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Foreword: 

The present proceedings contain a collection of 330 papers on various aspects of analysis, design and 

construction of spatial structures such as gridshells, barrel vaults, domes, towers, retractable systems and 

tension structures. These papers were written by 763 authors, representing a total of 44 countries for 

presentation at the seventh International Conference on Spatial Structures.  

The International Conference on Spatial Structures has been organised and held on five previous occasions by 

the Spatial Structures Research Centre of the University of Surrey in 1966, 1975, 1984, 1993 and 2002, and 

in 2011 in collaboration with the International Association for Bridge and Structural Engineering (IABSE) 

and International Association for Shell and Spatial Structures (IASS). 

The seventh conference was hosted by the University of Surrey from the UK during 23rd – 27th August 2021; 

it was combined with the 2020 annual symposium of the IASS.  The conference was named IASS 2020/21 – 

Surrey 7 and its strapline was “Inspiring the next generation”. 

The planning and delivery of the conference had a long history: beginning in January 2016, and latterly very 

heavily affected by the worldwide Covid 19 pandemic emerging during late 2019/early 2020.  The original 

planned dates were 24th – 28th August 2020, but as the impact of the pandemic became more profound, the 

mode of delivery evolved from fully in-person, through hybrid in-person/virtual to eventually becoming fully 

virtual throughout the revised dates during 23rd – 27th August 2021. 

The Scientific Committee was formed in May 2018 and had a membership of a hundred and twenty one 

leading International Engineers and Architects, from both industry and academia; representing over thirty 

countries. After a worldwide call for abstracts, the Scientific Committee received 468 submissions involving 

1061 authors and subsequently each abstract was reviewed at least twice by members of the Committee. 

Feedback on the abstracts was presented to almost all of the authors and afterwards, three hundred and thirty 

nine full papers were received. The full papers were, in turn, reviewed by members of the Scientific 

Committee, who generously gave their time to provide feedback to the corresponding authors. This 

proceedings include contributions submitted directly by the authors and the editors cannot accept 

responsibility for any inaccuracies, comments and opinions contained in the text. 

The editors would like to take the opportunity to thank all authors for submitting their contributions, the 

Scientific Committee for reviewing the abstracts and full papers and the Organising Committee for their 

countless effort in making the conference a success. 

Alireza Behnejad, Gerard Parke and Omidali Samavati 

University of Surrey, Guildford, UK, August 2021 
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Abstract 

Self-balancing construction technologies were used for centuries in the building of masonry domes and 

vaults. Such construction techniques were made possible through the careful design of the block 

tessellation and the structural form, which enabled construction of complex geometries that remain 

stable without falsework. These historical masonry technologies have a disruptive potential for today's 

construction industry when coupled with emerging innovations such as novel computational form-

finding approaches and robotic fabrication. This paper presents a structural analysis of the construction 

stages for a doubly curved, compression-only, 2-metre-tall masonry vault inspired by traditional 

construction technologies and built with a cooperative human-robot fabrication process. Two ABB-IRB 

6400 industrial robotic arms were precisely sequenced to alternate placing a masonry block and 

providing temporary support to the unfinished structure. As a result, no form- or falsework was needed 

during any construction stage. The paper reports an iterative procedure based on the Limit State Analysis 

(LSA) and Discrete Element Method (DEM) to numerically study the equilibrium of the masonry vault 

during all construction stages. 

Keywords: Shell, vault, masonry, robotic construction, discrete element model, limit state analysis, self-balancing. 

1. Introduction

Ancient master builders have built arches, vaults, and domes using masonry for millennia. These ancient 

forms create impressive architectural spaces that in some cases surpass the longevity of contemporary 

structures [1]. From the 2nd millennia BCE onwards, self-balancing construction techniques have been 

in use to realize many such complex structures [2]. The pitched vault [3] is perhaps the first self-

balancing building system developed, which dates back to as early as the 21st century BCE [4] and is 

still applied in a few parts of North Africa [5]. As shown by various studies [3] [6] [7], the self-balanced 

state under construction is due to several factors all related with the construction work such as: the 

properties of building materials [6], the orientation of bed joints (as shown in figure 1) [3], and the 

tessellation [7].  
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Considering all of these factors, through history, several self-balancing construction technologies have 

also been developed  [7] [8] [9], even the ones built in dry-stone masonry, widespread in the vernacular 

architecture of all the Mediterranean area [10]. Among all, the herringbone [11] and tile vaulting  [12] 

constitute the most influential systems [9]. Santa Maria del Fiore's dome in Florence (1418-1436) [13] 

represents a notable example of the herringbone technique applied on a large scale. 

