Fuzzy Associative Summaries for Databases

Gloria Bordogna
CNR-IDPA
Via Pasubio 5, 24044 Dalmine (BG)–Italy
gloria.bordogna@idpa.cnr.it

Giuseppe Psaila
Università di Bergamo, Facoltà di Ingegneria
Viale Marconi 5, 24044 Dalmine (BG)–Italy
psaila@unibg.it

Abstract—The paper introduces the problem of mining Fuzzy Associative Summaries. An example of summary is (Age, Medium) \text{→} (Salary, Low) \text{→} (Department, A), 0.34; it means that when the Age is Medium, this implies that the Salary is Low, and this further implies that the Department is A, with a support of 0.34.

In this paper, we define the notion of fuzzy associative summary, and propose an algorithm to mine them from within a relational table. Then, we discuss our implementation on top of Soft-SQL, the extension of the classical SQL query language to express flexible queries based on soft operators and sets of linguistic predicates on classical relational databases [1], and present some experimental results.

I. INTRODUCTION

Large data sets that describe observations or events cannot be successfully exploited as they are. It is necessary to obtain a synthetic description that summarizes the content of the data set, for example, by letting (possibly) unexpected relationships or features emerge [2].

This is the role of Data Mining techniques. Popular techniques are clustering, classification, identification of functional dependencies, extraction of association rules [3], [4].

An association rule between two attribute values is a good example of summary that describes an association that frequently occurs in the data set, that is, “when A is x then B is y”, written \((A, x) \rightarrow (B, y)\). However, when analyzing a data set, a significant problem is posed by the too fine granularity of the continuous and numeric attribute domains, since an exponential number of possible combinations of attribute values have to be analyzed to find out meaningful associations between them [5]. To this end, fuzzy data mining aims at reducing the granularity of the attribute domains to make feasible the discovery of fuzzy association rules [6], [7], [8], [9], [10], [11]. We go a step further, by defining Fuzzy Associative Summaries as chains of fuzzy association rules, and by proposing an algorithm to automatically discover them from the analysis of a classical relational data set.

To clarify, consider the following example. Data about employees are stored into a database table called Employees. Three possible fuzzy associative summaries might be the following.

\[
\begin{align*}
\text{(Age, Medium), Supp = 0.45} \\
\text{(Age, Medium) \rightarrow (Salary, Low), Supp = 0.34} \\
\text{(Age, Medium) \rightarrow (Salary, Low) \rightarrow (Department, A), Supp = 0.34}
\end{align*}
\]

The first summary has length 1 and says that the value of attribute Age is Medium, with a support of 0.45 (the support is the frequency with which the summary holds in the table). The second summary has length 2 and says that the fact that the Age is Medium, implies that the Salary is Low with a support of 0.34; notice that this is a fuzzy association rule. The third summary has length 3 and is a further step towards the description of more complex relationships: a Medium Age implies a Low Salary that, in turn, implies that the employee works in Department A, with a support of (0.34), giving a clear (and possibly unexpected) evidence of the strength of second summary; the Salary of the middle aged employees of Department A is always Low. This is a chain of fuzzy association rules.

To the best of our knowledge, no previous works have proposed a similar approach.

The contribution of this paper is the definition of the concept of Fuzzy Associative Summaries (Section IV), and the proposal of an algorithm to mine them from within a relational table (Section V). In particular, we rely on the general relational model, dealing with both categorical and numerical attributes. We propose to transform the original table into a Fuzzy-Valued Table: all the numerical attributes are converted into fuzzy linguistic attributes. Each numerical value \(x\), is mapped into a fuzzy value \((lv, \mu_{lv}(x))\), where \(lv\) is a linguistic value, and \(\mu_{lv}(x) \in [0, 1]\) is the membership degree of \(x\) w.r.t. \(lv\). Thus, the mining algorithm takes a table in which all attributes are categorical and have an associated membership degree.

We then describe (in Section VI) our implementation of the mining algorithm on top of Soft-SQL [1], in order to demonstrate the feasibility of our approach. Soft-SQL is an extension of the classical SQL query language to specify flexible queries based on soft operators and sets of linguistic predicates on classical relational databases, described in Section III.

II. RELATED WORK

In the last two decades, the area of Data Mining has been very popular among researchers. An impressive amount of models, techniques and solutions has been proposed; some very popular are clustering, classification, identification of functional dependencies, extraction of association rules. Since its birth [12], extraction of association rules has been object of many research works, that studied the problem from many different perspectives (efficiency [13], problem modeling, integration with relational databases [14], [15], etc.).

The community of researchers working on soft computing studied the problem as well, providing interesting generalizations (see [16] for a synthetic survey). Mainly, fuzzy
association rules are introduced to deal with numerical attributes in a flexible way. Fuzzy association rules are defined as fuzzy implications that relate the presence of items in fuzzy transactions [6]. Generally, items are things we can buy and transactions are market baskets containing several items. Numerical attributes are transformed into linguistic values with a given membership degree [17] (a problem already known in crisp approaches too [5]) to effectively find fuzzy association rules. In our work, we do not focus on the problem of discretizing attributes, identifying linguistic values in an automatic way: we assume that linguistic values and their membership functions are provided by the user, as in [9].

We relax the concept of fuzzy transaction to consider all items (tuples) in a database as a single basket.

In our approach, fuzzy association rules relate the presence of items in the whole database, as in [11]. For example, every tuple that contains large bread also contains cheap butter. Then, fuzzy association rules can be regarded as a form of fuzzy associative summary of the database content.

This interpretation of fuzzy association rules among attributes of tables that do not describe transaction data has been investigated also in [11]. Nevertheless, in our approach, we consider chains of fuzzy association rules, whose length can be the arity of the tuples in the mined relational table.

This paper is a first attempt in obtaining such a kind of descriptions (called fuzzy associative summaries); in particular, our proposal exploits sets of linguistic terms to reduce the granularity of the attribute values in classical relational databases, as first proposed in [8].

III. SOFT-SQL

Soft-SQL is the extension of SQL for flexible querying on top of classical relational databases [1]. The main idea behind this proposal is the possibility of explicitly defining sets of linguistic values for each attribute, named term sets. A term set can be used within selection predicates to evaluate the satisfaction degree of tuples.

Soft-SQL is implemented on top of PostgreSQL, as a Java package that can be used in Java applications. The SoftSQL package translates SoftSQL statements and flexible queries into crisp SQL queries.

Here, we provide a brief introduction to the main features of Soft-SQL that are relevant for this paper.

Definition of Term Sets. Soft-SQL clearly provides the concept of Term Set, i.e., a named set of linguistic values, that is stored into the database; this way, a term set and its linguistic values can be exploited for formulating queries. Linguistic values are denoted by a name and their semantics is defined by means of a trapezoidal function, used to evaluate the membership degree of a valued expression.

To illustrate, consider the Soft-SQL definition of term set Ages reported in Figure 1, that defines three linguistic values (Young, Middle, Old) for the age of employees.

Let us consider the statements in details.

The Normalized Within clause specifies the range of values to normalize in [0, 1]; values less than the lower bound (in this case, less than 0), are treated as the lower bound, while values greater than the upper bound (in this case, greater than 100) are treated as the upper bound.

The Evaluate clause specifies the name of the attribute (linguistic variable) for which the linguistic values are defined. In the example, the simple expression Age is evaluated, i.e., the age is directly evaluated against the normalization range. Clause values specifies the list of linguistic values. Each linguistic value is defined by a name (a string) and by the 4-tuple that reports the coordinates on the x-axis of the four key points of the trapezoidal membership function. Figure 2 shows the corresponding trapezoidal functions of the linguistic values.

Soft Query Language. Soft-SQL extends the classical SELECT statement of SQL to perform flexible querying on classical (not fuzzy) relational databases. A new fuzzy comparison predicate is introduced, so that in the query tuples are associated with a membership degree. To meet the closure property of relational query languages, the resulting tables are again traditional relational tables: to get the membership degree, a predefined attribute named Degree is available, that refers to the membership degree of a tuple.

Consider the following query, that selects employees such that their age is 'Middle' (linguistic value in the term set Ages).

\[
\text{SELECT Name, Degree FROM Employees WHERE Age IS 'Middle' IN Ages ORDER BY Degree DESC}
\]

The WHERE clause expresses a soft predicate by means of the IS...IN operator: the value of attribute Age is evaluated against the linguistic value 'Middle' defined in the term set Ages. In details, through the application of the normalized WITHIN clause, the values of attribute Age are normalized in the range [0, 1]; Then, the membership degree of each value is obtained by evaluating it against the trapezoidal function defining the semantics of Middle.

A tuple is selected if its membership degree is greater than 0. The generated table is obtained by projecting the selected tuples on attributes Name and Degree (the implicit attribute whose value is the membership degree of the tuple); this value is used to sort the selected tuples in descending order.

If we consider the instance of table Employees reported in Figure 3, the above query produces the following table.

<table>
<thead>
<tr>
<th>Name</th>
<th>Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Susan</td>
<td>1</td>
</tr>
<tr>
<td>Mary</td>
<td>1</td>
</tr>
<tr>
<td>Kate</td>
<td>0.6</td>
</tr>
</tbody>
</table>

IV. FUZZY ASSOCIATIVE SUMMARIES

A. Basic Concepts

Definition 1: Fuzzy-Valued Relation. \(R_F(A_1, \ldots, A_n) \) denotes a Fuzzy-Valued Relation (table), and \(r_F \) denotes its instance. The domain of an attribute \(A_i \) is a set of pairs \((l_i, \mu_i)\),
where \(lv \in \text{TermSet}(A_i) \) and \(\mu \in [0,1] \) is the membership degree to the fuzzy valued relation. \(\text{TermSet}(A_i) \) is the term set of linguistic values or a finite set of categorical values. For a tuple \(t \in r_F \), \(t[A_i]lv \) denotes the actual linguistic value of attribute \(A_i \), and \(t[A_i]\mu \) denotes the actual membership degree.

In order to mine fuzzy associative summaries from classical relational tables, it is first necessary to discretize the attribute values, by associating a single linguistic value drawn from the attribute term set. In our implementation (Section VI), we select the label \(lv \in \text{TermSet}(A_i) \) that has the greatest membership degree \(t[A_i]\mu \).

In order to generate fuzzy associative summaries, we need to transform each classical relation with categorical and numerical attributes into a fuzzy valued relation. For each attribute in the source relation, the user must define a (term) set of linguistic values.

Definition 2: Fuzzy Support Consider an attribute \(A \) and a set of linguistic values \(V_A = \{lv_1, \ldots, lv_n\} \). Consider now a tuple \(t \), where for attribute \(A \) there is a given linguistic value, i.e., \(t[A]lv \in V_A \), with a given membership degree \(t[A]\mu \).

Now, let \(S \) be a set of fuzzy-valued tuples and let \(S(A, lv_i) \) be the subset of \(S \) of tuples such that \(t[A]lv = lv_i \). The fuzzy support of the linguistic value \(lv_i \) for attribute \(A \) w.r.t. \(S \) is defined as [7]:

\[
FSup(S, A, lv_i) = \frac{\sum_{t \in S(A, lv_i)} t[A] \mu}{\sum_{t \in S} t[A] \mu}
\]

We can generalize the concept to a set of attribute-value pairs. Consider a set \(V = \{p_i = (A_i, v_i)\} \) such that there are no two distinct pairs \(p_i, p_j \in V \) concerning the same attribute (i.e., \(A_i \neq A_j \) for each \(i \neq j \)). The Generalized Fuzzy Support is defined as follows:

\[
GFSup(S, V) = \frac{\sum_{i \in S} \min_{A_i \in V} (t[A] \mu)}{\sum_{i \in S} \min_{A_i \in V} (t[A] \mu)}
\]

where \(S \subseteq S \) is the set of tuples such that \(\forall p_i = (A_i, v_i) \in V \), it is \(t[A_i]lv = v_i \).

If \(S = r_F \), the fuzzy support is called Full Support, since it refers to all the tuples in the relation.

Definition 3: Minimum Attribute Relevance Threshold (MART) Consider a set \(S \) of tuples, an attribute \(A \), the set \(V_A = \{lv_1, \ldots, lv_n\} \) of its linguistic values and, for each \(lv_i \), its full support \(FSup(r_F, A, lv_i) \). We denote with \(\text{avg}(A) \) and \(\text{var}(A) \), resp., the average and the variance of full support values among all linguistic values for attribute \(A \), defined as follows (where \(r_F(A, lv) \) is the subset of tuples in \(r_F \) such that \(t[A]lv = lv \)).

\[
\text{avg}(A) = \frac{\sum_{lv \in V_A} FSup(r_F, A, lv) \times |r_F(A, lv)|}{|r_F|}
\]

\[
\text{var}(A) = \frac{\sum_{lv \in V_A} (FSup(r_F, A, lv) - \text{avg}(A))^2 \times r_F(A, lv)}{|r_F|}
\]

The Minimum Attribute Relevance Threshold for a linguistic value of attribute \(A \), \(\text{MART}(A) \), is defined as:

\[
\text{MART}(A) = \text{avg}(A) - (\sqrt{\text{var}(A)}/2)
\]

The Minimum Attribute Relevance Threshold is an adaptive minimum relevance threshold, that is used to select linguistic values that might generate potentially relevant summaries.

B. Main Definitions

Definition 4: Fuzzy Associative Summaries Consider a Fuzzy-Valued Relation (table) \(R_F(A_1, \ldots, A_n) \) and its instance \(r_F \).

A Fuzzy Associative Summary \(ASum \) is a tuple:

\[
ASum = (AVSeq : (p_1, \ldots, p_k) \text{, Supp, Strength, Conf})
\]

where \(AVSeq \) is a non empty sequence of attribute-value pairs \(p_i : (A_i, v_i) \), with \(A_i \in R_F \) and \(v_i \in \text{TermSet}(A_i) \).

