. For instance, Beyond the Imitation Game bench-

mark [18] (BIG-bench) consists of 204 tasks mostly related to rea-

soning, while Massive Multitask Language Understanding bench-

mark [4] (MMLU) offers 57 tasks of different difficulty levels. We

will measure performances with respect to 8 reasoning tasks from

BIG-bench.

The way a question is presented to a LLM has been shown to

impact the correctness of the generated answer. Any prompt has to

include the question to answer and the data on which to elaborate

the answer. But a few richer human-designed prompt structures

have been studied. Usually they add one or more of these parts: one

or more examples of data together with the corresponding correct

answers [1], a possible suggested contextual role [8, 22], and further

recommendations which aim at eliciting the generation of better

answers [7]. All these parts affect the system performance based on

the internal representations learned by the LLM. Our work proposes

a novel evolutionary system generating several combinations of all

of these variations, in a controlled way.

In the literature, different attempts to automatically generate

effective prompts can be found. We can mention, for instance, Au-

toPrompt [16], an automated method to create prompts based on a

gradient-guided search, and a system based on the idea of maximiz-

ing themutual information between an input and the corresponding

model output [17]. The systems APE [24] and EvoPrompt [3] gener-

ate and optimize prompts by iteratively modifying and evaluating

templates, and templates are initially generated by a LLM (APE) or

manually (EvoPrompt). Moreover, in both systems the variations of

the prompts are proposed by a LLM. Our approach is different for

two main key aspects: the random initial population and the gener-

ation of mutated individuals are all guided only by rules detailed in

a formal grammar, and the LLM is used only to generate answers,

which then determine fitness scores. The technique closely follows

the usual evolutionary approach.

3 PROMPT EVOLUTION
This work stands in the setting of the emerging prompt engineering
discipline, that is the process of writing text for interacting with

a generative AI model. The founding idea is that the search of a

good prompt can be seen as a problem in which, given a modelM
and a pair (𝑄,𝐴) consisting in a question paired with the corre-

sponding expected answer, we look for an instruction 𝑝 that, when

combined with 𝑄 through a function 𝑓 (𝑝,𝑄) yields the modelM
to answer 𝐴 when prompted with 𝑓 (𝑝,𝑄). More in general, we can

describe this as an optimization problem in which, given a set of

𝐷 = {(𝑄1, 𝐴1), . . . , (𝑄𝑛, 𝐴𝑛)} pairs of question/answer demonstra-

tions, we look for a single instruction 𝑝 and for a function 𝑓 that

maximizes the probability to obtain 𝐴𝑖 when promptingM with

𝑓 (𝑝,𝑄𝑖 ).
This work addresses this problem through an evolutionary ap-

proach based on grammatical evolution (GE) [13], which allows to

evolve individuals whose phenotypes are compliant with a given

formal grammar. Due to the problems of redundancy (lots of geno-

types maps to the same phenotype) and locality (a small change

in the genotype can cause radical changes in the phenotype) that

occur in standard GE [10], we base our experiments on a more

recent approach named dynamic structured grammatical evolution

(DSGE) [10, 11], which introduces changes in the genome repre-

sentation so as to face these drawbacks. On top of DSGE, we can

design an approach that allows us both to explore the prompt space

and to identify the features that mostly affect the performance of a

LLM on a given task.

3.1 Two-stage evolutionary sampling
Basically, in DSGE, a genotype is represented by a list in which

each position refers to a non-terminal symbol of a given context

free grammar, and each gene is a list of ordered derivation steps.

Formally, each genotype is a sequence 𝑆1, . . . , 𝑆𝑛 . Here, for each

1 ≤ 𝑖 ≤ 𝑛, 𝑆𝑖 denotes a non-terminal symbol derived from a context-

free grammar 𝐺 = (𝑁,𝑇 ,𝐴, 𝑃). In this grammar, 𝑁 and 𝑇 stand

for the sets of non-terminal and terminal symbols, respectively,

𝐴 ∈ 𝑁 represents the axiom or starting symbol of 𝐺 , and 𝑃 is

the set of production rules. Additionally, each 𝑆𝑖 is expressed as a

list of integers 𝑟1, . . . , 𝑟𝑘 , where 𝑘 is the number of times the 𝑖-th

non-terminal is expanded. These integer values correspond to the

indices (in the grammar) of the applied expansion rules.

