Measurements of $t\bar{t}H$ Production and the CP Structure of the Yukawa Interaction between the Higgs Boson and Top Quark in the Diphoton Decay Channel

A. M. Sirunyan et al.*
(CMS Collaboration)

(Received 24 March 2020; accepted 19 June 2020; published 5 August 2020)

The first observation of the $t\bar{t}H$ process in a single Higgs boson decay channel with the full reconstruction of the final state ($H \rightarrow \gamma\gamma$) is presented, with a significance of 6.6 standard deviations (σ). The CP structure of Higgs boson couplings to fermions is measured, resulting in an exclusion of the pure CP-odd structure of the top Yukawa coupling at 3.2σ. The measurements are based on a sample of proton-proton collisions at a center-of-mass energy $\sqrt{s} = 13$ TeV collected by the CMS detector at the LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$. The cross section times branching fraction of the $t\bar{t}H$ process is measured to be $\sigma_{t\bar{t}H}B_{\gamma\gamma} = 1.56^{+0.34}_{-0.32}$ fb, which is compatible with the standard model prediction of $1.13^{+0.08}_{-0.11}$ fb. The fractional contribution of the CP-odd component is measured to be $f_{CP} = 0.00 \pm 0.33$.

DOI: 10.1103/PhysRevLett.125.061801

Since its observation [1–3], the properties of the Higgs boson (H) have been studied using a variety of decay channels and production modes. Among these properties, the tree-level top quark Yukawa (Htt) coupling and its CP structure can be tested by studying H production in association with a top quark-antiquark pair ($t\bar{t}H$). The CMS [4] and ATLAS [5] Collaborations reported the observation of the $t\bar{t}H$ process by combining several H decay channels, with a cross section compatible with the standard model (SM) expectation. One of the most sensitive channels for probing the $t\bar{t}H$ process is $H \rightarrow \gamma\gamma$. By probing the interaction between the H and vector bosons, CMS [6–13] and ATLAS [14–19] have determined that the H quantum numbers are consistent with $J^{PC} = 0^{++}$. However, small anomalous contributions were not excluded, and studies of the Htt coupling provide an alternative and independent path for CP tests in the Higgs sector [20–22].

This Letter reports on the measurement of the production rate of $t\bar{t}H$ with $H \rightarrow \gamma\gamma$, giving the first observation of the tree-level Htt coupling in a single H decay channel, along with a first test of its CP structure. Results are based on data from proton-proton (pp) collisions at a center-of-mass energy of $\sqrt{s} = 13$ TeV collected with the CMS detector at the LHC between 2016 and 2018, corresponding to an integrated luminosity of 137 fb$^{-1}$. The central feature of the CMS apparatus [23] is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Inside the solenoid there is a silicon tracker, a lead-tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter. Forward calorimeters extend the coverage to higher pseudorapidity (η), and muon detectors are embedded in the flux-return yoke of the solenoid.

The particle-flow (PF) algorithm [24] reconstructs individual particles (photons, charged and neutral hadrons, muons, and electrons) by combining information from all detectors. Jets are built from PF particles with the anti-k_T algorithm [25,26] with a distance parameter of 0.4. The missing transverse momentum (p_T^{miss}) is defined as the negative vector sum of the transverse momenta (p_T) of all PF particles. The primary pp interaction vertex is taken as the vertex with the largest value of summed physics object p_T^2 [27]. Charged hadrons originating from additional pp interactions are removed from the analysis. Jets from the hadronization of bottom quarks are tagged by a secondary vertex algorithm based on the score from a deep neural network (DNN) [28].

Signal and background processes are generated with several Monte Carlo (MC) programs. All H production processes are modeled with MADGRAPH5_aMC@NLO2.4.2 at next-to-leading order (NLO) [29] in quantum chromodynamics (QCD), with cross sections and decay branching fractions taken from Ref. [30]. A separate $t\bar{t}H$ sample, generated with POWHEG2.0 [31–34] at NLO in QCD, is used to increase the number of events used for training the multivariate discriminants described below. For the CP study, $t\bar{t}H$ anomalous coupling samples of CP-odd, CP-even, and a mixture of the two are generated at leading

*Full author list given at the end of the Letter.