\(\text{Supp} \in [0,1] \), \(\text{Strength} \in [0,1] \) and \(\text{Conf} \in [0,1] \) are, respectively, the support, the strength and the confidence of the summary w.r.t. relation instance \(r_F \), as formalized in Definition 5.
In the following, we use the notation \(n \)-Summary to denote a summary such that its length \(n = |AVSeq| \).

Definition 5: Relevance of Fuzzy Associative Summaries

Consider a Fuzzy Associative Summary \(ASum \) and a fuzzy-valued relation \(r_F \). Support, strength and confidence are measures of relevance of the summary. In particular, the support is the frequency with which the summary holds for tuples in \(r_F \); the strength is the conditional probability that the summary holds, having found the first attribute-value pair; the confidence is the probability that the summary holds, having found the first \(n - 1 \) pairs. The detailed definitions are the following.

- For a \(1 \)-Summary \(s \), \(s.Supp \) is the full fuzzy support of the attribute-value pair in the summary; formally, given \(s.AVSeq = \langle (A_1, v_1) \rangle \), it is \(s.Supp = FSup(r_F, A_1, v_1) \).

 > By definition, \(s.Strength = 1 \), and \(s.Conf = s.Supp \).

- Let us denote, with \(s \), a \(n \)-Summary (with \(n > 1 \)) and, with \(s' \), the \((n - 1)\)-Summary such that \(s'.AVSeq \subset s.AVSeq \); in particular, \((a_n, v_n) = s.AVSeq - s'.AVSeq \) is the \(n \)-th pair in \(s \) that is not present in \(s' \).

 > Let us denote, with \(S' \), the set of tuples in \(r_F \) for which \(s' \) holds and with \(S \subseteq S' \) the set of tuples in \(r_F \) for which \(s \) holds.

 > The support of the \(n \)-Summary \(s \) is defined based on \(FSup \) (Definition 2):

\[
s.Supp = FSup(r_F, ASeq) = \frac{\sum_{i \in S} \min_{A \in ASeq} (t_i[A], \mu)}{\sum_{i \in r_F} \min_{A \in ASeq} (t_i[A], \mu)}
\]

 > The strength of the \(n \)-Summary \(s \) is defined based on \(FSup \) (see Definition 2):

\[
s.Strength = Tnorm(s'.Strength, FSup(S', A_n, v_n)) = s'.Strength \times FSup(S', A_n, v_n)
\]

 > The confidence of the \(n \)-Summary \(s \) is

\[
s.Conf = FSup(S', A_n, v_n)
\]

Notice that the definitions of support and confidence are the usual fuzzy extensions of the crisp definitions [7].

C. Problem Statement

We are now ready to state the problem.

“Compute the set \(\text{Sum}(r_F) \) of Fuzzy Associative Summaries involving the attribute-value pairs \((A_i, v_i) \) whose fuzzy support is greater than or equal to the Minimum Attribute Relevance Threshold \(\text{MART}(A_i) \)”.

D. Discussion

We defined three different measures to assess the validity of summaries, because they highlight different properties of summaries. The support measures the relevance of the summary over the entire table: it is the fuzzy frequency with which the summary holds for tuples in the table.

The confidence is the conditional probability that a \(n \)-Summary holds, provided that the \((n - 1)\)-Summary from which it derives holds. Following this idea, the confidence of a \(1 \)-Summary coincides with the support, since we assume that a \(1 \)-Summary holds, provided that the empty summary holds for the entire table.

While support and confidence are the typical validity measures that characterize fuzzy association rules, we defined a new measure called Strength. Formally, it is the conditional probability that a summary holds, provided that the first attribute-value pair holds. For a \(1 \)-Summary, the strength is set to 1, since the summary holds exactly for the same tuples for which the first (and unique) pair holds.

In other words, this is the strength of the associative chain w.r.t. the first attribute-value pair. A summary step-by-step narrows the focus with which it analyzes/describes tuples in the table (we can call it telescope view or telescope analysis): if the strength is close to 1, means the entire summary holds for almost all the tuples for which the first attribute-value pair holds; this is a case of strong associative relationships among the data.

V. MINING FUZZY ASSOCIATIVE SUMMARIES

The process of mining Fuzzy Associative Summaries can be performed by an algorithm designed for this purpose. Figure 4 reports the algorithm we devised to demonstrate our approach. It is a recursive algorithm: function \(\text{GenSummaries} \) is the recursive component; procedure \(\text{MineAssociativeSummaries} \) is the main part of the algorithm.

In the following, we present the algorithm in details.

- **Preliminary Task.** Line 8. in procedure \(\text{MineAssociativeSummaries} \) gets the source fuzzy-valued relation from the database.

Then, Line 9. computes the set \(\text{RelPairs} \) of relevant attribute-value pairs \((A, v) \) (such that fuzzy support of value \(v \) is greater than or equal to the Minimum Attribute Relevance Threshold for attribute \(A \)).

Line 10. initializes the set \(\text{Sums} \), the set of generated associative summaries, to the empty set.

- **Generation of 1-Summaries** The for each loop at Line 11. generates a \(1 \)-Summary \(\pi \) for each relevant attribute-value pair in \(\text{RelPairs} \).

Line 12. actually generates the \(1 \)-Summary \(\pi \), using the fuzzy support of the pair w.r.t. the source fuzzy valued table \(r_F \) as support and confidence value for \(\pi \) (the strength is 1 for \(1 \)-Summaries).

Then, for each generated \(1 \)-Summary \(\pi \), Line 13. generates \(r_{\pi} \), the set of tuples in \(r_F \) such that attribute \(A \) has value \(v \) (i.e., the pair chosen to generate the summary \(\pi \)). Line 14. calls function \(\text{GenSummaries} \) to obtain the set of

Table Employees.

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Salary</th>
<th>Expertise</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>25</td>
<td>1000</td>
<td>5</td>
<td>A</td>
</tr>
<tr>
<td>Kate</td>
<td>49</td>
<td>1150</td>
<td>6</td>
<td>B</td>
</tr>
<tr>
<td>Susan</td>
<td>30</td>
<td>1100</td>
<td>6</td>
<td>A</td>
</tr>
<tr>
<td>Mary</td>
<td>35</td>
<td>1200</td>
<td>8</td>
<td>A</td>
</tr>
<tr>
<td>Marc</td>
<td>55</td>
<td>3800</td>
<td>8</td>
<td>B</td>
</tr>
</tbody>
</table>
function GenSummaries(RelPairs, Sums, s, r_s, r_F)
begin
1. Previous := Attrs(s);
2. for each p(A, v) ∈ (RelPairs − Previous) do
 begin
3. \(\bar{\pi} := (s.AVSeq \cup \{p\}, GFSup(r_F, s.AVSeq), \)
 \(s.Strength \times FSup(r_s, A, v), FSup(r_s, A, v)) ; \)
4. if \(\bar{\pi}.Conf > 0 \) then
 r_\bar{\pi} := \{ t[t \in r_s \land t[A] = v] ; \}
5. Sums := GenSummaries(Sums \cup \{\bar{\pi}\}, \bar{\pi}, r_\bar{\pi});
 end if
6. return Sums;
end

procedure MineAssociativeSummaries
begin
8. Get r_F, the fuzzy valued relation
9. RelPairs := \{ (A, v) \mid A \in R \land v \in Dom(A) \land
 FSup(r_F, A, v) \geq MART(A) \} ;
10. Sums := \{ \};
11. for each p(A, v) ∈ RelPairs do
 begin
12. \(\bar{\pi} := (p), FSup(r_F, A, v), 1, FSup(r_F, A, v)) ; \)
13. r_\bar{\pi} := \{ t[t \in r_F \land t[A] = v] ; \}
14. Sums := GenSummaries(Sums \cup \{\bar{\pi}\}, \bar{\pi}, r_\bar{\pi});
 end
15. Summaries := Sums;
end

Fig. 4. Algorithm for Mining Associative Summaries.

all summaries that extend the 1-Summary \(\bar{\pi} \); notice that r_\bar{\pi} and r_F are passed.

The Recursive Process. For each 1-Summary generated in
the preliminary task, the recursive process is performed
by the recursive function GenSummaries.

1) Function GenSummaries receives the set of relevant
attribute-value pairs RelPairs, the set Sums of so
far generated summaries, a i-Summary s, the set of
fuzzy-valued tuples r_s for which the i-Summary s
holds and the full fuzzy-valued table r_F.

2) Line 1. extracts (function Attrs) the set of attributes
already involved in the i-Summary s; the resulting
set is assigned to variable Previous.

3) The for each loop at Line 2. considers all the
relevant attribute-value pairs p(A, v) for attributes
not yet involved in the i-Summary s. For each pair
p(A, v), it tries to generate a new (i+1)-Summary
\(\bar{\pi} \) by adding pair p to s. In particular, the new
(i+1)-Summary \(\bar{\pi} \) is actually generated at Line 3.. The sequence of attribute-value
pairs is directly derived from s.AVSeq by appending
pair p. The support \(\bar{\pi}.Supp \) is the generalized full
fuzzy support of the sequence AsEq. The strength value \(\bar{\pi}.Strength \) is obtained by multiplying the
strength value s.Strength of the i-Summary s by the
fuzzy support of pair p evaluated on the set of tuples
for which the i-Summary s holds. The confidence
value \(\bar{\pi}.Conf \) is the fuzzy support of pair p evaluated
on the set of tuples for which the i-Summary s
holds.

