Endogenous Cycles, Debt and Monetary Policy

Piero Ferri, Anna Maria Variato

Comitato di Redazione
Riccardo Bellofiore
Annalisa Cristini
Riccardo Leoni
Giancarlo Graziola
Piero Ferri
Giorgio Ragazzi
Maria Rosa Battaggion

- La Redazione ottempera agli obblighi previsti dall’art.1 del D.L.L. 31.8.1945, n.660 e successive modificazioni.
- Le pubblicazioni del Dipartimento di Scienze Economiche dell’Università di Bergamo, consistenti nelle collane dei Quaderni e delle Monografie e Rapporti di Ricerca, costituiscono un servizio atto a fornire la tempestiva divulgazione di ricerche scientifiche originali, siano esse in forma definitiva o provvisoria.
- L’accesso alle collane è approvato dal Comitato di Redazione, sentito il parere di un referee.
Endogenous Cycles, Debt and Monetary Policy

Piero Ferri - Anna Maria Variato
Università degli Studi di Bergamo - Dipartimento "H.P. Minsky"

July 7, 2007

\footnote{We wish to thank Steven Fazzari and Edward Greenberg (Washington University, St. Louis) for intellectual support and the University of Bergamo for financial help.}

\footnote{e-mail and tel.: pietro-enrico.ferri@unibg.it; +39-035-2052580; anna.variato@unibg.it; +39-035-2052581; fax: +39-035-249975}
Abstract

The paper discusses the dynamic properties of a macro model with an investment function based upon both real and financial aspects and a labor market ruled by imperfect competition. The model is then enriched by a monetary policy rule and by agents who forecast according to a time series strategy based upon a Markov process. Simulations show the persistence of oscillations even in the presence of the Taylor rule. The relevance of such financial aspects as cash flows and debts can create a trade-off between the control of inflation and the cyclicality of the economy. Furthermore, instability and debt-deflation phenomena can arise.

Jel Classification: E32, E37, E52

Keywords: endogenous cycles, monetary policy, learning
1 Introduction

There has been a resurgence of interest in the theme of dynamics in general, and of stability in particular, in small macroeconomic monetary models of the economy. As is well known, the so called Taylor rule (a linear feedback policy rule) is a policy that calls for nominal interest rates to be adjusted positively in response to inflation rates above target levels. The associated Taylor principle requires that this adjustment be more than one-to-one to assure stability: by raising the nominal rate of interest by more than one-for-one in response to an increase in inflation, the central bank raises the real rate of interest, decreasing aggregate demand and restraining the inflationary process.

The validity of the Taylor principle is now widely discussed in the literature, especially because of the environment it applies to, and its technical specification (see Woodford, 2003). Furthermore, two developments aimed at deepening the dynamic aspects of monetary policy seem to be very promising, and useful to the specific purpose of the present paper. The first introduces learning. According to Bullard and Mitra (2002), learnability is a necessary additional criterion for evaluating alternative monetary policy feedback rules. These authors find that determinacy of equilibria—the saddle-path dynamic condition that characterize model with rational expectations—does not necessary imply stability of the model in the presence of learning. The second development consists in the possibility that other kinds of equilibria might exist. For instance, Benhabib, Schmitt-Grohé, and Uribe (2003) present examples where attracting equilibrium cycles may exist. Both improvements are not necessarily keynesian in nature, but represent a way through which keynesian "temporary closures" may be introduced into conventional models.

The objective of the present paper is to discuss dynamics within a macro framework constructed upon two basic assumptions that are different from the tenets of the so called “new neo-classical synthesis,” which claims to be derived from strict micro-foundations (Goodfriend and King, 1997). First, the model is based upon a strong link between real and monetary aspects which relates to the keynesian idea of a "monetary theory of production". In the present paper, interdependence depends not only on nominal rigidities in wage and price formation but also on the presence of debt and cash flows in the investment function as stressed by Minsky (1982). A cost of these assumptions is that the model cannot remain small and therefore the mathematical results become less straightforward. The benefit is that of showing the dual role of the rate of interest as an incentive to invest and as an engine for cash flows and debts. In this context, inflation is intrinsic to the model and it is not brought into the analysis by means of the objective function of the policy maker. All these elements favor the presence of cycles and makes the working of Taylor rule more problematic. The second channel through which the model shows its keynesian nature is given by the hypothesis on agents’ behavior. Because

1See Keynes (1936).
of uncertainty agents are supposed to be boundedly rational. In this setup we do not consider "fundamental uncertainty", but in any case we admit "substantive uncertainty".\footnote{In order to have fundamental uncertainty in strict sense one may use a wide class of stochastic processes (especially emphasizing the role of non-ergodic ones, and eventually reaching the point of inexistence or representable forms); in contrast, substantive uncertainty implies that agents lack significant information, without restraining to specific structures of the underlying stochastic processes.} In other words we assume that agents do not possess all the information required by the assumption of rational expectations; nevertheless they are supposed to behave like econometricians (e.g. Sargent, 1993), and their expectations should be consistent with outcomes (e.g. Hommes and Sorger, 1998).

In this framework, there are two main sources of endogeneity in the dynamics: i) Cash flows and debts are endogenously determined heavily affect investment and, in turn, business cycles. ii) The second source comes from expectations. Agents, do not know the true model, and form expectations according to a Markov-switching time series process, where probabilities of experiencing periods of good and bad times for growth and intervals of low and high inflation, are specified. The only requirement is that agents' beliefs are consistent in the sense that, on average, their expectations match (ex-post) the outcomes of the economy.

In the present paper the suggestion of Flaschel et al.(2001, p. 106) to use only unavoidable nonlinearities has been followed: “Such nonlinearities naturally arise from the growth rate formulation of certain laws of motion, certain unavoidable ratios and the multiplicative interaction of variables”. In spite of this, the model does not yield closed-form solutions, so that simulations must be carried out. Parameters are calibrated to reflect values estimated in the relevant literature. In particular, the following results are worth stressing:

1. Because the model utilizes a Taylor rule, its results may shed light on the policy debate centered on that idea (e.g. Woodford, 2003, and Clarida et al., Taylor, 1999 and Svensson, 2003). The Taylor principle is based on an understanding of the monetary transmission mechanism that relies on price stickiness and substitution effects caused by changes in the real interest rate. The structure of our model is that policy-induced changes in interest rates could also alter the values of such variables as cash flows and debts. Changes in these variables can induce a tradeoff between the control of inflation and the frequency of the cycle that is not usually discussed in the literature.

2. The nature of the investment function in particular, and of the model in general, can create permanent oscillations in the rate of growth of output and inflation so that limit cycles are numerically generated for plausible values of the parameters. These results are robust in the sense that they are compatible with other constellations of parameters. In particular, a higher debt ratio is associated with greater instability.
3. Instability can assume either the form of runaway inflation or the nature of debt deflation à la Fisher-Minsky.

4. The way in which expectations are formulated is the key element in shaping the dynamics of the system. They contribute to make the cycle profile more irregular and therefore more realistic.

The structure of the paper is the following. In Section 2 an investment function dominated by a process of interdependence between monetary and real aspects is introduced. Section 3 deepens the role of financial aspects and consider a specification of the monetary policy. In Section 4 further interdependence between monetary and real aspects is introduced through labor and product markets based upon imperfect competition. Section 5 presents the remaining equations of the model. The nonlinear nature of the model obliges us to conduct simulations to derive results. These are presented in Section 6, where the main stylized facts are considered in the case of autoregressive expectations. Section 7 introduces expectations based upon a Markov regime-switching process. Section 8 discusses the dynamics of the model in the presence of these kinds of expectations, while Section 9 tests the robustness of the results by means of a sensitivity analysis. Section 10 contains conclusions.

2 The investment function

The degree of complexity of the investment function depends very much on the nature of the business cycles that one intends to study. If the business cycle is not based mainly on the process of stock decumulation but is driven by investment and hence by capital accumulation (on the distinction, see also Zarnowitz, 1999), then some degree of interdependence between nominal and real aspects must be considered.

In what follows, the investment function is obtained by a pair of equations that represent, respectively, the (real) external cost of finance (r^*_t) and the internal rate of return (r^d_t)

$$r^*_t = r^*_t + \frac{\gamma_1}{I_t - \frac{RCF_{t-1}}{K_{t-1}}} + \frac{\gamma_2}{d_{t-1}}$$

$$r^d_t = \phi_0 + \frac{I^*_t - I_t}{K_{t-1}}.$$

Investment (I_t) and the real rate of interest (r_t) are obtained by equating these two returns, where I^*_t, RCF_t, K_t and d_t represent respectively optimal investment, real cash flow, capital and the debt ratio to be defined later on. This is a generalization of the investment equation adopted in Fazzari, Ferri, and Greenberg (2003), who also review the
relevant literature which stems from Minsky’s contribution to the asymmetric information models (see also Bernanke et al., 1999, Foley, 1989, and Fazzari et al., 1998). Furthermore, it compatible with a balance sheet view of investment as stressed by Hicks (1989). The specification of the investment function, which is represented in intensive form, is given by

\[
i_t = \frac{I_t}{K_{t-1}} = \frac{1}{\gamma_1 + \phi_1} \left[(\phi_0 - r^*_t) + \phi_1 \frac{I^*_t}{K_{t-1}} + \gamma_1 \frac{RCF_{t-1}}{K_{t-1}} - \gamma_2 d_{t-1} \right]. \]

Given the return on investment \(\phi_0\) and an expected medium-run real rate of interest \(r^*_t\) defined below, the other three determinants of the investment ratio are \(I^*_t/K_{t-1}\), \(RCF_{t-1}/K_{t-1}\), and \(d_t\).