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.
order (LO) with jhugEN7.0.2 [22,35–37] and reweighted with the MELA matrix element library [22,35–37]. jhugEN7.0.2 and MELA are also used for the study of CP effects in the $t\bar{t}H$ process. The MADGRAPH5_aMC@NLO program is also used to generate most background processes, e.g., $t\bar{t} + \gamma\gamma$, $t\bar{t} + \gamma$, $t\bar{t} + \text{jets}$, $\gamma + \text{jets}$, $V + \gamma$, Drell–Yan, diboson, $t + V$, where V is a W or a Z boson. In contrast, the diphoton background ($\gamma\gamma + \text{jets}$) is generated with SHERPA2.2.4 [38], which includes tree-level processes with up to three additional jets, as well as box processes at LO accuracy. In all MC samples, the parton fragmentation and hadronization as well as the underlying events are modeled with PYTHIA8.205 [39] with the CUEPT8M1 [40] LO accuracy. In all MC samples, the parton fragmentation and hadronization as well as the underlying events are modeled with PYTHIA8.205 [39] with the CUEPT8M1 [40] and CP5 [41] tune used for the simulation of 2016 and 2017–2018 data, respectively. Finally, the detector response is simulated with the GEANT4 package [42].

The trigger [43] selects diphoton events with a loose calorimetric identification [44] and asymmetric photon transverse energy (E_T) thresholds of 30 and 18 (22) GeV for the data collected during 2016 (2017–2018). The trigger efficiency is $>95\%$ and is measured as a function of E_T, η, and R_0 of the photons using an alternative trigger, where R_0 is the energy sum of the 3×3 crystals centered around the most energetic crystal in the cluster divided by the energy of the photon.

H candidates are built from pairs of photon candidates, which are reconstructed from energy clusters in the ECAL not linked to charged-particle tracks (with the exception of converted photons). The photon energies are corrected for the containment of electromagnetic showers in the clustered crystals and the energy losses of converted photons with a multivariate regression technique based on simulation [44]. The ECAL energy scale in data is corrected using $Z \to e^+e^-$ simulated events smeared to reproduce the energy resolution measured in data. The off-line diphoton selection criteria are similar to, but more stringent than, those used in the trigger [44].

Photons are further required to satisfy a loose identification (photon ID [44]) criterion based on a boosted decision tree (BDT) classifier trained to separate photons from jets. Inputs to photon ID such as shower shape and isolation variables in simulation are corrected with a chained quantile regression method [45] based on studies of $Z \to e^+e^-$ events. Each variable is corrected with a separately trained BDT, taking the photon kinematic properties, per event energy density, and the previously corrected features as inputs to ensure that correlations between the inputs are preserved and closer to those in data. This method improves the modeling of the photon ID BDT discriminant in MC simulation with respect to the previous CMS $H \to \gamma\gamma$ results [44].

After the preselection described above, we require $100 < m_{\gamma\gamma} < 180$ GeV, $p_T/|E_T| > 1/3$ and $1/4$ for the leading (in p_T) and subleading photons, respectively, and then divide events into two channels. The leptonic channel is aimed at selecting events where at least one top quark decays leptonically and demands the presence of ≥ 1 jet with $p_T > 25$ GeV and $|\eta| < 2.4$, ≥ 1 isolated e or μ with $p_T > 10$ GeV for electrons, $p_T > 5$ GeV for muons, and $|\eta| < 2.4$. The hadronic channel targets $t\bar{t}$ hadronic decays by requiring at least three jets, at least one b-tagged jet, jet and lepton multiplicity, b-tagging scores of jets, and p_T^{miss}. The inclusion of b-tagging scores reduces the non-tt background; furthermore, jets and leptons in $t\bar{t}H$ events that do not contain top quarks. We also use long short-term memory based [48] DNNs trained to separate $t\bar{t}H$ from the dominant backgrounds in a signal-enriched phase space: $\gamma\gamma + \text{jets}$ and $t\bar{t} + \gamma\gamma$ for the hadronic channel, and $t\bar{t} + \gamma\gamma$ for the leptonic channel. In addition to the features that are used in BDT-bkg, the DNNs exploit low-level information including the full four-vectors of each jet and lepton and the jet flavor scores [28]. The four-vectors allow for a more effective use of the kinematic properties of the jet and the lepton, while the jet flavor scores allow the differentiation of the origins of hadronic jets between $t\bar{t}H$ and the dominant backgrounds that the DNNs are designed to reject. The DNNs are trained on all the MC samples with a large number of simulated events and used as additional inputs to the BDT-bkg, rather than in place of the BDT-bkg. When a DNN is trained on all
background components, its performance is worse than the BDT-bkg due to severe overfitting, as the other background samples have a lower number of simulated events than $\gamma\gamma + \text{jets}$ and $t\bar{t} + \gamma\gamma$. The modeling of the input features has been validated by comparing data and MC distributions for events passing the preselection in both channels. The BDT-bkg score has been validated by comparing the distributions in data and MC in both the $m_{\gamma\gamma}$ sidebands, satisfying either $100 < m_{\gamma\gamma} < 120$ GeV or $130 < m_{\gamma\gamma} < 180$ GeV (as in Fig. 1), as well as in dedicated control regions that target $t\bar{t} + Z$ events.

