Search for a Higgs boson decaying into $\gamma^*\gamma \to \ell\ell\gamma$ with low dilepton mass in pp collisions at $\sqrt{s} = 8$ TeV

CMS Collaboration*

CERN, Switzerland

A R T I C L E I N F O

Article history:
Received 10 July 2015
Received in revised form 12 October 2015
Accepted 14 December 2015
Available online 17 December 2015

Editor: M. Doser

Keywords:
CMS
Physics
Higgs boson
Dalitz decay

A B S T R A C T

A search is described for a Higgs boson decaying into two photons, one of which has an internal conversion to a muon or an electron pair ($\ell\ell\gamma$). The analysis is performed using proton–proton collision data recorded with the CMS detector at the LHC at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 fb$^{-1}$. The events selected have an opposite-sign muon or electron pair and a high transverse momentum photon. No excess above background has been found in the three-body invariant mass range $120 < m_{\ell\ell\gamma} < 150$ GeV, and limits have been derived for the Higgs boson production cross section times branching fraction for the decay $H \to \gamma^*\gamma \to \ell\ell\gamma$, where the dilepton invariant mass is less than 20 GeV. For a Higgs boson with $m_H = 125$ GeV, a 95% confidence level (CL) exclusion observed (expected) limit is $6.7 (5.9^{+2.8}_{-1.6})$ times the standard model prediction. Additionally, an upper limit at 95% CL on the branching fraction of $H \to (J/\psi)\gamma$ for the 125 GeV Higgs boson is set at 1.5×10^{-3}.

© 2015 CERN for the benefit of the CMS Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The rare decay into the $\ell\ell\gamma$ final state of the Higgs boson is a rich source of information that can enhance our understanding of its basic properties and probe novel couplings predicted by extensions of the standard model (SM) of particle physics. As illustrated in Fig. 1, this decay in SM has contributions from loop-induced $H \to \gamma\gamma$ and $H \to Z\gamma$ diagrams (a, b, c), tree-level process $H \to \ell\ell$ with final-state radiation (d), and higher-order processes, known as box diagrams (e, f, g) [1–4]. Other contributions include $H \to V(q\bar{q})\gamma \to \ell\ell\gamma$, shown in Fig. 2, where V denotes a vector meson (J/ψ or Υ) that decays to $\ell\ell$ [5–7]. The Higgs boson branching fraction to $\ell\ell\gamma$ is dominated by the $H \to \gamma\gamma$ and $H \to Z\gamma$ modes, while the contribution from the box diagrams is negligible [1]. In the muon channel, when the dilepton invariant mass, $m_{\ell\ell}$, is greater than 100 GeV, final-state radiation in $H \to \mu\mu$ starts to dominate [8]. In the three-body decay, $H \to \ell\ell\gamma$, it is possible to investigate non-SM couplings by examining the angular distributions, and forward–backward asymmetry variables reconstructed from the $\ell\ell\gamma$ final state [8,9].

The expected rates of the $H \to (Z/\gamma)^*\gamma \to \ell\ell\gamma$ processes compared to the rate of $H \to \gamma\gamma$ decay, for a Higgs boson with mass $m_H = 125$ GeV, are [10,11]:

\[
\frac{\Gamma(H \to \gamma^*\gamma \to ee\gamma)}{\Gamma(H \to \gamma\gamma)} \sim 3.5\% \\
\frac{\Gamma(H \to \gamma^*\gamma \to \mu\mu\gamma)}{\Gamma(H \to \gamma\gamma)} \sim 1.7\% \\
\frac{\Gamma(H \to Ze\gamma)}{\Gamma(H \to \gamma\gamma)} \sim 2.3\%.
\]

The $H \to \gamma^*\gamma \to ee\gamma$ decay is distinct from $H \to \gamma\gamma$ followed by a conversion of a photon to an e^+e^- pair in the detector, which can become a background for $H \to \gamma\gamma$ if photon conversions are not properly identified. Experimentally, the various contributions shown in Figs. 1 and 2 can be disentangled to some extent. Requirements on $m_{\ell\ell}$ and the transverse momentum (p_T) of the photon are used to separate $H \to \gamma\gamma$ and $H \to Z\gamma$. Events with final-state radiation are removed by requiring the photon to be isolated from either of the leptons. Contributions from $H \to (J/\psi)\gamma \to \ell\ell\gamma$ and other resonances are identified and rejected or selected based on the value of $m_{\ell\ell}$.

The ATLAS and CMS Collaborations at the CERN LHC have both performed a search for $H \to Z\gamma \to \ell\ell\gamma$ decay with $m_{\ell\ell}$ above 50 GeV [12,13]. As a natural extension of these analyses, the current paper describes the first search for a Higgs boson Dalitz decay, $H \to \gamma^*\gamma$, where the γ^* decays into a muon or an electron pair. The search is performed for a Higgs-like particle within the mass range between 120 and 150 GeV. In order to select the

* E-mail address: cms-publication-committee-chair@cern.ch.

http://dx.doi.org/10.1016/j.physletb.2015.12.039
0370-2693/© 2015 CERN for the benefit of the CMS Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

of-mass
nosity
grounds
collision
Ref. [14].
second
state

coupling
1.6%,
ννγ
topology
contribution from
Fig. 1.