Through DSGE, we explored the prompt space through a two-

phase evolutionary procedure. In the first one, we applied standard

DSGE, with grammar and fitness function as defined in the follow-

ing, while in the second one we used the best individuals found

in the first phase as initial populations for a (𝜇 + 𝜆) evolution
strategy [12], that is a population-based evolutionary procedure in

which only mutations are allowed (without crossover), and each

generation is composed by the 𝜇 best individuals of the previous

generation, along with 𝜆/𝜇 mutated variants for each of them.

Prompt grammar. With this equipment, we need to define a

prompt grammar to effectively explore the space. Since a search in

the full space of possible English sentences would be computation-

ally infeasible, to define the grammar that guide the evolution we

tap into the recent literature that emerged in the field of prompt

engineering. We consider a prompt as a composition of possible

parts, and we model them through the grammar in Figure 1. We

consider four possible prompt structures, each composed by differ-

ent elements derived from the literature, that are represented in

the grammar by non-terminal symbols:

<zero>: is a base prompt composed by a simple request de-

scribing a task, and an input

<cot>: represent a prompt in which a request is augmented

with one or more examples [1]

<zerocot>: is a prompt augmented with a sentence that sug-

gest to decompose the reasoning process in different steps [7]
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<context>: represents a sentence describing a situation or that
suggests the LLM to play a given role, following the idea that

this kind of role-playing can enhance its performance [8, 22]

<sbs>: represents the sentence used in the <zerocot> prompt

structure

Each of the productions referred to the non-terminals <sbs>, <context>
and <req> is a set of 100 terminal symbols, to generate 100 sentences

with equivalent semantics but expressed in different manners. To

produce these sets, we started from base formulations (i.e. “Let’s

think step by step”, “You are a human that needs to solve a task.”,

and the base request as expressed in the dataset for a given task,

respectively) and we asked ChatGPT to formulate 100 semantically

similar variants. The productions referred to the non-terminals

<example> are instead sets of 10 examples taken from the dataset.

Notice that <context> and <sbs> are generic, while <req> and

<example> are specific of the dataset.

Figure 1: Grammar template for evolving prompts. <req> and
<example>productions are proper to the task,while <context>
and <sbs> are the same in each task.

Fitness function. To measure the quality of the individuals dur-

ing the evolution, we measured the performance of the LLM under

exam on a sample of 100 instances taken from the dataset referred

to the given task, when prompted with the evolved template. Such

performance is defined as the accuracy score with respect to the

expected binary answers. Notice that, in general, this measure is

only an heuristic, since to have a more precise measure the perfor-

mance should be computed on the whole dataset, but this would

be computationally too expensive, especially on tasks containing

bigger numbers of instances (see Section 4). Also, we are aware

that measuring the fitness on a fixed number of instances “favours”

the tasks with a small number of instances, since the proportion

compared to the total number of instances is higher, thus leading to

a more precise estimate, less susceptible to the randomness of the

sample. However, this is not a significant issue, given the promising

results obtained when testing the evolved prompts on the whole

dataset.

Constrained mutation operators. For the second evolutionary

phase, we used a “constrained” mutation operator that limits the

mutation only to given subsets of non-terminals. In DSGE, stan-

dard mutation for a position 𝑆𝑖 = 𝑟1, . . . , 𝑟𝑘 is defined as a random

change of an integer 𝑟 𝑗 into another valid integer 𝑟∗
𝑗
for that gene,

corresponding to the selection of a different expansion option for

a non-terminal symbol. Following an approach similar to that de-

scribed in [15], and by considering the constrained mutation oper-

ator as defined in the same work, by limiting the mutation only to

given non-terminals, and by analysing the fitness variations, we

can observe which are the prompt features that mostly affect the

output of the LLM. As it will be thoroughly discussed in Section 6,

these features vary depending on the task and on the model.

3.2 Prompt evaluation and analysis
The evolutionary search allowed us to obtain a broad range of can-

didate prompts. Given the limits of the considered fitness function

already outlined in the previous paragraph, merely selecting the

candidate with the highest fitness would have been restrictive, and

could have led to the selection of a non-optimal candidate. To face

this issue, we defined a more robust procedure to select the winning

prompt template, given a task. This procedure, formally described

in Algorithm 1, basically considers all the prompts found during all

the generations of the second phase having a fitness higher than

the fitness of the individual that resulted the best after the first

phase, and selects the one that the most number of times has been

evaluated with a good fitness. In summary:

• Among all the individuals evolved in the second phase, con-

sider the subset 𝑃 having fitness higher than the fitness of

the best individual after the first phase;

• List all the unique prompts, and keep trace of the times each

prompt occurred, and the worst fitness with which it was

evaluated;

• Return the prompt that occurred the most number of times.