Events are either rejected or further divided into eight categories to maximize the expected significance according to their BDT-bkg output, as shown in Fig. 1 and Table I. When measuring the CP structure of the Htt coupling that is discussed later, nonrejected events are divided into four categories to maximize the sensitivity to the CP structure of the Htt amplitude. We perform a simultaneous binned maximum likelihood fit to the $m_{\gamma\gamma}$ distributions in the eight categories to extract the product of the μ_{th} cross section and $H \to \gamma\gamma$ branching fraction ($\sigma_{th} B_{\gamma\gamma}$) and the signal strength μ_{th}, defined as the ratio of the measured to SM expected $H \to \gamma\gamma$. In the fit, all other H production modes are constrained to their SM predictions.

The $t\bar{t}H$ signal distribution is parameterized using a double-sided Crystal Ball [49] plus Gaussian function. The background is modeled from data with the discrete profiling method [50], which accounts for the uncertainty associated with the choice of analytic function used to model the background $m_{\gamma\gamma}$ distribution.

All other systematic uncertainties are also included as nuisance parameters, and results are obtained using asymptotic distributions of test statistics based on the profile likelihood ratio [51–53]. The dominant theoretical uncertainty in μ_{th} arises from the SM prediction of the $t\bar{t}H$ cross section and is estimated by varying the QCD renormalization and factorization scales [30], with a resulting impact of 8%. The uncertainties in parton distribution functions, QCD coupling, underlying event and parton showers, and the $H \to \gamma\gamma$ branching fraction each affect μ_{th} by $2\%–5\%$. The main experimental uncertainties that affect μ_{th} are those related to the b quark and photon identification, the jet energy scale and resolution, and the integrated luminosity [54–56]. Their effects are in the $2\%–6\%$ range. Other systematic uncertainties, including those related to preselection and trigger efficiencies, the lepton identification, and p_T^{miss}, have a $<2\%$ effect on the measurement of μ_{th} and $\sigma_{th} B_{\gamma\gamma}$.

![FIG. 1. Distributions of BDT-bkg output used for event categorization for the hadronic (left) and the leptonic (right) channels. Category boundaries for the signal strength (CP) measurements are shown with thinly (thickly) dashed lines. Events shown are taken from the $m_{\gamma\gamma}$ sidebands, satisfying either $100 < m_{\gamma\gamma} < 120$ GeV or $130 < m_{\gamma\gamma} < 180$ GeV. Events in the gray shaded region are not considered in the analysis. Statistical (statistical \oplus systematic) background uncertainties are represented by the black (red) shaded bands.](061801-3)
TABLE I. The expected number of H events in the hadronic and leptonic channels per category and the fractional contribution per H production mode.

<table>
<thead>
<tr>
<th></th>
<th>$t\bar{t}H$ (%)</th>
<th>tH (%)</th>
<th>ggH (%)</th>
<th>VH (%)</th>
<th>VBF (%)</th>
<th>bbH (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Had1</td>
<td>5.8</td>
<td>89.1</td>
<td>6.8</td>
<td>3.3</td>
<td>0.8</td>
<td>< 0.1</td>
</tr>
<tr>
<td>Had2</td>
<td>4.2</td>
<td>82.9</td>
<td>6.8</td>
<td>8.7</td>
<td>1.4</td>
<td>0.2</td>
</tr>
<tr>
<td>Had3</td>
<td>11.6</td>
<td>78.6</td>
<td>7.2</td>
<td>10.3</td>
<td>3.5</td>
<td>0.3</td>
</tr>
<tr>
<td>Had4</td>
<td>13.6</td>
<td>65.4</td>
<td>7.7</td>
<td>19.3</td>
<td>6.9</td>
<td>0.7</td>
</tr>
<tr>
<td>Lep1</td>
<td>5.8</td>
<td>90.6</td>
<td>7.9</td>
<td>0.5</td>
<td>1.0</td>
<td>< 0.1</td>
</tr>
<tr>
<td>Lep2</td>
<td>4.9</td>
<td>90.0</td>
<td>6.7</td>
<td>0.4</td>
<td>2.9</td>
<td>< 0.1</td>
</tr>
<tr>
<td>Lep3</td>
<td>3.5</td>
<td>86.2</td>
<td>7.4</td>
<td>0.4</td>
<td>6.0</td>
<td>< 0.1</td>
</tr>
<tr>
<td>Lep4</td>
<td>5.7</td>
<td>78.1</td>
<td>8.2</td>
<td>1.1</td>
<td>12.7</td>
<td>< 0.1</td>
</tr>
<tr>
<td>Total</td>
<td>55.1</td>
<td>79.5</td>
<td>7.4</td>
<td>8.2</td>
<td>4.7</td>
<td>0.3</td>
</tr>
</tbody>
</table>

The data and fit results are shown in Fig. 2. We find $\sigma_{t\bar{t}H}B_{t\bar{t}H} = 1.56^{+0.34}_{-0.32}$ fb $= 1.56^{+0.33}_{-0.30}$ (stat) $^{+0.09}_{-0.08}$ (syst) fb, and $\mu_{t\bar{t}H} = 1.38^{+0.36}_{-0.29} = 1.38^{+0.29}_{-0.27}$ (stat) $^{+0.21}_{-0.11}$ (syst) with the H mass (m_H) profiled. The SM prediction of the $\sigma_{t\bar{t}H}B_{t\bar{t}H}$ is 1.13$^{+0.08}_{-0.11}$ fb [30]. The observed significance relative to the background-only hypothesis is 6.6 standard deviations (σ), while the expected significance assuming the SM H is 4.7σ.

The CP structure of the Htt amplitude can be parameterized as [22]

$$A(Htt) = \frac{m_t}{v} \bar{\psi}_i (\kappa_i + i\tilde{\kappa}_i f_\gamma) \psi_i,$$

where $\bar{\psi}_i$ and ψ_i are the Dirac spinors, m_t is the top quark mass, v is the SM H field vacuum expectation value, and κ_i and $\tilde{\kappa}_i$ are the CP-even and CP-odd Yukawa couplings. In the SM, $\kappa_i = 1$ and $\tilde{\kappa}_i = 0$. We measure the CP structure with

$$f_{t\bar{t}H}^{CP} = \frac{|\tilde{\kappa}_i|^2}{|\kappa_i|^2 + |\tilde{\kappa}_i|^2} \text{sign}(\kappa_i/\tilde{\kappa}_i).$$

When the cross sections of the CP-even and CP-odd contributions are equal, $f_{t\bar{t}H}^{CP} = 0.72$ [22].

It has been shown in Ref. [22] that an optimal analysis of the CP structure in the $t\bar{t}H$ process can be performed with two observables, D_{0} and D_{CP}. D_{0} is designed to separate CP-even from CP-odd and D_{CP} to differentiate the interference. Reference [57] shows that the two observables built by matrix element and ML techniques achieve the same sensitivity. In this study, we use a BDT to obtain D_{0} and do not include D_{CP} since it requires tagging the flavor of light jets. As a consequence, it is not possible to measure the relative sign, or phase, of the κ_i and $\tilde{\kappa}_i$ couplings. Nonetheless, this sign is incorporated into the $f_{t\bar{t}H}^{CP}$ definition in Eq. (2) for consistency with other possible studies sensitive to the sign of $f_{t\bar{t}H}^{CP}$, such as in the gluon fusion production with the top quark loop [57].