The desired investment ratio is assumed to be

\[
i^*_t = I^*_t/K_{t-1} = i_0 + \lambda (K^*_t/K_{t-1} - 1),
\]

which has a steady state value equal to the steady-state investment ratio \(i_0\).

On the assumption that the optimal level of capital \(K^*_t\) is proportional to the expected level of output with factor of proportionality \(v^*\), which is the constant optimal capital/output ratio (a reasonable assumption in the medium-run), we find that

\[
g_{k_t} = g^t; \tag{1}
\]

i.e., the rate of growth of optimal capital \((K^*_t/K_{t-1} - 1)\) is equal to the expected rate of growth of output. The dynamics of capital accumulation are given by

\[
g_{k_t} = i_t - \delta. \tag{2}
\]

where \(\delta\) is the rate of depreciation.

Two ratios can now be introduced: the actual capital/output ratio \(v_t\),

\[
v_t = \frac{K_t}{Y_t} = v_{t-1} \frac{1 + g_k}{1 + g_t}; \tag{3}
\]

where \(Y_t\) is output, and the ratio of optimal to actual capital \(h_t\),

\[
h_t = \frac{K^*_t}{K_{t-1}} = h_{t-1} \frac{1 + g_{k^*}}{1 + g_{k_{t-1}}}. \tag{4}
\]

To describe the investment equation, it remains to define the two financial variables.
The financial aspects and the monetary policy

From the above definitions the following equation for the real cash flow per unit of capital is obtained:

\[
\frac{RCF_t}{K_t} = \frac{1}{v_t}(1 - \omega_t) - \frac{R_td_t}{(1 + \pi_t)(1 + g_{kt})}.
\]

The nominal rate of interest appears in this expression because interest payments are fixed in nominal terms in a monetary economy.

By substituting back into the investment equation, we have

\[
i_t = \frac{I_t}{K_{t-1}} = \frac{1}{\gamma_1 + \phi_1} \left\{ (\phi_0 - i_t^*) + \phi_1i_t^* + \gamma_1 \left[\frac{1}{v_{t-1}}(1 - \omega_{t-1}) - \frac{R_{t-1}d_{t-1}}{(1 + \pi_{t-1})(1 + g_{k,t-1})} \right] - \gamma_2d_t \right\},
\]

where \(D_t\) is the nominal debt at the beginning of the period, while the real ratio \(d_t = \frac{D_t}{p_{t-1}K_{t-1}}\) evolves according to

\[
d_t = \frac{1 + R_{t-1}}{(1 + g_{k,t-1})(1 + \pi_{t-1})}d_{t-1} + \frac{1}{1 + g_{k,t-1}}i_{t-1} - \frac{1}{v_{t-1}}(1 - \omega_{t-1}).
\]

Given the investment equation, the initial system of two equations determines the real rate of interest, which is equal to:

\[
r_t = \phi_0 + \phi_1(i_t^* - i_t).
\]

The nominal rate of interest is determined from a version of the Taylor rule (e.g. Clarida et al., 1999),

\[
R_t = R_t^* + \psi_1(\pi_t^* - \pi_0) + \psi_2(g_t^* - g_0).
\]

There are several differences from the traditional Taylor rule in the present model. The first is that it is written in terms of the rate of growth of output rather than the level (e.g. Walsh, 2003). Second, the target variables are set equal to their steady state values. Third, the optimal interest rate is not fixed but depends on a changing real rate of interest and a fixed inflation target \(\pi_0\):

\[
R_t^* = (1 + r_t)(1 + \pi_0) - 1.
\]

Given \(R_t^*\), the nominal rate of interest reacts to the gaps of inflation and growth from their respective steady state values. Finally, the expected medium-run real rate of interest is given by

\[
r_t^* = \phi_2 \left[\frac{(1 + R_t)}{(1 + \pi_t^*)} - 1 \right].
\]
The labor market and the supply equations

The labor market equations can generate a further process of interdependence between real and monetary aspects. Prices and wages are determined in noncompetitive markets (e.g. Layard et al., 1991). Prices are set by firms on the basis of a markup on wage cost. Wage dynamics are based upon inflation expectations, the state of the labor market, and exogenous parameters. With a fixed markup, the inflation rate is

$$\pi_t = \pi_t^e - d_1 u_t + d_2,$$

where π_t^e is the expected rate of inflation, u_t the rate of unemployment, and d_2 represents exogenous forces.