In
addition,
ECAL,

Nevertheless,
when the merged showers are reconstructed in the ECAL, a mass resolution of 1.8% is achieved. Important backgrounds include the irreducible contributions from the initial- and final-state photon radiation in Drell–Yan production, and Drell–Yan events with additional jets where a jet is misidentified as a photon.

In addition, a search is performed for \(H \rightarrow (\J/\Psi)\gamma \rightarrow \mu\mu\gamma \) decay for \(m_H = 125 \text{ GeV} \), which is sensitive to the Higgs boson coupling to charm quark and a promising way to access the couplings of the Higgs boson to the second generation quarks at the LHC. In the SM this decay occurs through two main processes: direct coupling of the Higgs boson to charm (Fig. 2a), and the usual \(t/W \) loop, where the radiated \(\gamma^* \) converts to a \(c\bar{c} \) in a resonant state (Fig. 2b). The two amplitudes interfere destructively and the second one dominates [6,7]. For the SM Higgs boson with \(m_H = 125 \text{ GeV} \), the branching fraction is predicted to be \(2.8 \times 10^{-6} \). A search by the ATLAS Collaboration for this decay is described in Ref. [14].

The results presented in this paper are based on proton–proton collision data recorded in 2012 with the CMS detector at a centre-of-mass energy \(\sqrt{s} = 8 \text{ TeV} \), corresponding to an integrated luminosity of 19.7 fb\(^{-1}\).

2. CMS detector and trigger

A detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [15]. The central feature of the CMS apparatus is a superconducting solenoid, 13 m in length and 6 m in diameter, which provides an axial magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, the ECAL, and a hadron calorimeter (HCAL). Charged-particle trajectories are measured by silicon pixel and strip trackers, covering \(0 \leq \phi \leq 2\pi \) in azimuth and \(|\eta| < 2.5 \) in pseudorapidity. A lead tungstate crystal ECAL surrounds the tracking volume. It is comprised of a barrel region \(|\eta| < 1.48 \) and two endcaps that extend up to \(|\eta| = 3 \). A brass and scintillator HCAL surrounds ECAL and also covers the region \(|\eta| < 3 \). Iron forward calorimeters with quartz fibers, read out by photomultipliers, extend the calorimetric coverage up to \(|\eta| = 5 \). A lead and silicon-strip preshower detector is located in front of the ECAL endcaps. Muons are identified and measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. The detector is nearly hermetic, allowing energy balance measurements in the plane transverse to the beam direction.

A two-tier trigger system selects collision events of interest for physics analysis. Two triggers are used in the current analysis. In the muon channel, the trigger requires a single muon and a photon, both with \(p_T \) greater than 22 GeV. In the electron channel the \(\nu^* \rightarrow ee \) process at low dielectron invariant mass mimics a photon at the trigger level. For this reason, a diphoton trigger is used in the electron channel, for \(\nu^* \rightarrow \nu^* \) final state. The trigger requires a leading (subleading) photon with \(p_T > 26 \text{ (18) GeV} \). The diphoton trigger is inefficient for events with high dielectron invariant mass \((m_{ee} > 2 \text{ GeV}) \) due to the isolation and shower shape requirements. The available dielectron triggers cannot be used to select events with \(2 < m_{ee} < 20 \text{ GeV} \) because they also require isolation, and the \(p_T \) requirement made on the subleading lepton is too high.
3. Event reconstruction

The photon energy is reconstructed from a sum of signals in the ECAL crystals [16]. The ECAL signals are calibrated and corrected [17], and a multivariate regression technique, developed for the $H \rightarrow \gamma \gamma$ analysis [18], is used to determine the final energy of the photon [16]. The neighboring ECAL crystals with energy deposition are combined into clusters, and the collection of clusters that contain the energy of a photon or an electron is called a supercluster. Identification criteria are applied to distinguish photons from jets and electrons. The observables used in the photon identification criteria are: the isolation variables, the ratio of the energy in the HCAL towers behind the supercluster to the electromagnetic energy in the supercluster; the transverse width in η of the electromagnetic shower; and the number of charged tracks matched to the supercluster. The efficiency of the photon identification is measured using $Z \rightarrow ee$ data by reconstructing the electron showers as photons, and found to be 80(88\%) at a transverse energy $> 30\,(50)$ GeV and $|\eta| < 1.44$.