We train a BDT to distinguish CP-even and CP-odd contributions. The observables used in the training include the kinematic variables of the first six jets (in p_T) and the diphoton system (but not $m_{\gamma\gamma}$), the b-tagging scores of jets, and in the leptonic channel, the lepton multiplicity, and the kinematic variables of the leading lepton. The output of the BDT is the D_{0} observable. Simulation shows that D_{0} has negligible correlation with the BDT-bkg discriminant. The events selected for the signal strength measurements are split into 12 categories, leptonic or hadronic, two BDT-bkg categories, as shown in Fig. 1, and three D_{0} bins, as shown in Fig. 3.

A simultaneous fit to the $m_{\gamma\gamma}$ distribution is performed using the 12 categories to measure $f_{t\bar{t}H}^{CP}$. The $\mu_{t\bar{t}H}$ parameter is left unconstrained. An additional systematic uncertainty is introduced to cover possible small differences in the modeling of the distributions with the JHUGEN generator used for variation of the CP structure of the $t\bar{t}H$ coupling and MADGRAPH5_aMC@NLO generator used to model SM distributions. However, statistical uncertainties dominate the measurement of $f_{t\bar{t}H}^{CP}$. In addition to the $t\bar{t}H$ process, we parameterize the tH production with the μ_{tH} and f_{Ht}^{CP} parameters, where the H couplings to other particles are constrained to their SM values and the sign of κ_i is taken to be positive [58]. The weak dependence of D_{0} distributions for the tH events is neglected. Studies show that it decreases the sensitivity by 0.1σ. The other processes are constrained to their SM predictions.

The fit results are shown in Fig. 3 and are obtained using the profile likelihood method as $f_{t\bar{t}H}^{CP} = 0.00 \pm 0.33$, with

FIG. 2. Invariant mass distribution for the selected events (black points) weighted by $S/(S+B)$, where $S(B)$ is the numbers of expected signal (background) events in a $\pm 1\sigma_{\text{stat}}$ mass window centered on m_H. The σ_{stat} is defined as the smallest interval containing 68.3% of the $m_{\gamma\gamma}$ distribution and ranges from 1.2% to 1.6% for different categories. We show curves for fitted signal + background (solid red) and for background only (dashed red), with bands covering the $\pm 1\sigma$ and $\pm 2\sigma$ uncertainties in the fitted background. The inner panel shows the likelihood scan for $\mu_{t\bar{t}H}$ with m_H profiled.
the constraint \(|f^{Ht}_{CP}| < 0.67 \) at 95% confidence level (C.L.). The coverage was determined with pseudodatasets and found to agree with that expected in the asymptotic limit [59]. The pure pseudoscalar model of \(CP \) structure of the \(Htt \) coupling \((f^{Htt}_{CP} = 1) \) is excluded at 3.2\(\sigma \). The expected constraints based on SM simulation are \(f^{Htt}_{CP} = 0.00 \pm 0.49 \) at 68% C.L., \(|f^{Htt}_{CP}| < 0.82 \) at 95% C.L., and 2.6\(\sigma \) exclusion of the \(f^{Htt}_{CP} = 1 \) model.

To conclude, we presented the first single-channel observation of the \(t\bar{t}H \) process and the first measurement of the \(CP \) structure of the \(Htt \) coupling using the \(H \to \gamma\gamma \) channel. The cross section of the \(t\bar{t}H \) process is measured to be \(\sigma_{t\bar{t}H} = 1.56^{+0.34}_{-0.32} \) fb, corresponding to 1.38\(\pm 0.36 \) times the SM prediction, with a significance of 6.6\(\sigma \). The data disfavor the pure \(CP \)-odd model of the \(Htt \) coupling at 3.2\(\sigma \), and a possible fractional \(CP \)-odd contribution is constrained to be \(f^{Htt}_{CP} = 0.00 \pm 0.33 \) at 68% C.L.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); CONICET (Argentina); CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, PUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MCTI, RNCTE, and FAPERJ (Brazil); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MEHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); and DOE and NSF (USA).