The conditional instruction at Line 4. checks if
the confidence of the newly generated (i+1)-
Summary \(\bar{\pi} \) is greater than 0 (when the confidence is
0, support and strength are 0 as well): only in this
case the summary can be actually kept and used for
are executed only if the relevance of \(\pi \) is greater
than 0.

Line 5. selects the set r_\bar{\pi} of tuples for which the new
(i+1)-Summary \(\bar{\pi} \) holds: it simply selects tuples in
r_s (the set of tuples for which the i-Summary s
holds) for which the pair p holds.

Line 6. recursively calls function GenSummaries, in
order to generate (if possible) all j-Summaries, with
j > (i+1), derived from the (i+1)-Summary \(\bar{\pi} \).

Example 1: To illustrate the mining process, consider the
sample table Employees depicted in Figure 3, that describes
employees of a company. If we exclude attribute Name,
that plays the role of primary key, attributes Age, Salary
and Expertise are numerical, while attribute Department
is categorical.

• First of all, we have to transform table Employees into a
Fuzzy-Valued Table. We make use of the three term
sets defined in Figure 1, one for each numerical attribute
Age, Salary and Expertise. For an attribute, each linguistic
value of the associated term set is evaluated against the
actual numerical values of the attribute. The result is the
table depicted in Figure 6: notice that in place of each
attribute, we reported a triple with membership degrees
of the original attribute value w.r.t. the linguistic values
reported below the attribute name in the table schema.

• Second, for each tuple, for each attribute the linguistic
value with greatest membership degree is taken. We
obtain the table depicted in Figure 7, where the value
of each attribute is a pair (Linguistic Value, Membership
Degree). This table is the set r_F of tuples used in the
successive iterative process.

The values of the Fuzzy Support for each attribute-value
pair are reported in Figure 5.

Based on the Fuzzy Support of attribute-value pairs, we
can compute the Minimum Attribute Relevance Threshold
values MART(A). They are reported in Figure 5.b.
Based on these results, the following attribute-value pairs
will not be considered in the iterative process, because
their support is always lower than the corresponding
MART: (Age, Young), (Age, Old), (Salary, Medium),
(Expertise, High) (notice that (Expertise, Low) does not
appear in any tuple), \((\text{Department}, B)\).

- **1-Summaries.** Based on set \(r_F\) and the results of the previous step, 1-Summaries can be generated. The first one might be

 \[\text{Summary}_1 = ((\text{Expertise}, \text{Medium}), 0.75, 1, 0.75)\]
 Notice that support and confidence coincide and are exactly the value of the fuzzy support of the attribute-value pair.

 The set of tuples for which the linguistic value of attribute \text{Expertise} is \text{Medium} is computed; we denote it as \(S_1\) (tuples in set \(S_1\) are marked in Figure 7 with \(S_1\)).

- **2-Summaries.** Based on the previous summary, and considering set \(S_1\), we can generate a new set of 2-Summaries.

 Considering the pair \((\text{Salary}, \text{Low})\), we obtain the 2-Summary

 \[\text{Summary}_2 = ((\text{Expertise}, \text{Medium}), (\text{Salary}, \text{Low}), 0.384, 0.714, 0.714)\]

 Notice that the confidence is \(FSup(S_1, \text{Salary}, \text{Low}) = 0.75/1.05 = 0.714\), while the new computed strength is \(1 \times 0.714 = 0.714\). The support is \(0.75/1.95 = 0.384\).

 The set of tuples in \(S_1\) that have value \text{Low} for attribute \text{Salary} is generated; we denote it as \(S_2\) (tuples in set \(S_2\) are marked in Figure 7 with \(S_2\)).

- **3-Summaries.** Based on the previous summary and on set \(S_2\), it is possible to generate a new set of 3-Summaries. Among the attribute-value pairs for the two remaining attributes, we might chose \((\text{Age}, \text{Middle})\), obtaining the following 3-Summary.

 \[\text{Summary}_3 = ((\text{Expertise}, \text{Medium}), (\text{Salary}, \text{Low}), (\text{Age}, \text{Middle}), 0.1282, 0.47838, 0.67)\]

 Notice that the confidence is \(FSup(S_2, \text{Age}, \text{Middle}) = 1.0/1.5 = 0.67\), while the new computed strength is \(0.714 \times 0.67 = 0.47838\). The support value of the summary is 0.1282.

 The set \(S_3\) of tuples in \(S_2\) for which the linguistic value of attribute \text{Age} is \text{Middle} is generated (the tuple in set \(S_3\) is marked in Figure 7 as \(S_3\)).