In case of draw, return that with the highest worst fitness.

4 EXPERIMENTAL SETTING
The outlined prompt evolution framework has been tested by con-

sidering the performance of two different open source models on 8

benchmark tasks when queried with the prompts obtained through

the evolutionary search, and by comparing it with that obtained

with state of the art prompts. We now provide a detailed description

of methods and materials used in the experiments, which are also

publicly available
1
.

4.1 Models
Many state of the art LLMs such as ChatGPT, despite their potential

in assisting in several diverse jobs, entail considerable expenses,

due to the intensive computational resources required to run them

and to the cost per-token for an automated use. For this reason,

in this work we prefer to develop the discussion by focusing on

smaller open source models, due to their availability and since they

are in general easy to use and require relatively low computational

resources. This is a crucial point, as our results demonstrate that the

1
https://github.com/Martisal/evoPrompt
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Algorithm 1 Best prompt selection

1: 𝑃 ← 𝑝1, . . . , 𝑝𝑛 ⊲ initial population

2: 𝑇 ← task

3: minfit← best fitness obtained after the first evo phase for 𝑇

4: for 𝑖 ∈ {1, . . . , 𝑛} do
5: if fitness(𝑝𝑖 ) ≤minfit then
6: remove 𝑝𝑖 from 𝑃

7: end if
8: end for
9: 𝑛 ← |𝑃 |
10: prompts, card, fit← empty lists

11: for 𝑖 ∈ {1, . . . , 𝑛} do
12: if phenotype(𝑝𝑖 ) ∉ prompts then
13: append phenotype(𝑝𝑖 ) to prompts
14: append 𝑐𝑖 = 1 to card
15: append 𝑓𝑖 =fitness(𝑝𝑖 ) to fit
16: else
17: 𝑗 ← index of phenotype(𝑝𝑖 ) ∈ prompts
18: 𝑐 𝑗 = 𝑐 𝑗 + 1
19: if 𝑓𝑗 > fitness(𝑝𝑖 ) then
20: 𝑓𝑗 = fitness(𝑝𝑖 )

21: end if
22: end if
23: end for
24: bestfit← 0

25: for 𝑖 ∈ {1, . . . , |card|} do
26: if 𝑐𝑖 = max(card) then
27: if 𝑓𝑖 > bestfit then
28: bestprompt = 𝑝𝑖
29: bestfit = 𝑓𝑖
30: end if
31: end if
32: end for
33: output bestprompt

performance of these small models can be significantly enhanced

with an optimized prompt. To grant robustness, the proposed au-

tomatic prompt optimization technique has been tested on two

state-of-the-art lightweight open source models:

Vicuna-7B: (version 1.5), an open source model
2
derived from

LLaMA [20] that has been evaluated on a conversational

benchmark by using GPT-4 [14] as a judge [23], and that

outperformed other open source models such as LLaMA and

Alpaca [19] by reaching 90% quality of ChatGPT.

Starling-7B: an open source model
3
derived from Mistral [5]

and trained by reinforcement learning [6] with feedback

from AI that has been evaluated in MT Bench with GPT-4 as

a judge, outperforming every model to date on MT-Bench

except for GPT-4 and GPT-4 Turbo.

4.2 Benchmark dataset
The response of the LLMs to different prompt has been evaluated by

using the Beyond the Imitation Game benchmark (BIG-bench) [18],

2
Available: https://github.com/lm-sys/FastChat (accessed on 25 January 2024)

3
https://starling.cs.berkeley.edu/

which consists of a collection of questions and problems, distributed

over 204 tasks belonging to different topics, such as linguistics,

reasoning, programming or specific disciplines. In particular, for

our discussion we considered 8 reasoning tasks belonging to the

BIG-bench Lite suite – a lightweight evaluation set composed of 24

tasks – that required a binary answer:

Causal judgment: answer questions about causal attribution
(180 instances)

Epistemic reasoning: determine whether one sentence en-

tails the next (1990 instances)

Hyperbaton: order adjectives correctly in English sentences

(≈ 50K instances)

Implicatures: predict whether an answer to a given question

counts as a yes or as a no (483 instances)

Logical fallacy detection: detect both informal and formal

logical fallacies (2790 instances)

Navigate: given a series of navigation instructions, determine

whether one would end up back at the starting point (990

instances)

