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Abstract

Statistical sensitivity analysis is a useful technique to analyze mul-
tivariate stochastic computer model in order to better understand the
cause and e¤ect relationships between input parameters and output
observations. This paper is based on a pre-existent formal evolution-
ary economic model that simulates the main aspects of the market and
the innovation processes that take place inside the pharmaceutical in-
dustry. It belongs to the family of �History-Friendly�models. Our pur-
pose is to reveal the critical input parameters concerning R&D costs,
research opportunities, regulatory regime, demand and �rm�s features
in the mechanisms of innovation and market dynamics through the
use of multivariate statistical sensitivity analysis. This preliminary
work represents a �rst step in the introduction of a complete analysis
with a mixed linear model.
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1 Introduction

In this paper we propose a concise method to analyze a stochastic com-
puter model of the pharmaceutical industry through the use of the sensitiv-
ity analysis technique. The model belongs to the family of �History-Friendly�
evolutionary economic models. These models aim to capture the essence of
the qualitative theory, pointed out by the technology and industry scholars.
They also try to give a possible logical explanation. The modelling process
philosophy starts from empirical studies which describe the mechanisms in-
side pharmaceutical industry. The motivations underlying this modelling
stile has been discussed extensively in previous works, see e.g. Malerba et
al.,(1999),(2001): Is worth to remember that one of the reason for interest in
History-Friendly models is to understand what kind of factors and dynamic
processes are important for the industry evolution. In this paper we try to
explain what are the factors that can indeed explain the observed patterns of
industrial dynamics, in particular about innovation and imitation processes,
prices and industry structure. The technique that appears more promising for
assessing the impact of the main industry parameters, seems to be the sensi-
tivity analysis (SA). The modern concept of sensitivity analysis for computer
models arises from the logical intersection of some variance decomposition
and some sampling or computer experiment techniques, see e.g. Saltelli et
al. (2000) and references therein: This technique has been recently applied
to various kinds of computer models both in Econometrics and Finance, see
e.g. Saltelli et al (2004) and in environmental models, see e.g. Fassò (2006)
and Fassò and Perri (2002) : Cheap computer models, which run fast, and
expensive computer models, which take CPU time and storage capability,
usually requires di¤erent SA techniques. In this paper, we are concerned
with a cheap code based extensive simulations which allow to assess the role
and the interactions of the various input parameters in in�uencing the multi-
output model. The paper is organized as follows. Section 2 introduces the
probabilistic structure of a Stochastic Computer Model (SCM) for assessing
the uncertainty arising from the so-called stochastic game and proposes a sta-
tistical emulator to be estimated on available simulated data. Section 3, after
extending sensitivity analysis (SA) to cope with SCM; discusses appropri-
ate sampling and preliminary estimation techniques for the proposed SCM
emulator. Section 4, after a brief summary of the pharmaceutical industry
history, introduces the key features of the Stochastic Computer Model. In
Section 5 we assess the in�uence of input parameters which concern costs,
environment and opportunity conditions, regulatory regime, �rm�s features
and demand on multi-outputs in innovation and imitation processes, prices
and industry structure.
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2 Stochastic Computer Models

A Stochastic Computer Model (SCM) may be described by a computable
code or multi-valued function z such that

z = z (x; �) ;

where x is a k-dimensional input parameter which is known at the time the
code is run, while � is an unobservable random vector, which is generated by
the code itself. In market behavior SCM�s, the random element � is called the
stochastic game component of the SCM and the input model x = (x1; :::; xk)
de�nes e.g. market dimensions, side conditions, initial values.
In the setup of SA, x has a known probability distribution, P (x) say,

which may be a multivariate distribution with discrete and/or continuos
marginals and possible dependency structure among the x components. Gen-
erally speaking, the stochastic game � has a known or unknown conditional
distribution

P (�jx)

and, in some cases, it is independent on x, so that P (�jx) = P (�).
It turns out that, for given x, the output z is a random vector with

distribution
P (zjx)

with the �rst two conditional moments given by

� (x) = E (zjx)

and
� 2 (x) = V ar (zjx) :

The output uncertainty is given, in general terms, by the unknown mar-
ginal distribution

P (z)

and this may be decomposed into two components, one is related to the
stochastic game � and the other one accounts for the input variability.
When the output z is single-valued, using E () for the mathematical ex-

pectation and V ar () for the variance of a random variable, recalling the well
known ANOVA decomposition, which is given by

V ar (z) = V ar (� (x)) + E
�
� 2 (x)

�
, (1)

we note that the rate
E (� 2 (x))

V ar (z)

is the residual uncertainty or the quota of the global output uncertainty
which depends on the stochastic game � averaged over the input space.
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On the other side, V ar (� (x)) is the accountable output uncertainty and
may be related to each single input xj using SA techniques discussed in
section 3 below. Actually

�2 =
V ar (� (x))

V ar (z)

is the well known Pearson�s correlation ratio and 1 � �2 represents the best
�tting error among emulators which will be discussed below.

2.1 Heteroskedastic SCM�s

We say that the SCM is conditionally homoskedastic if the conditional out-
put uncertainty does not depend on the particular input parameter value
x = x0, namely if

� 2 (x) = � 2

for every x. Otherwise the SCM is called conditionally heteroskedastic and
� 2 (x) gives the conditional or local output uncertainty whose understanding
and modelling gives further insight into SCM comprehension. For example,
Fassò et al. (2003) considered a parabola model � 2 (x) = �0 + �1x

2
1 based

only on the �rst input x1:

2.2 Input feasibility set

LetDz be the (extended) output set and let Fz � Dz be the output feasibility
set where the model give pleasant outputs. For example we exclude from Fz
those points corresponding to a zero �rms market (all died).
It is then of interest to de�ne the input feasibility set Fx, which is such

that the corresponding average output is feasible, in symbols:

x 2 Fx ) � (x) 2 Fz: (2)

In this case it may be important to compute the probability of an unfea-
sible output, namely

u (x) = P (z 2 Dz � Fzjx)

for every feasible input x 2 Fx:
Note that feasibility concept may introduces constraints on the input

parameter distribution which are not compatible with input independence.
For example one may start from an unconstrained input distribution P0 (x)
with independent components,

P0 (x) = P0 (x1) � ::: � P0 (xk)

but after imposing feasibility, that is using

P (x) = P0 (xjx 2 Fx)

such independence may be lost.
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2.3 SCM emulator

One way of attaching the understanding of z may be based on the so-called
mixed linear models. According to this we suppose that the in�uence of the
input parameters x and the the stochastic game � may be separated and
the in�uence of x may be modelled by an appropriate emulator which is
a simpli�ed statistical model. In particular the output z; possibly after an
appropriate transformation, e:g: log-transform, is de�ned as follows:

z = z (x; �) = f (x) + " (�)� (x) (3)

where

f (x) = g (x; �) + e (4)

= �0 +

pX
j=1

gj (x) �j + e

and

�2 (x) = �0 +

qX
j=1

hj (x)�j (5)

Here the stochastic game standardized component " = " (�) has a zero
mean and unit variance Gaussian noise which does not depend on x and is
also independent on the emulator error e. Similarly, the latter is supposed a
Gaussian noise with zero mean and variance �2e . Both function sets gj () and
hj () may include various input components such as the linear-, quadratic-,
interaction- etc.
From equation (4) ; we see the role of the emulator g () which is a simpli�ed

model for f with emulation error e and coe¢ cient vector � = (�0; :::; �p) to
be estimated.
Similarly the skedastic function of equation (5) is identi�ed by the co-

e¢ cient vector � = (�0; :::; �q) where, in particular, �0 is related to the
stochastic game component which does not depend on x. and the other
terms �j are related to the interactions among the stochastic game and the
input components hj (x).
For non Gaussian SCM�s, for example when z is a counting variable, we

can use a generalized mixed linear model, see e.g. Lee and Nelder (2001).

3 Sensitivity Analysis for SCM

The model of section 2.3 is useful for SCM understanding. From the practi-
cal point of view it is often useful to assess the various sources of uncertainty
by ranking the input xj according to their in�uence on the output uncer-
tainty.
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Input component Sensitivity
linear g1 (x) = x1 S1 = �21V ar (x1) =V ar (z)
quadratic g2 (x) = x21 S2 = �22V ar (x

2
1) =V ar (z)

interaction g3 (x) = x1x2 S3 = �23V ar (x1x2) =V ar (z)
Stochastic game h1 (x) = x21 HS1 = �1E (x

2
1) =V ar (z)

Total sensitivity to x1 ST1 = S1 + S2 + S3 +HS1

Table 1: Example of sensitivity decomposition

To do this we can apply the approach of equation 1 to the above men-
tioned model. If the model components g1 (x) ; :::; gp (x) ; " are uncorrelated,
then, extending the heteroskedastic SA of Fassò et al. (2003) for SCM�s, we
get the following ANOV A decomposition

V ar (z) =

pX
j=1

�2jV ar (gj (x)) + �0 +

qX
j=n

E (hj (x))�j + �2e : (6)

It follows a natural de�nition of sensitivity, namely the sensitivity of the
input component gj (x) is given by

Sj = �2j
V ar (gj (x))

V ar (z)
(7)

and the heteroskedastic component hj (x) gives the following sensitivity in-
dex:

HSj = �j
E (hj (x))

V ar (z)
: (8)

Natural ranking and grouping of the relevant input components may then be
performed using the sensitivity indexes.

Example 1 As a �rst example consider an homoskedastic SCM with a sim-
ple linear emulator and orthogonal inputs

g (x; �) = �0 +

kX
j=1

xj�j

then Sj = �2V ar (xj) =V ar (z) can be sorted and displayed in tabular format
giving a simple synthesis of the SA: Also note that, in this case,

P
Sj =

1�R2; where R is the well-known multiple linear correlation coe¢ cient.

Example 2 As a second example, consider a model such that the �rst input
x1 enters equation (4) with linear, quadratic and one interaction component
as in Table 1, then ST1 is the total e¤ect of x1 on z and ST1�HS1 is the total
e¤ect of x1 keeping the stochastic game as �xed.Note that for homoskedastic
models

pX
j=1

Sj = 1�
�0 + �2e
V ar (z)

(9)

and in the case of the standard regression result reported above.
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3.1 Multivariate SA

In many cases the output of a SCM is multivariate, namely z = (z1; :::; zr),
where the correlation among the outputs zj is described by the variance-
covariance matrix Vz = V ar (z) :
To cope with this case, we consider the sensitivity index of Fassò (2006b) ;

which is based on the variance decomposition of the linear combination �0z:
To see this, suppose that the emulator is in the form

g (x; �) = Bx =
kX
j=1

Bjxj

where B is a r � k matrix with jth column Bj and

�0Vz� = �0BVxB
0�+ �0V"�:

Hence, if x has uncorrelated components with Vx = diag
�
�2x1 ; :::�

2
xk

�
, the

quadratic sensitivity index

S�j = �2xj
�0BjB

0
j�

�0Vy�
(10)

takes into account the correlation among the components of z and retains
additivity as R2�0z = 1� �0V"�

�0Vz�
= �jS

�
j . When inputs are correlated the above

decompositions may still hold approximately. Otherwise orthogonalization
techniques are available.

3.2 Monte Carlo approach

In this section we consider the peculiar aspect of SA for SCM , namely the
data production process. The idea is to getm input samples xi = (xi1; :::; x

i
k),

then run the computer code getting a model output yi: These input-output
data (xi; zi) ; i = 1; :::;m, can be used to get estimates of model (3) and
sensitivity indexes of equation (7) and (8) :
In order to get input samples we may follow two main ways, namely ran-

dom and nonrandom sampling. The latter is based on design of (computer)
experiment approach and is not considered anymore here.
The former approach starts from standard Monte Carlo which is simply

based on m independent samples from the input distribution P (x1; :::; xk).
Various modi�cations are possible from improving model estimates based for
example on Latin hypercube sampling, see e.g. McKey et al. (1979).
Note that, if we are interested in model based SA, an input distribution

ensuring input orthogonality allows interpretation of indexes (7) and (8) as
summable quantities for the particular model used. On the other hand this
may be in contrast with the particular input feasibility set Fx used and some
caution is in order. In some cases additivity still holds after suitably grouping
the inputs.
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In order to allow the estimation of the stochastic game, we need a strat-
i�ed Monte Carlo sampling strategy. In our case this is simply done by n
repeated computer runs for each �xed xi: According to this, the input-output
data are now given by�

xi; zij
�
; i = 1; :::;m; j = 1; :::; n

3.3 Preliminary analysis and model estimation

Whenever the practitioner may be interested primarily in input ranking irre-
spective of the stochastic game, indeed this component may be quite relevant
both from the interpretative point of view, see e.g. equation (9), and from
the model estimation point of view.
Thanks to our strati�ed approach, we can easily have a preliminary esti-

mate of the minimum total model error

� 2 (x) �= �2 (x) + �2e

by

�̂ 2i = �̂ 2
�
xi
�
=

1

n� 1

nX
j=1

�
yij � �̂i

�2
where �̂ (xi) is simply the average of the n replicates, namely

�̂i = �̂
�
xi
�
=
1

n

nX
j=1

yij

which is important for assessing heteroskedasticity.

3.3.1 Preliminary estimation

At the �rst stage, in order to estimate the input e¤ect only, we can consider
averaged outputs �̂i, i = 1; :::;m, where the stochastic game e¤ect is reduced
to 1

n
�2 (x) :
In case where the averaged stochastic game component 1

n
�2 (x) is small

with respect to the emulator error �2e we simply apply ordinary least squares
to data (�̂i; xi) : Otherwise, we use weighted least squares with covariance
matrix given by

diag

�
�̂ 21
n
; :::;

�̂ 2m
n

�
:

In this way, we get preliminary estimates of � and perform SA as in
section 3.

3.3.2 Mixed linear model

We can re�ne above estimates and get a full emulator identi�cation by ap-
plying model (3) to the strati�ed Monte Carlo sample. This gives

zij = g
�
xi; �

�
+ "ij�

�
xi
�
+ ei
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which is a linear model with mixed e¤ects, where the input components
gj (x

i) are the outer covariates, the emulator error ei is the random e¤ect
and "ij� (xi) is the heteroskedastic error.

4 A model for pharmaceutical industry

4.1 Main features of the market

In this section we give an overall description of pharmaceutical industry
evolution resuming only in general therms the main patterns of development
analyzed by several scholars.
The history of pharmaceutical industry can be usefully divided into three

major epochs. The �rst, corresponding roughly to the period 1850-1945, in
which little new drug development occurred, and in which there was very lit-
tle research and was based on relatively primitive methods. The large scale
of development of penicillin during the World War II marked the emergence
of the second period of industry evolution. This period was characterized by
the institution and formalization of in-house R&D programs and relatively
rapid rates of drug introduction. During the early part of this period the
industry relied largely on so called �random�screening as method for �nding
new drugs, but in the seventies the industry began a transition to �guided�
drug discovery, a research methodology that allowed a great advance in mole-
cular biochemistry, pharmacology and enzymology. The third epoch of the
industry has its roots in the seventies but did not come to full �ower until
quite recently as the use of the tools of genetic engineering in the production
and discovery of new drugs become more widely di¤used.
An in-deep story and extensive analysis and discussion of the patterns of

pharmaceutical industry have been undertaken by several scholars and will
not be discussed here. In this paper we model the �random�screening period
but we report some hints to the whole story of the industry. As a way of in-
troduction we brie�y discuss the key aspects strictly linked to the model. In
the history of the pharmaceutical industry, faced with such a �target-rich�en-
vironment but with very little detailed knowledge of the biological underspin-
nings of speci�c diseases, pharmaceutical companies developed an approach
to research that is now referred as �random screening�. Under this approach,
natural and chemically derived compounds are randomly screened in test-
tube experiments and laboratory animals for potential therapeutic activity.
Pharmaceutical companies maintained enormous �libraries�of chemical com-
pounds, and increased their collections by searching for new compounds in
places such as swamps, stream and soil samples. Thousand of compounds
might be subjected to multiple screens before researchers can focus on promis-
ing substance. Serendipity played a key role since in general the �mechanism
of action�of most drug was not well understood. Researchers were generally
forced to rely on the use animal models as screens. Under this regime it
was not uncommon for companies to discover a drug to treat one disease
while searching for a treatment for another. The �design�of new compounds
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was a slow, painstaking process that drew heavily on analytical and med-
ical chemistry skills. Several important classes of drug were discovered this
way, including the most important diuretics, many of the most widely used
psychoactive drugs and several powerful antibiotics. The chemists working
within this regime codi�ed little of the knowledge acquired, so new com-
pounds design was driven by the skills of individual chemist. However, the
successful introduction of a new chemical entity has to be considered as
quite rare event. From the mid 1970s substantial advantages in physiology,
pharmacology, enzymology and cell biology led to enormous progress in the
ability to understand the mechanism of action of some existing drugs and the
biochemical and molecular roots of many diseases. This new knowledge has
a profound impact on the process of discovery of new drugs o¤ering to the
researches a signi�cantly more e¤ective way to screen compounds. Moreover,
the availability of drugs whose mechanisms of action are well known made
possible signi�cant advances in the medical understanding of a number of
key diseases. This understanding led to the development of the technique of
�rational drug design�. Researches are now beginning to be able to �design�
compounds that might have particular therapeutic e¤ects. The advent of
�biotechnology�had a signi�cant impact both on organizational competen-
cies required to be a successful player in the pharmaceutical industry and
industry structure in general.

After this brief introduction, it could be useful to �x some of the qualita-
tive characteristic about mechanisms and factors a¤ecting industry evolution,
stylized in the History-Friendly model. First of all innovative new drugs ar-
rive quite rarely but after the arrival they experience extremely high rates of
market growth. This entails a highly skewed distribution of the returns on
innovation and of product market size as well as of the intra-�rm distribution
of sales across products. So, few �blockbusters�dominate the product range
of all mayor �rms (Matraves C,(1999)). The industry has been character-
ized by a signi�cant heterogeneity in terms of �rms�strategic orientations,
indeed other �rms not specialized in R&D and innovation, but in imitation
and marketing are able to survive. In general terms the �oligopolistic core�of
the industry as been composed by a stable group of �rms, which maintained
over time an innovation-oriented strategy. At the same time the industry was
characterized by quite low level of concentration both at aggregate level and
in the individual sub-markets like e.g. cardiovascular, diuretics, tranquilizers,
etc. There is evidence that institutional factors seems to have played a de-
cisive role in the development of pharmaceutical industry. The institutional
arrangements surrounding the public support of basic research, intellectual
property protection, procedures of product testing and approval, pricing and
reimbursement policies have all strongly in�uenced both the process of inno-
vation and the economic returns (and thus incentives) for undertaking such
innovation. Something more may be said about intellectual property pro-
tection. Pharmaceutical has historically been one of the few industry were
patent provide a solid protection against imitations, for two main reasons.
The �rst is that small variants in the molecule�s structure can drastically
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alter its pharmacological properties. The second reason is that other �rms
might undertake research in the same therapeutic class as an innovator, but
the probability of �nding another compound with the same therapeutic prop-
erties that does not infrange on the original patent could be quite small. The
procedures of product approval are also very important. Pharmaceuticals
are regulated products. Procedures for approval have a deep impact on both
the costs of innovating and on �rms ability to sustain market position once
their product has been approved. Since the early 1960s most countries have
steadily increased the stringency of their product approval precesses. How-
ever it was the USA, with the Kefauver-Harris Amendament Act in 1962,
and the UK, with Medicine Act in 1971, that look by far the most stringent
stances among industrialized countries. Federal and Drug Administration
(FDA) shifted from a role of essentially an evaluator of evidence and re-
search �ndings at the end of research process, to an active participant of
the process itself. The resources necessary to obtain approval of a new drug
application have been largely increased. They probably caused a sharp in-
crease in both R&D costs and gestation times for new chemical entities.
Although the process of development and approval increased costs, it signi�-
cantly increased the barrier to imitation, even when the patent expired. The
introduction of tougher regulatory environment in the UK and in USA was
followed by a sharp fall of the number of new drug lanced and many small
or weak �rms exited the market.

4.2 Model setup

In this section we describe the basic features of the model implemented for
the analysis of the �random screening�era (Malerba, Orsenigo (2001) (2002)).
This description considers the essence of the model and leaves to the para-
graphs 4.2.1, 4.2.2, 4.2.3 and 4.2.4 the speci�c details. At the beginning, in
the age of random screening, a number of �rms enter the market and start to
interact in the simulation environment. The �rms start to invest in random
searches for promising molecules that might be the basis for development of a
drug in particular therapeutic category. Some molecules seem to be promis-
ing for the drug development phase and are patented. After the selection of
the molecule that seems more pro�table, �rms consume time and �nancial
resources to turn it in a marketable drug. The investments in research and
development are arranged in �xed share of budget and expose the �rms to
the risk of running out of money and failure. After the development phase
successfully ended, �rms engage in marketing activities and begin selling
their drugs. Sales are in�uenced by drug quality, price charged and �rms�
marketing e¤orts. At the beginning successful drugs in a particular thera-
peutic category face no competition. But after some times other �rms may
discover and develop competing drug. Moreover, after patent expiration, im-
itation occurs and the market share and revenue of original innovator start
to be eroded. For �rms the imitation of drugs is less expensive and less time
consuming but also less pro�table. After a �rm has successfully developed a
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drug, it begins searching again for a new promising molecule and the process
begins all over again. The �rms engage sequentially in di¤erent projects until
the end of simulation or the failure, they will progressively diversify into new
therapeutic categories. In the next section we will provide a more detailed
description of the simulation model.

4.2.1 Topography

The environment where �rms act is composed by several therapeutic cate-
gories (TC). Each therapeutic category has a di¤erent number of potential
customers (patients). The economic size of a TC depends on the number of
patients buying and on the prices of the products, in other words is expressed
by total sales. Patients of TCs are divided in a certain number of submar-
kets (n:sub) where a minimum level of quality of the drugs is required to sell
(QCsub). Thus, some groups of consumer do not buy a drug if its quality
is not satisfactory. The number of patients in the overall therapeutic cate-
gory (NTC) is exogenously given and grows at a certain rate (GNTC) during
each simulation period. This is known by the �rms. In the model there are
n (n = 100) therapeutic categories each with a speci�c number of patients
drawn from a normal distributionNTC~N(�NTC ; �NTC ). Within a therapeutic
category there are a certain number of molecules M (M = 150), which �rms
aim to discover and which are the basis of pharmaceutical products. Each
molecule is characterized by a certain value of quality Q. A large percentage
of molecules have null value of quality (Qnull), thus are useless for the �rms.
Others, from which the �rms will generate drugs, have a positive value of
quality drawn from a normal distribution Q~N(�Q; �Q). When a molecule is
discovered by a �rm, the patent protection starts. This grants the protection
in two ways. First, the width (PW ), prevents competitors from develop-
ing all the molecules located in the neighborhood of the patented. Second,
speci�es the temporal duration of the patent (PD) up to that time in which
the molecule become imitable by other �rms. Once the drug development is
successful, it gets an economic value (PQ) equal to the value of the molecule
quality Qi, where i = 1; 2; ::; 150 for each TC. The economic value of product
in�uences the demand function for such product, described in section 4.2.3.

4.2.2 The �rms

Basic features of �rms. At the beginning of the simulation a number F
of �rms potentially could enter the market. They starts with a budget B
(B = 3000) equal for all. In the model, �rms have a limited understanding
of the environment and their behavior follows some simple rules-of-thumb and
routines. In particular the �rms are engaged in three sequential activities re-
peated until the exit of the market or the end of simulation: search, research
and marketing. The �rst process invests a given share of budget (BS) in the
activity of looking for the promising molecules in the environment. The sec-
ond process invests another share of budget (BR) in the activity of developing
the molecule in a marketable drug, this is very time and resources consuming
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and �rms risk to fail running out of money. The residual share of budget
(BM) is invested in marketing activities to promote the selling of the new
drug to win the competition of other products in the same TC. Firms are
characterized by di¤erent �strategies�and have di¤erent propensities of in-
vestments in the three activities. At the beginning of the simulation only half
of the �rms try to enter the market. This group is labelled �innovators�. After
patent expiration, when the �rst patented molecule become available for all,
another group of �rms try to enter the market developing products from un-
patented molecules. This is the �free-riding�behavior of the �imitative��rms.
In the model, the marketing propensity of the �rms, �,is �xed for the inno-
vators (�inno) and imitators (�imi) and account the relation (�inno) > (�imi).
The R&D investments propensity of the �rms is then de�ned by a share of
budget (1 � �) that complements the share of the propensity to marketing
investments. Thus, the �rms�budget is divided among search, research and
marketing activities as follows:

Resources for search (BS): (1� �)!B

Resources for research (BR): (1� �)(1� !)B

Resources for marketing (BM): �B

Where ! (randomly drawn from a uniform distribution) is invariant and
�rm speci�c.
Innovative activities. In the age of �random screening� the innovators

look for new molecules through the search process. The amount of money
invested in search activities, BS, determines a number (XTC) of TC explored
by a �rm during its current project, equation (11).

XTC =
BS
DC

(11)

The parameter DC represent the cost of draw of a molecule from a TC.
Firm selects randomly some TCs and molecules making XTC extractions. A
greater expenditure in search process allows the �rms to have more chances
to make successful extractions. Moreover there is a �xed cost (FC) that �rms
have to pay for each period when they are involved in the search activity.
Firms have few information about the molecules drawn, due to the limited
understanding of the environment, and know only whether Qi is greater
than zero or not. In the case of non-zero quality molecule, and if it has
not been patented by others, then patent protection for that molecule is
obtained. If a �rm experiences successful extractions in more than one TC
and thus �nds more than one molecule having a positive Q, it chooses to
start research activity on the TC which shows the best expected pro�ts.
In the case of the absence of products in TC the �rm suppose to become
leader in the therapeutic category, and calculates expected pro�ts. This
criterion addresses the �rms to the TC with the greatest number of patients
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and less crowed. The patented molecules that are not selected become part
of a portfolio of �sleeping molecules�that can be exploited in every further
round of search. If search is successful, the �rms move to next activity: the
research. Only after a product has been developed or in case the project has
failed the �rm will start another search iteration.
Imitative activities. For imitative �rms the phase of search explanation is

quite easy, they do not spent resources to draw a TC: The imitative �rms look
for already discovered and developed molecules whose patent has expired.
When the available molecules with expired patent are in more than one TC,
they select the TC with the best pro�t expected using the same criterion of
innovators. In the TC selected for imitation, �rms chose the molecule with
highest �perceived�quality, R. R is a function of Q as shown in equation
(12).

Ri = (1 + e�)Qi (12)

Where i = 1; 2; ::; 150 for each therapeutic category and e� is drawn from
a uniform distribution (e� 2 U [�0:1;+0:1]). Hence, high quality molecules
will be more frequently picked up by imitators.
Research activities. Research activity means the actuation of a product

development project that �transforms�a molecule into a drug that can be
sold with certain characteristic of quality. This process is very time and
money expensive, in particular for innovative research, while is quite cheap
for imitative research. Both innovators and imitators do research. A �rm,
starting with a research budget Br, progresses toward the full development
of the drug. That is to say, �rm have to �climb�a �xed number of steps
(stotal = 30) in order to develop a drug having a quality Q. Each steps
implies unitary cost CS. Thus, the total cost of developing a drug is equal
to CS �stotal. Firms di¤er in costs and research investment but have the same
number of step to �climb�. It is clear that the research speed is proportional
to the value of Br and to the research costs. Firms move faster if they pay
more in each period according to the following relationship:

st � st�1 = � � Br
CS

Where st � st�1 are the number of steps �climbed�between t and t � 1
periods, Br is the budget spent by the �rm in research, CS is the cost of
a single step of research, � is a �xed coe¢ cient that proportions budget
resources dedicated to research in a single period. The � coe¢ cient and
costs CS are di¤erent for innovators and imitators.
The costs of a single step of research grows each period at a certain

rate CG; starting from a high value for innovation (Cinno) and low value
for imitation (Cimi). The growth represent the increment of expenditure
caused by more stringent rules, growing complexity of clinical trials �xed
by external agencies (e.g. the FDA) (Grabowsky, H.(2002)). Procedures of
product approval of an innovative product are many time more expensive
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than the imitative one, hundred millions against few millions of dollars, in
particular after the Hatch-Waxman Act in 1984.
Given its budget Br a �rm may be able to buy all the steps to develop

a drug. Before commercialization the last obstacle is to warrant a minimum
level of quality, requirement to enter the market. There is an exogenous
threshold on quality of the product �xed to represent a kind of�quality check�
(QC), imposed, for example in the USA, by the Federal and Drug Adminis-
tration. Below this value the drug cannot be commercialized and the project
fails. Reached the minimum quality, the product is labelled as imitation
if risen from a molecule with expired patent or otherwise it is labelled as
innovative.
Marketing activities. When the develop process come to an end and

the quality of the drug is over the threshold for entering the market the
�rm invests the budget BM ; sets for marketing. The launch of the product
time TL is the moment when the �rm creates the �product image�AjTL ,
proportional to marketing spending. Moreover, the �rm will pro�t from a
marketing expenditure � from its previous products k 6= j. The �image�is
eroded in the course of time at a rate equal to eA in each period. The level
of the �image�, Ajt in period t is given by:

AjTL = BMTL
+ � �

X
k 6=j

[Ak]

for t = TL

Ajt = Ajt�1 � (1� eA)

for t > TL:

4.2.3 Demand and market share

In this model, each �rm sells a speci�c quantity of drugs in every period and
pays a very low cost for manufacturing every single unit k produced. The
costumers are homogenous and we do not distinguish between patients and
physicians. Decision to buy a speci�c drug depends on several factors: quality
PQ, price P and image level Aj. The quality of the drug decides the number
of submarkets (n:sub) reached, thus the number of well-disposed patients to
buy. Therefore, low quality drugs, probably with many contraindication, will
reach few patients even if there are few competitors in the TC. The number
of patients in each submarket (Nsub) is give by:

Nsub =
NTC
n:sub

The share of a drug in a submarket depends by a �merit�function (Ui;t).
The factors listed previously, determine value of merit by:

Ui;t = PQai �
�
1

Pi;t

�b
� Aci;t (13)
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Where PQi is the economic value of the drug, equal to quality Qi, Pi;t
is the price applied by the �rm (see below) Ai;t is the image of the product.
a, b and c are speci�c to each TC and drawn from uniform distributions.
The market share of product i in the submarket sub of TC is proportional
to its relative merit as compared to the other competing drugs in the same
submarket and is given by:

Si;sub =
Ui
Usub

Where Usub is the sum of the merit of all products in the submarket. Firms
may have a product accessing di¤erent submarkets. Thus, their market share
in the TC is given by:

Si;TC =

P
Si;sub

n:sub

When the share of patients for each product is given, it�s time for the
�rms to adjust the selling prices for the next period (t + 1) if some market
conditions have changed. The price of product i at time t depends, indirectly
through the mark-up (mupi), from its market shares at t� 1. The prices are
set using the two following equations:

Pi = k � (1 +mupi)

mupi;t = (1� �) �mupi;t�1 + � �
�

Si;TC
� � Si;TC

�
Where the cost of production is a constant k for all �rms, � is a constant

to weight the past mark-up in respect of present share state and � is an
elasticity. Mark-up (mup) is the desire rate of return that each �rm wants
to obtain from selling its drug. Thus, higher the mup higher the price, but
also lower the demand (equation (13)). Moreover the erosion of the market
share in a TC by the competition of other products produce an adjustment of
prices, on the contrary the monopolistic position of a drug in a TC produces
a rise of prices.

4.2.4 Budget accounting and exit rules

Revenue of �rm f for product i is �f;i, and it is given by:

�i;f =

n:subX
1

[Pi � (Si;sub �Nsub)� k � (Si;sub �Nsub)]

�i;f =

n:subX
1

[K �mupi � (Si;sub �Nsub)]

because �rm f may have more than one product, total revenue (�TOTf ) is
the sum of revenues obtained from all the products of the �rm:
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�TOTf =

productsfX
i=1

[�i;f ]

The revenues, in each period, accumulate in an account that is used as a
budget to �nance search, research and marketing investments. Thus, we are
assuming that �rms reinvest their whole budget, without paying dividends
to shareholders. Before de�ning the exit rules it is important to calculate the
total share of pharmaceutical market owned by a single �rm. It is given by:

Stot;f =
�TOTfP
[�TOTf ]

Firms with very low level of total market share and with a low level of
e¢ ciency in the search and research activities exit the market. The three
exit rules are given by:

Ef > (1� r) �
�
1

F

�
+ r � Stot;;f

�TOTf <  1 �DC

�TOTf <  2 � CS

Where r, Ef ,  1 and  2 are constants. When one of the rule is satis�ed
the �rm exits the market.

4.3 Parameters of interest

In this section we explore which parameters, in the input and output lists,
seem to be promising for the SA. We will test the sensitivity of the model to
�ve main groups of features: research and development costs, environment
and opportunity conditions, regulatory regime, demand and �rm�s features.
In table (2) we report the input parameters used in the SCM . The meaning
of the input parameters is fully explained in section 4.2 but for clearness we
report in the table a brief explanation. For some output parameters, reported
in table (3), are useful some detailed notes. The �rst output of the SCM
model analyzed is the Her�ndahl index, equation (14), which measures the
level of concentration in the whole industry (TH).

TH =

FX
i=1

[Stot;i]
2 (14)

This index summarize in a single value the structural features of the market.
Another index, calculated almost in the same way, is the mean Her�ndahl
index (HTC), the only di¤erence is that we consider each TC as a separate
market, and in the end we calculate the mean of the indexes of the overall
TCs. The mean e¤ective patent life (EPL) represent the average duration
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of patent after the drug commercialization. The total number of TC viewed
(TCv) and the mean number of TCs viewed by a single �rm (TCD) repre-
sent quite di¤erent concepts. The �rst index indicates how many TCs where
explored by the �rms at the end of a simulation (i. e. how many disease
classes have a treatment). The latter represent the diversi�cation tendency
of the �rms. As we explained in section 4.2.2 the �rms spend a share of
budget for the commercialization of products to improve the value of their
�image�. The ADV index represent the mean level of the product image at
the end of the simulation. The last output which needs a brief explanation
is the frequency of blockbuster products (BP ). These are drugs which main-
tain a large market share for a long time giving high pro�ts to the �rm.
We report numerous index to examine each aspect of the SCM behavior.
Among the outputs may be identi�ed four big �elds of study: innovation
processes, imitation processes, prices and industry structure. The values of
outputs represent the model in the last period of simulation and they can be
characterized by continuous or discrete values.

Groups Inputs Brief explanation
R&D costs DC cost of a single draw of a molecule from a TC

FC �xed cost of search activity
Cinno starting cost of research processes for innovative �rms
Cimi starting cost of research processes for imitative �rms
GC growth of costs for each period

Environment Qnull percentage of molecules with null quality value
F number of possible entrants

Reg. regime PD patent duration
QC quality check
PW patent width

Demand �NTC starting mean number of patients in a TC
GNTC growth of the number of patients for each period

� share of image advantage from other products
eA erosion of product image level for each period

Firm�s fe. ! shares of search and research activity from R&D budget

Table 2: List of inputs

5 Computer experiments

5.1 Looking for input feasibility

Let consider the vector x = (x1; :::; xk) the input of the model. Each input
parameter xi is drawn out from a uniform distribution with a given mean �i
and a given range �i � 50%1. Each parameter of the input may be discrete

1except for envitonmental opportunity parameter (Qnull), quality check (QC), number
of possible entrants (F ) and growth of number of patients (GNTC) : They are drawn always
from uniform distributions but with di¤erent ranges.
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Groups Outputs Brief explanation
Structure TH total Her�ndahl index

HTC mean Her�ndahl index in the TCs
Afin alive innovative �rms
AFim alive imitative �rms
Szin mean size of innovative �rms
Szim mean size of imitative �rms

Innovation pr. Nin number of innovative drugs
Imitation pr. Nim number of imitative drugs
Prices Pin mean price of innovative drugs

Pim mean price of imitative drugs
Ptot mean total prices

Others TCv number of TC explored by the �rms
TCD mean number of TC explored by a �rm
fSH innovative �rms share
BP blockbuster frequency
EPL mean e¤ective patent life
ADV mean image level of products

Table 3: List of outputs

or continuos. The mean value �i; rises from the i-th component of bx =
(bx1; :::; bxk) vector considered as the standard set. We de�ne the extended
output, originated with the input set x, asDz. Now we introduce the concept
of input feasibility set explained in section 2.2. We choose to exclude the less
pleasant outputs from Dz using the simple criterion of do not consider less
signi�cant results. The �rst step is to de�ne an output feasibility set Fz
through the use of simple conditions on Dz. Thus, we de�ne feasible output
all the model results that have the minimum features that allow to de�ne the
existence of the pharmaceutical market. Two necessary requirements appear
clear. The �rst is the necessity of existence, at least, of one imitative �rm and
one innovative �rm which compete in the market. The condition of an empty
market is not very interesting simply because nothing happens. Moreover,
an analysis of the parameters in the state of an empty market may be self-
defeating because, under a minimum threshold of di¢ cult conditions, the
result is always an empty market. The feasible second state is the condition
of low value of concentration. It is widely recognized and is also an empirical
evidence that the structure of pharmaceutical industry is characterized by a
low level of concentration and our attempt is to remain quite close to the
�History-Friendly� results. Thus, we �x a maximum level of concentration
that appears feasible. Once de�ned Fz the next step is to apply equation (2)
to extended output set Dz and then deduce Fx. Imposing input feasibility,
causes the loss of input independence as explained in section 2.2. In table
(4) we report the input feasibility set Fx (outcome of the process).

From an analysis of the Fz andDz (not reported here for brevity) emerges
that the independence of the inputs is quite preserved, only few results are
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Inputs Min Max Mean Std
DC 10.0049 29.9854 19.2045 5.8615
FC 50.1516 149.7363 98.1043 29.0152

Cinno 10.0161 29.9749 18.3594 5.3455
Cimi 0.5009 1.4995 1.0016 0.2932
GC 0.005 0.015 0.0098 0.0029

Qnull 0.9 0.94 0.9199 0.0116
F 25 99 65.1651 20.7166

PD 10 29 20.3601 5.5308
QC 30 44 36.2445 4.1495
PW 0 9 4.3097 2.8663
�NTC 250.3094 749.9139 524.4019 137.5147
GNTC 0 0.002 0.001 0.0006

� 0.05 0.15 0.0995 0.0287
eA 0.005 0.015 0.0099 0.0029
! 0.05 0.15 0.101 0.0282

Table 4: Fx

out of the feasible set imposed as threshold and the input parameters x have
weak dependence structures. Thus, as approximation, the input distribution
may be considered with independent components.

5.2 Simulations

The extended output set z is composed by 30000 simulations. Each z repre-
sent a single �story�of the industry told by the model under the conditions
determined by the inputs. For a given set of inputs x = (x1; ::::; xk) the �rst
two conditional moments of the distribution P (zjx) are given by equation
(15). The �rst moment values (�(x)) inside output feasibility set, Fz, are
m(= 1272). For a given x there are n(= 20) outputs , thus the total number
of outputs generated by the model under the condition of input feasibility
set are m � n(= 25440) values of z.

� (x) = E (zjx) (15)

� 2 (x) = V ar (zjx)

5.3 Multivariate structure I/O

The output z = (z1; :::; zr) of SMC is multivariate. The large part of outputs
zj are characterized by strong correlation. We de�ne the variance-covariance
matrix as Vz = V ar(z) (not reported for brevity). The matrix Vz shows
frequent high values of correlation among the outputs. This result is not
surprising if we think about the output structure. We describe now one
example of positive strong correlation. It concerns the number of innovative
alive �rms (AFIn) at the end of simulation and the number of innovative
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drugs sold on the market (NIn). It is quite intuitive that the two outputs are
strongly correlated, considering that the only sources of wealth for the �rms
are the sold products.
As we said in section 2 we are able to separate the quota of the global

output uncertainty. This depends on the stochastic game � and may be
related to the inputs variability using ANOVA decomposition of variance,
equation (1).

Outputs Total unc. Input unc. Stochastic game unc. �2

TH 0.01516 0.003322 0.01184 0.219
HTC 0.007099 0.004406 0.002697 0.6202
AFin 10.05 6.831 3.228 0.679
AFim 104.5 59.19 45.32 0.5662
Szin 4.86E+07 2.25E+07 2.61E+07 0.4627
Szim 1.13E+07 3.35E+06 7.94E+06 0.2967
Nin 1383 1110 273 0.8026
Nim 2722 1765 957.9 0.6481
Pin 0.05746 0.01289 0.04458 0.2242
Pim 0.01622 0.004062 0.01216 0.2504
Ptot 0.008699 0.004823 0.00388 0.554
TCv 530.7 425.9 105.2 0.8019
TCD 396.4 308.7 87.88 0.7783
fSH 0.06551 0.03405 0.03149 0.5193
BP 8.512 5.619 2.897 0.6596
EPL 28.19 7.723 20.47 0.2738
ADV 5.52E+06 3.67E+06 1.85E+06 0.6644

Table 5: Stochastic game and sistematic componets

In table (5), �2 is the accountable quota of output uncertainty that may
be related to each single input using SA techniques. We decide to summit a
particular analysis to the outputs with a signi�cative accountable uncertainty,
i.e. with a small component of stochastic game. As we said, we suppose that
the in�uence of the input parameters and stochastic game may be separated
and the in�uence of x may be modelled by an appropriate emulator that we
investigate. This criterion allows us to accept for the analysis few output
parameters. In particular, arbitrarily �xed a minimum threshold of access,
we choose only three outputs. These are the number of TCs explored (TCv),
the di¤erentiation across TCs of the �rms (TCD) and the number of innova-
tive products (NIn). The outputs selection evidences the strong dependence
from stochastic game of the SCM , thus from the generation of uncontrolled
uncertainty inside it. Further analysis including more sources of uncertainty
of the SCM may reduce the component of the stochastic game. Moreover,
we note from the variance-covariance matrix Vz that two of the three outputs
selected are characterized by a strong correlation. In fact, emerges that the
number of innovative products (NIn) and the therapeutic category explored
by the �rms (TCv) have a positive correlation Vz(zNIn ; zTCv) = 0:96. Not sur-
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prisingly the random draw mechanism on the environment (�random search�)
produces a spread placement of innovative products in the TCs, thus many
products means more probability to explore di¤erent TCs. Follows that we
decided to investigate only the emulator components of the number of in-
novative products (NIn) considering that the behavior of TCv is quite the
same.

5.4 Computer simulation results and data analysis

In this section we examine the input e¤ect only. As explained in section
3.3.1, for a preliminary estimate of coe¢ cients � to perform the SA we can
consider the average values of outputs b�i, i = 1; :::;m and apply ordinary
least squares to data (b�i; xi). After, we proceed eliminating the unimpor-
tant parameters and make the graphical analysis of the residual. Following
this lines we searched for a statistical model having residuals almost inde-
pendent from the x and normally distributed or at last symmetric around
zero, with small Mean Squared Error (MSE). Moreover we searched for a
little complexity as measurer by Akaike Information Criterion (AIC) and
Bayesian Information Criterion (BIC): Thus, the �rst step is to eliminate
unimportant parameters with t tests. To identify a threshold, common to all
the model � coe¢ cients, for the p-values we exploit the optimization of the
model complexity in accordance with AIC and BIC. To do this we consider
the whole multivariate output and we calculate the variance of the residuals
as explained in equation (16).

b�2" = V ar(V" � �0) (16)

Where V" matrix contains the residuals of the regressions and b�2" is the
variance of the linear combination V" ��0. Moreover, we consider k the whole
number of parameters in the multivariate model and m as the number of
observations b�i. AIC and BIC, functions of b�2" , k andm; are both optimized
for a threshold p-value of 10�7.
After the model simpli�cation we focus on a deep analysis of few outputs,

selected, as explained in section 5.3, for the low component of stochastic
game. At the end of this Section, in table (6) and table (7), where are listed
the importances of the input parameters, we decided to report all the SIs in
order to give an overall description of the model through the univariate and
multivariate SAs even if the stochastic game component largely determinates
some outputs. For example, we observe that the number of patients in the
TCs in�uences for the 10.29% the total Her�ndahl index, being the maximum
quota of accountable output uncertainty only the 21.9%.

5.4.1 Number of innovations (N In)

Now we explore the number of innovations in the market (NIn) because it
has a high value of �2 and so variance depends largely from inputs. First of
all we simplify the model omitting the unimportant parameters and we get a

22



simple linear model for NIn (equation (17) with standard deviation reported
in brackets for all the coe¢ cients) with a quite good �tting R2 = 81%. From
�gure (1) and �gure (2) we search for some non linearities but the residuals
seems to be quite well distributed.

NIn = �0:25(�0:0122)DC + 0:30(�0:0122)F � 0:64(�0:0127)Cinno
+ 0:39(�0:0128)PD � 0:56(�0:0123)QC � 0:14(�0:0122)GC

+ 0:40(�0:0125)�NTC � 0:09(�0:0122)FC + e (17)

Figure 1: NIn Residuals vs. input parameters

About the frequencies of the residual we note high skewness (sk = 1:05)
and Kurtosis (k = 5:42) but we let analysis of superior order for future studies
and, as we previously said we consider only the linear components. Only as a
hint we report in �gure (3) the residual frequencies considering the quadrat-
ics and interactions components. The �tting becomes good with value of
R2 = 95%, but the linear components change value lacking the orthogo-
nality characteristic of the inputs. Thus, for a preliminary estimation, we
prefer to maintain the model more parsimonious in the number of estimated
coe¢ cients.
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Figure 2: NIn Frequencies of the residuals

5.4.2 Diversi�cation of the �rms in the TCs (TCD)

The second analyzed output is the mean number of the TCs explored by a
�rm at the end of simulation (TCD) (model shown in equation (18)). We
concentrate on this output because it has a good �2 and thus has low de-
pendence with the stochastic game. Unfortunately the �tting of the model
is quite low with R2 = 55% and with high skewness and Kurtosis. The
residuals presented in �gure (4) and �gure (5) are quite normally distributed
excepted for the number of possible entrants (F ). Probably some non lin-
earities and heteroskedasticity determinates the residual behavior. We try to
add quadratic and linear components but the �tting remains low, R2 = 69%.
we leave to future analysis an explanation of the relation between F and
residuals.