- **4-Summaries.** Finally, only one attribute can be considered for extending \(\text{Summary}_3\), i.e., attribute \text{Department} with value \(A\). The resulting 4-Summary is the following.

 \[\text{Summary}_4 = (((\text{Expertise}, \text{Medium}), (\text{Salary}, \text{Low}), (\text{Age}, \text{Middle}), (\text{Department}, A)), 0.1282, 0.47838, 1.0)\]

 Notice that the support is the same as the support of \(\text{Summary}_3\): this is due to the fact that the set of tuples for which the new summary holds is the same, and the membership degrees of attribute \text{Department} is always 1. The fuzzy support of the attribute-value pair \((\text{Department}, A)\) is \(1.0/1.0 = 1.0\), thus the confidence is 1 and the Strength is the same as for \(\text{Summary}_3\).

 This piece of information is interesting: the fact that the \text{Expertise} is \text{Medium}, the \text{Salary} is \text{Low} and the \text{Age} is \text{Middle} implies that the \text{Department} is \text{A}.

\[\square\]

The mining process generates a large number of summaries, that, for the sake of space, cannot be reported in the paper. We could limit the number of generated summaries by imposing a minimum threshold on the validity measures.

VI. IMPLEMENTATION ON TOP OF SOFT-SQL

In this section, we present how Fuzzy Associative Summaries can be mined on top of Soft-SQL, the prototypical engine supporting flexible querying on relational databases we implemented in our past work [1].

The mining algorithm (Figure 4) has been implemented within a Java application, that accesses to the database through the Soft-SQL Package. In particular, the application starts from a classical relational table; then, by means of a mapping between numerical attributes and term sets, it derives the corresponding Fuzzy-Valued Relation. From this point, the algorithm is implemented in such a way it heavily exploits SQL queries.

The Soft-SQL query language, being an extension of classical SQL query language, forces to address the problem from a relational point of view: the result is that Soft-SQL can be successfully exploited if we adopt a vertical approach to the problem.

Fuzzy-Valued Table. The first thing to do is to obtain the fuzzy-valued table \(r_F\) from the source table \(r\). This requires the evaluation of linguistic values for each attribute.

Let us denote with \(K(k_1, \ldots, k_h) \subset R\) the set of attributes in the primary key of table \(r\); with \(M = (m_1, \ldots, m_q) = R - K\) we denote the set of attributes to mine.
With Q_m we denote the Soft-SQL query that, for attribute $m \in M$, generates, for each (possibly linguistic) value v of m, the membership degree of v for each tuple in r. Depending on the domain of m, Q_m is defined in two different ways.

1) If $\text{Dom}(m)$ is categorical, Q_m is as follows:

 SELECT k_1, \ldots, k_h, 'm' AS ANAME,
 m AS AVALUE, 1.0 AS ADEG
 FROM r;

2) If $\text{Dom}(m)$ is numerical, there is a term set TS associated with m, in which l linguistic values l_{v_1}, \ldots, l_{v_l} are defined. For each linguistic value l_{v_i}, we define a Soft-SQL query Q^i_m based on the IS IN predicate.

 SELECT k_1, \ldots, k_h, 'm' AS ANAME,
 'l_{v_i}' AS AVALUE, DEGREE AS ADEG
 FROM r
 WHERE m IS 'l_{v_i}' IN TS;

To obtain query Q_m, queries Q^i_m are concatenated by means of the UNION ALL SQL operator.

\[
Q_m = Q^1_m \text{UNION ALL} \ldots \text{UNION ALL} Q^l_m;
\]

All Q_m queries are concatenated, again based on the UNION ALL SQL operator, and the result is inserted into table FVALUES.

\[
\text{INSERT INTO FVALUES}
\begin{align*}
(Q_m; \\
\text{UNION ALL} \\
\ldots \\
\text{UNION ALL} \\
Q_{m_q})
\end{align*}
\]

Table FVALUES gives the membership degree of each (possibly linguistic) attribute value for each tuple t in r, where each tuple t is identified by the value of the primary key.

To complete the computation of the fuzzy-valued table, it is necessary to select, for each tuple t in r, the (linguistic) value with the highest membership degree. This is done by the following query, that, based on the previously computed FVALUES table, generates the new table FVT (for Fuzzy-Valued Table).

\[
\text{INSERT INTO FVT}
\begin{align*}
\text{SELECT FVALUES.ANAME, FVALUES.AVALUE, FVALUES.ADEG} \\
\text{FROM FVALUES INNER JOIN} \\
(\text{SELECT k_1, \ldots, k_h, ANAME,} \\
\text{MAX(ADEG) AS MDEG} \\
\text{FROM FVALUES} \\
\text{GROUP BY k_1, \ldots, k_h, ANAME}) \text{ AS MFV} \\
\text{ON FVALUES.k_i=MFV.k_i} \text{ AND} \\
\text{AND FVALUES.ANAME=MFV.ANAME} \\
\text{AND FVALUES.ADEG=MFV.MDEG}
\end{align*}
\]

Fuzzy Support and MART. Table FVT is the starting point for computing the fuzzy support of each attribute-value pair. Thus, by means of a query, table FSUPPORTS is computed: its schema is ($\text{ANAME, AVALUE, FSUP}$), so that each tuple describes, for an attribute-value pair (ANAME, AVALUE), the full fuzzy support FSUP.