Muons are reconstructed in the tracker and identified by the particle-flow global event reconstruction algorithm [19, 20] using hits in the tracker and the muon systems. This approach allows us to maintain a high efficiency independent of the dimuon invariant mass and to reconstruct muons with p_T as low as 4 GeV. Muons from $\gamma^* \rightarrow \mu\mu$ internal conversions are expected to be isolated from other particles. A cone of size $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} = 0.4$ is constructed around the momentum direction of each muon candidate [21]. The relative isolation of the muon is quantified by summing the p_T of all photons, charged and neutral hadrons within this cone, and then dividing by the muon p_T. The resulting quantity, corrected for additional underlying event activity due to pileup events, is required to be less than 0.4 for the leading muon. The isolation requirement rejects misidentified leptons and background arising from hadronic jets. The $\Delta R(\mu\mu)$ separation between the two muons is small due to their low invariant mass (as shown in Fig. 3) and high p_T of the γ^* in $H \rightarrow \gamma\gamma$ decays. Hence, no isolation requirement is applied to the subleading muons as they are already within the isolation cone of the leading muons in most events. Dimuon identification and isolation efficiency of about 80% is obtained.

In the electron channel of the $H \rightarrow \gamma\gamma \rightarrow e\ell\gamma$ decay, the two electrons produced in the $\gamma^* \rightarrow ee$ process are even closer to each other than in the muon channel, since the $m_{\ell\ell}$ is smaller (Fig. 3). Therefore, their energy deposits in the ECAL are merged into one supercluster giving rise to a unique signature. To identify these merged electrons, two tracks associated to the supercluster are required. A Gaussian sum filter (GSF) algorithm is used to reconstruct the electron tracks [22]. The supercluster energy must correspond to $p_T > 30$ GeV and be located in the ECAL barrel ($|\eta| < 1.44$). The scalar sum $p_T^1 + p_T^2$ of the corresponding two GSF tracks must exceed 44 GeV. Both GSF tracks are required to have no more than one missing hit in the pixel detector in order to reduce the background from photons converting to e^+e^- in the detector material. A multivariate discriminator is trained to separate the $\gamma^* \rightarrow ee$ objects from jets or single electrons. The input variables for the training include lateral shower shape variables, the median energy density in the event to take into account the pileup dependence, and the kinematic information from the supercluster and tracks. A combined reconstruction and selection efficiency of $\sim 40\%$ is achieved for the signal. For comparison, the efficiency for a single isolated electron with similar p_T is $\sim 88\%$ [23].

4. Simulated samples

The description of the Higgs boson signal used in the search is obtained from simulated events. The samples for the Dalitz signal are produced at leading-order using the MadGraph 5 matrix-element generator [24] with the ANO-HEFT model [25], interfaced with PYTHIA 6.426 [26], for the gluon and vector boson fusion processes, and for associated production with a vector boson. Associated production with a $t\bar{t}$ pair is ignored because of its small contribution. The sample for $H \rightarrow (\ell\ell)\gamma$ is produced with the PYTHIA 8.153 generator [27], and reweighted to simulate 100% polarization of the $\ell\ell$. The parton distribution function (PDF) set used to produce these samples is given by CTEQ6L1 [28]. The SM Higgs boson production cross sections are taken from Ref. [11]. The branching fractions for $H \rightarrow \gamma\gamma$ are estimated using MCFM 6.6 [29] and for $H \rightarrow (\ell\ell)\gamma$ are taken from Ref. [6]. For the SM Higgs boson in the mass range of 120–150 GeV, the $H \rightarrow \gamma\gamma \rightarrow \mu\mu\gamma$ (ee)γ branching fraction is expected to be between $2.0(4.5) \times 10^{-5}$ and $3.3(7.5) \times 10^{-5}$ for m_H below 20 GeV. The expected branching fraction for $H \rightarrow (\ell\ell)\gamma$ is $(2.8 \pm 0.2) \times 10^{-6}$ for $m_H = 125$ GeV, which is further suppressed due to the $\ell\ell$ meson decay to muons, $B(\ell\ell) \rightarrow \mu\mu = 0.059$.

The simulation aims to include all known effects and the conditions of real data taking in CMS. Some residual differences between the data and simulation are taken into account by reweighting the simulated events with scale factors. Systematic uncertainties are assigned to cover imperfect knowledge of residual differences. Scale factors are implemented to match the distribution of primary vertices, the photon identification and isolation efficiency, and the muon isolation efficiency. No corrections are applied to the muon and electron identification and trigger efficiencies, but an uncertainty is assigned as described in Section 7.

The energy and momentum resolution of muons and photons in simulated events are corrected to match that in data. The energy scale of muons (photons) is corrected to that found in $Z \rightarrow \mu\mu$ (ee) events. For the electrons, no resolution or scale corrections are applied because of their unique topology, and the absence of a data-driven method to derive those corrections. Therefore, we rely on the simulation of the $\gamma^* \rightarrow ee$ process and assign uncertainties sufficient to cover any possible discrepancy in the scale and resolution between data and simulation.
5. Event selection

Events are required to pass the muon plus photon trigger in the $\mu\gamma$ final state and the diphoton triggers in the eeγ final state. The trigger efficiency for signal events after the selection requirements described below is 85% (90%) in the muon (electron) channel, as measured from the simulated samples.