Note added.—After we submitted this letter the ATLAS Collaboration submitted the results of a similar study [60].

[60] G. Aad et al., following Letter, CP Properties of Higgs Boson Interactions with Top Quarks in the $t\bar{t}H$ and $t\bar{t}$ Processes Using $H \rightarrow \gamma\gamma$ with the ATLAS Detector, Phys. Rev. Lett. 125, 061802 (2020).
9 Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
10 Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
11 Universidade Estadual Paulista, Sao Paulo, Brazil
12 Instituto de Pesquisas Energéticas e Nucleares, São Paulo, Brazil
13 Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
14 Beihang University, Beijing, China
15 Department of Physics, Tsinghua University, Beijing, China
16 Institute of High Energy Physics, Beijing, China
17 State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
18 Zhejiang University, Hangzhou, China
19 Universidad de Los Andes, Bogota, Colombia
20 Universidad de Antioquia, Medellin, Colombia
21 University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
22 University of Split, Faculty of Science, Split, Croatia
23 Institute Rudjer Boskovic, Zagreb, Croatia
24 University of Cyprus, Nicosia, Cyprus
25 Charles University, Prague, Czech Republic
26 Escuela Politecnica Nacional, Quito, Ecuador
27 Universidad San Francisco de Quito, Quito, Ecuador
28 Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
29 National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
30 Department of Physics, University of Helsinki, Helsinki, Finland
31 Helsinki Institute of Physics, Helsinki, Finland
32 Lappeenranta University of Technology, Lappeenranta, Finland
33 IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
34 Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris, Paris, France
35 Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
36 Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
37 Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
38 Georgian Technical University, Tbilisi, Georgia
39 Tbilisi State University, Tbilisi, Georgia
40 RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
41 RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
42 RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
43 Deutsches Elektronen-Synchrotron, Hamburg, Germany
44 University of Hamburg, Hamburg, Germany
45 Karlsruher Institut fuer Technologie, Karlsruhe, Germany
46 Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
47 National and Kapodistrian University of Athens, Athens, Greece
48 National Technical University of Athens, Athens, Greece
49 University of Ioannina, Ioannina, Greece
50 MTA-ELTE Lendulet CMS Particle and Nuclear Physics Group, Eotvos Lorand University, Budapest, Hungary
51 Wigner Research Centre for Physics, Budapest, Hungary
52 Institute of Nuclear Research ATOMKI, Debrecen, Hungary
53 Institute of Physics, University of Debrecen, Debrecen, Hungary
54 Eotvos Lorand University, Karoly Robert Campus, Budapest, Hungary
55 Indian Institute of Science (IISc), Bangalore, India
56 National Institute of Science Education and Research, HBNI, Bhubaneswar, India
57 Panjab University, Chandigarh, India
58 University of Delhi, Delhi, India
59 Saha Institute of Nuclear Physics, HBNI, Kolkata, India
60 Indian Institute of Technology Madras, Madras, India
61 Bhabha Atomic Research Centre, Mumbai, India
62 Tata Institute of Fundamental Research-A, Mumbai, India
63 Tata Institute of Fundamental Research-B, Mumbai, India
64 Indian Institute of Science Education and Research (IISER), Pune, India
65 Isfahan University of Technology, Isfahan, Iran
66 Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
107 Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
108 Joint Institute for Nuclear Research, Dubna, Russia
109 Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
110 Institute for Nuclear Research, Moscow, Russia
111 Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia
112 Moscow Institute of Physics and Technology, Moscow, Russia
113 National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
114 P.N. Lebedev Physical Institute, Moscow, Russia
115 Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
116 Novosibirsk State University (NSU), Novosibirsk, Russia
117 Institute for High Energy Physics of National Research Centre ‘Kurchatov Institute’, Protvino, Russia
118 National Research Tomsk Polytechnic University, Tomsk, Russia
119 Tomsk State University, Tomsk, Russia
120 University of Belgrade: Faculty of Physics and VINCA Institute of Nuclear Sciences, Belgrade, Serbia
121 Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
122 Universidad Autónoma de Madrid, Madrid, Spain
123 Universidad de Oviedo, Instituto Universitario de Ciencias y Tecnologías Espaciales de Asturias (ICTEA), Oviedo, Spain
124 Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
125 University of Colombo, Colombo, Sri Lanka
126 University of Ruhuna, Department of Physics, Matara, Sri Lanka
127 CERN, European Organization for Nuclear Research, Geneva, Switzerland
128 Paul Scherrer Institut, Villigen, Switzerland
129 ETH Zurich—Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland
130 Universität Zürich, Zurich, Switzerland
131 National Central University, Chung-Li, Taiwan
132 National Taiwan University (NTU), Taipei, Taiwan
133 Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
134 Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey
135 Middle East Technical University, Physics Department, Ankara, Turkey
136 Bogazici University, Istanbul, Turkey
137 Istanbul Technical University, Istanbul, Turkey
138 Istanbul University, Istanbul, Turkey
139 Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
140 National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
141 University of Bristol, Bristol, United Kingdom
142 Rutherford Appleton Laboratory, Didcot, United Kingdom
143 Imperial College, London, United Kingdom
144 Brunel University, Uxbridge, United Kingdom
145 Baylor University, Waco, Texas, USA
146 Catholic University of America, Washington, DC, USA
147 The University of Alabama, Tuscaloosa, Alabama, USA
148 Boston University, Boston, Massachusetts, USA
149 Brown University, Providence, Rhode Island, USA
150 University of California, Davis, Davis, California, USA
151 University of California, Los Angeles, California, USA
152 University of California, Riverside, Riverside, California, USA
153 University of California, San Diego, La Jolla, California, USA
154 University of California, Santa Barbara—Department of Physics, Santa Barbara, California, USA
155 California Institute of Technology, Pasadena, California, USA
156 Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
157 University of Colorado Boulder, Boulder, Colorado, USA
158 Cornell University, Ithaca, New York, USA
159 Fermi National Accelerator Laboratory, Batavia, Illinois, USA
160 University of Florida, Gainesville, Florida, USA
161 Florida International University, Miami, Florida, USA
162 Florida State University, Tallahassee, Florida, USA
163 Florida Institute of Technology, Melbourne, Florida, USA
164 University of Illinois at Chicago (UIC), Chicago, Illinois, USA
165 The University of Iowa, Iowa City, Iowa, USA
166 Johns Hopkins University, Baltimore, Maryland, USA
167 The University of Kansas, Lawrence, Kansas, USA
168 Kansas State University, Manhattan, Kansas, USA
169 Lawrence Livermore National Laboratory, Livermore, California, USA
170 University of Maryland, College Park, Maryland, USA
171 Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
172 University of Minnesota, Minneapolis, Minnesota, USA
173 University of Mississippi, Oxford, Mississippi, USA
174 University of Nebraska-Lincoln, Lincoln, Nebraska, USA
175 State University of New York at Buffalo, Buffalo, New York, USA
176 Northeastern University, Boston, Massachusetts, USA
177 Northwestern University, Evanston, Illinois, USA
178 University of Notre Dame, Notre Dame, Indiana, USA
179 The Ohio State University, Columbus, Ohio, USA
180 Princeton University, Princeton, New Jersey, USA
181 University of Puerto Rico, Mayaguez, Puerto Rico, USA
182 Purdue University, West Lafayette, Indiana, USA
183 Purdue University Northwest, Hammond, Indiana, USA
184 Rice University, Houston, Texas, USA
185 University of Rochester, Rochester, New York, USA
186 Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
187 University of Tennessee, Knoxville, Tennessee, USA
188 Texas A&M University, College Station, Texas, USA
189 Texas Tech University, Lubbock, Texas, USA
190 Vanderbilt University, Nashville, Tennessee, USA
191 University of Virginia, Charlottesville, Virginia, USA
192 Wayne State University, Detroit, Michigan, USA
193 University of Wisconsin—Madison, Madison, Wisconsin, USA

