Motivated by the problem of accurately predicting gap times between successive blood donations, we present here a general class of Bayesian nonparametric models for clustering. These models allow for pre- diction of new recurrences, accommodating covariate information that describes the personal characteristics of the sample individuals. We introduce a prior for the random partition of the sample individuals which encourages two individuals to be co-clustered if they have similar covariate values. Our prior generalizes PPMx models in the literature, which are defined in terms of cohesion and similarity functions. We assume cohesion functions which yield mixtures of PPMx models, while our similarity functions represent the com- pactness of a cluster. We show that including covariate information in the prior specification improves the posterior predictive performance and helps interpret the estimated clusters, in terms of covariates in the blood donation application.

(2022). Clustering blood donors via mixtures of product partition models with covariates . Retrieved from https://hdl.handle.net/10446/234975

Clustering blood donors via mixtures of product partition models with covariates

Argiento, Raffaele;Lanzarone, Ettore
2022-10-15

Abstract

Motivated by the problem of accurately predicting gap times between successive blood donations, we present here a general class of Bayesian nonparametric models for clustering. These models allow for pre- diction of new recurrences, accommodating covariate information that describes the personal characteristics of the sample individuals. We introduce a prior for the random partition of the sample individuals which encourages two individuals to be co-clustered if they have similar covariate values. Our prior generalizes PPMx models in the literature, which are defined in terms of cohesion and similarity functions. We assume cohesion functions which yield mixtures of PPMx models, while our similarity functions represent the com- pactness of a cluster. We show that including covariate information in the prior specification improves the posterior predictive performance and helps interpret the estimated clusters, in terms of covariates in the blood donation application.
15-ott-2022
Argiento, Raffaele; Corradin, Riccardo; Guglielmi, Alessandra; Lanzarone, Ettore
File allegato/i alla scheda:
File Dimensione del file Formato  
2210.08297.pdf

Solo gestori di archivio

Versione: non applicabile
Licenza: Licenza default Aisberg
Dimensione del file 951.98 kB
Formato Adobe PDF
951.98 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/234975
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact