Financial Econometrics Using Stata

is an essential reference for graduate students, researchers, and practitioners who use Stata to perform intermediate or advanced methods. After discussing the characteristics of financial time series, the authors provide introductions to ARMA models, univariate GARCH models, multivariate GARCH models, and applications of these models to financial time series. The last two chapters cover risk management and contagion measures. After a rigorous but intuitive overview, the authors illustrate each method by interpreting easily replicable Stata examples.

Simona Boffelli, PhD, is a quantitative analyst at Fineco Bank in Milan, part of the Unicredit Group. She is a researcher associate to the Department of Management, Economics and Quantitative Methods of Bergamo University in Italy and to the Centre for Econometric Analysis of Cass Business School in London. Her research interests are in financial econometrics, with focus on risk management, contagion analysis, and the assessment of linkages between macroeconomics and financial markets. She has published in the International Journal of Forecasting, International Journal of Money and Finance, and Journal of Financial Econometrics.

Financial Econometrics Using Stata

SIMONA BOFFELLI
University of Bergamo (Italy) and Centre for Econometric Analysis, Cass Business School, City University London (UK)

GIOVANNI URGA
Centre for Econometric Analysis, Cass Business School, City University London (UK) and University of Bergamo (Italy)
Contents

List of figures ix
Preface xiii
Notation and typography xv
1 Introduction to financial time series 1
 1.1 The object of interest 1
 1.2 Approaching the dataset 2
 1.3 Normality 3
 1.4 Stationarity 14
 1.4.1 Stationarity tests 17
 1.5 Autocorrelation 22
 1.5.1 ACF 22
 1.5.2 PACF 25
 1.6 Heteroskedasticity 26
 1.7 Linear time series 30
 1.8 Model selection 31
 1.A How to import data 33
2 ARMA models 37
 2.1 Autoregressive (AR) processes 37
 2.1.1 AR(1) 37
 2.1.2 AR(p) 46
 2.2 Moving-average (MA) processes 47
 2.2.1 MA(1) 47
 2.2.2 MA(q) 53
 2.2.3 Invertibility 54
Contents

2.3 Autoregressive moving-average (ARMA) processes 54
 2.3.1 ARMA(1,1) . 54
 2.3.2 ARMA(p,q) . 58
 2.3.3 ARIMA . 58
 2.3.4 ARMAX . 58

2.4 Application of ARMA models . 58
 2.4.1 Model estimation . 61
 2.4.2 Postestimation . 70
 2.4.3 Adding a dummy variable 75
 2.4.4 Forecasting . 78

3 Modeling volatilities, ARCH models, and GARCH models 81
 3.1 Introduction . 81
 3.2 ARCH models . 82
 3.2.1 General options . 85
 ARCH . 85
 Distribution . 86
 3.2.2 Additional options . 91
 ARIMA . 91
 The het() option . 92
 The maximize_options options 94
 3.2.3 Postestimation . 95
 3.3 ARCH(p) . 99
 3.4 GARCH models . 101
 3.4.1 GARCH(p,q) . 101
 3.4.2 GARCH in mean . 110
 3.4.3 Forecasting . 111
 3.5 Asymmetric GARCH models . 114
 3.5.1 SAARCH . 116
 3.5.2 TGARCH . 116
 3.5.3 GJR–GARCH . 117
Contents

5.4 VaR .. 190
 5.4.1 VaR estimation 191
 5.4.2 Parametric approach 191
 5.4.3 Historical simulation 206
 5.4.4 Monte Carlo simulation 210
 5.4.5 Expected shortfall 216

5.5 Backtesting procedures 217
 5.5.1 Unilevel VaR tests 218
 The unconditional coverage test 218
 The independence test 221
 The conditional coverage test 222
 The duration tests 224

6 Contagion analysis 227
 6.1 Introduction 227
 6.2 Contagion measurement 229
 6.2.1 Cross-market correlation coefficients 229
 Empirical exercise 231
 6.2.2 ARCH and GARCH models 236
 Empirical exercise 238
 Markov switching 243
 6.2.3 Higher moments contagion 251
 Empirical exercise 252

Glossary of acronyms 259

References 261

Author index 267

Subject index 269