The muons (electrons) are required to be within $|\eta| < 2.4$ (1.44), while the photon is required to be within $|\eta| < 1.44$. The invariant mass of the $\ell\ell\gamma$ system, $m_{\ell\ell\gamma}$, is required to satisfy $110 < m_{\ell\ell\gamma} < 170$ GeV. The photon and dilepton momenta both must satisfy $p_T > 0.3 \text{ GeV}$ requirement, which is optimized for high signal efficiency and background rejection.

On average, there are 21 pp interactions within the same bunch crossing in the 8 TeV data, which result in about 16 collision vertices reconstructed in each event. The vertex with the highest scalar sum of the p_T^2 of its associated tracks is taken to correspond to the primary interaction vertex. The primary vertex must have the reconstructed longitudinal position (z) within 24 cm of the geometric centre of the detector and the transverse position (x-y) within 2 cm of the beam interaction region. The lepton tracks from $\gamma^* \rightarrow \mu\mu$ (ee) are required to originate from the primary vertex, and to have transverse and longitudinal impact parameters with respect to that vertex smaller than 2.0 (0.2) mm and 5 (1) mm, respectively.

The muons must be oppositely charged, and have $p_T > 23$ (4) GeV for the leading (subleading) lepton. The p_T requirement on the leading muon is driven by the trigger threshold, and on the subleading muon by the minimum energy needed to reach the muon system, while maintaining high reconstruction efficiency. In the electron channel, no additional selection on p_T of the GSF tracks is necessary, beyond those described in Section 3. Finally, in both muon and electron channels, the separation between each lepton and the photon is required to satisfy $\Delta R > 1$ in order to suppress Drell–Yan background events with final-state radiation.

The dilepton invariant mass in the muon channel is required to be less than 20 GeV to reject contributions from pp $\rightarrow \gamma Z$ and to suppress interference effects from the H $\rightarrow \gamma Z$ process and the box diagrams shown in Fig. 1. Events with a dimuon mass in the ranges $2.9 < m_{\mu\mu} < 3.3$ GeV and $9.3 < m_{\mu\mu} < 9.7$ GeV are rejected to avoid the $1/\gamma \rightarrow \mu\mu$ and $T \rightarrow \mu\mu$ contamination. In the electron channel the invariant mass, constructed from the two GSF tracks, is required to satisfy $m_{ee} < 1.5$ GeV. The $m_{\ell\ell}$ distributions for simulated signal events are shown in Fig. 3 in the muon and electron channels.

In the search for the $H \rightarrow (J/\psi)\gamma \rightarrow \mu\mu\gamma$, both p_T^ℓ and $p_T^{\mu\ell}$ > 40 GeV are required, and the events are selected with $2.9 < m_{\mu\ell} < 3.3$ GeV.

The observed yields after the event selection described above are listed in Table 1. In the electron channel, there is also a contribution from the $H \rightarrow \gamma\gamma$ process due to unidentified conversions, which is about 15% of the $H \rightarrow \gamma^*\gamma$ signal (0.2 events at $m_H = 125$ GeV). This contribution is considered as a background to $H \rightarrow \gamma^*\gamma$, and negligible compared to the continuum background estimated from the fit to data described in the next section.

6. Background and signal modeling

The background is modeled by fitting a polynomial function to the $\ell\ell\gamma$ mass distributions in data. An unbinned maximum likelihood fit is performed over the range $110 < m_{\ell\ell\gamma} < 170$ GeV. Fig. 4 shows the $m_{\ell\ell\gamma}$ spectra, which are fitted with polynomial functions of fourth degree. The reduced χ^2 of the fits are 0.5 and 0.7 for the muon and electron channels, respectively. Even though the search is limited to $120 < m_H < 150$ GeV, the fits to the $m_{\ell\ell\gamma}$ spectra are performed over a wider range, giving a better modeling of the background, particularly at the edges of the search range. The degree of the polynomials is chosen following a procedure similar to the one described in Ref. [30]. This procedure ensures that the potential bias due to the background modeling is at least five times smaller than statistical uncertainty.

For the H $\rightarrow (J/\psi)\gamma$ search, where only the single Higgs boson mass hypothesis $m_H = 125$ GeV is investigated, a fit to a polynomial of second degree is performed over the 110–150 GeV mass range (Fig. 5).
Table 2
Systematic uncertainties affecting the signal.