Table FSUPPORTS can be used to evaluate the Minimum Attribute Relevance Threshold (MART) of each attribute, and insert the results into table MARTS. A few queries are necessary to perform this task: the result is inserted into table MARTS (whose schema is similar to the table depicted in Figure 5.b). This table is used to delete, from table FSUPPORTS, the tuples with value of attribute FSUP less than the corresponding MART.

Computation of Sets r_{π}. Consider procedure $\text{MineAssociationSummaries}$ in the mining algorithm (Figure 4). After the new 1-Summary π is generated at Line 12, at Line 13, the set r_{π} containing the tuples for which π holds is generated, by
selecting these tuples from table \(r_F \) (the fuzzy-valued table).

In our implementation, \(r_F \) is represented in a vertical way by table \(FVT_5 \). So, we decided to represent \(\tau_S \) in table \(FVT_\tau \), by means of the primary key of \(r_F \). Recall that in the 1-Summary, \(AVSeq = \langle (A, v) \rangle \).

\[
\text{INSERT INTO } FVT_\tau \\
(\text{SELECT } FVT.k_1 \ldots, FVT.k_h \\
\text{FROM } FVT \\
\text{WHERE } \text{ANAME}=A \text{ AND } \text{AVVALUE}=v)
\]

In the recursive function \(GenSummaries \) of the mining algorithm, set \(r_S \) is received as input parameter. At Line 5., the set \(\tau_S \) is computed, based on \(r_s \) and using the chosen pair \((A, v)\).

In the previous query, we saw that \(r_s \) is represented by table \(FVT_\tau \), by means of the primary key values for which summary \(s \) holds. In the following query, we show how to compute and represent \(\tau_S \) at Line 5. of the algorithm.

\[
\text{INSERT INTO } FVT_\tau \\
(\text{SELECT } FVT.k_1 \ldots, FVT.k_h \\
\text{FROM } FVT \text{ INNER JOIN } FVT_s \\
\text{ON } FVT.k_1=\text{FVT}_s.k_1 \text{ AND } \ldots \text{ AND } FVT.k_h=\text{FVT}_s.k_h \\
\text{WHERE } \text{ANAME}=A \text{ AND } \text{AVVALUE}=v)
\]

Computation of Fuzzy Supports. At Line 3. of the mining algorithm (Figure 4), the support, strength and confidence of the newly generated summary \(s \) are computed by evaluating \(GFs^{sup}(r_F, AVSeq) \) (generalized full support) and \(Fs^{sup}(r_S, A, v) \), (the fuzzy support of tuples in \(r_s \) for which \(t[A] = v \)).

The vertical representation of tuples in \(r_F \) we adopted in our implementation allows to easily compute these values, by means of simple aggregation-based SQL queries.

VII. CONCLUDING REMARKS

We conclude the paper with some remarks about our proposals and our plans for future work on this topic. First of all, we point out that, for the example shown in the paper, 65 fuzzy associative summaries are generated. Their number is not negligible, and therefore the user cannot easily comprehend them. A simple approach could be to define a minimum threshold for the validity measures of generated summaries to filter out only the meaningful ones. However, all summaries, together, give a good description of associative relations within the database. In particular, one interesting thing to do is to analyze if the strength of summaries decreases or remains stable when a summary is derived from another one: this could let interesting phenomena emerge, possibly unexpected to the user. When the strength remains stable in the chain, it means that there is a strong association between the fuzzy attribute values. Therefore, we want to investigate this topic, in order to define both a visualization technique, and an automatic analysis technique, to highlight significant behaviours that emerge by comparing summaries.

Finally, we observe that the proposed algorithm for mining Fuzzy Associative Summaries is not the optimal one in terms of efficiency. In fact, some preliminary experiments performed on the *Forest CoverType* dataset [18] has shown that the algorithm scales well w.r.t. the number of tuples in the mined table, while after 5 mined attributes performance dramatically gets worse, due to the exponential growth of possible combinations of attribute-value pairs. Therefore, we plan to develop an efficient algorithm that performs a limited and fixed number of scans over the mined table.

References