Snarks: determine which of two sentences is sarcastic (171

instances)

Winowhy: evaluate the reasoning in answering Winograd

Schema Challenge [9] questions (2855 instances)

4.3 Baseline prompts
The leading goal of prompt engineering is to study effective ways

for building prompts that are able to elicit a better performance or

to enhance the reasoning capabilities of the LLMs. The literature

presents several examples of techniques that can be used to build

effective prompt templates. For this work, among the wide variety

of prompting techniques, we considered two of the most popular

and well-established approaches as baselines:

few-Shot: an interaction strategy that aims at enhancing the

quality of the responses by helping the LLM by augment-

ing the prompt with one or more question/answer pairs as

examples [1]. In this work we tested prompts with a single

example (1-Shot).

0-Shot-CoT: from here denoted as 0-CoT, a prompt template

that induces a chain of thoughts by closing the prompt with

the sentence “Let’s think step by step” [7].

4.4 Evolutionary search
The evolutionary exploration of the prompt space has been tackled

in 2 phases. In both these steps, the fitness function was defined,

given a task, as the percentage of correct answers obtained by the

model when queried with the prompt on a set of 100 randomly

chosen examples taken from the dataset.

In the first phase, through a standard DSGE [10] algorithm we

generated populations of individuals compliant with the grammar

reported in Figure 1. Notice that, for each task, the grammars differ

for the productions that expand the non-terminals <example> and

<req>which are proper to the problem in exam. For this phase, pop-

ulations of 30 individuals have been evolved for 10 generations with

crossover and mutation probabilities of 0.9 and 0.1, respectively, an

elite of 3 individuals, and tournament selection with tournament
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size equals to 5. The results of this preliminary evolutionary phase

are reported in Figure 2.

Then, the best individuals that emerged during this evolutionary

phase, chosen according to the procedure defined by Algorithm 1,

have been used to compose starting populations for a second evolu-

tionary step in which only mutations were allowed, and operators

have been constrained so as to allow variations only to specific

non-terminals. In particular, four (𝜇+𝜆)-ES [12] runs have been per-
formed, with 𝜇 = 10 and 𝜆 = 30, each having a distinct constraints

set for the mutation operator:

(1) mutations allowed only in the gene referred to the non-

terminal <context>;
(2) mutations allowed only in the gene referred to the non-

terminal <req>;
(3) mutations allowed only in the gene referred to the non-

terminal <sbs>;
(4) mutations allowed in the genes referred to the non-terminals

<context>, <req>, <sbs> and <example>.

The results of this second evolutionary phase are presented in

Figure 3, where we reported the variation step among the best

individual after the first phase and that obtained by applying ES

with mutation constraints.

Finally, for each task, we identified the “winning” prompt by

considering all the individuals generated with the ES runs having

a fitness higher than the fitness of the best individual found dur-

ing the first phase, i.e. all the individuals that have undergone an

improvement through the local search. Among them, we selected

the prompt that occurred the most number of times. In case of

equality, we selected the one that has been evaluated better (see the

procedure in Algorithm 1). We then evaluated these prompts on

the whole set of instances for each task, and compared the results

with that obtained when using other baseline prompts. Results are

reported in Table 2, while the tested prompts are in Table 3. Also,

we considered the union of the same sets of individuals having

fitness higher that the best after the first phase, and computed the

percentage of prompts having specific syntactic features (Table 1),

so as to identify the structures that seem to mostly affect the LLM

output.

5 RESULTS
The results of our experiments can be examined from the point

of view of the raw performance of selected prompts in the differ-

ent tasks, together with their comparison against state of the art

prompt structures, and from the point of view of the details of the

evolutionary dynamics and of the structures of the individuals. It

is useful to remark that for the tasks we considered, all taken from

BIG-bench, the answers consist of a binary classification, and the

score of a machine generating random answers would be 0.50. Also,

the fitness function is computed as the score the answers of an

individuals on a random set of instances for the task at hand.

Figure 2 shows for both Vicuna and Starling how the fitness

scores change for each task during the first generations. In all

cases the best fitness is above the random performance since the

first generation, while the average fitness in some cases tends to

decrease over successive generations. Notable cases are the results

for Hyperbaton, the only task where the best fitness is above 0.75

Table 1: Percentage of presence of different prompt elements
in the best prompts found through the evolutionary search.