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated luminosity (Ref. [37])</td>
<td>2.6%</td>
</tr>
<tr>
<td>Theoretical uncertainties:</td>
<td></td>
</tr>
<tr>
<td>PDF</td>
<td>2.6–7.5%</td>
</tr>
<tr>
<td>Scale</td>
<td>0.2–7.9%</td>
</tr>
<tr>
<td>$H \rightarrow \gamma\gamma \rightarrow $ $\ell \ell \gamma$ branching fraction</td>
<td>10%</td>
</tr>
<tr>
<td>Experimental uncertainties:</td>
<td></td>
</tr>
<tr>
<td>Pileup reweighting</td>
<td>0.8%</td>
</tr>
<tr>
<td>Trigger efficiency, μ (e) channel</td>
<td>4(2)%</td>
</tr>
<tr>
<td>Muon reconstruction efficiency</td>
<td>11%</td>
</tr>
<tr>
<td>Electron reconstruction efficiency</td>
<td>3.5%</td>
</tr>
<tr>
<td>Photon reconstruction efficiency</td>
<td>0.6%</td>
</tr>
<tr>
<td>$m_{\ell\ell}$ scale, μ (e) channel</td>
<td>0.1 (0.5)%</td>
</tr>
<tr>
<td>$m_{\ell\ell}$ resolution, μ (e) channel</td>
<td>10 (10)%</td>
</tr>
</tbody>
</table>

The signal model in all three cases is obtained from an un-binned fit to the mass distribution of the corresponding sample of simulated events to a Crystal Ball function [31] plus a Gaussian function.

7. Results

The data are used to derive upper limits on the Higgs boson cross section times branching fraction, $\sigma(pp \rightarrow H) B(H \rightarrow \gamma\gamma \rightarrow $ $\ell\ell\gamma)$ divided by that expected for a SM Higgs boson, for $m_{\ell\ell} < 20$ GeV. No significant excess above background is observed in the full mass range, 120 < m_{H} < 150 GeV, with a maximum excess of less than two standard deviations. In the electron channel a correction is made to account for the events that are removed by the requirement of $m_{\ell\ell} < 1.5$ GeV due to the trigger and reconstruction inefficiencies described above.

The exclusion limits are calculated using the modified frequentist CL method [32–36]. An unbinned evaluation over the full mass range of data is used. The uncertainty in the limit is dominated by the size of the data sample and systematic uncertainties have a small impact.

The systematic uncertainty in the limits results only from the uncertainty in the signal description, as the background is obtained from data and biases in the fitting procedure have been found to be negligible. A summary of the systematic uncertainties is given in Table 2. The uncertainty can be separated into the uncertainty resulting from theoretical predictions and from the uncertainty in detector reconstruction and selection efficiency.

Fig. 5. The $m_{\mu\mu\gamma}$ distribution for events with $2.9 < m_{\mu\mu} < 3.3$ GeV for 8 TeV data (points with error bars), together with the result of a background-only fit to the data. The 1σ and 2σ uncertainty bands represent the uncertainty in the parameters of the fitted function. The expected contribution from the $H \rightarrow (J/\psi)\gamma \rightarrow \mu\mu\gamma$ process of the SM H with $m_{H} = 125$ GeV, scaled up by a factor of 500, is shown as a histogram.

Fig. 6. The 95% CL exclusion limit, as a function of the mass hypothesis, m_{H}, on σ/σ_{SM}, the cross section times the branching fraction of a Higgs boson decaying into a photon and a lepton pair with $m_{\ell\ell} < 20$ GeV, divided by the SM value. (Top) muon, (middle) electron channels, (bottom) statistical combination of the results in the two channels.

Theoretical uncertainties come from the effects of the PDF choice on signal cross section, the missing higher-order calculations (scale) [38–42], and the uncertainty in the prediction on the Higgs boson decay branching fraction [4,11]. The uncertainty due to the muon reconstruction efficiency, 11%, is obtained from data using $J/\psi \rightarrow \mu\mu$ events. It is dominated by the statistical uncertainty of the data sample. In the electron channel, the corresponding uncertainty, 3.5%, is obtained from simulation. The 11% uncertainty estimated for the muon identification efficiency is sufficiently small and it has no impact on our result, thus no simulation study was attempted, although it could greatly reduce the uncertainty.

The expected and observed individual and combined $\mu\mu\gamma$ and $\mu\gamma\gamma$ limits are shown in Fig. 6. The limits are calculated at 1 GeV
intervals in the 120–150 GeV mass range. The median expected exclusion limits at 95% confidence level (CL) are between 6 and 10 times the SM prediction and the observed limit ranges between about 5 and 11 times the SM. The observed (expected) limit for \(m_H = 125 \text{ GeV} \) is 6.7 (5.9\splusminus0.8) times the SM prediction.

The 95% CL exclusion limits on \(\sigma(pp \rightarrow H) \mathcal{B}(H \rightarrow \mu\mu) \) for a narrow scalar particle without assuming the decay kinematics of a SM Higgs boson, in the muon channel, are shown in Fig. 7. The observed (expected) limit for \(m_H = 125 \text{ GeV} \) is 7.3 (5.2\splusminus1.9) fb. The total signal efficiency is 24% and almost independent of the dimuon invariant mass. In the electron channel, however, this efficiency depends on the dielectron mass, since it is strongly shaped by the selection. For this reason the corresponding limit in the electron channel is not evaluated.