TCD = �0:16(�0:0192)DC � 0:34(�0:0193)F � 0:42(�0:0194)CInno
� 0:43(�0:0193)QC + 0:24(�0:0194)�NTC + e (18)

5.4.3 Results and discussions

Tables (6) and (7) summarizes SA, including SIs from both univariate mod-
els and multivariate ones. The last column reports the multivariate SIs of
equation (10).

24



Figure 3: NIn Residuals of the model with quadratic and interaction compo-
nents

TH HTC AFin AFim Szin Szim Nin Nim Pin
DC 1.92% 2.73% 6.23% 3.79% 1.13% 5.04% 3.80% 3.42%
FC 0.71% 1.89% 0.24% 0.71%
Cinno 23.86% 37.06% 24.72% 7.16% 6.46% 34.05% 31.96% 32.24%
Cimi
GC 2.09% 0.91% 1.58% 0.91%
Qnull 1.69% 1.19% 0.88%
F 43.31% 8.28% 22.50% 7.42% 84.09% 7.73% 7.52% 17.34%
PD 71.29% 25.16% 13.83% 19.34% 43.12% 12.43% 31.51%
QC 14.21% 1.13% 22.17% 12.44% 0.90% 25.39% 33.93% 10.07%
�NTC 10.50% 1.40% 9.17% 17.22% 38.06% 9.45% 13.07% 22.79% 3.62%
GNTC 0.01%
�
eA 0.46%

R2 0.55 0.79 0.83 0.61 0.78 0.48 0.81 0.49 0.67
�2 0.22 0.62 0.68 0.57 0.46 0.30 0.80 0.65 0.22

Table 6: SA 1/2
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Figure 4: TCD Residuals vs parameters

Figure 5: TCD Residuals frequencies
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Pim Ptot TCv TCD fSH BP EPL ADV Multivar.
DC 2.09% 2.39% 4.14% 4.56% 1.86% 3.36% 14.77% 2.44% 4.59%
FC 0.82% 0.66% 0.24%
Cinno 20.41% 23.28% 35.42% 31.49% 24.36% 34.74% 54.70% 16.72% 28.54%
Cimi 0.32% 0.00%
GC 1.20% 2.57% 0.62% 6.80% 0.36%
Qnull 1.07% 7.02% 0.05%
F 62.97% 47.98% 7.92% 21.54% 18.57% 6.93% 26.01% 16.85%
PD 11.42% 21.80% 9.97% 45.61% 27.29% 2.16% 14.76% 25.69%
QC 3.12% 4.55% 29.78% 32.39% 10.45% 7.41% 3.74% 6.00% 11.69%
�NTC 10.76% 10.03% 13.62% 6.28% 3.88% 20.29% 11.78%
GNTC 0.00%
� 0.43% 4.86% 0.01%
eA 0.78% 8.92% 0.18%

R2 0.60 0.69 0.90 0.53 0.87 0.81 0.57 0.61
�2 0.25 0.55 0.80 0.78 0.52 0.66 0.27 0.66

Table 7: SA 2/2

It can be observed that the investigated input parameters do not in�u-
ence the SCM to the same extent. In particular the multivariate SI in the
last column of table (7) shows the cost of innovative research (Cinno), being
the 28.54% its overall importance. The second parameter characterized by
great in�uence on the model outputs is the patent duration (PD), scoring
the 25.69% of in�uence. These conclusions agree with many economic works
that widely recognize the importance of development costs and regulatory
regimes as determinant features of the industry. In particular, considering
the univariate SAs of the statistical model, the costs of innovation (Cinno) are
the decisive parameter for the amount of both alive innovative (AFin) and im-
itative (AFim) �rms, explored TCs (TCv), number (NIn) and prices (Pin) of
innovative products, the e¤ective patent duration (EPL) and the frequency
of blockbusters (BP ). Furthermore the patent duration (PD) is extremely
important in the de�nition of total Her�ndahl index (TH), innovative �rms�
size (SzIn) and market share (fSH). Moreover relevant importance also per-
sists in mean concentration (HTC) in the TCs, prices of innovative products
(PIn) and in blockbusters frequency (BP ). It is important to remember that
for some industry characteristics, the stochastic game has a relevant role and
so, for example, in total Her�ndahl index the weight of patent duration must
be reconsidered. The third most important parameter in Multivariate SA is
the number of potential entrants (F ) with 16.85% of in�uence. The following
three parameters in order of importance are quality check (QC), the mean
number of patients (�NTC ) and the cost of search (DC). The other para-
meters seem to have a less relevant role in the model. The most important
classes of parameters seem to be the R&D costs, in particular cost of innov-
ative research, and regulatory regime. Remember that we are not analyzing
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the stochastic game component, largely important for many characteristics
of the market, but we rank the inputs x according to the in�uence on output
uncertainty of emulator, that is a statistical simpli�ed model. The amount
of innovative products (NIn) is an interesting case of univariate SA because
has low stochastic game component and good �tting. The variance of this
output depends closely from input variance and thus the SA on emulator
is very meaningful. The most important parameters, considering as output
the number of innovative products, are the cost of innovative development
(Cinno) and the parameters of the regulatory regime ((QC) and (PD)) . Also
the number of patients (�NTC ) plays a key role.

6 Conclusions

A statistical procedure has been proposed for preliminary analysis to evaluate
the in�uence of some parameters in a History-Friendly stochastic computer
model of the pharmaceutical industry. The parameters analyzed deal with
demand, regulatory regime, costs, environmental characteristics and �rm�s
features. At �rst we assumed that the in�uence of the input parameters and
the stochastic game on the output variance could be separated. Thus, we
modelled the in�uence of the inputs by an appropriate emulator which is a
simpli�ed statistical model. After, using the emulator, we carried on ranking
the parameters through the univariate and multivariate SAs. In the latter
method, the in�uence of the inputs on the stochastic computer model has
been assessed. Considering the entire aspects of the pharmaceutical industry
investigated, the most important parameters result to be the innovation costs
and the regulatory regime. Considering the number of innovations, as a
case of particular univariate SA characterized by low value of the stochastic
game, emerges that costs of innovation and the regulatory regime play also
a decisive role in determining the productiveness of the innovative process.
This path of analysis allows a preliminary evaluation. In some cases inserting
heteroskedasticity, quadratic components, interactions and detailed study of
the stochastic game component of the mixed linear model could improve the
accuracy of the results. The next step (a proposal for future works) will be
to extend the analysis of the model, introducing the omitted components.
However we underline the importance of this analysis in order to summarize
the large and complex problem of understanding and ranking what features
play a relevant role in a market model for pharmaceutical industry. Just
at this level of widening the procedure gives useful indications about the
outputs of the model and the subordinate economic theory.
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