This equation has the form of an expectations-augmented Phillips curve. Depending on the hypotheses made about the nature of expectations and their timing, this equation can be compatible with different strands of the literature. For instance, the so called “New” Phillips curve (e.g. Woodford, 2003) implies that the expectations are forward looking, while some older versions assume that expectations are formed by an adaptive process (or in a mixed way, as in Fuhrer and Moore, 1995).

Outside the world of rational expectations, the crucial hypothesis for the NAIRU to exist is the presence of a unitary value of the coefficient on expectations (e.g. Sargent, 1999). More generally, if expectations are generated by a vector of past prices, the sum of their coefficients must be 1. In this case, a NAIRU, which is a steady state value of unemployment compatible with the steady state rate of inflation, is equal to

$$u_0 = d_2/d_1.$$

Unemployment is given by the difference:

$$u_t = 1 - e_t,$$

where e_t is the employment ratio. Given labor supply, the dynamics of the employment ratio are determined from

$$e_t = e_{t-1}[(1 + g_t)/(1 + \tau)].$$

They depend on the ratio between the growth rate of the product (g_t) and the productivity rate (τ).

More sophisticated analyses of the labor market are of course available (e.g. Akerlof et al., 2000 and Ferri, 2001). However, for the purpose of our analysis, the above specification is sufficient.
5 Closing the model

To close the model, the consumption function and the equilibrium condition relating aggregate demand and supply are specified. Consumption is a function of expected and past disposable income,\(^3\)

\[C_t = c_1 Y_t^e + c_2 Y_{t-1}, \]

and the requirement that aggregate demand equals aggregate supply implies

\[g_t = c_1 (1 + g_t^e) + c_2 + i_t v_{t-1} - 1. \] \((14) \)

The steady state values can now be computed. Since the NAIRU equals \(u_0 = \frac{d_2}{d_1} \), we have that \(g_0 = \tau \) and \(g_{k_0} = g_0 \). In turn, this makes the steady state investment ratio equal to

\[i_0 = g_0 + \delta, \]

The steady state value of the capital output ratio is

\[v_0 = \frac{(1 + g_0) - c_1 (1 + g_0) - c_2}{i_0}. \]

Since the real rate of interest has a steady state value equal to \(\phi_0 \), \(R_0^* \) determines \(\pi_0 \) by means of the Fisher equation,

\[(1 + R_0^*)/(1 + r_0) = 1 + \pi_0. \]

The steady state values of wage share and the debt ratio are endogenously determined by the following equations:

\[\omega_0 = 1 - \frac{AD + Bi_0}{CD + BE}, \]

\[d_0 = \frac{i_0 C - AE}{CD + BE}, \]

where \(A = \gamma_1 i_0 - (\phi_0 - r^*) \), \(B = \frac{\gamma_1 R_0}{(1 + g_0)(1 + \pi_0)} + \gamma_2 \), \(C = \frac{\gamma_1}{v_0} \), \(D = \frac{g_0 - r_0}{1 + g_0} \), and \(E = \frac{1 + g_0}{v_0} \).

The last equation can be written in a more interpretable way:

\[d_0 = \frac{i_0 - (1 - \omega_0) (1 + g_0)/v_0}{g_0 - r_0}. \]

Three observations on the steady state debt are worth mentioning. First, in accordance with the no Ponzi game assumption, \(d_0 \) must be bounded to avoid an infinite amount of debt. Second, the steady state value must be greater than zero because we want to analyze an economy with debt. Of course, the other restriction is that \(R \geq 0 \): there is a lower

\(^3\)This formulation is compatible with the hypothesis of habit formation in the utility function. See Fuhrer (2000).
bound on the nominal rate of interest (see Benhabib et al., 2002).

Given g^e and π^e, and the assumption that\(^4\)

\[
\omega_t = \omega_0, \tag{15}
\]

it is possible to specify a temporary equilibrium for a system of 15 equations in 15 unknowns: $\pi_t, \omega_t, u_t, e_t, g^*_t, g_t, v_t, h_t, i_t, d_t, r_t, R^*_t, R_t, r^*_t$, and g_t.

6 The stylized facts in monetary dynamics

According to Christiano et al. (1997), plausible models of the monetary transmission mechanism should be consistent with at least the following facts about the effects of a contractionary monetary policy:

1. production falls;
2. prices respond initially less than output;
3. interest rates initially rise;

These stylized facts, which have been adapted to fit the nature of our model, are confirmed in Figure 1.

On closer examination, however, these patterns appear to be “hump” shaped. They open the way to study the business cycle and to discover the complex role played by the investment function, which depends not only on the rate of interest as in the traditional investment function, but also on several other real and financial factors.