Additionally, for the SM Higgs boson with \(m_H = 125 \text{ GeV} \), we place an upper limit for a 2.9 < \(m_{\ell\ell} < 3.3 \) GeV region in the muon channel: \(\sigma(pp \rightarrow H) \mathcal{B}(H \rightarrow \mu\mu\gamma) < 1.8 \text{ fb} \), while the expected limit is 1.90 \splusminus0.97 fb. One can interpret this result as an upper limit on \(\sigma(pp \rightarrow H) \mathcal{B}(H \rightarrow (\ell/\gamma)\gamma \rightarrow \mu\mu\gamma) \) and obtain for the branching fraction, \(\mathcal{B}(H \rightarrow (\ell/\gamma)\gamma) < 1.5 \times 10^{-3} \) at 95% CL, which is about 540 times the prediction in Ref. [6]. The limit on the branching fraction at 90% CL is \(\mathcal{B}(H \rightarrow (\ell/\gamma)\gamma) < 1.2 \times 10^{-3} \). The number of events present in this \(m_{\mu\mu} \) mass window coming from the H → γγ → μμγ is large compared to the H → (\ell/\gamma)γ → μμγ (as shown in Table 1). On the other hand it is small compared to the total background, hence it is considered as a part of the background when extracting the limit on \(\mathcal{B}(H \rightarrow (\ell/\gamma)\gamma) \).

8. Summary

A search for a Higgs boson decay \(H \rightarrow \gamma^*\gamma \rightarrow \ell\ell\gamma \) is presented. No excess above the background predictions has been found in the three-body invariant mass range 120 < \(m_{\ell\ell\gamma} < 150 \) GeV. Limits on the Higgs boson production cross section times the H → γγ → \ell\ellγ branching fraction divided by the SM values have been derived. The observed limit for \(m_H = 125 \text{ GeV} \) is about 6.7 times the SM prediction. Limits at 95% CL on \(\sigma(pp \rightarrow H) \mathcal{B}(H \rightarrow \mu\mu) \) for a narrow resonance are also obtained in the muon channel. The observed limit for \(m_H = 125 \text{ GeV} \) is 7.3 fb. Events consistent with the \(J/\psi \) in dimuon invariant mass are used to set a 95% CL limit on the branching fraction \(\mathcal{B}(H \rightarrow (J/\psi)\gamma) < 1.5 \times 10^{-3} \), that is, 540 times the SM prediction for \(m_H = 125 \text{ GeV} \).

Acknowledgements

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CChP and CEAIP, and INAF (Italy); INFN (Italy); INSPIRE and NRF (Republic of Korea); LAS (Lithuania); MINEO and UM (Madagascar); INIC and INFN (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSFI (Croatia); RPF (Cyprus); EMBR, ERC ICT and ERDF (Estonia); Academy of Finland, MEK, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIHU (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MISIP and NRF (Republic of Korea); LAS (Lithuania); MCT and UM (Malaysia); CINEVST, CONACYT, SEP, and UASLP-FI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STCF (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds Pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, cofinanced by European Union, Regional Development Fund; the Compagnia di San Paolo (Torino); the Consorzio per la Fisica (Trieste); MIUR project 201084TAXM (Italy); the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Programme by Qatar National Research Fund; the Rachadapisek Somphot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand); and the Welch Foundation.

References

CMS Collaboration

V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Yerevan Physics Institute, Yerevan, Armenia

Institut für Hochenergiephysik der ÖAW, Wien, Austria

V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

National Centre for Particle and High Energy Physics, Minsk, Belarus

Institute of High Energy Physics, Beijing, China

C. Asawatangtrakuldee, Y. Ban, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu, W. Zou
State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China

C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, B. Gomez Moreno, J.C. Sanabria
Universidad de Los Andes, Bogota, Colombia

N. Godinovic, D. Lelas, D. Polic, I. Puljak
University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia

Z. Antunovic, M. Kovac
University of Split, Faculty of Science, Split, Croatia

V. Brigljevic, K. Kadija, J. Luetic, S. Micanovic, L. Sudic
Institute Rudjer Boskovic, Zagreb, Croatia

University of Cyprus, Nicosia, Cyprus

M. Bodlak, M. Finger 10, M. Finger Jr. 10
Charles University, Prague, Czech Republic

R. Aly 11, S. Aly 11, E. El-khateeb 12, A. Lotfy 13, A. Mohamed 14, A. Radi 15,12, E. Salama 12,15, A. Sayed 12,15
Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

B. Calpas, M. Kadastik, M. Murumaa, M. Raidal, A. Tiko, C. Veelken
National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

P. Eerola, J. Pekkanen, M. Voutilainen
Department of Physics, University of Helsinki, Helsinki, Finland

Helsinki Institute of Physics, Helsinki, Finland

J. Talvitie, T. Tuuva
Lappeenranta University of Technology, Lappeenranta, Finland

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
N. Bacchettaa, D. Biselloa,b, A. Bolettia,b, R. Carlina,b, A. Carvalho Antunes De Oliveiraa,b, P. Checchiaa, M. Dall’Ossa,b,2, F. Fanzagoa, F. Gasparinia,b, U. Gasparinia,b, G. Gonellaa, A. Gozzelinoa, K. Kanishcheva,c, M. Margonia,b, G. Marona,29, A.T. Meneguzzoa,b, F. Montecassianoa, M. Passaseoa, J. Pazzinia,b, N. Pozzobona,b, P. Ronchesea,b, F. Simonettoa,b, E. Torassaa, M. Tosia,b, M. Zanetti, P. Zottoa,b, A. Zucchettaa,b,2, G. Zumerlea,b

a INFN Sezione di Padova, Padova, Italyb Università di Padova, Padova, Italyc Università di Trento, Trento, Italy

A. Braghieria, A. Magnania, P. Montagnaa,b, S.P. Rattia,b, V. Rea, C. Riccardia,b, P. Salvinia, I. Vaia, P. Vituloa,b

a INFN Sezione di Pavia, Pavia, Italyb Università di Pavia, Pavia, Italy

L. Alunni Solestizia,b, M. Biasinia,b, G.M. Bileia, D. Ciangottinia,b,2, L. Fanòa,b, P. Laricciaa,b, G. Mantovania,b, M. Menichellia, A. Sahaa, A. Santocchiaa,b, A. Spieziaa,b

a INFN Sezione di Perugia, Perugia, Italyb Università di Perugia, Perugia, Italy

K. Androsova,30, P. Azzurria, G. Bagliesia, J. Bernardinia, T. Boccalia, G. Broccoloa,c, R. Castaldia, M.A. Cioccia,30, R. Dell’Orsoa, S. Donatoa,c,2, G. Fedi, L. Foàa,c,7, A. Giassia, M.T. Grippoa,30, F. Ligabuea,c, T. Lomtadzea, L. Martinia,b, A. Messineoa,b, F. Pallaa, A. Rizzia,b, A. Savoy-Navarroa,31, A.T. Serbana, P. Spagnoloa, P. Squillaciotia,30, R. Tenchinia, G. Tonellia,b, A. Venturia, P.G. Verdinia

a INFN Sezione di Pisa, Pisa, Italyb Università di Pisa, Pisa, Italyc Scuola Normale Superiore di Pisa, Pisa, Italy

L. Baronea,b, F. Cavallaria, G. D'imperioa,b,2, D. Del Rea,b, M. Diemoza, S. Gellia,b, C. Jordaa, E. Longoa,b, F. Margarolia,b, P. Meridiania, F. Michelia,b, G. Organtinia,b, R. Paramattia, F. Preiatoa,b, S. Rahata,b, C. Rovellia, F. Santanastasioa,b, P. Traczyka,b,2

a INFN Sezione di Roma, Roma, Italyb Università di Roma, Roma, Italy

N. Amapanea,b, R. Arcidiaconoa,c,2, S. Argiroa,b, M. Arneodoa,c, R. Bellana,b, C. Biinoa, N. Cartigliaa, M. Costaa,b, R. Covarellia,b, A. Deganoa,b, N. Demariaa, G. Dugheraa, L. Fincoa,b,2, C. Mariottia, S. Masellia, E. Migliorea,b, V. Monacoa,b, E. Monteila,b, M. Musicha, M.M. Obertinoa,b, L. Pachera,b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia,b, F. Raveraa,b, A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, A. Solanoa,b, A. Staianoa, U. Tamponia

a INFN Sezione di Torino, Torino, Italyb Università di Torino, Torino, Italyc Università del Piemonte Orientale, Novara, Italy

S. Belfortea, V. Candelisea,b,2, M. Casarsaa, F. Cossuttia, G. Della Riccaa,b, B. Gobboa, C. La Licataa,b, M. Maronea,b, A. Schizzia,b, T. Umera,b, A. Zanettia

a INFN Sezione di Trieste, Trieste, Italyb Università di Trieste, Trieste, Italy

S. Chang, A. Kropivnitskaya, S.K. Nam

Kangwon National University, Chunchon, Republic of Korea

D.H. Kim, G.N. Kim, M.S. Kim, D.J. Kong, S. Lee, Y.D. Oh, A. Sakharov, D.C. Son

Kyounggook National University, Daegu, Republic of Korea

J.A. Brochero Cifuentes, H. Kim, T.J. Kim, M.S. Ryu

Chonbuk National University, Jeonju, Republic of Korea
S. Song
Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Republic of Korea

Korea University, Seoul, Republic of Korea

H.D. Yoo
Seoul National University, Seoul, Republic of Korea

University of Seoul, Seoul, Republic of Korea

Sungkyunkwan University, Suwon, Republic of Korea

A. Juodagalvis, J. Vaitkus
Vilnius University, Vilnius, Lithuania

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia

E. Casimiro Linares, H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz34, A. Hernandez-Almada, R. Lopez-Fernandez, A. Sanchez-Hernandez
Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

