A new procedure for fitting a multivariate space-time linear coregionalization model

Sandra De Iaco
Dip.to di Scienze Economiche e Matematico-Statistiche, Facolta’ di Economia,
Universita’ del Salento, Italy, sandra.deiaco@unisalento.it

Monica Palma
Dip.to di Scienze Economiche e Matematico-Statistiche, Facolta’ di Economia,
Universita’ del Salento, Italy.

Donato Posa
Dip.to di Scienze Economiche e Matematico-Statistiche, Facolta’ di Economia,
Universita’ del Salento, Italy.

Abstract: New classes of cross-covariance functions have been recently proposed, nevertheless the linear coregionalization model (LCM) is still of interest and widely applied. In this paper, a new fitting procedure of the space-time LCM (ST-LCM) using the generalized product-sum model is proposed. This procedure is based on the well known algorithm of matrix simultaneous diagonalization, applied on the sample matrix variograms computed for multiple spatial-temporal lags.

Keywords: spatial-temporal correlation, product-sum variogram model, linear coreginalization model.

1 Introduction

The LCM, firstly introduced by Matheron in 1982, is still one of the most utilized models for multivariate spatial and spatial-temporal data analysis (Zhang, 2007; Babak and Deutsch, 2009; Emery, 2010). However, in the space-time context several theoretical and practical aspects must be considered, such as the fitting process. In geostatistics, there is a wide literature concerning the LCM fitting stage (Goulard and Voltz, 1989; Lark and Papritz, 2003). In this paper, a new fitting procedure of the ST-LCM using the generalized product-sum variogram model is proposed. It is shown that the simultaneous diagonalization of the sample matrix variograms is useful to identify the basic components of the coregionalization model.

1Supported by Fondazione Cassa di Risparmio di Puglia.
2 Multivariate space-time random field

Given a second-order stationary vector-valued space-time random function \((\text{STRF})\) \(\{\mathbf{Z}(\mathbf{s}, t), (\mathbf{s}, t) \in D \times T \subseteq \mathbb{R}^{d+1}\}\), with \(\mathbf{Z}(\mathbf{s}, t) = [Z_1(\mathbf{s}, t), \ldots, Z_p(\mathbf{s}, t)]^T\), \(p \geq 2\), where \(\mathbf{s} = (s_1, s_2, \ldots, s_d) \in D\) (generally, \(d \leq 3\)), denotes the spatial coordinates and \(t \in T\) is the temporal coordinate, the cross-variogram of two space-time random functions \(\mathbf{Z}(\mathbf{s}, t)\) and \(\mathbf{Z}(\mathbf{s}', t')\) exists and depends on the space-time separation vector \(\mathbf{h} = (h_s, h_t)\), with \(\mathbf{h}_s = (s - s')\) and \(h_t = (t - t')\). As in the spatial context, a second-order stationary multivariate \(\text{STRF}\) can be modelled as a \(\text{ST-LCM}\). Hence, the variogram matrix can be written as

\[
\Gamma(\mathbf{h}) = \Gamma(h_s, h_t) = \sum_{l=1}^{L} \mathbf{B}_l \, g_l(h_s, h_t),
\]

(1)

where \(\mathbf{B}_l = [b_{\alpha\beta}]\), \(l = 1, \ldots, L\), \(\alpha, \beta = 1, \ldots, p\), are positive definite \((p \times p)\) matrices, commonly known as \textit{coregionalization matrices}, while \(g_l(h_s, h_t), \ l = 1, \ldots, L\), are basic space-time variograms associated with the \(L\) scales of variability.

In De Iaco et al. (2003, 2005), each space-time basic variogram is modelled as a generalized product-sum model (De Iaco et al., 2001):

\[
g_l(h_s, h_t) = \gamma_l(h_s, 0) + \gamma_l(0, h_t) - k_l \, \gamma_l(h_s, 0) \, \gamma_l(0, h_t), \quad l = 1, \ldots, L,
\]

(2)

where \(\gamma_l(h_s, 0)\) and \(\gamma_l(0, h_t)\) are the spatial and temporal marginal variogram models, respectively, while parameters \(k_l, l = 1, \ldots, L\), are given by:

\[
k_l = \frac{sill[\gamma_l(h_s, 0)] + sill[\gamma_l(0, h_t)] - sill[g_l(h_s, h_t)]}{sill[\gamma_l(h_s, 0)] \cdot sill[\gamma_l(0, h_t)]}, \quad l = 1, \ldots, L.
\]

(3)