Figure 1: a) The pitched vaulting technique, different scheme to lay bricks. Drawing of A. Choisy [14]. b) 

Revolution dome and herringbone spiralling tessellation. Drawing of F. Gurrieri [15]. 

As illustrated in figure 1b), the herringbone technique gets its name from its characteristic tessellation 

pattern: the bricks are arranged in an alternating horizontal and vertical manner [16]. Due to this 

tessellation and a precise sequence of laying bricks, self-supporting structural actions are formed in the 

dome even during its construction [17]. On the other hand, tile vaulting methods, originating in Spain 

around the 13rd-14th century CE [12], allows the construction of doubly-curved structures without the 

aid of any temporary supports through the use of fast setting gypsum mortar coupled with light tiles 

[18]. This technique has been a topic of recent research [6] [19]  since its application to the construction 

of form-found vault geometries is more manageable than other self-balanced technologies. Despite 

specific differences in geography or time period, all the historic self-balancing masonry construction 

techniques mentioned share an important choice of laying sequence and structural form the technique is 

being applied to. The potential of these historic technologies in the construction of complex geometries 

without falsework is being increasingly rediscovered in the context of emerging innovations such as 

novel computational form-finding approaches and robotic construction technologies.  

Different approaches have been developed from the structural point of view to analyse masonry curved 

structures. A significant milestone toward understanding the structural behaviour of voussoir arches and 

vaults was made by Heyman [20], who reinterpreted the geometrical and equilibrium-based rules used 

by the ancient master builders through the Limit State Analysis (LSA) framework, reclaiming the power 

of graphic static (GS) approaches [21]. The success of this approach was due to the possibility of 

obtaining an accurate estimation of collapse loads using a straightforward constitutive model known as 

the no-tension model [22]. This model does not require the calibration of any parameters for the 

masonry's mechanical characterisation, which overcomes the high level of uncertainty that is usually 

associated with masonry structures, especially in historical constructions. More recent LSA methods 

based on the Thrust Line Analysis (TLA), have further reworked and extended to the analysis of 

complex three-dimensional structures [23] [24] [25].  In these approaches, the search for a thrust line 

entirely contained within the vault's thickness was extended to the three-dimensional space, as a search 

for discrete compression-only network or continuum unilateral membrane. Thus, according to the Safe 

Theorem [21], the masonry structure is stable if the thrust network [26] or surface [27] lies entirely 

between the intrados and the extrados surface of the vault. From a numerical point of view, literature 

[28] [29] [30] shows that Discrete Element Modelling (DEM) is particularly suitable to analyse the

equilibrium of masonry structures. Indeed, Lemos and other researchers have proven its validity to

simulate the static and dynamic behaviour of masonry structures [28] [31]. Although the potential of the

315

https://www.zotero.org/google-docs/?qN06KQ
https://www.zotero.org/google-docs/?S64vZx
https://www.zotero.org/google-docs/?koiHYC
https://www.zotero.org/google-docs/?Fc6t7g
https://www.zotero.org/google-docs/?XGMxoa
https://www.zotero.org/google-docs/?YacAyt
https://www.zotero.org/google-docs/?1UTwM9
https://www.zotero.org/google-docs/?shNIe5
https://www.zotero.org/google-docs/?S9fX7Q
https://www.zotero.org/google-docs/?i64nMr
https://www.zotero.org/google-docs/?EXI5mX
https://www.zotero.org/google-docs/?NNWuYG
https://www.zotero.org/google-docs/?gkA75M
https://www.zotero.org/google-docs/?jps8tC
https://www.zotero.org/google-docs/?Tykpmh
https://www.zotero.org/google-docs/?nQhgFU
https://www.zotero.org/google-docs/?lFvfgV
https://www.zotero.org/google-docs/?BpjjdQ
https://www.zotero.org/google-docs/?Te4UyN
https://www.zotero.org/google-docs/?tQe9yZ
https://www.zotero.org/google-docs/?IpfaTF
https://www.zotero.org/google-docs/?xjWBfU
https://www.zotero.org/google-docs/?jStiuC
https://www.zotero.org/google-docs/?JUobQ1
https://www.zotero.org/google-docs/?Ciq3Fz
https://www.zotero.org/google-docs/?UeA9Bs
https://www.zotero.org/google-docs/?C6EAMa
https://www.zotero.org/google-docs/?68qWkm
https://www.zotero.org/google-docs/?C9BxDk
https://www.zotero.org/google-docs/?s2tsTR