Not only can the dual role of the rate of interest in shaping both real and financial aspects be detected, but also the primary role of investment in the cycle. The engine of the cycle is the same as that discussed by Fazzari, Ferri, and Greenberg (2003). It is based on interactions between the labor market and investment activity. The boom is accompanied by an increase of both investment and debt that eventually stops the mechanism, while the opposite happens in the recession phase.

In this context, the so called Taylor principle, i.e. the fact that the coefficient ψ_1 must be greater than 1, is not sufficient to prevent instability. In fact, an attempt to pursue a stronger anti-inflation policy can first generate cycles and then degenerate into a debt deflation process à la Fisher- Minsky.\(^5\) A deepening of these themes will be pursued by referring to a different hypotheses about expectation formation.

\(^4\)It is worth stressing that if $R_0 = 0, v_0 = 1$ and $\gamma_2 = 0$, then $(1 - \omega_0) = i_0$. In other words, investment generates the steady state cash flow.

\(^5\)Chiararella et al (2001) obtains similar results by referring to differential equations. In this case, the Hopf bifurcation theorem can be applied. see also Velupillai (2004) for a discussion.
7 Alternative expectations

So far a very naive process of expectation formation has been assumed. In the following another approach is tried. Suppose that, over a medium-run perspective, people expect a dynamic pattern characterized by differences in performance between “good times” and “bad times.” This state of knowledge is specified as a two-state Markovian model with high growth and low growth states (see Hamilton, 1989) and periods of “high” and “low” inflation. In this perspective we suppose that agents form their expectations according to a particular form of bounded rationality. Hommes and Sorger (1998) argue that expectations must be consistent with the data in the sense that agents do not make systematic errors; e.g., the forecasts and the data should have the same mean and autocorrelations (see also Grandmont, 1998).

At the end of period $t-1$, agents believe that the growth rate in period t will be (see also Clements and Hendry, 1999)

$$g_t^e = \alpha_1 + \beta_1 s_t + (\rho_1 + \mu_1 s_t) g_{t-1} + \epsilon_t,$$

6While “rationality” implies that people maximize, “bounded” implies that they have limited information and cannot fully maximize (e.g. Sargent, 1993, Conlisk, 1996, Grandmont, 1998, and Evans and Honkapohja, 2001). Differences between the various approaches to modeling bounded rationality lie in the amount of information assumed.
where ϵ is a random variable with the properties assumed by Hamilton (1988) and s_t is a random variable that assumes the value 0 in the low state and 1 in the high state. It evolves according to the following transition probabilities:

\[
\begin{align*}
\Pr(s_t = 0 \mid s_{t-1} = 0) &= a_1 \\
\Pr(s_t = 1 \mid s_{t-1} = 0) &= 1 - a_1 \\
\Pr(s_t = 0 \mid s_{t-1} = 1) &= 1 - b_1 \\
\Pr(s_t = 1 \mid s_{t-1} = 1) &= b_1.
\end{align*}
\]

Since s_t is not known at time t, its expected value, conditioned on s_{t-1}, is taken as a forecast.

If $s_{t-1} = 0$, the conditional forecasting rule is

\[
\hat{E}(g_t \mid s_{t-1} = 0) = \alpha_1 + (1 - a_1)\beta_1 + [\rho_1 + (1 - a_1)\mu_1] g_{t-1},
\]

where the operator E is written as \hat{E} to indicate its subjective character, which is not necessarily equal to the rational expectations objective conditional expectation.

For $s_{t-1} = 1$,

\[
\hat{E}(g_t \mid s_{t-1} = 1) = \alpha_1 + b_1\beta_1 + [\rho_1 + b_1\mu_1] g_{t-1}.
\]

The general forecasting rule is given by

\[
\hat{g}_t = E(g_t \mid s_{t-1}) = \alpha_1 + \beta_1 [b_1 s_{t-1} + (1 - a_1)(1 - s_{t-1})] + \\
\{\rho_1 + \mu_1 [(1 - a_1)(1 - s_{t-1}) + b_1 s_{t-1}]\} g_{t-1}.
\]

A similar forecasting rule can be applied to inflation, where the random state variable is denoted by z_t; the forecast for this variable is

\[
\hat{\pi}_t = E(\pi_t \mid z_{t-1}) = \alpha_2 + \beta_2 [b_2 z_{t-1} + (1 - a_2)(1 - z_{t-1})] + \\
\{\rho_2 + \mu_2 [(1 - a_2)(1 - z_{t-1}) + b_2 z_{t-1}]\} \pi_{t-1}.
\]

Two features of this approach are worth stressing. First, different stochastic variables for growth and inflation are introduced. The case of $s_t = z_t$ is a special case. Second, s and z are unobserved (latent) random variables that introduce regime switching. This does not imply that they have no economic meaning.\footnote{An association with ‘animal spirits’ is made by Howitt and McAfee (1992). See also Farmer (1999).} The use of regime-switching can be interpreted as a convenient device to apply time series analysis to the problem of forecasting, and, in view of its popularity among forecasters, it may reflect their practices.
of fluctuations.