Task Model Role Shots 0-CoT
Causal

judgment

Vicuna 0.123 0.398 0.771

Starling 0.364 0.644 1.000

Epistemic

reasoning

Vicuna 0.228 1.000 0.447

Starling 0.049 1.000 0.958

Hyperbaton

Vicuna 0.000 1.000 0.073

Starling 0.279 0.721 0.721

Implicatures

Vicuna 0.057 0.329 0.893

Starling 0.400 1.000 1.000

Logical fallacy

detection

Vicuna 0.000 1.000 1.000

Starling 0.000 0.942 1.000

Navigate

Vicuna 0.451 0.976 0.733

Starling 0.367 0.917 0.917

Snarks

Vicuna 0.000 1.000 0.527

Starling 0.082 0.749 0.298

Winowhy

Vicuna 0.000 0.737 0.263

Starling 0.250 0.750 1.000

and the average stays better than random, and for the Navigate task,

where the average fitness is for most of the gernations as low as

0.25. In general, it appears that the exploration of the prompt space,

controlled by the options available in the grammar we defined for

each task, quickly finds a prompt which leads the LLM to generate

answers better than random, but the evolutionary exploitation

of the best individuals does not produce individuals much better

than the best individuals available at the beginning. It is important

to stress that this first evolutionary stage is not actually used to

find single optimized solutions, but instead to generate a set of

good individuals, which are then improved in the second stage

and eventually examined by Algorithm 1, which selects the final

optimal prompt structure.

Concerning the second evolutionary phase, where the explo-

ration of alternative prompt structures is more constrained than

in the first phase, according to the sets of allowed mutations we

defined, we show in Figure 3 the gains obtained for the performance

of the prompts selected by the evolution strategy. For all the con-

straint sets and for most of the tasks, individuals with improved

scores have been found. But quantitatively the gains obtained are

different from task to task. Considering for instance Vicuna, three

out of eight tasks show a major improvement, namely Epistemic

reasoning, Hyperbaton, and Implicatures. For the remaining five

tasks only slightly improved individuals have been found. For all

of them each constraint on the types of mutation, among those

available in the grammars, gave different gains with respect to the

fitness reached during the first evolutionary stage. We remark that

the possible contextual roles in the prompts were the same for all

the task grammars.

After the evolutionary exploration of the prompt space, the in-

dividual finally selected with Algorithm 1 have been scored on

the complete set of instances for each of their respective task.

The results are shown in evo column of Table 2, together with

the performances of the prompt structures directly defined after

the recommendations from literature, namely the base structure
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Figure 3: Fitness improvement after ES-(10 + 30). Gray bars represent the best fitness after the evolutionary search, colored bars
represent the best fitness after ES with different constraints.

only including the question defined by the task, the 0-CoT structure

with added the “step-by-step” suggestion to the LLM, and the 1-Shot
prompts. Such prompts are directly defined from the question posed

by each task, while sharing the same structure for all the bench-

mark problems. On the other hand, the individuals evolved for the

tasks, whose performance is in evo column, can have a different

structure for each of them, as can be seen in Table 3, where we give

the actual text of query templates for each task and each model.

Table 2 also includes as a reference the scores obtained with

baselines prompts by the state of the art model PaLM-8B
4
, run in

the configuration with 8B parameters so as to be comparable in

4
PaLM-8B scores have been retrieved from the repository associated to [18].
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Table 2: Comparison among prompting strategies for the two models we considered. As an added reference, we include the
results obtained independently by PaLM on the same tasks and with baseline prompts.

Vicuna Starling PaLM-8B [18]
base 0-CoT 1-Shot evo base 0-CoT 1-Shot evo base 1-Shot

causal judgment 0.600 0.539 0.522 0.533 0.561 0.405 0.567 0.528 0.521 0.579
epistemic reasoning 0.371 0.384 0.342 0.562 0.596 0.584 0.616 0.622 0.417 0.586

hyperbaton 0.082 0.083 0.472 0.856 0.318 0.160 0.402 0.453 0.492 0.497
implicatures 0.588 0.569 0.607 0.582 0.559 0.507 0.573 0.536 0.539 0.746

logical fallacy detection 0.486 0.497 0.536 0.566 0.569 0.511 0.635 0.673 0.511 0.550
navigate 0.503 0.502 0.506 0.498 0.345 0.134 0.487 0.336 0.500 0.482
snarks 0.491 0.450 0.509 0.561 0.526 0.485 0.485 0.515 0.468 0.508

winowhy 0.445 0.445 0.477 0.484 0.580 0.580 0.619 0.578 0.446 0.479

terms of computational power to the models we use, Vicuna and

Starling, both having a size of 7B parameters. The prompt structures

we found are evolved specifically for each task and each one of the

two models Vicuna and Starling. We see in Table 2 that the results

can be much different across each case. Interestingly, for Vicuna

on the Hyperbaton task, the winning prompt structure, visible in

Table 3, performs surprisingly better than all the other prompts,

even compared to PaLM LLM. Instead, while Vicuna does not excel

on Hyperbaton task, for this model we found two prompts which

beat all the others, including PaLM ones, on the two tasks Epistemic

reasoning and Logical fallacy detection.