Proceedings of the IASS Annual Symposium 2020/21 and the 7th International Conference on Spatial Structures 

Inspiring the Next Generation  

methods mentioned above to analyse complete structures is well known, evaluating the equilibrium of 

masonry structures under construction is scarcely explored; few works that address this, are presented 

in the literature [17] [32] . 

This paper extends the existing literature on the structural analysis of masonry structures by applying 

LSA and DEM methods to calculate the structural performance of a doubly-curved compression-only 

glass brick shell during its construction stages. The main challenge is how to investigate the vault's 

structural behaviour in each construction stage, while also accounting for the fact that the entire building 

process is carried out through a human-robot fabrication process without temporary form-or-falsework. 

To perform this analysis, an iterative procedure was developed that accounts for the action of the robotic 

arms on the structure under construction.  

This research culminated in the robotic fabrication of a full-scale vault prototype at the “Anatomy of 

Structure” exhibit hosted at the Ambika P3 Gallery in London [33], and shown in figure 2. Different 

aspects of this research, from the development of the cooperative robotic fabrication strategy to the 

analysis of different construction sequences, are further detailed in recent works [33] [34] [35] [36]. 

Figure 2: Robotic fabrication of a masonry vault for the “Anatomy of Structure” exhibit. 

The paper is organised as follows: section 2 describes the geometry of the vault and the material system; 

section 3 provides an overview on the construction process adopted and illustrates the analogies with 

historical self-balancing technologies; section 4 describes the methodology adopted to assess the 

structural state of the vault during its construction; section 5 presents the structural analysis conducted 

and the results; and section 6 concludes the paper and presents a discussion. 

2. Vault geometry and material

The motivation for the current research comes from the exploration of ultra-light, yet efficient and 

strong, timbrel vault structures. This work was inspired by historical construction methods that relied 

on inclined courses to build vaults with the aid of only light falsework [37]. Starting from this idea, the 

current project was then developed with the goal of building a geometrically complex self-balancing 

shell without the aid of any temporary falsework. To achieve this goal, industrial robotic arms were used 

to both place bricks in precise complex spatial orientations and to act as temporary support to the 

unfinished structure [34]. As shown in figure 3, the vault has a form-found geometry, characterised by 

a saddle shape with a catenary profile. The span of the vault is 2.7 meters, with a length of 4.4 meters, 

and a rise about 2.2 meters on the outside edges and 1.9 meters for the central arch. Glass bricks were 

the primary elements used for the structure. As is common in masonry constructions, the geometry of 
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the vault had to be defined so as to minimise any tensile forces. A form-finding approach, based on the 

Airy's stress function [38], enabled the calculation of a doubly-curved compression-only shell. The 

geometry was found by an iterative process, which took into account the real distribution of the self-

weight of the structure [39].  

Figure 3: Geometry of the form-found shell. The central arch (red) corresponds to the first portion of the vault 

built. The two sides of the vault (white) are built only after completing the central arch. 

Using standardised glass bricks, simplified construction by avoiding the need to field cut complex brick 

shapes to resolve unique geometric conditions. The material used in the joints needed to be fast-setting, 

rigid and with enough strength to hold the brick in place as it was placed. As reported in [34], this 

material was also used to compensate for the gap between different bricks courses and to deal with 

construction tolerances. For all these reasons, fast-setting epoxy putty [40] was selected as the joint 

mortar. 