a Deceased.
b Also at Vienna University of Technology, Vienna, Austria.
c Also at Université Libre de Bruxelles, Bruxelles, Belgium.
d Also at IREU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France.
e Also at Universidade Estadual de Campinas, Campinas, Brazil.
f Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
g Also at Federal University of Mato Grosso do Sul, Mato Grosso do Sul, Brazil.
h Also at Universidade Federal de Pelotas, Pelotas, Brazil.
i Also at University of Chinese Academy of Sciences, Beijing, China.
j Also at Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia.
k Also at Joint Institute for Nuclear Research, Dubna, Russia.
l Also at British University in Egypt, Cairo, Egypt.
m Also at Suez University, Suez, Egypt.
n Also at Purdue University, West Lafayette, Indiana, USA.
o Also at Université de Haute Alsace, Mulhouse, France.
p Also at Erzincan Binali Yildirim University, Erzincan, Turkey.
q Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
r Also at RWTH Aachen University, I. Physikalisches Institut A, Aachen, Germany.
s Also at University of Hamburg, Hamburg, Germany.
t Also at Brandenburg University of Technology, Cottbus, Germany.
u Also at Institute of Physics, University of Debrecen, Debrecen, Hungary.
w Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
x Also at MTI-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary.
y Also at IIT Bhubaneswar, Bhubaneswar, India.
z Also at Shoolini University, Solan, India.
a Also at University of Hyderabad, Hyderabad, India.
b Also at University of Visva-Bharati, Santiniketan, India.
c Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany.
d Also at INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy.
e Also at Italian National Agency for New Technologies, Energy and Sustainable Economic Development.
Also at Centro Siciliano di Fisica Nucleare e di Struttura Della Materia.