Further analysis on our results can be done with respect to which

prompt structures, which could be the inclusion of a contextual role,

of one or more examples, or of a step-by-step suggestion, are fre-

quent in the individuals evolved in our runs for each task and model.

In Table 1, for the individuals that improved during the second evo-

lutionary stage, those among which Algorithm 1 selects the final

result, the percentages of prompts using each structure are shown.

The structures are those made available in the DSGE grammars,

the “Role” structure is generated by the <context> non-terminal,

“Shots” by <cot>, and “0-CoT” by <zerocot>. Data broken per task

and per model show that each combination is sensitive to different

prompt structures, and performance could be hindered when using

a fixed querying syntax for all situations. For instance, contextual

roles are seldom used, as can be noticed also among the prompts in

Table 3, where the usage of specific syntactical elements has been

highlighted with colors. Also, the behavior of different models pro-

motes different structures when looking for better performance, as

can be seen for instance for the 0-CoT technique on the Hyperbaton

task.

6 DISCUSSION
The results obtained with our evolutionary search for effective

prompts on reasoning tasks show that:

• grammars with DSGE evolution can generate populations of

query structures mixing different prompt techniques, which

we selected among the most relevant from literature,

• our evolutionary exploration quickly finds prompts able to

guide the LLM in generating good answers,

• by further refining the prompts with a second phase, con-

sisting of an evolutionary strategy that allows to mutate

only specific parts of the prompts, and by finally selecting an

individual by applying Algorithm 1, our system could find

prompt structures tailored to specific model/task contexts

which are equalling or beating state of the art systems,

• by analysing the distribution of syntactic features among

the best individuals, evolved for each model/task setting,

we could gather insight about which prompt engineering

techniques are more effective for different tasks or models.

We remark that these results were obtained after testing more

than 11,000 prompts, each on 100 task examples, and by finally

scoring them on the complete sets of instances for the tasks at

hand. This approach was required in trying to balance the need for

a computationally affordable evolutionary search with that for a

statistically significant measure of the performance obtained from

the LLMs, which were kept configured with a non null temperature

parameter. Any query to the LLM, when repeated, could in fact

generate different answers. This is also taken into account in the

design of Algorithm 1, which, for the final scores on complete tasks

presented in Table 2, selects frequently appearing prompts, and

these sometimes happen not to be the best individuals, according

to the fitness which was calculated on 100 instances.

Conceivably, the evolutionary technique presented here has the

strong advantage of autonomously building a good prompt struc-

ture by adapting to the characteristics of specific task/model combi-

nations, while many prompt engineering recommendations found

in literature are developed without relations to the task. Also, we

can compare our technique to that of AutoPrompt [16]. AutoPrompt

requires labeled training data and, with respect to human-designed

prompts from literature, it lacks interpretability, as stated by its au-

thors [16]. Instead, our prompts have a clear structure governed by

grammar productions, and in turn grammars are built on manually

chosen textual parts.

7 CONCLUSION AND FURTHER DIRECTIONS
A novel design of an evolutionary system able to produce effec-

tive prompting templates, for a given task on a given model, has

been introduced. This system combines two different evolutionary

phases and a final algorithmic selection of the preferred prompt.

This system, for two different open source large language models,

found surprisingly good prompts for some of the tasks, and for all

of them, in a set of commonly used benchmark reasoning problems,

it obtained results comparable to the state of the art.
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Table 3: Tested prompt templates for Vicuna and Starling. We omitted here 0-CoT and 1-Shot rows since they are simply the base
prompt concatenated with the statement “Let’s think step by step.” or with a random example from the dataset, respectively.
Prompt syntactical parts are color coded as in Table 1.