3. The construction phases

Two robotic arms (ABB-IRB 6400) were used to build the vault.  A combination of historical 

technologies, such as herringbone and pitched techniques, allowed for the design of a precise 

construction process, with two distinct phases [34]. Phase I consists of all the construction stages related 

to the central arch, which was the first portion of the structure to be built. The central arch’s construction 

is started from one side of the vault and bricks are then laid sequentially until the opposite side of the 

vault has been reached. The process of developing a robotic fabrication sequence that maintains stability 

during the construction is discussed in detail in recent works [34] [36]. Phase I ends when the last brick 

at the base of the arch is laid, this specific construction stage is denoted in this paper as I-h. Phase II 

follows phase I; here, the robot builds outward from the central arch to complete the remaining portion 

of the vault. 

These two phases are characterised by the manner in which the two robotic arms were used. During 

phase I, the robots work cooperatively to build the central arch, one supports the incomplete arch while 

the second places the new glass brick. In phase II, the two robotic arms work separately, building two 

different portions of the vault; these portions are shown as the white bricks in figure 3. 

This construction process incorporates several characteristics of the historical self-balancing 

technologies discussed in the introduction. In phase I, similar to the tile vaulting technique, the fast-

setting property of the epoxy allows the glass bricks to maintain their position as they are laid. 

Meanwhile in phase II, the vault’s tessellation is similar to the traditional herringbone technique, linking 

together two consecutive brick courses. Finally, the overall construction sequence is inspired by the 

pitched vault technology, where several consecutive self-balancing substructures are created before the 

full structure is completed. These substructures are shown in figure 4, where in each construction stage, 

II-a, II-b, II-c, a new arch is built.
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Figure 4: Construction process for the masonry vault. a) Final stage of phase I and the closing of the central arch 

(construction stage I-h) b) phase II, where each stage is defined by the construction of a new inclined arch 

substructure. 

4. Methodology for structural analysis

An evaluation of phase I was performed to assess the balanced state during construction. First a detailed 

TLA was carried out, dividing the central arch into individual blocks equivalent to the number of glass 

bricks. Thus, the equilibrium of the full structure was investigated by simulating the sequential 

placement of the bricks. As a result, for each construction stage related to phase I, an estimation of the 

external forces required to achieve stability was determined. These forces represent the static interaction 

between the structure and the robotic arms. According to LSA, no-tension material (i.e., any tensile 

strength provided by the epoxy putty is neglected) is adopted to perform TLA, therefore this analysis is 

a conservative investigation.  

The epoxy putty's realistic material properties were considered in a detailed numerical analysis 

conducted by DEM, which was carried out for both phases in order to investigate the balanced state and 
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to estimate the displacements associated with each construction stage. The vault was modelled in the 

commercially available DEM software, 3DEC (Itasca, Minneapolis, MN, USA) [41], which allows to 

analyse masonry structures as a complex system of blocks  [28] . These blocks can slide along their 

interfaces, collide or even detach [29] [30]. Through the explicit integration of Newton's laws of motion, 

using the finite-difference method and assuming small time-steps, the algorithm permits the evaluation 

of the structural behaviour of a system of bodies (either deformable or rigid) subjected to static or 

dynamic loads.  

In the analyses performed, the vault’s bricks are modelled as rigid blocks, whose size corresponds to 

that of the actual glass brick, which is then attached to a layer of epoxy putty surrounding it. Adopting 

this discretisation, the system of rigid bodies represents a good approximation of the form-found shell's 

structural behaviour, since the deformation is lumped at the joints. The material properties of the epoxy 

putty are used to model the interfaces, where a Mohr-Coulomb model with a tensile cut-off is assumed. 

As illustrated in figure 5, this nonlinear interface behaviour is ruled by the joint parameters: JKn, JKs, 

Jten, Jfric and Jcoh [42]. The JKn, JKs terms represent the normal and the shear stiffness of the rigid body’s 

interfaces, respectively, while Jten is the tensile strength, Jfric is the friction angle, and Jcoh is the cohesive 

capacity. These parameters are determined based on the epoxy material’s specifications [40] and verified 

by experiment tests, incorporating a safety coefficient.  

Figure 5:  Joint parameters for the rigid bodies interface (adapted from [43]). 

5. Analysis and results

Both phases of construction for the masonry vault were analysed, with the purpose of verifying the self-

balancing state during the different stages. Sections, 5.1 (phase I) and 5.2 (phase II) describe the 

structural behaviour of the partially completed structure throughout the construction: arch behaviour is 

expected in phase I, and a compression-only shell behaviour in phase II 

5.1. Phase I 

As mentioned in section 4, TLA is executed to assess the equilibrium state of the central arch and 

determine the external forces that the robots must apply to guarantee this state of equilibrium. Therefore, 

all TLA were performed assuming that the robotic arms act as a support to the arch during construction. 