Also at Riga Technical University, Riga, Latvia.

Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia.

Also at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico.

Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland.

Also at Institute for Nuclear Research, Moscow, Russia.

Also at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia.

Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia.

Also at University of Florida, Gainesville, Florida, USA.

Also at Imperial College, London, United Kingdom.

Also at P.N. Lebedev Physical Institute, Moscow, Russia.

Also at California Institute of Technology, Pasadena, California, USA.

Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia.

Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia.

Also at Università degli Studi di Siena, Siena, Italy.

Also at INFN Sezione di Pavia, Università di Pavia, Pavia, Italy.

Also at National and Kapodistrian University of Athens, Athens, Greece.

Also at Universität Zürich, Zurich, Switzerland.

Also at Stefan Meyer Institute for Subatomic Physics, Vienna, Austria.

Also at Burdur Mehmet Akif Ersoy University, Burdur, Turkey.

Also at Şıırank University, Şıırank, Turkey.

Also at Department of Physics, Tsinghua University, Beijing, China.

Also at Near East University, Research Center of Experimental Health Science, Nicosia, Turkey.

Also at Beykent University, Istanbul, Turkey.

Also at Istanbul Aydin University, Application and Research Center for Advanced Studies (App. & Res. Cent. for Advanced Studies), Istanbul, Turkey.

Also at Mersin University, Mersin, Turkey.

Also at Piri Reis University, Istanbul, Turkey.

Also at Ozyegin University, Istanbul, Turkey.

Also at İzmir Institute of Technology, İzmir, Turkey.

Also at Bozok Universitesi Rektörlüğü, Yozgat, Turkey.

Also at Marmara University, Istanbul, Turkey.

Also at Milli Savunma University, Istanbul, Turkey.

Also at Kafkas University, Kars, Turkey.

Also at Istanbul Bilgi University, Istanbul, Turkey.

Also at Hacettepe University, Ankara, Turkey.

Also at Adiyaman University, Adiyaman, Turkey.

Also at Vrije Universiteit Brussel, Brussel, Belgium.

Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.

Also at IPPP Durham University, Durham, England.

Also at Monash University, Faculty of Science, Clayton, Australia.

Also at Bethel University, St. Paul, Minneapolis, USA.

Also at Karamanoğlu Mehmetbey University, Karaman, Turkey.

Also at Bingöl University, Bingöl, Turkey.

Also at Georgian Technical University, Tbilisi, Georgia.

Also at Sinop University, Sinop, Turkey.

Also at Mimar Sinan University, Istanbul, Istanbul, Turkey.

Also at Nanjing Normal University Department of Physics, Nanjing, China.

Also at Texas A&M University at Qatar, Doha, Qatar.

Also at Kyungpook National University, Daegu, Korea.