Task Prompt Template

Causal

judgment

Base How would a typical person answer each of the following questions about causation? Answer with only “yes” or “no”. [[INPUT]]

Evolved

(Vicuna)

How, in the usual manner, would an ordinary individual answer a question about causation? Please, answer with only “yes” or “no”. We could navigate through this by

thinking progressively, logically, and analytically.[[INPUT]]

Evolved

(Starling)

Consider these examples: QUESTION: Frank T., had an ongoing dispute with his neighbor over a stretch of land and one day decided to shoot his neighbor in the body. Frank T.

had no experience with guns, his hand slipped on the barrel of the gun, and the shot went wild. Nonetheless, the bullet bounced off a large boulder several feet away and

hit the neighbor’s body, causing significant injury. Did Frank T. intentionally shoot his neighbor in the body? ANSWER: no. How, in the usual manner, would an ordinary

individual answer a question about causation? Please, answer with only “yes” or “no”. Let’s approach this with a structured, logical, and organized mindset. [[INPUT]]

Epistemic

reasoning

Base Identify the relation between the following premises and hypotheses, choosing from the options “entailment” or “non-entailment”. [[INPUT]]

Evolved

(Vicuna)

Uncover the connection between the provided premises and hypotheses explicitly. Please, answer with only “entailment” or “non-entailment”. For instance: QUESTION:

Premise: Robert suspects that Sophia recognizes that in an apparent classroom setting, a young man in a blue t-shirt has a book on his knee while a woman dressed in black

next to him leans in to point out something in the book. Hypothesis: Sophia recognizes that in an apparent classroom setting, a young man in a blue t-shirt has a book on his

knee while a woman dressed in black next to him leans in to point out something in the book. ANSWER: non-entailment. QUESTION: Premise: Thomas learns that some

elderly people are playing instruments in a park. Hypothesis: Thomas learns that a group of old people are outdoors playing music. ANSWER: entailment. QUESTION: Premise:

Emma assumes that a woman in a gray kimono walks past a black car in the middle of a crowded street full of Japanese signs, with a man in an orange shirt and khaki slacks.

Hypothesis: Richard assumes that a woman is walking down a busy street. ANSWER: non-entailment. QUESTION: Premise: David suspects that a bald man is getting out of a

small blue car. Hypothesis: David suspects that the man is bald. ANSWER: entailment. QUESTION: Premise: Emma assumes that a woman in a gray kimono walks past a black

car in the middle of a crowded street full of Japanese signs, with a man in an orange shirt and khaki slacks. Hypothesis: Richard assumes that a woman is walking down a busy

street. ANSWER: non-entailment. [[INPUT]]

Evolved

(Starling)

Determine the correlation between the stated premises and hypotheses explicitly. Please, answer with only “entailment” or “non-entailment”. For instance: QUESTION:

Premise: David suspects that a bald man is getting out of a small blue car. Hypothesis: David suspects that the man is bald. ANSWER: entailment [[INPUT]]

Hyperbaton

Base Which sentence has the correct adjective order? Answer with only “a” or “b”. [[INPUT]]

Evolved

(Vicuna)

Discover which sentence correctly organizes its adjectives. Please, answer with only “a” or “b”. [[INPUT]] For instance: QUESTION: a “ white terrible square brand-new

driving chair ” b “ terrible brand-new square white driving chair ” ? ANSWER: b

Evolved

(Starling)

Ascertain which sentence has the right order for its adjectives. Please, answer with only “a” or “b”. For instance: QUESTION: a “ white terrible square brand-new driving chair ”

b “ terrible brand-new square white driving chair ” ? ANSWER: b Considering the various factors and variables, let’s think about this step by step. [[INPUT]]

Implicatures

Base Does Speaker 2’s answer mean yes or no? [[INPUT]]

Evolved

(Vicuna)

We should tackle this by taking each step with thorough and thoughtful consideration of the consequences, implications, and possible outcomes. [[INPUT]] Is Speaker 2’s

response a yes or no?

Evolved

(Starling)

[[INPUT]] Should Speaker 2 encapsulate their answer in a yes or no? For instance: QUESTION: Speaker 1: “You really hearing voices?” Speaker 2: “Just one.” ANSWER: yes We

could analyze this in a systematic and organized manner.