Although the final form-found shell was designed to achieve a fully-compressed membrane stress state, 

it was found that during construction the initial central arch was unable to achieve optimal structural 

behaviour. This is shown in figure 6a: the thrust line (red) of the central arch under construction does 

not entirely lie in the cross-section of initial form-found shell geometry. For this reason, the form of the 

complete shell had to be re-designed to ensure stability during construction.  
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Figure 6: TLA for central arch under construction. a) the thrust line (red) of the arch under construction falls 

outside of the midline of the shell geometry b) the thrust line (red) and midline of the re-designed arch coincide 

Figure 7: Domain of orientation of the reactions R1 and R2. a) first construction stage b) last construction stage 

of the central arch. 

According to Heyman’s theory [21], and due to the modest dimensions of the structure examined, 

geometrical instability is the most probable cause for collapse. Therefore, investigations on the variation 

of minimum and maximum lines of thrust during the construction works were carried out. As reported 

in Figure 7a), at the first stage of construction, with only two bricks positioned, a balanced state is found 

if the horizontal thrust comprised in the range of  0.00-0.001kN. Despite that, the domain of orientation 

of the reactions, denoted by R1 and R2, is wide: about 79.5° for R1, and 54.0° for R2. This domain 

expresses the number of possible safe solutions that can be found, i.e., the narrower it is, the fewer 

number of solutions are possible. With the progress of the construction works, see figure 7b), the 

minimum and maximum horizontal thrust increases, to 0.09-0.10 kN, while the domain of orientation 

of reactions drastically narrows down to, 1.1° for R1 and 0.8° for R2.  

From a numerical point of view, the robotic arm's interaction with the structure was evaluated as a 

kinematic constraint: the gripping points of the robotic arms allow no displacement. The first numerical 

simulations showed that the equilibrium state is influenced by the position of the robotic gripping point, 
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highlighting that an incorrectly positioned grip could lead to out-of-plane displacement. Thus, as 

described in [34] [36], a particular robotic sequencing construction method has been developed in order 

to avoid out-of-plane twisting displacement. The simulation of the construction stages conducted with 

DEM confirms the results obtained by TLA: the central arch reaches an equilibrium state, with the 

robotic arm as support, in each construction stage of phase I. As shown in figure 8, the arch shows a 

maximum displacement of 4.27∙10-3 mm.  

Figure 8: Construction stages of the central arch. a) incomplete arch showing the position of the robotic support 

b) finished arch showing the position of control blocks (red) for the monitoring of displacements during the

construction. The colour scale is associated with the displacement vectors of each node. 

5.2. Phase II 

The structural behaviour of phase II has been investigated by DEM analysis. Here, the robotic arms 

work separately without supporting the shell during its construction, thus, the structure is required to 

reach a self-balanced state at each construction stage. The numerical analysis simulated the as-built 

construction process for the shell. Similar to phase I, the structural behaviour is investigated at each 

construction stage; the influence on the equilibrium is established as each brick is placed.  

The analysis confirms the stability of the form-found shell; furthermore, as shown in figure 9, 

immediately after the completion of each of the construction stages II-a, II-b, II-c the magnitude of the 

displacement decreases. As the arch substructures are completed, it allows for a redistribution of the 

forces, consequently, improving the structural behaviour of the partially completed structure and 

reducing the overall displacements. Subsequently as the construction of the next part of the structure 

begins, the displacements again begin to increase. This phenomenon highlights the importance of the 

construction sequence and the masonry tessellation, inspired by the pitched vault and herringbone 

technique, respectively. 

The surface illustrated in figure 9, denoted by ζ, shows the variation in the magnitude of the 

displacements in relation to the construction stages. The surface ζ is plotted based on monitoring the 

behaviour of eight control points: the centroids of the blocks Bi (B1, B2, ..., B8), shown in figure 8b. For 

example, referring to figure 9, the curve starting from B1 in the centroid axis, expresses the variation of 

the magnitude of displacement recorded at the control point B1 through each construction stage. The 

surface ζ displays peaks and valleys orientated in the direction perpendicular to the construction stage 

321

https://www.zotero.org/google-docs/?DpGoAy


Proceedings of the IASS Annual Symposium 2020/21 and the 7th International Conference on Spatial Structures 

Inspiring the Next Generation  

axis, showing that as stages are completed the displacements decrease uniformly. The maximum 

displacement recorded is 4.6∙10-2 millimetres located near the intersection of the construction stage II-

c and control point B3.  