8 Endogenous fluctuations in the economy

If one allows time to elapse while considering expectations evolving according a Markov-regime switching mechanism, then the cycle endogenously evolves in the way shown in Figure 2.

![Figure 2: The endogenous fluctuations with more sophisticated expectations](image)

What emerges from Figure 2 is rather interesting. The economy undergoes fluctuations even after the shock as already happened for a shorter period of time in Figure 1, where expectations were naive. It follows that the introduction of expectations based upon Markovian regime-switching does not create the cycle, but superimposes itself upon the former structure.

Two further aspects are worth mentioning. The first is that, in spite of this circumstance, expectations tend on average to be correct, as appears in the third quadrant of Figure 2. (An analogous picture holds also for growth expectations.) The second is that the profile of the business cycle becomes more complex and therefore less forecastable.

9 Sensitivity analysis

Since nonlinear systems tend to generate limit cycles, changes in parameter values can modify the dynamic pattern but not necessarily destroy the cyclical behavior, within
certain intervals. The problem is to discover how large is this interval, which can be explored empirically through a sensitivity analysis.

More precise information can be obtained by applying the sensitivity analysis to parameters of the so-called Taylor equation. Table 1 shows the different values of the parameter ψ_1 in the Taylor equation along with the standard deviations of inflation and growth.

Table 1. Standard deviations (%) of inflation and unemployment for different values of ψ_1

<table>
<thead>
<tr>
<th>ψ_1</th>
<th>π</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>0.45</td>
<td>0.08</td>
</tr>
<tr>
<td>1.8</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>2.0</td>
<td>0.32</td>
<td>0.40</td>
</tr>
</tbody>
</table>

The system can produce numerical limit cycles for different values of ψ_1, which implies that fluctuations are not fragile. Furthermore, it is true that a more severe control of inflation is accompanied by larger fluctuations in the rate of growth so that there is a trade-off between the two aspects. If the Taylor principle is violated (i.e. $\psi_1 < 1$), the system generates a situation of runaway inflation. However, and this is the difference with respect to the "new neo-classical synthesis" a large enough value of ψ_1 (in the present case bigger than 3.3) generates debt-deflation processes. In our model, the results are different because the system oscillates for endogenous reasons. By increasing the value of ψ_1 (i.e., forcing a tighter monetary policy) the system remains stable only up to a certain point. In fact, in a monetary economy with debt, an aggressive monetary policy can overshoot and therefore destabilize the system. The rate of interest has an impact on cash flows and debts that influences investment (see the parameters γ_1 and γ_2). In turn, these feed back on the financial variables. The balance of the two effects creates a cycle for certain values of the parameters.

Between these two values of ψ_1, a corridor of stable limit cycles is created. The width of the corridor depends on different elements. The specification of the Taylor rule is of course the most quoted (e.g. Bullard and Mitra, 2002): In fact, it tends to increase the area of stability the more is formulated in terms of past variables. However, there are further factors that are worth mentioning:

i) the value of ψ_2, the coefficient of the rate of growth gap. Consider the extreme value of $\psi_2 = 0$. In this case, the corridor becomes narrower because the role of the fight on inflation is not balanced by that on growth and this strengthen the role of financial variables.

ii) This conclusion can be strengthened by the study of Table 2, where a strict correlation between the value of γ_2 in the investment equation and the bifurcation value of
ψ_1 emerges. The more reactive is investment to debt, the greater the coefficient ψ_1 in the Taylor rule can be increased without creating instability. The opposite situation holds true when γ_2 is small, the steady state value of debt higher and the width of the corridor smaller.

Table 2. The relationship between the coefficients γ_2 and the bifurcation value of ψ_1

<table>
<thead>
<tr>
<th>γ_2</th>
<th>ψ_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>2.4</td>
</tr>
<tr>
<td>0.75</td>
<td>3.3</td>
</tr>
<tr>
<td>0.9</td>
<td>3.4</td>
</tr>
</tbody>
</table>

iii) Finally, the width of the corridor depends also on the learning process that is introduced into the analysis. Let us suppose that agents learn about parameters in the manner assumed by Akerlof et al.(2000), where learning takes place by means of rolling regressions.\(^8\) In the present Hamilton-type forecast, naive expectations are assumed for the first 50 periods. After the first 50 periods, to make a forecast for period t, s_{t-1} is first determined. If, for example, it equals 1, an autoregressive regression with a constant is fitted to the previous observations on g_t for which $s_{t-1} = 1$, but no more than 50 observations are utilized. Then the parameters estimated by the regression and the current value of g_{t-1} are to compute \hat{g}_t. Analogous computations are used to forecast \hat{g}_t when $s_{t-1} = 0$ and to forecast π_t. To understand the overall dynamics, one has to reconsider simulations which indicate that the degree of consistency between data and forecasts increases. However, the corridor becomes smaller due to the presence of an extra source of dynamics that interferes with the structural one.