Logical fal-

lacy detec-

tion

Base Is this statement valid? Answer with only “yes” or “no”. [[INPUT]]

Evolved

(Vicuna)

Consider these examples: QUESTION: Do you think the following argument is “Valid” or “Invalid”? No prottows are yudalouds. Some yudalouds are treyples. Therefore some

treyples are prottows. ANSWER: no. QUESTION: Do you think the following argument is “Valid” or “Invalid”? Some sisters are not bees. Some pens are sisters. Therefore some

pens are bees. ANSWER: no. QUESTION: No spacemen are alligators. All cowgirls are alligators. Therefore no cowgirls are spacemen. ANSWER: yes. Is the logical consistency

of this statement being examined? Please, answer with only “yes” or “no”. Let’s consider this systematically. [[INPUT]]

Evolved

(Starling)

Is the logical integrity of this statement up for verification? Please, answer with only “yes” or “no”. For instance: QUESTION: No khavvins are novalies. Some novalies are

zapsters. Therefore some zapsters are khavvins. ANSWER: no QUESTION: Do you think the following argument is “Valid” or “Invalid”? No sinpuds are younjurs. Some

fluffsters are younjurs. Therefore no fluffsters are sinpuds. ANSWER: no [[INPUT]]

Navigate

Base If you follow these instructions, do you return to the starting point? Please, answer with only “yes” or “no”. [[INPUT]]

Evolved

(Vicuna)

Consider these examples: QUESTION: Take 6 steps. Turn left. Take 3 steps. Take 3 steps. ANSWER: no. We should tackle this by taking each step with thorough and thoughtful

consideration. You are a researcher presenting your findings at a scientific conference, answering questions from fellow scientists. [INPUT]] If these instructions are followed,

does it guide you back to the beginning? Please, answer with only “yes” or “no”.

Evolved

(Starling)

If you follow these instructions, do you return to the starting point eventually? Please, answer with only “yes” or “no”. [[INPUT]] For instance: QUESTION: Always face

forward. Take 3 steps backward. Take 5 steps backward. Take 7 steps forward. Take 1 step backward. Take 7 steps backward. Take 6 steps forward. Take 1 step forward. Take

9 steps forward. Take 7 steps backward. ANSWER: yes QUESTION: Always face forward. Take 8 steps backward. Take 9 steps right. Take 2 steps backward. Take 7 steps

forward. Take 4 steps forward. Take 6 steps backward. Take 5 steps backward. Take 5 steps right. Take 6 steps left. ANSWER: no. We should tackle this by taking each step

with thorough and thoughtful consideration.

Snarks

Base Which statement is sarcastic? Please, answer with only “(a)” or “(b)”. [[INPUT]]

Evolved

(Vicuna)

Isolate the statement that conveys sarcasm. Please, answer with only “(a)” or “(b)”. [[INPUT]] For instance: QUESTION: (a) You’re welcome my dear friend. Always glad to feed

the elephants, that woefully endangered species. (b) You’re welcome my dear friend. Always glad to feed the trolls, that woefully endangered species. ANSWER: (b)

Evolved

(Starling)

Unearth the statement that carries a sarcastic implication. Please, answer with only “(a)” or “(b)”. For instance: QUESTION: (a) If I associate something bad witih it, then

my depression will never let me forget it. Weirdest memorization plan ever. (b) If I associate something bad witih it, then my depression will never let me forget it. Best

memorization plan ever. ANSWER: (b). [[INPUT]]

Winowhy

Base Is the following reasoning correct? Please, answer with only “yes” or “no”. [[INPUT]]

Evolved

(Vicuna)

Provide your responses to the questions regarding the linkage of certain pronouns with specific words. Please, answer with only “yes” or “no”. [[INPUT]] For instance:

QUESTION: The foxes are getting in at night and attacking the chickens. They have gotten very nervous. The “They” refers to the chickens because the foxes are the aggressors,

so the sentence is referring to the foxes as getting bold. ANSWER: no.

Evolved

(Starling)

Consider these examples: QUESTION: Bob paid for Charlie’s college education, but now Charlie acts as though it never happened. He is very ungrateful. The “He” refers to

charlie because of the way he has treated Charlie since the beginning. ANSWER: no Please address the inquiries about the words to which certain pronouns refer in the

provided text. Please, answer with only ‘yes” or “no”. Considering the various factors and variables, let’s think about this step by step. [[INPUT]]

This evolutionary system, based on DSGE methods for gram-

matical evolution, can be applied to any LLM, and it can be used

for different tasks by simply adapting the fitness measure of the

answer quality. Future developments could be in the direction of

exploring the prompt space of more powerful language models, and

of determining how rich can be the grammars which define possible

structures for prompts, while retaining the balance between com-

putational costs and the speed of exploitation of the evolutionary

search process.
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