The surface ζ also describes the magnitude of the residual displacement of the completed final shell (II-

d); at this construction stage the displacement seen is lower than the maximum displacements recorded 

during phases II. The reason for this decrease is that when the structure is completed, the geometry 

corresponds to the final form-found shell, for which the structural behaviour has been optimised. 

Figure 9: Displacement magnitudes surface (ζ). The vertical axis reports the magnitude of displacements. The 

other two axes represent the location of block centroids where the displacements have been recorded (B1, B2, B3, 

…, B8) and the construction stages divided by the two phases I and II.  Here, I-a, I-b, I-c, …, I-h are 

subdivisions in phase I, while II-a, II-b and II-c are the construction stage as described in figure 4.  

6. Conclusion

The potential of historical construction techniques, adopted in the context of emerging innovations in 

novel computational form-finding approaches and robotic construction technologies, is emphasised in 

the current case study. Similar to the construction of pitched vaults and herringbone vaults, factors such 

as, the construction process and masonry tessellation, assume primary relevance. These construction 

factors play a fundamental role in achieving an equilibrium state of the structure under construction. For 

example, in the current case, the presence of the central arch has a large influence on the stability of the 

construction works referenced as phase II, i.e., it supports the construction of the other portions of the 

vault, providing external reactions needed to reach an equilibrium state. Keeping this aim in mind, the 

knowledge of the structural state under construction is crucial; only through studies conducted in this 

manner can possible failures be identified. The analysis reported in sections 5.1 and 5.2 highlights the 

displacement and forces present in the structure under construction. TLA carried out at the end of the 

phase I, shows the existence of a narrow domain of orientation of support reactions, emphasizing that 

even if a balanced state could be found, a slight variation in the geometry of the arch or in the location 

and orientation of the supports, could lead to overturning or collapse of the shell. 

Furthermore, the introduction of a temporal variable in the structural analysis allows mapping of 

variations in the structural behaviour throughout the construction process. As illustrated in section 5.2, 
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the study of the surface ζ, shows the variation in the structural behaviour between phases I and II. In 

phase I, the balanced state can be reached only by arch behaviour, here, the surface ζ is regular and the 

maximum displacement recorded in the central arch is significantly lower than that of phase II, where 

the rest of the vault is constructed, and a compressed membrane behaviour occurs. In phase II, the 

surface ζ is described by peaks and valleys. Between the construction stage I-h and II-a, ζ shows a 

strong variation: the magnitude of displacement of all blocks of the central arch increases by an order, 

defining the first peak that corresponds to II-a. This temporal interval (between I-h and II-a) starts when 

the central arch is completed and ends when the substructure corresponding to the second arch is closed. 

Immediately after its completion (after II-a), a new and more stable structure exhibiting compression-

shell behaviour occurs. With this altered structural behaviour, the magnitude of displacements 

decreases, which coincides with the first valley in ζ, as seen in figure 9. Further, the valleys correspond 

to construction stages which follow the completion of arch substructures, and where redistribution of 

forces occurs leading to a more stable shell behaviour. This phenomenon is even more evident at the 

completed vault stage (end of II-d), where the pure compression shell behaves as designed. 

The paper originates from a study of the historical construction technologies. The analysis and the 

discussion reported here are extremely relevant to the field of contemporary self-balancing technologies 

and ultimately for the task of construction cost-optimisation. Only by considering the state of the 

structure during construction works, is it possible to assess the self-balanced state and thus, drastically 

decrease the material cost of construction [44]. Recent works [45] [46] have shown potential in this 

direction, using cooperative robotics and other non-traditional fabrication systems to build complex 

structures without formwork. These developments have the potential to impact the building industry, 

but first require a better framework for evaluating a structure's behaviour during all phases of 

construction. As research [17] also shows, this investigation is one of the first bricks placed along the 

path towards establishing such an analysis-framework.  
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