S. Carrillo Moreno, F. Vazquez Valencia
Universidad Iberoamericana, Mexico City, Mexico

S. Carpinteyro, I. Pedraza, H.A. Salazar Ibarguen
Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

A. Morelos Pineda
Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico

D. Krofcheck
University of Auckland, Auckland, New Zealand

P.H. Butler, S. Reucroft
University of Canterbury, Christchurch, New Zealand

A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, T. Khurshid, M. Shaiba
National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

National Centre for Nuclear Research, Swierk, Poland

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

Joint Institute for Nuclear Research, Dubna, Russia

V. Golovtsov, Y. Ivanov, V. Kim, E. Kuznetsova, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia

Institute for Nuclear Research, Moscow, Russia

V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, E. Vlasov, A. Zhokin

Institute for Theoretical and Experimental Physics, Moscow, Russia

A. Bylinkin

National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia

PN. Lebedev Physical Institute, Moscow, Russia

A. Baskakov, A. Belyaev, E. Boos, M. Dubinin, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Myagkov, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

P. Adzic, M. Ekmedzic, J. Milosevic, V. Rekovic

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

C. Albajar, J.F. de Trocóniz, M. Missiroli, D. Moran

Universidad Autónoma de Madrid, Madrid, Spain

Universidad de Oviedo, Oviedo, Spain

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

CERN, European Organization for Nuclear Research, Geneva, Switzerland

Paul Scherrer Institut, Villigen, Switzerland

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

Universität Zürich, Zurich, Switzerland

National Central University, Chung-Li, Taiwan

National Taiwan University (NTU), Taipei, Taiwan

B. Asavapibhop, K. Kovitanggoon, G. Singh, N. Srimanobhas, N. Suwonjandee

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand

Brown University, Providence, USA

University of California, Davis, Davis, USA

University of California, Los Angeles, USA

University of California, Riverside, Riverside, USA

University of California, San Diego, La Jolla, USA

California Institute of Technology, Pasadena, USA

V. Azzolini, A. Calamba, B. Carlson, T. Ferguson, Y. Iiyama, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev

Carnegie Mellon University, Pittsburgh, USA

University of Colorado Boulder, Boulder, USA

Cornell University, Ithaca, USA

L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, A. Whitbeck, F. Yang, H. Yin

Fermi National Accelerator Laboratory, Batavia, USA

University of Florida, Gainesville, USA

S. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida International University, Miami, USA

Florida State University, Tallahassee, USA

Florida Institute of Technology, Melbourne, USA

University of Illinois at Chicago (UIC), Chicago, USA

The University of Iowa, Iowa City, USA

Johns Hopkins University, Baltimore, USA

The University of Kansas, Lawrence, USA

Kansas State University, Manhattan, USA

D. Lange, F. Rebassoo, D. Wright

Lawrence Livermore National Laboratory, Livermore, USA

University of Maryland, College Park, USA

Massachusetts Institute of Technology, Cambridge, USA

University of Minnesota, Minneapolis, USA

J.G. Acosta, S. Oliveros

University of Mississippi, Oxford, USA

University of Nebraska-Lincoln, Lincoln, USA

M. Alyari, J. Dolen, J. George, A. Godshalk, I. Iashvili, J. Kaisen, A. Kharchilava, A. Kumar, S. Rappoccio

State University of New York at Buffalo, Buffalo, USA

Northeastern University, Boston, USA

Northwestern University, Evanston, USA

University of Notre Dame, Notre Dame, USA

The Ohio State University, Columbus, USA

Princeton University, Princeton, USA

Purdue University, West Lafayette, USA

N. Parashar, J. Stupak

Purdue University Calumet, Hammond, USA

Rice University, Houston, USA

B. Betchart, A. Bodek, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, M. Galanti, A. Garcia-Bellido, P. Goldenzweig, J. Han, A. Harel, O. Hindrichs, A. Khukhunaishvili, G. Petrillo, M. Verzetti

University of Rochester, Rochester, USA

L. Demortier

The Rockefeller University, New York, USA

Rutgers, The State University of New Jersey, Piscataway, USA

M. Foerster, G. Riley, K. Rose, S. Spanier, A. York

University of Tennessee, Knoxville, USA

Texas A&M University, College Station, USA

Texas Tech University, Lubbock, USA

E. Appelt, A.G. Delannoy, S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, Y. Mao, A. Melo, P. Sheldon, B. Snook, S. Tuo, J. Velkovska, Q. Xu

Vanderbilt University, Nashville, USA

University of Virginia, Charlottesville, USA

C. Clarke, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, J. Sturdy

Wayne State University, Detroit, USA

University of Wisconsin, Madison, USA

1 Deceased.
2 Also at Vienna University of Technology, Vienna, Austria.
3 Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
4 Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China.
5 Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.
6 Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.