10 Concluding remarks

The paper has presented a medium-run model of the economy where there is strong interdependence between real and monetary phenomena via the labor market and the investment function, and agents form expectations according to a Markov regime-switching model. Within this perspective, four points should be stressed.

1. While in the so called monetary debate, where the “new neo-classical synthesis approach” is put forward (see Goodfriend and King, 1997), the sacrifice ratio (i.e.

\(^8\)Sargent (1999) and Orphanides and Willimas (2003) refer, on the contrary, to recursive regressions that allow to compute E-stability in a closed form way (e.g Evans and Honkapohja, 2001).
the coefficient in the aggregate supply), the elasticity of the rate of interest in the aggregate demand equation, and the parameters of the Taylor rule are usually the only relevant parameters in determining the stability of the model, in the present model, the situation is different.

2. In this more complex model, the system tends to oscillate not because of the violation of the Taylor principle (that requires that the value of ψ_1 to be greater than 1) but because other endogenous forces are at work. For instance, the interest rate is relevant not so much through its incentive effects but through its impact on other financial variables such as cash flows and the stock of debts.

3. The tendency to oscillate endogenously is rather robust and depends fundamentally on the role of financial variables. In this context, a corridor of "numerical" business cycles are generated. In this corridor, a more severe control of inflation pursued through an increase in ψ_1 in the Taylor equation (i.e. the coefficient linked to inflation) can lead to an increase in the amplitude of the business cycle. In other words, there can be a trade-off between the control of inflation and the variability of growth. Furthermore, instability in the form of debt-deflation processes can be generated.

4. These results are confirmed when one passes from naive expectations to a more sophisticated scheme where a Markov process is introduced. In this case, an additional source of dynamics is imposed on the model that results in greater complexity. When interacting with the structural forces of the system, the expectation processes, along with learning mechanisms, generate patterns that are more consistent with data and, although altering the width of the corridor, maintain the possibility of endogenous business cycles.

The analysis of the paper can be deepened in different directions. For instance, i) more general features of the actual economies (such as international aspects) must be considered in order to obtain more realistic results; ii) the monetary policy function can be made interact with fiscal policy; iii) the relationship between debt and other monetary and financial assets can be introduced and finally iv) the Hamilton model can be generalized in various ways (e.g. Aoki, 1996). For instance, the probabilities of the Markov scheme could be endogenized (e.g Filardo, 1994), while the learning mechanism can be enriched (e.g. Evans and Honkapohja, 2003).

However, other important methodological aspects remain to be discussed. For instance, the presence of an expectation formation that is endogenous and adjusts to changes in policy or structure may not only produce consistent results but also overcome the objections of the Lucas critique (e.g. Orphanides and Williams, 2003). However, the Lucas
critique itself in a world of uncertainty becomes less straightforward. As Sims (2003, p. 1) has pointed out: “Keynes’s seminal idea was to trace out the equilibrium implications of the hypothesis that markets did not function the way a seamless model of continuously optimizing agents, interacting in continuously clearing markets would suggest. His formal device, price “stickiness” is still controversial, but those critics of it who fault it for being inconsistent with the assumption of continuously optimizing agents interacting in continuously clearing markets miss the point. This is the appeal, not its weakness.” This observation can be agreed upon. In a world of uncertainty, the principles of behavioral macroeconomics (see Akerlof, 2002) can be used to justify both the particular workings of markets in a macro model and the presence of different agents (consumers, entrepreneurs and monetary authorities) with different amount of information.

A Appendix

The parameters of the simulations (all carried out in Matlab) have been chosen similar to those used in the so called “monetary policy debate.” For the investment function parameters, we have stayed as close as possible to those used in Fazzari, Ferri, and Greenberg (2003). The econometrics of the investment equation of the type:

\[i_0 = \xi_0 - \xi_1 r_0 + \xi_2 i^* + \xi_3 r c f_0 - \xi_4 d_0 \]

gives parameters for the financial aspects of this order of magnitude:

\[\xi_1 = 0.4; \xi_3 = 0.1 - 0.5; \xi_4 = 0.3. \]

In the simulations we tried to stay as close as possible to these values. The absence of the government and the international trade sectors implies that the results of the exercises are only indicative, although the parameters are not unreasonable from an econometric point of view.