By substituting (2) in (1), the \(\text{ST-LCM}\) based on the generalized product-sum variogram models is determined by two marginal \(\text{LCMs}\):

\[
\Gamma(h_s, 0) = \sum_{l=1}^{L} \mathbf{B}_l \, \gamma_l(h_s, 0), \quad \Gamma(0, h_t) = \sum_{l=1}^{L} \mathbf{B}_l \, \gamma_l(0, h_t).
\]

(4)

Note that other space-time variogram models (Gneiting, 2002; Ma, 2002; Stein, 2005; Porcu et al., 2008) can be used to describe the basic components of the \(\text{ST-LCM}\). However, the flexibility of the product-sum variogram, in estimating and modeling the spatial-temporal variability, is often convenient (De Iaco et al. 2003, 2005).

3 Fitting a \(\text{ST-LCM}\)

After a brief review of the usual fitting process of the \(\text{ST-LCM}\) using the generalized product-sum model, the new, more flexible, fitting procedure is discussed.
The usual fitting procedure
In De Iaco et al. (2003) the process of fitting a ST-LCM using a generalized product-sum variogram model, was developed as follows.

1. Compute the empirical marginal direct variograms, in space and in time, for all the \(p \) variables under study and then fit nested variogram models. At this step, the diagonal elements of each matrix \(B_l \), \(l = 1, \ldots, L \), are determined as well as the marginal basic structures \(\gamma_l(h_s, 0) \) and \(\gamma_l(0, h_t) \), \(l = 1, \ldots, L \).

2. Determine the marginal cross-variograms and the off-diagonal elements of the matrices (4), ensuring that each matrix \(B_l \) is positive definite.

3. In order to complete the modeling of \(g_l(h_s, h_t) \), \(l = 1, \ldots, L \), the \(k_l \) parameters must be determined. Hence, the space-time variogram surfaces are computed and fitted to product-sum nested models.

Using this procedure, different practical problems have to be faced: a) the identification of the \(b_{ij} \), \(i, j = 1, \ldots, p \), elements of the matrices \(B_l \), \(l = 1, \ldots, L \), since for a fixed \(l \), these coefficients must be the same for the marginal space and time variograms; b) the estimation of parameters \(k_l \), with \(l = 1, \ldots, L \).

The new fitting procedure
Given the multivariate space-time data set concerning the \(p \) variables (with \(p \geq 2 \)) and the \(p(p + 1)/2 \) spatio-temporal direct and cross-variograms, computed for a selection of \(H \) spatial-temporal lags, the new fitting algorithm goes on running 4 sub-procedures sequentially, as follows.

Sub-procedure I: identify the basic structures.
A simultaneous diagonalization technique is applied on the set of \(H \) square, symmetric and real-valued matrices \(\hat{\Gamma}(h_s, h_t)_k, k = 1, \ldots, H \), of sample direct and cross-variograms, in order to find a \((p \times p)\) orthogonal matrix which diagonalizes or “nearly” diagonalizes these matrices. At this step, the \(l \)-th empirical basic spatial-temporal component are detected by extracting the \(l \)-th diagonal element from all the diagonal matrices.

Sub-procedure II: fit the basic structures.
Given the space-time surfaces of the basic components, the spatial and temporal ranges of the basic surfaces are determined so that the scales of space-time variability are identified. The number \(L \) \((L \leq p)\) of scales depends on the number of different spatial and temporal ranges the basic components exhibit. Successively, the product-sum model \(g_l(h_s, h_t) \) in (2) is fitted to each empirical basic component, with \(l = 1, \ldots, L \). Hence marginal variogram models, \(\gamma_l(h_s, 0) \) and \(\gamma_l(0, h_t) \) are fitted to the empirical basic marginals.

Sub-procedure III: compute the coregionalization matrices.
Given the direct and cross-variograms surfaces of the variables under study, estimated in step I, the global sill values at the \(L \) scales of spatial-temporal variability are detected. Successively, the elements \(b_{l\alpha\beta} \) of matrices \(B_l \), \(l = 1, \ldots, L \), are determined by dividing the contributions of the direct and cross-variogram surfaces at the \(l \)-th scale of variability by \(\text{sill}[g_l(h_s, h_t)] \).
Sub-procedure IV: check the admissibility of the model.
Given the coregionalization matrices $B_l, l = 1, \ldots, L$, the admissibility of the ST-LCM is checked. If the matrix B_l, with $l = 1, \ldots, L$, presents some negative eigenvalues, they are replaced by zeros, such that the new coregionalization matrix B_l^+, at the l-th scale of variability, is positive definite.

References