The parameters of the simulations (all carried out with a Matlab program) have been chosen similar to those used in the so called “monetary policy debate.” For the investment function parameters, we have stayed as close as possible to those used in Fazzari, Ferri, and Greenberg (2003). The econometrics of the investment equation of the type:

\[i_0 = \xi_0 - \xi_1 r_0 + \xi_2 i^* + \xi_3 r c f_0 - \xi_4 d_0 \]

gives parameters for the financial aspects of this order of magnitude:

\[\xi_1 = 0.4; \xi_3 = 0.1 - 0.5; \xi_4 = 0.3. \]

In the simulations we tried to stay as close as possible to these values. The absence of the government and the international trade sectors implies that the
results of the exercises are only indicative, although the parameters are not unreasonable from an econometric point of view.

A.1 Simulations generating Figure 1 and Figure 2

Parameter values for Figure 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>15</td>
</tr>
<tr>
<td>τ</td>
<td>0.0308</td>
</tr>
<tr>
<td>c_1</td>
<td>0.749</td>
</tr>
<tr>
<td>d_1</td>
<td>0.25</td>
</tr>
<tr>
<td>d_2</td>
<td>0.04d_1</td>
</tr>
<tr>
<td>ϕ_0</td>
<td>0.025</td>
</tr>
<tr>
<td>ϕ_1</td>
<td>1.75</td>
</tr>
<tr>
<td>ϕ_2</td>
<td>0.7</td>
</tr>
<tr>
<td>δ</td>
<td>0.10</td>
</tr>
<tr>
<td>λ</td>
<td>0.01</td>
</tr>
<tr>
<td>γ_1</td>
<td>0.2</td>
</tr>
<tr>
<td>γ_2</td>
<td>0.75</td>
</tr>
<tr>
<td>R_0</td>
<td>0.05</td>
</tr>
<tr>
<td>ψ_1</td>
<td>1.8</td>
</tr>
<tr>
<td>ψ_2</td>
<td>0.4</td>
</tr>
</tbody>
</table>

The shock is equal to 0.005 in the Taylor equation and lasts two periods.

The values of the parameters for Figure 2 are the following

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>1000</td>
</tr>
<tr>
<td>τ</td>
<td>0.0308</td>
</tr>
<tr>
<td>c_1</td>
<td>0.749</td>
</tr>
<tr>
<td>d_1</td>
<td>0.25</td>
</tr>
<tr>
<td>d_2</td>
<td>0.04d_1</td>
</tr>
<tr>
<td>ϕ_0</td>
<td>0.025</td>
</tr>
<tr>
<td>ϕ_1</td>
<td>1.75</td>
</tr>
<tr>
<td>ϕ_2</td>
<td>0.7</td>
</tr>
<tr>
<td>δ</td>
<td>0.10</td>
</tr>
<tr>
<td>λ</td>
<td>0.10</td>
</tr>
<tr>
<td>γ_1</td>
<td>0.7</td>
</tr>
<tr>
<td>γ_2</td>
<td>0.75</td>
</tr>
<tr>
<td>R_0</td>
<td>0.05</td>
</tr>
<tr>
<td>ψ_1</td>
<td>1.8</td>
</tr>
<tr>
<td>ψ_2</td>
<td>0.4</td>
</tr>
</tbody>
</table>

The parameters of the stochastic components are the following:

\[
\alpha_1 = \pi_0 [1 - (\rho_1 + \mu_1 b_1)] - \beta_1 b_1 \\
\alpha_2 = \pi_0 [1 - (\rho_2 + \mu_2 b_2)] - \beta_2 b_2
\]

these are obtained by setting $s=z=1$ (resp., $s=z=0$) and solving from the steady state expectation formula.

The other parameters are:

\[
\begin{align*}
a_1 &= 0.4 \\
a_2 &= 0.45 \\
b_1 &= 0.6 \\
b_2 &= 0.8 \\
\beta_1 &= 0.001 \\
\beta_2 &= 0.0002 \\
\rho_1 &= 0.55 \\
\rho_2 &= 0.5 \\
\mu_1 &= 0.43 \\
\mu_2 &= 0.49
\end{align*}
\]
A.2 List of definitions

\[d_t = \frac{D_t}{p_{t-1}K_{t-1}} = \text{real debt per unit of capital at the beginning of period } t; \]
\[g_t = \frac{y_t}{y_{t-1}} - 1 = \text{rate of growth of output}; \]
\[g_{kt} = \frac{I_t - \delta K_{t-1}}{K_{t-1}} = \text{rate of growth of capital accumulation}; \]
\[i_t = \frac{I_t}{K_{t-1}} = \text{gross investment per unit of capital}; \]
\[i^*_t = \frac{I^*_t}{K_{t-1}} = \text{optimal investment ratio}; \]
\[h_t = \frac{K^*_t}{K_{t-1}} = \text{degree of disequilibrium of the capital stock}; \]
\[v_t = \frac{K_t}{Y_t} = \text{capital/output ratio}. \]

B References

